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Abstract

We prove in this paper that policy iteration can be generally defined in finite domain of templates
using Lagrange duality. Such policy iteration algorithm converges to a fixed point when for very simple
technique condition holds. This fixed point furnishes a safe over-approximation of the set of reachable
values taken by the variables of a program. We apply our method in the case of quadratic templates to
compute ellipsoid numerical invariants using semi-definite programming.

1 Introduction

We introduce a complete lattice consisting of sub-level sets of (possibly non-convex) functions, which
we use as an abstract domain in the sense of abstract interpretation [CC77] for computing numerical
program invariants. This abstract domain is parametrized by a basis of functions, akin to the approach
put forward by Manna, Sankaranarayanan, and Sipma (the linear template abstract domain [SSM05] see
also [SCSM06]), except that the basis functions or templates which we use here need not be linear. The
domains obtained in this way encompass the classical abstract domains of intervals, octagons and linear
templates.

To illustrate the interest of this generalization, let us consider a harmonic oscillator: ẍ+ cẋ+ x = 0.
By taking an explicit Euler scheme, and for c = 1 we get the program shown at the left of Figure 1.

x = [ 0 , 1 ] ;
v : = [ 0 , 1 ] ;
h = 0 . 0 1 ;
whi l e ( t rue ) { [ 2 ]

w = v ;
v = v∗(1−h)−h∗x ;
x = x+h∗w; [ 3 ] } {x2 ≤ 3.5000, v2 ≤ 2.3333, 2x2 + 3v2 + 2xv ≤ 7}

Figure 1: Euler integration scheme of a harmonic oscillator and the loop invariant found at control point 2

The invariant found with our method is shown right of Figure 1. For this, we have considered the
template based on functions {x2, v2, 2x2 +3v2 +2xv}, i.e. we consider a domain where we are looking for
upper bounds of these quantities. This means that we consider the non-linear quadratic homogeneous
templates based on {x2, v2}, i.e. symmetric intervals for each variable of the program, together with
the non-linear template 2x2 + 3v2 + 2xv. The last template comes from a Lyapunov function that the
designer of the algorithm may have considered to prove the stability of his scheme, before it has been
implemented. This allows us to represent set defined by constraints of the form x2 ≤ c1, v2 ≤ c2 and
2x2 + 3v2 + 2xv ≤ c3 where c1, c2 and c3 are degrees of freedom. In view of proving the implementation
correct, one is naturally led to considering such templates. Last but not least, it is to be noted that the
loop invariant using intervals, zones, octagons or even polyhedra (hence with any linear template) is the
insufficiently strong invariant h = 0.01 (the variables v and x cannot be bounded.) However, the main
interest of the present method is to carry over to the non-linear setting.

∗This work is supported by the RTRA / STAE Project BRIEFCASE.
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Contributions of the paper We (recall) describe the lattice theoretical operations in terms of
Galois connections and generalized convexity in Section 2. We next introduce an abstract semantics F ],
and a relaxed semantics FR using Lagrange duality. The relaxed semantics is, by construction, an over-
approximation of the abstract one. We prove that the relaxed semantics has more powerful properties
that explains why we should consider this latter. Moreover, we show in Subection 5.3 that the vectors of
Lagrange multipliers produced by this relaxation correspond to policies, in a policy iteration technique
for finding fixed points of FR, Theorem 5.3, precisely over-approximating the fixed points of F ].

In Section 7, we apply our techniques in the case of a basis of quadratic functions, FR can be computed
by solving a semi-definite program using Shor’s relaxation. The advantage of the latter is that it can
be solved in polynomial time to an arbitrary prescribed precision by the ellipsoid method [GLS88], or
by interior point methods [NN94] if a strictly feasible solution is available (however, we warn the reader
that interior points methods, which are more efficient in practice, are known to be polynomial only in
the real number model, not in the bit model, see the survey [PR97] for more information). Finally, we
illustrate the method on the running example.

Related work This work is to be considered as a generalisation of [SSM05], [SCSM06] because it
extends the notion of templates to non-linear functions, and of [CGG+05], [GGTZ07], [AGG08], [GS07a]
and [GS07b] since it also generalizes the use of policy iteration for better and faster resolution of abstract
semantic equations. Polynomial inequalities (of bounded degree) were used in [BRCZ05] in the abstract
interpretation framework but the method relies on a reduction to linear inequalities (the polyhedra
domain), hence is more abstract than our domain. Particular quadratic inequalities (involving two
variables - i.e. ellipsoidal methods) were used for order 2 linear recursive filters invariant generation
in [Fer05]1. Polynomial equalities (and not general functional inequalities as we consider here) were
considered in [MOS04, RCK07]. The use of optimization techniques and relaxations for program analysis
has also been proposed in [Cou05], mostly for synthesising variants for proving termination, but invariant
synthesis was also briefly sketched, with different methods than ours (concerning the abstract semantics
and the fixpoint algorithm). Finally, the interest of using quadratic invariants and in particular Lyapunov
functions for proving control programs correct (mostly in the context of Hoare-like program proofs) has
also been advocated recently by E. Féron et al. in [FF08, FA08].

2 Recalling the generalized templates

In [AGG10, AGG11], we introduced the concept of generalized templates which are just functions from Rd
to R. In this paper, we are interesting in developing a generalized policy iteration to compute numerical
invariants in a templates context.

2.1 Basic notions

Let X,Y two non empty sets. We denote by F (X,Y ) the set of maps (functions when Y is a set of reals)
from X to Y .

Let P be a subspace of F
(
Rd,R

)
. We are interested in replacing the classical concrete semantics by

meaning of sublevel sets i.e. we have a functional representation of numerical invariants through the
functions of P. An invariant will be determined as the intersection of sublevel sets. The problem is thus
reduced to find the interesting functions p ∈ P and the optimal levels on each templates p.

In consequence, we introduce a set of functions from P to R = R ∪ {−∞} ∪ {+∞}. We denote this
set of functions by F

(
P,R

)
. For an element v ∈ F

(
P,R

)
, we associate the intersection of sublevel sets

defined by v(p) where p belongs to P.

Definition 2.1 (P-sublevel sets). To a function v ∈ F
(
P,R

)
, we associate the P-sublevel set denoted by

v? and defined as:
v? = {x ∈ Rd | p(x) ≤ v(p), ∀p ∈ P}

=
⋂
p∈P{x ∈ Rd | p(x) ≤ v(p)}

When P is a set of convex functions, the P-sublevel sets corresponds to the intersection of classical
sublevel sets from convex analysis. In our case, P can contain non-convex functions so P-sublevel sets are
not necessarily convex in the usual sense.

1A generalization to order n linear recursive filters is also sketched in this article.
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We also want a functional representation of a set. In convex analysis, it is well-known that a closed
convex set can be represented by its support function i.e. the supremum of linear forms on the set
(e.g see Section 13 of [Roc96]). Here, we use the same notion but we replace the linear forms by the
functions p ∈ P which are not necessarily linear. This generalization is not new and was introduced by
Moreau [Mor70]. The reader can be also consult [Rub00, Sin97] for more details about those concepts.

Definition 2.2 (P-support functions). To X ⊆ Rd, we associate the abstract support function denoted
by X† and defined as:

X†(p) = sup
x∈X

p(x)

The P-support functions are always lower-semicontinuous (l.s.c.) i.e. all its sublevel sets are topo-
logically closed and positively homogeneous i.e. the image commutes with nonnegative scalars. If P is a
convex subset of convex functions then P-support functions are convex on P.

We equip the F
(
P,R

)
with the classical partial order for the functions i.e v ≤ w ⇐⇒ v(p) ≤ w(p)

for all p ∈ P. We order the set of the subsets of Rd by the inclusion. By taking these orders, we get the
following proposition.

Proposition 2.1. The pair of maps v 7→ v? and X 7→ X† defines a Galois connection between F
(
P,R

)
and the set of subsets of Rd.

In the terminology of abstract interpretation, (.)† is the abstraction function, and (.)? is the con-
cretization function. The Galois connection result will provide the correctness of the semantics.

2.2 The lattices of P-convex sets and P-convex functions

Now, we are interested in closed elements (in term of Galois connection) that we call here P-convex
elements. Formally, they are defined as follows.

Definition 2.3 (P-convexity). Let v ∈ F
(
P,R

)
, we say that v is a P-convex function if v = (v?)†. A set

X ⊆ Rd is a P-convex set if X = (X†)?.

Definition 2.4. We respectively denote by VexP(P 7→ R) and VexP(Rd) the set of P-convex function of
F
(
P,R

)
and the set of P-convex sets of Rd.

The family of functions VexP(P 7→ R) is ordered by the partial order of real-valued functions i.e
v ≤ w ⇐⇒ v(p) ≤ w(p) ∀p ∈ P. The family of set VexP(Rd) is ordered by the inclusion order denoted
by ⊆. Galois connection permits to construct lattice operations on P-convex elements. They are defined
as follows.

Definition 2.5 (The meet and join). Let v and w be in F
(
P,R

)
. We denote by inf(v, w) and sup(v, w) the

functions defined respectively by, p 7→ inf(v(p), w(p)) and p 7→ sup(v(p), w(p)). We equip VexP(P 7→ R)
with the meet (respectively join) operator:

v ∨ w = sup(v, w) (1)

v ∧ w = (inf(v, w)?)† (2)

Similarly, we equip VexP(Rd) with the two following operators: X t Y = ((X ∪ Y )†)?, X u Y = X ∩ Y .

It is well-known that with the prevois lattice operations, the lattice sets of P-convex elements are
isomorphic complete lattices.

Theorem 2.1. (VexP(P 7→ R),∧,∨) and (VexP(Rd),u,t) are isomorphic complete lattices.

We end this section by specifying the closure operator in our context.

Definition 2.6. For v ∈ F
(
P,R

)
, we denote by vexP(v) the P-convex hull of v which is the greatest

P-convex function smaller than v.
Similarly, we denote by the set vexP(X) the P-convex hull of a subset X which is the smallest P-convex

set greater than X.
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3 Abstract and Relaxed semantics

Suppose now we are given a program with d variables (x1, . . . , xd) and n control points numbered from
1 to n. We suppose this program is written in a simple toy version of a C-like imperative language,
comprising global variables, no procedures, assignments of variables using only parallel assignments
(x1, . . . , xd) = T (x1, . . . , xd), tests of the form r(x1, . . . , xd) ≤ 0, where r : Rd 7→ R, and while loops
with similar entry tests. We do not recapitulate the standard collecting semantics that associates to
this program a monotone map F :

(
℘(Rd)

)n → (
℘(Rd)

)n
whose least fixed points lfp(F ) has as ith

component (i = 1, . . . , n) the subset of Rd of values that the d variables x1, . . . , xd can take at control
point i. The aim of this section is to compute, inductively on the syntax, the abstraction (or a good
over-approximation of it) F ] of F from F

(
P,R

)n
to itself defined as usual as:

F ](v) := (F (v?)†) (3)

The notation v? is in fact the vector of sets (v?1 , · · · , v?n) and (F (v?)†) is also interpreted component-
wise.

We will detail Equation (3) for assignments and tests. We will remark that we will deal with con-
strained optimisation problem. We first present a classical method from optimisation theory to over-
approximate our abstract semantics by a semantics with better properties. In second time, we will specify
the method to assignments and tests.

3.1 Lagrange duality

Let f , {fi}i=1,...,m be functions on Rd. Let us consider the following constrained maximization problem:

sup{f(x) | fi(x) ≤ 0, ∀i = 1, . . . ,m} (4)

In constrained optimization, it is classical to construct another constrained optimization problem
from the initial one in order to solve an easier problem. A technique called Lagrange duality (for details
see for example [AT03, Section 5.3]) consists in adding to the objective function the inner product of
the vector of constraints with a positive vector of the euclidean space whose the dimension is the number
of constraints. In our context, the value of (4) is given by the following sup-inf (primal) value (8):

sup
x∈Rd

inf
λ∈Rm

+

f(x)−
m∑
i=1

λifi(x) . (5)

A simple result of constrained optimization called weak duality theorem ensures that if we commute
the inf and the sup in the formula (8), the result is greater than the value (8). The commutation of the
inf and the sup gives us the so called (dual) value:

inf
λ∈Rm

+

sup
x∈Rd

f(x)−
m∑
i=1

λifi(x) . (6)

The vectors λ ∈ Rm+ are called vectors of Lagrange multipliers. The function λ 7→ supx∈Rd f(x) −∑m
i=1 λifi(x) is always convex and lower semi-continuous, so it has good properties to minimize it. If the

function f is concave, if the functions fi are convex and if the Slater constraint qualification (i.e. there
exists x ∈ Rd such that fi(x) < 0 for all i = 1, . . . ,m) holds then (5) and (6) coincide.

3.2 Abstraction of assignments and test using Lagrange duality

3.2.1 Abstraction of assignments

We focus on assignments (x1, . . . , xd) = T (x1, . . . , xd) at control point i. We denote by A the set of
such control points. Equation (3) translates in that case to (given that v`(i) defines the abstract value at
control point `(i), i.e. the breakpoint of the assignment acts on) when p ∈ P is fixed :(

F ]i (v)
)
(p) = sup{p ◦ T (x) | q(x)− v`(i)(q) ≤ 0, ∀q ∈ P} (7)

Introducing the evaluation functions i.e. the family of functions {ex, x ∈ Rd} from P to R such that
ex(p) = p(x), we can reformulate Equation (7) as:

F ]` (v) = sup
{x∈Rd|(v`(i)−ex)(q)≥0, ∀ q∈P}

eT (x)
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We get a self-map F ] on F
(
P,R

)
and then the latter equation will be use to write fixed point equations.

At Equation (7), we recognize the constrained optimization problem (4) and we use Lagrange duality
as in the first step of Subsection 3.1. In our case, Lagrange multipliers are some non-negative functions
λ from P to R. We thus consider the function which we will call the relaxed function:

FRi (v) := inf
λ∈F(P,R+)

sup
x∈Rd

eT (x) +
∑
q∈P

λ(q)
(
v`(i)(q)− q(x)

)
.

When we fix a template p ∈ P, we have:(
FRi (v)

)
(p) = inf

λ∈F(P,R+)
sup
x∈Rd

p(T (x)) +
∑
q∈P

λ(q)
(
v`(i)(q)− q(x)

)
. (8)

3.2.2 Abstraction of simple test

Now, we focus on a simple test and we write j the control point of the test. We denote by I the set
of such control points We recall that a test is written as r(x1, . . . , xd) ≤ 0 where r : Rd → R. We
assume that the operation for the “then” branch has the form x = Tthen(x) and the operation for
the “else” branch has the form x = Telse(x) where Tthen, Telse. To enter into the “then” branch,
the abstract values of control point `(j) must satisfy the test condition of the “then” branch, so the
abstraction of a test is Fj(X) = Tthen(X`(j)) ∩ {x ∈ Rd | r(x) ≤ 0} for the “then” branch. For the
“else” branch, we have similarly Fj+1(X) = Telse(X`(j)) ∩ {x ∈ Rd | r(x) > 0} which is equivalent to
Fj+1(X) = Telse(Xj−1) ∩ {x ∈ Rd | −r(x) < 0}. However, we cannot use Lagrange duality with strict
inequalities and so we replace the set {x ∈ Rd | −r(x) < 0} by the set {x ∈ Rd | −r(x) ≤ 0} which
is larger so we compute at least a safe overapproximation. When the function r is concave and the set
{x ∈ Rd | −r(x) < 0} is non-empty, the closure of the former set coincides with the latter set. For the
“else” branch, the abstraction is, finally, Fj+1(X) = Telse(X`(j)) ∩ {x ∈ Rd | −r(x) ≤ 0}. As we deal
with arbitrary functions r, it is sufficient to show here how to deal with the equations at control point j
and we simply write T instead of Tthen. Equation (3) translated in the case of tests leads to (given that
v`(j) defines the abstract value at control point `(j), i.e. the breakpoint of the assignment acts on) when
p ∈ P is fixed: (

F ]j (v)
)
(p) =

(
T
(
v?`(j) ∩ {x ∈ Rd | r(x) ≤ 0}

))†
(p)

then, by a simple calculus:(
F ]j (v)

)
(p) = sup{p ◦ T (x) | q(x) ≤ v`(j)(q) ∀ q ∈ P, r(x) ≤ 0}. (9)

Using the evaluation functions, we can reformulate Equation (9) as:

F ]j (v) = sup
{x∈Rd|(v`(j)−ex)(q)≥0, ∀ q∈P, r(x)≤0}

eT (x)

in order to write fixed point equations. Using again Lagrange duality, we get the following relaxed
problem:

FRj (v) := inf
λ∈F(P,R+)
µ∈R+

sup
x∈Rd

eT (x) +
∑
q∈P

λ(q)
(
v`(i)(q)− q(x)

)
− µr(x) .

When a template p ∈ P is fixed, we get:(
FRj (v)

)
(p) = inf

λ∈F(P,R+)
µ∈R+

sup
x∈Rd

p(T (x)) +
∑
q∈P

λ(q)
(
v`(i)(q)− q(x)

)
− µr(x) . (10)

3.3 Abstraction of loops

We do not know yet how to interpret the equation at control point i where we collect the values of the
variables before the entry in the body of the loop, at control point `1(i), with the values of the variables at
the end of the body of the loop, at control point `2(i): Fi(X) = X`1(i)∪X`2(i), since we know now how to

deal with the interpretation of tests. By using Equation (3), for v ∈ F
(
P,R

)n
, F ]i (v) = (v?`1(i) t v?`2(i))

†.
As for zones, we notice that the union of two such P-convex functions v`1(i) and v`2(i) is directly given by
taking their maximum on each element of the basis of functions P. Nevertheless, during the fixed point
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iteration (as in Section 5) the functions v`1(i) and v`2(i) are not necessarily P-convex. Moreover, if we

take the abstract semantics F ]i (v), we do not have an infimum of linear forms (or at least a maximum
of linear forms) on the abstract values v`1(i) and v`2(i), a formulation that we need. Finally, we relaxed

the abstract semantics F ]i (v), using Proposition 2.1, by the supremum itself and:

FRi (v) = sup(v`1(i), v`2(i)) . (11)

By this reduction, the map v 7→ FRi (v) is monotone on F
(
P,R

)n
, we formulate this result at Propo-

sition 4.1. From now on, we denote U the set of coordinates such that the concrete semantics is a meet
operation.

4 Properties of the relaxed semantics

The introduction of relaxed aims to get better computational properties of the semantics. We describe
in this section the properties of the relaxed semantics which justify the using of the new semantics. In
order to reduce the size of the paper, the proofs are skipped.

First, we show at Theorem 4.1 that the computation of an invariant from relaxed semantics will
provide a safe over-approximation of the invariant of the abstract semantics.

Theorem 4.1. Let i be a coordinate in A ∪ I ∪ U. For all v ∈ F
(
P,R

)n
,

F ]i (v) ≤ FRi (v)

Furthermore, we prove monotonicty of the semantics. This property will be crucial to show that
Policy Iteration provides more and more precise overapproximation of an invariant until a fixed point is
reached.

Proposition 4.1. For i ∈ A ∪ I ∪ U, the map v 7→ FRi (v) is monotone on the set F
(
P,R

)n
.

Let v be in F
(
P,R

)n
. We introduce auxiliary functions to make appear some hidden properties.

• For i ∈ A, we now define, for p ∈ P, for λ ∈ F (P,R+), Fλi (v) by:(
Fλi (v)

)
(p) :=

∑
q∈P

λ(q)v`(i)(q) + V λi (p) . (12)

where V λi (p) := sup
x∈Rd

p ◦ T (x)−
∑
q∈P

λ(q)q(x)

• For i ∈ I, we define, for λ ∈ F (P,R+) and µ ∈ R+, Fλ,µi (v) by:(
Fλ,µi (v)

)
(p) :=

∑
q∈P

λ(q)v`(i)(q) + V λ,µi (p) (13)

where V λ,µi (p) := sup
x∈Rd

p ◦ T (x)−
∑
q∈P

λ(q)q(x)− µr(x) .

The relaxed functional can now be readily rewritten as follows.

Lemma 4.1. For i ∈ A and j ∈ I:(
FRi (v)

)
(p) = inf

λ∈F(P,R+)

(
Fλi (v)

)
(p),

(
FRj (v)

)
(p) = inf

λ∈F(P,R+)
µ∈R+

(
Fλ,µj (v)

)
(p) .

We recall some mathematical tools to get convergence proofs. Some definitions have been earlier
given in the text, we give formal definitions here. All topological aspects are understood in the sense of
Rd-standard norm topology. When it is necessary, the norm will be specified.

Definition 4.1 (Lower/upper semi-continuous functions). A function f : Rd 7→ R is said to be lower
semi-continuous if for all α ∈ R, the set {x ∈ Rd | f(x) ≤ α} is topologically closed. A function
g : Rd 7→ R is said to be upper semi-continuous if −g is lower semi-continuous.
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A continuous function and (pointwise) supremum of lower semi-continuous functions are lower semi-
continuous. Note that f is lower semi-continuous function iff for all x ∈ Rd and for all sequence xn which
converges to x that f(x) ≤ lim infn f(xn). Since we have supi∈I −fi = − infi∈I fi, we conclude that
the infimum of upper semi-continuous functions is upper semi-continuous. We also get that an upper
semi-continuous function satisfies lim supn f(xn) ≤ f(x) for all x ∈ Rm and for all sequence xn which
converges to x.

When f is upper semi-continuous and order-preserving function and (xn)n≥0 is a decreasing converg-
ing sequence to x ∈ Rd then f(infn xn) = f(x) = infn f(xn). For a function g lower semi-continuous and
order-preserving, we get g(supn xn) = g(x) = supn g(xn) for all increasing converging sequence (xn)n≥0

to x.

Definition 4.2 (Level boundiness). A function f is said to level bounded if for all α ∈ R, the set
{x ∈ Rd | f(x) ≤ α} is bounded.

When level boundiness is coupled with lower-semicontinuity, all sublevel sets are closed and bounded
and thus compact sets in a standard Rd-norm topology. Lower semi-continuity and level boundiness are
sufficient to existence of optimal solutions for minimisation problem.

Definition 4.3 (Convex/concave functions). A function f : Rm 7→ R is said to be convex if for all
α ∈ (0, 1), for all x, y ∈ Rm, f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). A function g : Rm 7→ R is said to
be concave if −g is convex.

Convexity is exactly what we need when we want to minimise functions. Indeed, a local minimiser
is in that case a global minimiser. When differentiability also holds, then local minimality is reduced to
compute the zero of derivatives. The same principle can be applied for concavity and maximisation.

Lemma 4.2. Let f : Rd 7→ R ∪ {+∞} be a convex, proper (there exists x ∈ Rd such that f(x) ∈ R),
lower semi-continuous and level bounded function. Then inf

x∈Rd
f(x) is finite and there exists x̄ such that:

f(x̄) = inf
x∈Rd

f(x) ,

and the set of optimal solutions (x̄ such that f(x̄) = infx∈Rd f(x)) is a (non-empty) convex compact set.

Definition 4.4 (Slater’s condition). Let f : Rd → R and g : Rd 7→ Rm. A constrained maximization
sup{f(x) | g(x) ≤ 0, x ∈ Rm} satisfies Slater’s condition iff there exists x0 ∈ Rm such that g(x0) < 0 i.e.
for all coordinates i = 1, . . . ,m, gi(x0) < 0.

Slater’s condition is linked to the non-emptyness of the interior of the set of constraints. Indeed if the
interior of set of constraints is nonempty and constraints function gi are convex and lower-semicontinuous,
then int({x ∈ Rd | g(x) ≤ 0}) = {x ∈ Rd | g(x) < 0}, where int denotes the interior set and g =
(g1, g2, . . . , gm).

Depending on templates we choose, it is easy to check Slater’s condition. For example, taking a set
of templates P such that p(0) = 0 for all p ∈ P, for i ∈ A ∪ I, if v`(i)(p) > 0, then Slater’s condition
holds for optimisation problems (7) and (9) (whenever r(x0) < 0 is also satisfied for some x0 such that
v`(i)(p) > p(x0)).

Slater’s condition is a sufficient condition to the existence of optimal solutions to the minimisation
problem which appears in relaxed functional. Indeed Slater’s condition implies the level boundiness of
the dual functional. Optimal solutions will be used to compute a ”pivoting” policy when a fixed point is
not reached. Lemma 4.2 implies the following result.

Proposition 4.2 (Selection property). Let i ∈ A. Assume that the maximisation problem (7) satisfies
the Slater’s condition and there exists λ ∈ F (P,R+) such that:

sup
x∈Rd

eT (x) −
∑
q∈P

λ(q)q(x)

is finite. Then the minimisation problem (6) admits a solution i.e. there exists λ∗p ∈ F (P,R+) such that:(
FRi (v)

)
(p) = p ◦ T (x) +

∑
q∈P

λ∗p(q)
(
v`(i)(q)− q(x)

)
Let i ∈ I. Assume that the maximisation problem (9) satisfies the Slater’s condition and there exists
(λ, µ) ∈ F (P,R+)× R+ such that:

sup
x∈Rd

eT (x) −
∑
q∈P

λ(q)q(x)− µr(x)
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is finite. Then the minimisation problem (10) admits a solution i.e. there exists (λ∗p, µ
∗
p) ∈ F (P,R+)×R+

such that: (
FRi (v)

)
(p) = p ◦ T (x) +

∑
q∈P

λ∗p(q)
(
v`(i)(q)− q(x)

)
− µ∗pr(x)

The last result of this section discuss about continuity of the relaxed functional. Kleene iteration and
policy iteration are iterative processes to compute fixed point. It is important to to prove that the limits
of the sequences produced by both iterations scheme are fixed point. To show it, we need continuity.

Proposition 4.3 (Continuity result on FRi ). Let i ∈ A ∪ I ∪ U. The following assertions holds:

1. Let p ∈ P. The map from F (P,R)n to R, v 7→ FRi (v)(p) is upper semi-continuous.

2. For all decreasing sequences (vn)n≥0 ∈ F
(
P,R

)n
:(

inf
n≥0

FRi (vn)

)
(p) =

(
FRi ( inf

n≥0
vn)

)
(p) .

3. Let p ∈ P. Let i ∈ A ∪ I. Assume, there exists a nonempty compact set Ki,p:

• i ∈ A,
(
FRi (·)

)
(p) = infλ∈Ki,p F

λ
i (·)(p);

• i ∈ I,
(
FRi (·)

)
(p) = inf(λ,µ)∈Ki,p

Fλ,µi (·)(p);

Then:

(a) the map from F (P,R)n to R, v 7→ FRi (v)(p) is lower semi-continuous,

(b) for all increasing sequences (vn)n≥0 ∈ F
(
P,R

)n
:(

sup
n≥0

FRi (vn)
)
(p) =

(
FRi (sup

n≥0
vn)
)
(p) .

5 Solving fixed point equations

5.1 Fixpoint equations in templates domain

We recall that P is a finite set of templates. The map F is a monotone map which interprets a program
with d variables and n labels in ℘

(
Rd
)n

. We recall that v? denotes the vector of sets ((v1)?, · · · , (vn)?)

and F ](v) = (F (v?))† i.e. ∀ i, F ]i (v) = (Fi(v
?))† and FR is the map, the components of which are the

relaxed functions of F ]. As usual in abstract interpretation, we are interested in solving the least fixed
point equation:

inf{v ∈ VexP(P 7→ R)n | F ](v) ≤ v} (14)

Nevertheless, the function F ] is not easily computable (since the templates p are general). Hence, we
solve instead the following fixed point equation in F

(
P,R

)n
:

inf{v ∈ F
(
P,R

)n | FR(v) ≤ v} (15)

We next describe and compare two ways of computing (or approximating) the smallest fixed point of
the relaxed semantics equation: Kleene iteration in Section 5.2, and policy iteration in Section 5.3.

5.2 Kleene iteration

We denote by ⊥ the smallest element of F
(
P,R

)n
i.e. for all i = 1, · · · , n and for all p ∈ P, ⊥i (p) = −∞.

The Kleene iteration sequence in F
(
P,R

)n
is thus as follows:

1. v0 =⊥
2. for k ≥ 0, vk+1 = FR(vk)

Now using continuity result of Proposition 4.3, we get the following theorem:

Theorem 5.1. If for all i ∈ A ∪ I, for all p ∈ P, there exists a nonempty compact set Ki,p:

• i ∈ A,
(
FRi (·)

)
(p) = infλ∈Ki,p F

λ
i (·)(p);

• i ∈ I,
(
FRi (·)

)
(p) = inf(λ,µ)∈Ki,p

Fλ,µi (·)(p);

then Kleene iteration converges to the smallest fixed point of FR.
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Kleene iteration has the inconvenience that the values vk which are obtained at a given iteration k
(before convergence) do not provide a safe invariant. We shall see that policy iteration does not have this
inconvenient: even if it is stopped at an intermediate step, it does provide a safe invariant. Moreover,
the convergence of the Kleene iteration can be very slow, so it needs to be coupled with an acceleration
technique which provides over-approximations. In our implementation, after a given number of iterations,
and during a few iterations, we round bounds outwards with a decreasing precision (akin to the widening
used in [GPBG08]).

5.3 Policy Iteration

We present now policy iteration algorithm. As usual, we present first the policies notion and then describe
completely policy iteration at Algorithm 1.

5.3.1 Policy definition

A policy iteration algorithm can be used to solve a fixed point equation for a monotone function written
as an infimum of a family of simpler monotone functions, obtained by selecting policies, see [CGG+05,
GGTZ07] for more background. The idea is to solve a sequence of fixed point problems involving simpler
functions. In the present setting, we look for a representation of the relaxed function

FR = inf
π∈Π

Fπ (16)

where the infimum is taken over a set Π whose elements π are called policies, and where each function
Fπ is required to be monotone. The correctness of the algorithm relies on a selection property, meaning
in the present setting that for each argument (i, v, p) of the function FR, there must exist a policy π
such that

(
FRi (v)

)
(p) =

(
Fπi (v)

)
(p). The idea of the algorithm is to start from a policy π, compute the

smallest fixed point v of Fπ, evaluate FR at point v, and, if v 6= FR(v), determine the new policy using
the selection property at point v.

Let us now identify the policies. Lemma 4.1 shows that for each template p, each coordinate FRi
corresponding to an assignment i ∈ A can be written as the infimum of a family of affine functions
v 7→ Fλi (v), the infimum being taken over the set of Lagrange multipliers λ. The same lemma provides
a representation of the same nature when the coordinate i ∈ I corresponds to a test, with now a couple
of Lagrange multipliers (λ, µ). Choosing a policy π consists in selecting, for each i ∈ A (resp. j ∈ I)
and p ∈ P, a Lagrange multiplier λ (resp. a pair of Lagrange multipliers λ, µ). We denote by πi(p) (resp.
πj(p)) the value of λ (resp. (λ, µ)) chosen by the policy π.

Then, the map Fπ in (16) is obtained by replacing FRi by the affine functions appearing in Lemma 4.1,
for i ∈ A ∪ I. For coordinates corresponding to loops, i.e., i ∈ U, we take Fπi = FRi (the choice of policy
is trivial) since the infimum operation does not appear in the expression of FR (see Equation (11)).

Proposition 4.2 shows that the selection property is valid under a Slater constraint qualification
condition. We thus introduce FS(P,R)n, the set of elements of F

(
P,R

)
which satisfy the Slater condition

when the component Fi of F corresponds to an assignment or a test. More concretely: v ∈ FS(P,R)n,
if, for all i ∈ A the set:

{x ∈ Rd | q(x) < v`(i)(q), ∀ q ∈ P}
and, for i ∈ I and a test r, the set:

{x ∈ Rd | q(x) < v`(i)(q), ∀ q ∈ P} ∩ {x ∈ Rd | r(x) < 0}

are non-empty.
Note we can do restrictions on policies when degenerate cases appear:

• At some breakpoint i and for corresponding label j, if there exists p ∈ P such that vj(p) = −∞ then
we can choose any vector of nonnegative λ such that λ(p) 6= 0. Note that in this case, FRi (v) ≡ −∞
and the smallest fixed point of FR for the coordinate i must check vi ≡ −∞.

• At some breakpoint i and for corresponding label j, if there exists p ∈ P such that vj(p) = +∞ then
we can choose any vector of nonnegative λ such that λ(p) = 0 for all p ∈ P such that vj(p) = +∞.

These two restrictions let us work with finite values when we have to compute optimal policies.

9



Algorithm 1 Policy Iteration in finite templates domain

1 Choose π0 ∈ Π, k = 0.

2 Compute V π
k

= {V πk

(q)}q∈P and define the associated function Fπ
k

by choosing λ and µ according
to policy πk using Equation (12) and Equation (13).

3 Compute the smallest fixpoint vk in F
(
P,R

)n
of Fπ

k

.

4 If wk ∈ FS(P,R)n continue otherwise return wk.

5 Evaluate FR(wk), if FR(wk) = wk return wk otherwise take πk+1 s.t. FR(wk) = Fπ
k+1

(wk). Increment
k and go to 2.

5.4 Algorithm

For the third step of Algorithm 1, since P is finite and using Lemma 4.1, Fπ
l

is monotone and affine

F (P,R ∪ {+∞})n, we compute the smallest fixpoint of Fπ
l

by solving the following linear program see
[GGTZ07, Section 4]:

min

n∑
i=1

∑
q∈P

vi(q) s.t.
(
F
πl
k

k (v)
)
(q) ≤ vk(q), ∀k = 1, · · · , n, ∀q ∈ P (17)

Remark 5.1. As in the case of the earlier policy iteration algorithms in static analysis [CGG+05,
GGTZ07], an important issue is the choice of the initial policy, which may influence the quality of
the invariant which is eventually determined. In [CGG+05, GGTZ07], the initial policy was selected by
assuming that the infimum is the expression of the functional is attained by terms corresponding to guard
conditions, see specially § 4.2 in [GGTZ07]. The same principle can be used here in presence of guards.
At Section 6, we will detail the choice of initial policies when the set of templates is ”good”. Another
method to choose an initial policy is to run a few Kleene iterations, in combination with an acceleration
technique. This leads to a postfixpoint v of FR, and we select as the initial policy any policy attaining
the infimum when evaluating FR(v) (i.e., choose for πi(p) or πj(p) any Lagrange multiplier λ or pair of
Lagrange multipliers λ, µ attaining the infimum in Lemma 4.1).

Remark 5.2. To ensure the feasibility of the solution of (17) computed by the LP solver, we replace, when

possible, the constraint set by Fπ
l

(v)+ε ≤ v, where ε is a small constant (typically of the order of several
ulp(v), where ulp(v), which stands for “unit of least precision”, is the minimum over the coordinates i
of the differences between the nearest floating points around vi).

To obtain safe bounds even though we run our algorithm on machines which uses finite-precision
arithmetic, we should use a guaranteed LP solver (e.g. LURUPA see [Kei05]) to check that the solution

obtained verifies Fπ
l

(v) ≤ v.

In [AGG10, AGG11], we have proved that policy iteration on quadratic templates converges towards a
postfixpoint of our relaxed functional (Theorem 5.2 here). Combined with Theorem 4.1, this postfixpoint
is also a postfixpoint of abstract semantics.

Theorem 5.2. The following assertions hold:

1. FR(vl) 6= vl =⇒ FR(vl) < vl;

2. The sequence vl computed by Algorithm 1 is strictly decreasing;

3. The limit v∞ of the sequence vl is a postfixpoint: FR(v∞) ≤ v∞.

Theorem 5.2 ensures that Algorithm 1 produces a sequence of safe overapproximations of the numer-
ical invariant we want. Now we complete Theorem 5.2 by showing that actually, Algorithm 1 converges
to a fixed point.

Theorem 5.3 (Convergence of policy iteration). If Slater condition is always satisfied then policy iter-
ation converges to a fixed point.

Proof. Third point of Theorem 5.2 is FR(v∞) ≤ v∞. Now we have to prove that v∞ ≤ FR(v∞).

At third step of Algorithm (1), we compute the smallest fixed point of Fπ
k

. Since we have for all k ≥ 0,

vk+1 ≤ vk and by the fact that Fπ
k+1

is order-preserving we have: vk+1 = Fπ
k+1

(vk+1) ≤ Fπ
k+1

(vk) =
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FR(vk). Now by taking the infimum on k, we get v∞ = infk v
k+1 = infk v

k ≤ infk F
R(vk) and finally

using the commutation of decreasing inf thanks to Proposition 4.3 then infk F
R(vk) = FR(infk v

k) =
FR(v∞) and we conclude that v∞ ≤ FR(v∞).

6 Templates design and initial policies

The choice of the initial policies is a crucial point for the quality of the fixed point found by Policy
Iteration. For example, if we know that the values of the variables are bounded an unbounded first
invariant can be a fixed point and Policy Iteration stops. The choice depends on the template design
algorithm.

The set of reachable values taken by the variables of the analyzed program is bounded (in the sense
of a Rd-norm) iff there exists a function P such that P is level bounded (∀α ∈ R, {x ∈ Rd | P (x) ≤ α}
is bounded) and a sublevel of P is an invariant (i.e. contains all possible values taken by the variables of
the analysed program). Nevertheless, finding both invariant function (relation) and invariant level seems
to be difficult and in a first time, in template design, we only focus on invariant relations. It means that
we are looking for a function such that all sublevels are invariant by program updates (assignments and
guarded assignments). We can formulate the problem as follows.

Problem 6.1. Find a function P : Rd → R such that:

1. For all α ∈ R there exists β ∈ R+ such that P (x) ≤ α =⇒ ‖x‖qq ≤ β.

2. For all i ∈ A, for all vi ∈ R, P (x) ≤ vi =⇒ P (Ti(x)) ≤ vi.
3. For all i ∈ I, for all vi ∈ R, ri(x) ≤ 0 ∧ P (x) ≤ vi =⇒ P (Ti(x)) ∈ vi;
The norm ‖ · ‖q denotes the `q-norm on Rd. In the first condition, we can take α = 1 since the problem

is homogeneous. Rewriting Problem 6.1 as constrained optimisation problem, the problem becomes to
find a function P : Rd 7→ R such that:

1. there exists β ∈ R+, −∞ < sup{‖x‖2 | P (x) ≤ 1} ≤ β;

2. for all i ∈ A, for all vi ∈ R, −∞ < sup{P (Ti(x)) | P (x) ≤ vi} ≤ vi;
3. for all i ∈ I, for all vi ∈ R, −∞ < sup{P (Ti(x)) | P (x) ≤ vi, ri(x) ≤ 0} ≤ vi;

Using again Lagrange duality described at Subsection 3.1, a function P : Rd 7→ R would satisfy the
relaxed problem (18), would be a solution of Problem 6.1.

∃β ∈ R s. t infγ≥0 supx∈Rd{‖x‖2 + γ(1− P (x)) ≤ β;

∀ i ∈ A, ∀ vi ∈ R s. t infγi≥0 supx∈Rd{P (Ti(x)) + γi(vi − P (x)) ≤ vi;

∀ i ∈ I, ∀ vi ∈ R s. t infγi1,γi2≥0 supx∈Rd P (Ti(x)) + γi1(vi − P (x))− γi2r(x) ≤ vi;

(18)

For the two last conditions, if we introduce existence and universal quantifiers, the inequalities must hold
for all vi. This implies that µi and µi1 must be equal to 1 in order to have for i ∈ A (1−µi)vi = 0 and for
i ∈ I, (1−µi1)vi = 0. Indeed, otherwise, it suffices to take a small enough vi to contradict the inequalities.
Note that if Problem 18 has a solution then there exists a solution P which is greater than the q-power of
the `q-norm. Indeed for a solution (P ∗, β∗, γ∗, {γi2

∗}i∈I) of Problem 6.2, the function P = γ∗P + β − γ∗
for a positive real β ≥ β∗ such that β− γ∗ ≥ 0 is also a solution of Problem 6.2. Finally, good templates
are computed by solving Problem 6.2.

Problem 6.2. Find P : Rd → R, γi2 ∈ R+ such that:

1. ∀x ∈ Rd, P (x)− ‖x‖qq ≥ 0 ;

2. ∀ i ∈ A, ∀x ∈ Rd, P (x)− P (Ti(x)) ≥ 0;

3. ∀ i ∈ I, ∀x ∈ Rd, P (x)− P (Ti(x)) + γi2r(x) ≥ 0 ;

Assume we want to analyse a program with exactly one while infinite loop and either conditional
branchments or update inside. We claim that we can easily initialise Policy Iteration.

Claim 6.1 (Policy Iteration Initialisation). Let (P, β, γ, {γi2}i∈I) a solution to Problem 6.2 such that P
is greater than x 7→ ‖x‖qq, then the set of templates P = {x 7→ xqi , i = 1, . . . , d} ∪ {P} can be intialised as
follows.
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• Let i ∈ A and p′ ∈ P.

π0
i (p′) = p 7→

{
0 if p 6= P
1 if p = P

• Let i ∈ I and p′ ∈ P.

π0
i (p′) =

(
p 7→

{
0 if p 6= P
1 if p = P

, γi2

)
Moreover, the following polyhedron

{v ∈ F (P,R)n | Fπ
0

(v) ≤ v}

is nonempty and lfp(Fπ
0

) has finite coordinates.

Recall that, for a linear discrete dynamical system x := Ax, a quadratic function x 7→ xᵀLx, where L
is a symmetric matrix, is called Lyapunov function iff: L is positive definite i.e. xᵀLx > 0 for all nonzero
x and L − AᵀLA is positive definite. Suppose there exists only one (convergent) linear update in the
analyzed program without guards (condition on i ∈ I is removed), then (x 7→ xᵀLx, 1, 1) is a solution
of Problem 6 for every Lyapunov function x 7→ xᵀLx. An algorithm to compute automatically floating
points certified Lyapunov functions for while infinite loops and one (guarded) affine update has been
developed in [DM12].

7 Application to quadratic templates

7.1 Quadratic templates and Shor’s semi-definite relaxation scheme

In this section, we instantiate the set P to only contain quadratic functions.

Definition 7.1. A template p ∈ P is a quadratic template iff it can be written as:

x 7→ p(x) = xTApx+ bTp x,

where Ap is a d× d symmetric matrix (in particular Ap can be a zero matrix), xT denotes the transpose
of a vector x, bp is a Rd vector.

Finding the maximal value of a non-concave quadratic function under convex or non-convex quadratic
constraints is known to be an NP-Hard problem, see [Vav90] for a discussion of complexity issues in
quadratic programming. Shor’s relaxation scheme (see [TN01, Section 4.3.1] or Shor’s original ar-
ticle [Sho87] for details) consists of over-approximating the value of a general quadratic optimization
problem by the optimal value of a semi-definite programming (SDP for short) problem, the latter being
computationally more tractable.

Indeed, SDP problems can be solved in polynomial time to an arbitrary prescribed precision by the
ellipsoid method [GLS88]. More precisely, let ε > 0 be a given rational, suppose that the input data of a
semi-definite program are rational and suppose that an integer N is known, such that the feasible set lies
inside the ball of the radius N around zero. Then an ε-optimal solution (i.e., a feasible solution the value
of which is at most at a distance ε from the optimal value) can be found in a time that is polynomial in
the number of bits of the input data and in − log ε. Moreover, an ε-solution of an SDP problem can also
be found in polynomial time by interior point methods [NN94] if a strictly feasible solution is available.
However, when the input is rational, no size on the bit lengths of the intermediate data is currently
known, so that the term “polynomial time” for interior point methods is only understood in the model
of computation over real numbers (rather than in bit model [GJ79]). The advantage of interior methods
is that they are very efficient in practice. We refer the reader to [PR97] for more information.

Shor’s relaxation scheme consists in computing the value (6) by solving a semi-definite program. We
introduce the matrix M(g), for a quadratic function g written as xTAgx+ bTg x+ cg and the matrix N(y)
for a real y defined as:

M(g) =

(
cg

1
2
bTg

1
2
bg Ag

)
, and N1,1(y) = y, Ni,j(y) = 0 if (i, j) 6= (1, 1) (19)

Let � denote the Löwner ordering of symmetric matrices, so that A � B iff all eigenvalues of B −A
are non-negative.

When we fix λ ∈ Rm+ , we have to maximize an unconstrained quadratic problem and the the maximum
is finite iff there exists η ∈ R such that, for all x ∈ Rd, f(x) −

∑m
i=1 λifi(x) ≤ η and since f , fi are
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quadratic functions, this is equivalent to xT (Af−
∑m
i=1 λiAfi)x+(bf−

∑m
i=1 λibfi +cf−

∑m
i=1 λicfi−η ≤ 0

for all x ∈ Rd which is equivalent to the fact that the matrix M(f)+ηN(−1)−
∑m
i=1 λiM(fi) is negative

semi-definite. Consequently, taking the infimum over λ ∈ Rm+ , we recover the value (6).
In conclusion, Shor’s relaxation scheme consists in solving the following SDP problem:

Min
λ∈Rm

+
η∈R

η s.t. M(f) + ηN(−1)−
m∑
i=1

λiM(fi)] � 0 (20)

which is equal to the value (6), hence an over-approximation of the optimal value of the problem (4).
We can use a verified SDP solver as VSDP [JCK07] to solve a SDP problem.

Another advantage to instantiate quadratic templates is that we remark that the functions of Lemma 4.1,
V λi and V λ,µi are the value of an unconstrained quadratic maximization problem. So, the functions V λi and
V λ,µi can be determined algebraically. Moreover, V λi (p) and V λ,µi (p) can take the value +∞ if the matrices
associated to the quadratic functions x 7→ p◦T (x)−

∑
q∈P λ(q)q(x) and x 7→ p◦T (x)−

∑
q∈P λ(q)q(x)−

µr(x) are not negative semi-definite. Furthermore, the latter matrices depend on λ ∈ F (P,R+) and on
a couple (λ, µ) ∈ F (P,R+) × Rd+. So, to ensure the finiteness of the value, it suffices to choose λ (or a
couple (λ, µ) in the case of tests) such that the corresponding matrix is negative semi-definite. We denote
by A•, the Moore-Penrose general inverse of A, which can be defined as limε→0 A

T (AAT + εId)−1. The
following proposition shows how to evaluate the functions V λi and V λ,µi . We only consider the evaluation
of V λ,µi since the evaluation of the former function can be viewed as a special case of the evaluation of
the latter.

Proposition 7.1. Let i be in I and let an assignment T such that, for all q ∈ P, q ◦ T is a quadratic
function. Let p be in P and let (λ, µ) be a couple in F (P,R+)× R+, we write:

Ap(λ, µ) = Ap◦T −
∑
q∈P

λ(q)Aq − µAr

Bp(λ, µ) = bp◦T −
∑
q∈P

λ(q)bq − µbr

Cp(λ, µ) = cp◦T −
∑
q∈P

λ(q)cq − µcr

If (λ, µ) ∈ F (P,R+)× R+ satisfies A(λ, µ) � 0 and Bp(λ, µ) ∈ Im(A(λ, µ)) then:

V λ,µi (p) = −1

4
Bp(λ, µ)TAp(λ, µ)•Bp(λ, µ) + Cp(λ, µ).

Otherwise V λ,µi (p) = +∞.

7.2 A detailed example

Now we give details on the harmonic oscillator of Example 1. The program of this example which is given
at Figure 2 implements an Euler explicit scheme with a small step h = 0.01, that is, which simulates the
linear system (x, v)T = T (x, v)T with

T =

(
1 h
−h 1− h

)
We want to use the information of a Lyapunov function L of the linear system T to compute bounds
on the values taken by the variables x and v of the simulation: the function (x, v) :7→ (x, v)L(x, v)T

furnishes a Lyapunov function with

L =

(
2 1
1 3

)
Recall that Lyapunov functions for linear updates are solution of Problem 6.2. We also use the quadratic
functions (x, v) 7→ x2 and (x, v) 7→ v2 which corresponds to interval constraints. We introduce the set of
templates P = {x, v, L} and below the program it is described the semantic equations for all the three
control points. The set of templates P is thus good set of templates in the sense of Section 6 and we can
use Theorem 6.1. Now we are going to focus on the third coordinate of

(
FR(v)

)
(p). Let us consider, for

example, p = x, we get:
(
FR3 (v)

)
(x) =

inf
λ∈F(P,R+)

sup
(x,v)∈R2

∑
q∈P

λ(q)w2(q) + (x, v)

((
1− λ(x) h/2
h/2 h2 − λ(v)

)
− λ(L)L

)
(x, v)T (21)
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x = [ 0 , 1 ] ;
v = [ 0 , 1 ] ; [ 1 ]
h = 0 . 0 1 ;
whi l e ( t rue ) { [ 2 ]

u = v ;
v = v∗(1−h)−h∗x ;
x = x+h∗u ; [ 3 ] }

F ]1(w)(p) = {x(x, v) ≤ 1, v(x, v) ≤ 1, L(x, v) ≤ 7}
F ]2(w)(p) = (sup{w?1(p), w?3(p)})†
F ]3(w)(p) = sup

(x,v)∈(w2)?
p(T (x, v))

Figure 2: Implementation of the harmonic oscillator and its semantics in F
(
P,R

)3
By introducing the following symmetric matrices, we can rewrite (21) as Equation (22):

M(x) =

0 0 0
0 1 0
0 0 0

 , M(v) =

0 0 0
0 0 0
0 0 1

 and M(x ◦ T ) =

0 0 0
0 1 h/2
0 h/2 h2


(
FR3 (w)

)
(x) = Min

λ∈F(P,R+)
η∈R

η s.t. M(x ◦ T ) + ηN(−1) +
∑

q=x,v,L

λ(q)
(
N(w2(q))−M(q)

)
� 0 (22)

To initialize Algorithm 1, we choose a policy π0 following Theorem 6.1. For the third coordinate of FR,

we have to choose a policy π0
3 such that V

π0
3

3 (p) is finite for every p = x, v, L. We can start, for example,
by:

π0
3(x) = (0, 0, 1), π0

3(v) = (0, 0, 1), π0
3(L) = (0, 0, 1) .

This consists, for p = x, in taking λ(x) = λ(v) = 0 and λ(L) = 1 in (21). By Proposition 7.1 we find:

V
π0
3

3 (x) = sup(x,v)∈R2(x, v)

(
−1 h/2− 1

h/2− 1 h2 − 3

)
(x, v)T = 0

V
π0
3

3 (v) = sup(x,v)∈R2(x, v)

(
h2 − 2 h(1− h)− 1

h(1− h)− 1 (1− h)2 − 3

)
(x, v)T = 0

V
π0
3

3 (L) = sup(x,v)∈R2(x, v)(TTLT − L)(x, v)T = 0

The solution of the maximization problems are zero since all the three matrices are negative definite (i.e.
a matrix B is negative definite iff xtAx < 0 for all x 6= 0). The third matrix TTLT−L is negative definite
since L satisfy the Lyapunov condition for the discrete linear system (x, v) = T (x, v). To compute the

least fixpoint of Fπ
0

, we solve the following linear program (see (17)):

min

3∑
i=1

∑
p∈P

βi(p)

β2(L)≤β3(x), β2(L)≤β3(v), β2(L)≤β3(L)

β3(x)≤β2(x), β3(v)≤β2(v), β3(L)≤β2(L)

1≤β2(x), 1≤β2(v), 7≤β2(L)

1≤β1(x), 1≤β1(v), 7≤β1(L)

Using solver Linprog, we find:

u0
1(x) = 1.0000 u0

2(x) = 7.0000 u0
3(x) = 7.0000

u0
1(v) = 1.0000 u0

2(v) = 7.0000 u0
3(v) = 7.0000

u0
1(L) = 7.0000 u0

2(L) = 7.0000 u0
3(L) = 7.0000
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{x2 ≤ 7, v2 ≤ 7, 2x2 + 3v2 + 2xv ≤ 7}

{x2 ≤ 4.1723, v2 ≤ 2.7724, 2x2 + 3v2 + 2xv ≤ 7}
{x2 ≤ 3.9386, v2 ≤ 2.5940, 2x2 + 3v2 + 2xv ≤ 7}

{x2 ≤ 3.6079, v2 ≤ 2.3876, 2x2 + 3v2 + 2xv ≤ 7}
{x2 ≤ 3.5051, v2 ≤ 2.3353, 2x2 + 3v2 + 2xv ≤ 7}

{x2 ≤ 3.5000, v2 ≤ 2.3333, 2x2 + 3v2 + 2xv ≤ 7}

Figure 3: Successive templates along policy iteration, at control point 2, for the harmonic oscillator.

Using again Yalmip with the solver SeDuMi, the vector w is not a fixpoint of FR, so we get the new
following policy:

π1
3(x) = (0, 0, 0.596), π1

3(v) = (0, 0, 0.3961), π1
3(L) = (0, 0, 0.9946) .

Finally, after 5 iterations we find that the invariant of the loop i.e. w?2 at control point 2 is the set:

{x2 ≤ 3.5000, v2 ≤ 2.3333, 2x2 + 3v2 + 2xv ≤ 7} .

We draw w?2 at each iteration of Algorithm 1 in Figure 3.

This method is to be compared with the classical Kleene iteration with widening. On this example, we
find without widening x2 ≤ 3.5000, v2 ≤ 2.3333 and 2x2 + 3v2 + 2xv ≤ 7 in 1188 iterations whereas with
the acceleration technique described Subsection 5.2 we find x2 ≤ 6.0000, v2 ≤ 4.0000 and 2x2+3v2+2xv ≤
10 in 15 iterations.

8 Conclusion and Future Work

We define Policy Iteration algorithm in a general setting using a finite domain of templates. We prove
that Policy Iteration algorithm converges to a fixed point of the relaxed semantics. This result allows us to
use characterization tools as defined [AGG14] to check whether the solution found is the smallest solution
of the relaxed functional. We should propose a syntactic analyse of a code to determine automatically a
method to solve the relaxed functional and a corresponding policy when it is possible.
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