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Abstract— This paper deals with sound source localization
in a humanoid robotics context. Classical binaural localization
algorithms often rely on the following process: first, binaural
cues are extracted from the left and right microphone/ear
signals; next, a model is exploited to infer the possible local-
ization of the sound source. Such a method thus requires an
accurate modeling of the head acoustic shadowing, or precise
Head-Related Transfer Function measurements. In order to
avoid these last complicated steps, we propose in this paper
an original multimodal sound source localization method. The
relationship between binaural auditory cues and the position
of the sound source to be located in an image is learned
by a partially-connected neural network. This approach has
a higher resolution and is less complex than state-of-the art
techniques. Simulations and experimental results are shown,
demonstrating the effectiveness of the proposed method. A
very accurate azimuth estimation is provided, while elevation
requires additive cues to be more efficiently approximated.

I. INTRODUCTION
Robot Audition has reached today an undeniable level

of scientific maturity, thanks to various works in the last
decade dealing with sound source localization, speaker or
speech recognition, source extraction, etc. While artificial
audition was first envisioned as a simple extension of signal
processing and/or acoustic algorithms, it has brought to the
fore specific and original robotics-related constraints as well
as the new field of artificial binaural audition. Binaural
audition consists in exploiting only two microphones in
order to perform the aforementioned auditive tasks. In that
sense, such a system is frequently considered as biomimetic,
and is naturally well-suited to Humanoid Robots. But the
use of only two microphones is shown to be extremely
awkward when considering real acoustic environments, in-
volving irrelevant sound sources, reverberations or noises
coming from the robot itself. As a consequence, binaural
audition still suffers from a lack of robustness. Considering
the specific sound localization task, one of the first ideas
dedicated to robotics was to elaborate closed-form models
of the binaural sensor. One can cite [12] or [6], where
the Auditory Epipolar Geometry (AEG) or the Scattering
Theory (ST) are suggested to obtain the interaural cues which
make the localization possible. Another solution consists
in identifying the Head-Related Transfer Function (HRTF),
which provides the impulse response linking the emitted
signal to the two (left and right) perceived signals as a
function of the source position. Inverting this HRTF thus
allows the estimation of this position [8]. But all these
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solutions are not so robust against changes in the robot’s
environment, as shown in [12]. Nevertheless, very promising
results have been already proposed in the field of binaural
speaker recognition as we showed in [19] and [3], or binaural
sound localization [17], [11], [14].

In comparison, Humans can perform impressive auditive
tasks in very difficult acoustic conditions. Actually, each
of us has learned his own HRTF and unconsciously ex-
tracts adaptive auditive characteristics from the two ears.
But how is this learning performed? Among all human
sensing capabilities, Vision is of particular interest, and
recent works hypothesize some visually guided auditory
adaptation processes for sighty subjects [1]. In the same
way, [20] shows that the human auditive system may require
vision to optimally calibrate elevation-related auditory cues.
These work seem to demonstrate that audition requires other
sensing capabilities to become more adaptive and robust. As
a consequence, coupling vision and sound together with a
learning-based approach might provide a good solution to
obtain effective auditive capabilities. Recent contributions
have been proposed in this field. One can cite [13], where
the system can acquire sound localization abilities through
repetition of movements and visual perception, or [10] where
a method that mixes auditive and visual information for
sound localization in reverberant environments is proposed.

This paper deals with binaural sound source localization.
We propose here to combine a multimodal data acquisition,
relying on binaural auditory cues and visual markers, with a
learning of the relation between what the robot ”hears” and
”sees” by a neural network. This paper is divided into four
sections. The first section is devoted to the presentation of
the method, and to the evaluation of the performances in a
supervised learning context. The second section presents the
multimodal learning of the source position. Learning results
are carefully described, in order to capture how vision and
audition are related. Experimental results are introduced in a
third section. A discussion of the method and ongoing works
are then proposed in the fourth section. Finally, a conclusion
ends the paper.

II. SUPERVISED LEARNING OF THE SOURCE POSITION

The proposed localization system is presented in this
section. It mainly relies on a neural network that will be able
to estimate the source position on the basis of interaural cues
extracted from the two perceived signals. This position is
expressed in function of both azimuth and elevation angles θ
and φ respectively (see Figure 1). Contrarily to many studies
that disregard one of the angles (mainly the elevation),



Fig. 1. Azimuth θ and elevation φ with respect to the head.

like [11], [16], [10] or [18], this work aims at estimating
both angles at the same time. As a first step, in this section
only, the proposed learning algorithm is directly supervised,
as the two angles are supposed to be precisely known during
the learning step. In the next section, they will not be required
thanks to a multimodal approach.

A. Details of the proposed system

Like all learning-based approaches, the system requires
a database which is here made of binaural auditory cues.
The way they are extracted is first carefully described. Next,
the functioning of the proposed neural network is presented.
Finally, the database itself is depicted.

1) Auditory cues extraction: The auditory characteristics
are obtained thanks to the following successive computation
steps, see Figure 2. First, a sound source is selected. A
whitened discrete gaussian noise with sampling frequency
fs = 44.1kHz is exploited in all the following, as its spec-
trum spreads over a wide frequency band. Next, the CIPIC
HRTF database [2] is used to simulate the acoustic scattering
induced by the head and leading to the left and right
perceived signals (see II-A.3). Nfilter = 20 gammatone filters,
defined by Patterson et al. in [15], are then exploited to
reproduce the cochlear frequency filtering (see Figure 3
(top)). Their central frequencies fc(i), i ∈ [1, Nfilter] range
from 100Hz to about fs/2. Finally, the auditory cues are
computed on the basis of the 2 × 20 resulting signals. We
propose here to work with the following classical interaural
cues, each of them being computed on N = 1024-point time
windows according to the following equations:

• ILD (Interaural Level Difference):

ILD(fc(i)) = 20 log10
El(fc(i))

Er(fc(i))
, (1)

where El(fc(i)) and Er(fc(i)) respectively represent
the left and right cochlear filter output powers corre-
sponding to the ith gammatone response centered at
frequency fc(i), i ∈ [1, Nfilter];
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Fig. 2. Auditory cues extraction diagram.
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Fig. 3. Auditory cues as a function of the frequency f , for a sound source in
the median plane, and azimuth θ = 75◦. (Top) Gammatone filter responses
in dB. (Middle) ILD value, computed at each cochlear center frequency;
values for f < 1.5kHz are neglected. (Bottom) IPD values (solid line),
computed at each cochlear center frequency; values for f > 3kHz become
inconsistent. The ITD estimate, expressed in term of phase, is represented
in red (dashed line).

• IPD (Interaural Phase Difference):

IPD(fc(i)) = 2πfc(i)τlr(fc(i)),with (2)

τlr(fc(i)) = k/fs and k = argn max(R
(i)
lr [n]),

where R(i)
lr [n] =

1
N

∑N−n−1
m=0 li[m + n]ri[m] is the bi-

ased estimate of the cross-correlation function between
the two signals li[n] and ri[n] originating from the ith

left and right gammatone filters respectively;
• ITD (Interaural Time Difference):

ITD =
1

2π
f+ IPD(f), (3)

where (.)+ denotes the Moore-Penrose pseudo-
inverse, f = (fc(1), fc(2), . . . , fc(Nfilter))

T and
IPD(f) = (IPD(fc(1)), . . . , IPD(fc(Nfilter)))

T . Conse-
quently, the ITD value is actually obtained by a least
square operation performed on the IPD.

So, each source position can now be described by a vector
containing Nfilter ILD values, Nfilter IPD values and 1 ITD
value. But it is known that ILD presents very small values for
small frequencies related to large wavelengths. Consequently,
the ILD is only computed for fc > 1.5kHz. In the same
vein, the index of the cross-correlation R

(i)
lr [n] maximum

becomes ambiguous for high frequencies and results in a
false IPD estimation (see Figure 3 (bottom)). So, the IPD is
only taken into account for fc < 3kHz only. In this frequency
band, the phase is almost linear, thus justifying the least-
square method used to evaluate the ITD (see dashed line
in Figure 3 (bottom)). Finally, 13 ILD, 12 IPD and 1 ITD
values are involved in the vector being presented as input of
the neural network.

2) Neural network characteristics and learning algorithm:
In this section, a feed-forward neural network with a partial
connections structure is employed. It has a 15-cell hidden
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Fig. 4. Proposed neural network structure. The partial connections structure
is outlined, with the x/y indication representing the input and hidden cells
number respectively.

layer, as this number of hidden cells gave the best com-
putational time-results performances, a 26-cell input layer
and an output layer whose size will be adapted according to
the scenario (see below). The partial connections structure is
proposed here to cope with the heterogeneous input vector
embedding ITD (s), IPD (rad) and ILD (dB). In such a struc-
ture, one hidden cell cannot be connected to two different
kinds of inputs. As a consequence, only one hidden cell is
connected to the ITD input, 7 are devoted to the 13 ILD
inputs and 7 to the 12 IPDs (see Figure 4). On the contrary,
the connections between the hidden and the output cells
are complete, making them able to alter the output values
properly. The iterative training of the neural network is based
on a classical full gradient backpropagation algorithm, using
the difference between the real network outputs (generated
from the learning database) and the obtained ones to update
the network weights. A cross-validation step is periodically
performed to save the network characteristics producing the
best results evaluated on a different database. The network
training is stopped when it does not progress anymore, or
when the learning error becomes smaller than a threshold.

3) Database and simulations: The CIPIC HRTF database
provides the left and right impulse responses for various
azimuths θ and elevations φ and a constant distance to
the head. The azimuth is not uniformly sampled, but is
more densely represented in the midsagittal plane, while the
elevation φ is uniformly sampled, with φ(k) = −45+5.615k
(in degrees) [2]. Spline interpolation is then used to obtain
azimuth and/or elevation impulse responses that are not
provided by the CIPIC database, resulting in an azimuth
angle θ between −80◦ and 80◦ with a 0.5◦-step, and an
elevation angle φ ranging from −45◦ to 45◦ with a 1◦-step.
Consequently, 29211 known positions constitute the entire
database, which is then split to form the learning (60%),
cross-validation (20%) and test (20%) databases. Note that
this high number is then reduced to about 8300 positions
between −45◦ and 45◦ with a 1◦-step for both θ and φ
in order to guarantee the same learning conditions between
azimuth and elevation.
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Fig. 5. Localization results. (First) Estimated azimuth as a function of
the real azimuth. (Second) Estimated elevation as a function of the real
elevation. (Third) Mean error between estimated and real azimuth (plain)
and elevation (dashed). (Fourth) Mean standard deviation of the estimation
for azimuth (plain) and elevation (dashed).

B. Learning results and discussion

Our main objective in this subsection is to verify if a neural
network is able to learn the relationship between some acous-
tic cues and the corresponding source position. Consequently,
the network output is the source position expressed in terms
of azimuth θ̂ and elevation φ̂. Two different approaches
are imaginable: one neural network with the two outputs θ̂
and φ̂, or two neural networks with only one output each.
These two strategies have been evaluated, and the second one
exhibits better results. They are hereafter presented. Note that
these estimations are obtained by presenting feature vectors
from the testing database. For each vector, the predicted
position is compared with the real one, resulting in a mean
and standard deviation error measurements. They are both
depicted in Figure 5. The proposed system shows very
good azimuth estimation capabilities. Indeed, the mean error
is as low as 1.37◦, and the mean standard deviation is
only 1.13◦. On the contrary, elevation estimation is quite
poor, with a 8.08◦ mean error and a 7.48◦ mean standard
deviation. This indicates that the neural network is not able
to efficiently learn the elevation, which is not a surprise, as
the proposed interaural features do not really capture this
elevation information [7]. This limitation will be discussed
in §V. But in comparison with related works, this system
exhibits a higher resolution and looks less complex. For
instance, one can cite [4] where mean errors of 2.5◦ and
11◦ (azimuth and elevation respectively) are obtained. In
the same vein, the binaural system proposed in [11], also
relying on ITDs and ILDs, exploits one GMM per source
azimuth and frequency bin, thus requiring a high number of
GMMs and long training durations. Moreover, the azimuth
resolution is of 5 degrees. This resolution is also present
in [14], where the localization system relies on Probability
Density Functions (PDFs) based on normalized histograms,
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Fig. 6. Model of the proposed camera. S represents the sound source and
0 the head center.

with one PDF being computed for each interaural parameter,
frequency and position. Another interesting result is shown
in Figure 5. The azimuthal localization precision is at its
best in front of the head. This result has also been reached
in [16] where a parametric model computing ILDs and IPDs
as a function of the azimuth is used.

These results demonstrate that a neural network is able to
learn a HRTF, and is thus able to perform the sound source
localization. The main problem of the proposed approach is
the supervision of the learning step: one has to provide the
expected source position. This can be of course achieved by
some other ways. But does a robot really need to localize
a sound source in terms of its angular position expressed in
degrees? A human clearly does not compute such a position,
and is more concerned with coincidence between two (or
more!) modalities. This is exactly the idea of the forthcoming
section, where the source position is learned with respect to
its location in an image. Consequently, a sound localization
error will now be expressed in terms of a pixel error. Of
course, the link between this error and the (more classical)
angular error will be investigated.

III. MULTIMODAL LEARNING OF THE SOURCE POSITION

In this section, an original multimodal sound source local-
ization scheme is assessed. It uses both audition and vision.
Classically, such a multimodal approach is conceived in such
a way that one of the two modalities comes to validate or
reinforce the localization obtained with the other [5], [10].
But unlike these studies using 3 or 4 microphones, our
multimodal approach mimics the human perception using
only both ears signals and vision mutual information to learn
the relationship between them. This idea is first tested in
simulation with a virtual camera placed at the center of the
head. The details of the simulation parameters are described
in a first subsection. Simulation results are discussed in
a second subsection. The proposed method will then be
evaluated with real data in section §IV.

A. Proposed methodology

For the moment, the interaural cues database remains
exactly the same. The only difference is the neural network
itself, which will now have to learn the source position
expressed in pixels. To perform such an operation, a simple
camera (see Figure 6) is simulated at the head center. In order
to obtain a basic visual representation of the position, three

−50

−25

0

25

50

A
z
im

u
t
h

−50

−25

0

25

E
le

v
a
t
io

n

0

5

10

15

20

M
e
a
n

E
r
r
.

0

5

10

15

S
t
d

D
e
v
.

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

20

40

60

Angle

P
ix

e
l
E

r
r
.

Fig. 7. Localization results. (First) Estimated azimuth (evaluated by
inverting (4)) as a function of the real azimuth. (Second) Estimated elevation
(evaluated by inverting (5)) as a function of the real elevation. (Third) Mean
error between estimated and real azimuth (plain) and elevation (dashed).
(Fourth) Mean standard deviation of the estimation for azimuth (plain) and
elevation (dashed). (Fifth) Mean pixel error between estimated and real
position of the three markers in the image for the x coordinate (plain) and
the y coordinate (dashed).

punctual markers, whose positions depend on the azimuth
θ and elevation φ, are placed around the simulated sound
source. These three markers are then projected in the image
plane to obtain their horizontal and vertical positions pixx

and pixy in pixels, with:

pixx = round
(Xres

2
+Xres

f

dx
tan(θ)

)
, (4)

pixy = round
(Yres

2
+ Yres

f

dy
tan(φ)

)
, (5)

where Xres = 640 and Yres = 480 represent the image
resolution in pixels, f is the focal length of the simulated
camera, and dx, dy are respectively the horizontal and
vertical sizes of the image plane. These three last parameters
have been adjusted in order to adapt the field of view to the
maximal azimuth θmax and elevation φmax provided by the
CIPIC HRTF database.

B. Learning results

So, a sound source position is now represented by three
points in a simulated image. We propose here to use three
identical neural networks, each of them learning the position
of one point in the image on the basis of the aforemen-
tioned binaural cues database. During the test step, the three
networks will provide an estimation of the three points
coordinates in the image. The estimation error can now be
evaluated not only in terms of pixel errors, but also in degrees
by inverting (4) and (5). Localization results are reported in
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Fig. 8. Comparison between actual and estimated patches positions. The
three actual patches are represented by three circular markers, while the three
estimated positions are symbolized by three crosses. Dashed lines (resp.
dotted lines) represent the mean actual horizontal and vertical positions
(resp. estimated horizontal and vertical positions).

Figure 7. Azimuth estimation remains very accurate when
working with images. Indeed, the mean error is only 0.82◦,
for a 1.22◦ mean standard deviation. In comparison with the
previous section, the mean error is even smaller, while the
standard deviation remains quite constant. The same applies
for the elevation estimation, which is still less accurate with a
8.4◦ mean error and a 7.15◦ mean standard deviation. These
results clearly demonstrate that the proposed system is able
to make an efficient projection of the auditive perception
into the visual one. But for the moment, only the auditive
part of the algorithm has been discussed. Figure 7 (bottom)
shows the mean error in pixels, obtained by computing
the difference between the actual pixel positions and their
estimated values provided by the neural networks. It clearly
appears that the vertical pixel position estimation –directly
related to the elevation– is imperfect, with a mean error
reaching up to 70 pixels. On the contrary, the horizontal
pixel position estimation exhibits a small mean error of only
7 pixels. This fact is illustrated in Figure 8, where the three
actual patches are represented by three circular markers,
while the three estimated positions computed by the three
neural networks are symbolized by three crosses. Clearly,
a good vertical positioning of the 3 estimated points can
not be guaranteed. Finally, note that the angular and pixel
errors are highly correlated, allowing the evaluation of the
localization precision without the ground true azimuth and
elevation values. Importantly, and from an experimental point
of view, it could prevent the precise measurement of these
two angles.

IV. EXPERIMENTS

In this section, real binaural signals acquired with a
dummy head are exploited, together with the image flow
originating from a camera placed on top of the head, within
the preceding framework. The experimental setup and the
binaural/visual database is outlined in the first subsection.
The resulting signals are then exploited to perform the offline
learning of the neural networks. The resulting localization
estimations are then discussed in the second subsection.

!
(a) (b)

Fig. 9. (a) Acoustically-prepared room scheme, with the representation of
the camera field of view (approx. 60◦ of azimuth). (b) Experimental setup
during an acquisition.

A. Experimental setup

All the forthcoming experiments take place in an acousti-
cally prepared room (see Figure 9). A KU100 dummy head
from Neumann, with two microphone capsules built into two
ears imitating the human pinnae, is used to record binaural
signals. The two microphone outputs are synchronously
acquired by a National Instruments PCI acquisition card
through 24 bits delta-sigma converters operating at the
sampling frequency fs = 44100Hz. A camera is placed
on top of the head, delivering 44 images per second with
a resolution of 640 × 480. This frame rate corresponds to
time windows lasting about 23ms. Note that the camera is
not calibrated, as no projection in the 3D space is required.
Next, a small portable loudspeaker with a frequency response
ranging from 200Hz to 16kHz is used to emit a white
noise. 3 colored patches are sticked in front of it so as to
ease the vision algorithm. It only consists in finding the
loudspeaker form, and then in detecting the three center
points of the patches previously identified, see Figure 10. The
three points coordinates are next extracted and used during
the learning step as the actual coordinates to be associated
with the auditive perception. Finally, a person presents the
loudspeaker in front of the camera during an experiment,
and moves in the left, right, or vertical directions at an
almost constant distance to the head. This constitutes the
binaural audio-visual database used in the following (about
7000 examples).

B. Localization results

In the following, only the pixel coordinates of the three
loudspeaker markers are taken into account. The estimation

(a) (b)
Fig. 10. (a) Used loudspeaker, with the three colored markers. (b) Image
actually viewed by the camera, with the three markers correctly detected
(cropped view of the real image).
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estimated) pixel positions as a function of time in green (resp. in red).

of the pixel coordinates is highly correlated with the angle
values. The approach is first tested with a sound source
moving up and down while passing from the left to the right
side of the image. This allows the evaluation of the azimuth
and elevation estimation performances together. Results are
reported in Figure 11. A small error on the horizontal axis
is obtained, with an about 20-pixel mean error associated to
a 10-pixel standard deviation, whereas a much higher error
exists in the case of the vertical axis, with an about 40-pixel
mean error associated to a 50-pixel standard deviation. So,
experimental conclusions are quite identical to those obtained
during simulations: the azimuth is well determined while the
elevation’s estimation is much less effective.

V. DISCUSSION AND ONGOING WORK

We have presented here a multimodal approach of the
sound source localization problem. The proposed method
exhibits promising results. Therefore, we will be working
on the following points in the forthcoming months. First,
the ability of the system to precisely estimate the elevation
is relatively poor, which is related to the nature of the
used binaural cues. We will try to add additional cues to
the feature vector, like the spectral cues helping to perform
vertical localization [7], [18]. Another ongoing work deals
with the ability of the neural network to generalize its
learning to human speech, substituting the loudspeaker with
a person talking to the robot, in various acoustic constraints,
including reverberations and additive noisy and unwanted
sounds. Finally, an active scheme, relying on the head
movement, will be required in order to cope with non-visible
sound sources to the camera. A first approach could consist
in learning the relationship between the movement and the
perception, like in [13] or [9].

VI. CONCLUSION

A multimodal sound localization system, based on binau-
ral acoustic cues and visual information has been presented.
It is based on a partially-connected neural network that
learns how a sound source, represented by three markers,
is projected into an image. The system exhibits very good
azimuth estimation, allowing to determine where the sound
source is in the image. Vertical localization is less precise,
as the used binaural cues do not efficiently capture the
elevation information. A discussion on ongoing works is
finally proposed, where short-term guidelines are outlined
so as to improve and generalize the approach.
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