
Automatic Veri�cation and Conformance Testing for

Validating Safety Properties of Reactive Systems�

Vlad Rusu� Herv� Marchand� and Thierry J�ron
First�Last�irisa�fr

IRISA�INRIA� Campus de Beaulieu� Rennes� France

Abstract This paper presents a combination of veri�cation and confor�
mance testing techniques for the formal validation of reactive systems� A
formal speci�cation of a system� which may be in�nite�state� and a set of
safety properties are assumed� Each property is veri�ed on the speci�ca�
tion using automatic techniques based on abstract interpretation� which
are sound� but� as a price to pay for automation� are not necessarily
complete� Next� for each property� a test case is automatically generated
from the speci�cation and the property� and is executed on a black�box
implementation of the system to detect violations of the property by
the implementation and non�conformances between implementation and
speci�cation� If the veri�cation step did not conclude� the test execution
may also detect violations of the property by the speci�cation�

Keywords� veri�cation� conformance testing� symbolic test generation

� Introduction

Formal veri�cation and conformance testing are two well�established approaches
for validating reactive systems� Both approaches consist in checking the consis�
tency between two representations of a system�

� formal veri�cation typically compares a formal speci�cation of the system
with respect to some higher�level required properties�

� conformance testing ���	
 compares the observable behaviour of a black�box
implementation of the system with that described by the speci�cation�

A formal validation chain for reactive systems� combining veri�cation and con�
formance testing� may naturally consists of the following steps�

�� the properties are automatically veri�ed on the speci�cation�
�� test cases are automatically derived from the speci�cation and the properties�
�� the test cases are executed on the black�box implementation of the system�

to check the satisfaction of the properties by the implementation and the
conformance between implementation and speci�cation�

� The full version of this paper is available as IRISA report ���	�



In this paper we formally de�ne and study such a validation chain� We con�
sider a general class of speci�cations which may be in�nite�state 
automata ex�
tended with variables� which communicate with the environment by means of
inputs and outputs carrying parameters�� In this setting� the veri�cation step 
in
particular� for safety properties� is undecidable� In order to keep it automatic
and ensure that it always terminates� we adopt approximate� conservative veri�
�cation techniques based on abstract interpretation ��
� which may either prove
the property� or terminate with a �don�t know� answer�

The main contribution of the paper lies in the second step of the proposed
validation chain� It is a test generation algorithm that takes into account the
in�nite�state nature of the speci�cations and the incompleteness of the veri�ca�
tion step� The algorithm takes as inputs a speci�cation and a safety property�
and produces a test case for checking the conformance between a given imple�
mentation and the speci�cation� and the satisfaction of the safety property by
the implementation� To deal with in�nite�state speci�cations and properties� the
algorithm is symbolic� it does not attempt to enumerate the 
potentially in�nite�
domain of the speci�cation�s variables� but deals with the variables by means of
symbolic computations� As a consequence of the incompleteness of the veri�ca�
tion step� the test cases generated by our algorithm may also detect violations of
the property by the speci�cation when executed on the implementation� Hence�
test execution may detect one or several of the following inconsistencies�

� violation of the property by the speci�cation�

� violation of the property by the implementation�

� violation of conformance between implementation and speci�cation�

These results are returned to the user in the form of test verdicts� and may
be employed to �x errors in the implementation� speci�cation� or the properties�

The rest of the paper is organised as follows� Section � presents the model
of Input�Output Symbolic Transition Systems 
IOSTS� and� in Section � we set
the framework for veri�cation and testing using IOSTS as the underlying model�

Section � de�nes our symbolic test generation algorithm� The algorithm is
proved correct� in the sense that the verdicts returned by test execution correctly
characterise the relations between implementation� speci�cation� and property�
Moreover� the 
in�nite� set of all test cases generated in this manner may� in
principle� discover all implementations that do not conform to a given speci�
�cation according to the standard ioco relation ���
� As a by�product of the
correctness proofs� we show that ioco�conformance with respect to a given spec�
i�cation is a safety property� We also provide a symbolic construction of the
canonical tester ��
 for ioco�conformance with respect to a given speci�cation�

Section 	 outlines a technique for optimising test cases towards detecting the
violation of the property� We show that this optimisation preserves the correct�
ness of the test verdicts� The overall approach is illustrated on a simple example�
The full version of this paper ���
 contains a larger example 
the Bounded Re�
transmission Protocol ���
� and provides proofs of the results�



� The IOSTS Model

The model of Input�Output Symbolic Transition Systems 
IOSTS� is inspired
from I�O automata ��	
� Unlike I�O automata� IOSTS do not require input�
completeness 
i�e�� all input actions do not need to be enabled all the time��

De�nition � �IOSTS�� An IOSTS is a tuple hD���Q� q�� �� T i where

� D is a �nite set of typed Data� partitioned into a set V of variables and a
set P of parameters� For d � D� type�d� denotes the type of d�

� � is the initial condition� a Boolean expression on V �

� Q is a nonempty� �nite set of locations and q� � Q is the initial location�

� � is a nonempty� �nite alphabet� which is the disjoint union of a set �� of
input actions and a set �� of output actions�� For each action a � �� its
signature sig�a� � hp�� � � � � pki � P k �k � N� is a tuple of parameters�

� T is a set of transitions� Each transition is a tuple hq� a�G�A� q�i made of�

� a location q � Q� called the origin of the transition�

� an action a � � called the action of the transition�

� a Boolean expression G on V � sig�a�� called the guard�

� an assignment A� which is a set of expressions of the form �x �� Ax�x�V
such that� for each x � V � the right�hand side Ax of the assignment
x �� Ax is an expression on V � sig�a��

� a location q� � Q called the destination of the transition�

A simple example of IOSTS is depicted in Figure �� This system expects a
START input carrying an integer parameter p� and saves the value of p into
the variable x� Then� as long as x is strictly positive� its value is emitted to the
environment via the output MSG carrying the parameter m� The variable x is
decreased by �� and when it reaches �� the STOP output is emitted�

x �� p
START ��p�

STOP �
x � �

m � x � x � �
MSG��m�
x �� x� �

Figure�� sample IOSTS S

� For simplicity� only input and output actions are considered here� A more detailed
model� which also contains internal actions� is de�ned in the full paper�



Semantics� The semantics of IOSTS is described in terms of input�output
labelled transitions systems 
IOLTS��

De�nition �� An IOLTS is a tuple hS� S�� ���i where S is a set of states�
which may be in�nite� S� � S is the set of initial states� � � �� ��� is a set of
�input or output� actions� and �� S � �� S is the transition relation�

Intuitively� the IOLTS semantics of an IOSTS hD � V � P���Q� q�� �� T i
enumerates of the possible tuples of values 
hereafter called valuations� of pa�
rameters P and variables V � Let V denote the set of valuations of the variables V �
and � denote the set of valuations of the parameters P � Then� for an expres�
sion E involving 
a subset of� V �P � and for � � V� � � � � we denote by E��� ��
the value obtained by substituting in E each variable by its value according to ��
and each parameter by its value according to �� For P � � P � we denote by �P �

the restriction of the set � of valuations to the set P � of parameters�

De�nition �� The semantics of an IOSTS S � hD���Q� q�� �� T i is an IOLTS
��S �� � hS� S�� ���i� de�ned as follows�

� the set of states is S � Q� V �
� the set of initial states is S� � Q� V��
� the set of actions � � fha� �ija � �� � � �sig�a�g� also called the set of

valued actions� is partitioned into the sets �� of valued inputs and �� of
valued outputs� such that for � � f�� 	g� �� � fha� �ija � ��� � � �sig�a�g�

� � is the smallest relation in S � �� S de�ned by the following rule�

hq� �i� hq�� ��i � S ha� �i � � t � hq� a�G�A� q�i � T G��� �� � true �� � A��� ��

hq� �i
ha��i
� hq�� ��i

The rule says that the valued action ha� �i takes the system from a state hq� �i
to a state hq�� ��i if there exists a transition t � hq� a�G�A� q�i whose guard G
evaluates to true when the variables evaluate according to � and the parameters
carried by the action a evaluate according to �� Then� the assignment A of the
transition maps the pair ��� �� to ���

De�nition � �run�� A run fragment is a sequence of alternating states and

valued actions � � s�
��� s�

��� � � � sn��
�n��
� sn� A run is a run fragment that

starts in an initial state�

A state is reachable if it is the last state of a run� For a sequence 	 �

�
� � � �
n of valued actions� we sometimes write s

�
� s� for �s�� � � � sn�� �

S� s � s�
��� s�

��� � � � sn
�n� sn�� � s�� For a set of states S� � S of the IOSTS

we write s
�
� S� if there exists a state s� � S� such that s

�
� s��

De�nition 	 �trace�� The trace of a run � is the projection of � on �� � ���
The set of traces of an IOSTS S is denoted by Traces�S��



Let F � Q be a set of locations of an IOSTS S � A run � is recognised by F if it
ends in a state in F�V� A trace is recognised by F if it is the projection on �����

of a recognised run� The set of recognised traces is denoted by RTraces�S � F ��
An IOSTS is deterministic if in each location� the guards of the transitions

labelled by the same action are mutually exclusive� All the IOSTS considered
in this paper are deterministic� In the full version ���
� more general IOSTS
are also considered 
nondeterministic IOSTS with internal actions�� A symbolic
determinisation operation� which consists in transforming a nondeterministic
IOSTS into a deterministic one having the same set of traces� is also presented�
The operation is proved correct and terminates for a subclass of IOSTS ���
�

� Veri�cation and conformance testing with IOSTS

This section sets the framework for veri�cation and conformance testing with
IOSTS� First� we present a few operations on IOSTS� and then the satisfaction
relation and the conformance relation between IOSTS are formally de�ned�

��� Parallel Product

The parallel product of two IOSTS is an IOSTS whose set of traces traces 
resp�
recognised traces� are the intersection of the set of traces 
resp� recognised traces�
of the operands� This operation imposes that the IOSTS have no shared vari�
ables� but are de�ned on the same alphabets of actions and same parameters�

De�nition 
 �Compatible IOSTS�� For j � 
� �� the two IOSTS Sj � hDj �
Vj � Pj � �j � Qj � q

�
j � �j � T ji with data Dj and alphabet �j � ��

j � ��
j are com�

patible if V� � V� � 	� P� � P�� �
�
� � ��

�� �
�
� � ��

� �

De�nition � �Parallel Product�� The parallel product S � S�jjS� of two
compatible IOSTS S��S� is the IOSTS hD�P���Q� q�� �� T i that consists of
the following elements� V � V� � V�� P � P� � P�� � � �� 
��� Q � Q� �Q��
q� � hq�� � q

�
�i� �

� � ��
� � ��

� � �
� � ��

� � ��
� The set T of transitions of the

composed system is the smallest set de�ned by the rule�

hq�� a� G�� A�� q
�
�i � T� hq�� a� G�� A�� q

�
�i � T�

hhq�� q�i� a� G� 
G�� A� �A�� hq��� q
�
�ii � T

Lemma � �traces of the parallel product��
Traces�S�jjS�� � Traces�S�� � Traces�S���
RTraces�S�jjS�� F� � F�� � RTraces�S�� F�� �RTraces�S�� F���

��� Quiescence� and suspension IOSTS

In conformance testing it is assumed that the environment may observe not
only outputs� but also absence of outputs 
i�e�� in a given state� the system does



not emit any output for the environment to observe�� This is called quiescence in
conformance testing ���
� On a black�box implementation� quiescence is observed
using timers� a timer is reset whenever the environment sends a stimulus to the
implementation� when the timer expires� the environment observes quiescence�

In order to distinguish a quiescence that is also present in a speci�cation
from one that is not� quiescence can be made explicit on a speci�cation by a
symbolic operation called suspension� This operation transforms an IOSTS S
into an IOSTS S�� also called the suspension IOSTS of S � Each location q of S�

contains a new self�looping transition� labelled with a new output action �� which
may be �red if and only if no other output action may be �red in q� Formally�

De�nition 
 �Suspension�� Given S � hD � V �P���Q� q�� � � ������ T i
an IOSTS� the suspension IOSTS S� is the tuple hD � V � P���Q� q�� ��� �
f�g� ���� T �

S
q�Qhq� �� G��q� �v �� v�v�V � qii where

G��q �
�

a���

�Ga�q where Ga�q �
�

t�hq�a�G�A�q�i�T

�sig�a��G� 
��

For the IOSTS S depicted in Figure �� the IOSTS S� is depicted in Figure �� The
guard x 
 � of the transition labeled � is obtained by simplifying the expression
��x � � � �m�m � x 
 x � ��� which corresponds to Formula 
�� above�

In this system� a START input with a negative parameter 
p 
 �� does not
allow for MSG or STOP outputs� i�e�� the system is quiescent after START� This
is made explicit by the special output �	 after START�

x �� p
START ��p�

STOP �
x � �

m � x � x � �
MSG��m�
x �� x� �

�� ��

��
x � �

Figure�� Suspension IOSTS S�

��� Veri�cation of Safety Properties

The problem considered here is� given a reactive systemmodelled by an IOSTS S �
and a safety property � de�ned on its traces� does S satisfy �� We model safety
properties using observers� which are deterministic IOSTS equipped with a set
of �bad� locations� the property is violated when a �bad� location is reached�

De�nition � �Observer�� An observer is a deterministic IOSTS � together
with a set of dedicated locations Violate� � Q�� which are deadloocks �no out�
going transitions�� An observer ���Violate�� is compatible with an IOSTSM if �
is compatible withM � The set of observers compatible withM is denoted ��M��



An observer � � ��M� de�nes a safety property on ���M � ��M ��� namely� the
property that is satis�ed by all sequences in ���M ���M �� nRTraces��� V iolate��

and those sequences only�� In particular� if M is the suspension IOSTS S� of a
given IOSTS S � then the property is satis�ed by a subset of ���

S
� f�g � ��

S
���

MSG��m�

p � �

START ��p�

STOP � Violate

�
�

MSG��m�

p � �

START ��p�

STOP � Violate

�
�

Figure�� Sample observers � �� 
left�� �� 
right��

For example the observer �� depicted in Figure � describes the safety prop�
erty which says that between START input carrying a parameter p � �� and
a STOP output� the system must exhibit at least one MSG output� The set
of �bad� locations is fViolateg� The self�loops ��� denote all actions 
including
the quiescence �� that do not label other outgoing transitions� The observer ��
depicted on the right�hand side of Figure � describes almost the same property

except for the fact that START input carries a parameter p 
 ��� An IOSTS
astis�es an observer if no trace of the IOSTS is recognised by the observer�

De�nition �� �IOSTS Satis�es Observer�� For an IOSTS S and an ob�
server ���Violate�� � ��S�� we say that S satis�es ���Violate��� denoted by
S j� ���Violate��� if Traces�S� �RTraces���Violate�� � 	�

Let Q denote the set of locations of S � Then� Traces�S� � RTraces�S � Q� and
RTraces�Sk��Q�Violate�� � RTraces�S � Q��RTraces���Violate�� 
cf� Lemma ���
Hence� checking S j� ���Violate�� amounts to checking the emptyness of the set
RTraces�Sk��Q � Violate��� This can be done checking that the intersection
between the set of reachable states of Sk�� and the set of states whose locations
lie in Q � Violate�� is empty� Alternatively� the intersection between the set of
states from which Q � Violate� is reachable 
also called the coreachable set of
Q�Violate��� and the set of initial states� can be checked for emptyness�

However� reachable and coreachable sets are not computable in general be�
cause of undecidability problems� Approximate analysis techniques such as ab�
stract interpretation ��
� can be used to compute over�approximations of them�

Our tool STG 
Symbolic Test Generation� ��
 is interfaced with a tool called
NBac ���
 for this purpose� First� STG automatically computes the product �jjS �
and then� NBac automatically performs an approximate reachability analysis

from the initial states� and approximate coreachability analysis 
to the violating
locations� of the product� These tools can be employed to prove� e�g�� that the
IOSTS S� depicted in Figure � does satisfy the observer �� depicted in Figure ��

The violating locations are found unreachable� hence� the property holds��



On the other hand� it is impossible in general to prove automatically that
an IOSTS does not satisfy an observer� Such a situation occurs with the IOSTS
S� in Figure � and the observer �� depicted in the right�hand side of Figure ��
S� does not satisfy ��� because a START input carrying the parameter p � �
allows for a STOP output to be emitted 
without anyMSG inputs in between��
which violates the property of interest 
the Violate location is reached��

Combining observers� The parallel product of two observers ���Violate�� and
���Violate�� can be also interpreted in terms of safety properties� We use these
properties in Section �� A natural choice is to equip the product �jj� with
the set of locations Violate� �Violate�� by Lemma �� RTraces��jj��Violate� �
Violate�� � RTraces���Violate�� � RTraces���Violate��� hence� we obtain a
safety property which is violated whenever both safety properties described by
���Violate�� and ���Violate�� are violated� Alternative choices for the violating
locations are� e�g�� Violate� � �Q� n Violate��� which indicates the violation of
the former property� but not that of the latter� and� �Q� nViolate���Violate��
which indicates the violation of the latter� but not of the former property�

��� Conformance Testing

A conformance relation formalises the set of implementations that behave con�
sistently with a speci�cation� An implementation I is not a formal object 
it is
a physical system� but� in order to reason about conformance� it is necessary to
assume that the semantics of I can be modelled by a formal object� We assume
here that it is modelled by an IOLTS 
cf� De�nition ��� The notions of trace
and quiescence are de�ned for IOLTS just as for IOSTS� The implementation is
assumed to be input�complete� i�e�� all its inputs are enabled in all states�

These assumptions are called test hypothesis in conformance testing� The cen�
tral notion in conformance testing is that of conformance relation� the standard
ioco relation de�ned by Tretmans ���
 can be rephrased as

De�nition �� �ioco�� An inplementation I ioco�conforms to a speci�cation
S� denoted by I ioco S� if Traces�S�� � ��� � f�g� � Traces�I�� � Traces�S���

Intuitively� an implementation I ioco�conforms to its speci�cation S� if� after
each trace of the suspension IOSTS S� � the implementation only exhibits out�
puts and quiescences allowed by S� � Hence� in this framework� the speci�cation
is partial with respect to inputs� i�e�� after an input that is not described by
the speci�cation� the implementation may have any behaviour� without violat�
ing conformance to the speci�cation� This corresponds to the intuition that a
speci�cation models a given set of services that must be provided by a system�
a particular implementation of the system may implement more services than
speci�ed� but these additional features should not in�uence its conformance�

Example� An implementation that exhibits the trace START ��
� �STOP 	 does
not conform to the speci�cation S depicted in Figure � � this trace is not present



in the IOSTS S� 
Figure ��� For the same reason� the trace START ��
� � �	
reveals a non�conformance to S � On the other hand� a trace such as START ��
��
START ��
� � STOP 	 does not pose problems for conformance� as S� does not
constrain the traces of the system after the second START� in any way�

� Test Generation for Safety and Conformance

This section shows how to generate a test case from a speci�cation using a
safety property as a guide� The test case attempts to detect violations of the
property by an implementation of the system and violations of the conformance
between the implementation and the speci�cation� Moreover� if the veri�cation
step 
Section ���� could not establish the fact that the speci�cation satis�es the
property� the generated test cases may also detect violations of the property by
the speci�cation when executed on the implementation�

We show that the test cases generated by our method always return correct
verdicts� In this sense� the test generation method itself is correct�

Outline� We �rst de�ne the output�completion ���M� of an IOSTS M � We then
show that the output�completion of the IOSTS of S� is a canonical tester ��

for S and the ioco relation de�ned in Section ��� 
a canonical tester for a spec�
i�cation with respect to a given relation allows� in principle� to detect every
implementation that disagrees with the speci�cation according to the relation��
This derives from the fact� stated in Lemma � below� that ioco�conformance to
a speci�cation S is equivalent to satisfying 
a safety property described by� an
observer obtained from ���S��� By composing this observer with another ob�
server ���Violate�� we obtain test cases for checking the conformance to S and
the satisfaction of ���Violate���

De�nition �� �output�completion�� GivenM � hD���Q� q�� �� T i a deter�
ministic IOSTS� the output completion of M is the IOSTS ���M� � hD���Q�
fFailMg� q�� �� T �

S
q�Q�a���hq� a�

V
t�hq�a�Gt�At�q�ti�T

�Gt� �x �� x�x�V �FailM ii�

Interpretation� ���M� is obtained from M by adding a new location FailM ��
Q� and for each q � Q and a � ��� a transition with origin q� destination
FailM � action a� identity assignments and guard

V
t�hq�a�Gt�At�q�ti�T

�Gt� Hence�

any output not �reable in M becomes �reable in ���M� and leads to the new

deadlock� location FailM � The output�completion of an IOSTSM can be seen as
an observer� by choosing fFailMg as the set of violating locations� The following
lemma says that conformance to a speci�cation S is a safety property� namely�
the property whose negation is represented by the observer ����S��� fFailS�g��

Lemma �� I ioco S i� I� j� ����S��� fFailS�g���

The lemma also says that the IOSTS ���S�� is a canonical tester for ioco�
conformance to S � Indeed� I� j� ����S��� fFailS��g can be interpreted as the

fact that execution of ���S�� on the implementation I never leads to a �Fail�



verdict� the fact that this is equivalent to I ioco S 
as stated by Lemma ��
amounts to having a canonical tester ��
�

A canonical tester is� in principle� enough for detecting all implementations
that do not conform to a given speci�cation� However� our goal in this paper is to
detect� in addition to such non�conformances� other potential violations of other

additional� safety properties coming from� e�g�� the system�s requirements�

The observers 
cf� De�nition �� employed for expressing such properties also
serve as a test selection mechanism� by Lemma �� the product between an ob�
server and the canonical tester can be used to de�ne a subset of traces of interest
among the many possible traces of the canonical tester�

We �rst note that for an IOSTS M and an observer ���Violate�� � ��M��
the IOSTS �jj���M� can be interpreted as an observer of M by choosing its set
of violating locations� Let for now this set be fFailMg � Violate�� denoted by
ViolateFail�jj���M��The subscript is omitted whenever it is clear from the context�

De�nition ��� For ���Violate�� � ��S��� test�S� �� � �jj���S���

In the rest of the section we show that every test�S � �� can be seen as a test case
that re�nes the canonical tester� as violations of ���Violate�� are also checked�

Proposition �� I ioco S i�
����Violate�� � ��S��� I� j� �test�S � ���ViolateFailtest�S�����

Interpretation� The IOSTS test�S � �� can be seen as a test case to be executed
in parallel with an implementation I� Proposition � says that if this execution
enters a location in ViolateFailtest�S��� 
� Violate��fFailS�g�� then the implemen�
tation violates both the property de�ned by ���Violate�� and the conformance
to speci�cation S� In this situation� the ViolateFail verdict is given�

ViolateFail� the implementation violates the property and the conformance

The proposition also says that the 
infnite� set �test�S � ��j���Violate�� � ��S��g
of test cases is �exhaustive� for checking ioco�conformance to a given speci�ca�
tion S� meaning that all non�conformances may� in principle� be detected�

We now consider another interpretation of the IOSTS �jj���M�� which leads
to another test verdict� Choosing the violating locations to be �Q� nViolate���
fFailMg results in a di�erent observer� We denote by Fail�jj���M� the set �Q� n
Violate��� fFailMg� The subscript is omitted whenever the context is clear�

Proposition �� For an IOSTS S and ���Violate�� � ��S���
I� �j� �test�S � ���Failtest�S���� � ��I ioco S�

Proposition � says that when test�S� �� enters a location in the set Failtest�S���


� 
Q� nViolate��� fFailS�g � when executed on an implementation I� then I
violates conformance to S� The property � is not violated 
the Violate� set is
not entered�� In this case� the Fail verdict is given�



Fail� the implementation violates the conformance� but not the property

A third interpretation of the IOSTS �jj���M� as an observer can be given� by
choosing the set of violating locations to be Violate� �QM � We denote this set
by Violate�jj���M�� and omit the subscript whenever it is clear from the context�

Proposition �� For an IOSTS S and observer ���Violate�� � ��S��� I� �j�
�test�S� ���Violatetest�S���� � I� �j� ���Violate�� 
 S

� �j� ���Violate���

Proposition � says that when test�S � �� enters a location in Violatetest�S��� when
executed on an implementation I � then a violation of the property by both spec�
i�cation and implementation is detected� Hence� the Violate verdict is given�

Violate� the speci�cation and the implementation violate the property

Discussion� Propositions �� �� and � show that the test generation algorithm�
i�e�� the construction of the IOSTS test�S� �� and of its three verdicts� are correct�
in the sense that verdicts correctly describe the relations between speci�cation�
implementation� and property� The verdict ViolateFail 
resp� Fail� detects the
violation of the property and of the conformance 
resp� of the conformance only�
by the implementation� This holds independently of whether the speci�cation
satis�es the property or not� indeed� the execution of the test case on the im�
plementation may detect violations of the property by the speci�cation using
the Violate verdict� The ability to generate test cases from a property and a
speci�cation which may or may not satisfy the property is important� because
veri�cation is undecidable for the in�nite�state systems considered in this paper�

A natural question that arises is why a violation of the property by the
implementation is always detected simultaneously with either 
�� a violation of
the property by the speci�cation or 
�� a violation of the conformance between
implementation and speci�cation� The reason is that our test cases are extracted
from the speci�cation� i�e�� they only contain traces of the speci�cation� An
implementation may only violate a property without 
�� or 
�� occurring when
it executes a trace that diverges at some point from the speci�cation by an input�
indeed� as seen in Section ���� this does not compromise conformance and� of
course� the speci�cation cannot violate the property on a trace that it does not
contain� Such traces are excluded from the generated test cases by construction�

Alternatively� these traces could be included in the test cases� but this implies
to perform an input�completion of the speci�cation 
similar to De�nition ��� �rst�
and could lead to test cases that are typically too large for use in practice�

Building an actual test case� To build an actual test case from test�S � ��� all
inputs are transformed into outputs and reciprocally 
this operation is called
mirror � in the test execution process� the actions of the implementation and
those of the test case must complement each other�� For the IOSTS S depicted
in Figure � and the observer �� depicted in Figure �� the corresponding test case

before simpli�cation� is depicted in Figure �� Finally� the result is automatically
analysed and simpli�ed using the NBac tool ���
 for statically eliminating tran�
sitions that cannot lead to the violation of the property any more 
cf� Section 	��



x � �
STOP �

x � �
STOP �

x �� x� 


MSG��m�
m � x 
 x � �

m � x 
 x � �
MSG��m�
x �� x� 


��
x 
 �

��
x 
 �
��

x �� �

Fail

Fail

STOP �

����

��

��
p 
 �

x �� p
START 	�p�

��
Violate Violate

Figure�� Before selection� test case obtained from S 
Figure �� and �� 
Figure ���

� Test selection

The main goal of the testing process is to detect violations of the system�s
required properties by the system�s implementation� In this section we outline
a technique for statically detecting and eliminating locations and transitions
of a test case 
generated from a speci�cation and a property as described in
Section �� from which this goal cannot be achieved any more� the resulting test
case attempts to keep the implementation in states where it may still violate the
property� We show that this optimisation preserves correctness of test verdicts�

The violation of a property � described as an observer ���Violate�� � by an
implementation is materialised by reaching the ViolateFail and Violate sets of
locations in the IOSTS test�S � ��
cf� Section ��� For a state s of an IOSTS and
a location q of the IOSTS� we say that s is coreachable for the location q if there
exists a valuation v of the variables such that s

�
� hq� vi� Then� the test selection

process consists 
ideally� in selecting� from a given test case� the subset of states
that are coreachable for the locations in Violate � ViolateFail�

It should be quite clear that an exact computation of this set of states is
impossible in general� However� there exist techniques that allow to compute
an over�approximation of it� We here use one such technique based on abstract
interpretation and implemented in the NBac tool ���
� Given a location q of an
IOSTS� the tool computes� for each location l� a symbolic coreachable state for q�

De�nition �� �symbolic coreachable state�� For l� q two locations of an
IOSTS S� we say hl� �l�qi is a symbolic coreachable state for q if �l�q is a
formula on the variables of the IOSTS such that� if a state of the form hl� vi is
coreachable for q� then v j� �l�q holds�

I�e�� hl� �l�qi over�approximates the states with location l that are coreachable
for q� The following algorithm uses this information for pruning a test case�



De�nition �	 �pruning�� For an IOSTS S and an observer ���Violate�� from
the set ��S��� let prune�S � �� be the IOSTS computed as follows�

� �rst� the IOSTS mirror�test�S � ��� is computed as in Section �� Let L be
its set of locations� T its set of transitions� and � � �� � �� its alphabet�
where �� � ��

S and �� � ��
S � f�g� Let also Inconc �� L be a new location�

� then� for each location l � L� a symbolic coreachable state hl� �l�qi� for each
location q � Violate � ViolateFail is computed� Let �l denote the formulaW
q � Violate � ViolateFail

�l�q

� next� for each location l � l of the IOSTS� and each transition t � T of the
IOSTS with origin l� guard G� and label a�
� if a � �� then

� if G 
 �l is unsatis�able� then t is eliminated from T �
� otherwise� the guard of t becomes G 
 �l

� if a � ��� then
� the guard of t becomes G 
 �l
� a new transition is added to T � with origin l� destination Inconc�
action a� guard G 
 ��l� and identity assignments�

The pruning operation consists in detecting transitions whose �ring leads to
states where the Violate and ViolateFail sets of locations are unreachable� This
is done by performing a coreachability analysis to these locations using the NBac
tool ���
� If such a �useless� transition is labelled by an output� then it may
be removed from the test case 
a test case controls its outputs� hence� it may
decide not to perform an output if violations of the property cannot be detected
afterwards�� On the other hand� inputs cannot be prevented from occurring�
hence� the transitions labelled by inputs� by which the Violate and ViolateFail
sets of locations cannot be reached any more� are reoriented to a new location�
called Inconc� Reaching Inconc during test execution is interpreted as a verdict�

Inconc� violations of the property cannot be detected any more

Proposition �� The test case obtained by after pruning is correct� i�e�� Propo�
sitions 	� 
 and � still hold when test�S � �� is replaced with prune�S� ���

The test case obtained after pruning test�S � ��� is depicted in Figure 	� It starts
by sending a START with a positive parameter p to the implementation� and
then waits for inputs� If the implementation replies with STOP� the test execu�
tion terminates with a verdict� which depends on whether the parameter p was
strictly positive or was equal to zero�

� If p � �� the sequence START �p� � STOP exhibits a non�conformance be�
tween implementation 
which accepts this sequence� and speci�cation 
which
does not accept it�� This sequence is also a witness for the violation of the
property by the implementation� the verdict is ViolateFail�

� If p � �� START �p� �STOP is a witness for violation of the property de�ned
by �� by both implementation and speci�cation� the verdict is Violate�



Fail

Inconc

��

��

START 	�p�
x �� �

p 
 �

STOP �

x � �

Violate
Fail

Violate

x � �

STOP �

MSG��m�

Figure�� After selection� test case obtained from S 
Figure �� and �� 
Figure ���

Finally� if the implementation replies with MSG after START� the current test
case cannot detect violations of the property any more� and the verdict is Inconc�

� Conclusion and Related Work

A system may be viewed at several levels of abstraction� high�level properties�
operational speci�cation� and black�box implementation� In our framework prop�
erties and speci�cations are described using Input�Output Symbolic Transition
Systems 
IOSTS�� which are extended automata that operate on symbolic vari�
ables and communicate with the environment through input and output actions
carrying parameters� IOSTS are given a formal semantics in terms of input�
output labelled transition systems 
IOLTS�� The implementation is a black box�
but it is assumed that its semantics can be described by an unknown IOLTS�
This allows to formally link the implementation and the speci�cation by a confor�
mance relation� A satisfaction relation links them both to higher�level properties�

A validation methodology is proposed for checking these relations� i�e�� for de�
tecting inconsistencies between the di�erent views of the system� First� the prop�
erties are automatically veri�ed on the speci�cation using abstract interpretation
techniques� Then� test cases are automatically generated from the speci�cation
and the properties� and are executed on the implementation of the system� If the
veri�cation step was successful� that is� it has established that the speci�cation
satis�es a property� the test execution may detect the violation of the property
by the implementation and the violation of the conformance relation between
implementation and speci�cation� On the other hand� if the veri�cation did not
allow to prove a property� the test execution may additionally detect a violation
of the property by the speci�cation� Any inconsistencies obtained in this man�
ner are reported to the user in the form of test verdicts� The approach is proved
correct and is illustrated on a simple example� The full version of this paper ���

illustrates the approach on a larger example 
the BRP protocol ���
��



Related Work� In ��
 an approach for generating tests from a speci�cation and
from observers describing linear�time temporal logic requirements is described�
The generated test cases do not check for conformance� they only check the fact
that the implementation does not violate the requirements�

The approach described in ��
 considers a speci�cation S and an invariant P
assumed to hold on S� Then� mutants S� of S are built using standard mutation
operators� and a combined machine is generated� which extends sequences of S
with sequences of S�� Next� a model checker is used to generate sequences that
violate P � which prove that S� is a mutant of S violating P � Finally� the obtained
sequences are interpreted as test cases to be executed on the implementation�

The authors of ��
 start from a speci�cation S and a temporal�logic property
P assumed to hold on S� and use the ability of model checkers to construct
counter�examples for �P on S� These counter�examples can be interpreted as
witnesses 
i�e�� test cases� for P on S� The papers �����
 extend this idea by for�
malising standard coverage criteria 
all�de�nitions� all�uses� etc� using observers

resp� in temporal logic�� Again� test cases are generated by model checking the
observers 
or the temporal�logic formulas� on the speci�cation�

The approaches described in all these papers rely on model checking� hence�
they only work for �nite�state systems� moreover� they do not formally relate
satisfaction of properties to conformance testing� and� except for ��
� they do not
formally de�ne a conformance relation�

In ���
 we present an approach for combining model checking and confor�
mance testing for �nite�state systems� which can be seen as a �rst step of the
approach presented here� which deals with in�nite�state systems� In the �nite�
state framework of ���
 veri�cation is decidable� which heavily in�uences the
whole approach� for example the test generation algorithm 
based on enumera�
tive model checking� does not need to take into account the possibility that the
property might be violated by the speci�cation�

A di�erent approach for combining model checking and black�box testing is
black�box checking ���
� Under some assumptions on the implementation 
the
implementation is deterministic� an upper bound n on its number of states is
known�� the black�box checking approach constructs a complete test suite of size
exponential in n for checking properties expressed by B�chi automata�

Our approach can also be related to the combination of veri�cation� testing
and monitoring proposed in ���
� In their approach� monitoring is passive 
pure
observation�� whereas ours is reactive and adaptative� guided by the choice of
inputs to deliver to the system as pre�computed in a test case�

Finally� in ���
 we propose a symbolic algorithm for selecting test cases from a
speci�cation be means of so�called test purposes� The di�erence with the present
paper lies mainly in methodology� Test purposes in ���
 are essentially a prag�
matic means for test selection � they have to be provided by the user� In contrast�
test selection in the present paper consists in automatically attempting to vio�
late a safety property that was automatically veri�ed 
succesfully or not� on the
speci�cation� Moreover� test purposes can be classi�ed as reachability properties�
which have an exactly opposite semantics to the safety properties considered here

reachability properties are negations of safety properties��



References

�� ISO�IEC 
���� Conformance Testing Methodology and Framework� �

��
�� P� Ammann� W� Ding� and D� Xu� Using a model checker to test safety properties�

In International Conference on Engineering of Complex Computer Systems� IEEE
Computer Society� �����

�� J� Blom� A� Hessel� B� Jonnson� and P� Pettersson� Specifying and generating test
cases using observer automata� In Workshop on Formal Approaches to Software
Testing �Fates����� pages �������� �����

�� E� Brinskma� A theory for the derivation of tests� In Protocol Speci�cation� Testing
and Veri�cation �PSTV����� pages ������ �
���

�� E� Brinskma� A� Alderen� R� Langerak� J� van de Laagemat� and J� Tretmans�
A formal approach to conformance testing� In Protocol Seci�cation� Testing and
Veri�cation �PSTV����� pages ��
����� �

��

�� D� Clarke� T� J�ron� V� Rusu� and E� Zinovieva� STG� a symbolic test genera�
tion tool� In Tools and Algorithms for the Construction and Analysis of Systems
�TACAS��	�� number ���� in LNCS� pages �������� �����

�� P� Cousot and R� Cousot� Abstract intrepretation� a uni�ed lattice model for static
analysis of programs by construction or approximation of �xpoints� In �th ACM
Symposium on Principles of Programming Languages� pages �������� �
���

�� J�C� Fernandez� L� Mounier� and C� Pachon� Property�oriented test generation� In
Formal Aspects of Software Testing Workshop� number �
�� in LNCS� �����


� A� Gargantini and C�L� Heitmeyer� Using model checking to generate tests from
requirements speci�cations� In ESEC
SIGSOFT FSE� pages �������� �


�

��� K� Havelund and G� Rosu� Synthesizing monitors for safety properties� In Int�
Conference on Tools and Algorithms for Construction and Analysis of Systems
�TACAS��	�� Grenoble� France� number ���� in LNCS� pages �������� �����

��� L� Helmink� M� P� A� Sellink� and F� Vaandrager� Proof�checking a data link
protocol� In Types for Proofs and Programs �TYPES����� number ��� in LNCS�
pages �������� �

��

��� H� Hong� I� Lee� O� Sokolsky� and H� Ural� A temporal logic based theory of test
coverage and generation� In Tools and Algorithms for Construction and Analysis
of Systems �TACAS��	�� number ���� in LNCS� pages �������� �����

��� B� Jeannet� Dynamic partitioning in linear relation analysis� Formal Methods in
System Design� ��
�������� �����

��� B� Jeannet� T� J�ron� V� Rusu� and E� Zinovieva� Symbolic test selection based on
approximate analysis� In Int� Conference on Tools and Algorithms for Construction
and Analysis of Systems �TACAS����� Grenoble� France �to appear�� �����

��� N� Lynch and M� Tuttle� Introduction to IO automata� CWI Quarterly� �
��� �


�
��� D� Peled� M� Vardi� and M� Yannakakis� Black�box checking� Journal of Automata�

Languages and Combinatorics� �
������ � ���� ���� �����
��� V� Rusu� H� Marchand� and T� J�ron� Veri�cation and symbolic test generation

for safety properties� Technical Report ����� IRISA� august ����� Available at
http���www�irisa�fr�vertecs�Publis�Ps�PI������pdf�

��� V� Rusu� H� Marchand� V� Tschaen� T� J�ron� and B� Jeannet� From safety ver�
ifcation to safety testing� In Intl� Conf� on Testing of Communicating Systems
�TestCom���� number �
�� in LNCS� �����

�
� J� Tretmans� Testing concurrent systems� A formal approach� In CONCUR����
number ���� in LNCS� pages ������ �


�

��� E� Zinovieva� Symbolic Test Generation for Reactive Systems� PhD thesis� Univer�
sity of Rennes I� November �����


