Set-membership identifiability and application to fault detection and diagnosis

Carine Jauberthie1,2, Nathalie Verdière3, Louise Travé-Massuyès1

1LAAS-CNRS, France
2Université Paul Sabatier, France
3IUT du Havre/LMAH, France

June 24th 2014, Workshop #4, ECC 2014, Strasbourg, France
Definitions and methods for checking identifiability of linear and nonlinear classical systems are now well established.
Definitions and methods for checking identifiability of linear and nonlinear classical systems are now well established.

But, what if the system is not identifiable?
Example: \[
\begin{aligned}
\dot{x}_1 &= x_1 + t \cos(\varpi), \\
{x}_1(0) &= \varepsilon.
\end{aligned}
\]
Solution: \[
x_1(t) = (-1 - t + e^t) \cos(\varpi) + \varepsilon e^t.
\]
Hypothesis: \(\mathcal{U}_p = [0, 2\pi], \ \varpi \in P^* = \left[\frac{\pi}{2}, \frac{3\pi}{2}\right].\)
Example: \[
\begin{align*}
\dot{x}_1 &= x_1 + t \cos(\varpi), \\
x_1(0) &= \varepsilon.
\end{align*}
\]
Solution: \[
x_1(t) = (-1 - t + e^t) \cos(\varpi) + \varepsilon e^t.
\]
Hypothesis: \(\mathcal{U}_\rho = [0, 2\pi], \varpi \in P^* = \left[\frac{\pi}{2}, \frac{3\pi}{2} \right] \).
Example: \[
\begin{cases}
\dot{x}_1 = x_1 + t \cos(\varpi), \\
x_1(0) = \varepsilon.
\end{cases}
\]
Solution: \[x_1(t) = (-1 - t + e^t) \cos(\varpi) + \varepsilon e^t.\]

Hypothesis: \[\mathcal{U}_p = [0, 2\pi], \quad \varpi \in P^* = \left[\pi, \frac{3\pi}{2}\right].\]
Motivation

Example: \[
\begin{align*}
\dot{x}_1 &= x_1 + t \cos(\varpi), \\
x_1(0) &= \varepsilon.
\end{align*}
\]

Solution: \[x_1(t) = (-1 - t + e^t) \cos(\varpi) + \varepsilon e^t.\]

Hypothesis: \[\mathcal{U}_p = [0, 2\pi], \quad \varpi \in P^* = \left[\frac{\pi}{2}, \frac{3\pi}{2}\right].\]
Motivation

- It may be the case that there exists a partition of the parameter space into connected subsets so that every subset can be associated with a distinguishable output behavior.
- So, why not use set-membership methods?
It may be the case that there exists a partition of the parameter space into connected subsets so that every subset can be associated with a distinguishable output behavior.

So, why not use set-membership methods?

→ set-membership identifiability (SM-identifiability)
It may be the case that there exists a partition of the parameter space into connected subsets so that every subset can be associated with a distinguishable output behavior.

So, why not use set-membership methods? → set-membership identifiability (SM-identifiability)

Two definitions of global SM-identifiability that we have proposed (Jauberthie et al., IFAC WC 2011) are recalled:

- a conceptual definition,
- a definition relying on a measure μ (can be put in correspondence with operational set-membership estimation methods).

An FDI method relying on SM-identifiability is presented.
We consider the uncertain system:

\[
\Gamma_1^P = \begin{cases}
\dot{x}(t, p) = f(x(t, p), u(t), p), \\
y(t, p) = h(x(t, p), p), \\
x(t_0, p) = x_0 \in X_0, \\
p \in P \subset \mathcal{U}_P, \\
t_0 \leq t \leq T,
\end{cases}
\]

(1)

where:

- \(x(t, p) \in \mathbb{R}^n\): state variables at time \(t\),
- \(y(t, p) \in \mathbb{R}^m\): output vector at time \(t\),
- \(u(t) \in \mathbb{R}^r\): input vector at time \(t\),
- \(x_0 \in X_0, X_0\): a bounded set,
- \(f, h\): real functions, analytic on \(M\) (an open set of \(\mathbb{R}^n\)),
- \(p \in P \subset \mathcal{U}_P\): vector of parameters, \(\mathcal{U}_P \subset \mathbb{R}^p\): an a priori known set of admissible parameters.
Conceptual definitions

Notation: $Y(P, u)$ (respectively $Y(P)$ when $u = 0$): the set of outputs, solution of Γ_P^1

- Global SM-identifiability

Definition: Case of controlled systems

The model Γ_P^1 given by (1) is **globally SM-identifiable** for $P^* \neq \emptyset$, $P^* \subset \mathcal{U}_P$, if there exists an input u such that $Y(P^*, u) \neq \emptyset$ and $Y(P^*, u) \cap Y(\bar{P}, u) \neq \emptyset$, $\bar{P} \subset \mathcal{U}_P \implies P^* \cap \bar{P} \neq \emptyset$.
Conceptual definitions

Notation: \(Y(P, u) \) (respectively \(Y(P) \) when \(u = 0 \)): the set of outputs, solution of \(\Gamma^P_1 \)

- Global SM-identifiability

Definition: Case of controlled systems

The model \(\Gamma^P_1 \) given by (1) is **globally SM-identifiable** for \(P^* \neq \emptyset \), \(P^* \subset \mathcal{U}_P \), if there exists an input \(u \) such that \(Y(P^*, u) \neq \emptyset \) and \(Y(P^*, u) \cap Y(\bar{P}, u) \neq \emptyset \), \(\bar{P} \subset \mathcal{U}_P \) \(\implies \) \(P^* \cap \bar{P} \neq \emptyset \).

Definition: Case of uncontrolled systems

The model \(\Gamma^P_1 \) given by (1) is **globally SM-identifiable** for \(P^* \neq \emptyset \), \(P^* \subset \mathcal{U}_P \) if \(Y(P^*) \neq \emptyset \) and \(Y(P^*) \cap Y(\bar{P}) \neq \emptyset \), \(\bar{P} \subset \mathcal{U}_P \) \(\implies \) \(P^* \cap \bar{P} \neq \emptyset \).
Conceptual definitions

Notation: \(Y(P, u) \) (respectively \(Y(P) \) when \(u = 0 \)): the set of outputs, solution of \(\Gamma^P_1 \)

- Global SM-identifiability

Definition: Case of controlled systems

The model \(\Gamma^P_1 \) given by (1) is globally SM-identifiable for \(P^* \neq \emptyset \), \(P^* \subset \mathcal{U}_P \), if there exists an input \(u \) such that \(Y(P^*, u) \neq \emptyset \) and \(Y(P^*, u) \cap Y(\bar{P}, u) \neq \emptyset \), \(\bar{P} \subset \mathcal{U}_P \implies P^* \cap \bar{P} \neq \emptyset \).

Definition: Case of uncontrolled systems

The model \(\Gamma^P_1 \) given by (1) is globally SM-identifiable for \(P^* \neq \emptyset \), \(P^* \subset \mathcal{U}_P \) if \(Y(P^*) \neq \emptyset \) and \(Y(P^*) \cap Y(\bar{P}) \neq \emptyset \), \(\bar{P} \subset \mathcal{U}_P \implies P^* \cap \bar{P} \neq \emptyset \).

- Extension to local SM-identifiability for \(P^* \).
Example: \(\dot{x}_1 = x_1 + t \cos(\varpi) \), \(x_1(0) = \varepsilon \).

Globally SM-identifiable:

\[
\mathcal{U}_P = [0, 2\pi], \quad P^* = \left[\frac{\pi}{2}, \frac{3\pi}{2} \right] = P^*_1
\]
Example: \(\dot{x}_1 = x_1 + t \cos(\omega) \), \(x_1(0) = \varepsilon \).

Globally SM-identifiable:

\(\mathcal{U}_P = [0, 2\pi], \ P^* = \left[\frac{\pi}{2}, \frac{3\pi}{2} \right] = P_1^* \)
Example: \(\dot{x}_1 = x_1 + t \cos(\varpi), \ x_1(0) = \varepsilon. \)

Not globally SM-identifiable:

\[\mathcal{U}_P = [0, 2\pi], \ P^* = \left[\pi, \frac{3\pi}{2} \right] = P_2^* \subset P_1^* \]
Example: \(\dot{x}_1 = x_1 + t \cos(\omega) \), \(x_1(0) = \varepsilon \).

Not globally SM-identifiable:
\[
\mathcal{U}_P = [0, 2\pi], \quad P^* = \left[\pi, \frac{3\pi}{2} \right] = P_2^*
\]
A model can be SM-identifiable for P_1^* and not SM-identifiable for $P_2^* \subset P_1^*$.

Important to develop a definition of identifiability in which P^* can be taken as small as desired.

$\rightarrow \mu$-SM-identifiability.
μ-SM-identifiability

Let us now consider a bounded set Π of \mathbb{R}^p.

$\mu(\Pi) = \text{diameter}$ of Π is the least upper bound of

$\{d(\pi_1, \pi_2), \pi_1, \pi_2 \in \Pi\}$, with d a classical metric on \mathbb{R}^p.

If Π is not bounded, $\mu(\Pi) = +\infty$.

P^* is supposed to be bounded.
Set-membership identifiability

Motivation

\[\mu \text{-SM-identifiability} \]

Let us now consider a bounded set \(\Pi \) of \(\mathbb{R}^p \).

\[\mu(\Pi) = \text{diameter of } \Pi \text{ as the least upper bound of } \{d(\pi_1, \pi_2), \pi_1, \pi_2 \in \Pi\}, \text{ with } d \text{ a classical metric on } \mathbb{R}^p. \]

If \(\Pi \) is not bounded, \(\mu(\Pi) = +\infty \).

\(P^* \) is supposed to be bounded.

Definition

The model \(\Gamma^P_1 \) given by (1) is **globally \(\mu \)-SM-identifiable for \(P^* \neq \emptyset \)**, \(\mu(P^*) \) as small as desired, if there exists an input \(u \) such that

- \(Y(P^*, u) \neq \emptyset \) and
- \(Y(P^*, u) \cap Y(\bar{P}, u) \neq \emptyset \), \(\bar{P} \subset \mathcal{U}_P \implies P^* \cap \bar{P} \neq \emptyset \).

If \(\mu(P^*) \geq \varepsilon \), then we refer to **\(\varepsilon \)-SM-identifiability**.

\(\Rightarrow \) **Practical importance of \(\varepsilon \)-SM-identifiability** because \(\varepsilon \) defines the granularity at which identifiability is considered.
Method: based on differential algebra (Kolchin and al., 1973)

- elimination order \(\{p\} < \{y, u\} < \{x\} \)
 \((\Rightarrow \text{eliminate unobservable state variables}),\)
- Rosenfeld-Groebner algorithm = elimination algorithm,
Method: based on differential algebra (Kolchin and al., 1973)

- elimination order \(\{p\} < \{y, u\} < \{x\} \)

 \(\Rightarrow \) eliminate unobservable state variables,

- Rosenfeld-Groebner algorithm = elimination algorithm,

\[\Rightarrow \text{relations between inputs, outputs and parameters:} \]

\[w_i(y, u, p) = m_0(y, u) + \sum_{k=1}^{n_i} \gamma_k^i(p)m_k(y, u), \ i = 1, \ldots, m \]

\[\rightarrow (\gamma_k^i)_{1 \leq k \leq l} \text{ are rational in } p, \gamma_u^i \neq \gamma_v^i \ (u \neq v), \]

\[\rightarrow (m_k)_{1 \leq k \leq l} \text{ are differential polynomials with respect to } y \text{ and } u \text{ and } m_0 \neq 0. \]
Method: based on differential algebra (Kolchin and al., 1973)

- elimination order \(\{p\} < \{y, u\} < \{x\} \)
 \((\Rightarrow \text{eliminate unobservable state variables}),\)
- Rosenfeld-Groebner algorithm=elimination algorithm,

\[w_i(y, u, p) = m_0(y, u) + \sum_{k=1}^{n_i} \gamma_i^k(p)m_k(y, u), \quad i = 1, \ldots, m \]

\(\Rightarrow \) relations between inputs, outputs and parameters:

\[(\gamma_k^i)_{1 \leq k \leq l} \text{ are rational in } p, \gamma_u^i \neq \gamma_v^i \quad (u \neq v), \]

\[(m_k)_{1 \leq k \leq l} \text{ are differential polynomials with respect to } y \text{ and } u \text{ and } m_0 \neq 0. \]

Size of the system : \(m = \text{number of observations.} \)
Injectivity of a function (Lagrange and al., 2007)

Consider a function \(f : \mathcal{A} \rightarrow \mathcal{B} \) and any set \(\mathcal{A}_1 \subseteq \mathcal{A} \). The function \(f \) is said to be a partial injection of \(\mathcal{A}_1 \) over \(\mathcal{A} \) (resp. restricted-partial injection), noted \((\mathcal{A}_1, \mathcal{A}) \)-injective (resp. \((\mathcal{A}_1, \mathcal{A}) \)-restricted-injective), if,

\[
\forall a_1 \in \mathcal{A}_1, \forall a \in \mathcal{A}, a_1 \neq a \Rightarrow f(a_1) \neq f(a)
\]

(resp. \(\forall a_1 \in \mathcal{A}_1, \forall a \in \mathcal{A}_1^c, f(a_1) \neq f(a) \)).

\(f_1 \) and \(f_2 \) are \(([x_1] ; [x]) \)-restricted-injective and \(([x_1] ; [x]) \)-injective.
\(f_3 \) is \(([x_1] ; [x]) \)-restricted-injective but not \(([x_1] ; [x]) \)-injective.
\(f_4 \) is not \(([x_1] ; [x]) \)-injective.
Injectivity of a function (Lagrange and al., 2007)

Consider a function $f : \mathcal{A} \rightarrow \mathcal{B}$ and any set $\mathcal{A}_1 \subseteq \mathcal{A}$. The function f is said to be a partial injection of \mathcal{A}_1 over \mathcal{A} (resp. restricted-partial injection), noted $(\mathcal{A}_1, \mathcal{A})$-injective (resp. $(\mathcal{A}_1, \mathcal{A})$-restricted-injective), if,

$$\forall a_1 \in \mathcal{A}_1, \forall a \in \mathcal{A}, a_1 \neq a \Rightarrow f(a_1) \neq f(a)$$

(resp. $\forall a_1 \in \mathcal{A}_1, \forall a \in \mathcal{A}_1^c, f(a_1) \neq f(a)$).

→ S. Lagrange has developed an algorithm based on interval analysis for testing the injectivity of a given differentiable function (definition in red colour) (solver ITVIA: Injectivity Test Via Interval Analysis).

→ We propose an algorithm based on ITVIA to test the definition of restricted-partial injection and obtain the set-membership sets.
Injectivity of a function (Lagrange and al., 2007)

Consider a function $f : \mathcal{A} \rightarrow \mathcal{B}$ and any set $\mathcal{A}_1 \subseteq \mathcal{A}$. The function f is said to be a partial injection of \mathcal{A}_1 over \mathcal{A} (resp. restricted-partial injection), noted $(\mathcal{A}_1, \mathcal{A})$-injective (resp. $(\mathcal{A}_1, \mathcal{A})$-restricted-injective), if,

$$\forall a_1 \in \mathcal{A}_1, \forall a \in \mathcal{A}, a_1 \neq a \implies f(a_1) \neq f(a)$$

(resp. $\forall a_1 \in \mathcal{A}_1, \forall a \in \mathcal{A}_1^c, f(a_1) \neq f(a)$).

Remarks: For simplify: $m = 1$ and $w_1 = w_0$,

$$w_0(y, u, p) = m_0(y, u) + \sum_{k=1}^{n} \gamma_k(p)m_k(y, u).$$

$l = the$ higher order derivative of y in w_0
Proposition

Suppose that \(\triangle w_0(y) = \det(m_k(y, u), k = 1, \ldots, n) \neq 0. \)
Let \(P^* \) a subset of \(\mathcal{U}_P \) and the function \(\phi : p = (p_1, \ldots, p_p) \mapsto (\gamma_1(p), \ldots, \gamma_n(p), y(t_0^+, p), \ldots, y^{(l-1)}(t_0^+, p)). \)

If \(\phi \) is \((P^*, \mathcal{U}_P)-restricted-injective\), then the model \(\Gamma_1^P \) is globally SM identifiable for \(P^* \).

If \(\phi \) is \((P^*, \mathcal{U}_P)-injective\) then the model is \(\mu \)-SM identifiable for \(P^* \).

In the two cases, if the coefficient of \(y^{(l)} \) in \(w_0 \) is not equal to 0 at \(t_0 \), then the reciprocal is valid.
\[
\begin{aligned}
\dot{x}_1 &= p_1 x_1^2 + \sin(p_2) x_1 x_2, \quad x_1(0) = 1 \\
\dot{x}_2 &= p_3 x_1^2 + x_1 x_2, \quad x_2(0) = b \\
y &= x_1.
\end{aligned}
\]

(\(p_1, p_2, p_3\)) \in \mathcal{U}_P = \mathbb{R} \times [0, 2\pi] \times \mathbb{R}^+ : \text{unknown parameters.}

Let \(p_4 = \sin(p_2)\).
\[\begin{cases} \dot{x}_1 = p_1 x_1^2 + \sin(p_2) x_1 x_2, & x_1(0) = 1 \\ \dot{x}_2 = p_3 x_2^2 + x_1 x_2, & x_2(0) = b \\ y = x_1. \end{cases} \] (2)

\((p_1, p_2, p_3) \in \mathcal{U}_P = \mathbb{R} \times [0, 2\pi] \times \mathbb{R}^+ : \text{unknown parameters.}\)

Let \(p_4 = \sin(p_2).\)

The Rosenfeld-Groebner algorithm in Maple gives 3 cases:

- an impossible case: \(y = 0\) because \(y(0) = 1,\)
- an particular case \(p_4 = 0\) (hence \(p_2 = 0\) or \(\pi\))
- a polynomial:
 \[w_0(y) = \dot{y}^2 - y\ddot{y} + \dot{y}y^2 + p_1(\dot{y}y^2 - y^4) + p_4p_3y^4. \]
 \[\triangle w_0(y) = 2y^5\dot{y}^2 - y^6\ddot{y} \not\equiv 0. \]

Let \(\phi : (p_1, p_2, p_3) \rightarrow (p_1, \sin(p_2)p_3, p_1 + \sin(p_2)b).\)
\[
\begin{aligned}
\dot{x}_1 &= p_1 x_1^2 + \sin(p_2) x_1 x_2, \quad x_1(0) = 1 \\
\dot{x}_2 &= p_3 x_2^2 + x_1 x_2, \quad x_2(0) = b \\
y &= x_1.
\end{aligned}
\]

(\(p_1, p_2, p_3\)) \in \mathcal{U}_P = \mathbb{R} \times [0, 2\pi] \times \mathbb{R}^+ : \text{unknown parameters.}

Let \(p_4 = \sin(p_2)\).

\(\phi : (p_1, p_2, p_3) \rightarrow (p_1, \sin(p_2) p_3, p_1 + \sin(p_2) b)\):
\(\rightarrow\) is \((P^*, \mathcal{U}_P)\)-restricted-injective:

\(\forall p^*_2 \in]0, \pi[, \forall \bar{p}_2 \in]\pi, 2\pi[, \sin(p^*_2) > 0 \text{ and } \sin(\bar{p}_2) < 0,\)
\(\rightarrow\) is not \((P^*, \mathcal{U}_P)\)-injective for \(P^* = \mathbb{R} \times]0, \pi[\times \mathbb{R}^+ :\)

the function \(\sin\) is not injective on \(]0, \pi[.\)

Conclusion:
The model is globally SM-identifiable for \(P^* = \mathbb{R} \times]0, \pi[\times \mathbb{R}^+.\) and it is not \(\mu\)-SM-identifiable for \(P^* = \mathbb{R} \times]0, \pi[\times \mathbb{R}^+.\)
FDI method illustrated on an example based on SM-identifiability

\[
\begin{aligned}
\dot{x}_1 &= \alpha_1 (x_2 - x_1) - \frac{V_m x_1}{1 + x_1}, \\
\dot{x}_2 &= \alpha_2 (x_1 - x_2), \\
x_1(0) &\in [0.62, 0.63], \ x_2(0) = 0, \\
y &= x_1.
\end{aligned}
\]

This model represents the capacity of the macrophage mannose receptor to endocytose soluble macromolecule,

- \(x_1\) (resp. \(x_2\)) is the enzyme concentration outside (resp. inside) the macrophage,

\(p = (\alpha_1, V_m, \alpha_2) \in [0, +\infty] \times [0, +\infty] \times [0, +\infty]: \text{the unknown parameters vector.}\)
Checking SM-identifiability:
The package diffalg of Maple gives the following output polynomial:
\[w_0(y) = \ddot{y}(1 + y)^2 + \gamma_1 \dot{y}(1 + y)^2 + \gamma_2 y(1 + y) + \gamma_3 \dot{y}, \]
where \(\gamma = \{\alpha_1 + \alpha_2, \alpha_2 V_m, V_m\} \).

→ First hypothesis:
Maple \(\Rightarrow \Delta w_0(y) \neq 0. \)

→ Second hypothesis:
For all \(P^* \subset [0, +\infty] \times [0, +\infty] \times [0, +\infty], \)
\(\phi : (\alpha_1, \alpha_2, V_m) \rightarrow (\alpha_1 + \alpha_2, \alpha_2 V_m, V_m) \) is \((P^*, \mathbb{R}^3)\)-injective.

The system is \(\mu \)-SM-identifiable for all \(P^* \subset [0, +\infty] \times [0, +\infty] \times [0, +\infty]. \)

→ This guarantees that the solution set for \(\gamma \) reduces to one connected set.
Simulations:

\[
\begin{cases}
\dot{x}_1 = \alpha_1 (x_2 - x_1) - \frac{V_m x_1}{1 + x_1}, \\
\dot{x}_2 = \alpha_2 (x_1 - x_2), \\
x_1(0) \in [0.62, 0.63], \ x_2(0) = 0,
\end{cases}
\]

\(y = x_1, \) \hspace{1cm} (4)

→ Simulation in Matlab with normal values: \(\alpha_1 = 0.011, \)
\(\alpha_2 = 0.02 \) and \(V_m = 0.1, \)

→ \(y(t) = \bar{y}(t) + \eta(t), \) \(\bar{y} \) is the exact output corresponding to the exact value of parameters, \(\eta(t) \) = truncated gaussian noise such that \(\eta(t) \in [-0.001, 0.001]. \)

→ Observations done at discrete times \((t_j)_{j=1,...,N}\) on the interval \([0, 117]\) with a sampling equal to \(\frac{1}{2}. \)
Parameter estimation and FDI:

\(w_0(y) = \ddot{y}(1 + y)^2 + \gamma_1 \dot{y}(1 + y)^2 + \gamma_2 y(1 + y) + \gamma_3 \dot{y}, \)

with \(\gamma_1 = \alpha_1 + \alpha_2, \gamma_2 = \alpha_2 V_m \) and \(\gamma_3 = V_m. \)

\(\rightarrow \) \(y_p(t_j) \) (resp. \(y_{pp}(t_j) \)) the estimate of \(\dot{y}(t_j) \) (resp. \(\ddot{y}(t_j) \)) obtained by a finite differences method extended to interval analysis,

\(\rightarrow \) Problem : Find \(\gamma \) such that \(0 \in w_0(y) \)

\(\rightarrow \) System which has to be solved: \([A][\gamma] = [b]\)

where \([A]_j = ([y_p(t_j)(1 + y(t_j))^2], [y(t_j)(1 + y(t_j))], [y_p(t_j)])\)

and \([b]_j = [-y_{pp}(t_j)(1 + y(t_j))^2],\)

\(\rightarrow \) Resolution done with SIVIA.
Case of nominal behaviour
Initial intervals: $[\gamma_1] = [0, 0.04]$, $[\gamma_2] = [0, 0.003]$, $[\gamma_3] = [0, 0.2]$,
Case of nominal behaviour
Initial intervals: $[\gamma_1] = [0, 0.04]$, $[\gamma_2] = [0, 0.003]$, $[\gamma_3] = [0, 0.2]$,

1st case:

→ Bisection precision $\varepsilon = 0.001$,

→ We obtain in 14.18 seconds:
 $[\alpha_1] = [0, 0.0401]$, $[\alpha_2] = [0, 0.0437]$ and $[V_m] = [0.06875, 0.13203]$.

2nd case:

→ Bisection precision $\varepsilon = 0.0001$,

→ We obtain in 177.55 seconds:
 $[\alpha_1] = [0, 0.0329]$, $[\alpha_2] = [0.0071, 0.0317]$ and $[V_m] = [0.094824, 0.10527]$.

All these intervals contain the normal values $\alpha_1 = 0.011$, $\alpha_2 = 0.02$ and $V_m = 0.1$.
Case of a fault on α_2

We suppose $\alpha_2 = 2$ (instead of 0.02).

Initial intervals: $[\gamma_1] = [0, 3]$, $[\gamma_2] = [0, 1]$, $[\gamma_3] = [0, 0.2]$,

\rightarrow Bisection precision $\varepsilon = 0.001$,

\rightarrow We obtain in 25.15 minutes:

$[\alpha_1] = [0.0000, 0.5050]$, $[\alpha_2] = [1.1200, 10.4435]$ and $[V_m] = [0.0242, 0.1790]$.

The real faulty value of α_2 is contained in the estimated interval for α_2.

The fault is detected and localised.
Case of a fault on α_2

We suppose $\alpha_2 = 1.5$ at $t = 17s$.

Initial intervals: $[\gamma_1] = [0, 0.04]$, $[\gamma_2] = [0, 0.003]$, $[\gamma_3] = [0, 0.2]$,

\rightarrow Bisection precision $\varepsilon = 0.05$,

\rightarrow The fault is detected 2.59s after its occurrence.

Initial intervals: $[\gamma_1] = [0, 2]$, $[\gamma_2] = [0, 0.18]$, $[\gamma_3] = [0, 0.114]$, We obtain in 23s:

$[\alpha_1] = [0.0000, 0.9039]$, $[\alpha_2] = [0.8771, 2.4794]$ and $[V_m] = [0.0726, 0.1400]$.

- The real faulty value of α_2 is contained in the estimated interval for α_2.
- The fault is localised.
Case of a fault on V_m

We suppose $V_m = 0.15$ at $t = 22s$.

Initial intervals: $\gamma_1 = [0, 0.04]$, $\gamma_2 = [0, 0.003]$, $\gamma_3 = [0, 0.2]$,

\rightarrow Bisection precision $\varepsilon = 0.05$,

\rightarrow A fault is detected 1.01s after its occurence.

Initial intervals: $\gamma_1 = [0, 2]$, $\gamma_2 = [0, 0.18]$, $\gamma_3 = [0, 0.114]$, We obtain in 23s:

$[\alpha_1] = [0.0000, 0.0399]$, $[\alpha_2] = [0.000, 0.0473]$ and $[V_m] = [0.1271, 0.1985]$.

The real faulty value of V_m is contained in the estimated interval for V_m.

The fault is localised.
Conclusion:

- Definitions of SM-identifiability / \(\mu \)-SM-identifiability
 - provide a way to study identifiability for uncertain bounded-error systems,
 - provide the guaranty that two situations corresponding to different uncertain parametrized setting are distinguishable.
Conclusion:

- Definitions of SM-identifiability / \(\mu \)-SM-identifiability
 - provide a way to study identifiability for uncertain bounded-error systems,
 - provide the guaranty that two situations corresponding to different uncertain parametrized setting are distinguishable.
- Method to analyze (\(\mu \)-)SM-identifiability,

This work was supported by the French National Research Agency (ANR) in the framework of the project MAGIC-SPS.
Conclusion:

- Definitions of SM-identifiability / μ-SM-identifiability
 → provide a way to study identifiability for uncertain bounded-error systems,
 → provide the guaranty that two situations corresponding to different uncertain parametrized setting are distinguishable.

- Method to analyze (μ-)SM-identifiability,

- FDI method relying on a parameter estimation scheme built on the analysis of identifiability
 → guarantees that the solution set reduces to one connected set, avoiding this way the pessimism of SM methods.

This work was supported by the French National Research Agency (ANR) in the framework of the project MAGIC-SPS.