Graph Relabelling Systems :
a Tool for Encoding, Proving and Studying
Distributed Algorithms

Yves Métivier

LaBRI, UMR CNRS 5800
Université Bordeaux I - E.N.S.E.R.B. - IUF
345, cours de la Libération
33405 Talence, France
Yves.Metivier@labri.u-bordeaux.fr

Abstract. Graph relabelling systems have been introduced as a suitable model for expressing and studying
distributed algorithms on a network of communicating processors. We recall the basic ideas underlying that
model and we survey the main questions that have been considered and the main results that have been
obtained in that framework.

Keywords : distributed algorithm, covering, election, local computations in graphs, recognition, spanning tree,
termination detection.

1 Introduction

Graph relabelling systems and, more generally, local computations in graphs are powerful models which pro-
vide general tools for encoding distributed algorithms, for proving their correctness and for understanding their
power. We consider a network of processors with arbitrary topology. It is represented as a connected, undirected
graph where vertices denote processors, and edges denote direct communication links. An algorithm is encoded
by means of local relabelings. Labels attached to vertices and edges are modified locally, that is on a subgraph
of fixed radius k of the given graph, according to certain rules depending on the subgraph only (k—Ilocal compu-
tations). The relabelling is performed until no more transformation is possible. The corresponding configuration
is said to be in normal form.

The present contribution reflects classical topics including basic properties of local computations [16]. Among
paradigms associated with local computations, we present the computation of a spanning tree, the election
problem, the recognition problem and the local detection of the termination problem.

For these four problems, we consider graphs with an initial labelling which may encode identity or some
knowledge on the graph as, for instance, the number of vertices and/or edges. For the recognition problem, the
presence or the absence of certain final labels determines whether G is accepted or not. The aim of an election
algorithm is to choose exactly one element among the set of vertices. We consider local computation systems
such that for each irreducible graph there is a given vertex label which appears exactly once in the graph. A
distributed algorithm terminates whenever it reaches a terminal configuration, that is a configuration in which
no step of the algorithm can be applied. We are interested in the question whether the global termination of
a system of local computations can be detected also locally. This means that for every terminal configuration
there is a vertex in the graph such that its neighbourhood of a given radius r determines that a normal form
has been reached. In this case, we say that global termination is r—locally detected.

We use coverings and quasi-coverings as fundamental tools which enable to understand the borderline be-
tween positive and negative results about distributed computations.

Many problems have no solution in distributed computing [18]. The introduction of randomization makes
possible tasks that admit no deterministic solutions as, for instance, the synchronization problem or the elec-
tion problem in an anonymous network. In the last section we present randomized algorithms which have been
proposed and studied in [26,27]. These randomized algorithms may be considered as basic steps for the imple-
mentation of local computations in an anonymous asynchronous system where processors communicate with
asynchronous message passing. General considerations about randomized distributed algorithms may be found
in [35] and some techniques used in the design and for the analysis of randomized algorithms are presented in
[30,20,10].

Among models related to our model there are local computations systems, as defined by Rosensthiel et
al. [34], Angluin [1] or Yamashita and Kameda [11,12]. In [34] a synchronous model is considered, where all
vertices are equipped with deterministic finite automata (the same for all vertices). A basic computation step

consists then in computing the next state of each processor according to its own state and to the states of its
5

neighbours. In [1] an asynchronous model is considered: during a basic computation step, two adjacent vertices

exchange their labels and then compute new labels. In [11,12] an asynchronous model is also considered where

during a basic computation step a processor either changes its state and sends a message or receives a message.
Introduction to distributed algorithms and main topics of the field are presented in [2,19, 35,31, 32].

2 Basic Definitions, Notation and Examples

2.1 A First Example

Let us first illustrate graph relabelling systems by considering a simple distributed algorithm which computes
a spanning tree of a network. Assume that a unique given processor is in an “active” state (encoded by the
label A), all other processors being in some “neutral” state (label N) and that all links are in some “passive”
state (label 0). The tree initially contains the unique active vertex. At any step of the computation, an active
vertex may activate one of its neutral neighbours and mark the corresponding link which gets the new label 1.
This computation stops as soon as all the processors have been activated. The spanning tree is then obtained
by considering all the links with label 1. Fig. 1 describes a sample computation using this algorithm.

0 0 0 0
N N N N A N A N
0 0 0], jo 1)y jo 1), |0
A N o A A o A A G A A
0 0 0 0 0 0 0 1
N N N N N N N A
A N A A
Ctla oty
@ A A 5 A A
o| , |1 o] , |1
A A A A

Fig. 1. Computation of a spanning tree.

An elementary step in this computation may be depicted as a relabelling step by means of the following
relabelling rule R which describes the corresponding label modifications:
A o N A 4 A
R: *———0 —_— o ——0
An application of this relabelling rule on a given graph (or network) consists in (¢) finding in the graph a
subgraph isomorphic to the left-hand-side of the rule (this subgraph is called the occurrence of the rule) and
(14) modifying its labels according to the right-hand-side of the rule.
The relabelling sequence depicted in Fig. 1 illustrates a sequential computation since the relabelling steps
are sequentially applied. A distributed view of this computation can be obtained by considering that relabelling

steps concerning disjoint parts of the graph may be applied in any order, or even concurrently (this is namely
the case for the steps (2) and (3), or (4) and (5) in Fig. 1).

2.2 Definitions and Examples

(For further details on material about discrete and combinatorial mathematics see [33]). Unless otherwise stated,
all the graphs considered in this paper are finite, undirected, without multiple edges, loopless and connected.
For every graph G we denote by V(G) its set of vertices and by E(G) its set of edges. If G and G’ are two
graphs, we say that G’ is a subgraph of G if V(G') C V(@) and E(G') C E(G). If X is a subset of V(G), the
subgraph of G induced by X has vertex set X and edge set the set of all edges whose both extremities belong
to X. A homomorphism of a graph G to a graph H is a mapping ¢ from V(G) to V(H) such that ¢(x)p(y) is
an edge in H whenever zy is an edge in G. We say that ¢ is an isomorphism if ¢ is bijective and p ! is also
a homomorphism. In the following, a set of graphs which is closed under isomorphism will be called a class of

graphs.
6

Let £ be a set whose elements are called labels. A L-labelled graph is a pair (G,) where G is a graph and
A a mapping from V(G) U E(G) to L. If (G,\) and (G, \') are two labelled graphs, we say that (G',\') is a
(labelled) subgraph of (G, \) if G is a subgraph of G and X is the restriction of A to V(G') U E(G'). We will
denote by G, the set of all L-labelled graphs. An isomorphism between two labelled graphs (G,) and (H, u)
is an isomorphism ¢ between G and H which preserves the labels, that is A(z) = u(p(x)) for every z in V(G)
and A(zy) = ulp(z)p(y)) for every zy in E(G). An occurrence of (G, \) in (H,) is an isomorphism ¢ between
G and a subgraph (H', ') of (H, u). We will then write ¢(G,\) = (H', u').

A (graph) relabelling rule is a triple R = (GRr, Ar, Ay) such that (Ggr,Ar) and (Gg,Ay) are two labelled
graphs. The labelled graph (Ggr, Ar) (resp. (Gr,AR)) is called the left-hand side (resp. right-hand side) of R.

A graph relabelling system (GRS for short) is a triple R = (£,Z, P) where L is a set of labels, 7 a subset
of L called the set of initial labels and P a finite set of relabelling rules. A R-relabelling step is a 5-tuple
(G,\, R, ¢, \') such that R is a relabelling rule in P and ¢ is both an occurrence of (Gg,Ag) in (G, A) and an
occurrence of (Gg, Ay) in (G, X'). Intuitively speaking, the labelling A’ of G is obtained from A by modifying all
the labels of the elements of p(G g, Ar) according to the labelling A’;. Such a relabelling step will be denoted by
(G, X) — R,y (G, X'). A R-relabelling sequence is a tuple (G, Ao, Ro, Y0, A1, R1, 91, A2, ..., An—1, Rn—1,0n—1, An)
such that for every i, 0 < i < n, (G, \;, Ri, pi, \i+1) is a R-relabelling step. The existence of such a relabelling
sequence will be denoted by (G, \o) —5 (G, A\n).

A labelled graph (G,)) is said to be R-irreducible if there exists no occurrence of (Ggr, Ag) in (G,) for
every relabelling rule R in P. For every labelled graph (G,) in Gz we denote by Irredg (G, \) the set of all
R-irreducible labelled graphs (G, \’) such that (G,\) —% (G, X'). Intuitively speaking, the set Irredg (G, A)
contains all the final labellings that can be obtained from a Z-labelled graph (G, \) by applying relabelling rules
in P and may be viewed as the set of all the possible results of the computation encoded by the system R.

Ezample 1. The algorithm presented in the introduction may be encoded by the graph relabelling system
Ri1 = (£1,Z1,P) defined by £, = {N,A,0,1}, Z; = {N,A,0}, and P, = {R} where R is the following
relabelling rule:
A o N A 4 A
R: *———0 —_— o ——0

Fig. 1 describes a sample R;-relabelling sequence.

The notion of relabelling sequence defined above obviously corresponds to a notion of sequential computation.
We can define a more distributed way of computing by saying that two relabelling steps concerning “disjoint”
occurrences may be applied in any order, or even concurrently. It is easy to check that if (G, \;, R, i, Ait1)
and (G, Ait1, Riv1,piv1,Aixr2) are two labelling steps such that ¢;(G) and ¢;+1(G) do not intersect then
(G, Ai; Rix1, 0it1,N) and (G, N, R;, p;, Air2) are two relabelling steps leading to the same resulting labelled
graph (G, \i2). More generally, any two relabelling sequences such that the latter one may be obtained from
the former one by a succession of such “commutations” lead to the same resulting graph. Hence, our notion
of relabelling sequence may be regarded as a serialization [22] of some distributed computation. This model is
clearly asynchronous: several relabelling steps may be done at the same time but we do not demand all of them
to be done. In the sequel we will essentially deal with sequential relabelling sequences but the reader should
keep in mind that such sequences may be done in a distributed way.

In order to reach a satisfactory expressive power, we introduce some local control mechanisms. These mech-
anisms allow us to restrict in some sense the applicability of relabelling rules.

A graph relabelling system with priorities (PGRS for short) is a 4-tuple R = (£, Z, P, >) such that (£,Z, P)
is a graph relabelling system and > is a partial order defined on the set P called the priority relation. A R-
relabelling step is then defined as a 5-tuple (G, A\, R, p, ') such that R is a relabelling rule in P, ¢ is both an
occurrence of (Ggr, Ar) in (G, A) and an occurrence of (Gg, \) in (G, \’') and there exists no occurrence ¢’ of a
relabelling rule R in P with R’ > R such that ¢(Gr) and (G g) intersect in G (that is V(o(Gr))NV (p(Gr')) =
). The notion of relabelling sequence is defined as previously.

Ezample 2. Let Ry = (L2,Z2, P>, >2) be the PGRS defined by £, = {N,A,M, F,0,1}, 7, = {N, A, 0},
P, = {Ry, Ry} where R; and R, are the following relabelling rules:

A N M A
0 1
Rll oe————O —_— o———©
M A A F
1 1
RQZ o—————O —_— o——O

with the priority relation: Ry >» Rs.
Suppose that (G,) is a labelled graph containing exactly one A-labelled vertex. As before, this system
computes a spanning tree of G but in a strictly sequential way, using the well-known depth-first search algorithm:

the (unique) active vertex, with label A, may activate one of its N-labelled neighbours and become marked
7

0 0 0
N N N N N A
0 0 0 1 0 0 1 1
A N M AT M M
0 0 0 0 0 0
N N N N N N
1 1 1
F¢ %A FO¢—®F FO¢—®F
0 L 1 0 L 1 0 L 1
MO ®M M ®A "M %M
0 o | O 0 o | © 0l , 1
N&— N N&— N N&—90,
1 1 1
F¢—9®F F¢—®F F¢—®F
0 L 1 0 L 1 0 1 1
M®—O®M T M AT A OF
0 L 1 0 L 1 0 L 1
F¢ 9 F¢ —®F F¢ —®F

Fig. 2. A sample Ra-relabelling sequence.

(label M). When an active vertex has no N-labelled neighbour, it reactivates its “father” (which corresponds to
the unique M-labelled vertex to which it is linked by a 1-labelled edge), and becomes F-labelled. Fig. 2 shows
a sample Ro-relabelling sequence.

Let (G, A) be a labelled graph. A context of (G, \) is a triple (H, u,) such that (H, i) is a labelled graph and
¢ an occurrence of (G,) in (H,). A relabelling rule with forbidden contextsis a 4-tuple R = (Gr, Ar, N\, Fr)
such that (Gg, Ar, AR) is a relabelling rule and Fg is a finite set of contexts of (Ggr, Ar). A graph relabelling
system with forbidden contexts (FCGRS for short) is a triple R = (£,Z, P) defined as a GRS except that the
set P is a set of relabelling rules with forbidden contexts. A R-relabelling step is a 5-tuple (G, A, R, , ") such
that R is a relabelling rule with forbidden contexts in P, ¢ is both an occurrence of (G, Agr) in (G,\) and
an occurrence of (Gg,\g) in (G, '), and for every context (H;, u;, ;) of (Gr,Ar), there is no occurrence ¢;
of (H;,p;) in (G, A) such that ;(¢i(Gr, Ar)) = ¢(Gr,Ar)- In other words, a relabelling rule with forbidden
contexts may be applied on some occurrence if and only if this occurrence is not “included” in an occurrence of
some of its forbidden contexts.

Ezample 3. Let R3 = (L3,Z3, P3) be the FCGRS defined by £3 = {N,A,M, F,0,1}, Z3 = {N,A,0}, P; =
{R1,Rs, R3} where Ry, Ry and Rj are the following relabelling rules with forbidden contexts:

A 0 N A 1 A’
R;: o—®o °® o 0
A’ 0 N A’ 1 A’
Rs: o——+o ° o » ©
A’ F
Rj3:) —)

A’ A’ A’
N A’ A’ A A’

The unique vertex of the left-hand side of the rule Rj is associated with the top vertex of its forbidden contexts.
Roughly speaking, the rule Rz means that a A'-labelled vertex may become F-labelled if it has no N-labelled
neighbour (in that case rule R» should be applied) and at most one A- or A'-labelled neighbour.

This system provides a distributed implementation of the sequential algorithm encoded in Example 2 (we
may have several active vertices, with label A or A’, at the same time). Fig. 3 shows a sample R3-relabelling
sequence.

Due to the control mechanism on the applicability of relabelling rules in PGRSs and FCGRSs, only relabelling
steps concerning “far enough” occurrences may be applied concurrently. Roughly speaking, in order to check
8

0 0 0 0
N N N N A N A N
0 0_»0 1 0_»1 1 o_>1 1
A N A A A A A
0 0 0 0 0 0 0
N N N N N N N
0 0 0
AN AP O®N AP O®N A
1 L 0 1 L 0 1 L 0 1
A0 T A0 T A% T A
0 L 1 0 L 1 0 1 1 0
A Oy FO&— O F¢ ——®p F
1 1 1
ASC—O®F A ®F F¢—®F
1 L 0 1 L 0 1 1 0
A OA T A O T A O
0 L 1 0 L 1 0 L 1
F¢ —°®F F¢ —®F F¢ —®F

Fig. 3. A sample Rs-relabelling sequence.

whether a relabelling rule may be applied on a given occurrence or not it is necessary to consider some “control
area” surrounding this occurrence. Two relabelling steps are then “independant” if their corresponding control
areas do not intersect. The reader should note here that the diameter of this control area is bounded by some
constant only depending on the graph relabelling system.

The comparison between the expressive power of PGRSs and FCGRSs, together with some other types of
GRSs, has been done in [15]. In particular, it has been proved that PGRSs and FCGRSs are equivalent: for
every PGRS (resp. FCGRS) there exists a FCGRS (resp. PGRS) achieving the same computation. In the rest
of the paper we will thus indifferently provide examples under the PGRS or FCGRS form.

2.3 Local Computations in Graphs

One of the main characteristics of distributed algorithms is the locality of the computation. Every computation
step occurring on some processor only depends on the local context of this processor. This locality concept is
captured via the notion of local graph relabelling relations [17].

Let G be a graph, x a vertex in V(G) and k some positive integer. We denote by Bg(x, k) the ball of radius k
centered at z, that is the subgraph of G induced by all vertices that are at distance at most k from z (recall that
the distance between two vertices is the length of a shortest path linking these two vertices). A graph relabelling
relation (over £) is a binary relation R defined on the set of £-labelled graphs such that every pair in R is of the
form ((G,), (G, X")). Thus, two labelled graphs in relation only differ on their labelling function. We will write
(G, \)R(G, \') whenever the pair ((G,), (G,) is in R. A L-labelled graph (G, \) is said to be R-irreducible
if there exists no (G, A’) such that (G,\)R(G,\'). We will denote by R* the reflexive and transitive closure
of R and, for every L-labelled graph (G, A), by Irredg (G, \) the set of R-irreducible graphs (G, \') such that
(G,)R*(G, \').

We say that a graph relabelling relation R is k-local for some positive integer k if for every pair ((G, A), (G, X))
in R, there exists some vertex z in V' (G) such that A and X’ coincide on V(G)\V (Ba(z, k))UE(G)\ E(Bg(z, k)).
Intuitively speaking, it means that A and A’ only differ on a centered ball of radius at most k. A graph relabelling
relation is local if it is k-local for some k. A graph relabelling relation R is k-locally generated if it can be
computed for any graph as soon as it is known on the set of graphs with diameter at most 2k. More formally,
if (G,)\), (G",XN), (H,u), (H',u') are four labelled graphs, Bg(z, k) and Bg(y, k) two isomorphic balls in G
and H respectively such that (i) A and A’ coincide on V(G) \ V(Ba(z,k)) U E(G) \ E(Bg(z,k)), (i4) p and '
coincide on V(H)\ V(Bg(y,k)) UE(H) \ E(Bu(y, k)) and (ii3) A and p coincide respectively on Bg/(z, k) and
By (y, k) then (G, \)R(G',\') if and only if (H,u)R(H',u'). A graph relabelling relation is locally generated if
it is k-locally generated for some k.

Graph relabelling systems (GRSs, PGRSs, FCGRSs) are thus special cases of locally generated graph rela-

belling relations. One of the main questions in that framework is “what can be computed by means of locally
9

generated graph relabelling relations ?”. This question is obviously strongly related to the general problem of
characterizing those functions that can be computed by distributed algorithms in an asynchronous way.

3 Proof techniques

Graph relabelling systems provide a formal model for expressing distributed algorithms. The aim of this section
is to show that this model is suitable for studying and proving properties of distributed algorithms.

A graph relabelling system R is noetherian if there is no infinite R-relabelling sequence starting from a
graph with initial labels in Z. Thus, if a distributed algorithm is encoded by a noetherian graph relabelling
system then this algorithm always terminates. In order to prove that a given system is noetherian we generally
use the following technique. Let (S, <) be a partially ordered set with no infinite decreasing chain (that is every
decreasing chain xy > @2 > -+ > x, > ... in S is finite). We say that < is a noetherian order compatible
with R if there exists a mapping f from G, to S such that for every R-relabelling step (G, A, R, ¢, ') we have
f(G,\) > f(G,N). It is not difficult to see that if such an order exists then the system R is noetherian: since
there is no infinite decreasing chain in S, there cannot exist any infinite R-relabelling sequence.

In order to prove the correctness of a graph relabelling system, that is the correctness of an algorithm
encoded by such a system, it is useful to exhibit (¢) some invariant properties associated with the system (by
invariant property, we mean here some property of the graph labelling that is satisfied by the initial labelling
and that is preserved by the application of every relabelling rule) and (i7) some properties of irreducible graphs.
These properties generally allow to derive the correctness of the system.

Let us illustrate these techniques by considering the simple graph relabelling system R; given in Example 1.
Termination: Let f be the mapping from G, to the set of natural integers IN which associates with each
L1-labelled graph the number of its N-labelled vertices. Observing that this number strictly decreases when we
apply the relabelling rule R; we get that (IN, >) is a noetherian order compatible with the system R;. Thus R,
is a noetherian system.

Correctness: Let (G, A) be a £;-labelled graph and P;, P, be the following properties:

P, : Every 1-labelled edge is incident with two A-labelled vertices,
P, : The subgraph of G made of the 1-labelled edges and the A-labelled vertices has no cycle.

Every 7Z;-labelled graph satisfies P, and P since it has no 1-labelled edge. Moreover, these two properties are
clearly preserved when we apply the rule R;. Thus, P, and P, are invariant with respect to R;.

Let now (G, \) be any Z;-labelled graph having at least one A-labelled vertex and (G, \') be a labelled graph
in Irredg, (G, \). Considering the relabelling rule Ry, (G, ') cannot have any N-labelled vertex. From property
P,, we get that the subgraph of (G, \’) induced by the 1-labelled edges has no cycle. If (G, \) has exactly one
A-labelled vertex we thus obtain a spanning tree of G. If (G,) has more than one A-labelled vertex we obtain
a spanning forest having as many components as the number of these initially A-labelled vertices.

The reader interested in more substantial examples is referred to [13]. In particular, the graph relabelling
systems introduced in Examples 2 and 3 are considered there.

The complexity of a distributed algorithm encoded by a graph relabelling system can also be studied by using
classical techniques from rewriting theory. The space complexity is well-captured by the number of labels that
are used, and the (sequential) time complexity by the length of a relabelling sequence. The degree of parallelism
may also be measured by considering the ratio between the length of a parallel relabelling sequence and the
length of a sequential relabelling sequence. Of course, this ratio strongly depends on the specific topology of the
graph under consideration.

4 Tools : Coverings and Quasi-coverings

Coverings is a notion known from algebraic topology [21]. They have been used for simulation [3] and for proving
impossibility results on distributed computing [1, 8].

Quasi-coverings have been introduced in [24] to obtain impossibility proofs for local detection of global
termination. We can note also that the Kronecker product of graphs is useful [1,6,4].

4.1 Coverings

We say that a graph G is a covering of a graph H if there exists a surjective homomorphism ~ from G onto H
such that for every vertex v of V(G) the restriction of v to Ng(v) is a bijection onto Ng(y(v)). In particular,
{v(uw),y(v)} € E(H) implies {u,v} € E(G). The covering is proper if G and H are not isomorphic. It is called
connected if G (and thus also H) is connected. A graph G is called covering-minimal if every covering from G
to some H is a bijection.

By a simple inductive argument we have :
10

Lemma 1. Suppose that G is a covering of H via vy. Let T be a subgraph of H. If T is a tree then y~1(T) is a
set of disjoint trees, each being isomorphic to T.

The previous lemma, implies :

Lemma 2. Let H be a connected graph and let G be a covering of H via v. Then there exists an integer q such
that Card(y=1(v)) = q, for every v € V(H).

Definition 1. Let G be a covering of H via v and let q be such that Card(y=(v)) = q for allv € V(H). Then
the integer q is called the number of sheets of the covering. In this case we denote vy as g-sheeted covering.

The next lemma state a basic property of coverings which is a main argument for the application to local
computations.

Lemma 3. Let G be a covering of H via v and let vi,v2 € V(G) be such that vy # ve and v(vi) = vy(v2). Then
we have Bg(vi1) N Bg(v2) = .

Remark 1. If ¢ = 1 in Definition 1 then G and H are isomorphic.

We give now a fundamental lemma which establishes the connection between k-coverings and k-locally
generated relabelling relations. It states that if G is a k-covering of G’ then any k—local computation in G’
can be lifted to a k—local computation in G compatible with the k-covering relation. This is expressed in the
following diagram:

(G, Al) —_— (G, Az)

R*
lk—covering lk—covering
(GlaAll) T (GI7>‘I2)

!

Lemma 4. Let R be a k-locally generated relabelling relation and let (G, 1) be a k-covering of (G',\]) via .
Moreover, let (G',N))R*(G',\y). Then a labelling Ao of G exists such that (G, \)R*(G, \2) and (G, \2) is a
k-covering of (G, \}).

4.2 Quasi-coverings.

The idea behind the notion of quasi-coverings is to enable the simulation of local computations on a given graph
in a restricted area of a larger graph, such that the simulation can lead to false conclusion. The restricted area
where we can perform the simulation will shrink while the number of simulated step increases.

Definition 2. Let G,G' be two graphs and let v be a partial function on V(G) that assigns to each element of
a subset of V(Q) exactly one element of V(G').

Then G is a quasi-covering of G' of size s if there exists a finite or infinite covering Go of G' via §, vertices
z0 € V(Gy), z € V(G), and an integer r > 0 such that :

1. Bg(z,r) is isomorphic via ¢ to Bg,(z0,7),

2. Card(V(Bg(z,1))) > s,

3. the domain of definition of v contains Bg(z,r)), and
4. v =080y when restricted to V(Bg(z,r)).

They correspond to the following diagram :

v (partial function)

G G

quasi — covering

7)
2 balls tsomorphic covering

Go
1

5 The election problem

The election problem is one of the paradigms of the theory of distributed computing [35]. Considering a network
of processors we say that a given processor p has been elected when the network is in some global state such that
the processor p knows that it is the elected processor and all other processors know that they are not. Using
our terminology, it means that we get a labelling of the graph in which a unique vertex has some distinguished
label.

This problem may be considered under various assumptions [35]: the network may be directed or not, the
network may be anonymous (all vertices have the same initial label) or not (every two distinct vertices have
distinct initial labels), all vertices, or some of them, may have some specific knowledge on the network or not
(such as the diameter of the network, the total number of vertices or simply an upper bound of these parameters),
etc.

We first illustrate this problem with a sample FCGRS electing a vertex in a tree.

Ezample 4. Let Ry = (L4,Z4, Py) be the FCGRS defined by £4 = {N,F,E, 0},Z4 = {N,0} and P, = {R1, R>}
where R, R» are the following relabelling rules with forbidden contexts:

Rl:l:IOI;I FON’NON
0
N

Rs: I:I —]03 S
E
N

Let us call a pendant vertex any N-labelled vertex having exactly one N-labelled neighbour. The rule R; then
consists in “cutting” a pendant vertex in the tree, this cut vertex becoming F-labelled. Thus, if (G,) is a
labelled tree whose all vertices are N-labelled and all edges are 0-labelled then this cuting procedure leads to a
unique N-labelled vertex which becomes elected thanks to the rule Rs.

It is not difficult to observe that every vertex in the tree may be elected by this algorithm. A precise analysis
of this algorithm is proposed in [25]. In particular, it is proved that there exist one or two vertices having the
highest probability of being elected, namely the medians of the graph (recall here that a vertex is called a
median if the sum of the distances of this vertex to all other vertices in the graph is minimum).

The more general result we have obtained is the following [9]. We say that v knows the topology of G if v’s
label encodes the incidence matrix of a graph G’ ~ @, but no information enables v to know which vertex of
G' corresponds to v. Let G be a graph which is not covering-minimal and let H be such that G is a proper
covering of H via the morphism v. A subgraph K of G is free modulo vy if v !(v(K)) is a disjoint union of
graphs isomorphic to K. We say that a labelling A is v—lifted if

v(z) =v(y) = Az) = Ay) -

We say that an algorithm operates on subgraphs from a given set S if every relabelling step is performed only
on subgraphs of the given graph, which belong to S. Using coverings we prove :

Proposition 1. Let G be a graph which is not covering-minimal and let v be a covering from G onto some
graph H # G. Then there is no election algorithm for G which operates on subgraphs free modulo v, even if the
topology of G is known by each vertez of G.

In [23] Mazurkiewicz gives an election algorithm for the family of graphs which are minimal for the covering
relation when we know the size.

The election problem has been considered in the undirected case in [29]. For instance, it has been proved that
the election problem can be solved for the so-called prime graphs, provided that every vertex knows the total
number of vertices in the graph. Let G be an undirected graph and r be a positive integer. A r-decomposition of
G is a spanning forest of G whose all connected components (trees) contain exactly r vertices. A graph having n
vertices is then said to be prime if it only admits 1- and n-decompositions. The class of prime graphs obviously
contains all the graphs having a prime number of vertices. We can note that this algorithm enables to present

classic ones.
12

6 The recognition problem

The problem adressed in this section can be informally described as follows: let F be some class of (unlabelled)
graphs. We will say that this class can be locally recognized if there exists some graph relabelling system or,
more generally, some locally generated graph relabelling relation, which, starting from any uniformly labelled
graph (G, \g) (that is all vertices and edges have the same label), leads to some final labelling that allows to
decide whether G belongs to the class F or not.

More formally, we define a graph recognizer as a pair (R,K) where R is a graph relabelling relation and K
a class of labelled graphs. The set of labelled graphs recognized by (R, K) is then defined as the set of labelled
graphs (G, \) such that Irredr (G, \)NK # @. Such a recognizer is said to be deterministic if (i) R is noetherian
and (i4) for every labelled graph (G, A), either Irredr (G, A) C K or Irredg(G,A) NK = 0.

We are essentially interested in graph recognizers where the relation R is locally generated (with the par-
ticular case of graph relabelling systems) and the set K is defined in some “simple way”. In [17] this set K is
defined by means of a so-called final condition, that is a logical formula inductively defined as follows: (i) for
every label £ € L, { is a formula and (i7) if ¢ and ¢ are formulas then so do =y, ¢ V ¢ and ¢ A 1. Now, for
£ € L, alabelled graph satisfies the formula ¢ if it contains at least one ¢-labelled component, and by induction,
it satisfies ¢ V 9 if it satisfies ¢ or ¢ and so on in the usual way. Thus, such final conditions allow to verify the
presence or the absence of some specific labels but not to count the number of such labels. We will denote by
K(p) the set of labelled graphs which satisfy the formula .

Table 1. Recognizable and not-recognizable graph classes

Graph properties Graphs 1-Graphs
FOL
exactly one ¢-labelled vertex No Yes
k-regular Yes Yes
MSOL
bipartite No Yes
k-colorable (k > 2) No ?
hamiltonian No Yes
acyclic Yes Yes
SOL
even number of vertices No Yes

In [14, 17] the recognizable classes of graphs are compared to the classes of graphs definable by logic formulas.
In particular, it is proved that (deterministically or not) recognizable classes of graphs are not comparable with
classes of graphs definable by logic formulas expressed in first-order logic (FOL), monadic second-order logic
(MSOL) or second-order logic (SOL). The case of the so-called I-graphs, that is graphs having a distinguished
vertex is also considered. Table 1 gives some sample graph classes or 1-graph classes that can or cannot be
deterministically recognized.

The class of graphs having an even number of vertices can be undeterministically recognized but cannot
be deterministically recognized. The class of graphs having an odd number of vertices cannot be recognized,
even in an undeterministic way. Thus, the set of deterministically recognizable classes of graphs is not closed
under taking complement and is strictly included in the set of undeterministically recognizable classes of graphs.
However, the set of deterministically recognizable classes of graphs is closed under union and intersection [17].
We have proved also that classes of graphs defined by forbidden minors are not recognizable in general [7]; in
the case of graphs with one source they are recognizable [5].

The main question here is to find some characterization of the classes of graphs that can be recognized by
locally generated graph relabelling relations. Up to now, this question is still an open problem. Proof techniques
based on coverings have been extended to the case where initial knowledge (e.g. the size) is assumed [9]. A graph
G is called covering-minimal if every covering from G to some H is a bijection. The class of covering-minimal
graphs plays an important role in the study of local computations. It is easy to verify (using prime rings) that
the property of being covering-minimal is not recognizable without any initial knowledge about the graph. Using
[23] we note that this property is recognizable if we have as initial knowledge the size of the graph. Having
an odd number of vertices or having exactly one vertex with a certain label are other examples of properties
which are not recognizable without initial knowledge, but are recognizable if the graph size is known. Thus
recognizability under the assumption that the size is known to the algorithm is significantly more powerful than

recognizability without initial knowledge.
13

7 The termination detection problem

Let R be alocally generated relabelling relation (in this section we assume that R is a non-constant relation), let
(G, \) alabelled graph, we say that (G, A) is a terminal configuration modulo R if (G, \) is an R—normal form.
Let 7 be a class of labelled graphs, terminal configurations obtained from 7 are said to be locally characterized
if there exists a set F' of labels such that for any (G,\) € Z and for any (G, '), with (G, \)R*(G,\), (G, \')
is a terminal configuration if and only if there exists a vertex v of (G, ') having its label in F. In this case
termination is said to be explicit. If there exists no sets F' of labels which enable the local characterization of
terminal configurations, termination is said to be implicit. We study local computations such that terminations
are explicit. In [24] it has been proved :

Theorem 1. Let 7 be a class of connected labelled graphs. Suppose that some G € T has connected quasi-
coverings in I of arbitrary large size. Then there is no explicit termination for the class T.

By combining extended results from [36], the universal reconstruction algorithm of Mazurkiewicz [23] and using
the quasi-covering notion we get [28] :

Theorem 2. Let T be a class of connected labelled graphs. Suppose that ¥(G,)\) € T 3hg,ny > 0 such that
(G,) has not quasi-coverings of size greater than h(g) in Z. Then any locally generated relabelling relation
having an implicit termination may be transformed into a locally generated relabelling relation having an explicit
termination.

Well known results are obtained as corollaries : we deduce immediatly that any locally generated relabelling
relation having an implicit termination may be transformed into a locally generated relabelling relation having
an explicit termination for the following families of graphs :

— graphs having a leader

— graphs such that each node is identified by a unique name
— graphs having a known size or diameter bounds

— trees

— triangulated graphs.

8 Randomized Local Synchronization

Many problems have no solution in distributed computing [18]. The introduction of randomization makes possi-
ble tasks that admit no deterministic solutions or simplifies algorithms. General considerations about random-
ized distributed algorithms may be found in [35] and some techniques used in the design and for the analysis of
randomized algorithms are presented in [30, 20, 10].

In [26,27] we propose and study randomized algorithms to implement distributed algorithms specified by
local computations.

More precisely, a star is a complete bipartite graph K 4; the vertex of degree d is called the centre of the
star while the other vertices are called the leaves of the star. By Ky we denote the complete graph of size 2. An
algorithm is encoded by means of local relabellings : labels attached to vertices are modified locally, that is on
a subgraph isomorphic to a star or to K-, according to some rules depending on the labels attached to vertices
of the star or on the labels attached to the vertices of K5. We consider three kinds of local computations.

RV : in a computation step, the labels attached to vertices of K» are modified according to some rules depending
on the labels appearing on K>.

LC : in a computation step, the label attached to the centre of the star is modified according to some rules
depending on the labels of the star, labels of the leaves are not modified.

LC5 : in a computation step, labels attached to the centre and to the leaves of the star may be modified
according to some rules depending on the labels of the star.

In the case of RV two steps may be done in parallel if and only they occur on disjoint edges. In the second case
two steps may be done in parallel if and only if they occur on stars having different centres while in the third
case two steps may be done in parallel if and only if they occur on disjoint stars.

The aim of local synchronizations is the implementation of such local computations on the following sys-
tem. We consider an asynchronous distributed network of anonymous processors with an arbitrary topology;
processors communicate by exchanging messages. It is represented as a connected graph where vertices rep-
resent processors, and two vertices are connected by an edge if the corresponding processors have a direct
communication link. We consider systems with asynchronous message passing :

— a process sends a message to another processor by depositing the message in the corresponding channel,
14

— there is no fixed upper bound on how long it takes for the message to be delivered.

Angluin [1] has proved that there is no deterministic algorithm to implement local synchronizations in an
anonymous network that passes messages asynchronously (see [35]). Thus we have no choice but to consider
randomized procedures. In this paper, we consider the following distributed randomized procedures.
Implementation of RV. The implementation of RV is the rendezvous. We consider the following distributed
randomized procedure. The implementation is partitionned into rounds; in each round each vertex v selects one
of its neighbours ¢(v) at random. There is a rendezvous between v and c¢(v) if ¢(v) = v, we say that v and
¢(v) are synchronized. When v and ¢(v) are synchronized there is an exchange of messages by v and ¢(v). This
exchange allows the two nodes to change their labels. Each message for the synchronization mechanism will be
a single bit :

Each vertex v repeats forever the following actions :

the vertex v selects one of its neighbours c(v) chosen at random;

the vertex v sends 1 to c(v);

the vertex v sends 0 to its neighbours different from c(v);

the vertex v receives messages from all its neighbours.

(* There is a rendezvous between v and c(v) if v receives 1 from c(v);
in this case a computation step may be done. *)

Randomized Rendezvous

Implementation of LC,. Let LS, the local synchronisation for implementing LCY; it is partioned into rounds,
and in each round, every processor v selects an integer rand(v) randomly from the set {1,..., N}. The processor
v sends to its neighbours the value rand(v). The vertices of the star centered on v, denoted S,, are synchronized
if for each leave w of S, : rand(v) > rand(w). In this case a computation step on S, is allowed : the centre
collects labels of the leaves and then changes its label.

Each vertex v repeats forever the following actions :

the vertex v selects an integer rand(v) chosen at random;

the vertex v sends rand(v) to its neighbours;

the vertex v receives integers from all its neighbours.

(* There is a LS —synchronization centered on v if rand(v) is strictly greater
than integers received by v; in this case a computation step may be done on

Sy. %)
Randomized LS;—synchronizations.

Implementation of LC,. Let LS> the local synchronisation for implementing LC5; it is partioned into rounds,
and in each round, every processor v selects an integer rand(v) randomly from the set {1,..., N}.

The processor v sends to its neighbours the value rand(v). When it has received from each neighbour an
integer, it sends to each neighbour w the max of the set of integers it has received from neighbours different
from w. The vertex of the star S, centered on v are synchronized if rand(v) is strictly greater than rand(w) for
any vertex w of the ball centered on v of radius 2; In this case a computation step may be done on S,. During
this computation step there is a total exchange of labels by nodes of S, this exchange allows nodes of S, to
change their labels.

Each vertex v repeats forever the following actions :

the vertex v selects an integer rand(v) chosen at random;

the vertex v sends rand(v) to its neighbours;

the vertex v receives messages from all its neighbours;

let Int,, the mazx of the set of integers that v has received from vertices different from w;
the vertex v sends to each neighbour w Int,;

the vertex v receives integers from all its neighbours;

(* There a LSy—synchronization centered on v if rand(v) is strictly greater

than all integers received by v; in this case a computation step may be done on

Sy. %)
Randomized LSs—synchronizations.

Our analysis is based on the consideration of rounds: in order to measure the performance of the algorithm
in terms of the number of synchronization taking place, we assume that at some instant each node sends and
receives messages. Thus this parameter of interest, which is the (random) number of synchronizations, is the
maximal number (i.e. under the assumption that all nodes are active) authorized by the algorithm. We prove

that these three algorithms are Las Vegas algorithms.
15

References

1

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.
22.

23.

25.

26.
27.

28.
29.
30.
31.
32.

33.
34.

35.
36.

. D. Angluin. Local and global properties in networks of processors. In Proceedings of the 12th Symposium on theory
of computing, pages 82-93, 1980.

H. Attiya and J. Welch. Distributed computing. McGraw-Hill, 1998.

H.-L. Bodlaender and J. van Leeuwen. Simulation of large networks on smaller networks. Information and Control,
71:143-180, 1986.

A. Bottreau and Y. Métivier. The kronecker product and local computations in graphs. In Colloguium on trees in
algebra and programming, volume 1059 of Lecture notes in computer science, pages 2—-16. Spinger-Verlag, 1996.

A. Bottreau and Y. Métivier. Minor searching, normal forms of graph relabelling : two applications based on
enumerations by graph relabelling. In Foundations of Software Science and Computation Structures, volume 1378 of
Lecture notes in computer science, pages 110-124. Spinger-Verlag, 1998.

A. Bottreau and Y. Métivier. Some remarks on the kronecker products of graphs. Inform. Proc. letters, 68:55-61,
1998.

B. Courcelle and Y. Métivier. Coverings and minors : application to local computations in graphs. FEurop. J.
Combinatorics, 15:127-138, 1994.

M. J. Fisher, N. A. Lynch, and M. Merritt. Easy impossibility proofs for distributed consensus problems. Distrib.
Comput., 1:26-29, 1986.

E. Godard, Y. Métivier, and A. Muscholl. The power of local computations in graphs with initial knowledge. In
Theory and applications of graph transformations, volume 1764 of Lecture notes in computer science, pages 71-84.
Spinger-Verlag, 2000.

R. Gupta, S. A. Smolka, and S. Bhaskar. On randomization in sequential and distributed algorithms. ACM Comput.
sur., 26(1):7-86, 1994.

T. Kameda and M. Yamashita. Computing on anonymous networks: Part i - characterizing the solvable cases. I[EEE
Transactions on parallel and distributed systems, 7(1):69-89, 1996.

T. Kameda and M. Yamashita. Computing on anonymous networks: Part ii - decision and membership problems.
IEEE Transactions on parallel and distributed systems, 7(1):90-96, 1996.

I. Litovsky and Y. Métivier. Computing trees with graph rewriting systems with priorities. Tree automata and
languages, pages 115-139, 1992.

I. Litovsky and Y. Métivier. Computing with graph rewriting systems with priorities. Theoret. Comput. Sci.,
115:191-224, 1993.

I. Litovsky, Y. Métivier, and E. Sopena. Different local controls for graph relabelling systems. Math. Syst. Theory,
28:41-65, 1995.

I. Litovsky, Y. Métivier, and E. Sopena. Graph relabelling systems and distributed algorithms. In H. Ehrig,
H.J. Kreowski, U. Montanari, and G. Rozenberg, editors, Handbook of graph grammars and computing by graph
transformation, volume 3, pages 1-56. World Scientific, 1999.

I. Litovsky, Y. Métivier, and W. Zielonka. On the recognition of families of graphs with local computations. Infor-
mation and Computation, 118(1):110-119, 1995.

N. Lynch. A hundred impossibility proofs for distributed computing. In 8th International Conference on Distributed
Computing Systems, pages 1-28, 1989.

N. A. Lynch. Distributed algorithms. Morgan Kaufman, 1996.

J. Ramirez-Alfonsin M. Habib, C. McDiarmid and B. Reed, editors. Probabilistic Methods for Algorithmic Discrete
Mathematic. Springer-Verlag, 1998.

W. S. Massey. A basic course in algebraic topology. Springer-Verlag, 1991. Graduate texts in mathematics.

A. Mazurkiewicz. Trace theory. In W. Brauer et al., editor, Petri nets, applications and relationship to other models
of concurrency, volume 255 of Lecture notes in computer science, pages 279-324. Spinger-Verlag, 1987.

A. Mazurkiewicz. Distributed enumeration. Inf. Processing Letters, 61:233-239, 1997.

. Y. Métivier, A. Muscholl, and P.-A. Wacrenier. About the local detection of termination of local computations in
graphs. In International Colloquium on structural information and communication complezrity, pages 188200, 1997.
Y. Métivier and N. Saheb. Probabilistic analysis of an election algorithm in a tree. In Colloguium on trees in algebra
and programming, volume 787 of Lecture notes in computer science, pages 234—245. Spinger-Verlag, 1994.

Y. Métivier, N. Saheb, and A. Zemmari. Randomized rendezvous. Technical Report 1228-00, LaBRI, 2000.

Y. Métivier, N. Saheb, and A. Zemmari. On the efficiency of randomized local synchronizations. Technical report,
LaBRI, en préparation.

Y. Métivier and G. Tel. Termination detection and universal graph reconstruction. In International Colloguium on
structural information and communication complezity, 2000.

Y. Métivier and P.-A. Wacrenier. A distributed algorithm for computing a spanning tree in anonymous t-prime
graphs. Technical Report 1229-00, LaBRI, 2000.

R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University Press, 1995.

M. Raynal. Networks and distributed computation : concepts, tools, and algorithms. MIT Press, Cambridge, 1988.
M. Raynal and J.-M Helary. Synchronization and control of distributed systems and programs. John Wiley and Sons,
Ltd., Chichester,U.K., 1990.

K. H. Rosen, editor. Handbook of discrete and combinatorial mathematics. CRC Press, 2000.

P. Rosenstiehl, J.-R. Fiksel, and A. Holliger. Intelligent graphs. In R. Read, editor, Graph theory and computing,
pages 219-265. Academic Press (New York), 1972.

G. Tel. Introduction to distributed algorithms. Cambridge University Press, 1994.

B. Szymanski Y. Shi and N. Prywes. Terminating iterative solutions of simultaneous equations in distributed message
passing systems. In /th International Conference on Distributed Computing Systems, pages 287—292, 1985.

16

