
The ROSACE Case Study: From Simulink
Specification to Multi/Many-Core Execution

Claire Pagetti∗, David Saussié†, Romain Gratia∗, Eric Noulard∗, Pierre Siron∗
∗ONERA - Toulouse, France † Polytechnique Montréal - Canada

Abstract—This paper presents a complete case study - named
ROSACE for Research Open-Source Avionics and Control Engi-
neering - that goes from a baseline flight controller, developed
in MATLAB/SIMULINK, to a multi-periodic controller executing
on a multi/many-core target. The interactions between control
and computer engineers are highlighted during the development
steps, in particular by investigating several multi-periodic config-
urations. We deduced ways to improve the discussion between
engineers in order to ease the integration on the target. The
whole case study is made available to the community under an
open-source license.

I. INTRODUCTION

The purpose of the paper is twofold: first, to provide an
open-source avionic control engineering case study1 that can
be used as a benchmark, and second, to illustrate a way of
translating such a high level SIMULINK [1] specification down
to a multi-threaded code executing on a multi/many-core target
that is compliant with the high level requirements This case
study is analyzed with respect to real-time implementation and
ways to reduce as much as possible the effort on the integration
while preserving the correct behaviour.

A. Design of a parallel flight controller

We rely on a standard avionic development process but use
recent languages and tools to design a parallel flight controller
on a challenging to embed target. It is of paramount importance
to prepare the embedding of multi/many-core COTS [2], [3]
because they will be the only available processors on the market
and because they dramatically lack of predictability. The design
of a flight controller works as follows:
Step 1: Production of a multi-periodic controller. A multi-
periodic flight controller is developed in SIMULINK around a
given operating point [4]. The methodology to obtain such a
controller is described in Section II-A. Controllers are usually
verified and validated against several properties (i.e. stability,
performance, robustness). Since our objective is to validate the
real-time aspects, we mainly focus on time-domain performance
specifications on both the transient response and the steady-
state response. Four types of properties are analyzed on the
system response to a step input:
P1 : settling time, that is the time required to settle within

5% (resp. 1% or 2%) of the steady-state value;
P2 : overshoot, that is the maximum value attained minus the

steady-state value;

1The complete case study can be found on the svn repository https://svn.
onera.fr/schedmcore/branches/schedmcore-RTAS2014/Case_Study_RTAS.

P3 : rise time, that is the time it takes to rise from 10% to
90% of the steady-state value;

P4 : steady-state error, that is the difference between the input
and the output for a prescribed test input as t→∞.

The time-domain performance properties are illustrated in the
figure 1 for a step input. At this stage, these properties are
analyzed through SIMULINK simulations.

Overshoot

Settling time

Rise time

Steady−state

Time

Signal

Figure 1. Performance properties

Step 2: Coding. The discrete SIMULINK specification is then
translated within the PRELUDE/SCHEDMCORE framework. To
do so, each block, executing at a given rate, is translated as a
sequential C code and the multi-periodic assembly is translated
into a PRELUDE program [5]. Currently, those translations are
manual but future work could consider automatic translation
using tools detailed in Section V.

The designer can then simulate the code with the SCHEDM-
CORE toolbox [6]. The code has been instrumented in order
to generate SIMULINK-compliant traces, so that the designer
can compare the tracings obtained by the simulation of the
implementation with those of the high level design. Several
assembly versions can be constructed by varying the periods
and the precedence constraints in order to ease the integration.
This stage is described in Section III.
Step 3: Validation on the target. Finally, the designer can
integrate the implementation on the real target. To do so, the
multi/many-core must be used in a predictable way by relying
for instance on an appropriate execution model [7]. Such a
model is a set of rules to be followed by the designer in
order to avoid, or at least reduce, unpredictable behaviours. In
this work, we reuse some ideas from the literature: off-line
non preemptive partitioned schedule, static storage of code
and variables in the caches, explicit communication using the
network on chip (NoC). The experiments have been made on
the TILERA TILEMPOWERGX-36 platform [8].

To validate the performances with regard to the environment
dynamics, there are mainly three approaches: (1) hardware-in-
the-loop validation; (2) connecting the controller executing on

https://svn.onera.fr/schedmcore/branches/schedmcore-RTAS2014/Case_Study_RTAS
https://svn.onera.fr/schedmcore/branches/schedmcore-RTAS2014/Case_Study_RTAS

the multi/many-core with the SIMULINK dynamic model; (3)
implementing the dynamics model on the multi/many-core as
well with a sufficiently high frequency to represent a continuous
dynamics. We have chosen the last solution because the timings
to interconnect the controller and the aircraft dynamics on the
many-core are small and bounded, while interfacing the target
with SIMULINK would not be easy to prove correct. Again
tracings obtained during the real execution are compared with
the high level requirements. This stage is depicted in Section
IV.

B. Lessons learned

The described experiments helped us improving our un-
derstanding of the difficulties to (1) discuss between control
engineers and computer scientists and (2) to highlight the link
between the high level design and the low level real-time
choices.

a) Where do antagonist requirements come from?: From
the control engineers point of view, the more close to the
real dynamics the controller is, the more confidence he will
have in the result. Being close to the real dynamics means
executing controller sub-functions in sequence as fast as
possible (generating precedences) and as often as possible
(generating high frequencies). This results in very strong real-
time constraints for the integration. From the integrators point
of view, the less severe the real-time requirements are, the safer
the integration will be. Indeed, in practice, reducing frequencies
decreases the CPU usage, freeing time for other applications.
Reducing precedences among tasks increases the schedulability.
Therefore, a compromise between both sides must be found.

b) Ease the discussion: The taxonomies and concerns
differ in the two worlds. Control engineers consider (1) no
resource limitation in general. They are however aware that
delays will be introduced by the communication network
(between sensors/actuators and CPUs) and that restrictions
on the frequencies will be imposed by the CPUs; (2) properties
such as stability, robustness and performances; (3) validation
and verification on the closed loop. Computer engineers
consider (1) mainly the provisioning of the finite resources; (2)
local properties such as WCET computation, schedulability and
response time; (3) real-time analyses on the controller solely.
In particular, they do not handle the high level properties, such
as the properties P1-P4 of our flight controller.

There are two ways to ease the discussion. The first consists
in providing tools and methods to the control engineers to
precisely determine the real-time behaviours of the controller
(WCET or schedulability). Such an approach does not exist yet,
but there are good practices. For instance, standard controllers
avoid jitter because they are supposed to degrade the control
performance. The second approach consists in maintaining a
common view during the development by taking into account
the high-level properties at each development step. We follow
the second way by offering a first common information in the
form of tracings. This allows to quickly analyse the behaviour
of several low-level designs to check if the performance
properties are still valid.

c) Where compromise can be found: A civil flight con-
troller is quite robust and can support a relaxed implementation
as illustrated in the paper. In the future, flight controllers
will be more reactive due to the use of composite structure,
the reduction of fuel consumption and the intensification
of the traffic. On the other hand, achieving a predictable
implementation on next-generation processors will be rather
difficult. These developments will increase the role and the
complexity of finding a compromise. Therefore, the design
of flight controllers will require more automatic methods and
tools.

II. CASE STUDY: LONGITUDINAL FLIGHT CONTROLLER

We consider the longitudinal motion of a medium-range civil
aircraft in en-route phase, specifically the cruise and change
of cruise level subphases [9]. During the cruise subphase, the
autopilot maintains a constant altitude h (actually a specific
flight level FLxxx2) while the autothrottle (A/T) maintains the
airspeed Va. During a change of cruise level subphase (i.e. a
step climb), the autopilot commands a constant vertical speed
Vz (rate of climb), till capturing the new flight level. These
changes of flight level are mainly for fuel economy reasons;
the flight management system (FMS) executes step climbs
of 2000 ft, or even 4000 ft, when appropriate (e.g. FL300 →
FL320 → FL340 → FL360, figure 2).

Altitude

FL300

FL320

FL340

FL360

Flight time

Figure 2. Step climbs in en-route phase

A. Recap on flight control system design

The electronic flight control system remains a challenging
part of an aircraft design. As the aircraft dynamics vary
significantly within its flight envelope3, a single static controller
is generally insufficient to ensure stability and performance
on the whole operating domain. To this end, the controller
must somehow “evolve” with the flight condition [9]. For
decades now, the engineers have resorted to gain-scheduling
techniques to design electronic flight control systems [10],
[11]. Essentially, the gain-scheduling approach consists of
choosing a finite set of operating points (i.e., flight conditions)
distributed throughout the flight envelope and designing a
corresponding set of linear controllers to locally achieve
stability and performance. Afterwards, to fully cover the
operating domain, these linear controllers are interpolated
with scheduling variables representative of the flight condition.
The overall stability and performance are finally assessed

2For example, FL300 denotes a pressure altitude of 30000 ft.
3The operating domain where the aircraft can be flown, generally defined

in terms of altitude and Mach number.

by different mathematical methods and extensive time and
frequency validations (e.g., Monte-Carlo method). This is
nevertheless out of the scope of the paper.

As the common practice in automatic control is to design
continuous-time (analog) controllers, the flight control laws
must be digitalized in order to be implemented on the on-
board computers. This implies the choice of adequate sampling
periods. First the sampling period must be lower than the
system delay margin, that is the maximum pure delay that
the system can withstand before destabilizing. Moreover, to
preserve performance, one should ideally choose a sufficiently
low sampling period to reproduce as much as possible the
behaviour of the continuous-time controller.

B. Description of the case study

engine
200 Hz

elevator
200 Hz aircraft_dynamics

200 Hz

Vz_control
50 Hz

Va_control
50 Hz

altitude_hold
50 Hz

h_filter
100 Hz

Va_filter
100 Hz

Vz_filter
100 Hz

q_filter
100 Hz

az_filter
100 Hz

h_c
10 Hz

Va_c
10 Hz

Controller

Environment
simulation

T

!e

!ec

!thc

Vzc

Vz

h

az

q

Va

azf

hf

Vzf

qf

Vaf

Figure 3. Controller design

The case study is a multi-periodic extension of the mono-
periodic longitudinal control of Gervais and al [12]. A simple
yet representative longitudinal flight controller has been de-
signed in the MATLAB/SIMULINK environment for the flight
condition (h = 10000 m, Va = 230 m/s) which corresponds
to an average cruise condition. The controller was verified in
the continuous-time domain by studying the behaviour of the
aircraft in the neighbourhood of this flight condition. However,
the controller is not scheduled, meaning that it is likely to
perform poorly far from this flight condition.

The SIMULINK scheme in Figure 3 is actually the dis-
cretization of our original SIMULINK scheme. It is divided
into two parts: on the one hand, the Environment Simulation
part represents the real system that is to be controlled, that
is the aircraft as well as the engines and elevators, and,
on the other hand, the Controller part gathers the control
loops (altitude_hold, Vz_control, Va_control) as
well as filters. The goal of the longitudinal flight controller
is to track accurately altitude, vertical speed and airspeed
commands (resp. hc, Vzc and Vac). The airspeed control is
handled by the Va_control loop that maintains or tracks
the desired airspeed Vac

. The altitude control is split in two
stages; an altitude command hc is first translated into a vertical
speed command Vzc by the altitude_hold loop and the
Vz_control loop then tracks Vzc . During a step climb,

the controller logic is as follows: a constant vertical speed
command (Vzc = 2.5 m/s is first imposed so the aircraft
gains altitude, then, within 50 m of the target flight level, the
controller switches back to the altitude hold function to capture
the commanded altitude and to travel the last meters. This
ensures a climb at a low constant flight path angle, so the
passengers will not experience any discomfort. Without this
logic, a very steep climb could result from a direct altitude
demand.

The considered outputs are listed in Tab. I and are measured
by dedicated sensors. They are modelled as low-pass filters
with bandwidth reflecting the nature of the measured signals.

Table I
VARIABLES

Outputs

Vz vertical speed
Va true airspeed
h altitude
az vertical acceleration
q pitch rate

Filtered outputs

Vzf vertical speed
Vaf true airspeed
hf altitude
azf vertical acceleration
qf pitch rate

Reference inputs hc altitude command
Vac airspeed command

Commanded inputs Vzc vertical speed command
δec elevator deflection command
δthc throttle command

Aircraft inputs δec elevator deflection
T engine thrust

Discretization of the components Each component of the
Environment Simulation part is modelled by Ordinary Differ-
ential Equations (ODEs), usually as continuous-time nonlinear
state equations of the form ẋ = f(x, u, t) with state vector
x, input vector u and time t. They are approximately solved
by numerical methods like Euler or Runge-Kutta integration
methods with fixed or variable time steps. Usually, the smaller
the time step is, the more precise but time-consuming the
solution is.

Control engineers do not resort to the same approach
to digitalize their controllers. Indeed, from a programming
perspective, it is inconvenient to implement a controller
with a numerical integration routine such as Runge-Kutta
method. Moreover the discretization must preserve frequency-
domain characteristics as much as possible, so the performance
and stability requirements are still met. Therefore, dedicated
techniques [13] other than numerical integration are used
to convert a continuous-time controller K(s) to its discrete-
time version K(z); these techniques all lead to difference
equations. Among these techniques, the bilinear transformation
(also known as Tustin’s method) and the zero-order holder
method are the most popular ones. Moreover filters with specific
properties (e.g., bandwidth) can be designed directly in the
digital domain.

Rate choices The closed-loop system with the continuous-time
controller can roughly tolerate a pure time delay of 1 s before
destabilizing. The sampling period must then be chosen lower
than 1 s (1 Hz rate). Nevertheless, as we are not only interested

in preserving stability but performance as well, the sampling
period should be much lower, for instance 100 ms (10 Hz rate).
Considering realistic rates used in industry, the three controller
blocks are first digitalized with a 20 ms sampling period (50
Hz rate) whereas the filters work at a rate of 100 Hz to feed
the data. Finally, as the environment (aircraft+elevator+engine)
is supposed to model a continuous-time phenomenon, a greater
rate of 200 Hz is used.

C. Validation objective
The design process first focuses on the internal Va and Vz

loops (resp. Va_control and Vz_control blocks). We
analyse the properties P1 to P4 for separate step demands in
Va and Vz . Moreover the two outputs should be decoupled,
that is a demand in Va should slightly affect Vz , and vice versa.
Figure 4 illustrates time-responses for separate step inputs
obtained with SIMULINK. On the top figures, an airspeed
variation of 5 m/s from the initial airspeed Va = 230 m/s
is first commanded, while Vz lies around 0. On the bottom
figures, a vertical speed demand of Vzc = 2.5 m/s leaves
airspeed Va almost invariant. The demand Vzc = 2.5 m/s will
be the maximum vertical speed commanded by the altitude
controller. The quantified objectives are summarized in Tab. II.

0 10 20 30 40 50
229.95

230

230.05

230.1

230.15

230.2

Time (s)

V
a
 (

m
/s

)

0 10 20 30 40 50
−0.5

0

0.5

1

1.5

2

2.5

3

Time (s)

V
z
 (

m
/s

)

0 10 20 30 40 50
230

231

232

233

234

235

236

Time (s)

V
a
 (

m
/s

)

0 10 20 30 40 50
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Time (s)

V
z
 (

m
/s

)

Figure 4. Time-responses and decoupling for separate solicitations in Vac =
235m/s and Vzc = 2.5m/s

Table II
REQUIREMENTS AND VERIFICATION IN SIMULINK

Property Objective Results in
SIMULINK

P1 5% settling time Vz ≤ 10 s 8.22 s
Va ≤ 20 s 17.22 s

P2 Overshoot Vz ≤ 10% 4.72%
Va ≤ 10% 3.65%

P3 Rise time Vz ≤ 6 s 5.09 s
Va ≤ 12 s 11.6 s

P4 Steady-state error Vz ≤ 5% 0.83%
Va ≤ 5% 0.11%

The steady-state error (P4) for the decoupled approach is
considered as correct. This property is however analysed on a

step climb. Figure 5 illustrates a step climb of 1000 m asked
at t = 50 s. During the first 50 seconds, the aircraft maintains
an altitude of 10 km and an airspeed of 230 m/s. As the new
commanded altitude (11 km) is too high, the autopilot first
commands a constant vertical speed of Vzc = 2.5 m/s (top
right). The aircraft begins its ascent (top left) at constant vertical
speed (bottom right). At 10950 m (t = 437 s), the controller
logic switches back to altitude hold mode and smoothly brings
the aircraft to 11000 m with very slight overshoot. During the
whole maneuver, the airspeed Va stays around 230 m/s as
desired.

0 200 400 600
9.5

10

10.5

11

11.5

Time (s)

h
 (

k
m

)

0 200 400 600
−1

0

1

2

3

Time (s)

V
z

c

 (
m

/s
)

0 200 400 600
229

229.5

230

230.5

231

Time (s)

V
a
 (

m
/s

)

0 200 400 600
−1

0

1

2

3

Time (s)

V
z
 (

m
/s

)

Figure 5. Step climb of 1000m

III. IMPLEMENTATION

This section describes the coding in C+PRELUDE. We
illustrate how the control and computer engineers can interact
in order to simplify the integration. This can be reached
by investigating several multi-periodic configurations where
variations are made on the frequencies and the precedence
constraints.

A. Coding of the basic blocks

Each basic block is manually translated as C code in order
to obtain a simple coding and a complete traceability. However,
any automatic translation could work as long as the code can be
parametrized by the sampling period Ts. Note that we use the
same discretization methods as those selected in the SIMULINK
model.

The components of the Environment Simulation are dis-
cretized with Forward Euler method, as it has a much simpler
form than any other integration method. Moreover, the results
are sound with this approach. The sampling period Ts is
explicitely represented with a fixed integration step ∆ = 0.005
ms (for 200Hz).

The discretization of the three controllers is simple as the
only dynamic element is an integrator 1/s, which is usually
discretized with forward difference Ts/(z − 1). Therefore, the
sampling period Ts is explicit.

The discretization method that we used for the filters is the
zero-order hold approximation. As before, the discrete models
are implemented as difference equations, the coefficients of
which depend on the sampling period Ts. The relationship
between coefficient and Ts is complex, which means that the
discretized filter must be computed again for a new choice of
sampling period.

B. Coding of the assembly

The multi-periodic code generated by the SIMULINK toolbox
contains too many implicit choices. A better suited approach
should provide (1) explicit description (e.g. of the communica-
tion) and (2) independence with regards to the real execution,
in the sense that the functional results must always be the same
for a given input whatever the real-time execution applied by
the executive layer.

PRELUDE [5]4 is a formal language designed for this purpose.
It belongs to the category of synchronous data-flow languages
[14] and focuses on the real-time aspects of multi-periodic
systems. From a PRELUDE program the compiler generates a
set of dependent periodic tasks that preserves the semantics
of the original program. The preservation of the semantics
is warranted so that consuming task instances always use
data produced by the correct producing task instance. This
property is ensured thanks to two mechanisms: first, precedence
encoding enforces that a consuming task cannot execute before
the end of the producer, and second, a communication buffer-
based protocol similar to [15] is implemented.

PRELUDE reuses many concepts from the synchronous data-
flow language LUSTRE [16]. The variables and expressions
of a program denote infinite sequences of values called flows.
Each flow is accompanied with a clock, which defines the
instant during which each value of the flow must be computed.
PRELUDE follows a relaxed synchronous hypothesis (introduced
by [17]), which states that computations must end before their
next activation. A program consists of a set of equations,
structured into nodes. The equations of a node define its output
flows from its input flows. It is possible to define a node that
includes several subnode calls executed at different rates.

PRELUDE aims at integrating functions that have
been programmed in another language. These imported
functions must first be declared in the program. All
the basic blocks of the case study are in particular
declared as imported nodes. The syntax is the following:
imported node V a _ f i l t e r (Va : r e a l) r e t u r n s (Va_f : r e a l) wcet X

It consists of the signature of the node (type and number of
inputs and outputs) with a WCET. At this stage we may not
know this value, so we keep it undetermined. Imported node
calls follow the usual data-flow semantics: an imported node
cannot start its execution before all its inputs are available
and produces all its outputs simultaneously at the end of its
execution. Those imported nodes become the tasks populating
the task set.

4The PRELUDE compiler is available for download at
http://www.lifl.fr/˜forget/prelude.html

PRELUDE adds real-time primitives to the synchronous data-
flow model. Those operators can decelerate, accelerate or offset
flows. Real-time operators are formally defined using strictly
periodic clocks. A strictly periodic clock is a sequence of
instants that can be defined as a pair (period, offset). The
basic clock, defined as (1, 0), is the fastest clock and all
strictly periodic clocks are derived relatively from it. We
choose the basic clock with a period of 100µs. This choice is
left to the integrator: it must take into account the real-time
attributes of the tasks and the performance of the multi/many-
core target. In our case, the WCETs are very low (couples
of µs), communication on the NoC takes less than 35µs (if
the mapping respects some rules detailed in Section IV), and
the periods must be a multiple of the basic clock. Therefore
the tightest basic clock is 50µs. Any other basic clock must
be greater than 50µs (imposed by the platform) and must be
a divisor of 5000µs (imposed by the application). It can be
useful to reduce the basic clock if the schedule fails since
WCETs are multiple of the basic clock.

The reference inputs hc and Vac
become inputs flows of the

node. Those inputs are assumed at 10Hz (cf Figure 3) and are
therefore associated with the clock (1000, 0). The assembly
expressed below is equivalent to the SIMULINK design.
node a s s e m b l a g e (h_c , Va_c : r e a l r a t e (1 0 0 0 , 0))
r e t u r n s (d e l t a _ e _ c , d e l t a _ t h _ c : r e a l)
var Va , Vz , q , az , h : r e a l ;

Va_f , Vz_f , q_f , az_f , h_f : r e a l ;
Vz_c , d e l t a _ e , T : r e a l ;

l e t
h_f = h _ f i l t e r (h / ^ 2) ;
Va_f = V a _ f i l t e r (Va / ^ 2) ;
Vz_f = V z _ f i l t e r (Vz / ^ 2) ;
q_f = q _ f i l t e r (q / ^ 2) ;
a z _ f = a z _ f i l t e r (az / ^ 2) ;
Vz_c = a l t i t u d e _ h o l d (h_f / ^ 2 , h_c ∗^ 5) ;
d e l t a _ t h _ c = V a _ c o n t r o l

(Va_f / ^ 2 , Vz_f / ^ 2 , q_f / ^ 2 , Va_c ∗^ 5) ;
d e l t a _ e _ c = V z _ c o n t r o l

(Vz_f / ^ 2 , Vz_c , q_f / ^ 2 , a z _ f / ^ 2) ;
T = e n g i n e (d e l t a _ t h _ c ∗^ 4) ;
d e l t a _ e = e l e v a t o r (d e l t a _ e _ c ∗^ 4) ;
(Va , Vz , q , az , h)= a i r c r a f t _ d y n a m i c s

((0 .018645918123716 fby d e l t a _ e) , (4 3 2 1 9 . 8 5 7 5 fby T)) ;
t e l

The commands produced by the controller, δec and δthc ,
become outputs of the node. It is mandatory to express the
rate of the input while the rate of outputs is inferred by the
compiler. All other variables are declared as intermediate
flows. Then, after keyword let all the equations are written.
The first hf = h_filter(h/ˆ2) states that the node h_filter
produces the variable hf and consumes the flow h/ˆ2 which
is the deceleration by 2 of the flow h. Since h is produced
by the node aircraft_dynamics, we can deduce that h_filter
runs twice slower than aircraft_dynamics. This respects
the proportionality of the frequencies in Figure 3 where
aircraft_dynamics is at 200Hz and h_filter at 100Hz. We
can compute the clock of h_filter from the sixth equation:
Vzc = altitude_hold (hf/ˆ2, hc ∗ˆ5). The node altitude_hold
consumes hc ∗ˆ5; thus it runs 5 times faster than the input
hc. Since the node altitude_hold consumes also hf/ˆ2, we
deduce that altitude_hold executes twice slower than h_filter.
We deduce from the equations the following relationship

(compliant with Figure 3):

Node Frequency Clock Node Frequency Clock
altitude_hold 50Hz (200, 0) h_filter 100Hz (100, 0)
Va_filter 100Hz (100, 0) q_filter 100Hz (100, 0)
az_filter 100Hz (100, 0) Va_control 50Hz (200, 0)
Vz_control 50Hz (200, 0) engine 200Hz (50, 0)
elevator 200Hz (50, 0) ac_dynamics 200Hz (50, 0)

C. Variations in the assembly to relax real-time constraints

This first specification is very constrained in term of real-
time and the effort of integration will be stringent. Indeed, we
have reduced the frequencies by implementing a multi-periodic
controller instead of designing a mono-periodic that runs at
200 Hz. This decreases the CPU usage but the precedence
constraints imposed by the communication force several tasks
to execute in a very short interval. For instance, the functional
chain h → hf → Vzc → δec → δe produces the execution
shown in Figure 6. The sequence of tasks aircraft_dynamics,
h_filter, altitude_hold, Vz_control, elevator must execute in
less than 5ms every 20 ms.

aircraft_dynamics

h_filter

altitude_hold

Vz_control

elevator

Figure 6. Functional chain in the specification

Relaxing precedences. To relax the effort of integration, the
second precedence patterns in Figure 7 are better suited. Indeed,
the system becomes more parallelisable and/or WCET of tasks
with lower frequency can be increased. The unique difference
for coding the assembly in PRELUDE (named in that case
assemblage_v2) stands in the two equations:
T = e n g i n e ((1 .640222296162316 fby d e l t a _ t h _ c)∗ ^ 4) ;
d e l t a _ e = e l e v a t o r ((0 .018645918123716 fby d e l t a _ e _ c)∗ ^ 4) ;

Note that producing the same behaviour in SIMULINK is rather
complex. Note also that breaking the dependencies is done
with the fby operator, borrowed from LUCID SYNCHRONE
[18], that delays a flow by one period.

h_filter

altitude_hold

Vz_control

elevator

Figure 7. Relaxed functional chain

Relaxing periods. As illustrated previously, modifying the
assembly is very easy in PRELUDE. Since it is also simple to

generate the tracings, the control engineer can easily verify if
the controller performances are fulfilled. This opens the room
for testing many solutions.

In this paper, we will try three more assemblies that
reduce periods and precedences. Next assembly (named assem-
blage_v3) reduces some frequencies: h_filter, Va_filter, Vz_filter
are at 50Hz and altitude_hold is at 10Hz. For the three filters,
we have to change the rate of the input flow as follows:

h_f = h _ f i l t e r (h / ^ 4) ;

For altitude_hold, the equation becomes
Vz_c = a l t i t u d e _ h o l d (h_f / ^ 5 , h_c) ;

The equation of Vz_control has also to be modified as follow:
d e l t a _ e _ c = V z _ c o n t r o l (Vz_f , Vz_c∗^5 , q_f / ^ 2 , a z _ f / ^ 2) ;

In this version, dependencies are direct as in Figure 6, while
assemblage_v4 reuses those of Figure 7. In assemblage_v41,
we changed the dependencies while keeping the frequencies.
In assemblage_v5, we put Vz_control and Va_control at 25 Hz.

D. Validation of the coding

All the previous assemblies have been simulated on a PC
using SCHEDMCORE framework. To do so, we rely on the
simulator lscm_run-nort provided with SCHEDMCORE5. To
assess the correctness of the various assemblies, we compared
the time-responses to the same step climb simulated. Figure 8
superimposes the results of SIMULINK (Figure 5) and those of
all the assemblies for the same autopilot instructions. Overall,
there is no significant degradation and only the settling time
is slightly impacted by the modifications. Indeed, we play on
the rates and precedences that impact the response-times but
not the functional values (no significant impact on properties
P2 and P3). Finally, we observe that the controller is robust
to the relaxations. Since all results are satisfying, the different
assemblies can be integrated on the target and assessed at this
level.

IV. EXPERIMENTS

This section illustrates the feasibility of implementing the
parallel flight controller on a multi/many-core. This shows
that the abstract hypotheses made at the SIMULINK and the
PRELUDE levels are reasonable. In particular, the basic clock,
the relaxed synchronous hypothesis and the communication pro-
tocol can be implemented. We therefore describe in this section
the porting of the code on the TILERA TILEMPOWERGX-36.
We impose an execution model to enforce predictability on the
platform in order to respect as much as possible the safety
avionic standards.

A. TILERA description

The platform is equipped with a tiled microprocessor
composed of 36 tiles. Each tile can communicate with other
tiles, the peripherals and the external memory through a network
on chip (NoC). The external memory is composed of 32 GBits

5SCHEDMCORE is available on the svn repository https://svn.onera.fr/
schedmcore/branches/schedmcore-RTAS2014

https://svn.onera.fr/schedmcore/branches/schedmcore-RTAS2014
https://svn.onera.fr/schedmcore/branches/schedmcore-RTAS2014

0 200 400 600
9.5

10

10.5

11

11.5

Time (s)

h
 (

k
m

)

0 200 400 600
−1

0

1

2

3

Time (s)

V
z

c

 (
m

/s
)

55 60 65 70

229.85

229.9

229.95

230

230.05

230.1

Time (s)

V
a
 (

m
/s

)

50 60 70 80

0

0.5

1

1.5

2

2.5

Time (s)

V
z
 (

m
/s

)

Figure 8. Step climb of 1000m - Time-responses for the various assemblies
and original SIMULINK (--)

DDR3 accessible through memory controllers. The grid is a
6x6 matrix of tiles as shown in the figure below (extracted from
TILERA documentation [19]). Each tile is composed of the

Figure 9. Scheme of the tile grids

following elements [19]: (1) a single core clocked at 1.2 GHz
that owns two levels of cache (L1I-32KB, L1D-32KB, unified
L2-256KB), (2) a switch that manages the communication
over the network on chip, (3) a local clock accessible through
the TILERA API get_cycle_count. The NoC is composed of
five full-duplex sub-networks, each devoted to a particular
type of exchange. The network Shared Dynamic Network
(SDN) is the one used for exchanging data between tiles.
All communications with the external memory go through
the reQuest Dynamic Network (QDN) for write requests and
through the Response Dynamic Network for read requests
(RDN).

Three execution environments are provided with the platform:
(1) standard SMP LINUX environment, (2) Zero Overhead
LINUX (ZOL) or (3) bare-metal. The TILERA platform is
not built for real-time systems but for high performance or
networking applications. However, even if the most suitable
environment is bare-metal, ZOL offers rather promising real-
time predictability. The main features of ZOL [20, Chapter 7]
are:

1) processors are isolated from interrupts, like the shielding
approach promoted by [21]. The operating system does
no longer interfere in the execution unless the application
itself makes a system call. There is no interrupt handler;

2) there is a unique thread per processor. This ensures an
applicative isolation of CPU and local caches resources.

3) a complete TILERA configuration can mix tiles in ZOL,
in LINUX and bare-metal. In our experiments, a unique
core is under LINUX to boot the chip and all other tiles
are in ZOL, in particular those hosting the application.

Memory management. All environments support shared mem-
ory with builtin hardware coherency which may be disabled.
For our experiments, we keep the shared memory active and we
use one of the policies offered by TILERA for storing shared
variables. The cache homing policy permits to alleviate the
workload on the DDR by allocating each shared variable to a
home tile. When tile t reads the variable, either the variable is
in its own caches, otherwise instead of fetching the variable
directly from the RAM memory, it asks the variable home tile.
If the home tile has the data in its caches, it sends it directly
to the requesting tile t. Otherwise, it is the home tile duty
to fetch the variable from the RAM and then to send it to t.
The writing works also by interacting with the home tile and
invalidating the local caches containing the old value. Such
pattern of exchanges is illustrated in Figure 10, extracted from
TILERA documentation [20, §6].

Figure 10. Cache homing policy

Stressing benchmarks. We made several benchmarks to assess
the predictability of the TILERA platform. We first analysed
the impact on the execution times when several tiles access
concurrently the shared resources, such as DDR, local caches
and NoC. We particularly focused on the time to access the
local clock, to read/write data with the shared memory policies.

From the experimental observations, the mean time to access
the local clock is 60ns and the maximum time is 400ns. The
maximal value is rarely observed, around once every 10000
accesses. But we need to consider this value as the worst case.
There is a real impact on the read and write access times
when the number of concurrent tiles exceeds some bounds.
Below these bounds, the times are low and repeatable. Above
the bounds, a memory access can be delayed more than a
second. To determine the bounds, we apply quite the same
stressing benchmarks as for the Intel SCC [22]. An example
of a benchmark is: several tiles (from 2 to 36) modify a shared
variable hosted by a home tile and we measure the write access
times for each writer, including the home tile.

Finally, we can deduce some rules on the mapping to avoid
performance and predictability drops: (1) no more than 10 tiles
must simultaneously access in writing the same [shared] cached
memory location, (2) no more than 5 tiles must simultaneously
access in writing the DDR, (3) no more than 30 tiles must
simultaneously access in reading the same [shared] cached
memory location.

B. Real-time implementation

To start with, the integrator must first assess the WCET
of each task. Then, he/she must define an adequate execution
model. Finally, a dispatcher compliant with the execution model
must be developed for the TILERA TILEMPOWERGX-36.

1) WCET assessment: No static WCET analysis tool, such
as ABSINT [23] or OTAWA [24], is available for the TILERA
platform. Therefore, we used a measure-based approach, which
is not safe in general but we could hardly do better at this stage.
The evaluation was done on each task which was running in
sequence and in isolation. We measured the execution time
by surrounding the task call between two local clock reads.
Because of the variability of the local clock access and to
improve the reliability, we added some margin to the observed
execution times.

It was decided in Section III-B that the basic clock should run
at 100µs. Therefore, WCET must be expressed as multiple of
100µs. Moreover, inputs and outputs in PRELUDE are treated as
sensors and actuators. This entails that they must be associated
with a WCET. In our case, it could correspond to the delays
generated by the bus between sensors, calculator and actuators.
We imposed those values. WCETs are given in Tab. III.

Table III
WCET

Task WCET Task WCET
aircraft_dynamics 200 µs elevator 100 µs
altitude_hold 100 µs engine 100 µs
h_filter 100 µs q_filter 100 µs
Vz_filter 100 µs az_filter 100 µs
Va_filter 100 µs Va_control 100 µs

Vz_control 100 µs delta_e_c, Va_c, 500 µsdelta_th_c h_c

2) Execution model: Since we measured task execution
times as if they were a sequential code running in isolation,
we must use an execution model that fulfills those hypotheses.
First, the schedule must be non preemptive to respect the
sequential execution. It is best suited to avoid migration
to reduce unexpected interrupt. Partitioning also improves
predictability since it permits to uses a MIMD (“multiple
instruction, multiple data”) approach where the created binaries
are specific to particular cores.

We tested two mappings, excluding the core 0 dedicated for
initialization. Those mappings have been chosen manually. Any
valid mapping can be computed using a constraint programming
approach or a dedicated heuristic.

• map1: exactly one task on a tile;

• map2: grouping tasks with the same period on the same
tile. For assemblage with the strongest precedences, we
obtain the schedule shown Figure 11.

Figure 11. Off-line schedule - map2

Ensuring isolation is much more challenging. We promote the
storage of code and data in the local caches as in [7], [25]. This
prevents from unexpected applicative interactions. The tasks of
the case study are small enough to fit in the caches. If this was
not satisfiable, the designer must decompose, if possible, the
code into smaller size pieces. Otherwise, a task that overflows
the caches can run concurrently with locally stored tasks but not
with other tasks that overflow the caches. The communication
is done via shared memory and this contradicts the isolation
hypothesis. However, since the mapping respects the bounds
highlighted in Section IV-A, we can assume that the effect
is negligible on the execution times. Note that, data could be
exchanged with a message passing approach by relying on the
User Dynamic Network (UDN), the performances of which
are good for small size data. The home tile associated to a
data produced by task t is the tile where task t executes.

The PRELUDE semantics imposes also to ensure precedence
constraints between tasks. To fulfill this constraint, we choose
a tick-based approach, that is scheduling decisions are taken
only at discrete instants of a chosen granularity. We reuse the
tick gap introduced in [22], in order to cope with the imperfect
synchronization of local clocks and the communication delays.
The idea consists in leaving a gap between the end of a job’s
termination and the beginning of the next tick. To do so, we
add to each WCET a gap and in our case, the gap is 550ns
where

35 ns (communication delay) + 500 ns (clock precision)

WCET given in Tab. III already contain the gaps.
3) Dispatcher implementation: The local clocks of the

TILERA TILEMPOWERGX-36 are synchronous (i.e. no clock
drift between the local clocks) but they are not perfectly
synchronized because they do not boot at the same time. The
offsets between the cores are not handled by the hardware and
it is up to the user to manage a synchronization if needed.
We have encountered the same problem on the Intel Single-
chip Cloud Computer (SCC). The SCC bare-metal library
we developed provides means to synchronize the core local
clocks with a precision of 4 µs [22]. For the TILERA, we used
another synchronization algorithm based on barrier that leads
to a precision of 0.5 µs. It can hardly be reduced because of
the worst time required to read the local clock. But in general,
the observed precision is 50ns. The synchronization algorithm
works as follows:

• N shared variables are homed on tile 0.
• 1 shared variable is homed on each tile.
• When tile i starts, it sets the N variables to 0. Then, the

tile makes an active wait: as long as it did not receive
any value on its own variable, it continuously sets to 1
the i-th of core 0.

• Tile 0 works differently. It sets all its homed variables to
0 and waits actively until all tiles are awaken. When this
occurs, it sets the variables hosted by the other tiles to 1.

• When a tile detects that its local variable is set to 1, it
starts a waiting of 1 s using its local clock. After this
second, it reads the current time. This value becomes its
local offset.

• Then the shared global time = local time − local offset.
Since no migration is allowed and since the task sequence

is known in advance by every processor, we do not need
timer interrupts for implementing the sequence. Each processor
knows the static task sequence it has to run. When a processor
needs to wait the next cycle, it does a busy wait (spin).

C. Results

We obtain almost the same results as those observed at
PRELUDE level. They are also superimposed in Figure 8.

V. RELATED WORK

Control command and real-time: [26], [27] proposed a
flexible real-time control system where the scheduler uses
feedback from execution-time measures to adjust the periods
in order to optimize the performances. Such a solution is not
possible on non predictable target such as multi/many-core.
The authors of [28] accept that WCETs are not computable,
due to the new processors technologies. They analyse the end-
to-end latencies of the control from sensors to actuators and
show that some variability in execution times is acceptable.

Multi-periodic specification: Using a formal language
for the description of dependent multi-rate task sets has been
advocated by Baruah [29]. As already mentioned, SIMULINK
[1] allows the description of multi-periodic systems in terms
of blocks communicating through data-flows or events. How-
ever expressing complex communication patterns is difficult.
Modelica also offers the possibility to describe multi-periodic
assemblies [30]. The semantics relies on the use of strictly
periodic clocks as in PRELUDE. The authors of [31] described
a possible way to write multi-periodic SCADE systems but the
toolbox has not been extended to consider such extension. The
authors of [32] also consider SCADE extension with finite state
automata in order to express multi-periodic systems.

Compilation of multi-periodic specifications: Each basic
component can be automatically translated into C code:
with SIMULINK toolbox; with GENEAUTO toolbox6; with
a certified compiler as proposed in [33], [34]; or with an
automatic SIMULINK to SCADE translator (as proposed in [35]),
combined with the SCADE suite compiler. The multi-periodic
configuration can be translated with SIMULINK, leading to a

6http://geneauto.gforge.enseeiht.fr/

rate monotonic schedule. We can also mention the work of
[36] that provides a sound semantics of SIMULINK operators.
The authors of [37] particularly focus on the modular aspects
which is a complementary aspect for an automatic translation.

The authors of [38] have implemented a multi-threaded
compilation scheme for affine data-flow graphs, which also
allow to specify multi-periodic assembly. Authors of [39]
have developed a translation of SCADE programs to OASIS
implementation.

Concerning the predictable use of multi/many-core for hard
real-time, there is a large literature and we can mention the
surveys [40] and [41].

VI. CONCLUSION

We have experimented the design of a parallel avionic
longitudinal controller on a multi/many-core target. We have
illustrated throughout a series of experiments what kind of
discussion between control engineers and integrators can be
leveraged, in order to find a compromise between both sides
constraints.

The case study will be extended with a comprehensive flight
control system that will operate on the whole flight envelope.
Additional flight control laws will be integrated to cover the
different flight modes. Validation will also be expanded to
allow the observation of other criteria and possibly to allow
Monte-Carlo simulations.

Future work will consider more automatic translation from
the SIMULINK model, for instance by reusing and extending an
existing tool [34]. PRELUDE language could also be improved
by providing new features such as: (1) retrieving the strictly
periodic clocks computed by the compiler in the imported node
(indeed, the frequency of a discretized block has an impact on
the code); (2) introducing the notion of "don’t care" [42] in
order to generate many assemblies. The authors of [43] use a
MILP approach to determine where to introduce fby to break
precedence constraints.

VII. ACKNOWLEDGEMENT

The authors would like to thank the RTAS reviewers and
Daniel Lohmann for their constructive comments and valuable
suggestions that greatly improved the quality of the paper, as
well as Tobias Klaus and Florian Franzmann for their comments
and suggestions to improve on the usability of the actual case
study. They are also grateful to Frédéric Boniol for his careful
reading and helpful remarks.

REFERENCES

[1] The Mathworks, Simulink: User’s Guide, The Mathworks, 2009.
[2] M. Gatti, “Development and certification of avionics platforms on multi-

core processors,” in Tutorial Mixed-Criticality Systems: Design and
Certification Challenges, Embedded Systems Week, Montreal, Canada,
2013.

[3] J.-C. Laperche, “Multi/many-core in avionics systems,” in 4th Workshop
TORRENTS, Toulouse, France, 2013.

[4] C. Bérard, J. M. Biannic, and D. Saussié, Commande multivariable -
Application au pilotage d’un avion. Dunod, 2012.

[5] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens, “Multi-task
implementation of multi-periodic synchronous programs,” Discrete Event
Dynamic Systems, vol. 21, no. 3, pp. 307–338, 2011.

[6] M. Cordovilla, F. Boniol, J. Forget, E. Noulard, and C. Pagetti,
“Developing critical embedded systems on multicore architectures: the
prelude-schedmcore toolset,” in 19th International Conference on Real-
Time and Network Systems (RTNS’11), 2011, pp. 107–116.

[7] E. Betti, S. Bak, R. Pellizzoni, M. Caccamo, and L. Sha, “Real-time i/o
management system with COTS peripherals,” IEEE Trans. Computers,
vol. 62, no. 1, pp. 45–58, 2013.

[8] Tilera Corp., “Tile processor architecture - Overview for the TILEPro
Series,” Tech. Rep. UG120, 2013.

[9] B. L. Stevens and F. L. Lewis, Aircraft control and simulation, 2nd ed.
Hoboken, NJ : Wiley, 2003.

[10] W. J. Rugh and J. S. Shamma, “Research on gain-scheduling,” Automatica,
vol. 36, no. 10, pp. 1401–1425, 2000.

[11] D. Saussié, L. Saydy, O. Akhrif, and C. Bérard, “Gain scheduling with
guardian maps for longitudinal flight control,” AIAA Journal of Guidance,
Control and Dynamics, vol. 34, no. 4, pp. 1045–1059, 2011.

[12] C. Gervais, J.-B. Chaudron, P. Siron, R. Leconte, and D. Saussié, “Real-
time distributed aircraft simulation through HLA,” in 16th IEEE/ACM
International Symposium on Distributed Simulation and Real Time
Applications (DS-RT 2012), 2012.

[13] K. Ogata, Discrete-Time Control Systems, 2nd ed. Prentice Hall, 1994.
[14] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and

R. de Simone, “The synchronous languages 12 years later,” Proceedings
of the IEEE, vol. 91, no. 1, pp. 64–83, 2003.

[15] C. Sofronis, S. Tripakis, and P. Caspi, “A memory-optimal buffering
protocol for preservation of synchronous semantics under preemptive
scheduling,” in Proc. of the 6th International Conference on Embedded
Software (EMSOFT’06), Seoul, South Korea, Oct. 2006, pp. 21–33.

[16] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data-flow programming language LUSTRE,” Proceedings of the IEEE,
vol. 79, no. 9, pp. 1305–1320, 1991.

[17] A. Curic, “Implementing Lustre programs on distributed platforms with
real-time constraints,” Ph.D. dissertation, Université Joseph Fourier,
Grenoble, 2005.

[18] M. Pouzet, Lucid Synchrone, version 3. Tutorial and reference manual,
Université Paris-Sud, LRI, 2006.

[19] Tilera Corp., “Architecture Overview TILE-Gx,” Tech. Rep. UG130,
2013.

[20] ——, “Tilera Documentation: Gx MDE Programming Overview,” Tech.
Rep. UG 505, 2013.

[21] S. Brosky and S. Rotolo, “Shielded processors: guaranteeing sub-
millisecond response in standard linux,” in Parallel and Distributed
Processing Symposium, 2003. Proceedings. International, 2003.

[22] W. Puffitsch, E. Noulard, and C. Pagetti, “Mapping a multi-rate
synchronous language to a many-core processor,” in 19th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS 2013),
2013, pp. 293–302.

[23] R. Wilhelm and al., “The worst-case execution-time problem - overview
of methods and survey of tools,” ACM Trans. Embedded Comput. Syst.,
vol. 7, no. 3, 2008.

[24] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “Otawa: An open
toolbox for adaptive wcet analysis,” in 8th IFIP WG 10.2 International
Workshop Software Technologies for Embedded and Ubiquitous Systems
(SEUS 2010), 2010, pp. 35–46.

[25] F. Boniol, H. Cassé, E. Noulard, and C. Pagetti, “Deterministic execution
model on cots hardware,” in 25th International Conference Architecture of
Computing Systems (ARCS’12), ser. Lecture Notes in Computer Science,
vol. 7179. Springer, 2012, pp. 98–110.

[26] A. Cervin, “Integrated control and real-time scheduling,” Ph.D. disserta-
tion, Dept. of Automatic Control, Lund University, Sweden, Apr. 2003.

[27] O. Sename, D. Simon, and M. E. M. Ben Gaïd, “A LPV approach to
control and real-time scheduling codesign: application to a robot-arm
control,” in Proceedings of the 47th IEEE Conference on Decision and
Control (CDC’08), Cancun Mexique, 2008, pp. 4891–4897.

[28] P. J. Andrianiaina, D. Simon, A. Seuret, J.-M. Crayssac, and J.-C.
Laperche, “Weakening Real-time Constraints for Embedded Control
Systems,” INRIA, Rapport de recherche RR-7831, 2011.

[29] S. Baruah, “Semantics-preserving implementation of multirate mixed-
criticality synchronous programs,” in 20th International Conference on
Real-Time and Network Systems (RTNS’12), 2012, pp. 11–19.

[30] M. Otter, B. Thiele, and H. Elmquvist, “A library for synchronous control
systems in modelica,” in 9th International Modelica Conference, 2012.

[31] S. P. Jean-Louis Camus, Olivier Graff, “A verifiable architecture for
multitask, multi-rate synchronous software,” in 4th Embedded Real-Time
Software Congress (ERTS’08), 2008.

[32] M. D. Natale and H. Zeng, “Task implementation of synchronous finite
state machines,” in 2012 Design, Automation & Test in Europe Conference
& Exhibition (DATE 2012), 2012, pp. 206–211.

[33] N. Izerrouken, O. S. Y. Kai, M. Pantel, and X. Thirioux, “Use of formal
methods for building qualified code generator for safer automotive sys-
tems,” in 1st Workshop on Critical Automotive Applications: Robustness
& Safety (EDCC-CARS’10). ACM, 2010, pp. 53–56.

[34] T. Wang, A. Dieumegard, E. Feron, R. Jobredeaux, M. Pantel, and P.-L.
Garoche, “Autocoding of Computer-controlled Systems with Control
Semantics for Formal Verification (regular paper),” in Safe and Secure
Systems and Software Symposium (S5), 2012.

[35] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, “Translating discrete-
time Simulink to Lustre,” ACM Trans. Embedded Comput. Syst., vol. 4,
no. 4, pp. 779–818, 2005.

[36] N. Marian and Y. Ma, Translation of Simulink Models to Component-
based Software Models. <Forlag uden navn>, 2007, pp. 274–280.

[37] R. Lublinerman and S. Tripakis, “Modular code generation from triggered
and timed block diagrams,” in Proceedings of the 14th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS 02008).
IEEE Computer Society, 2008, pp. 147–158.

[38] A. Bouakaz and J.-P. Talpin, “Buffer minimization in earliest-deadline
first scheduling of dataflow graphs,” in SIGPLAN/SIGBED Conference
on Languages, Compilers and Tools for Embedded Systems (LCTES’13),
2013, pp. 133–142.

[39] S. Bliudze, M. Jan, and X. Fornari, “From model-based to real-time
execution of safety-critical applications: Coupling scade with oasis,” in
Embedded Real Time Software and Systems (ERTS’012), 2012.

[40] O. Kotaba, M. Paulitsch, S. Petters, H. Theiling, and J. Nowotsch,
“Multicore in real-time systems – temporal isolation challenges due
to shared resources,” in Workshop on Industry-Driven Approaches for
Cost-effective Certification of Safety-Critical, Mixed-Criticality Systems
(WICERT’13), 2013.

[41] A. Abel, F. Benz, J. Doerfert, B. Dörr, S. Hahn, F. Haupenthal, M. Jacobs,
A. H. Moin, J. Reineke, B. Schommer, and R. Wilhelm, “Impact of
resource sharing on performance and performance prediction: A survey,”
in 24th International Conference on Concurrency Theory (CONCUR’13),
2013, pp. 25–43.

[42] R. Wyss, F. Boniol, J. Forget, and C. Pagetti, “A synchronous language
with partial delay specification for real-time systems programming,” in
10th Asian Symposium Programming Languages and Systems (APLAS
2012), 2012, pp. 223–238.

[43] Z. Al-bayati, H. Zeng, M. D. Natale, and Z. Gu, “Multitask im-
plementation of synchronous reactive models with earliest deadline
first scheduling,” in 8th IEEE International Symposium on Industrial
Embedded Systems (SIES 2013), 2013, pp. 168–177.

	Introduction
	Design of a parallel flight controller
	Lessons learned

	Case Study: Longitudinal Flight Controller
	Recap on flight control system design
	Description of the case study
	Validation objective

	Implementation
	Coding of the basic blocks
	Coding of the assembly
	Variations in the assembly to relax real-time constraints
	Validation of the coding

	Experiments
	Tilera description
	Real-time implementation
	WCET assessment
	Execution model
	Dispatcher implementation

	Results

	Related work
	Conclusion
	Acknowledgement
	References

