
Safety Contracts for Timed Reactive
Components in SysML

Iulia Dragomir, Iulian Ober, and Christian Percebois

Université de Toulouse - IRIT
118 Route de Narbonne, 31062 Toulouse, France

{iulia.dragomir,iulian.ober,christian.percebois}@irit.fr

Abstract. A variety of system design and architecture description lan-
guages, such as SysML, UML or AADL, allows the decomposition of
complex system designs into communicating timed components. In this
paper we consider the contract-based specification of such components.
A contract is a pair formed of an assumption, which is an abstraction of
the component’s environment, and a guarantee, which is an abstraction
of the component’s behavior given that the environment behaves accord-
ing to the assumption. Thus, a contract concentrates on a specific aspect
of the component’s functionality and on a subset of its interface, which
makes it relatively simpler to specify. Contracts may be used as an aid for
hierarchical decomposition during design or for verification of properties
of composites. This paper defines contracts for components formalized
as a variant of timed input/output automata, introduces compositional
results allowing to reason with contracts and shows how contracts can
be used in a high-level modeling language (SysML) for specification and
verification, based on an example extracted from a real-life system.

1 Motivation and Approach

The development of safety critical real-time embedded systems is a complex and
costly process, and the early validation of design models is of paramount impor-
tance for satisfying qualification requirements, reducing overall costs and increas-
ing quality. Design models are validated using a variety of techniques, including
design reviews [24], simulation and model-checking [19, 25]. In all these activities
system requirements play a central role; for this reason processes-oriented stan-
dards such as the DO-178C [22] emphasize the necessity to model requirements
at various levels of abstraction and ensure their traceability from high-level down
to detailed design and coding.

Since the vast majority of systems are designed with a component-based ap-
proach, the mapping of requirements is often difficult: a requirement is in general
satisfied by the collaboration of a set of components and each component is in-
volved in satisfying several requirements. A way to tackle this problem is to have
partial and abstract component specifications which concentrate on specifying
how a particular component collaborates in realizing a particular requirement;
such a specification is called a contract. A contract is defined as a pair formed
of an assumption, which is an abstraction of the component’s environment, and
a guarantee, which is an abstraction of the component’s behavior given that the
environment behaves according to the assumption.

The justification for using contracts is therefore manyfold: support for re-
quirement specification and decomposition, mapping and tracing requirements

to components and even for model reviews. Last but not least, contracts can sup-
port formal verification of properties through model-checking. Given the right
composability properties, they can be used to restructure the verification of a
property by splitting it in two steps: (1) verify that each component satisfies
its contract and (2) verify that the network of contracts correctly assembles
and satisfies the property. Thus, one only needs to reason on abstractions when
verifying a property, which potentially induces an important reduction of the
combinatorial explosion problem.

Our interest in contracts is driven by potential applications in system engi-
neering using SysML [23], in particular in the verification of complex industrial-
scale designs for which we have reached the limits of our tools [16]. In SysML
one can describe various types of communicating timed reactive components; for
most of these, their semantics can be given in a variant of Timed Input/Output
Automata (TIOA) [21]. For this reason, in this paper we concentrate on defining
a contract theory for TIOA. This contract theory is applied on a SysML case
study extracted from real-life.

2 A Meta-Theory for Contract-based Reasoning

Our contract theory is an instance of the meta-theory proposed in [27] and later
detailed in [26], which formalizes the relations that come into play in a contract
theory and the properties that these relations have to satisfy in order to sup-
port reasoning with contracts. The term meta-theory refers to the fact that the
formalism used for component specification is not fixed, nor the exact nature of
certain relations defined on specifications (conformance, refinement under con-
text). In order to obtain a concrete contract theory for a particular specification
formalism one has to define these relations such that certain properties, pre-
required by the meta-theory, are satisfied. In return, this meta-theory provides
a ready-to-use contract-based methodology.

The purpose of this methodology is to support reasoning with contracts in a
system obtained by hierarchical composition of components. At any level of the
hierarchy, n components K1, ...,Kn are combined to form a composite component
K1 ‖ ... ‖ Kn, where ‖ denotes the parallel composition operator. Then verifying
that the composite satisfies a global property ϕ runs down to checking that the
contracts implemented by K1, ...,Kn combine together correctly to ensure ϕ.
This avoids the need to directly model-check the composite to establish ϕ and,
so, alleviates the combinatorial explosion of the state space. The contracts being
specified by more abstract automata, one can assume that their composition will
be reduced.

The reasoning proceeds as follows: for each component Ki, a contract Ci is
given which consists of an abstraction Ai of the behavior of Ki’s environment,
and an abstraction Gi that describes the expected behavior of Ki given that
the environment acts as Ai. Fig. 1 presents three components K1, K2 and K3

and a corresponding set of contracts C1, respectively C2 and C3. Step 1 of the
reasoning consists in verifying that each component is a correct implementation
of the contract, i.e. the component satisfies its contract. The satisfaction relation
is directly derived from a more general one named refinement under context. The
purpose of the latter is to model that a component Ki is a correct refinement of
the specification Kj in the given environment Ek. Thus, a component implements

A G

C A || G ⪯ φ

G1 G2

{C1, ..., Cn } dominates C

A1 G1

C1

A2 G2

C2

K1 K2

Ki ⊧ Ci,

S'

S

G3

A3 G3

C3

K3

Step 1) Satisfaction

Step 2) Dominance

Step 3) Conformance

satisfaction

copy of

bidirectional
communication

∀i

φ

⪯

E

AG

C-1

Fig. 1: Contract-based reasoning for a three-component subsystem ([26]).

a contract if and only if refinement under context holds between the component
Ki and the guarantee Gi in the environment Ai.

Step 2 of the reasoning consists in defining a contract C = (A,G) for the
composition K1 ‖ ... ‖ Kn and proving that the set of contracts {C1, C2, ..., Cn}
implies C. To do so, the meta-theory introduces a hierarchy relation between con-
tracts, called dominance: a set of contracts {C1, C2, ..., Cn} dominates a contract
C if and only if the composition of any valid implementations of C1, C2, ..., Cn is
an implementation of C. In a multi-level hierarchy, the second step can be applied
recursively up to a top-level contract, i.e. a contract for the whole (sub)system.

Finally, in the third step one has to prove that the top contract C = (A,G)
implies the specification ϕ. This is done by verifying that A ‖ G � ϕ, where
� is a conformance relation. This step is sufficient for proving that the whole
system satisfies ϕ if and only if either the assumption A is empty as it is the
case when the property is defined for the entire closed modeled system or A is
a correct abstraction of the environment E with which S communicates given
that S behaves like G, i.e. E satisfies the “mirror” contract C−1 = (G,A).

The reasoning strategy presented here assumes that the system designer de-
fines all the contracts necessary for verifying a particular requirement ϕ. How
these contracts are produced is an interesting question but it is outside the scope
of this paper.

The theoretical contribution of this paper is the instantiation of this meta-
theory for a variant of Timed Input/Output Automata [21], by choosing the
appropriate refinement relations and proving that they satisfy certain properties
needed for the meta-theory to be applied. Concretely, the difficulties of the theo-
retical work consisted in defining the conformance and refinement under context
relations such that one can reason in a contract framework only by handling
assumptions and guarantees once satisfaction has been proven. The refinement

relation has to satisfy the compositionality property and the soundness of circu-
lar reasoning, detailed in §4. Compositionality allows for incremental design by
incorporating parts of the environment into the component under study while
refinement under context holds at every step. Circular reasoning allows for inde-
pendent implementability by breaking the dependency between the component
and the environment.

The practical contribution of this paper is the application of the contract
framework to a case study modeled in SysML, which can be found in §5. Due to
space limitations we skip the syntactic details of how contracts are expressed in
SysML and we concentrate on describing the example, the property of interest
and the contracts involved in proving it. The relatively complex SysML language
aspects are detailed in [17].

3 Timed Input/Output Automata

Many mathematical formalisms have been proposed in the literature for modeling
communicating timed reactive components. We choose to build our framework
on a variant of Timed Input/Output Automata of [21] since it is one of the
most general formalisms, thoroughly defined and for which several interesting
compositional results are already available.

A timed input/output automaton (or component) defines a set of internal
variables of arbitrary types and clocks and a set of input actions I, output actions
O, visible actions V and internal actions H. We denote by E = I ∪ O ∪ V the
set of external actions that also gives the interface of the component and by
A = E ∪H the set of actions. The state space of an automaton is described by
the set of possible valuations of the set of variables. The state evolves either by
discrete transitions or by trajectories. A discrete transition instantly changes the
state and is labeled with an action from the mentioned sets. Trajectories change
the state continuously during a time interval.

The behavior of a TIOA is described by an execution fragment which is a
finite or infinite sequence alternating trajectories and discrete transitions. The
visible behavior of a TIOA is given by a trace, which is a projection of an ex-
ecution fragment on external actions and in which, from trajectories, only the
information about the elapsed time is kept, while information about the variable
valuations is abstracted away. For full definitions of all these notions, the reader
is referred to the long version of this paper [18] and to [21].

The difference between the TIOA of [21] and our variant is that in addition to
inputs and outputs, we allow for another type of visible actions; this is because,
in [21], when composing two automata, an output of one matched by an input of
the other becomes an output of the composite, which does not correspond to our
needs when using TIOA for defining the semantics of usual modeling languages
like SysML. Indeed, the matching between an input and an output results in a
visible action in SysML that is not further involved in any synchronizations.

Moreover, in the following we will limit our attention to trajectories that
are constant functions for discrete variables, and linear functions with derivative
equal to 1 for clocks, while [21] allows more general functions to be used as
trajectories. This restriction makes the model expressiveness equivalent to that
of Alur-Dill timed automata [1], and will be important later on as it opens
the possibility to automatically verify simulation relations between automata

(simulation is undecidable for the TIOA of [21]). However, this hypothesis is not
needed for proving the compositional results in §4.

The parallel composition operator for TIOA is based on binary synchroniza-
tion of corresponding inputs and outputs and on the interleaved execution of
other actions, like in [21]. The only difference is related to the interface of the
composite timed input/output automata: the input and output sets of the com-
posite are given by those actions not matched between components, while all
matched input-output pairs become visible actions. Two automata can be com-
posed if and only if they do not share variables and internal and visible actions.
Two automata that can be composed are called compatible components. As in
[21], we use timed trace inclusion as the refinement relation between components.

Definition 1 (Comparable components). Two components K1 and K2 are
comparable if they have the same external interface, i.e. EK1

= EK2
.

Definition 2 (Conformance). Let K1 and K2 be two comparable components.
K1 conforms to K2, denoted K1 � K2, if tracesK1

⊆ tracesK2
.

The conformance relation is used in the third step for verifying the satisfac-
tion of the system’s properties by the top contract: A ‖ G � ϕ, where A ‖ G
and ϕ have the same interface. It can be easily shown that conformance is a
preorder. The following useful compositional result (theorem 8.5 of [21]) can be
easily extended to our variant of TIOA:

Theorem 1. Let K1 and K2 be two comparable components with K1 � K2 and
E a component compatible with both K1 and K2. Then K1 ‖ E � K2 ‖ E.

4 Contracts for Timed Input/Output Automata

In this section we formalize contracts for TIOA and the relations described in §2
and we list the properties that we proved upon these and that make contract-
based reasoning possible.

Definition 3 (Environment). Let K be a component. An environment E for
the component K is a timed input/output automaton compatible with K for which
the following hold: IE ⊆ OK and OE ⊆ IK .

Definition 4 (Closed/open component). A component K is closed if IK =
OK = ∅. A component is open if it not closed.

Closed components result from the composition of components with comple-
mentary interfaces.

Definition 5 (Contract). A contract for a component K is a pair (A,G) of
TIOA such that IA = OG and IG = OA (i.e. the composition pair A ‖ G defines
a closed component) and IG ⊆ IK and OG ⊆ OK (i.e. the interface of G is a
subset of that of K). A is called the assumption over the environment of the
component and G is called the guarantee. The interface of a contract is that of
its guarantee.

The first step of the verification, as presented in §2, is to prove that the
modeled components are an implementation of the given contracts. For this,
we firstly define the refinement under context preorder relation which, in our
framework, is further based on conformance. The complete formal definition of
refinement under context can be found in [18].

Definition 6 (Refinement under context). Let K1 and K2 be two compo-
nents such that IK2

⊆ IK1
∪ VK1

, OK2
⊆ OK1

∪ VK1
and VK2

⊆ VK1
. Let E be

an environment for K1 compatible with both K1 and K2. We say that K1 refines
K2 in the context of E, denoted K1 vE K2, if

K1 ‖ E ‖ E′ � K2 ‖ E ‖ K ′ ‖ E′

where

– E′ is a TIOA defined such that the composition K1 ‖ E ‖ E′ is closed. E′

consumes all outputs of K1 not matched by E and may emit all inputs of K1

not appearing as outputs of E.
– K ′ is a TIOA defined similarly to E′ such that the composition of K2 ‖ E ‖

K ′ ‖ E′ is closed and comparable to K1 ‖ E ‖ E′.

Since we want to take into account interface refinement between components
and conformance imposes comparability, we have to compose each member of
the conformance relation obtained from refinement under context with an addi-
tional timed input/output automaton E′, respectively K ′, such that they both
define closed comparable systems. Both automata are uniquely defined by their
interfaces and can be automatically computed.

Furthermore, the particular inclusion relations between the interfaces of K1

and K2 in the previous definition are due to the fact that both K1 and K2 can be
components obtained from compositions, e.g., K1 = K ′1 ‖ K3 and K2 = K ′2 ‖ K3,
where IK′

2
⊆ IK′

1
, OK′

2
⊆ OK′

1
and VK′

2
⊆ VK′

1
. This happens in particular when

K ′2 is a contract guarantee for K ′1. Then, by composition, actions of K3 may be
matched by actions of K ′1 but have no input/output correspondent in K ′2.

Theorem 2. Given a set K of comparable components and a fixed environment
E for their interface, refinement under context vE is a preorder over K.

We derive the satisfaction relation from refinement under context.

Definition 7 (Contract satisfaction). A component K satisfies (implements)
a contract C = (A,G), denoted K |= C, if and only if K vA G.

We have introduced the notions and relations in order to verify that a compo-
nent is a correct implementation of a contract. The second step of the contract-
based verification methodology relies on the notion of dominance, introduced
informally in §2, which is formally defined in [26] as follows:

Definition 8 (Contract dominance). Let C be a contract with the interface
P and {Ci}ni=1 a set of contracts with the interface {Pi}ni=1 and P ⊆

⋃n
i=1 Pi.

Then {Ci}ni=1 dominates C if and only if for any set of components {Ki}ni=1
such that ∀i, Ki |= Ci, we have (K1 ‖ K2 ‖ · · · ‖ Kn) |= C.

In order to ease dominance verification by discarding components from now
on and to be able to apply the meta-theory, we prove that the following compo-
sitional results hold in our framework.

Theorem 3 (Compositionality). Let K1 and K2 be two components and E
an environment compatible with both K1 and K2 such that E = E1 ‖ E2. Then
K1 vE1‖E2

K2 ⇔ K1 ‖ E1 vE2
K2 ‖ E1.

Theorem 4 (Soundness of circular reasoning). Let K be a component, E
its environment and C = (A,G) the contract for K such that K and G are
compatible with each of E and A. If (1) tracesG is closed under limits, (2)
tracesG is closed under time-extension, (3) K vA G and (4) E vG A then
K vE G.

The definitions of closure under limits and closure under time-extension for a
set of traces are those given in [21]. Closure under limits informally means that
any infinite sequence whose finite prefixes are traces of G is also a trace of G,
while closure under time-extension denotes that any finite trace can be extended
with time passage to infinity. By making these hypotheses on G, G can only
express safety properties on K and cannot impose stronger constraints on time
passage than K. The proofs of all theorems presented here can be found in [18].

Then based on theorems 2, 3 and 4, the following theorem also proved in [18]
which is a variant of theorem 2.3.5 from [26] holds:

Theorem 5 (Sufficient condition for dominance). {Ci}ni=1 dominates C
if, ∀i, tracesAi , tracesGi , tracesA and traceG are closed under limits and under
time-extension and{

G1 ‖ ... ‖ Gn vA G
A ‖ G1 ‖ ... ‖ Gi−1 ‖ Gi+1 ‖ ... ‖ Gn vGi

Ai, ∀i

The above theorem specifies the proof obligations that have to be satisfied
by a system of contracts in order to be able to infer dominance in the second
step of the verification methodology presented in §2.

5 Application to a SysML Model: the ATV Solar Wing
Generation System Case Study

The contract-based reasoning method previously described is partially supported
by the OMEGA-IFx Toolset [7] for SysML models. The details of the SysML lan-
guage extended with contracts are left aside for space reasons and can be found
in [17]. In the following we present a case study extracted from the industrial-
grade system model of the Automated Transfer Vehicle (ATV) and we show how
contracts can be used for property verification. This case study consists of the
Solar Wing Generation System (SGS) [16] responsible for the deployment and
management of the solar wings of the vehicle. The SysML model used in the
following, provided by Astrium Space Transportation, was obtained by reverse
engineering the actual SGS system for the purpose of this study.

The ATV system model illustrated in Fig. 2 summarizes the three main com-
ponents involved in the case study and the bidirectional communications between
them: the mission and vehicle management (MVM) part that initiates the two
functionalities of the SGS (wing deployment and rotation), the SOFTWARE
part of the SGS that based on commands received from the MVM executes the
corresponding procedures and the HARDWARE part that consists of the four
wings. We focus here on the wing deployment mode on which we want to verify
the following property ϕ: after 10 minutes from system start-up, all four wings
are deployed.

The system explicitly models the redundancy of the hardware equipments
which aims to ensure fault tolerance. There are 56 possible failures (14 per wing)

BL_ATV
«block,root»

MVM1

SGS1

HARDWARE1

WING11

WING41

WING31

WING21
SOFTWARE1

C1
«block,contract»

C2
«block,contract»

C3
«block,contract»

C4
«block,contract»

C
«block,contract»

phi
«block,observer»

IBD_COMPLETE

Page 1 of 1

Fig. 2: Architecture of the SGS system including contracts (simplified view).

grouped in 3 classes depending on their target (thermal knives, hold-down and
release system and solar array driving group). The following hypothesis is made:
throughout any execution of the system, at most one hardware fault may occur
(1-fault tolerance). We are interested in verifying ϕ by taking into consideration
this hypothesis. But applying model-checking directly on the system leads to
combinatorial explosion and the verification does not finish. To give an idea
about the complexity of the model at runtime, the system contains 96 objects
that communicate through 661 port instances and 504 connectors. In [16] we
have shown the motivation for using contracts and we have sketched a proof
that remained to be formalized and verified. In the following we complete this
case study by proving the property ϕ with formalized contract-based reasoning.

Since the property ϕ is expressed with respect to the behavior of the four
wings that are contained in the HARDWARE block, with regard to the method-
ology of Fig. 1, the subsystem S can be identified in our case study with HARD-
WARE and the components Ki are represented by WINGi, i = 1, 4. The en-
vironment of the subsystem is given by the parts with which it communicates:
bidirectional communication is directly established between SOFTWARE and
HARDWARE, while SOFTWARE depends on the behavior of MVM. So, the
environment E of Fig. 1 is represented here by the composition of MVM and
SOFTWARE.

The first step of the methodology consists in defining a contract Ci = (Ai, Gi)
for each WINGi, and next proving that WINGi satisfies Ci, i = 1, 4. This step
checks the validity of the dependency relations between the wings and their cor-
responding contracts. In order to model a contract, first we need to identify the
environment of the component to which the contract is associated and to build
an abstraction from the point of view of the component. Thus, for WINGi the
environment is given by the environment of the subsystem HARDWARE and all
WINGj with j 6= i. We propose the following abstraction WAj for WINGj : the
wing has a not deployed status for at most 400 seconds and a deployed status
after 130 seconds, while all other received requests are consumed. The assump-
tion Ai is then given by the parallel composition of MVM, SOFTWARE and

WAj with j 6= i. This abstraction of the environment is sufficient to drastically
reduce the state space of the verification model, since the exponential explosion
in the original model is mainly due to the parallelism of the hardware pieces
which are abstracted to the three leaf parts WAj. We want to guarantee that
even if WINGi exhibits a failure it ends up being deployed after 400 seconds.

Contract Ci = (Ai, Gi) where

– Ai = MVM ‖ SOFTWARE ‖ (‖j 6=iWAj).
– Gi: the wing answers to requests about its status with not deployed from

startup up to 400 seconds or with deployed after 130 seconds and ignores
all other requests. Between 130 and 400 seconds it can answer either, non-
deterministically.

Since Ai is partially given by the concrete environment (MVM ‖ SOFTWARE)
and Ci has to define a closed system, we have to manually model the behav-
ior of Gi for all received requests. This constraint imposes to add as consuming
transitions in every state all requests corresponding to wing deployment process.
Furthermore, one can remark that this guarantee is stronger than the projection
of the property ϕ on WINGi. The abstraction WAj can also be subject to one
failure since this case was not excluded from its behavior. Then the fault toler-
ance property that we verify via contracts is stronger than the initial hypothesis:
we guarantee that the system is 4-fault tolerant if faults occur in separate wings.

The second step consists in defining a global contract C = (A,G) for HARD-
WARE and to prove that the contract is dominated by {C1, C2, C3, C4} repre-
sented in Fig. 2 by the dependency relation between contracts. We use as as-
sumption A the concrete environment of HARDWARE. The guarantee G is the
composition of the four Gi. All Ai, Gi, A and G as defined satisfy the conditions
for applying theorem 5.

Contract C = (A, G) where

– A = MVM ‖ SOFTWARE
– G : for each wing status interrogation it answers as not deployed for at

most 400 seconds and as deployed after at least 130 seconds, while all other
requests are ignored.

The last step consists in verifying that the composition A ‖ G conforms to ϕ,
illustrated by the dependency between the contract and the property. Verifying
that the environment satisfies the“mirror”contract is trivial since the assumption
A is the environment itself.

The proofs of all three steps have been automatically verified within the
OMEGA-IFx Toolset which translates SysML models in communicating timed
automata [7]. Since trace inclusion is undecidable, we use a stronger simulation
relation whose satisfaction implies trace inclusion. So, verifying simulation is
sufficient (albeit not necessary) in order to prove the satisfaction of the confor-
mance relation. A variant of this verification algorithm is implemented in the
IFx Toolset.

For each step of the verification methodology we have manually modeled
the contracts: assumptions as blocks that we had to connect via ports with the
other components and guarantees as independent components. The first step
gave 4 possible configurations with one concrete wing and 3 abstract ones that
were each verified with respect to all 14 possible failures. The average time in
seconds needed for the verification of the satisfaction relation for each contract

Table 1: Average verification time for each contract Ci per induced failure group.
Average verification time (s)

Type of induced failure Wing 1 Wing 2 Wing 3 Wing 4
Thermal knife 13993 6869 18842 11412

Hold-down and release system 12672 6516 16578 9980
Solar array driving group 11527 5432 13548 6807

with respect to each class of failures is presented in Table 1. Even though the
system model looks symmetrical, some hardware pieces not represented here
do not have a symmetrical behavior and due to their interconnections with the
wings the state space of system’s abstraction for WING1 and WING3 is larger
than the one of WING2 and WING4. For the second step, only one model
is created on which we verified all 5 proof obligations given by theorem 5: the
automatic validation of the global guarantee G and the automatic validation of
assumptions Ai. Modeling the assumptions Ai that play the role of guarantees
for dominance verification shows the symmetry of the MVM and SOFTWARE
behavior. This means that only one verification is in fact sufficient for proving
all 4 relations, verification that was realized in 9 seconds. The verification of the
guarantee G needed 1 second. Finally, the same model was used for verifying ϕ
that took 1 second.

6 Related Work

Contract-based specification and reasoning for communicating components has
been subject to intensive research recently. As mentioned in the beginning, our
contract theory for TIOA is an instance of the meta-theory of [26], which has
previously been applied for a number of other components formalisms: Labeled
Transition Systems (with priorities) [26], Modal Transition Systems [27], BIP
framework [2, 26] and Heterogeneous Rich Components [5]. To the best of our
knowledge, this is the first documented application of this meta-theory to Timed
Input/Output Automata.

Contract meta-theories have also been built on specification theories. The aim
of a specification theory is to provide a complete algebra with powerful operators
for logical compositions of specifications and for synthesis of missing components
(quotient), the main goal being to provide substitutability results allowing for
compositional verification. The meta-theory of [3] falls under this category. The
main differences with respect to [26] concern (1) the definition of contracts that
do not support signature refinement (a partial solution for this problem has
been proposed in [4]) and (2) the method for reasoning with contracts which
relies on a contract composition operator that is partially defined. However, the
meta-theory of [4] does not alleviate this problem. None of these two meta-
theories supports circular arguments nor defines a methodology for reasoning
with contracts. Moreover, the meta-theories do not provide means to formalize
requirements and to verify their satisfaction. Other approaches for reasoning
with contracts have been developed for interface theories [11, 12] and for logical
specifications [10]. A complete comparison between (meta-)theories is available
in [18].

Only the meta-theory of [3] has been instantiated for a variant of TIOA in [14,
15, 12] which is implemented in the ECDAR tool [13]. However, several aspects

of this specification theory make it unsuitable for representing the semantics of
timed components described in SysML or UML. The synchronization between
an input of one component and an output of another component becomes an
output of the composite, which equates to considering outputs as broadcasts
and which is not consistent with the UML/SysML semantics. Moreover, the
formalism forbids non-determinism due to the timed game semantics [6] and
does not handle silent transitions, which is problematic for representing the
semantics of complex components performing internal computation steps.

In addition, contracts in UML/SysML have until now been explored for the
specification of composition compatibility of components via interfaces [28] and
for the verification of pre/post conditions of operations as presented by [20]. Re-
cent work covers the use of pre/post condition contracts for modeling transfor-
mation of models [9] and for modeling the execution semantics of UML elements
[8]. To the best of our knowledge, our work is the first on using assume/guarantee
behavioral contracts for the verification of UML/SysML model requirements.

7 Conclusions

We have presented a contract framework for Timed Input/Output Automata and
results which allow contract-based reasoning for verifying timed safety properties
of systems of TIOA components. We have illustrated the method on a case
study extracted from an industrial-scale system model and we have showed how
contract-based reasoning can alleviate the problem of combinatorial explosion
for the verification of large systems.

The present work is a step further towards introducing contracts in SysML
and providing a full solution to that problem. In [17] we defined a suitable
syntax for contracts in SysML and a set of well-formedness rules that system
models must satisfy for reasoning with contracts. For the moment, some steps of
the method applied on SysML remain manual like modeling individual systems
for each contract satisfaction relation or for each dominance proof obligation.
Future work includes: (1) formalizing the semantic mapping between SysML
components and contracts and their TIOA counterparts and (2) providing means
for automatic verification by automated generation of proof obligations.

References

[1] R. Alur and D. L. Dill. A Theory of Timed Automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

[2] A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous Real-time Compo-
nents in BIP. In SEFM’06, pages 3 –12, 2006.

[3] S. Bauer, A. David, R. Hennicker, K. G. Larsen, A. Legay, U. Nyman, and A. Wa-
sowski. Moving from Specifications to Contracts in Component-Based Design. In
FASE’12, volume 7212 of LNCS, pages 43–58. Springer, 2012.

[4] S. Bauer, R. Hennicker, and A. Legay. Component Interfaces with Contracts on
Ports. In FACS’12, volume 7684 of LNCS, pages 19–35. Springer, 2013.

[5] L. Benvenuti, A. Ferrari, L. Mangeruca, E. Mazzi, R. Passerone, and C. Sofronis.
A contract-based formalism for the specification of heterogeneous systems. In
FDL’08. Forum on, pages 142–147. IEEE, 2008.

[6] T. Bourke, A. David, K. Larsen, A. Legay, D. Lime, U. Nyman, and A. Wasowski.
New Results on Timed Specifications. In WADT’10, volume 7137 of LNCS, pages
175–192. Springer, 2010.

[7] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF Toolset. In SFM’04,
volume 3185 of Lecture Notes in Computer Science, pages 237–267. Springer Berlin
/ Heidelberg, 2004.

[8] E. Cariou, C. Ballagny, A. Feugas, and F. Barbier. Contracts for model execution
verification. In ECMFA’11, pages 3–18, Berlin, Heidelberg, 2011. Springer-Verlag.

[9] E. Cariou, N. Belloir, F. Barbier, and N. Djemam. OCL contracts for the verifi-
cation of model transformations. ECEASST, 24, 2009.

[10] C. Chilton, B. Jonsson, and M. Kwiatkowska. Assume-Guarantee Reasoning for
Safe Component Behaviours. In FACS’12, volume 7684 of LNCS, pages 92–109.
Springer, 2013.

[11] C. Chilton, M. Kwiatkowska, and X. Wang. Revisiting Timed Specification The-
ories: A Linear-Time Perspective. In FORMATS’12, volume 7595 of LNCS, pages
75–90. Springer, 2012.

[12] A. David, K. G. Guldstrand Larsen, A. Legay, M. H. Møller, U. Nyman, A. P.
Ravn, A. Skou, and A. Wasowski. Compositional verification of real-time systems
using ECDAR. STTT, 14(6):703–720, 2012.

[13] A. David, K. Larsen, A. Legay, U. Nyman, and A. Wasowski. ECDAR: An En-
vironment for Compositional Design and Analysis of Real Time Systems. In
ATVA’10, volume 6252 of LNCS, pages 365–370. Springer, 2010.

[14] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. Methodologies
for Specification of Real-Time Systems Using Timed I/O Automata. In FMCO’09,
volume 6286 of LNCS, pages 290–310. Springer, 2010.

[15] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. Timed I/O
automata: a complete specification theory for real-time systems. In HSCC’10,
pages 91–100. ACM, 2010.

[16] I. Dragomir, I. Ober, and D. Lesens. A case study in formal system engineering
with SysML. In ICECCS’12, pages 189–198. IEEE Computer Society, 2012.

[17] I. Dragomir, I. Ober, and C. Percebois. Integrating verifiable Assume/Guarantee
contracts in UML/SysML. In ACES-MB’13. CEUR Workshop Proceedings, 2013.

[18] I. Dragomir, I. Ober, and C. Percebois. Safety Contracts for Timed Reactive
Components in SysML. Technical report, IRIT, 2013. Available at http://www.
irit.fr/~Iulian.Ober/docs/TR-Contracts.pdf.

[19] E. A. Emerson and E. M. Clarke. Characterizing Correctness Properties of Parallel
Programs Using Fixpoints. In ICALP’80, volume 85 of LNCS, pages 169–181.
Springer, 1980.

[20] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Commun.
ACM, 12(10):576–580, 1969.

[21] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of Timed
I/O Automata - Second Edition. Morgan & Claypool Publishers, 2010.

[22] RTCA Inc. Software Considerations in Airborne Systems and Equipment Certi-
fication. Document RTCA/DO-178C, 2011.

[23] OMG. Object Management Group – Systems Modeling Language (SysML), v1.1.
Available at http://www.omg.org/spec/SysML/1.1/, 2008.

[24] D. Parnas and D. Weiss. Active Design Reviews: Principles and Practices. In
ICSE’85. IEEE Computer Society, 1985.

[25] J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems
in CESAR. In Symposium on Programming, volume 137 of LNCS, pages 337–351.
Springer, 1982.

[26] S. Quinton. Design, vérification et implémentation de systèmes à composants.
PhD thesis, Université de Grenoble, 2011.

[27] S. Quinton and S. Graf. Contract-Based Verification of Hierarchical Systems of
Components. SEFM’08, pages 377–381, 2008.

[28] T. Weis, C. Becker, K. Geihs, and N. Plouzeau. A UML Meta-model for Contract
Aware Components. In UML’01, pages 442–456. Springer-Verlag, 2001.

http://www.irit.fr/~Iulian.Ober/docs/TR-Contracts.pdf
http://www.irit.fr/~Iulian.Ober/docs/TR-Contracts.pdf

	Safety Contracts for Timed Reactive Components in SysML

