
Control of Timed Systems

Franck Cassez

CNRS/IRCCyN
Nantes, France

Formalisation des Activités Concurrentes (FAC)
April 3–4, 2008

Toulouse, France

Context: Design of Real-Time Systems

System to Supervise: S

Supervisor: C

Events/
Sensors Actions

Journées FAC (April 2008) Control of Timed Systems 2 / 48

Context: Design of Real-Time Systems

Build Safe Systems

System to Supervise: S

Supervisor: C

Events/
Sensors Actions

Journées FAC (April 2008) Control of Timed Systems 2 / 48

Context: Design of Real-Time Systems

Build Safe Systems

System to Supervise: S

Supervisor: C

Events/
Sensors Actions

Property φ

Journées FAC (April 2008) Control of Timed Systems 2 / 48

Context: Design of Real-Time Systems

Modeling
Timed Automata
Time Petri Nets
Timed Logics

Build Safe Systems

System to Supervise: S

Supervisor: C

Events/
Sensors Actions

Property φ

Journées FAC (April 2008) Control of Timed Systems 2 / 48

Context: Design of Real-Time Systems

Modeling
Timed Automata
Time Petri Nets
Timed Logics

Verification
Test
Theorem Proving
Model-Checking

Build Safe Systems

System to Supervise: S

Supervisor: C

Events/
Sensors Actions

Property φ

Journées FAC (April 2008) Control of Timed Systems 2 / 48

Context: Design of Real-Time Systems

Modeling
Timed Automata
Time Petri Nets
Timed Logics

Verification
Test
Theorem Proving
Model-Checking

Build Safe Systems

System to Supervise: S

Supervisor: C

Events/
Sensors Actions

Property φ

Diagnosis & Control
Diagnosis
Control
Optimal Control

Journées FAC (April 2008) Control of Timed Systems 2 / 48

Context: Design of Real-Time Systems

Modeling
Timed Automata
Time Petri Nets
Timed Logics

Verification
Test
Theorem Proving
Model-Checking

Build Safe Systems

System to Supervise: S

Supervisor: C

Events/
Sensors Actions

Property φ

Diagnosis & Control
Diagnosis
Control
Optimal Control

Implementation
Digital Supervisors
Continuous Systems

Journées FAC (April 2008) Control of Timed Systems 2 / 48

Context: Design of Real-Time Systems

Modeling
Timed Automata
Time Petri Nets
Timed Logics

Verification
Test
Theorem Proving
Model-Checking

Build Safe Systems

System to Supervise: S

Supervisor: C

Events/
Sensors Actions

Property φ

Diagnosis & Control
Diagnosis
Control
Optimal Control

Implementation
Digital Supervisors
Continuous Systems

Journées FAC (April 2008) Control of Timed Systems 2 / 48

Outline of the Talk

◮ Control of Timed Systems: Basics
• Verification and Control
• Control = Game

◮ Control of Discrete Event Systems
• Games, Strategies, Winning States
• Controllable Predecessors
• Results for Finite Games

◮ Control of Timed Systems
• Timed Automata
• Timed Game Automata
• Symbolic Algorithms for Timed Game Automata

◮ Advanced Subjects
• Implementable Controllers
• Optimal Controllers
• Efficient Algorithms for Controller Synthesis

◮ Conclusion

Journées FAC (April 2008) Control of Timed Systems 3 / 48

Control of Timed Systems: Basics

Next:

◮ Control of Timed Systems: Basics
• Verification and Control
• Control = Game

◮ Control of Discrete Event Systems

◮ Control of Timed Systems

◮ Advanced Subjects

◮ Conclusion

Journées FAC (April 2008) Control of Timed Systems 4 / 48

Control of Timed Systems: Basics Verification and Control

Verification and Control

Journées FAC (April 2008) Control of Timed Systems 5 / 48

Control of Timed Systems: Basics Verification and Control

Verification and Control

S

M
od

el
lin

g

Always (not bad)

φ|=C‖

‖

Journées FAC (April 2008) Control of Timed Systems 5 / 48

Control of Timed Systems: Basics Verification and Control

Verification and Control

Does the system meet the specification?

S

M
od

el
lin

g

Always (not bad)

φ|=C‖

‖

Journées FAC (April 2008) Control of Timed Systems 5 / 48

Control of Timed Systems: Basics Verification and Control

Verification and Control

Does the system meet the specification?

S

M
od

el
lin

g

Always (not bad)

φ|=C‖

‖

Model Checking Problem

Does the closed system (S ‖ C) satisfy φ ?

Journées FAC (April 2008) Control of Timed Systems 5 / 48

Control of Timed Systems: Basics Verification and Control

Verification and Control

Can we enforce the system to meet the specification?

S

M
od

el
lin

g

c Always (not bad)

φ|=C‖

‖ c

Journées FAC (April 2008) Control of Timed Systems 5 / 48

Control of Timed Systems: Basics Verification and Control

Verification and Control

Can we enforce the system to meet the specification?

S

M
od

el
lin

g

c Always (not bad)

φ|=C‖

‖ cX

Journées FAC (April 2008) Control of Timed Systems 5 / 48

Control of Timed Systems: Basics Verification and Control

Verification and Control

Can we enforce the system to meet the specification?

S

M
od

el
lin

g

c Always (not bad)

φ|=C‖

‖ cX

Control Problem

Can the open system S be restricted to satisfy φ ?
Is there a Controller C such that (S ‖ C) |= φ ?

Journées FAC (April 2008) Control of Timed Systems 5 / 48

Control of Timed Systems: Basics Verification and Control

Verification and Control

Can we enforce the system to meet the specification?

S

M
od

el
lin

g

c Always (not bad)

φ|=??‖

‖ cX

Control Problem

Can the open system S be restricted to satisfy φ ?
Is there a Controller C such that (S ‖ C) |= φ ?

Journées FAC (April 2008) Control of Timed Systems 5 / 48

Control of Timed Systems: Basics Verification and Control

Control of Discrete Event Systems

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

u

◮ Introduced by Ramadge & Wonham [Ramadge & Wonham’87]

◮ Discrete Event System = Finite Automaton with

Controllable (Actc) and Uncontrollable (Actu) actions

◮ Specification = Control Objective = Language
e.g. “avoid sequences of actions leading to state Bad”

◮ How to restrict: disable some controllable transitions
[Ramadge & Wonham’89, Thistle & Wonham’94]

Journées FAC (April 2008) Control of Timed Systems 6 / 48

Control of Timed Systems: Basics Control = Game

Control as Game

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

u

Open System = 2-player game, Controller (C) vs Environment (E)

◮ Controller plays Actc moves, Environment plays Actu moves
◮ Control Objective = Winning condition on the game

“Avoid bad states” (safety) or “Enforce good states” (reachability)
◮ Control Problem: find a strategy (a controller) to win the game
◮ Various types of game models

◮ Finite or pushdown or counter automata . . .
◮ Timed or hybrid automata

Journées FAC (April 2008) Control of Timed Systems 7 / 48

Control of Timed Systems: Basics Control = Game

Control as Game

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

u

Open System = 2-player game, Controller (C) vs Environment (E)

◮ Controller plays Actc moves, Environment plays Actu moves
◮ Control Objective = Winning condition on the game

“Avoid bad states” (safety) or “Enforce good states” (reachability)
◮ Control Problem: find a strategy (a controller) to win the game
◮ Various types of game models

◮ Finite or pushdown or counter automata . . .
◮ Timed or hybrid automata

Journées FAC (April 2008) Control of Timed Systems 7 / 48

Control of Timed Systems: Basics Control = Game

Control as Game

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

u

Open System = 2-player game, Controller (C) vs Environment (E)

◮ Controller plays Actc moves, Environment plays Actu moves
◮ Control Objective = Winning condition on the game

“Avoid bad states” (safety) or “Enforce good states” (reachability)
◮ Control Problem: find a strategy (a controller) to win the game
◮ Various types of game models

◮ Finite or pushdown or counter automata . . .
◮ Timed or hybrid automata

Journées FAC (April 2008) Control of Timed Systems 7 / 48

Control of Timed Systems: Basics Control = Game

Control as Game

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

u

Open System = 2-player game, Controller (C) vs Environment (E)

◮ Controller plays Actc moves, Environment plays Actu moves
◮ Control Objective = Winning condition on the game

“Avoid bad states” (safety) or “Enforce good states” (reachability)
◮ Control Problem: find a strategy (a controller) to win the game
◮ Various types of game models

◮ Finite or pushdown or counter automata . . .
◮ Timed or hybrid automata

Journées FAC (April 2008) Control of Timed Systems 7 / 48

Control of Timed Systems: Basics Control = Game

Control as Game

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

u

Open System = 2-player game, Controller (C) vs Environment (E)

◮ Controller plays Actc moves, Environment plays Actu moves
◮ Control Objective = Winning condition on the game

“Avoid bad states” (safety) or “Enforce good states” (reachability)
◮ Control Problem: find a strategy (a controller) to win the game
◮ Various types of game models

◮ Finite or pushdown or counter automata . . .
◮ Timed or hybrid automata

Journées FAC (April 2008) Control of Timed Systems 7 / 48

Control of Timed Systems: Basics Control = Game

Control as Game

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

u

Open System = 2-player game, Controller (C) vs Environment (E)

◮ Controller plays Actc moves, Environment plays Actu moves
◮ Control Objective = Winning condition on the game

“Avoid bad states” (safety) or “Enforce good states” (reachability)
◮ Control Problem: find a strategy (a controller) to win the game
◮ Various types of game models

◮ Finite or pushdown or counter automata . . .
◮ Timed or hybrid automata

Journées FAC (April 2008) Control of Timed Systems 7 / 48

Control of Timed Systems: Basics Control = Game

Control as Game

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

u

Open System = 2-player game, Controller (C) vs Environment (E)

◮ Controller plays Actc moves, Environment plays Actu moves
◮ Control Objective = Winning condition on the game

“Avoid bad states” (safety) or “Enforce good states” (reachability)
◮ Control Problem: find a strategy (a controller) to win the game
◮ Various types of game models

◮ Finite or pushdown or counter automata . . .
◮ Timed or hybrid automata

Journées FAC (April 2008) Control of Timed Systems 7 / 48

Control of Timed Systems: Basics Control = Game

Control as Game

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

u

Open System = 2-player game, Controller (C) vs Environment (E)

◮ Controller plays Actc moves, Environment plays Actu moves
◮ Control Objective = Winning condition on the game

“Avoid bad states” (safety) or “Enforce good states” (reachability)
◮ Control Problem: find a strategy (a controller) to win the game
◮ Various types of game models

◮ Finite or pushdown or counter automata . . .
◮ Timed or hybrid automata

Journées FAC (April 2008) Control of Timed Systems 7 / 48

Control of Timed Systems: Basics Control = Game

Problems of Interest

Verification Problem (or Model Checking Problem)

Input: a model of the closed system S and a property ϕ
Problem: Does S satisfy ϕ ?

Control Problem CP(G,ϕ)

Input: a model of the open system (game) G and a property ϕ
Problem: Is there a strategy (controller) C s.t. (C ‖ G) satisfy ϕ ?

Control Synthesis Problem (CSP)

Input: a model of the open system (game) G and a property ϕ
Problem: If the answer to the CP(G,ϕ) is “yes”, can we effectively
compute a witness controller ?

Journées FAC (April 2008) Control of Timed Systems 8 / 48

Control of Timed Systems: Basics Control = Game

Problems of Interest

Verification Problem (or Model Checking Problem)

Input: a model of the closed system S and a property ϕ
Problem: Does S satisfy ϕ ?

Control Problem CP(G,ϕ)

Input: a model of the open system (game) G and a property ϕ
Problem: Is there a strategy (controller) C s.t. (C ‖ G) satisfy ϕ ?

Control Synthesis Problem (CSP)

Input: a model of the open system (game) G and a property ϕ
Problem: If the answer to the CP(G,ϕ) is “yes”, can we effectively
compute a witness controller ?

Journées FAC (April 2008) Control of Timed Systems 8 / 48

Control of Timed Systems: Basics Control = Game

Problems of Interest

Verification Problem (or Model Checking Problem)

Input: a model of the closed system S and a property ϕ
Problem: Does S satisfy ϕ ?

Control Problem CP(G,ϕ)

Input: a model of the open system (game) G and a property ϕ
Problem: Is there a strategy (controller) C s.t. (C ‖ G) satisfy ϕ ?

Control Synthesis Problem (CSP)

Input: a model of the open system (game) G and a property ϕ
Problem: If the answer to the CP(G,ϕ) is “yes”, can we effectively
compute a witness controller ?

Journées FAC (April 2008) Control of Timed Systems 8 / 48

Control of Timed Systems: Basics Control = Game

Problems of Interest

Verification Problem (or Model Checking Problem)

Input: a model of the closed system S and a property ϕ
Problem: Does S satisfy ϕ ?

Control Problem CP(G,ϕ)

Input: a model of the open system (game) G and a property ϕ
Problem: Is there a strategy (controller) C s.t. (C ‖ G) satisfy ϕ ?

Control Synthesis Problem (CSP)

Input: a model of the open system (game) G and a property ϕ
Problem: If the answer to the CP(G,ϕ) is “yes”, can we effectively
compute a witness controller ?

Journées FAC (April 2008) Control of Timed Systems 8 / 48

Discrete Games

Next:

◮ Control of Timed Systems: Basics

◮ Control of Discrete Event Systems
• Games, Strategies, Winning States
• Controllable Predecessors
• Results for Finite Games

◮ Control of Timed Systems

◮ Advanced Subjects

◮ Conclusion

Journées FAC (April 2008) Control of Timed Systems 9 / 48

Discrete Games Games, Strategies, Winning States

Game Automata, Strategies & Winning States

Game Automaton

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

d u

Journées FAC (April 2008) Control of Timed Systems 10 / 48

Discrete Games Games, Strategies, Winning States

Game Automata, Strategies & Winning States

Game Automaton

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

d u

Runs

A run is a finite or infinite sequence of transitions ti = (si, σi, si+1)

ℓ0
a

–→ ℓ1
c

–→ ℓ3
u

–→ Bad

ℓ0
a

–→ ℓ1
u

–→ ℓ2
b

––→ ℓ0
a

–→ ℓ1
u

–→ ℓ2
b

––→ · · ·

Journées FAC (April 2008) Control of Timed Systems 10 / 48

Discrete Games Games, Strategies, Winning States

Game Automata, Strategies & Winning States

Game Automaton

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

d u

Runs

A run is a finite or infinite sequence of transitions ti = (si, σi, si+1)

ℓ0
a

–→ ℓ1
c

–→ ℓ3
u

–→ Bad

ℓ0
a

–→ ℓ1
u

–→ ℓ2
b

––→ ℓ0
a

–→ ℓ1
u

–→ ℓ2
b

––→ · · ·

Journées FAC (April 2008) Control of Timed Systems 10 / 48

Discrete Games Games, Strategies, Winning States

Game Automata, Strategies & Winning States

Game Automaton

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

d u

Runs

A run is a finite or infinite sequence of transitions ti = (si, σi, si+1)

ℓ0
a

–→ ℓ1
c

–→ ℓ3
u

–→ Bad

ℓ0
a

–→ ℓ1
u

–→ ℓ2
b

––→ ℓ0
a

–→ ℓ1
u

–→ ℓ2
b

––→ · · ·

Journées FAC (April 2008) Control of Timed Systems 10 / 48

Discrete Games Games, Strategies, Winning States

Game Automata, Strategies & Winning States

Game Automaton

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

d u

Strategy

◮ A strategy f gives for each finite run the controllable action to
take. We assume full observability of the system

Journées FAC (April 2008) Control of Timed Systems 10 / 48

Discrete Games Games, Strategies, Winning States

Game Automata, Strategies & Winning States

Game Automaton

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

d u

Strategy

◮ A strategy f gives for each finite run the controllable action to
take. We assume full observability of the system

Example of Strategies
f(ℓ0) = a
f(ℓ0

a
–→ ℓ1) = c

f(ℓ0
a

–→ ℓ1
u

–→ ℓ2) = b

f(ℓ0
a

–→ ℓ1
u

–→ ℓ2
b

––→ ℓ0
a

–→ ℓ1) = e

f′(ρ –→ ℓ0) = a
f′(ρ –→ ℓ1) = c
f′(ρ –→ ℓ2) = b
f′(ρ –→ ℓ3) = d

Journées FAC (April 2008) Control of Timed Systems 10 / 48

Discrete Games Games, Strategies, Winning States

Game Automata, Strategies & Winning States

Game Automaton

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

d u

Strategy

◮ A strategy f gives for each finite run the controllable action to
take. We assume full observability of the system

Example of Strategies
f(ℓ0) = a
f(ℓ0

a
–→ ℓ1) = c

f(ℓ0
a

–→ ℓ1
u

–→ ℓ2) = b

f(ℓ0
a

–→ ℓ1
u

–→ ℓ2
b

––→ ℓ0
a

–→ ℓ1) = e

f′(ρ –→ ℓ0) = a
f′(ρ –→ ℓ1) = c
f′(ρ –→ ℓ2) = b
f′(ρ –→ ℓ3) = d

Journées FAC (April 2008) Control of Timed Systems 10 / 48

Discrete Games Games, Strategies, Winning States

Game Automata, Strategies & Winning States

Game Automaton

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

d u

Strategy

◮ A strategy f gives for each finite run the controllable action to
take. We assume full observability of the system

◮ A strategy restricts the set of runs of the system.
from a state s it generates of subset of the runs of the initial game

Journées FAC (April 2008) Control of Timed Systems 10 / 48

Discrete Games Games, Strategies, Winning States

Game Automata, Strategies & Winning States

Game Automaton

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

d u

Strategy

◮ A strategy f gives for each finite run the controllable action to
take. We assume full observability of the system

◮ A strategy restricts the set of runs of the system.
from a state s it generates of subset of the runs of the initial game

◮ A strategy is winning from s if it generates only good runs.

Journées FAC (April 2008) Control of Timed Systems 10 / 48

Discrete Games Games, Strategies, Winning States

Game Automata, Strategies & Winning States

Game Automaton

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

d u

Strategy

◮ A strategy f gives for each finite run the controllable action to
take. We assume full observability of the system

◮ A strategy restricts the set of runs of the system.
from a state s it generates of subset of the runs of the initial game

◮ A strategy is winning from s if it generates only good runs.

Winning States

A state s is winning if there exists a winning strategy from s.

Journées FAC (April 2008) Control of Timed Systems 10 / 48

Discrete Games Controllable Predecessors

Controllable Predecessors

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

d

e

u

Journées FAC (April 2008) Control of Timed Systems 11 / 48

Discrete Games Controllable Predecessors

Controllable Predecessors

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

d

e

u

π(X) = states from which one can enforce X with a controllable
action

Journées FAC (April 2008) Control of Timed Systems 11 / 48

Discrete Games Controllable Predecessors

Controllable Predecessors

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

d

e

u

π(X) = states from which one can enforce X with a controllable
action

•

• X

X

∃c ∈ Actc

•
•

∃u ∈ Actu

Journées FAC (April 2008) Control of Timed Systems 11 / 48

Discrete Games Controllable Predecessors

Controllable Predecessors

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

d

e

u

π(X) = states from which one can enforce X with a controllable
action

•π(X)

• X

X

∃c ∈ Actc

•
•

∃u ∈ Actu
X

Journées FAC (April 2008) Control of Timed Systems 11 / 48

Discrete Games Controllable Predecessors

Controllable Predecessors

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

d

e

u

π(X) = states from which one can enforce X with a controllable
action

π(X) = PredActc(X) \ PredActu(X)

Fixpoint Characterization of Winning States for Safety Games:
1 Let ϕ be a set of safe (good) states and G a game
2 Let W∗ be the greatest fixpoint of h(X) = ϕ∩ π(X)
3 W∗ is the set of winning states for (G,ϕ)

Journées FAC (April 2008) Control of Timed Systems 11 / 48

Discrete Games Controllable Predecessors

Controllable Predecessors

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

d

e

u

π(X) = states from which one can enforce X with a controllable
action

π(X) = PredActc(X) \ PredActu(X)

Fixpoint Characterization of Winning States for Safety Games:
1 Let ϕ be a set of safe (good) states and G a game
2 Let W∗ be the greatest fixpoint of h(X) = ϕ∩ π(X)
3 W∗ is the set of winning states for (G,ϕ)

Journées FAC (April 2008) Control of Timed Systems 11 / 48

Discrete Games Controllable Predecessors

Controllable Predecessors

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

d

e

u

π(X) = states from which one can enforce X with a controllable
action

π(X) = PredActc(X) \ PredActu(X)

Fixpoint Characterization of Winning States for Safety Games:
1 Let ϕ be a set of safe (good) states and G a game
2 Let W∗ be the greatest fixpoint of h(X) = ϕ∩ π(X)
3 W∗ is the set of winning states for (G,ϕ)

Journées FAC (April 2008) Control of Timed Systems 11 / 48

Discrete Games Controllable Predecessors

Controllable Predecessors

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

d

e

u

π(X) = states from which one can enforce X with a controllable
action

π(X) = PredActc(X) \ PredActu(X)

Fixpoint Characterization of Winning States for Safety Games:
1 Let ϕ be a set of safe (good) states and G a game
2 Let W∗ be the greatest fixpoint of h(X) = ϕ∩ π(X)
3 W∗ is the set of winning states for (G,ϕ)

Journées FAC (April 2008) Control of Timed Systems 11 / 48

Discrete Games Controllable Predecessors

Controllable Predecessors

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

d

e

u

π(X) = states from which one can enforce X with a controllable
action

π(X) = PredActc(X) \ PredActu(X)

Fixpoint Characterization of Winning States for Safety Games:
1 Let ϕ be a set of safe (good) states and G a game
2 Let W∗ be the greatest fixpoint of h(X) = ϕ∩ π(X)
3 W∗ is the set of winning states for (G,ϕ)

◮ Decide CP: check that ℓ0 ∈W∗

Journées FAC (April 2008) Control of Timed Systems 11 / 48

Discrete Games Controllable Predecessors

Controllable Predecessors

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

d

e

u

π(X) = states from which one can enforce X with a controllable
action

π(X) = PredActc(X) \ PredActu(X)

Fixpoint Characterization of Winning States for Safety Games:
1 Let ϕ be a set of safe (good) states and G a game
2 Let W∗ be the greatest fixpoint of h(X) = ϕ∩ π(X)
3 W∗ is the set of winning states for (G,ϕ)

◮ Decide CP: check that ℓ0 ∈W∗

◮ Synthesis Problem: Given W∗ and G, by def. of π we can build a
winning strategy

Journées FAC (April 2008) Control of Timed Systems 11 / 48

Discrete Games Results for Finite Games

Results for Finite Games

Given G a finite game, ϕ a control objective

Journées FAC (April 2008) Control of Timed Systems 12 / 48

Discrete Games Results for Finite Games

Results for Finite Games

Given G a finite game, ϕ a control objective

The fixpoint computation of W∗ terminates

Journées FAC (April 2008) Control of Timed Systems 12 / 48

Discrete Games Results for Finite Games

Results for Finite Games

Given G a finite game, ϕ a control objective

Theorem (CP is Decidable)

CP is decidable for ω-regular winning conditions.

Journées FAC (April 2008) Control of Timed Systems 12 / 48

Discrete Games Results for Finite Games

Results for Finite Games

Given G a finite game, ϕ a control objective

Theorem (CP is Decidable)

CP is decidable for ω-regular winning conditions.

Theorem (Effectiveness of CSP)

Strategy synthesis is effective. We can compute the most
permissive winning strategy.

Journées FAC (April 2008) Control of Timed Systems 12 / 48

Discrete Games Results for Finite Games

Results for Finite Games

Given G a finite game, ϕ a control objective

Theorem (CP is Decidable)

CP is decidable for ω-regular winning conditions.

Theorem (Effectiveness of CSP)

Strategy synthesis is effective. We can compute the most
permissive winning strategy.

Theorem (Positional Strategies are Sufficient)

Positional (or memoryless) strategies suffice to win finite-state
(turn-based) games with ω-regular winning conditions.
(The number of states of C is ≤ number of states of G.)

Journées FAC (April 2008) Control of Timed Systems 12 / 48

Discrete Games Results for Finite Games

Time !

◮ Context : Real-Time Critical Systems
◮ Some expected properties are quantitative properties

e.g. scheduling
or “The system will answer within 10 t.u. after a request is issued”

◮ One solution: discrete time
◮ Can be “expensive”
◮ Not natural – Not accurate enough

◮ Real systems evolve in dense time

Use Dense Time models

Journées FAC (April 2008) Control of Timed Systems 13 / 48

Discrete Games Results for Finite Games

Time !

◮ Context : Real-Time Critical Systems
◮ Some expected properties are quantitative properties

e.g. scheduling
or “The system will answer within 10 t.u. after a request is issued”

◮ One solution: discrete time
◮ Can be “expensive”
◮ Not natural – Not accurate enough

◮ Real systems evolve in dense time

Use Dense Time models

Journées FAC (April 2008) Control of Timed Systems 13 / 48

Discrete Games Results for Finite Games

Time !

◮ Context : Real-Time Critical Systems
◮ Some expected properties are quantitative properties

e.g. scheduling
or “The system will answer within 10 t.u. after a request is issued”

◮ One solution: discrete time
◮ Can be “expensive”
◮ Not natural – Not accurate enough

◮ Real systems evolve in dense time

Use Dense Time models

Journées FAC (April 2008) Control of Timed Systems 13 / 48

Discrete Games Results for Finite Games

Time !

◮ Context : Real-Time Critical Systems
◮ Some expected properties are quantitative properties

e.g. scheduling
or “The system will answer within 10 t.u. after a request is issued”

◮ One solution: discrete time
◮ Can be “expensive”
◮ Not natural – Not accurate enough

◮ Real systems evolve in dense time

Use Dense Time models

Journées FAC (April 2008) Control of Timed Systems 13 / 48

Discrete Games Results for Finite Games

Time !

◮ Context : Real-Time Critical Systems
◮ Some expected properties are quantitative properties

e.g. scheduling
or “The system will answer within 10 t.u. after a request is issued”

◮ One solution: discrete time
◮ Can be “expensive”
◮ Not natural – Not accurate enough

◮ Real systems evolve in dense time

Use Dense Time models

Journées FAC (April 2008) Control of Timed Systems 13 / 48

Discrete Games Results for Finite Games

Time !

◮ Context : Real-Time Critical Systems
◮ Some expected properties are quantitative properties

e.g. scheduling
or “The system will answer within 10 t.u. after a request is issued”

◮ One solution: discrete time
◮ Can be “expensive”
◮ Not natural – Not accurate enough

◮ Real systems evolve in dense time

Use Dense Time models

Journées FAC (April 2008) Control of Timed Systems 13 / 48

Discrete Games Results for Finite Games

Time !

◮ Context : Real-Time Critical Systems
◮ Some expected properties are quantitative properties

e.g. scheduling
or “The system will answer within 10 t.u. after a request is issued”

◮ One solution: discrete time
◮ Can be “expensive”
◮ Not natural – Not accurate enough

◮ Real systems evolve in dense time

Use Dense Time models

Journées FAC (April 2008) Control of Timed Systems 13 / 48

Discrete Games Results for Finite Games

Time !

◮ Context : Real-Time Critical Systems
◮ Some expected properties are quantitative properties

e.g. scheduling
or “The system will answer within 10 t.u. after a request is issued”

◮ One solution: discrete time
◮ Can be “expensive”
◮ Not natural – Not accurate enough

◮ Real systems evolve in dense time

Use Dense Time models

Journées FAC (April 2008) Control of Timed Systems 13 / 48

Control of Timed Systems

Next:

◮ Control of Timed Systems: Basics

◮ Control of Discrete Event Systems

◮ Control of Timed Systems
• Timed Automata
• Timed Game Automata
• Symbolic Algorithms for Timed Game Automata

◮ Advanced Subjects

◮ Conclusion

Journées FAC (April 2008) Control of Timed Systems 14 / 48

Control of Timed Systems Timed Automata

Timed Automaton [Alur & Dill’94]

Guards
Resets
[Invariant]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2
c3; x := 0

x < 2;u

x > 3;u

Timed Automaton = Finite Automaton + clock variables

Run = sequence of discrete and time steps

ρ1 : (ℓ0,0)
1.55

–––––→ (ℓ0, 1.55)
c1

––→ (ℓ1, 1.55)
1.67

–––––→ (ℓ1,3.22)
u

–→ (Bad,3.22)

ρ3 : (ℓ0,0)
c1c2c3 in 1

2
––––––––––––→ (ℓ0,0)

c1c2c3 in 1
4

––––––––––––→ (ℓ0,0)
c1c2c3 in 1

8
––––––––––––→ · · ·

Zeno behaviour

Journées FAC (April 2008) Control of Timed Systems 15 / 48

Control of Timed Systems Timed Automata

Timed Automaton [Alur & Dill’94]

Guards
Resets
[Invariant]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2
c3; x := 0

x < 2;u

x > 3;u

Timed Automaton = Finite Automaton + clock variables

Run = sequence of discrete and time steps

ρ1 : (ℓ0,0)
1.55

–––––→ (ℓ0, 1.55)
c1

––→ (ℓ1, 1.55)
1.67

–––––→ (ℓ1,3.22)
u

–→ (Bad,3.22)

ρ3 : (ℓ0,0)
c1c2c3 in 1

2
––––––––––––→ (ℓ0,0)

c1c2c3 in 1
4

––––––––––––→ (ℓ0,0)
c1c2c3 in 1

8
––––––––––––→ · · ·

Zeno behaviour

Journées FAC (April 2008) Control of Timed Systems 15 / 48

Control of Timed Systems Timed Automata

Timed Automaton [Alur & Dill’94]

Guards
Resets
[Invariant]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2
c3; x := 0

x < 2;u

x > 3;u

Timed Automaton = Finite Automaton + clock variables

Run = sequence of discrete and time steps

ρ1 : (ℓ0,0)
1.55

–––––→ (ℓ0, 1.55)
c1

––→ (ℓ1, 1.55)
1.67

–––––→ (ℓ1,3.22)
u

–→ (Bad,3.22)

ρ3 : (ℓ0,0)
c1c2c3 in 1

2
––––––––––––→ (ℓ0,0)

c1c2c3 in 1
4

––––––––––––→ (ℓ0,0)
c1c2c3 in 1

8
––––––––––––→ · · ·

Zeno behaviour

Journées FAC (April 2008) Control of Timed Systems 15 / 48

Control of Timed Systems Timed Automata

Timed Automaton [Alur & Dill’94]

Guards
Resets
[Invariant]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2
c3; x := 0

x < 2;u

x > 3;u

Timed Automaton = Finite Automaton + clock variables

Run = sequence of discrete and time steps

ρ1 : (ℓ0,0)
1.55

–––––→ (ℓ0, 1.55)
c1

––→ (ℓ1, 1.55)
1.67

–––––→ (ℓ1,3.22)
u

–→ (Bad,3.22)

ρ3 : (ℓ0,0)
c1c2c3 in 1

2
––––––––––––→ (ℓ0,0)

c1c2c3 in 1
4

––––––––––––→ (ℓ0,0)
c1c2c3 in 1

8
––––––––––––→ · · ·

Zeno behaviour

Journées FAC (April 2008) Control of Timed Systems 15 / 48

Control of Timed Systems Timed Automata

Timed Automaton [Alur & Dill’94]

Guards
Resets
[Invariant]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2
c3; x := 0

x < 2;u

x > 3;u

Timed Automaton = Finite Automaton + clock variables

Run = sequence of discrete and time steps

ρ1 : (ℓ0,0)
1.55

–––––→ (ℓ0, 1.55)
c1

––→ (ℓ1, 1.55)
1.67

–––––→ (ℓ1,3.22)
u

–→ (Bad,3.22)

ρ3 : (ℓ0,0)
c1c2c3 in 1

2
––––––––––––→ (ℓ0,0)

c1c2c3 in 1
4

––––––––––––→ (ℓ0,0)
c1c2c3 in 1

8
––––––––––––→ · · ·

Zeno behaviour

Journées FAC (April 2008) Control of Timed Systems 15 / 48

Control of Timed Systems Timed Automata

Timed Automaton [Alur & Dill’94]

Guards
Resets
[Invariant]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2
c3; x := 0

x < 2;u

x > 3;u

Timed Automaton = Finite Automaton + clock variables

Run = sequence of discrete and time steps

ρ1 : (ℓ0,0)
1.55

–––––→ (ℓ0, 1.55)
c1

––→ (ℓ1, 1.55)
1.67

–––––→ (ℓ1,3.22)
u

–→ (Bad,3.22)

ρ3 : (ℓ0,0)
c1c2c3 in 1

2
––––––––––––→ (ℓ0,0)

c1c2c3 in 1
4

––––––––––––→ (ℓ0,0)
c1c2c3 in 1

8
––––––––––––→ · · ·

Zeno behaviour

Journées FAC (April 2008) Control of Timed Systems 15 / 48

Control of Timed Systems Timed Automata

Timed Automaton [Alur & Dill’94]

Guards
Resets
[Invariant]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2
c3; x := 0

x < 2;u

x > 3;u

Timed Automaton = Finite Automaton + clock variables

Run = sequence of discrete and time steps

ρ1 : (ℓ0,0)
1.55

–––––→ (ℓ0, 1.55)
c1

––→ (ℓ1, 1.55)
1.67

–––––→ (ℓ1,3.22)
u

–→ (Bad,3.22)

ρ3 : (ℓ0,0)
c1c2c3 in 1

2
––––––––––––→ (ℓ0,0)

c1c2c3 in 1
4

––––––––––––→ (ℓ0,0)
c1c2c3 in 1

8
––––––––––––→ · · ·

Zeno behaviour

Journées FAC (April 2008) Control of Timed Systems 15 / 48

Control of Timed Systems Timed Automata

Timed Automaton [Alur & Dill’94]

Guards
Resets
[Invariant]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2
c3; x := 0

x < 2;u

x > 3;u

Timed Automaton = Finite Automaton + clock variables

Run = sequence of discrete and time steps

ρ1 : (ℓ0,0)
1.55

–––––→ (ℓ0, 1.55)
c1

––→ (ℓ1, 1.55)
1.67

–––––→ (ℓ1,3.22)
u

–→ (Bad,3.22)

ρ3 : (ℓ0,0)
c1c2c3 in 1

2
––––––––––––→ (ℓ0,0)

c1c2c3 in 1
4

––––––––––––→ (ℓ0,0)
c1c2c3 in 1

8
––––––––––––→ · · ·

Zeno behaviour

Journées FAC (April 2008) Control of Timed Systems 15 / 48

Control of Timed Systems Timed Automata

Timed Automaton [Alur & Dill’94]

Guards
Resets
[Invariant]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2
c3; x := 0

x < 2;u

x > 3;u

Timed Automaton = Finite Automaton + clock variables

Run = sequence of discrete and time steps

ρ1 : (ℓ0,0)
1.55

–––––→ (ℓ0, 1.55)
c1

––→ (ℓ1, 1.55)
1.67

–––––→ (ℓ1,3.22)
u

–→ (Bad,3.22)

ρ3 : (ℓ0,0)
c1c2c3 in 1

2
––––––––––––→ (ℓ0,0)

c1c2c3 in 1
4

––––––––––––→ (ℓ0,0)
c1c2c3 in 1

8
––––––––––––→ · · ·

Zeno behaviour

Journées FAC (April 2008) Control of Timed Systems 15 / 48

Control of Timed Systems Timed Automata

Timed Automaton [Alur & Dill’94]

Guards
Resets
[Invariant]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2
c3; x := 0

x < 2;u

x > 3;u

Timed Automaton = Finite Automaton + clock variables

Run = sequence of discrete and time steps

ρ1 : (ℓ0,0)
1.55

–––––→ (ℓ0, 1.55)
c1

––→ (ℓ1, 1.55)
1.67

–––––→ (ℓ1,3.22)
u

–→ (Bad,3.22)

ρ3 : (ℓ0,0)
c1c2c3 in 1

2
––––––––––––→ (ℓ0,0)

c1c2c3 in 1
4

––––––––––––→ (ℓ0,0)
c1c2c3 in 1

8
––––––––––––→ · · ·

Zeno behaviour

Journées FAC (April 2008) Control of Timed Systems 15 / 48

Control of Timed Systems Timed Automata

Timed Automaton [Alur & Dill’94]

Guards
Resets
[Invariant]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2
c3; x := 0

x < 2;u

x > 3;u

Timed Automaton = Finite Automaton + clock variables

Run = sequence of discrete and time steps

ρ1 : (ℓ0,0)
1.55

–––––→ (ℓ0, 1.55)
c1

––→ (ℓ1, 1.55)
1.67

–––––→ (ℓ1,3.22)
u

–→ (Bad,3.22)

ρ3 : (ℓ0,0)
c1c2c3 in 1

2
––––––––––––→ (ℓ0,0)

c1c2c3 in 1
4

––––––––––––→ (ℓ0,0)
c1c2c3 in 1

8
––––––––––––→ · · ·

Zeno behaviour

Journées FAC (April 2008) Control of Timed Systems 15 / 48

Control of Timed Systems Timed Automata

Timed Automaton [Alur & Dill’94]

Guards
Resets
[Invariant]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2
c3; x := 0

x < 2;u

x > 3;u

Timed Automaton = Finite Automaton + clock variables

Run = sequence of discrete and time steps

ρ1 : (ℓ0,0)
1.55

–––––→ (ℓ0, 1.55)
c1

––→ (ℓ1, 1.55)
1.67

–––––→ (ℓ1,3.22)
u

–→ (Bad,3.22)

ρ3 : (ℓ0,0)
c1c2c3 in 1

2
––––––––––––→ (ℓ0,0)

c1c2c3 in 1
4

––––––––––––→ (ℓ0,0)
c1c2c3 in 1

8
––––––––––––→ · · ·

Zeno behaviour

Journées FAC (April 2008) Control of Timed Systems 15 / 48

Control of Timed Systems Timed Automata

States & Symbolic States
◮ Q = L ×RClock

≥0 is the set of states of the TA q = (ℓ, v) ∈ Q

◮ Discrete Successors of X ⊆ Q by an action a:

Posta(X) = {q′ ∈ Q | q
a

–––→ q′ and q ∈ X}

◮ Time Successors of X ⊆ Q:

Postδ(X) = {q′ ∈ Q | ∃t ≥ 0 | q
t

––→ q′ and q ∈ X}

◮ Zone = conjunction of triangular constraints
x – y < 3, x ≥ 2∧ 1 < y – x < 2

◮ Symbolic State is defined by a State predicate (SP)
P = ∪i∈[1..n](ℓji , Zi), ℓji ∈ L, Zi is a zone
(ℓ1, 2 ≤ x < 4) or (ℓ0, x < 1∧ y – x ≥ 2) or (ℓ0, x ≤ 2)∪ (ℓ2, x > 0)

Journées FAC (April 2008) Control of Timed Systems 16 / 48

Control of Timed Systems Timed Automata

States & Symbolic States
◮ Q = L ×RClock

≥0 is the set of states of the TA q = (ℓ, v) ∈ Q

◮ Discrete Successors of X ⊆ Q by an action a:

Posta(X) = {q′ ∈ Q | q
a

–––→ q′ and q ∈ X}

◮ Time Successors of X ⊆ Q:

Postδ(X) = {q′ ∈ Q | ∃t ≥ 0 | q
t

––→ q′ and q ∈ X}

◮ Zone = conjunction of triangular constraints
x – y < 3, x ≥ 2∧ 1 < y – x < 2

◮ Symbolic State is defined by a State predicate (SP)
P = ∪i∈[1..n](ℓji , Zi), ℓji ∈ L, Zi is a zone
(ℓ1, 2 ≤ x < 4) or (ℓ0, x < 1∧ y – x ≥ 2) or (ℓ0, x ≤ 2)∪ (ℓ2, x > 0)

Journées FAC (April 2008) Control of Timed Systems 16 / 48

Control of Timed Systems Timed Automata

States & Symbolic States
◮ Q = L ×RClock

≥0 is the set of states of the TA q = (ℓ, v) ∈ Q

◮ Discrete Successors of X ⊆ Q by an action a:

Posta(X) = {q′ ∈ Q | q
a

–––→ q′ and q ∈ X}

◮ Time Successors of X ⊆ Q:

Postδ(X) = {q′ ∈ Q | ∃t ≥ 0 | q
t

––→ q′ and q ∈ X}

◮ Zone = conjunction of triangular constraints
x – y < 3, x ≥ 2∧ 1 < y – x < 2

◮ Symbolic State is defined by a State predicate (SP)
P = ∪i∈[1..n](ℓji , Zi), ℓji ∈ L, Zi is a zone
(ℓ1, 2 ≤ x < 4) or (ℓ0, x < 1∧ y – x ≥ 2) or (ℓ0, x ≤ 2)∪ (ℓ2, x > 0)

Journées FAC (April 2008) Control of Timed Systems 16 / 48

Control of Timed Systems Timed Automata

States & Symbolic States
◮ Q = L ×RClock

≥0 is the set of states of the TA q = (ℓ, v) ∈ Q
◮ Discrete Successors of X ⊆ Q by an action a:

Posta(X) = {q′ ∈ Q | q
a

–––→ q′ and q ∈ X}

◮ Time Successors of X ⊆ Q:

Postδ(X) = {q′ ∈ Q | ∃t ≥ 0 | q
t

––→ q′ and q ∈ X}

◮ Zone = conjunction of triangular constraints
x – y < 3, x ≥ 2∧ 1 < y – x < 2

◮ Symbolic State is defined by a State predicate (SP)
P = ∪i∈[1..n](ℓji , Zi), ℓji ∈ L, Zi is a zone
(ℓ1, 2 ≤ x < 4) or (ℓ0, x < 1∧ y – x ≥ 2) or (ℓ0, x ≤ 2)∪ (ℓ2, x > 0)

Effectiveness of Posta and Postδ

If P is a SP then Posta(P), Postδ(P) are SP and can be computed

effectively. (There is a symbolic version for Posta and Postδ.)

Journées FAC (April 2008) Control of Timed Systems 16 / 48

Control of Timed Systems Timed Automata

States & Symbolic States
◮ Q = L ×RClock

≥0 is the set of states of the TA q = (ℓ, v) ∈ Q

◮ Discrete Successors of X ⊆ Q by an action a:

Posta(X) = {q′ ∈ Q | q
a

–––→ q′ and q ∈ X}

◮ Time Successors of X ⊆ Q:

Postδ(X) = {q′ ∈ Q | ∃t ≥ 0 | q
t

––→ q′ and q ∈ X}

◮ Zone = conjunction of triangular constraints
x – y < 3, x ≥ 2∧ 1 < y – x < 2

◮ Symbolic State is defined by a State predicate (SP)
P = ∪i∈[1..n](ℓji , Zi), ℓji ∈ L, Zi is a zone
(ℓ1, 2 ≤ x < 4) or (ℓ0, x < 1∧ y – x ≥ 2) or (ℓ0, x ≤ 2)∪ (ℓ2, x > 0)

Decidability Result for TA Region Graph

The Reachability Problem for TA is PSPACE-Complete.
Build a finite abstraction: region automaton

Journées FAC (April 2008) Control of Timed Systems 16 / 48

Control of Timed Systems Timed Game Automata

Timed Game Automata

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

Bad
x ≤ 4; c1

c2
c3; x := 0

x < 2; u

x > 3;u

◮ Introduced by Maler, Pnueli, Sifakis [Maler et al.’95]

◮ The controller continuously observes the system
time elapsing and discrete moves are observable

◮ The controller has the choice between two types of moves:
◮ “do nothing” (delay action)
◮ “do a controllable action” (among the ones that are possible)

◮ It can prevent time elapsing by taking a controllable move

Journées FAC (April 2008) Control of Timed Systems 17 / 48

Control of Timed Systems Timed Game Automata

Timed Game Automata

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

Bad
x ≤ 4; c1

c2
c3; x := 0

x < 2; u

x > 3;u

◮ Introduced by Maler, Pnueli, Sifakis [Maler et al.’95]

◮ The controller continuously observes the system
time elapsing and discrete moves are observable

◮ The controller has the choice between two types of moves:
◮ “do nothing” (delay action)
◮ “do a controllable action” (among the ones that are possible)

◮ It can prevent time elapsing by taking a controllable move

Journées FAC (April 2008) Control of Timed Systems 17 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

The strategy f: “Wait as long as the system permits”

ρ1 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
0.5

––––→ (ℓ1,4.5)
u

–→ (Bad,4.5)

ρ2 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
1.0

–––→ (ℓ1,5)
c2

–––→ (ℓ2,5)
c3

–––→ (ℓ0,0) · · ·

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

The strategy f: “Wait as long as the system permits”

ρ1 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
0.5

––––→ (ℓ1,4.5)
u

–→ (Bad,4.5)

ρ2 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
1.0

–––→ (ℓ1,5)
c2

–––→ (ℓ2,5)
c3

–––→ (ℓ0,0) · · ·

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

The strategy f: “Wait as long as the system permits”

ρ1 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
0.5

––––→ (ℓ1,4.5)
u

–→ (Bad,4.5)

ρ2 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
1.0

–––→ (ℓ1,5)
c2

–––→ (ℓ2,5)
c3

–––→ (ℓ0,0) · · ·

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

The strategy f: “Wait as long as the system permits”

ρ1 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
0.5

––––→ (ℓ1,4.5)
u

–→ (Bad,4.5)

ρ2 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
1.0

–––→ (ℓ1,5)
c2

–––→ (ℓ2,5)
c3

–––→ (ℓ0,0) · · ·

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

The strategy f: “Wait as long as the system permits”

ρ1 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
0.5

––––→ (ℓ1,4.5)
u

–→ (Bad,4.5)

ρ2 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
1.0

–––→ (ℓ1,5)
c2

–––→ (ℓ2,5)
c3

–––→ (ℓ0,0) · · ·

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

The strategy f: “Wait as long as the system permits”

ρ1 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
0.5

––––→ (ℓ1,4.5)
u

–→ (Bad,4.5)

ρ2 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
1.0

–––→ (ℓ1,5)
c2

–––→ (ℓ2,5)
c3

–––→ (ℓ0,0) · · ·

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

The strategy f: “Wait as long as the system permits”

ρ1 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
0.5

––––→ (ℓ1,4.5)
u

–→ (Bad,4.5)

ρ2 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
1.0

–––→ (ℓ1,5)
c2

–––→ (ℓ2,5)
c3

–––→ (ℓ0,0) · · ·

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

The strategy f: “Wait as long as the system permits”

ρ1 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
0.5

––––→ (ℓ1,4.5)
u

–→ (Bad,4.5)

ρ2 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
1.0

–––→ (ℓ1,5)
c2

–––→ (ℓ2,5)
c3

–––→ (ℓ0,0) · · ·

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

The strategy f: “Wait as long as the system permits”

ρ1 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
0.5

––––→ (ℓ1,4.5)
u

–→ (Bad,4.5)

ρ2 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
1.0

–––→ (ℓ1,5)
c2

–––→ (ℓ2,5)
c3

–––→ (ℓ0,0) · · ·

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

The strategy f: “Wait as long as the system permits”

ρ1 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
0.5

––––→ (ℓ1,4.5)
u

–→ (Bad,4.5)

ρ2 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
1.0

–––→ (ℓ1,5)
c2

–––→ (ℓ2,5)
c3

–––→ (ℓ0,0) · · ·

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

The strategy f: “Wait as long as the system permits”

ρ1 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
0.5

––––→ (ℓ1,4.5)
u

–→ (Bad,4.5)

ρ2 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
1.0

–––→ (ℓ1,5)
c2

–––→ (ℓ2,5)
c3

–––→ (ℓ0,0) · · ·

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

The strategy f: “Wait as long as the system permits”

ρ1 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
0.5

––––→ (ℓ1,4.5)
u

–→ (Bad,4.5)

ρ2 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
1.0

–––→ (ℓ1,5)
c2

–––→ (ℓ2,5)
c3

–––→ (ℓ0,0) · · ·

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

The strategy f: “Wait as long as the system permits”

ρ1 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
0.5

––––→ (ℓ1,4.5)
u

–→ (Bad,4.5)

ρ2 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
1.0

–––→ (ℓ1,5)
c2

–––→ (ℓ2,5)
c3

–––→ (ℓ0,0) · · ·

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3
ρ : (ℓ0,0)

2
––→ (ℓ0,2)

c1
––→ (ℓ1,2)

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3
ρ : (ℓ0,0)

2
––→ (ℓ0,2)

c1
––→ (ℓ1,2)

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3
ρ : (ℓ0,0)

2
––→ (ℓ0,2)

c1
––→ (ℓ1,2)

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3
ρ : (ℓ0,0)

2
––→ (ℓ0,2)

c1
––→ (ℓ1,2)

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3
ρ : (ℓ0,0)

2
––→ (ℓ0,2)

c1
––→ (ℓ1,2)

0.5
––––→ (ℓ1,2.5)

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3
ρ : (ℓ0,0)

2
––→ (ℓ0,2)

c1
––→ (ℓ1,2)

0.5
––––→ (ℓ1,2.5)

c2
–––→ (ℓ2,2.5)

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3
ρ : (ℓ0,0)

2
––→ (ℓ0,2)

c1
––→ (ℓ1,2)

0.5
––––→ (ℓ1,2.5)

c2
–––→ (ℓ2,2.5)

1.5
–––→ (ℓ2,4)

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3
ρ : (ℓ0,0)

2
––→ (ℓ0,2)

c1
––→ (ℓ1,2)

0.5
––––→ (ℓ1,2.5)

c2
–––→ (ℓ2,2.5)

1.5
–––→ (ℓ2,4)

c3
–––→ (ℓ0,0)

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3
ρ : (ℓ0,0)

2
––→ (ℓ0,2)

c1
––→ (ℓ1,2)

0.5
––––→ (ℓ1,2.5)

c2
–––→ (ℓ2,2.5)

1.5
–––→ (ℓ2,4)

c3
–––→ (ℓ0,0) · · ·

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3
ρ : (ℓ0,0)

2
––→ (ℓ0,2)

c1
––→ (ℓ1,2)

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3
ρ : (ℓ0,0)

2
––→ (ℓ0,2)

c1
––→ (ℓ1,2)

u at δ≤0.5
––––––––––→ (ℓ2,2 + δ)

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3

ρ : (ℓ0,0)
2

––→ (ℓ0,2)
c1

––→ (ℓ1,2)
u at δ≤0.5

––––––––––→ (ℓ2,2 + δ)
c3 at2–δ

––––––––––→ (ℓ0,0)

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3

ρ : (ℓ0,0)
2

––→ (ℓ0,2)
c1

––→ (ℓ1,2)
u at δ≤0.5

––––––––––→ (ℓ2,2 + δ)
c3 at2–δ

––––––––––→ (ℓ0,0)

ρ′ : (ℓ0,0)
2

––→ (ℓ0,2)
c1

––→ (ℓ1,2)

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3

ρ : (ℓ0,0)
2

––→ (ℓ0,2)
c1

––→ (ℓ1,2)
u at δ≤0.5

––––––––––→ (ℓ2,2 + δ)
c3 at2–δ

––––––––––→ (ℓ0,0)

ρ′ : (ℓ0,0)
2

––→ (ℓ0,2)
c1

––→ (ℓ1,2)
0.5

––––→ (ℓ1,2.5)

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3

ρ : (ℓ0,0)
2

––→ (ℓ0,2)
c1

––→ (ℓ1,2)
u at δ≤0.5

––––––––––→ (ℓ2,2 + δ)
c3 at2–δ

––––––––––→ (ℓ0,0)

ρ′ : (ℓ0,0)
2

––→ (ℓ0,2)
c1

––→ (ℓ1,2)
0.5

––––→ (ℓ1,2.5)
c2

–––→ (ℓ2,2.5)

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3

ρ : (ℓ0,0)
2

––→ (ℓ0,2)
c1

––→ (ℓ1,2)
u at δ≤0.5

––––––––––→ (ℓ2,2 + δ)
c3 at2–δ

––––––––––→ (ℓ0,0)

ρ′ : (ℓ0,0)
2

––→ (ℓ0,2)
c1

––→ (ℓ1,2)
0.5

––––→ (ℓ1,2.5)
c2

–––→ (ℓ2,2.5)
1.5

–––→ (ℓ2,4)

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3

ρ : (ℓ0,0)
2

––→ (ℓ0,2)
c1

––→ (ℓ1,2)
u at δ≤0.5

––––––––––→ (ℓ2,2 + δ)
c3 at2–δ

––––––––––→ (ℓ0,0)

ρ′ : (ℓ0,0)
2

––→ (ℓ0,2)
c1

––→ (ℓ1,2)
0.5

––––→ (ℓ1,2.5)
c2

–––→ (ℓ2,2.5)
1.5

–––→ (ℓ2,4)
c3

–––→ (ℓ0,0) · · ·

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

u

A winning strategy f′

in ℓ0 at x = 2 do c1; in ℓ1 at x = 2.5 do c2; in ℓ2 at x = 4 do c3

ρ : (ℓ0,0)
2

––→ (ℓ0,2)
c1

––→ (ℓ1,2)
u at δ≤0.5

––––––––––→ (ℓ2,2 + δ)
c3 at2–δ

––––––––––→ (ℓ0,0)

ρ′ : (ℓ0,0)
2

––→ (ℓ0,2)
c1

––→ (ℓ1,2)
0.5

––––→ (ℓ1,2.5)
c2

–––→ (ℓ2,2.5)
1.5

–––→ (ℓ2,4)
c3

–––→ (ℓ0,0) · · ·

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Timed Game Automata

Strategies and Winning States

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

u

The Strategy f′ as a Timed Automaton

z := 0 K0

[z ≤ 2]
K1

z = 2; c1

[z ≤ 2.5]

K2

z = 2.5
c2

[z ≤ 4]

z = 4;c3;z := 0

u

u

u

Journées FAC (April 2008) Control of Timed Systems 18 / 48

Control of Timed Systems Symbolic Algorithms for Timed Game Automata

Controllable Predecessors
π(X,Y) = states from which one can enforce X and avoid Y by:

time elapsing followed by a controllable action

Fixpoint Characterization of Winning States for Safety Games:
1 Let ϕ be a set of safe (good) states and G a game

2 Let W∗ be the greatest fixpoint of h(X) = ϕ∩ π(X,X)
3 W∗ is the set of winning states for (G,ϕ)

Journées FAC (April 2008) Control of Timed Systems 19 / 48

Control of Timed Systems Symbolic Algorithms for Timed Game Automata

Controllable Predecessors
π(X,Y) = states from which one can enforce X and avoid Y by:

time elapsing followed by a controllable action

•

•
δ

• X

Y

c ∈ Actc

• •
u ∈ Actu

Fixpoint Characterization of Winning States for Safety Games:
1 Let ϕ be a set of safe (good) states and G a game

2 Let W∗ be the greatest fixpoint of h(X) = ϕ∩ π(X,X)
3 W∗ is the set of winning states for (G,ϕ)

Journées FAC (April 2008) Control of Timed Systems 19 / 48

Control of Timed Systems Symbolic Algorithms for Timed Game Automata

Controllable Predecessors
π(X,Y) = states from which one can enforce X and avoid Y by:

time elapsing followed by a controllable action

•

•

π(X,Y)

δ

• X

Y

c ∈ Actc

• •
u ∈ Actu

X

Fixpoint Characterization of Winning States for Safety Games:
1 Let ϕ be a set of safe (good) states and G a game

2 Let W∗ be the greatest fixpoint of h(X) = ϕ∩ π(X,X)
3 W∗ is the set of winning states for (G,ϕ)

Journées FAC (April 2008) Control of Timed Systems 19 / 48

Control of Timed Systems Symbolic Algorithms for Timed Game Automata

Controllable Predecessors
π(X,Y) = states from which one can enforce X and avoid Y by:

time elapsing followed by a controllable action

•

•

π(X,Y)

δ

• X

Y

c ∈ Actc

• •
u ∈ Actu

X

Fixpoint Characterization of Winning States for Safety Games:
1 Let ϕ be a set of safe (good) states and G a game

2 Let W∗ be the greatest fixpoint of h(X) = ϕ∩ π(X,X)
3 W∗ is the set of winning states for (G,ϕ)

Journées FAC (April 2008) Control of Timed Systems 19 / 48

Control of Timed Systems Symbolic Algorithms for Timed Game Automata

Symbolic Algorithms for Safety Control

[Maler et al.’95, De Alfaro et al.’01] Details & Example

1 There is a symbolic version for π(X,Y)
2

=⇒ there is a symbolic version for h(X)

Journées FAC (April 2008) Control of Timed Systems 20 / 48

Control of Timed Systems Symbolic Algorithms for Timed Game Automata

Symbolic Algorithms for Safety Control

[Maler et al.’95, De Alfaro et al.’01] Details & Example

1 There is a symbolic version for π(X,Y)
2

=⇒ there is a symbolic version for h(X)

◮ Control Problem (CP): check that (ℓ0,0) ∈W∗

◮ Control Synthesis Problem (CSP): by definition of π there is a
strategy

Journées FAC (April 2008) Control of Timed Systems 20 / 48

Control of Timed Systems Symbolic Algorithms for Timed Game Automata

Symbolic Algorithms for Safety Control

[Maler et al.’95, De Alfaro et al.’01] Details & Example

1 There is a symbolic version for π(X,Y)
2

=⇒ there is a symbolic version for h(X)

Theorem (Termination)

The iterative computation of W∗ terminates for (G,ϕ) with G a
timed game automaton ϕ a ω-regular winning condition.

Journées FAC (April 2008) Control of Timed Systems 20 / 48

Control of Timed Systems Symbolic Algorithms for Timed Game Automata

Symbolic Algorithms for Safety Control

[Maler et al.’95, De Alfaro et al.’01] Details & Example

1 There is a symbolic version for π(X,Y)
2

=⇒ there is a symbolic version for h(X)

Theorem (Termination)

The iterative computation of W∗ terminates for (G,ϕ) with G a
timed game automaton ϕ a ω-regular winning condition.

Theorem (Decidability of CP for Timed Game Automata)

The (Safety) Control Problem is decidable.

Journées FAC (April 2008) Control of Timed Systems 20 / 48

Control of Timed Systems Symbolic Algorithms for Timed Game Automata

Symbolic Algorithms for Safety Control

[Maler et al.’95, De Alfaro et al.’01] Details & Example

1 There is a symbolic version for π(X,Y)
2

=⇒ there is a symbolic version for h(X)

Theorem (Termination)

The iterative computation of W∗ terminates for (G,ϕ) with G a
timed game automaton ϕ a ω-regular winning condition.

Theorem (Decidability of CP for Timed Game Automata)

The (Safety) Control Problem is decidable.

Theorem (Effectiveness of CSP)

If (ℓ0,0) ∈W∗ we can compute the most permissive positional
winning strategy.

Journées FAC (April 2008) Control of Timed Systems 20 / 48

Control of Timed Systems Symbolic Algorithms for Timed Game Automata

Result of the Computation for the Example

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

Skip

Journées FAC (April 2008) Control of Timed Systems 21 / 48

Control of Timed Systems Symbolic Algorithms for Timed Game Automata

Result of the Computation for the Example

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

Winning States

(ℓ0,0 ≤ x ≤ 3)
(ℓ1,0 ≤ x ≤ 3)
(ℓ2,2 ≤ x ≤ 5)

z := 0 K0

[z ≤ 3]

K1

[z ≤ 3]

K2
[2 ≤ z ≤ 5]

z ≤ 3; c1

c2
z ≥ 2c3; z := 0

u

u

u

The Most
Permissive
Controller

Journées FAC (April 2008) Control of Timed Systems 21 / 48

Advanced Subjects

Next:

◮ Control of Timed Systems: Basics

◮ Control of Discrete Event Systems

◮ Control of Timed Systems

◮ Advanced Subjects
• Implementable Controllers
• Optimal Controllers
• Efficient Algorithms for Controller Synthesis

◮ Conclusion

Journées FAC (April 2008) Control of Timed Systems 22 / 48

Advanced Subjects Implementable Controllers

Implementable Controllers

Journées FAC (April 2008) Control of Timed Systems 23 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (1) [C. et al.’02]

x := 0
y := 0 ℓ0 Bad

y > 0
c; y := 0

x ≥ 1;u

The System

The Controller is Zeno !!!

Solution: add non-Zenoness in the control objective

Journées FAC (April 2008) Control of Timed Systems 24 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (1) [C. et al.’02]

x := 0
y := 0 ℓ0 Bad

y > 0
c; y := 0

x ≥ 1;u

The System

x′ := 0
y′ := 0 K0

[x′ < 1]

y′ > 0∧ x′ < 1
c ; y′ := 0

u

The Controller

The Controller is Zeno !!!

Solution: add non-Zenoness in the control objective

Journées FAC (April 2008) Control of Timed Systems 24 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (1) [C. et al.’02]

x := 0
y := 0 ℓ0 Bad

y > 0
c; y := 0

x ≥ 1;u

The System

x′ := 0
y′ := 0 K0

[x′ < 1]

y′ > 0∧ x′ < 1
c ; y′ := 0

u

The Controller

The Controller is Zeno !!!

Solution: add non-Zenoness in the control objective

Journées FAC (April 2008) Control of Timed Systems 24 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (1) [C. et al.’02]

x := 0
y := 0 ℓ0 Bad

y > 0
c; y := 0

x ≥ 1;u

The System

x′ := 0
y′ := 0 K0

[x′ < 1]

y′ > 0∧ x′ < 1
c ; y′ := 0

u

The Controller

The Controller is Zeno !!!

Solution: add non-Zenoness in the control objective

Journées FAC (April 2008) Control of Timed Systems 24 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (2) [C. et al.’02]

x :=]0, 1[
y := 0

[x ≤ 2]

ℓ0 ℓ1

ℓ2

Bad
x = 1 x := 0

a

y = 1
z := 0

b
z > 0
y := 0

c

d;x ≥ 1

d
x ≥ 1

◮ The controller is Non-Zeno; One untimed behavior: (ℓ0ℓ1ℓ2)
ω

◮ Let ∆k > 0 be the time spent in ℓ2 in the k-th loop from ℓ0 to ℓ0

◮ It implies: ∀k,∑k
i=1∆i < 1 – x0, with ∀i,∆i > 0

Journées FAC (April 2008) Control of Timed Systems 25 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (2) [C. et al.’02]

x :=]0, 1[
y := 0

[x ≤ 2∧x ≤ 1]

ℓ0 ℓ1

[y ≤ 1]

ℓ2
[x < 1]

Bad
x = 1 x := 0

a

y = 1∧x < 1
z := 0

b
z > 0
y := 0

c

d;x ≥ 1

d
x ≥ 1

◮ The controller is Non-Zeno; One untimed behavior: (ℓ0ℓ1ℓ2)
ω

◮ Let ∆k > 0 be the time spent in ℓ2 in the k-th loop from ℓ0 to ℓ0

◮ It implies: ∀k,∑k
i=1∆i < 1 – x0, with ∀i,∆i > 0

Journées FAC (April 2008) Control of Timed Systems 25 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (2) [C. et al.’02]

x :=]0, 1[
y := 0

[x ≤ 2∧x ≤ 1]

ℓ0 ℓ1

[y ≤ 1]

ℓ2
[x < 1]

Bad
x = 1 x := 0

a

y = 1∧x < 1
z := 0

b
z > 0
y := 0

c

d;x ≥ 1

d
x ≥ 1

◮ The controller is Non-Zeno; One untimed behavior: (ℓ0ℓ1ℓ2)
ω

◮ Let ∆k > 0 be the time spent in ℓ2 in the k-th loop from ℓ0 to ℓ0

◮ It implies: ∀k,∑k
i=1∆i < 1 – x0, with ∀i,∆i > 0

Journées FAC (April 2008) Control of Timed Systems 25 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (2) [C. et al.’02]

x :=]0, 1[
y := 0

[x ≤ 2∧x ≤ 1]

ℓ0 ℓ1

[y ≤ 1]

ℓ2
[x < 1]

Bad
x = 1 x := 0

a

y = 1∧x < 1
z := 0

b
z > 0
y := 0

c

d;x ≥ 1

d
x ≥ 1

◮ The controller is Non-Zeno; One untimed behavior: (ℓ0ℓ1ℓ2)
ω

◮ Let ∆k > 0 be the time spent in ℓ2 in the k-th loop from ℓ0 to ℓ0

◮ It implies: ∀k,∑k
i=1∆i < 1 – x0, with ∀i,∆i > 0

Journées FAC (April 2008) Control of Timed Systems 25 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (2) [C. et al.’02]

x :=]0, 1[
y := 0

[x ≤ 2∧x ≤ 1]

ℓ0 ℓ1

[y ≤ 1]

ℓ2
[x < 1]

Bad
x = 1 x := 0

a

y = 1∧x < 1
z := 0

b
z > 0
y := 0

c

d;x ≥ 1

d
x ≥ 1

◮ The controller is Non-Zeno; One untimed behavior: (ℓ0ℓ1ℓ2)
ω

◮ Let ∆k > 0 be the time spent in ℓ2 in the k-th loop from ℓ0 to ℓ0

◮ It implies: ∀k,∑k
i=1∆i < 1 – x0, with ∀i,∆i > 0

x:
y:

ℓ0
x0
0

Journées FAC (April 2008) Control of Timed Systems 25 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (2) [C. et al.’02]

x :=]0, 1[
y := 0

[x ≤ 2∧x ≤ 1]

ℓ0 ℓ1

[y ≤ 1]

ℓ2
[x < 1]

Bad
x = 1 x := 0

a

y = 1∧x < 1
z := 0

b
z > 0
y := 0

c

d;x ≥ 1

d
x ≥ 1

◮ The controller is Non-Zeno; One untimed behavior: (ℓ0ℓ1ℓ2)
ω

◮ Let ∆k > 0 be the time spent in ℓ2 in the k-th loop from ℓ0 to ℓ0

◮ It implies: ∀k,∑k
i=1∆i < 1 – x0, with ∀i,∆i > 0

x:
y:

ℓ0
x0
0
 1
1 – x0

Journées FAC (April 2008) Control of Timed Systems 25 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (2) [C. et al.’02]

x :=]0, 1[
y := 0

[x ≤ 2∧x ≤ 1]

ℓ0 ℓ1

[y ≤ 1]

ℓ2
[x < 1]

Bad
x = 1 x := 0

a

y = 1∧x < 1
z := 0

b
z > 0
y := 0

c

d;x ≥ 1

d
x ≥ 1

◮ The controller is Non-Zeno; One untimed behavior: (ℓ0ℓ1ℓ2)
ω

◮ Let ∆k > 0 be the time spent in ℓ2 in the k-th loop from ℓ0 to ℓ0

◮ It implies: ∀k,∑k
i=1∆i < 1 – x0, with ∀i,∆i > 0

x:
y:

ℓ0
x0
0
 1
1 – x0

a
–→

ℓ1
0

1 – x0

Journées FAC (April 2008) Control of Timed Systems 25 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (2) [C. et al.’02]

x :=]0, 1[
y := 0

[x ≤ 2∧x ≤ 1]

ℓ0 ℓ1

[y ≤ 1]

ℓ2
[x < 1]

Bad
x = 1 x := 0

a

y = 1∧x < 1
z := 0

b
z > 0
y := 0

c

d;x ≥ 1

d
x ≥ 1

◮ The controller is Non-Zeno; One untimed behavior: (ℓ0ℓ1ℓ2)
ω

◮ Let ∆k > 0 be the time spent in ℓ2 in the k-th loop from ℓ0 to ℓ0

◮ It implies: ∀k,∑k
i=1∆i < 1 – x0, with ∀i,∆i > 0

x:
y:

ℓ0
x0
0
 1
1 – x0

a
–→

ℓ1
0

1 – x0

 x0
1

Journées FAC (April 2008) Control of Timed Systems 25 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (2) [C. et al.’02]

x :=]0, 1[
y := 0

[x ≤ 2∧x ≤ 1]

ℓ0 ℓ1

[y ≤ 1]

ℓ2
[x < 1]

Bad
x = 1 x := 0

a

y = 1∧x < 1
z := 0

b
z > 0
y := 0

c

d;x ≥ 1

d
x ≥ 1

◮ The controller is Non-Zeno; One untimed behavior: (ℓ0ℓ1ℓ2)
ω

◮ Let ∆k > 0 be the time spent in ℓ2 in the k-th loop from ℓ0 to ℓ0

◮ It implies: ∀k,∑k
i=1∆i < 1 – x0, with ∀i,∆i > 0

x:
y:

ℓ0
x0
0
 1
1 – x0

a
–→

ℓ1
0

1 – x0

 x0
1

b
––→

ℓ2
x0
1

Journées FAC (April 2008) Control of Timed Systems 25 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (2) [C. et al.’02]

x :=]0, 1[
y := 0

[x ≤ 2∧x ≤ 1]

ℓ0 ℓ1

[y ≤ 1]

ℓ2
[x < 1]

Bad
x = 1 x := 0

a

y = 1∧x < 1
z := 0

b
z > 0
y := 0

c

d;x ≥ 1

d
x ≥ 1

◮ The controller is Non-Zeno; One untimed behavior: (ℓ0ℓ1ℓ2)
ω

◮ Let ∆k > 0 be the time spent in ℓ2 in the k-th loop from ℓ0 to ℓ0

◮ It implies: ∀k,∑k
i=1∆i < 1 – x0, with ∀i,∆i > 0

x:
y:

ℓ0
x0
0
 1
1 – x0

a
–→

ℓ1
0

1 – x0

 x0
1

b
––→

ℓ2
x0
1

∆1
 x0 + ∆1

1 + ∆1

Journées FAC (April 2008) Control of Timed Systems 25 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (2) [C. et al.’02]

x :=]0, 1[
y := 0

[x ≤ 2∧x ≤ 1]

ℓ0 ℓ1

[y ≤ 1]

ℓ2
[x < 1]

Bad
x = 1 x := 0

a

y = 1∧x < 1
z := 0

b
z > 0
y := 0

c

d;x ≥ 1

d
x ≥ 1

◮ The controller is Non-Zeno; One untimed behavior: (ℓ0ℓ1ℓ2)
ω

◮ Let ∆k > 0 be the time spent in ℓ2 in the k-th loop from ℓ0 to ℓ0

◮ It implies: ∀k,∑k
i=1∆i < 1 – x0, with ∀i,∆i > 0

x:
y:

ℓ0
x0
0
 1
1 – x0

a
–→

ℓ1
0

1 – x0

 x0
1

b
––→

ℓ2
x0
1

∆1
 x0 + ∆1

1 + ∆1

c
–→

ℓ0
x0 + ∆1

0

Journées FAC (April 2008) Control of Timed Systems 25 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (2) [C. et al.’02]

x :=]0, 1[
y := 0

[x ≤ 2∧x ≤ 1]

ℓ0 ℓ1

[y ≤ 1]

ℓ2
[x < 1]

Bad
x = 1 x := 0

a

y = 1∧x < 1
z := 0

b
z > 0
y := 0

c

d;x ≥ 1

d
x ≥ 1

◮ The controller is Non-Zeno; One untimed behavior: (ℓ0ℓ1ℓ2)
ω

◮ Let ∆k > 0 be the time spent in ℓ2 in the k-th loop from ℓ0 to ℓ0

◮ It implies: ∀k,∑k
i=1∆i < 1 – x0, with ∀i,∆i > 0

x:
y:

ℓ0
x0
0
 1
1 – x0

a
–→

ℓ1
0

1 – x0

 x0
1

b
––→

ℓ2
x0
1

∆1
 x0 + ∆1

1 + ∆1

c
–→

ℓ0
x0 + ∆1

0

Journées FAC (April 2008) Control of Timed Systems 25 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (2) [C. et al.’02]

x :=]0, 1[
y := 0

[x ≤ 2∧x ≤ 1]

ℓ0 ℓ1

[y ≤ 1]

ℓ2
[x < 1]

Bad
x = 1 x := 0

a

y = 1∧x < 1
z := 0

b
z > 0
y := 0

c

d;x ≥ 1

d
x ≥ 1

◮ The controller is Non-Zeno; One untimed behavior: (ℓ0ℓ1ℓ2)
ω

◮ Let ∆k > 0 be the time spent in ℓ2 in the k-th loop from ℓ0 to ℓ0

◮ It implies: ∀k,∑k
i=1∆i < 1 – x0, with ∀i,∆i > 0

◮ Must hold for ever:
∑k=+∞

k=1 ∆k < 1 – x0 with ∀k,∆k > 0

Journées FAC (April 2008) Control of Timed Systems 25 / 48

Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (2) [C. et al.’02]

x :=]0, 1[
y := 0

[x ≤ 2∧x ≤ 1]

ℓ0 ℓ1

[y ≤ 1]

ℓ2
[x < 1]

Bad
x = 1 x := 0

a

y = 1∧x < 1
z := 0

b
z > 0
y := 0

c

d;x ≥ 1

d
x ≥ 1

◮ The controller is Non-Zeno; One untimed behavior: (ℓ0ℓ1ℓ2)
ω

◮ Let ∆k > 0 be the time spent in ℓ2 in the k-th loop from ℓ0 to ℓ0

◮ It implies: ∀k,∑k
i=1∆i < 1 – x0, with ∀i,∆i > 0

◮ Must hold for ever:
∑k=+∞

k=1 ∆k < 1 – x0 with ∀k,∆k > 0

The Controller is Non-Zeno but not Implementable !!!

Journées FAC (April 2008) Control of Timed Systems 25 / 48

Advanced Subjects Implementable Controllers

Sampling Control

◮ Let α ∈ Q∗ be a sampling rate
◮ An α-controller is a controller that can do actions only at

k · α, k ≥ 1 and k ∈ N

Journées FAC (April 2008) Control of Timed Systems 26 / 48

Advanced Subjects Implementable Controllers

Sampling Control

◮ Let α ∈ Q∗ be a sampling rate
◮ An α-controller is a controller that can do actions only at

k · α, k ≥ 1 and k ∈ N

Known Sampling Rate Control Problem (KSR)

Input: α ∈ Q∗, Bad (states), G a TGA
Problem: Is there a α-controller for G that avoids Bad ?

Journées FAC (April 2008) Control of Timed Systems 26 / 48

Advanced Subjects Implementable Controllers

Sampling Control

◮ Let α ∈ Q∗ be a sampling rate
◮ An α-controller is a controller that can do actions only at

k · α, k ≥ 1 and k ∈ N

Known Sampling Rate Control Problem (KSR)

Input: α ∈ Q∗, Bad (states), G a TGA
Problem: Is there a α-controller for G that avoids Bad ?

Theorem ([Henzinger & Kopke’99])

The Known Sampling Rate Control Problem is decidable.

Journées FAC (April 2008) Control of Timed Systems 26 / 48

Advanced Subjects Implementable Controllers

Sampling Control

◮ Let α ∈ Q∗ be a sampling rate
◮ An α-controller is a controller that can do actions only at

k · α, k ≥ 1 and k ∈ N

Unknown Sampling Rate Control Problem (USR)

Input: Bad (states), G a TGA
Problem: Is there a sampling rate α ∈ Q∗ such that there is a
α-controller for G that avoids Bad ?

Journées FAC (April 2008) Control of Timed Systems 26 / 48

Advanced Subjects Implementable Controllers

Sampling Control

◮ Let α ∈ Q∗ be a sampling rate
◮ An α-controller is a controller that can do actions only at

k · α, k ≥ 1 and k ∈ N

Unknown Sampling Rate Control Problem (USR)

Input: Bad (states), G a TGA
Problem: Is there a sampling rate α ∈ Q∗ such that there is a
α-controller for G that avoids Bad ?

Theorem ([C. et al.’02])

The Unknown Sampling Rate Control Problem is undecidable.

Journées FAC (April 2008) Control of Timed Systems 26 / 48

Advanced Subjects Implementable Controllers

Summary of the Results

Decidability results for the safety control problem on LHA:
Known Switch Cond. Unknown Switch Cond.

Timed Auto.
√

[Maler et al.’95]
√

[Maler et al.’95]

Init. Rect. Auto
√

[Henzinger et al.’99] × [Henzinger et al.’95]
Rect. Auto. × [Henzinger et al.’99] × [Henzinger et al.’99]

Known Sampling Rate Unknown SR
Timed Auto.

√
[Hoffmann & Wong-Toi’92] × [C. et al.’02]

Init. Rect. Auto.
√

[Henzinger & Kopke’97] × [C. et al.’02]
Rect. Auto.

√
[Henzinger & Kopke’97] × [C. et al.’02]

√
: Decidable ×: Undecidable

Recent result [Bouyer et al.’06]
The reachability USR-CP is decidable for o-minimal automata.
Results on implementation of Timed Automata
[De Wulf et al.’04b, De Wulf et al.’04a, De Wulf et al.’05b]

Journées FAC (April 2008) Control of Timed Systems 27 / 48

Advanced Subjects Optimal Controllers

Optimal Controllers

Journées FAC (April 2008) Control of Timed Systems 28 / 48

Advanced Subjects Optimal Controllers

Optimal Reachability for Timed Automata

ℓ0 ℓ1

[y = 0]

ℓ2

ℓ3

Goal

a2

a3

x ≥ 2; a41 ≤ x ≤ 2 ; a1
y := 0

x ≥ 2 ; a5

◮ Reachability for Timed Automata [Alur & Dill’94]

Journées FAC (April 2008) Control of Timed Systems 29 / 48

Advanced Subjects Optimal Controllers

Optimal Reachability for Timed Automata

ℓ0 ℓ1

[y = 0]

ℓ2

ℓ3

Goal

a2

a3

x ≥ 2; a4
Cost := Cost + 1x ≤ 2 ; a1

y := 0

x ≥ 2 ; a5
Cost := Cost + 7

dCost

dt
= 10

dCost

dt
= 5

dCost

dt
= 1

◮ Reachability for Timed Automata [Alur & Dill’94]
◮ Optimal Reachability for Priced (or Weighted) Timed Automata

[Larsen et al.’01, Alur et al.’01]

(ℓ0,0,0)
1

––→ (ℓ0, 1, 1)
a1 a2

––––––→ (ℓ2, 1,0)
3

–––→ (ℓ2,4,3)
a4

––––→ (Goal,4,3)

Cost = 1 · 5 + 3 · 10 + 1 = 36

Journées FAC (April 2008) Control of Timed Systems 29 / 48

Advanced Subjects Optimal Controllers

Optimal Reachability for Timed Automata

ℓ0 ℓ1

[y = 0]

ℓ2

ℓ3

Goal

u

u

x ≥ 2; c21 ≤ x ≤ 2 ; c1
y := 0

x ≥ 2 ; c2

◮ Reachability for Timed Automata [Alur & Dill’94]
◮ Optimal Reachability for Priced (or Weighted) Timed Automata

[Larsen et al.’01, Alur et al.’01]
◮ Control for Timed Game Automata [Maler et al.’95]

Journées FAC (April 2008) Control of Timed Systems 29 / 48

Advanced Subjects Optimal Controllers

Optimal Reachability for Timed Automata

ℓ0 ℓ1

[y = 0]

ℓ2

ℓ3

Goal

u

u

1 ≤ x ≥ 2; c21 ≤ x ≤ 2 ; c1
y := 0

x ≥ 2 ; c3

◮ Reachability for Timed Automata [Alur & Dill’94]
◮ Optimal Reachability for Priced (or Weighted) Timed Automata

[Larsen et al.’01, Alur et al.’01]
◮ Control for Timed Game Automata [Maler et al.’95]
◮ Time Optimal Control (Reachability) [Asarin & Maler’99]

Journées FAC (April 2008) Control of Timed Systems 29 / 48

Advanced Subjects Optimal Controllers

Optimal Reachability for Timed Automata

ℓ0 ℓ1

[y = 0]

ℓ2

ℓ3

Goal

u

u

x ≥ 2; c2
Cost := Cost + 1x ≤ 2 ; c1

y := 0

x ≥ 2 ; c2
Cost := Cost + 7

dCost

dt
= 10

dCost

dt
= 5

dCost

dt
= 1

◮ Reachability for Timed Automata [Alur & Dill’94]
◮ Optimal Reachability for Priced (or Weighted) Timed Automata

[Larsen et al.’01, Alur et al.’01]
◮ Control for Timed Game Automata [Maler et al.’95]
◮ Time Optimal Control (Reachability) [Asarin & Maler’99]

Optimal Control for Priced Timed Game Automata ?

Journées FAC (April 2008) Control of Timed Systems 29 / 48

Advanced Subjects Optimal Controllers

A Small Example

ℓ0
dCost

dt
= 5

ℓ1

[y = 0]

ℓ2

dCost

dt
= 10

ℓ3
dCost

dt
= 1

Goal

x ≤ 2; c1
y := 0

u

u

x ≥ 2; c2
Cost := Cost + 1

x ≥ 2; c2
Cost := Cost + 7

◮ What is the best cost whatever the environment does ?

Journées FAC (April 2008) Control of Timed Systems 30 / 48

Advanced Subjects Optimal Controllers

A Small Example

ℓ0
dCost

dt
= 5

ℓ1

[y = 0]

ℓ2

dCost

dt
= 10

ℓ3
dCost

dt
= 1

Goal

x ≤ 2; c1
y := 0

u

u

x ≥ 2; c2
Cost := Cost + 1

x ≥ 2; c2
Cost := Cost + 7

◮ What is the best cost whatever the environment does ?

inf
0≤t≤2

max{5t + 10(2 – t) + 1,5t + (2 – t) + 7} = 14 +
1

3

Journées FAC (April 2008) Control of Timed Systems 30 / 48

Advanced Subjects Optimal Controllers

A Small Example

ℓ0
dCost

dt
= 5

ℓ1

[y = 0]

ℓ2

dCost

dt
= 10

ℓ3
dCost

dt
= 1

Goal

x ≤ 2; c1
y := 0

u

u

x ≥ 2; c2
Cost := Cost + 1

x ≥ 2; c2
Cost := Cost + 7

◮ What is the best cost whatever the environment does ?

inf
0≤t≤2

max{5t + 10(2 – t) + 1,5t + (2 – t) + 7} = 14 +
1

3

Journées FAC (April 2008) Control of Timed Systems 30 / 48

Advanced Subjects Optimal Controllers

A Small Example

ℓ0
dCost

dt
= 5

ℓ1

[y = 0]

ℓ2

dCost

dt
= 10

ℓ3
dCost

dt
= 1

Goal

x ≤ 2; c1
y := 0

u

u

x ≥ 2; c2
Cost := Cost + 1

x ≥ 2; c2
Cost := Cost + 7

◮ What is the best cost whatever the environment does ?

inf
0≤t≤2

max{5t + 10(2 – t) + 1,5t + (2 – t) + 7} = 14 +
1

3

Journées FAC (April 2008) Control of Timed Systems 30 / 48

Advanced Subjects Optimal Controllers

A Small Example

ℓ0
dCost

dt
= 5

ℓ1

[y = 0]

ℓ2

dCost

dt
= 10

ℓ3
dCost

dt
= 1

Goal

x ≤ 2; c1
y := 0

u

u

x ≥ 2; c2
Cost := Cost + 1

x ≥ 2; c2
Cost := Cost + 7

◮ What is the best cost whatever the environment does ?

inf
0≤t≤2

max{5t + 10(2 – t) + 1,5t + (2 – t) + 7} = 14 +
1

3

Journées FAC (April 2008) Control of Timed Systems 30 / 48

Advanced Subjects Optimal Controllers

A Small Example

ℓ0
dCost

dt
= 5

ℓ1

[y = 0]

ℓ2

dCost

dt
= 10

ℓ3
dCost

dt
= 1

Goal

x ≤ 2; c1
y := 0

u

u

x ≥ 2; c2
Cost := Cost + 1

x ≥ 2; c2
Cost := Cost + 7

◮ What is the best cost whatever the environment does ?
◮ Is there a strategy to achieve this optimal cost ?

Journées FAC (April 2008) Control of Timed Systems 30 / 48

Advanced Subjects Optimal Controllers

A Small Example

ℓ0
dCost

dt
= 5

ℓ1

[y = 0]

ℓ2

dCost

dt
= 10

ℓ3
dCost

dt
= 1

Goal

x ≤ 2; c1
y := 0

u

u

x ≥ 2; c2
Cost := Cost + 1

x ≥ 2; c2
Cost := Cost + 7

◮ What is the best cost whatever the environment does ?
◮ Is there a strategy to achieve this optimal cost ?

Yes: wait in ℓ0 until t =
4
3 and then fire c1

Journées FAC (April 2008) Control of Timed Systems 30 / 48

Advanced Subjects Optimal Controllers

A Small Example

ℓ0
dCost

dt
= 5

ℓ1

[y = 0]

ℓ2

dCost

dt
= 10

ℓ3
dCost

dt
= 1

Goal

x ≤ 2; c1
y := 0

u

u

x ≥ 2; c2
Cost := Cost + 1

x ≥ 2; c2
Cost := Cost + 7

◮ What is the best cost whatever the environment does ?
◮ Is there a strategy to achieve this optimal cost ?

Yes: wait in ℓ0 until t =
4
3 and then fire c1

◮ Can we compute such a strategy ?
Yes: but need memory sometimes

Journées FAC (April 2008) Control of Timed Systems 30 / 48

Advanced Subjects Optimal Controllers

Optimal Control Problems

ℓ0
dCost

dt
= 5

ℓ1

[y = 0]

ℓ2

dCost

dt
= 10

ℓ3

dCost

dt
= 1

Goal

x ≤ 2; c1
y := 0

u

u

x ≥ 2; c2
Cost := Cost + 1

x ≥ 2; c2
Cost := Cost + 7

Can we find algorithms for these problems on PTGA ?

1 Compute the optimal cost
2 Decide if there is an optimal strategy
3 Compute an optimal strategy (if one exists)

Journées FAC (April 2008) Control of Timed Systems 31 / 48

Advanced Subjects Optimal Controllers

From Optimal Control to Control

A Reachability TGA A

ℓ0
dCost

dt
= 5

ℓ1

[y = 0]

ℓ2

dCost

dt
= 10

ℓ3
dCost

dt
= 1

Goal

x ≤ 2; c1
y := 0

u

u

x ≥ 2; c2
Cost := Cost + 1

x ≥ 2; c2
Cost := Cost + 7

◮ Transform A in Linear Hybrid Game Automaton H(A)
◮ Define the reachability game for H(A) with goal: Goal∧Rsrc ≥ 0

Optimal Control for A ⇐⇒ Reachability Control for H(A)

Journées FAC (April 2008) Control of Timed Systems 32 / 48

Advanced Subjects Optimal Controllers

From Optimal Control to Control

A Linear Hybrid Game H(A)

ℓ0 ℓ1

[y = 0]

ℓ2

ℓ3

Goal

x ≤ 2; c1
y := 0

u

u
dRsrc
dt

= – 5

dRsrc
dt

= – 10

dRsrc
dt

= – 1

x ≥ 2; c2
Rsrc := Rsrc – 1

x ≥ 2; c2
Rsrc := Rsrc – 7

◮ Transform A in Linear Hybrid Game Automaton H(A)
◮ Define the reachability game for H(A) with goal: Goal∧Rsrc ≥ 0

Optimal Control for A ⇐⇒ Reachability Control for H(A)

Journées FAC (April 2008) Control of Timed Systems 32 / 48

Advanced Subjects Optimal Controllers

From Optimal Control to Control

A Linear Hybrid Game H(A)

ℓ0 ℓ1

[y = 0]

ℓ2

ℓ3

Goal

x ≤ 2; c1
y := 0

u

u
dRsrc
dt

= – 5

dRsrc
dt

= – 10

dRsrc
dt

= – 1

x ≥ 2; c2
Rsrc := Rsrc – 1

x ≥ 2; c2
Rsrc := Rsrc – 7

◮ Transform A in Linear Hybrid Game Automaton H(A)
◮ Define the reachability game for H(A) with goal: Goal∧Rsrc ≥ 0

Optimal Control for A ⇐⇒ Reachability Control for H(A)

Journées FAC (April 2008) Control of Timed Systems 32 / 48

Advanced Subjects Optimal Controllers

From Optimal Control to Control

A Linear Hybrid Game H(A)

ℓ0 ℓ1

[y = 0]

ℓ2

ℓ3

Goal

x ≤ 2; c1
y := 0

u

u
dRsrc
dt

= – 5

dRsrc
dt

= – 10

dRsrc
dt

= – 1

x ≥ 2; c2
Rsrc := Rsrc – 1

x ≥ 2; c2
Rsrc := Rsrc – 7

◮ Transform A in Linear Hybrid Game Automaton H(A)
◮ Define the reachability game for H(A) with goal: Goal∧Rsrc ≥ 0

Optimal Control for A ⇐⇒ Reachability Control for H(A)

Journées FAC (April 2008) Control of Timed Systems 32 / 48

Advanced Subjects Optimal Controllers

Results [Bouyer et al.’04a, Bouyer et al.’04b]

Theorem (Reachability Control for LHA)

There is a semi-algorithm CompWin that computes the set of
winning states for LHA.
Uses polyhedra instead of zones.

Journées FAC (April 2008) Control of Timed Systems 33 / 48

Advanced Subjects Optimal Controllers

Results [Bouyer et al.’04a, Bouyer et al.’04b]

Let A be a Reachability Priced Timed Game Automaton such that:
◮ A is cost non-zeno i.e. ∃κ s.t. every cycle in the region

automaton of A has cost at least κ
◮ A is bounded i.e. all clocks in A are bounded

Journées FAC (April 2008) Control of Timed Systems 33 / 48

Advanced Subjects Optimal Controllers

Results [Bouyer et al.’04a, Bouyer et al.’04b]

Let A be a Reachability Priced Timed Game Automaton such that:
◮ A is cost non-zeno i.e. ∃κ s.t. every cycle in the region

automaton of A has cost at least κ
◮ A is bounded i.e. all clocks in A are bounded

Theorem (Non-Zeno Cost [Bouyer et al.’04a])

The algorithm CompWin terminates for H(A).

Journées FAC (April 2008) Control of Timed Systems 33 / 48

Advanced Subjects Optimal Controllers

Results [Bouyer et al.’04a, Bouyer et al.’04b]

Let A be a Reachability Priced Timed Game Automaton such that:
◮ A is cost non-zeno i.e. ∃κ s.t. every cycle in the region

automaton of A has cost at least κ
◮ A is bounded i.e. all clocks in A are bounded

Theorem (Non-Zeno Cost [Bouyer et al.’04a])

The algorithm CompWin terminates for H(A).

Theorem (Optimal Cost Computation [Bouyer et al.’04a])

1 Optimal Cost is computable.
2 Optimal Strategy Existence Problem is decidable.

Journées FAC (April 2008) Control of Timed Systems 33 / 48

Advanced Subjects Optimal Controllers

Results [Bouyer et al.’04a, Bouyer et al.’04b]

Let A be a Reachability Priced Timed Game Automaton such that:
◮ A is cost non-zeno i.e. ∃κ s.t. every cycle in the region

automaton of A has cost at least κ
◮ A is bounded i.e. all clocks in A are bounded

Theorem (Non-Zeno Cost [Bouyer et al.’04a])

The algorithm CompWin terminates for H(A).

Theorem (Optimal Cost Computation [Bouyer et al.’04a])

1 Optimal Cost is computable.
2 Optimal Strategy Existence Problem is decidable.

Theorem ([Brihaye et al.’05])

Non-Zeno Cost is a necessary assumption.

Journées FAC (April 2008) Control of Timed Systems 33 / 48

Advanced Subjects Optimal Controllers

Summary of the Results

What’s decidable about optimal reachability control?
◮ Non-Zeno Cost [Bouyer et al.’04a]
◮ O-minimal automata [Bouyer et al.’07]
◮ 1-clock PTGA (3EXPTIME) [Bouyer et al.’06a]

What’s UNdecidable about optimal control?
◮ 5-clock Zeno PTGA [Brihaye et al.’05]
◮ 3-clock Zeno PTGA [Bouyer et al.’06b]

What’s decidable for infinite schedules (safety) ?
◮ Mean Cost decidable for 1-player PTA [Bouyer et al.’04c]

What’s open?

Optimal Mean Cost for PTGA

Journées FAC (April 2008) Control of Timed Systems 34 / 48

Advanced Subjects Optimal Controllers

Summary of the Results

What’s decidable about optimal reachability control?
◮ Non-Zeno Cost [Bouyer et al.’04a]
◮ O-minimal automata [Bouyer et al.’07]
◮ 1-clock PTGA (3EXPTIME) [Bouyer et al.’06a]

What’s UNdecidable about optimal control?
◮ 5-clock Zeno PTGA [Brihaye et al.’05]
◮ 3-clock Zeno PTGA [Bouyer et al.’06b]

What’s decidable for infinite schedules (safety) ?
◮ Mean Cost decidable for 1-player PTA [Bouyer et al.’04c]

What’s open?

Optimal Mean Cost for PTGA

Journées FAC (April 2008) Control of Timed Systems 34 / 48

Advanced Subjects Optimal Controllers

Summary of the Results

What’s decidable about optimal reachability control?
◮ Non-Zeno Cost [Bouyer et al.’04a]
◮ O-minimal automata [Bouyer et al.’07]
◮ 1-clock PTGA (3EXPTIME) [Bouyer et al.’06a]

What’s UNdecidable about optimal control?
◮ 5-clock Zeno PTGA [Brihaye et al.’05]
◮ 3-clock Zeno PTGA [Bouyer et al.’06b]

What’s decidable for infinite schedules (safety) ?
◮ Mean Cost decidable for 1-player PTA [Bouyer et al.’04c]

What’s open?

Optimal Mean Cost for PTGA

Journées FAC (April 2008) Control of Timed Systems 34 / 48

Advanced Subjects Optimal Controllers

Summary of the Results

What’s decidable about optimal reachability control?
◮ Non-Zeno Cost [Bouyer et al.’04a]
◮ O-minimal automata [Bouyer et al.’07]
◮ 1-clock PTGA (3EXPTIME) [Bouyer et al.’06a]

What’s UNdecidable about optimal control?
◮ 5-clock Zeno PTGA [Brihaye et al.’05]
◮ 3-clock Zeno PTGA [Bouyer et al.’06b]

What’s decidable for infinite schedules (safety) ?
◮ Mean Cost decidable for 1-player PTA [Bouyer et al.’04c]

What’s open?

Optimal Mean Cost for PTGA

Journées FAC (April 2008) Control of Timed Systems 34 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Efficient Controller Synthesis

Journées FAC (April 2008) Control of Timed Systems 35 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Reachability Control for Finite Games

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1

c

u2

c2
u3

c3

c4

→ Uncontrollable
→ Controllable

Aim: enforce Goal

◮ Semantics: no priority
Cont. must take a controllable action

◮ Winning run = a run containing Goal

◮ Strategy: based on the full history tells
which controllable action to fire
It restricts the set of behaviors of the
open system

◮ Winning strategy: all the runs in the
controlled system are winning

◮ Winning state = a state from which
there is winning strategy

Journées FAC (April 2008) Control of Timed Systems 36 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Reachability Control for Finite Games

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1

c

u2

c2
u3

c3

c4

→ Uncontrollable
→ Controllable

Aim: enforce Goal

◮ Semantics: no priority
Cont. must take a controllable action

◮ Winning run = a run containing Goal

◮ Strategy: based on the full history tells
which controllable action to fire
It restricts the set of behaviors of the
open system

◮ Winning strategy: all the runs in the
controlled system are winning

◮ Winning state = a state from which
there is winning strategy

Journées FAC (April 2008) Control of Timed Systems 36 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Reachability Control for Finite Games

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1

c

u2

c2
u3

c3

c4

→ Uncontrollable
→ Controllable

Aim: enforce Goal

◮ Semantics: no priority
Cont. must take a controllable action

◮ Winning run = a run containing Goal

◮ Strategy: based on the full history tells
which controllable action to fire
It restricts the set of behaviors of the
open system

◮ Winning strategy: all the runs in the
controlled system are winning

◮ Winning state = a state from which
there is winning strategy

How to Solve Reachability Games?

Journées FAC (April 2008) Control of Timed Systems 36 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Backward Computation of Winning States

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1

c

u1

c2
c3

c4

c5

X = complement of X

Controllable Predecessors:

π(X) =

(

cPred(X) \ uPred(X)
)

Iterate π: Xi+1 = Xi ∪ π(Xi)
1 X0 = {Goal}
2 X1 = {Goal, ℓ2}
3 X2 = {Goal, ℓ2, ℓ4}
4 X3 = {Goal, ℓ2, ℓ4, ℓ3}
5 X4 = {Goal, ℓ2, ℓ4, ℓ3, ℓ1}

Journées FAC (April 2008) Control of Timed Systems 37 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Backward Computation of Winning States

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1

c

u1

c2
c3

c4

c5

X = complement of X

Controllable Predecessors:

π(X) =

(

cPred(X) \ uPred(X)
)

Iterate π: Xi+1 = Xi ∪ π(Xi)
1 X0 = {Goal}
2 X1 = {Goal, ℓ2}
3 X2 = {Goal, ℓ2, ℓ4}
4 X3 = {Goal, ℓ2, ℓ4, ℓ3}
5 X4 = {Goal, ℓ2, ℓ4, ℓ3, ℓ1}

Journées FAC (April 2008) Control of Timed Systems 37 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Backward Computation of Winning States

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1

c

u1

c2
c3

c4

c5

X = complement of X

Controllable Predecessors:

π(X) =

(

cPred(X) \ uPred(X)
)

Iterate π: Xi+1 = Xi ∪ π(Xi)
1 X0 = {Goal}
2 X1 = {Goal, ℓ2}
3 X2 = {Goal, ℓ2, ℓ4}
4 X3 = {Goal, ℓ2, ℓ4, ℓ3}
5 X4 = {Goal, ℓ2, ℓ4, ℓ3, ℓ1}

Journées FAC (April 2008) Control of Timed Systems 37 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Backward Computation of Winning States

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1

c

u1

c2
c3

c4

c5

X = complement of X

Controllable Predecessors:

π(X) =

(

cPred(X) \ uPred(X)
)

Iterate π: Xi+1 = Xi ∪ π(Xi)
1 X0 = {Goal}
2 X1 = {Goal, ℓ2}
3 X2 = {Goal, ℓ2, ℓ4}
4 X3 = {Goal, ℓ2, ℓ4, ℓ3}
5 X4 = {Goal, ℓ2, ℓ4, ℓ3, ℓ1}

Journées FAC (April 2008) Control of Timed Systems 37 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Backward Computation of Winning States

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1

c

u1

c2
c3

c4

c5

X = complement of X

Controllable Predecessors:

π(X) =

(

cPred(X) \ uPred(X)
)

Iterate π: Xi+1 = Xi ∪ π(Xi)
1 X0 = {Goal}
2 X1 = {Goal, ℓ2}
3 X2 = {Goal, ℓ2, ℓ4}
4 X3 = {Goal, ℓ2, ℓ4, ℓ3}
5 X4 = {Goal, ℓ2, ℓ4, ℓ3, ℓ1}

Journées FAC (April 2008) Control of Timed Systems 37 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Reachability Control for Timed Games

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1, x ≤ 1

u1, x > 1
u2

x < 1
x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

Safe Time Elapsing:
When is it safe to let time elapse
from q to q′ ?

q q′ ∈ X

Controllable Predecessors:

π(X) = Predt
(

X∪ cPred(X), uPred(X)
)

Timed Auto

Journées FAC (April 2008) Control of Timed Systems 38 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Reachability Control for Timed Games

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1, x ≤ 1

u1, x > 1
u2

x < 1
x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

Safe Time Elapsing:
When is it safe to let time elapse
from q to q′ ?

q q′ ∈ Xt

Controllable Predecessors:

π(X) = Predt
(

X∪ cPred(X), uPred(X)
)

Timed Auto

Journées FAC (April 2008) Control of Timed Systems 38 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Reachability Control for Timed Games

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1, x ≤ 1

u1, x > 1
u2

x < 1
x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

Safe Time Elapsing:
When is it safe to let time elapse
from q to q′ ?

q q′ ∈ X

X

u
t′ t – t′

Controllable Predecessors:

π(X) = Predt
(

X∪ cPred(X), uPred(X)
)

Timed Auto

Journées FAC (April 2008) Control of Timed Systems 38 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Reachability Control for Timed Games

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1, x ≤ 1

u1, x > 1
u2

x < 1
x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

Safe Time Elapsing:
When is it safe to let time elapse
from q to q′ ?

q q′ ∈ X

X

u
t′ t – t′

Controllable Predecessors:

π(X) = Predt
(

X∪ cPred(X), uPred(X)
)

Journées FAC (April 2008) Control of Timed Systems 38 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Reachability Control for Timed Games

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1, x ≤ 1

u1, x > 1
u2

x < 1
x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

•0 •1 •2

•0 •1 •2

•0 •1 •2

•0 •1 •2

Journées FAC (April 2008) Control of Timed Systems 38 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Reachability Control for Timed Games

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1, x ≤ 1

u1, x > 1
u2

x < 1
x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

•0 •1 •2

•0 •1 •2

•0 •1 •2

•0 •1 •2

Journées FAC (April 2008) Control of Timed Systems 38 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Reachability Control for Timed Games

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1, x ≤ 1

u1, x > 1
u2

x < 1
x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

•0 •1 •2

•0 •1 •2

•0 •1 •2

•0 •1 •2

Journées FAC (April 2008) Control of Timed Systems 38 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Reachability Control for Timed Games

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1, x ≤ 1

u1, x > 1
u2

x < 1
x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

•0 •1 •2

•0 •1 •2

•0 •1 •2

•0 •1 •2

Journées FAC (April 2008) Control of Timed Systems 38 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Reachability Control for Timed Games

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1, x ≤ 1

u1, x > 1
u2

x < 1
x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

•0 •1 •2

•0 •1 •2

•0 •1 •2

•0 •1 •2

Journées FAC (April 2008) Control of Timed Systems 38 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Reachability Control for Timed Games

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1, x ≤ 1

u1, x > 1
u2

x < 1
x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

•0 •1 •2

•0 •1 •2

•0 •1 •2

•0 •1 •2

Journées FAC (April 2008) Control of Timed Systems 38 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Summary of the Results for Reachability Control

Known Results for Timed (Game) Automata:
◮ Reachability in Timed Automata [Alur & Dill’94]
◮ Büchi Control for Timed Game Automata [Maler et al.’95]
◮ Time Optimal Control [Asarin & Maler’99]
◮ Optimal Control for Priced Timed Game Automata

[Bouyer et al.’04a]
◮ Half on-the-fly algorithm

[Altisen & Tripakis’99, Altisen & Tripakis’02]

New Results: True On-the-fly algorithm for reachability games
◮ Advantages: [Concur’05]

◮ avoid constructing all backward & forward reachable states
◮ allows for use of discrete variables (e.g. i := i + 1)

◮ Extends to Time-Optimal Control
◮ Extends to Partially Observable Games [ATVA’07]
◮ Efficient implementation in the tool UPPAAL-TiGA

[UPPAAL-TiGA’07]

Journées FAC (April 2008) Control of Timed Systems 39 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Summary of the Results for Reachability Control

Known Results for Timed (Game) Automata:
◮ Reachability in Timed Automata [Alur & Dill’94]
◮ Büchi Control for Timed Game Automata [Maler et al.’95]
◮ Time Optimal Control [Asarin & Maler’99]
◮ Optimal Control for Priced Timed Game Automata

[Bouyer et al.’04a]
◮ Half on-the-fly algorithm

[Altisen & Tripakis’99, Altisen & Tripakis’02]

New Results: True On-the-fly algorithm for reachability games
◮ Advantages: [Concur’05]

◮ avoid constructing all backward & forward reachable states
◮ allows for use of discrete variables (e.g. i := i + 1)

◮ Extends to Time-Optimal Control
◮ Extends to Partially Observable Games [ATVA’07]
◮ Efficient implementation in the tool UPPAAL-TiGA

[UPPAAL-TiGA’07]

Journées FAC (April 2008) Control of Timed Systems 39 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (0, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (0, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ1, c1, ℓ2)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (0, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ1, c1, ℓ2)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (0, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ2, c2,Goal)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (0, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ2, c2,Goal)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (0, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ2, c2,Goal)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (0, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ2, c2,Goal)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (0, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ2, c3, ℓ3)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (0, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ2, c3, ℓ3)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (0, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ2, c3, ℓ3)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (0, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ2, c3, ℓ3)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (0, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ4, c5, ℓ2)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (0, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ4, c5, ℓ2)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (0, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ1, c1, ℓ2)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (1, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ1, c1, ℓ2)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (1, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ3, c4, ℓ4)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (1, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ3, c4, ℓ4)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (1, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ3, c4, ℓ4)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (1,0)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ3, c4, ℓ4)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (1,0)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

Linear in # transitions

e = (ℓ3, c4, ℓ4)

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile

Journées FAC (April 2008) Control of Timed Systems 40 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

On-The-Fly Algorithm for Timed Games (1)

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1, x ≤ 1

u1, x > 1
u2

x < 1
x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

Using the Simulation Graph

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

ℓ5, x > 1

Journées FAC (April 2008) Control of Timed Systems 41 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Second Try (2) [Altisen & Tripakis’99, Altisen & Tripakis’02]

ℓ1

ℓ2

ℓ3

ℓ4

G

ℓ5

c1, x ≤ 1

u1, x > 1
u2

x < 1
x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

Stable Partitionning

ℓ1, x < 1 ℓ1, x = 1 ℓ1, x > 1

ℓ2, x < 1 ℓ2, x = 1 ℓ2, x > 1

ℓ3, x < 1 ℓ3, x = 1 ℓ3, x > 1

ℓ4, x < 1 ℓ4, x = 1 ℓ4, x > 1

G, x ≥ 2

ℓ5, x > 1

λ λ

λ λ
λ

λ λ

λ λ

Journées FAC (April 2008) Control of Timed Systems 42 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Towards a True On-The-Fly Algorithm

To Do:
◮ Write a Symbolic version of Liu & Smolka
◮ Use Symbolic states and Transitions
◮ Apply this to Timed Games

Key issues to be adressed:
◮ Symbolic States can be partially winning

compared to finite state games where 0 or 1

◮ When to propagate backwards ?
◮ Termination, Complexity ?

Journées FAC (April 2008) Control of Timed Systems 43 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

x ≤ 1

x > 1

x < 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

x ≤ 1

x > 1

x < 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0 Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0 Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0 Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0 Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0 Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0 Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

x ≤ 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

x ≤ 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

x ≤ 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

x ≤ 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

x ≤ 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

x ≤ 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

x ≤ 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

x ≤ 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

x ≤ 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

x ≤ 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

x ≤ 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

ℓ5, x > 1

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

x ≤ 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

ℓ5, x > 1

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

x ≤ 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

ℓ5, x > 1

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

x ≤ 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] (Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile

Journées FAC (April 2008) Control of Timed Systems 44 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Summary of the Results [Concur’05]

◮ A True on-the-fly algorithm for reachability control
◮ Winning Strategies can be computed
◮ Termination

A symbolic edge (S, α, T) will be at most (1+ # regions(T)) times
in Waiting list

◮ Complexity
A region may be in many symbolic states
Our algorithm: Not linear in the size of the region graph
hence not theoretically optimal

◮ However ... seems good in practice with UPPAAL-TiGA

Download at http://www.cs.aau.dk/~adavid/tiga/

Journées FAC (April 2008) Control of Timed Systems 45 / 48

http://www.cs.aau.dk/~adavid/tiga/

Advanced Subjects Efficient Algorithms for Controller Synthesis

Time Optimality for Free

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1, x ≤ 1

u1, x > 1

u2
x < 1

x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

Journées FAC (April 2008) Control of Timed Systems 46 / 48

Advanced Subjects Efficient Algorithms for Controller Synthesis

Time Optimality for Free

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

z ≤ B

z ≤ B

z ≤ B

z ≤ B

z ≤ B

z ≤ B

c1, x ≤ 1

u1, x > 1

u2
x < 1

x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

Assume:
◮ The initial state is winning
◮ We know an upper bound B of

the (optimal) time needed to
reach Goal

To compute the optimal time:
◮ Add a clock z (unconstrained at

the beginning)
◮ Add a global invariant z ≤ B

z

5

3

x
0 1

Journées FAC (April 2008) Control of Timed Systems 46 / 48

Conclusion

Next:

◮ Control of Timed Systems: Basics

◮ Control of Discrete Event Systems

◮ Control of Timed Systems

◮ Advanced Subjects

◮ Conclusion

Journées FAC (April 2008) Control of Timed Systems 47 / 48

Conclusion

Conclusion

◮ Recent Research Results:
◮ Implementability of controllers
◮ Optimality of controllers
◮ Efficient algorithms for solving Timed Games
◮ Control under Partial-Observation

◮ Ongoing work:
◮ Efficient Algorithms for Safety, Büchi games
◮ Data Structures for optimal control
◮ Optimal control for infinite schedules
◮ Synthesis of robust controllers
◮ Abstraction/Refinement for synthesis of controllers

Merci !

Journées FAC (April 2008) Control of Timed Systems 48 / 48

Conclusion

Conclusion

◮ Recent Research Results:
◮ Implementability of controllers
◮ Optimality of controllers
◮ Efficient algorithms for solving Timed Games
◮ Control under Partial-Observation

◮ Ongoing work:
◮ Efficient Algorithms for Safety, Büchi games
◮ Data Structures for optimal control
◮ Optimal control for infinite schedules
◮ Synthesis of robust controllers
◮ Abstraction/Refinement for synthesis of controllers

Merci !

Journées FAC (April 2008) Control of Timed Systems 48 / 48

Conclusion

Conclusion

◮ Recent Research Results:
◮ Implementability of controllers
◮ Optimality of controllers
◮ Efficient algorithms for solving Timed Games
◮ Control under Partial-Observation

◮ Ongoing work:
◮ Efficient Algorithms for Safety, Büchi games
◮ Data Structures for optimal control
◮ Optimal control for infinite schedules
◮ Synthesis of robust controllers
◮ Abstraction/Refinement for synthesis of controllers

Merci !

Journées FAC (April 2008) Control of Timed Systems 48 / 48

References

References

[Altisen & Tripakis’99] Karine Altisen and Stavros Tripakis.
On-the-fly controller synthesis for discrete and dense-time systems.
In World Congress on Formal Methods (FM'99), volume 1708 of Lecture Notes in
Computer Science, pages 233–252. Springer, 1999.

[Altisen & Tripakis’02] Karine Altisen and Stavros Tripakis.
Tools for controller synthesis of timed systems.
In Proc. 2nd Workshop on Real- Time Tools (RT- TOOLS'02), 2002.
Proc. published as Technical Report 2002-025, Uppsala University, Sweden.

[Alur et al.’01] R. Alur, S. La Torre, and G. J. Pappas.
Optimal paths in weighted timed automata.
In Proc. 4th Int. Work. Hybrid Systems: Computation and Control (HSCC'01), volume
2034 of LNCS, pages 49–62. Springer, 2001.

[Alur et al.’04] R. Alur, M, Bernadsky, and P. Madhusudan.
Optimal reachability in weighted timed games.
In Proc. 31 st International Colloquium on Automata, Languages and Programming
(ICALP'04), Lecture Notes in Computer Science. Springer, 2004.

[Asarin & Maler’99] E. Asarin and O. Maler.
As soon as possible: Time optimal control for timed automata.
In Proc. 2nd Int. Work. Hybrid Systems: Computation and Control (HSCC'99), volume
1569 of LNCS, pages 19–30. Springer, 1999.

[Alur & Dill’94] R. Alur and D. Dill.
A theory of timed automata.
Theoretical Computer Science B, 126:183–235, 1994.

Journées FAC (April 2008) Control of Timed Systems 49 / 48

References

References (cont.)

[De Alfaro et al.’01] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar.
Symbolic algorithms for infinite-state games.
In Proc. 12th International Conference on Concurrency Theory (CONCUR'01), volume
2154 of LNCS, pages 536–550. Springer, 2001.

[Asarin et al.’98] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis.
Controller synthesis for timed automata.
In Proc. IFAC Symposium on System Structure and Control, pages 469–474. Elsevier
Science, 1998.

[Arnold et al.’03] André Arnold, Aymeric Vincent, and Igor Walukiewicz.
Games for synthesis of controllers with partial observation.
Theoretical Computer Science, 303(1):7–34,2003.

[Larsen et al.’01] Kim G. Larsen, Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Paul Pettersson, Judi Romijn,
and Frits Vaandrager.
Minimum-cost reachability for priced timed automata.
In Proc. 4th International Workshop on Hybrid Systems: Computation and Control
(HSCC'01), volume 2034 of Lecture Notes in Computer Science, pages 147–161.
Springer, 2001.

[Bouyer et al.’06] Patricia Bouyer, Thomas Brihaye, and Fabrice Chevalier.
Control in o-minimal hybrid systems.
In Proceedings of the 21 st Annual IEEE Symposium on Logic in Computer Science
(LICS'06), pages 367–378, Seattle, Washington, USA, August 2006. IEEE Computer
Society Press.

[Büchi & Landweber’69] J.R. Büchi and L.H. Landweber.
Solving sequential conditions by finite-state operators.
Trans. of the AMS; 138:295–311.

Journées FAC (April 2008) Control of Timed Systems 50 / 48

References

References (cont.)

[Bouyer et al.’04a] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen.
Optimal strategies in priced timed game automata.
In Proc. of the 24th Int. Conf. on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS'04), volume 3328 of LNCS, pages 148–160. Springer, 2004.

[Bouyer et al.’04b] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen.
Synthesis of optimal strategies using HyTech.
In Proc. of the Workshop on Games in Design and Veri� cation (GDV'04), volume 119 of
Elec. Notes in Theo. Comp. Science, pages 11–31. Elsevier, 2005.

[Bouyer et al.’07] Patricia Bouyer, Thomas Brihaye, and Fabrice Chevalier.
Weighted o-minimal hybrid systems are more decidable than weighted timed automata!
In Sergei N. Artemov, editor, Proceedings of the Symposium on Logical Foundations of
Computer Science (LFCS'07), Lecture Notes in Computer Science, New-York, NY, USA,
June 2007. Springer.
To appear.

[Bouyer et al.’06a] Patricia Bouyer, Kim G. Larsen, Nicolas Markey, and Jacob Illum Rasmussen.
Almost optimal strategies in one-clock priced timed automata.
In Naveen Garg and S. Arun-Kumar, editors, Proceedings of the 26th Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS'06),
volume 4337 of Lecture Notes in Computer Science, pages 345–356, Kolkata, India,
December 2006. Springer.

[Bouyer et al.’06b] Patricia Bouyer, Thomas Brihaye, and Nicolas Markey.
Improved undecidability results on weighted timed automata.
Information Processing Letters, 98(5):188–194, June 2006.

Journées FAC (April 2008) Control of Timed Systems 51 / 48

References

References (cont.)

[Bouyer et al.’04c] Patricia Bouyer, Ed Brinksma, and Kim G. Larsen.
Staying alive as cheaply as possible.
In Rajeev Alur and George J. Pappas, editors, Proceedings of the 7th International
Conference on Hybrid Systems: Computation and Control (HSCC'04), volume 2993 of
Lecture Notes in Computer Science, pages 203–218, Philadelphia, Pennsylvania, USA,
March 2004. Springer.

[Concur’05] F. Cassez, A. David, E. Fleury, K. Larsen, and D. Lime.
Efficient on-the-fly algorithms for the analysis of timed games.
In M. Abadi and L. de Alfaro, editors, Proceedings of the 16th International
Conference on Concurrency Theory (CONCUR'05), volume 3653 of LNCS, pages 66–80,
San Francisco, CA, USA, Aug. 2005. Springer.

[ATVA’07] F. Cassez, A. David, K. Larsen, D. Lime, and J.-F. Raskin.
Timed Control with Observation Based and Stuttering Invariant Strategies.
In Proc. of the 5th Int. Symp. on Automated Technology for Verif ication and Analysis
(ATVA'2007), LNCS, Tokyo, Oct. 2007. Springer-Verlag.

[De Wulf et al.’04a] Martin De Wulf, Laurent Doyen, Nicoals Markey, and Jean-François Raskin.
Robustness and implementability of timed automata.
In Proceedings of FORMATS- FTRTFT 2004: Formal Techniques, Modelling and Analysis
of Timed and Fault- Tolerant Systems, Lecture Notes in Computer Science 3253, pages
118–133. Springer-Verlag, 2004.

[De Wulf et al.’04b] Martin De Wulf, Laurent Doyen, and Jean-François Raskin.
Almost ASAP semantics: From timed models to timed implementations.
In Proceedings of HSCC 2004: Hybrid SystemsŠ Computation and Control, Lecture
Notes in Computer Science 2993, pages 296–310. Springer-Verlag, 2004.

Journées FAC (April 2008) Control of Timed Systems 52 / 48

References

References (cont.)

[De Wulf et al.’05a] Martin De Wulf, Laurent Doyen, and Jean-François Raskin.
Almost ASAP semantics: From timed models to timed implementations.
Formal Aspects of Computing, 17(3):319–341, 2005.

[De Wulf et al.’05b] Martin De Wulf, Laurent Doyen, and Jean-François Raskin.
Systematic implementation of real-time models.
In Proceedings of FM 2005: Formal Methods, Lecture Notes in Computer Science 3582,
pages 139–156. Springer-Verlag, 2005.

[C. et al.’02] Franck Cassez, Thomas A. Henzinger, and Jean-François Raskin.
A comparison of control problems for timed and hybrid systems.
In Proc. 5th Int. Workshop on Hybrid Systems: Computation and Control (HSCC'02),
volume 2289 of LNCS, pages 134–148. Springer, 2002.

[Henzinger & Kopke’99] T.A. Henzinger and P.W. Kopke.
Discrete-time control for rectangular hybrid automata.
Theoretical Computer Science, 221:369–392, 1999.

[Henzinger et al.’99] Thomas A. Henzinger, Benjamin Horowitz, and Rupak Majumdar.
Rectangular hybrid games.
In Proc. 10th International Conference on Concurrency Theory (CONCUR'99), volume
1664 of Lecture Notes in Computer Science, pages 320–335. Springer, 1999.

[Henzinger et al.’95] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata?
Journal of Computer and System Sciences, 57:94–124, 1998.

[Henzinger & Kopke’97] Thomas A. Henzinger and Peter W. Kopke.
Discrete-time control for rectangular hybrid automata.
Theoretical Computer Science, 221:369–392, 1999.

Journées FAC (April 2008) Control of Timed Systems 53 / 48

References

References (cont.)

[Hoffmann & Wong-Toi’92] G. Hoffmann and Howard Wong-Toi.
The input-output control of real-time discrete-event systems.
In Proceedings of the 13th Annual Real- time Systems Symposium, pages 256–265. IEEE
Computer Society Press, 1992.

[La Torre et al.’02] Salvatore La Torre, Supratik Mukhopadhyay, and Aniello Murano.
Optimal-reachability and control for acyclic weighted timed automata.
In Proc. 2nd IFIP International Conference on Theoretical Computer Science (TCS
2002), volume 223 of IFIP Conference Proceedings, pages 485–497. Kluwer, 2002.

[Liu & Smolka’98] X. Liu and S. A. Smolka.
Simple Linear-Time Algorithm for Minimal Fixed Points.
In Proc. 26th Int. Conf. on Automata, Languages and Programming (ICALP'98), volume
1443 of LNCS, pages 53–66, Aalborg, Denmark, 1998. Springer.

[Maler et al.’95] Oded Maler, Amir Pnueli, and Joseph Sifakis.
On the synthesis of discrete controllers for timed systems.
In Proc. 12th Annual Symposium on Theoretical Aspects of Computer Science
(STACS'95), volume 900, pages 229–242. Springer, 1995.

[Ramadge & Wonham’87] P.J. Ramadge and W.M. Wonham.
Supervisory control of a class of discrete event processes.
SIAM J. of Control and Optimization, 25:206–230, 1987

[Ramadge & Wonham’89] P.J. Ramadge and W.M. Wonham.
The control of discrete event processes.
Proc. of IEEE, 77:81–98, 1989

[Brihaye et al.’05] Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin.
On optimal timed strategies.
In FORMATS, pages 49–64, 2005.

Journées FAC (April 2008) Control of Timed Systems 54 / 48

References

References (cont.)

[Thistle & Wonham’94] J.G. Thistle and W.M. Wonham.
Control of infinite behavior of finite automata.
SIAM J. of Control and Optimization, 32:1075–1097, 1994

[UPPAAL-TiGA’07] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, and D. Lime.
Uppaal-tiga: Time for playing games!
In Proceedings of 19th International Conference on Computer Aided Veri� cation
(CAV'07), volume 4590 of LNCS, pages 121–125, Berlin, Germany, 2007. Springer.

Journées FAC (April 2008) Control of Timed Systems 55 / 48

Timed Automata [Alur & Dill’94]

A Timed Automaton A is a tuple (L, ℓ0, Act,X, inv, –→) where:

◮ L is a finite set of locations
◮ ℓ0 is the initial location
◮ X is a finite set of clocks
◮ Act is a finite set of actions

◮ –→ is a set of transitions of the form ℓ
g , a , R
–––––––→ ℓ′ with:

◮ ℓ, ℓ′ ∈ L,
◮ a ∈ Act
◮ a guard g which is a clock constraint over X
◮ a reset set R which is the set of clocks to be reset to 0

Clock constraints are boolean combinations of x ∼ k with x ∈ C and
k ∈ Z and ∼∈ {≤, <}.

Journées FAC (April 2008) Control of Timed Systems 56 / 48

Semantics of Timed Automata

Let A = (L, ℓ0, Act,X, inv, –→) be a Timed Automaton.

A state (ℓ, v) of A is in L × RX
≥0

The semantics of A is a Timed Transition System
SA = (Q,q0, Act ∪ R≥0, –→) with:

◮ Q = L × RX
≥0

◮ q0 = (ℓ0,0)
◮ –→ consists in:

discrete transition: (ℓ, v)
a→ (ℓ′, v′) ⇐⇒















∃ ℓ
g , a , r

–––––––→ ℓ′ ∈ A
v |= g
v′ = v[r← 0]
v′ |= inv(ℓ′)

delay transition: (ℓ, v)
d→ (ℓ, v + d) ⇐⇒ d ∈ R≥0 ∧ v + d |= inv(ℓ)

Journées FAC (April 2008) Control of Timed Systems 57 / 48

The Region Abstraction [Alur & Dill’94]

0 1 2 3 x

1

2

y

Journées FAC (April 2008) Control of Timed Systems 58 / 48

The Region Abstraction [Alur & Dill’94]

0 1 2 3 x

1

2

y

Build an equivalence relation which is of finite index and is:
◮ “compatible” with clock constraints (g ::= x ∼ c g∧ g)

r, r′ ∈ R =⇒ ∀ constraints g, r |= g ⇐⇒ r′ |= g

Journées FAC (April 2008) Control of Timed Systems 58 / 48

The Region Abstraction [Alur & Dill’94]

0 1 2 3 x

1

2

y

• •

Build an equivalence relation which is of finite index and is:
◮ “compatible” with clock constraints (g ::= x ∼ c g∧ g)

r, r′ ∈ R =⇒ ∀ constraints g, r |= g ⇐⇒ r′ |= g
◮ “compatible” with time elapsing

r, r′ ∈ R =⇒ same delay successor regions

Journées FAC (April 2008) Control of Timed Systems 58 / 48

The Region Abstraction [Alur & Dill’94]

0 1 2 3 x

1

2

y

• •

Build an equivalence relation which is of finite index and is:
◮ “compatible” with clock constraints (g ::= x ∼ c g∧ g)

r, r′ ∈ R =⇒ ∀ constraints g, r |= g ⇐⇒ r′ |= g
◮ “compatible” with time elapsing

r, r′ ∈ R =⇒ same delay successor regions

Journées FAC (April 2008) Control of Timed Systems 58 / 48

The Region Abstraction [Alur & Dill’94]

0 1 2 3 x

1

2

y

Build an equivalence relation which is of finite index and is:
◮ “compatible” with clock constraints (g ::= x ∼ c g∧ g)

r, r′ ∈ R =⇒ ∀ constraints g, r |= g ⇐⇒ r′ |= g
◮ “compatible” with time elapsing

r, r′ ∈ R =⇒ same delay successor regions

Journées FAC (April 2008) Control of Timed Systems 58 / 48

The Region Abstraction [Alur & Dill’94]

0 1 2 3 x

1

2

y
region defined by
Ix =]1; 2[Iy =]0; 1[

{x} < {y}

Build an equivalence relation which is of finite index and is:
◮ “compatible” with clock constraints (g ::= x ∼ c g∧ g)

r, r′ ∈ R =⇒ ∀ constraints g, r |= g ⇐⇒ r′ |= g
◮ “compatible” with time elapsing

r, r′ ∈ R =⇒ same delay successor regions

Journées FAC (April 2008) Control of Timed Systems 58 / 48

The Region Abstraction [Alur & Dill’94]

0 1 2 3 x

1

2

y
region defined by
Ix =]1; 2[Iy =]0; 1[

{x} < {y}

delay successors

Build an equivalence relation which is of finite index and is:
◮ “compatible” with clock constraints (g ::= x ∼ c g∧ g)

r, r′ ∈ R =⇒ ∀ constraints g, r |= g ⇐⇒ r′ |= g
◮ “compatible” with time elapsing

r, r′ ∈ R =⇒ same delay successor regions

Journées FAC (April 2008) Control of Timed Systems 58 / 48

The Region Abstraction [Alur & Dill’94]

0 1 2 3 x

1

2

y
region defined by
Ix =]1; 2[Iy =]0; 1[

{x} < {y}

delay successors

successor by reset

Build an equivalence relation which is of finite index and is:
◮ “compatible” with clock constraints (g ::= x ∼ c g∧ g)

r, r′ ∈ R =⇒ ∀ constraints g, r |= g ⇐⇒ r′ |= g
◮ “compatible” with time elapsing

r, r′ ∈ R =⇒ same delay successor regions

Journées FAC (April 2008) Control of Timed Systems 58 / 48

The Region Automaton

◮ For each transition ℓ
g,a,C:=0

–––––––––→ ℓ′ of the TA

◮ Build transitions in the region automaton RA: (ℓ, R)
a

–→ (ℓ′, R′) if:
◮ there exists R′′ a delay successor of R s.t.
◮ R′′ satisfies the guard g (R′′ ⊆ [[g]])
◮ R′′[C← 0] is included in R′

a TA and its region automaton RA are time-abstract bisimilar

◮ The region automaton is finite
◮ Language accepted by the RA = untimed language accepted by

the TA
a timed word w = (a, 1.2)(b,3.4)(a,6.256); untimed(w) = aba

◮ Language Emptyness can be decided on the RA

Journées FAC (April 2008) Control of Timed Systems 59 / 48

The Region Automaton

◮ For each transition ℓ
g,a,C:=0

–––––––––→ ℓ′ of the TA

◮ Build transitions in the region automaton RA: (ℓ, R)
a

–→ (ℓ′, R′) if:
◮ there exists R′′ a delay successor of R s.t.
◮ R′′ satisfies the guard g (R′′ ⊆ [[g]])
◮ R′′[C← 0] is included in R′

a TA and its region automaton RA are time-abstract bisimilar

◮ The region automaton is finite
◮ Language accepted by the RA = untimed language accepted by

the TA
a timed word w = (a, 1.2)(b,3.4)(a,6.256); untimed(w) = aba

◮ Language Emptyness can be decided on the RA

Journées FAC (April 2008) Control of Timed Systems 59 / 48

The Region Automaton

◮ For each transition ℓ
g,a,C:=0

–––––––––→ ℓ′ of the TA

◮ Build transitions in the region automaton RA: (ℓ, R)
a

–→ (ℓ′, R′) if:
◮ there exists R′′ a delay successor of R s.t.
◮ R′′ satisfies the guard g (R′′ ⊆ [[g]])
◮ R′′[C← 0] is included in R′

a TA and its region automaton RA are time-abstract bisimilar

◮ The region automaton is finite
◮ Language accepted by the RA = untimed language accepted by

the TA
a timed word w = (a, 1.2)(b,3.4)(a,6.256); untimed(w) = aba

◮ Language Emptyness can be decided on the RA

Journées FAC (April 2008) Control of Timed Systems 59 / 48

The Region Automaton

◮ For each transition ℓ
g,a,C:=0

–––––––––→ ℓ′ of the TA

◮ Build transitions in the region automaton RA: (ℓ, R)
a

–→ (ℓ′, R′) if:
◮ there exists R′′ a delay successor of R s.t.
◮ R′′ satisfies the guard g (R′′ ⊆ [[g]])
◮ R′′[C← 0] is included in R′

a TA and its region automaton RA are time-abstract bisimilar

◮ The region automaton is finite
◮ Language accepted by the RA = untimed language accepted by

the TA
a timed word w = (a, 1.2)(b,3.4)(a,6.256); untimed(w) = aba

◮ Language Emptyness can be decided on the RA

Journées FAC (April 2008) Control of Timed Systems 59 / 48

The Region Automaton

◮ For each transition ℓ
g,a,C:=0

–––––––––→ ℓ′ of the TA

◮ Build transitions in the region automaton RA: (ℓ, R)
a

–→ (ℓ′, R′) if:
◮ there exists R′′ a delay successor of R s.t.
◮ R′′ satisfies the guard g (R′′ ⊆ [[g]])
◮ R′′[C← 0] is included in R′

a TA and its region automaton RA are time-abstract bisimilar

◮ The region automaton is finite
◮ Language accepted by the RA = untimed language accepted by

the TA
a timed word w = (a, 1.2)(b,3.4)(a,6.256); untimed(w) = aba

◮ Language Emptyness can be decided on the RA

Journées FAC (April 2008) Control of Timed Systems 59 / 48

The Region Automaton

◮ For each transition ℓ
g,a,C:=0

–––––––––→ ℓ′ of the TA

◮ Build transitions in the region automaton RA: (ℓ, R)
a

–→ (ℓ′, R′) if:
◮ there exists R′′ a delay successor of R s.t.
◮ R′′ satisfies the guard g (R′′ ⊆ [[g]])
◮ R′′[C← 0] is included in R′

a TA and its region automaton RA are time-abstract bisimilar

◮ The region automaton is finite
◮ Language accepted by the RA = untimed language accepted by

the TA
a timed word w = (a, 1.2)(b,3.4)(a,6.256); untimed(w) = aba

◮ Language Emptyness can be decided on the RA

Journées FAC (April 2008) Control of Timed Systems 59 / 48

The Region Automaton

◮ For each transition ℓ
g,a,C:=0

–––––––––→ ℓ′ of the TA

◮ Build transitions in the region automaton RA: (ℓ, R)
a

–→ (ℓ′, R′) if:
◮ there exists R′′ a delay successor of R s.t.
◮ R′′ satisfies the guard g (R′′ ⊆ [[g]])
◮ R′′[C← 0] is included in R′

a TA and its region automaton RA are time-abstract bisimilar

◮ The region automaton is finite
◮ Language accepted by the RA = untimed language accepted by

the TA
a timed word w = (a, 1.2)(b,3.4)(a,6.256); untimed(w) = aba

◮ Language Emptyness can be decided on the RA

Journées FAC (April 2008) Control of Timed Systems 59 / 48

The Region Automaton

◮ For each transition ℓ
g,a,C:=0

–––––––––→ ℓ′ of the TA

◮ Build transitions in the region automaton RA: (ℓ, R)
a

–→ (ℓ′, R′) if:
◮ there exists R′′ a delay successor of R s.t.
◮ R′′ satisfies the guard g (R′′ ⊆ [[g]])
◮ R′′[C← 0] is included in R′

a TA and its region automaton RA are time-abstract bisimilar

◮ The region automaton is finite
◮ Language accepted by the RA = untimed language accepted by

the TA
a timed word w = (a, 1.2)(b,3.4)(a,6.256); untimed(w) = aba

◮ Language Emptyness can be decided on the RA

Journées FAC (April 2008) Control of Timed Systems 59 / 48

The Region Automaton

◮ For each transition ℓ
g,a,C:=0

–––––––––→ ℓ′ of the TA

◮ Build transitions in the region automaton RA: (ℓ, R)
a

–→ (ℓ′, R′) if:
◮ there exists R′′ a delay successor of R s.t.
◮ R′′ satisfies the guard g (R′′ ⊆ [[g]])
◮ R′′[C← 0] is included in R′

a TA and its region automaton RA are time-abstract bisimilar

◮ The region automaton is finite
◮ Language accepted by the RA = untimed language accepted by

the TA
a timed word w = (a, 1.2)(b,3.4)(a,6.256); untimed(w) = aba

◮ Language Emptyness can be decided on the RA

Journées FAC (April 2008) Control of Timed Systems 59 / 48

The Region Automaton

◮ For each transition ℓ
g,a,C:=0

–––––––––→ ℓ′ of the TA

◮ Build transitions in the region automaton RA: (ℓ, R)
a

–→ (ℓ′, R′) if:
◮ there exists R′′ a delay successor of R s.t.
◮ R′′ satisfies the guard g (R′′ ⊆ [[g]])
◮ R′′[C← 0] is included in R′

a TA and its region automaton RA are time-abstract bisimilar

◮ The region automaton is finite
◮ Language accepted by the RA = untimed language accepted by

the TA
a timed word w = (a, 1.2)(b,3.4)(a,6.256); untimed(w) = aba

◮ Language Emptyness can be decided on the RA

Journées FAC (April 2008) Control of Timed Systems 59 / 48

Time-abstract bisimulation

∀ a

(ℓ0, v0)
a1,t1 (ℓ1, v1)

a2,t2 (ℓ2, v2)
a3,t3 . . .

(ℓ0, R0)
a1 (ℓ1, R1)

a2 (ℓ2, R2)
a3 . . .

with vi ∈ Ri for all i.

Journées FAC (April 2008) Control of Timed Systems 60 / 48

Time-abstract bisimulation

∀ a

∃ a

(ℓ0, v0)
a1,t1 (ℓ1, v1)

a2,t2 (ℓ2, v2)
a3,t3 . . .

(ℓ0, R0)
a1 (ℓ1, R1)

a2 (ℓ2, R2)
a3 . . .

with vi ∈ Ri for all i.

Journées FAC (April 2008) Control of Timed Systems 60 / 48

Time-abstract bisimulation

∀ a

∃ a

∀d > 0
δ(d)

(ℓ0, v0)
a1,t1 (ℓ1, v1)

a2,t2 (ℓ2, v2)
a3,t3 . . .

(ℓ0, R0)
a1 (ℓ1, R1)

a2 (ℓ2, R2)
a3 . . .

with vi ∈ Ri for all i.

Journées FAC (April 2008) Control of Timed Systems 60 / 48

Time-abstract bisimulation

∀ a

∃ a

∀d > 0
δ(d)

∃d′ > 0
δ(d′)

(ℓ0, v0)
a1,t1 (ℓ1, v1)

a2,t2 (ℓ2, v2)
a3,t3 . . .

(ℓ0, R0)
a1 (ℓ1, R1)

a2 (ℓ2, R2)
a3 . . .

with vi ∈ Ri for all i.

Journées FAC (April 2008) Control of Timed Systems 60 / 48

Time-abstract bisimulation

∀ a

∃ a

∀d > 0
δ(d)

∃d′ > 0
δ(d′)

(ℓ0, v0)
a1,t1 (ℓ1, v1)

a2,t2 (ℓ2, v2)
a3,t3 . . .

(ℓ0, R0)
a1 (ℓ1, R1)

a2 (ℓ2, R2)
a3 . . .

with vi ∈ Ri for all i.

Journées FAC (April 2008) Control of Timed Systems 60 / 48

Time-abstract bisimulation

∀ a

∃ a

∀d > 0
δ(d)

∃d′ > 0
δ(d′)

(ℓ0, v0)
a1,t1 (ℓ1, v1)

a2,t2 (ℓ2, v2)
a3,t3 . . .

(ℓ0, R0)
a1 (ℓ1, R1)

a2 (ℓ2, R2)
a3 . . .

with vi ∈ Ri for all i.

Journées FAC (April 2008) Control of Timed Systems 60 / 48

Time-abstract bisimulation

∀ a

∃ a

∀d > 0
δ(d)

∃d′ > 0
δ(d′)

(ℓ0, v0)
a1,t1 (ℓ1, v1)

a2,t2 (ℓ2, v2)
a3,t3 . . .

(ℓ0, R0)
a1 (ℓ1, R1)

a2 (ℓ2, R2)
a3 . . .

with vi ∈ Ri for all i.

Journées FAC (April 2008) Control of Timed Systems 60 / 48

Definition (Outcome in Timed Games)

Let G = (L, ℓ0, Act,X, E, inv) be a TGA and f a strategy over G. The
outcome Outcome((ℓ, v), f) of f from configuration (ℓ, v) in G is the
subset of Runs((ℓ, v), G) defined inductively by:

◮ (ℓ, v) ∈ Outcome((ℓ, v), f),

◮ if ρ ∈ Outcome((ℓ, v), f) then ρ′ = ρ
e

–––→ (ℓ′, v′) ∈ Outcome((ℓ, v), f)
if ρ′ ∈ Runs((ℓ, v), G) and one of the following three conditions
hold:

1 e ∈ Actu,
2 e ∈ Actc and e = f(ρ),
3 e ∈ R≥0 and ∀0 ≤ e′ < e,∃(ℓ′′, v′′) ∈ (L × RX

≥0) s.t. last (ρ)
e′

–––→
(ℓ′′, v′′)∧ f(ρ

e′
–––→ (ℓ′′, v′′)) = λ.

◮ an infinite run ρ is in ∈ Outcome((ℓ, v), f) if all the finite prefixes
of ρ are in Outcome((ℓ, v), f).

Journées FAC (April 2008) Control of Timed Systems 61 / 48

States & Symbolic States

◮ Q = L × RClock
≥0 is the set of states of the TGA

q = (ℓ, v) ∈ Q
◮ Discrete predecessors of X ⊆ Q by an action a:

Preda(X) = {q ∈ Q | q
a

–––→ q′ and q′ ∈ X}
◮ Time predecessors of X ⊆ Q:

Predδ(X) = {q ∈ Q | ∃t ≥ 0 | q
t

––→ q′ and q′ ∈ X}

◮ Zone = conjunction of triangular constraints
x – y < 3, x ≥ 2∧ 1 < y – x < 2

◮ Symbolic State is defined by a State predicate (SP)
P = ∪i∈[1..n](ℓji , Zi), ℓji ∈ L, Zi is a zone
(ℓ1,2 ≤ x < 4) or (ℓ0, x < 1∧ y – x ≥ 2) or (ℓ0, x ≤ 2)∪ (ℓ2, x > 0)

Effectiveness of Preda and Predδ

If P is a SP then Preda(P), Predδ(P) are SP and can be computed

effectively. (There is a symbolic version for Preda and Predδ.)

Journées FAC (April 2008) Control of Timed Systems 62 / 48

States & Symbolic States

◮ Q = L × RClock
≥0 is the set of states of the TGA

q = (ℓ, v) ∈ Q
◮ Discrete predecessors of X ⊆ Q by an action a:

Preda(X) = {q ∈ Q | q
a

–––→ q′ and q′ ∈ X}
◮ Time predecessors of X ⊆ Q:

Predδ(X) = {q ∈ Q | ∃t ≥ 0 | q
t

––→ q′ and q′ ∈ X}

◮ Zone = conjunction of triangular constraints
x – y < 3, x ≥ 2∧ 1 < y – x < 2

◮ Symbolic State is defined by a State predicate (SP)
P = ∪i∈[1..n](ℓji , Zi), ℓji ∈ L, Zi is a zone
(ℓ1,2 ≤ x < 4) or (ℓ0, x < 1∧ y – x ≥ 2) or (ℓ0, x ≤ 2)∪ (ℓ2, x > 0)

Effectiveness of Preda and Predδ

If P is a SP then Preda(P), Predδ(P) are SP and can be computed

effectively. (There is a symbolic version for Preda and Predδ.)

Journées FAC (April 2008) Control of Timed Systems 62 / 48

States & Symbolic States

◮ Q = L × RClock
≥0 is the set of states of the TGA

q = (ℓ, v) ∈ Q
◮ Discrete predecessors of X ⊆ Q by an action a:

Preda(X) = {q ∈ Q | q
a

–––→ q′ and q′ ∈ X}
◮ Time predecessors of X ⊆ Q:

Predδ(X) = {q ∈ Q | ∃t ≥ 0 | q
t

––→ q′ and q′ ∈ X}

◮ Zone = conjunction of triangular constraints
x – y < 3, x ≥ 2∧ 1 < y – x < 2

◮ Symbolic State is defined by a State predicate (SP)
P = ∪i∈[1..n](ℓji , Zi), ℓji ∈ L, Zi is a zone
(ℓ1,2 ≤ x < 4) or (ℓ0, x < 1∧ y – x ≥ 2) or (ℓ0, x ≤ 2)∪ (ℓ2, x > 0)

Effectiveness of Preda and Predδ

If P is a SP then Preda(P), Predδ(P) are SP and can be computed

effectively. (There is a symbolic version for Preda and Predδ.)

Journées FAC (April 2008) Control of Timed Systems 62 / 48

States & Symbolic States

◮ Q = L × RClock
≥0 is the set of states of the TGA

q = (ℓ, v) ∈ Q
◮ Discrete predecessors of X ⊆ Q by an action a:

Preda(X) = {q ∈ Q | q
a

–––→ q′ and q′ ∈ X}
◮ Time predecessors of X ⊆ Q:

Predδ(X) = {q ∈ Q | ∃t ≥ 0 | q
t

––→ q′ and q′ ∈ X}

◮ Zone = conjunction of triangular constraints
x – y < 3, x ≥ 2∧ 1 < y – x < 2

◮ Symbolic State is defined by a State predicate (SP)
P = ∪i∈[1..n](ℓji , Zi), ℓji ∈ L, Zi is a zone
(ℓ1,2 ≤ x < 4) or (ℓ0, x < 1∧ y – x ≥ 2) or (ℓ0, x ≤ 2)∪ (ℓ2, x > 0)

Effectiveness of Preda and Predδ

If P is a SP then Preda(P), Predδ(P) are SP and can be computed

effectively. (There is a symbolic version for Preda and Predδ.)

Journées FAC (April 2008) Control of Timed Systems 62 / 48

States & Symbolic States

◮ Q = L × RClock
≥0 is the set of states of the TGA

q = (ℓ, v) ∈ Q
◮ Discrete predecessors of X ⊆ Q by an action a:

Preda(X) = {q ∈ Q | q
a

–––→ q′ and q′ ∈ X}
◮ Time predecessors of X ⊆ Q:

Predδ(X) = {q ∈ Q | ∃t ≥ 0 | q
t

––→ q′ and q′ ∈ X}

◮ Zone = conjunction of triangular constraints
x – y < 3, x ≥ 2∧ 1 < y – x < 2

◮ Symbolic State is defined by a State predicate (SP)
P = ∪i∈[1..n](ℓji , Zi), ℓji ∈ L, Zi is a zone
(ℓ1,2 ≤ x < 4) or (ℓ0, x < 1∧ y – x ≥ 2) or (ℓ0, x ≤ 2)∪ (ℓ2, x > 0)

Effectiveness of Preda and Predδ

If P is a SP then Preda(P), Predδ(P) are SP and can be computed

effectively. (There is a symbolic version for Preda and Predδ.)

Journées FAC (April 2008) Control of Timed Systems 62 / 48

States & Symbolic States

◮ Q = L × RClock
≥0 is the set of states of the TGA

q = (ℓ, v) ∈ Q
◮ Discrete predecessors of X ⊆ Q by an action a:

Preda(X) = {q ∈ Q | q
a

–––→ q′ and q′ ∈ X}
◮ Time predecessors of X ⊆ Q:

Predδ(X) = {q ∈ Q | ∃t ≥ 0 | q
t

––→ q′ and q′ ∈ X}

◮ Zone = conjunction of triangular constraints
x – y < 3, x ≥ 2∧ 1 < y – x < 2

◮ Symbolic State is defined by a State predicate (SP)
P = ∪i∈[1..n](ℓji , Zi), ℓji ∈ L, Zi is a zone
(ℓ1,2 ≤ x < 4) or (ℓ0, x < 1∧ y – x ≥ 2) or (ℓ0, x ≤ 2)∪ (ℓ2, x > 0)

Effectiveness of Preda and Predδ

If P is a SP then Preda(P), Predδ(P) are SP and can be computed

effectively. (There is a symbolic version for Preda and Predδ.)

Journées FAC (April 2008) Control of Timed Systems 62 / 48

States & Symbolic States

◮ Q = L × RClock
≥0 is the set of states of the TGA

q = (ℓ, v) ∈ Q
◮ Discrete predecessors of X ⊆ Q by an action a:

Preda(X) = {q ∈ Q | q
a

–––→ q′ and q′ ∈ X}
◮ Time predecessors of X ⊆ Q:

Predδ(X) = {q ∈ Q | ∃t ≥ 0 | q
t

––→ q′ and q′ ∈ X}

◮ Zone = conjunction of triangular constraints
x – y < 3, x ≥ 2∧ 1 < y – x < 2

◮ Symbolic State is defined by a State predicate (SP)
P = ∪i∈[1..n](ℓji , Zi), ℓji ∈ L, Zi is a zone
(ℓ1,2 ≤ x < 4) or (ℓ0, x < 1∧ y – x ≥ 2) or (ℓ0, x ≤ 2)∪ (ℓ2, x > 0)

Effectiveness of Preda and Predδ

If P is a SP then Preda(P), Predδ(P) are SP and can be computed

effectively. (There is a symbolic version for Preda and Predδ.)

Journées FAC (April 2008) Control of Timed Systems 62 / 48

States & Symbolic States

◮ Q = L × RClock
≥0 is the set of states of the TGA

q = (ℓ, v) ∈ Q
◮ Discrete predecessors of X ⊆ Q by an action a:

Preda(X) = {q ∈ Q | q
a

–––→ q′ and q′ ∈ X}
◮ Time predecessors of X ⊆ Q:

Predδ(X) = {q ∈ Q | ∃t ≥ 0 | q
t

––→ q′ and q′ ∈ X}

◮ Zone = conjunction of triangular constraints
x – y < 3, x ≥ 2∧ 1 < y – x < 2

◮ Symbolic State is defined by a State predicate (SP)
P = ∪i∈[1..n](ℓji , Zi), ℓji ∈ L, Zi is a zone
(ℓ1,2 ≤ x < 4) or (ℓ0, x < 1∧ y – x ≥ 2) or (ℓ0, x ≤ 2)∪ (ℓ2, x > 0)

Effectiveness of Preda and Predδ

If P is a SP then Preda(P), Predδ(P) are SP and can be computed

effectively. (There is a symbolic version for Preda and Predδ.)

Journées FAC (April 2008) Control of Timed Systems 62 / 48

Symbolic Computation For Timed Games

X is a state predicate
◮ cPred(X) =

⋃

c∈Actc Pred
c(X) uPred(X) =

⋃

u∈Actu Pred
u(X)

cPred and uPred are effectively computable
◮ Predδ(X,Y): Time controllable predecessors of X avoiding Y:

q q′ ∈ X

Predδ(X,Y) is effectively computable for state predicates X,Y

◮ Controllable Predecessors Operator for Timed Games

πδ(X) = Predδ

(

cPred(X), uPred(X)
)

πδ(X) is effectively computable for state predicate X.

Journées FAC (April 2008) Control of Timed Systems 63 / 48

Symbolic Computation For Timed Games

X is a state predicate
◮ cPred(X) =

⋃

c∈Actc Pred
c(X) uPred(X) =

⋃

u∈Actu Pred
u(X)

cPred and uPred are effectively computable
◮ Predδ(X,Y): Time controllable predecessors of X avoiding Y:

q q′ ∈ X

Predδ(X,Y) is effectively computable for state predicates X,Y

◮ Controllable Predecessors Operator for Timed Games

πδ(X) = Predδ

(

cPred(X), uPred(X)
)

πδ(X) is effectively computable for state predicate X.

Journées FAC (April 2008) Control of Timed Systems 63 / 48

Symbolic Computation For Timed Games

X is a state predicate
◮ cPred(X) =

⋃

c∈Actc Pred
c(X) uPred(X) =

⋃

u∈Actu Pred
u(X)

cPred and uPred are effectively computable
◮ Predδ(X,Y): Time controllable predecessors of X avoiding Y:

q q′ ∈ X

Predδ(X,Y) is effectively computable for state predicates X,Y

◮ Controllable Predecessors Operator for Timed Games

πδ(X) = Predδ

(

cPred(X), uPred(X)
)

πδ(X) is effectively computable for state predicate X.

Journées FAC (April 2008) Control of Timed Systems 63 / 48

Symbolic Computation For Timed Games

X is a state predicate
◮ cPred(X) =

⋃

c∈Actc Pred
c(X) uPred(X) =

⋃

u∈Actu Pred
u(X)

cPred and uPred are effectively computable
◮ Predδ(X,Y): Time controllable predecessors of X avoiding Y:

q q′ ∈ Xt

Predδ(X,Y) is effectively computable for state predicates X,Y

◮ Controllable Predecessors Operator for Timed Games

πδ(X) = Predδ

(

cPred(X), uPred(X)
)

πδ(X) is effectively computable for state predicate X.

Journées FAC (April 2008) Control of Timed Systems 63 / 48

Symbolic Computation For Timed Games

X is a state predicate
◮ cPred(X) =

⋃

c∈Actc Pred
c(X) uPred(X) =

⋃

u∈Actu Pred
u(X)

cPred and uPred are effectively computable
◮ Predδ(X,Y): Time controllable predecessors of X avoiding Y:

q q′ ∈ X

Y

uX
t′ t – t′

Predδ(X,Y) is effectively computable for state predicates X,Y

◮ Controllable Predecessors Operator for Timed Games

πδ(X) = Predδ

(

cPred(X), uPred(X)
)

πδ(X) is effectively computable for state predicate X.

Journées FAC (April 2008) Control of Timed Systems 63 / 48

Symbolic Computation For Timed Games

X is a state predicate
◮ cPred(X) =

⋃

c∈Actc Pred
c(X) uPred(X) =

⋃

u∈Actu Pred
u(X)

cPred and uPred are effectively computable
◮ Predδ(X,Y): Time controllable predecessors of X avoiding Y:

q q′ ∈ X

Y

uX
t′ t – t′

Predδ(X,Y) is effectively computable for state predicates X,Y

◮ Controllable Predecessors Operator for Timed Games

πδ(X) = Predδ

(

cPred(X), uPred(X)
)

πδ(X) is effectively computable for state predicate X.

Journées FAC (April 2008) Control of Timed Systems 63 / 48

Symbolic Computation For Timed Games

X is a state predicate
◮ cPred(X) =

⋃

c∈Actc Pred
c(X) uPred(X) =

⋃

u∈Actu Pred
u(X)

cPred and uPred are effectively computable
◮ Predδ(X,Y): Time controllable predecessors of X avoiding Y:

q q′ ∈ X

Y

uX
t′ t – t′

Predδ(X,Y) is effectively computable for state predicates X,Y

◮ Controllable Predecessors Operator for Timed Games

πδ(X) = Predδ

(

cPred(X), uPred(X)
)

πδ(X) is effectively computable for state predicate X.

Journées FAC (April 2008) Control of Timed Systems 63 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

•—•—•—•—•
0 1 2 3 4

•—•—•—•—•—•
0 1 2 3 4 5

•—•—•—•—•—•
0 1 2 3 4 5

Skip

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

•—•—•—•—•
0 1 2 3 4

•—•—•—•—•—•
0 1 2 3 4 5

•—•—•—•—•—•
0 1 2 3 4 5

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

•—•—•—•—•
0 1 2 3 4

•—•—•—•—•—•
0 1 2 3 4 5

•—•—•—•—•—•
0 1 2 3 4 5

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

•—•—•—•—•
0 1 2 3 4

•—•—•—•—•—•
0 1 2 3 4 5

•—•—•—•—•—•
0 1 2 3 4 5

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

•—•—•—•—•
0 1 2 3 4

•—•—•—•—•—•
0 1 2 3 4 5

•—•—•—•—•—•
0 1 2 3 4 5

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

•—•—•—•—•
0 1 2 3 4

•—•—•—•—•—•
0 1 2 3 4 5

•—•—•—•—•—•
0 1 2 3 4 5

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

•—•—•—•—•
0 1 2 3 4

•—•—•—•—•—•
0 1 2 3 4 5

•—•—•—•—•—•
0 1 2 3 4 5

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

•—•—•—•—•
0 1 2 3 4

•—•—•—•—•—•
0 1 2 3 4 5

•—•—•—•—•—•
0 1 2 3 4 5

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

•—•—•—•—•
0 1 2 3 4

•—•—•—•—•—•
0 1 2 3 4 5

•—•—•—•—•—•
0 1 2 3 4 5

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

•—•—•—•—•
0 1 2 3 4

•—•—•—•—•—•
0 1 2 3 4 5

•—•—•—•—•—•
0 1 2 3 4 5

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

•—•—•—•—•
0 1 2 3 4

•—•—•—•—•—•
0 1 2 3 4 5

•—•—•—•—•—•
0 1 2 3 4 5

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

•—•—•—•—•
0 1 2 3 4

•—•—•—•—•—•
0 1 2 3 4 5

•—•—•—•—•—•
0 1 2 3 4 5

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

•—•—•—•—•
0 1 2 3 4

•—•—•—•—•—•
0 1 2 3 4 5

•—•—•—•—•—•
0 1 2 3 4 5

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

Winning States

(ℓ0,0 ≤ x ≤ 3)
(ℓ1,0 ≤ x ≤ 3)
(ℓ2,2 ≤ x ≤ 5)

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

Winning States

(ℓ0,0 ≤ x ≤ 3)
(ℓ1,0 ≤ x ≤ 3)
(ℓ2,2 ≤ x ≤ 5)

z := 0 K0

[z ≤ 3]

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

Winning States

(ℓ0,0 ≤ x ≤ 3)
(ℓ1,0 ≤ x ≤ 3)
(ℓ2,2 ≤ x ≤ 5)

z := 0 K0

[z ≤ 3]

K1

[z ≤ 3]

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

Winning States

(ℓ0,0 ≤ x ≤ 3)
(ℓ1,0 ≤ x ≤ 3)
(ℓ2,2 ≤ x ≤ 5)

z := 0 K0

[z ≤ 3]

K1

[z ≤ 3]

K2
[2 ≤ z ≤ 5]

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

Winning States

(ℓ0,0 ≤ x ≤ 3)
(ℓ1,0 ≤ x ≤ 3)
(ℓ2,2 ≤ x ≤ 5)

z := 0 K0

[z ≤ 3]

K1

[z ≤ 3]

K2
[2 ≤ z ≤ 5]

z ≤ 3; c1

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

Winning States

(ℓ0,0 ≤ x ≤ 3)
(ℓ1,0 ≤ x ≤ 3)
(ℓ2,2 ≤ x ≤ 5)

z := 0 K0

[z ≤ 3]

K1

[z ≤ 3]

K2
[2 ≤ z ≤ 5]

z ≤ 3; c1

c2
z ≥ 2

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

Winning States

(ℓ0,0 ≤ x ≤ 3)
(ℓ1,0 ≤ x ≤ 3)
(ℓ2,2 ≤ x ≤ 5)

z := 0 K0

[z ≤ 3]

K1

[z ≤ 3]

K2
[2 ≤ z ≤ 5]

z ≤ 3; c1

c2
z ≥ 2c3; z := 0

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

Winning States

(ℓ0,0 ≤ x ≤ 3)
(ℓ1,0 ≤ x ≤ 3)
(ℓ2,2 ≤ x ≤ 5)

z := 0 K0

[z ≤ 3]

K1

[z ≤ 3]

K2
[2 ≤ z ≤ 5]

z ≤ 3; c1

c2
z ≥ 2c3; z := 0

u

u

u

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

z := 0 K0

[z ≤ 3]

K1

[z ≤ 3]

K2
[2 ≤ z ≤ 5]

z ≤ 3; c1

c2
z ≥ 2c3; z := 0

u

u

u

The Most
Liberal

Controller

Journées FAC (April 2008) Control of Timed Systems 64 / 48

Existence of Cost Independent Strategies

Let A be a RPTGA such that:
◮ guards of u actions are strict
◮ guards on c actions are large

There is an optimal cost independent strategy

Is it necessary ?

Journées FAC (April 2008) Control of Timed Systems 65 / 48

Existence of Cost Independent Strategies

Let A be a RPTGA such that:
◮ guards of u actions are strict
◮ guards on c actions are large

There is an optimal cost independent strategy

Is it necessary ?

Journées FAC (April 2008) Control of Timed Systems 65 / 48

Existence of Cost Independent Strategies

Let A be a RPTGA such that:
◮ guards of u actions are strict
◮ guards on c actions are large

There is an optimal cost independent strategy

Is it necessary ?

Journées FAC (April 2008) Control of Timed Systems 65 / 48

Existence of Cost Independent Strategies

Let A be a RPTGA such that:
◮ guards of u actions are strict
◮ guards on c actions are large

There is an optimal cost independent strategy

Is it necessary ?

Journées FAC (April 2008) Control of Timed Systems 65 / 48

No Optimal Strategy

ℓ0

dCost

dt
= 1

ℓ1

dCost

dt
= 2

Goal
x < 1; c x = 1; c

x < 1 x ≤ 1

◮ define fε with 0 < ε < 1 by:
in ℓ0: f(ℓ0, x < 1 – ε) = λ, f(ℓ0, 1 – ε ≤ x < 1) = c
in ℓ1: f(ℓ1, x < 1) = λ, f(ℓ1, x = 1) = c
Cost(fε) = (1 – ε) + 2.ε = 1 + ε and OptCost = 1.

◮ given ε > 0, there is a sub-optimal strategy fε such that

|Cost((ℓ0,~0), fε) – OptCost((ℓ0,~0), G)| < ε

◮ New problem: given ε, compute such an fε strategy.

Journées FAC (April 2008) Control of Timed Systems 66 / 48

No Optimal Cost-Independent Strategy

ℓ0

dCost

dt
= 2

x < 1

ℓ1

dCost

dt
= 1

Goal
x < 1;u

y := x := 0
y > 0; c2

◮ Optimal cost is 2

Journées FAC (April 2008) Control of Timed Systems 67 / 48

No Optimal Cost-Independent Strategy

ℓ0

dCost

dt
= 2

x < 1

ℓ1

dCost

dt
= 1

Goal
x < 1;u

y := x := 0
y > 0; c2

◮ Optimal cost is 2
◮ An optimal winning cost-dependent strategy f:

f(ℓ1, –, cost < 2) = λ and f(ℓ1, –, cost = 2) = c2
assume u taken at time (1 – δ0):

Cost(f, (ℓ0,0)) = 2 · (1 – δ0) + δ1 = 2

because according to f we have δ1 = 2 · δ0

Journées FAC (April 2008) Control of Timed Systems 67 / 48

No Optimal Cost-Independent Strategy

ℓ0

dCost

dt
= 2

x < 1

ℓ1

dCost

dt
= 1

Goal
x < 1;u

y := x := 0
y > 0; c2

◮ Optimal cost is 2
◮ assume ∃ f∗ cost-independent: f∗ must wait in ℓ1 at least ε

assume u taken at time (1 – δ):

Cost(f∗, (ℓ0,0)) = 2 · (1 – δ) + ε

Take δ =
ε
4
: Cost(f∗, (ℓ0,0)) = 2 + ε

2 and OptCost(f∗) = 2 + ε

Journées FAC (April 2008) Control of Timed Systems 67 / 48

Related Work for Optimal Control

◮ [La Torre et al.’02]
◮ Acyclic Priced Timed Game Automata
◮ Recursive definition of optimal cost
◮ Computation of the infimum of the optimal cost

i.e. OptCost = 2 could mean that it is 2 or 2 + ε
◮ No strategy synthesis

◮ [Alur et al.’04] (ICALP’04)
◮ Bounded optimality: optimal cost within k steps
◮ Complexity bound: exponential in k and #states of the PTGA
◮ No bound for the more general optimal problem
◮ Computation of the infimum of the optimal cost
◮ No strategy synthesis

◮ Our work [Bouyer et al.’04a]:
◮ Run-based definition of optimal cost
◮ We can decide whether ∃ an optimal strategy
◮ We can effectively synthesize an optimal strategy (if one exists)
◮ We can prove structural properties of optimal strategies
◮ Applies to Linear Hybrid Game (Automata)

Journées FAC (April 2008) Control of Timed Systems 68 / 48

Related Work for Optimal Control

◮ [La Torre et al.’02] Acyclic Games, infimum, no strategy
synthesis

◮ [Alur et al.’04] (ICALP’04)
◮ Bounded optimality: optimal cost within k steps
◮ Complexity bound: exponential in k and #states of the PTGA
◮ No bound for the more general optimal problem
◮ Computation of the infimum of the optimal cost
◮ No strategy synthesis

◮ Our work [Bouyer et al.’04a]:
◮ Run-based definition of optimal cost
◮ We can decide whether ∃ an optimal strategy
◮ We can effectively synthesize an optimal strategy (if one exists)
◮ We can prove structural properties of optimal strategies
◮ Applies to Linear Hybrid Game (Automata)

Journées FAC (April 2008) Control of Timed Systems 68 / 48

Related Work for Optimal Control

◮ [La Torre et al.’02] Acyclic Games, infimum, no strategy
synthesis

◮ [Alur et al.’04] (ICALP’04)
◮ Bounded optimality: optimal cost within k steps
◮ Complexity bound: exponential in k and #states of the PTGA
◮ No bound for the more general optimal problem
◮ Computation of the infimum of the optimal cost
◮ No strategy synthesis

Bounded optimality, complexity bound, infimum, no strategy
synthesis

◮ Our work [Bouyer et al.’04a]:
◮ Run-based definition of optimal cost
◮ We can decide whether ∃ an optimal strategy
◮ We can effectively synthesize an optimal strategy (if one exists)
◮ We can prove structural properties of optimal strategies
◮ Applies to Linear Hybrid Game (Automata)

Journées FAC (April 2008) Control of Timed Systems 68 / 48

Related Work for Optimal Control

◮ [La Torre et al.’02] Acyclic Games, infimum, no strategy
synthesis

◮ [Alur et al.’04] (ICALP’04)
◮ Bounded optimality: optimal cost within k steps
◮ Complexity bound: exponential in k and #states of the PTGA
◮ No bound for the more general optimal problem
◮ Computation of the infimum of the optimal cost
◮ No strategy synthesis

Bounded optimality, complexity bound, infimum, no strategy
synthesis

◮ Our work [Bouyer et al.’04a]:
◮ Run-based definition of optimal cost
◮ We can decide whether ∃ an optimal strategy
◮ We can effectively synthesize an optimal strategy (if one exists)
◮ We can prove structural properties of optimal strategies
◮ Applies to Linear Hybrid Game (Automata)

Journées FAC (April 2008) Control of Timed Systems 68 / 48

	Control of Timed Systems: Basics
	Verification and Control
	Control = Game

	Control of Discrete Event Systems
	Games, Strategies, Winning States
	Controllable Predecessors
	Results for Finite Games

	Control of Timed Systems
	Timed Automata
	Timed Game Automata
	Symbolic Algorithms for Timed Game Automata

	Advanced Subjects
	Implementable Controllers
	Optimal Controllers
	Efficient Algorithms for Controller Synthesis

	Conclusion
	References
	Appendix

