Mixed Integer Nonlinear Programming for Aircraft Conflict Avoidance

Riadh Omheni and Sonia Cafieri

ENAC – École Nationale de l’Aviation Civile
Université de Toulouse
Toulouse – France

2ème journée du Groupe de Travail en Programmation Mathématique du GdR RO
Dijon – June 29, 2015
Outline

1. Introduction

2. MINLP for aircraft conflict avoidance
 - Heading angle change model
 - Numerical results
 - Maximizing the number of solved conflicts using velocity change
 - Algorithm for aircraft conflict avoidance
 - Numerical results

3. Conclusions and Perspectives
Outline

1 Introduction

2 MINLP for aircraft conflict avoidance
 - Heading angle change model
 - Numerical results
 - Maximizing the number of solved conflicts using velocity change
 - Algorithm for aircraft conflict avoidance
 - Numerical results

3 Conclusions and Perspectives
Air Traffic Management

- Air traffic management aims at ensuring smooth running of the transportation system under safety while keeping flights on schedule.

- Growth of Air Traffic
 - Traffic volumes have experienced continuous and sustained growth.
 - Number of 2012 flights: 31,177,541.
 - Air traffic is expected to increase by a factor of two or three in the coming two decades.

- Promote automation
 - SESAR (En-Route Air Traffic Soft Management Ultimate System) → European project
 - NextGen (Next Generation Air Transportation System) → US project
Air Traffic Management

- Air traffic management aims at ensuring smooth running of the transportation system under safety while keeping flights on schedule.

Growth of Air Traffic
- Traffic volumes have experienced continuous and sustained growth.
- Number of 2012 flights: 31,177,541.
- Air traffic is expected to increase by a factor of two or three in the coming two decades.

Promote automation
- SESAR (En-Route Air Traffic Soft Management Ultimate System) → European project
- NextGen (Next Generation Air Transportation System) → US project

Safety issue
Aircraft conflict

- During their flights, aircraft have to maintain safety.
 - Aircraft have to maintain a minimum separation between each other during the entire flight.
- Any violation of this minimum separation is defined as a conflict.

- Minimum required separation
 - Horizontal: 5NM (1NM (nautical mile) = 1, 852m)
 - Vertical: 1, 000ft (1ft (feet) = 0.3048m)
Aircraft conflict

- During their flights, aircraft have to maintain safety.
 ⇒ Aircraft have to maintain a minimum separation between each other during the entire flight.
- Any violation of this minimum separation is defined as a conflict.

Minimum required separation

- Horizontal: 5NM (1NM = 1,852m)
- Vertical: 1,000ft (1ft = 0.3048m)

Aircraft separation maneuvers

- Heading angle change (HAC)
- Altitude change (AC)
- Velocity change (VC)
State of the Art

- Over the past 15 years, many mathematical models for aircraft conflict avoidance have been proposed.
State of the Art

Over the past 15 years, many mathematical models for aircraft conflict avoidance have been proposed.

- **Linear Programming (LP)**
 - Niedringhaus – 1995 ⇒ HAC
State of the Art

Over the past 15 years, many mathematical models for aircraft conflict avoidance have been proposed.

1. **Linear Programming (LP)**
 - Niedringhaus – 1995 \(\Rightarrow\) HAC

2. **Mixed Integer Linear programming (MILP)**
 - Pallottino, Feron and Bicchi – 2004 \(\Rightarrow\) VC, HAC
 - Alonso-Ayuso, Escudero and Martín-Campo – 2011 \(\Rightarrow\) VC, AC
State of the Art

Over the past 15 years, many mathematical models for aircraft conflict avoidance have been proposed.

1. **Linear Programming (LP)**
 - Niedringhaus – 1995 ⇒ HAC

2. **Mixed Integer Linear programming (MILP)**
 - Pallottino, Feron and Bicchi – 2004 ⇒ VC, HAC
 - Alonso-Ayuso, Escudero and Martín-Campo – 2011 ⇒ VC, AC

3. **Mixed Integer Nonlinear programming (MINLP)**
 - Christodoulou and Coustoulakis – 2004 ⇒ VC, HAC
 - Alonso-Ayuso, Escudero and Martín-Campo – 2012, 2014 ⇒ VC, HAC
 - Cafieri and Durand – 2014 ⇒ VC
State of the Art

- Over the past 15 years, many mathematical models for aircraft conflict avoidance have been proposed.

1. **Linear Programming** (LP)
 - Niedringhaus – 1995 ⇒ HAC

2. **Mixed Integer Linear programming** (MILP)
 - Pallottino, Feron and Bicchi – 2004 ⇒ VC, HAC
 - Alonso-Ayuso, Escudero and Martín-Campo – 2011 ⇒ VC, AC

3. **Mixed Integer Nonlinear programming** (MINLP)
 - Christodoulou and Coustoulakis – 2004 ⇒ VC, HAC
 - Alonso-Ayuso, Escudero and Martín-Campo – 2012, 2014 ⇒ VC, HAC
 - Cafieri and Durand – 2014 ⇒ VC

4. **Local Continuous Optimization**
 - Peyronne, Conn, Mongeau and Delahaye – 2014 ⇒ HAC
State of the Art

- Over the past 15 years, many mathematical models for aircraft conflict avoidance have been proposed.

1. **Linear Programming (LP)**
 - Niedringhaus – 1995 ⇒ HAC

2. **Mixed Integer Linear Programming (MILP)**
 - Pallottino, Feron and Bicchi – 2004 ⇒ VC, HAC
 - Alonso-Ayuso, Escudero and Martín-Campo – 2011 ⇒ VC, AC

3. **Mixed Integer Nonlinear Programming (MINLP)**
 - Christodoulou and Coustoulakis – 2004 ⇒ VC, HAC
 - Alonso-Ayuso, Escudero and Martín-Campo – 2012, 2014 ⇒ VC, HAC
 - Cafieri and Durand – 2014 ⇒ VC

4. **Local Continuous Optimization**
 - Peyronne, Conn, Mongeau and Delahaye – 2014 ⇒ HAC
Outline

1. Introduction

2. MINLP for aircraft conflict avoidance
 - Heading angle change model
 - Numerical results
 - Maximizing the number of solved conflicts using velocity change
 - Algorithm for aircraft conflict avoidance
 - Numerical results

3. Conclusions and Perspectives
Optimization problem

Objective: Minimize path deviations from the original path

Variables: Angle deviations

Constraints: Minimum separation condition for each pair of aircraft
Bounds on heading angle changes
Modeling separation constraints (1/3)

- **A**: a set of aircraft sharing the same airspace.
- Each aircraft \(i \in A \) is initially identified by the triplet \((x_i^0, y_i^0, \Phi_i)\) giving the abscissa, ordinate and direction of motion in \([-\pi, \pi]\).

Figure: Before deconfliction
Modeling separation constraints (1/3)

- A: a set of aircraft sharing the same airspace.
- Each aircraft $i \in A$ is initially identified by the triplet (x^0_i, y^0_i, Φ_i) giving the abscissa, ordinate and direction of motion in $]-\pi, \pi[$.

![Diagram with aircraft positions and directions](image)

Figure: After deconfliction
Modeling separation constraints (2/3)

- The abscissa and ordinate of an aircraft \(i\) at a time \(t\) are given by
 \[
 x_i(t) = x_i^0 + \cos(\Phi_i + \theta_i)v_it \\
 y_i(t) = y_i^0 + \sin(\Phi_i + \theta_i)v_it.
 \]

- The necessary minimum separation distance condition between two aircraft \(i\) and \(j\) at the same flight level can be expressed as follows:
 \[
 (x_i(t) - x_j(t))^2 + (y_i(t) - y_j(t))^2 \geq d^2, \quad \forall \ t \geq 0.
 \]

- By substituting (1) and (2) into (3), we get
 \[
 t^2\|V_{ij}^r\|^2 + 2t \ X_{ij}^{0r} \cdot V_{ij}^r + \|X_{ij}^{0r}\|^2 - d^2 \geq 0, \quad \forall \ t \geq 0.
 \]

\[V_{ij}^r := \begin{pmatrix}
 \cos(\Phi_i + \theta_i)v_i - \cos(\Phi_j + \theta_j)v_j \\
 \sin(\Phi_i + \theta_i)v_i - \sin(\Phi_j + \theta_j)v_j
\end{pmatrix}\] is the relative speed

\[X_{ij}^{0r} := \begin{pmatrix}
 x_i^0 - x_j^0 \\
 y_i^0 - y_j^0
\end{pmatrix}\] is the relative initial distance
The abscissa and ordinate of an aircraft i at a time t are given by

$$
\begin{align*}
 x_i(t) &= x_i^0 + \cos(\Phi_i + \theta_i)v_i t \\
 y_i(t) &= y_i^0 + \sin(\Phi_i + \theta_i)v_i t.
\end{align*}
$$

The necessary minimum separation distance condition between two aircraft i and j at the same flight level can be expressed as follows:

$$
(x_i(t) - x_j(t))^2 + (y_i(t) - y_j(t))^2 \geq d^2, \quad \forall \ t \geq 0.
$$

By substituting (1) and (2) into (3), we get

$$
t^2\|V_{ij}^r\|^2 + 2t X_{ij}^{0r} \cdot V_{ij}^r + \|X_{ij}^{0r}\|^2 - d^2 \geq 0, \quad \forall \ t \geq 0.
$$

$V_{ij}^r := \left(\begin{array}{c}
 \cos(\Phi_i + \theta_i)v_i - \cos(\Phi_j + \theta_j)v_j \\
 \sin(\Phi_i + \theta_i)v_i - \sin(\Phi_j + \theta_j)v_j
\end{array} \right)$ is the relative speed

$X_{ij}^{0r} := \left(\begin{array}{c}
 x_i^0 - x_j^0 \\
 y_i^0 - y_j^0
\end{array} \right)$ is the relative initial distance

→ Use the technique proposed by Cafieri and Durand – JOGO, 2014.
Modeling separation constraints (3/3)

- Separation condition

\[t^2 \| V_{ij}^r \|^2 + 2t X_{ij}^{0r} \cdot V_{ij}^r + \| X_{ij}^{0r} \|^2 - d^2 \geq 0, \quad \forall \ t \geq 0. \]

\[\implies \] a quadratic equation in one unknown \(t \)

- By differentiating with respect to \(t \), the minimum is reached for

\[t_{ij}^m = - \frac{X_{ij}^{0r} \cdot V_{ij}^r}{\| V_{ij}^r \|^2}. \]

- By substituting this into (4), we obtain the following separation condition

\[\| V_{ij}^r \|^2 (\| X_{ij}^{0r} \|^2 - d^2) - (X_{ij}^{0r} \cdot V_{ij}^r)^2 \geq 0. \]

\[\implies \] no longer depends on \(t \)

- We introduce an auxiliary binary variable \(y_{ij} \) for each pair of aircraft \(i \) and \(j \) such that

\[y_{ij} = \begin{cases}
1 & \text{if } t_{ij}^m \geq 0, \\
0 & \text{otherwise}.
\end{cases} \]

- This yields the following separation condition

\[y_{ij} \left(\| V_{ij}^r \|^2 (\| X_{ij}^{0r} \|^2 - d^2) - (X_{ij}^{0r} \cdot V_{ij}^r)^2 \right) \geq 0. \]
MINLP formulation: HAC (1/2)

Variables:

- \(\theta_i, \ (\geq \theta_{\text{min}}, \leq \theta_{\text{max}}), \ \forall i \in A \) angle variation of aircraft \(i \) (continuous)
- \(V_{ij}^2, \ \forall (i, j) \in A, i < j \) square of the relative velocity of \(i \) and \(j \) (continuous)
- \(p_{ij}, \ \forall (i, j) \in A, i < j \) inner product \(X_{ij}^0 \cdot V_{ij}^r \) (continuous)
- \(t_{ij}^m, \ \forall (i, j) \in A, i < j \) minimum time for separation (continuous)
- \(y_{ij}, \ \forall (i, j) \in A, i < j, \) used to check if \(t_{ij}^m \geq 0 \) (binary)

Objective:

\[
\min \sum_{i \in A} \theta_i^2
\]

minimizing angle deviations
Constraints:

- definition of V_{ij}^{2r} (trigonometric functions)
 \[
 V_{ij}^{2r} = (v_i \cos(\phi_i + \theta_i) - v_j \cos(\phi_j + \theta_j))^2
 + (v_i \sin(\phi_i + \theta_i) - v_j \sin(\phi_j + \theta_j))^2
 \forall i, j \in A, i < j
 \]

- inner product in the separation condition (trigonometric functions)
 \[
 p_{ij} = (x_i^0 - x_j^0) (v_i \cos(\phi_i + \theta_i) - v_j \cos(\phi_j + \theta_j))
 + (y_i^0 - y_j^0) (v_i \sin(\phi_i + \theta_i) - v_j \sin(\phi_j + \theta_j))
 \forall i, j \in A, i < j
 \]

- definition of t_{ij}^m (bilinear, trigonometric functions)
 \[
 t_{ij}^m V_{ij}^{2r} + p_{ij} = 0
 \forall (i, j) \in A, i < j
 \]

- check sign of t_{ij}^m (bilinear with binary var.)
 \[
 t_{ij}^m (2y_{ij} - 1) \geq 0
 \forall (i, j) \in A, i < j
 \]

- separation (quadratic, product with binary var.)
 \[
 y_{ij} \left((\|X_{ij}^0\|^2 V_{ij}^{2r}) - (p_{ij})^2 - ((d)^2 V_{ij}^{2r}) \right) \geq 0
 \forall (i, j) \in A, i < j
 \]
Heading angle changes model

HAC model

\[
\begin{align*}
\text{min} & \quad \sum_{i \in A} \theta_i^2 \\
\text{s.t.} & \quad \theta_{\text{min}} \leq \theta_i \leq \theta_{\text{max}} & \forall i \in A \\
& \quad t_{ij}^m V_{ij}^{2r} + p_{ij} = 0 & \forall i, j \in A, i < j \\
& \quad t_{ij}^m (2y_{ij} - 1) \geq 0 & \forall i, j \in A, i < j \\
& \quad y_{ij} \left(V_{ij}^{2r} \left(\|X_{ij}^0\|_2^2 - d^2 \right) - p_{ij}^2 \right) \geq 0 & \forall i, j \in A, i < j \\
& \quad y_{ij} \in \{0, 1\} & \forall i, j \in A, i < j \\
\end{align*}
\]

\[\Rightarrow\] MINLP model
Returning to the initial trajectory

- The idea proposed by Alonso-Ayuso, Escudero and Martín-Campo, 2014 can be easily applied in our context.
- Solve a quadratic programming (QP) model for each pair of aircraft \((i, j)\).
- Knowing \(\theta_i^*\) for aircraft \(i\), the new coordinates of aircraft \(i \in A\) are given by
 \[
 x_i(t) = x_i^0 + \cos(\Phi_i + \theta_i^*)v_i t \quad \text{and} \quad y_i(t) = y_i^0 + \sin(\Phi_i + \theta_i^*)v_i t.
 \]
- The quadratic model to be solved for each pair \((i, j)\) is
 \[
 \min_{t_{ij}} \left\| (x_i(t_{ij}) - x_j(t_{ij})) \right\|^2.
 \]
 (6)

 \(\rightarrow\) Let \(t_{ij}^*\) the optimal solution.

 \(\rightarrow\) Compute \(T_i^* := \max_{j \neq i, j \in A} t_{ij}^*\).

 \(\rightarrow\) This time corresponds to the point \((x_i(T_i^*), y_i(T_i^*))\).
Returning to the initial trajectory

\[(x_i(T_i^*), y_i(T_i^*))\]

Figure: Forcing aircraft to return to their initial trajectories
Testing environment

- Both models are formulated using AMPL.
- 20 randomized circle problems.

HAC model

Global solution

spatial Branch-and-Bound

COUENNE 0.4 (Belotti et al., 2008)

QP model

Interior point algorithm

IPOPT 3.11 (Wächter and Biegler, 2006)

Test problems

- $n \in \{2, \ldots, 5\}$ aircraft
- $n(n-1)/2$ conflicts
- $d = 5$ NM, $v = 400$ NM/h
Numerical results: HAC

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>n_c</th>
<th>n_{rc}</th>
<th>time (s)</th>
<th>obj</th>
</tr>
</thead>
<tbody>
<tr>
<td>pb_n2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0.12</td>
<td>0.00125</td>
</tr>
<tr>
<td>pb_n3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1.18</td>
<td>0.00095</td>
</tr>
<tr>
<td>pb_n4</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>2.16</td>
<td>0.00125</td>
</tr>
<tr>
<td>pb_n5</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>28.32</td>
<td>0.00202</td>
</tr>
<tr>
<td>full_rand_5_10</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>158.00</td>
<td>0.02599</td>
</tr>
<tr>
<td>full_rand_5_1</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>76.84</td>
<td>0.01161</td>
</tr>
<tr>
<td>full_rand_5_2</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>187.84</td>
<td>0.01845</td>
</tr>
<tr>
<td>full_rand_5_3</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>175.36</td>
<td>0.01711</td>
</tr>
<tr>
<td>full_rand_5_4</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>356.44</td>
<td>0.01473</td>
</tr>
<tr>
<td>full_rand_5_5</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>77.53</td>
<td>0.01215</td>
</tr>
<tr>
<td>full_rand_5_6</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>49.61</td>
<td>0.01122</td>
</tr>
<tr>
<td>full_rand_5_7</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>72.72</td>
<td>0.01225</td>
</tr>
<tr>
<td>full_rand_5_8</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>194.31</td>
<td>0.01753</td>
</tr>
<tr>
<td>full_rand_5_9</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>186.54</td>
<td>0.01911</td>
</tr>
<tr>
<td>half_circle_3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1.93</td>
<td>0.00665</td>
</tr>
<tr>
<td>half_circle_4</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>21.26</td>
<td>0.01708</td>
</tr>
<tr>
<td>half_circle_5</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>870.44</td>
<td>0.03146</td>
</tr>
</tbody>
</table>
Conflict avoidance using velocity change

Velocity change maneuver

- Not sufficiently studied before 2000 (according to Yang-Kuchar’s survey – 2000).
- Extensively studied since 2000.

Subliminal control

- Subliminal control is a novel concept for computer-aided air traffic management. ⇒ introduced in the context of ERASMUS project
- The aim of the automated subliminal control system is to carry out small adjustments in the speeds of aircraft early enough to prevent the perception of a risk of conflict by the air traffic controller.
- These actions have to be small so as to be imperceptible by the air traffic controller. ⇒ [-6%, +3%] of the original velocity
Conflict avoidance using velocity change

Velocity change maneuver

- Not sufficiently studied before 2000 (according to Yang-Kuchar’s survey – 2000).
- Extensively studied since 2000.

Subliminal control

- Subliminal control is a novel concept for computer-aided air traffic management. ⇒ introduced in the context of ERASMUS project
- The aim of the automated subliminal control system is to carry out small adjustments in the speeds of aircraft early enough to prevent the perception of a risk of conflict by the air traffic controller.
- These actions have to be small so as to be imperceptible by the air traffic controller. ⇒ [-6%, +3%] of the original velocity

Maximizing the number of solved conflicts using VC

- **Variables**
 - \(z_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are separated (no conflict)} \forall i, j \in A, i < j \\ 0 & \text{otherwise} \end{cases} \)
 - \(\bar{v}_i, \ (\geq v_{\text{min}}, \leq v_{\text{max}}), \ \forall i \in A \) (continuous).

Max. VC model

\[
\begin{align*}
\text{max} \quad & \sum_{(i,j) \in B} z_{ij} \\
\text{s.t.} \quad & v_{\text{min}} \leq \bar{v}_i \leq v_{\text{max}} \quad \forall i \in A \\
& (X_{ij}^0 \cdot \bar{v}_j^r)(2z_{ij} - 1) \geq 0 \quad \forall i, j \in A, i < j \\
\text{OR} \quad & \left((X_{ij}^0 \cdot \bar{v}_j^r)^2 - ||\bar{v}_j^r||^2 (||X_{ij}^0||^2 - d^2) \right)(2z_{ij} - 1) \leq 0 \\
& z_{ij} \in \{0, 1\} \quad \forall i, j \in A, i < j
\end{align*}
\]

\(\Rightarrow \text{MINLP model} \)
Maximizing the number of solved conflicts using VC

- **Variables**
 - \(z_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are separated (no conflict)} \\ 0 & \text{otherwise} \end{cases} \quad \forall i, j \in A, i < j \)
 - \(\bar{v}_i, \ (\geq v_{min}, \leq v_{max}), \quad \forall i \in A \) (continuous).

Max. VC model

\[
\text{max} \quad \sum_{(i,j) \in B} z_{ij} \\
\text{s.t.} \quad v_{min} \leq \bar{v}_i \leq v_{max} \quad \forall i \in A \\
(\mathbf{X}_{ij}^{0r} \cdot \bar{v}_i^r)(2z_{ij} - 1) \geq 0 \quad \forall i, j \in A, i < j \\
\text{OR} \quad \left((\mathbf{X}_{ij}^{r0} \cdot \bar{v}_i^r)^2 - ||\bar{v}_i^r||^2 (||\mathbf{X}_{ij}^{r0}||^2 - d^2) \right)(2z_{ij} - 1) \leq 0 \quad \forall i, j \in A, i < j \\
z_{ij} \in \{0, 1\} \quad \forall i, j \in A, i < j \\
\]

\(\Rightarrow \) MINLP model

- Promising computing time
- Not guaranteed solving all conflicts (head-to-head conflicts, bounds on velocity changes)

Riadh Omheni (ENAC)
MINLP for Aircraft Conflict Avoidance
June, 2015 18 / 22
Algorithm: Max. VC + HAC

Algorithm Aircraft conflict avoidance by sequentially using VC and HAC

Require: n: number of aircraft, v: initial velocity, ϕ: direction of motion

1. Detect all head-to-head conflicts.
2. Solve Max. VC without considering head-to-head conflicts. \[\Rightarrow\text{a pre-processing step}\]
3. **If** all conflicts are solved **then**
 - Stop.
 Else
 - Solve HAC with aircraft having new velocities given by the solution of Max. VC and then go to Step 4.
4. Solve the QP problem.
Numerical results

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>n_c</th>
<th>n_{rc}</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pb_n2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>pb_n3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>pb_n4</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>0.14</td>
</tr>
<tr>
<td>pb_n5</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>7.05</td>
</tr>
<tr>
<td>full_rand_5_10</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>37.56</td>
</tr>
<tr>
<td>full_rand_5_1</td>
<td>5</td>
<td>10</td>
<td>6</td>
<td>15.00</td>
</tr>
<tr>
<td>full_rand_5_2</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>51.90</td>
</tr>
<tr>
<td>full_rand_5_3</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>38.07</td>
</tr>
<tr>
<td>full_rand_5_4</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>25.34</td>
</tr>
<tr>
<td>full_rand_5_5</td>
<td>5</td>
<td>10</td>
<td>6</td>
<td>26.10</td>
</tr>
<tr>
<td>full_rand_5_6</td>
<td>3</td>
<td>10</td>
<td>1</td>
<td>34.50</td>
</tr>
<tr>
<td>full_rand_5_7</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>28.44</td>
</tr>
<tr>
<td>full_rand_5_8</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>33.98</td>
</tr>
<tr>
<td>full_rand_5_9</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>33.54</td>
</tr>
<tr>
<td>half_circle_3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1.02</td>
</tr>
<tr>
<td>half_circle_4</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>5.49</td>
</tr>
<tr>
<td>half_circle_5</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>21.82</td>
</tr>
</tbody>
</table>

In most cases, pre-processing significantly reduces computing time.
Numerical results

<table>
<thead>
<tr>
<th></th>
<th>Max VC (pre-processing)</th>
<th>HAC (with pre-processing)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>n_c</td>
</tr>
<tr>
<td>pb_n2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>pb_n3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>pb_n4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>pb_n5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>full_rand_5_10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>full_rand_5_1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>full_rand_5_2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>full_rand_5_3</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>full_rand_5_4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>full_rand_5_5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>full_rand_5_6</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>full_rand_5_7</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>full_rand_5_8</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>full_rand_5_9</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>half_circle_3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>half_circle_4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>half_circle_5</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

In most cases, pre-processing significantly reduces computing time.

Riadh Omheni (ENAC)
MINLP for Aircraft Conflict Avoidance
June, 2015
In most cases, pre-processing significantly reduces computing time.
Performance profile: Total CPU time

- Performance profile of Dolan and Moré.
- Graphical way of comparing both versions of our algorithm.
- 20 randomized circle problems.

Figure: Comparing total CPU time for Algorithm Max. VC + HAC with and without pre-processing on a collection of 20 problems.
Outline

1 Introduction

2 MINLP for aircraft conflict avoidance
 - Heading angle change model
 - Numerical results
 - Maximizing the number of solved conflicts using velocity change
 - Algorithm for aircraft conflict avoidance
 - Numerical results

3 Conclusions and Perspectives
Conclusions and Perspectives

Conclusions

- **New model** for solving aircraft conflicts using HAC maneuver.
- **New algorithm** for aircraft conflict avoidance.
- Benefit of **combining two maneuvers** for aircraft conflict avoidance.
- Very promising numerical results.

Perspectives

- Efficient reformulations of some nonlinearities for the HAC model.
- New heuristics for solving the HAC model.

ATOMIC: Air Traffic Optimization by Mixed-Integer Computation
⇒
A project founded by French National Agency of Research.
Conclusions and Perspectives

Conclusions

- New model for solving aircraft conflicts using HAC maneuver.
- New algorithm for aircraft conflict avoidance.
- Benefit of combining two maneuvers for aircraft conflict avoidance.
- Very promising numerical results.

Perspectives

- Efficient reformulations of some nonlinearities for the HAC model.
- New heuristics for solving the HAC model.
Conclusions and Perspectives

Conclusions

- New model for solving aircraft conflicts using HAC maneuver.
- New algorithm for aircraft conflict avoidance.
- Benefit of combining two maneuvers for aircraft conflict avoidance.
- Very promising numerical results.

Perspectives

- Efficient reformulations of some nonlinearities for the HAC model.
- New heuristics for solving the HAC model.

- ATOMIC: Air Traffic Optimization by Mixed-Integer Computation
 ⇒ a project founded by French National Agency of Research

Thank you for your attention!