
Implementation of two Algorithms for the
Threshold Synthesis Problem

Christian Schilling
Institut für Informatik
Universität Freiburg

Germany
schillic@informatik.uni-

freiburg.de

Jan-Georg Smaus
IRIT

Université de Toulouse
France

smaus@irit.fr

Fabian Wenzelmann
Institut für Informatik
Universität Freiburg

Germany
wenzelmf@informatik.uni-

freiburg.de

ABSTRACT
A linear pseudo-Boolean constraint (LPB) is an expression
of the form a1 · `1 + . . . + am · `m ≥ d, where each `i is a
literal (it assumes the value 1 or 0 depending on whether a
propositional variable xi is true or false) and a1, . . . , am, d
are natural numbers. An LPB represents a Boolean func-
tion, and those Boolean functions that can be represented by
exactly one LPB are called threshold functions. The prob-
lem of finding an LPB representation of a Boolean function
if possible is called threshold recognition problem or threshold
synthesis problem. The problem has an O(m7t5) algorithm
using linear programming, where m is the dimension and t
the number of clauses in the DNF (disjunctive normal form)
input. There is also an entirely combinatorial procedure,
which works by decomposing the DNF and “counting” the
variable occurrences in it. We have implemented both algo-
rithms and report here on the experiments. We were able
to solve problems of up to 23 variables.

Note: This work was previously accepted as a poster but
not as a full paper at the IWOCA workshop 2013. There
will be a short summary in the IWOCA LNCS proceedings.

1. INTRODUCTION
A linear pseudo-Boolean constraint (LPB) [8, 1, 2, 5, 10,

9, 11, 12] is an expression of the form a1`1 + . . .+am`m ≥ d.
Here each `i is a literal of the form xi or x̄i ≡ 1 − xi, i.e.,
xi becomes 0 if xi is false and 1 if xi is true, and vice versa
for x̄i. Moreover, a1, . . . , am, d are natural numbers.

An LPB can be used to represent a Boolean1 function;
e.g. 2x1 + x̄2 + x3 ≥ 2 represents the same function as the
propositional formula x1 ∨ (¬x2 ∧ x3). It has been observed
that a function can be often represented more compactly as a
set of LPBs than as a conjunctive or disjunctive normal form
(CNF or DNF) [5, 10]. E.g. the LPB 2x1 + x̄2 +x3 +x4 ≥ 2
corresponds to the DNF x1∨(¬x2∧x3)∨(¬x2∧x4)∨(x3∧x4).

Functions that can be represented by a single LPB are
called threshold functions [17]. They have been studied in-
tensively in the 1960s, but even very recently they have at-
tracted interest due to various applications in artificial in-
telligence [3], electronic design automation [5], game theory
[4], and several others [13].

The problem of recognising threshold functions and find-
ing the LPB for a threshold function given as DNF is called
threshold recognition or threshold synthesis problem. The

1Whenever we say “function” we mean “Boolean function”.

problem is known to have an O(m7t5) algorithm using linear
programming, where m is the dimension and t the number
of clauses in the DNF [8]. In this paper, we report on an
implementation of this solution to the problem.

The very comprehensive reference on Boolean functions
[8] formulates the following research challenge:

Is it possible to recognize threshold functions
through an entirely combinatorial procedure, i.e.,
without resorting to the solution of [the linear
program] [. . .]?

The authors explicitly mention that various researchers have
worked on this problem and also cite our work [18]. Amaz-
ingly, none of these researchers was aware of the solution
proposed by Coates et al. [7, 6], which we reinvented [18].
It works by decomposing the DNF and “counting” its vari-
able occurrences. More precisely, the solution proposed by
[7] consists of a basic procedure which finds the solution in
many cases, plus what might be called a “repair” procedure
coming into play if the basic procedure fails.

Concerning the basic procedure, ours [18] very much re-
sembles that of [7], but is superior in that symmetries in
the input formula are exploited, not only at the level of the
entire formula as has been proposed in [6], but also at the
level of subformulas that arise during the computation.

Concerning the “repair” procedure, Coates and Lewis [7]
devote 23 pages to describing it and claim that it renders the
overall procedure complete. Given that the art of writing
pseudocode was less advanced 50 years ago, implementing
the procedure is anything but straightforward and consti-
tutes one of the contributions of this article, apart from the
implementation of the basis procedure and the experiments.
We have implemented a repair procedure inspired by the
description of [7]. It achieves completeness up to m = 7, a
recognition rate of at least 99% up to m = 14, and at least
80% up to m = 23. How the procedure might be rendered
complete will be discussed later.

We have run experiments for up to m = 23. The combi-
natorial algorithm appears to scale considerably better than
the LP algorithm, have a complexity of O(m · t), and can
solve the biggest problems in a couple of seconds on average.

This paper is organised as follows. We continue with some
preliminaries. Sec. 3 describes the linear programming algo-
rithm, Sec. 4 the combinatorial procedure, Sec. 5 the exper-
iments, and Sec. 6 concludes.

2. PRELIMINARIES
We assume the reader to be familiar with the basic notions

of propositional logic. We follow [5]. An m-dimensional
Boolean function f is a function Boolm → Bool . A linear
pseudo-Boolean constraint (LPB) is an inequality of the
form

a1`1 + . . .+ am`m ≥ d ai ∈ N, d ∈ Z, `i ∈ {xi, x̄i} (1)

where x̄i ≡ 1−xi. We identify 0 with false and 1 with true.
We call the ai coefficients and d the threshold.

A DNF is a propositional formula of the form c1∨ . . .∨cn
where each clause cj is a conjunction of literals. Formally,
a DNF is a set of sets of literals, i.e., the order of clauses
and the order of literals within a clause are insignificant. For
DNFs, we assume without loss of generality that no clause is
a subset of another clause. We call a DNF prime irredundant
if every clause is a prime implicant, i.e., if for clause c1 there
is no clause c2 6= c1 such that c1 ∨ c2 = c2.

It is easy to see that an LPB can only represent monotone
functions, i.e., functions represented by a DNF where each
variable occurs in only one polarity. Hence any DNF con-
taining a variable in different polarities is uninteresting for
us. Without loss of generality, we assume that this polarity
is positive.

Variables x and y are symmetric in φ if φ is equivalent
to the formula obtained by exchanging x and y. A set of
variables Y is symmetric in φ if each pair in Y is symmetric
in φ.

3. THE LINEAR PROGRAMMING ALGO-
RITHM

We shortly summarise the solution via linear program-
ming [15, 8].

For some DNFs, it is possible to establish a complete or-
der � on the variables which, intuitively speaking, has the
following meaning: xi � xj iff starting from any given in-
put tuple X∗ ∈ Boolm, setting x∗i to true is more likely to
make the DNF true than setting x∗j true. The functions
represented by such a DNF are called regular. The order
is based on occurrence patterns [18] (the Winder matrix [8,
20]) and can be computed in time linear in |φ|. We omit the
actual definition of � here. We write xi ' xk if xi � xk and
xk � xi.

Note that if
∑m
i=1 aixi ≥ d is an LPB representing the

DNF φ and ai = ak, then xi, xk are symmetric in φ; but
ai 6= ak does not imply that xi, xk are not symmetric. For
example, x1 ∨ x2 can be represented by 2x1 + x2 ≥ 1 or
x1 + x2 ≥ 1.

The algorithm first tests the input DNF for the regularity
property. The property is weaker than the threshold prop-
erty, and so if a DNF is not regular, then it is not convertible
and we must give up.

If the DNF is regular, we use the minimal true points of
the DNF, i.e. the true tuples where we cannot set any 1-
value to 0 without making the point false. We also use the
maximal false points defined analogously. Note that these
together characterise the DNF uniquely. In general, no poly-
nomial algorithm is known to find these points (which is no
surprise since the general task is NP-complete [15]), but for
the special case that the input DNF is prime irredundant,
a polynomial algorithm for finding these points exists, be-
cause the true points can be read directly from the clauses.

Then there exists a polynomial time procedure to find the
maximal false points [8].

Then we can formulate the following linear program where
the minimal true points are x1, . . . , xk and the maximal false
points are y1, . . . , yl:

m∑
i=1

aix
j
i ≥ d (1 ≤ j ≤ k)

m∑
i=1

aiy
j
i < d (1 ≤ j ≤ l)

ai ≥ 0 (1 ≤ i ≤ m)

Note that the weights ai are the variables in the LP formu-
lation and the threshold is d. Finally, the linear program
is passed to an LP solver. The reason for the complexity
blow-up O(m7t5) is mainly due to the linear programming.
The other parts run in O(m2t), so the whole procedure gains
from future improvements of linear programming. It should
be mentioned that for most inputs the well-known simplex
method for solving linear programs runs in linear time.

4. THE COMBINATORIAL ALGORITHM
In this section we present a combinatorial algorithm for

the threshold synthesis problem first presented by Coates
et al. [7, 6] and rediscovered later by Smaus [18]. The
algorithm is divided into a basic algorithm (Part I [7]) which
is correct but incomplete, and a backtracking procedure to
obtain completeness (Part II and III [7]). We only describe
Part I in detail here, but our implementation covers all parts.

Consider again the order � on the variables: it must be
respected by any LPB (if there is one!) representing φ, i.e.,
xi � xk implies ai ≥ ak. Note that xi � xk implies ai >
ak but xi ' xk does not imply ai = ak due to integrality
constraints.

Suppose we want to find an LPB representing φ, and we
have already established the order of the coefficients. As-
sume the numbering of the variables is such x1 � . . . � xm.
Consider now the maximal set X = {x1, . . . , xl} such that
x1 ' . . . ' xl. We partition φ according to how many
variables from X each clause contains. We then remove the
variables from X from each clause, which gives l+1 subprob-
lems. Theorem 5 states under which conditions solutions to
these subproblems can be combined to an LPB for φ.

Definition 1. Let φ be a DNF and X a subset of its vari-
ables with |X| = l. If φ contains a clause c ⊆ X, then let
kmax be the length of the longest such clause; otherwise let
kmax := ∞. For 0 ≤ k ≤ l, we define S(φ,X, k) as the dis-
junction of clauses from φ containing exactly min{k, kmax}
variables from X, with those variables removed.

When constructing the S(φ,X, k) from φ, we say that we
split away the variables in X from φ.

Example 2. Let φ ≡ (x1) ∨ (x2) ∨ (x3 ∧ x4) and X =
{x1, x2}. We have kmax = 1. Then S(φ,X, 0) = (x3 ∧ x4),
S(φ,X, 1) = true (i.e., the disjunction of twice the empty
conjunction), and S(φ,X, 2) = true.

We must solve the l+1 subproblems in such a way that the
resulting LPBs agree in all coefficients, and that the thresh-
old difference of neighbouring LPBs is always the same. Be-
fore giving the theorem, we give two examples for illustra-
tion.

Example 3. Consider φ ≡ (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x1 ∧
x4) ∨ (x2 ∧ x3 ∧ x4) and X = {x1}. Then S(φ,X, 0) =
x2 ∧ x3 ∧ x4, represented by x2 + x3 + x4 ≥ 3. Moreover,
S(φ,X, 1) = x2 ∨ x3 ∨ x4, represented by x2 + x3 + x4 ≥ 1.

Since the coefficients of the two LPBs agree, it turns out
that φ can be represented by 2x1+x2+x3+x4 ≥ 3. The coef-
ficient of x1 is given by the difference of the two thresholds,
i.e., 3− 1.

Example 4. Consider φ ≡ (x1 ∧ x2) ∨ (x1 ∧ x3 ∧ x4) ∨
(x2∧x3∧x4) and X = {x1, x2}. We have S(φ,X, 0) = false,
represented by x3 +x4 ≥ 4, S(φ,X, 1) = x3∧x4, represented
by x3 + x4 ≥ 2, and S(φ,X, 2) = true, represented by x3 +
x4 ≥ 0. The DNF φ is represented by 2x1+2x2+x3+x4 ≥ 4.
The coefficient of x1, x2 is given by 4 − 2 = 2 − 0 = 2 (the
thresholds are “equidistant”).

Theorem 5. Let φ be a DNF in variables x1, . . . , xm and
suppose X = {x1, . . . , xl} are symmetric variables that are
maximal w.r.t. � in φ. Then φ is represented by an LPB∑m
i=1 aixi ≥ d, where a1 = . . . = al, iff for all k ∈ [0..l], the

DNF S(φ,X, k) is represented by
∑m
i=l+1 aixi ≥ d− k · a1.

Unfortunately, Thm. 5 does not immediately dictate an
algorithm for computing an LPB for a DNF if possible. The
remaining problem is that a DNF might be represented by
various LPBs, and so even if the LPBs computed recursively
do not have agreeing coefficients and equidistant thresholds,
one might find alternative LPBs (such as the non-obvious
LPB for false in Ex. 4) so that Thm. 5 can be applied.

We now generalise LPBs by recording to what extent
thresholds can be shifted without changing the meaning.
To formulate this, we temporarily lift the restriction that
coefficients and thresholds must be integers.

Definition 6. Given an LPB I ≡
∑m
i=1 aixi ≥ d, we call

s the minimum threshold of I if s is the smallest num-
ber (possibly −∞) such that for any s′ ∈ (s, d], the LPB∑m
i=1 aixi ≥ s

′ represents the same function as I. We call b
the maximum threshold if b is the biggest number (possibly
∞) such that

∑m
i=1 aixi ≥ b represents the same function as

I. We call b− s the gap of I.

Note that the minimum threshold of I is not a possible
threshold of I. Since the minimum and maximum thresholds
of an LPB are more informative than its actual threshold,
we use the notation

∑m
i=1 aixi ≥ (s, b] for denoting an LPB

with minimum threshold s and maximum threshold b.
Theorem 5 suggests a recursive algorithm where, at least

conceptually, in the base case we have at most 2m trivial
problems of determining an LPB.

Example 7. Consider φ ≡ (x1∧x2)∨(x1∧x3)∨(x1∧x4)∨
(x1∧x5)∨(x2∧x3)∨(x2∧x4)∨(x3∧x4∧x5). To find an LPB
for φ, we must find LPBs for S(φ, {x1}, 0) and S(φ, {x1}, 1).
To find an LPB for S(φ, {x1}, 0), we must find LPBs for
S(S(φ, {x1}, 0), {x2}, 0) and S(S(φ, {x1}, 0), {x2}, 1), and
so forth. Table 1 gives all the formulae for which we must
find LPBs. For a concise notation we use some abbreviations
which we explain using S(·, x3..5, 0) ≡ f in the top-right cor-
ner: it stands for S((x3 ∧ x4 ∧ x5), {x3, x4, x5}, 0) ≡ false,
i.e., the ‘·’ stands for the nearest non-shaded formula to the
left, here (x3∧x4∧x5). Note how we arranged the subproblem
formulae in the table: e.g. (x3∧x4∧x5) has three symmetric

variables that are split away to obtain the subproblems to be
solved, so these subproblems are located three columns to the
right of (x3∧x4∧x5). The two shaded boxes in between con-
tain the subproblems obtained by splitting away only {x3},
{x3, x4}, resp.

The algorithm we propose is not a purely recursive one,
since the subproblems at each level must be solved in par-
allel. Explained using the example, we first find LPBs for
the formulae in the rightmost column, which have 0 vari-
ables and hence we must determine 0 coefficients. Next to
the left, we have formulae that contain (at most) x5, and we
determine LPBs representing these, where we use the same
a5 for all formulae! Then we determine a4, and so forth.

Taking f.i. (x3 ∧x4 ∧x5) in Table 1, Thm. 5 suggests that
a3, a4, a5 should be equal (x3, x4, x5 are symmetric) and de-
termined in one go. However, since x3, x4, x5 are not glob-
ally symmetric, one cannot determine a3, a4, a5 in one go,
but rather first a5, then a4, then a3. Therefore, it is nec-
essary to consider the formulae obtained by splitting away
just x3 and then x4. These are the shaded formulae.

We call the formulae in column l + 1 the l-successors.
Shaded formulae are called auxiliary, the others are called
main. Formulae that have no further formulae to the right
are called final.

Definition 8. Let φ be a DNF in m variables. Then φ is
the 0-successor of φ. Furthermore, φ is a main successor
of φ. Moreover, if φ′ is a main n-successor of φ, and l is
maximal so that xn+1, . . . , xn+l are symmetric in φ′, then
for all l′, k with 1 ≤ l′ ≤ l and 0 ≤ k ≤ l′, we say that
S(φ′, {xn+1, . . . , xn+l′}, k) is an (n+ l′)-successor of φ. The
(n+l)-successors are called main, and for l′ < l, the (n+l′)-
successors are called auxiliary. A node that is a main node
and true or false is called final.

Note in particular x3 ∨ x4 in column 3 in Table 1. It does
not contain x5, and so we obtain final 4-successors in the
last-but-one column. Clearly, a final successor of φ is either
true or false.

Generally, each non-final successor is associated with two
formulae in the column right next to it, one shifted up and
one down, obtained by splitting away the variable with the
smallest index. In fact, Table 1 resembles a binary tree with
the root displayed to the left. However, it is not quite a
tree: take the node x4 ∧ x5 and the node f above it, for
instance; the “upper child” of x4 ∧ x5 and the “lower child”
of f coincide; they are both the f -node marked with †.

The following proposition explains this sharing.

Proposition 9. Assume φ, φ′, n, l as in Def. 8. For
0 < l′ < l and 0 ≤ k ≤ l′, we have

S(S(φ′, {xn+1, . . . , xn+l′}, k), {xn+l′+1}, 0) ≡
S(φ′, {xn+1, . . . , xn+l′+1}, k)

S(S(φ′, {xn+1, . . . , xn+l′}, k), {xn+l′+1}, 1) ≡
S(φ′, {xn+1, . . . , xn+l′+1}, k + 1)

Taking φ′ ≡ x3 ∧ x4 ∧ x5, e.g., the proposition says that
S(S(φ′, {x3}, 0), {x4}, 1) and S(S(φ′, {x3}, 1), {x4}, 0) are
both equal to S(φ′, {x3, x4}, 1) ≡ false.

If we took a näıve approach where we always split away
one variable at a time, we would have a table (tree) with 32
(= 2m) formulae in the rightmost column. Thanks to the
sharing, we only have 12 final formulae instead.

S(·, x3..4, 0) ≡ f S(·, x3..5, 0) ≡ f
S(·, x1, 0) S(·, x2, 0) ≡ S(·, x3, 0) ≡ f S(·, x3..4, 1) ≡ f † S(·, x3..5, 1) ≡ f
≡ (x2 ∧ x3)∨ (x3 ∧ x4 ∧ x5) S(·, x3, 1) S(·, x3..4, 2) ≡ x5

S(·, x3..5, 2) ≡ f
(x2 ∧ x4)∨ ≡ (x4 ∧ x5) S(·, x3..5, 3) ≡ t
(x3 ∧ x4 ∧ x5) S(·, x2, 1) ≡ S(·, x3, 0) ≡ x4

S(·, x3..4, 0) ≡ f
x3 ∨ x4 S(·, x3, 1) ≡ t S(·, x3..4, 1) ≡ t

φ S(·, x3..4, 2) ≡ t
S(·, x2..3, 0) ≡ S(·, x2..4, 0) ≡ x5

S(·, x2..5, 0) ≡ f
S(·, x1, 1) S(·, x2, 0) ≡ x4 ∨ x5 S(·, x2..4, 1) ≡ t S(·, x2..5, 1) ≡ t
≡ x2 ∨ x3

x3 ∨ x4 ∨ x5 S(·, x2..3, 1) ≡ t S(·, x2..4, 2) ≡ t S(·, x2..5, 2) ≡ t
∨x4 ∨ x5

S(·, x2, 1) ≡ t S(·, x2..3, 2) ≡ t S(·, x2..4, 3) ≡ t S(·, x2..5, 3) ≡ t
S(·, x2..5, 4) ≡ t

Table 1: The recursive problems of Ex. 7

The initial work by Coates and Lewis [7] is not quite as
näıve as just described, in that nodes containing true or
false are not expanded further (unlike in Table 1). But
symmetries that allow for node sharing are not considered.

Coates et al. [6] have improved this method by considering
symmetries, but only “global” symmetries that are present
in the initial DNF φ, not “local” symmetries that appear
only after splitting. Even for initial DNFs without any
global symmetries, many local symmetries usually appear
after splitting.

In our code, it is possible to switch on an option so that
nodes containing true or false are not expanded further.
Combining both ideas, symmetry and not expanding true
or false any further, lead to considerable savings, as we dis-
cuss in Sec. 5.

The following theorem states if and how one can find
the next coefficient and thresholds for representing all k-
successors of φ provided one has coefficients and thresholds
for representing all (k + 1)-successors.

Theorem 10. Assume φ as in Thm. 5 and some k with
0 ≤ k ≤ m − 1, and let Φk be the set of k-successors of
φ. For every non-final φ′ ∈ Φk, suppose we have two LPBs∑m
i=k+2 aixi ≥ (sφ′0, bφ′0] and

∑m
i=k+2 aixi ≥ (sφ′1, bφ′1],

representing S(φ′, {xk+1}, 0) and S(φ′, {xk+1}, 1), resp.
If it is possible to choose ak+1 such that

max
φ′∈Φk

(sφ′0 − bφ′1) < ak+1 < min
φ′∈Φk

(bφ′0 − sφ′1), (3)

then for all φ′ ∈ Φk, the LPB
∑m
i=k+1 aixi ≥ (sφ′ , bφ′] rep-

resents φ′, where

sφ′ = max{sφ′0, sφ′1 + ak+1},
bφ′ = min{bφ′0, bφ′1 + ak+1}

for non-final φ′ (4)

sφ′ = −∞, bφ′ = 0 for φ′ ≡ true
sφ′ =

∑m
i=k+1ai, bφ′ =∞ for φ′ ≡ false

(5)

If maxφ′∈Φk
(sφ′0 − bφ′1) ≥ minφ′∈Φk

(bφ′0 − sφ′1), then no
ak+1, sφ′ , bφ′ exist such that

∑m
i=k+1 aixi ≥ (sφ′ , bφ′] repre-

sents φ′ for all φ′ ∈ Φk.

Following [7], we call the interval for ak+1 given by (3) the
range of ak+1.

The m-successors of φ are represented by LPBs with an
empty sum as l.h.s.:

∑m
i=m+1 aixi ≥ (0,∞] for false and

∑m
i=m+1 aixi ≥ (−∞, 0] for true. Then we proceed using

Thm. 10, in each step choosing an arbitrary ak+1 fulfilling
(3).

Example 11. Consider again Ex. 7. Table 2 is arranged
in strict correspondence to Table 1 and shows LPBs for all
successors of Φ. In the top line we give the l.h.s. of the LPBs,
which is of course the same for each LPB in a column. In
the main table, we list the minimum and maximum threshold
of each formula.

In the first step, applying (3), we have to choose a5 so that

max{0−∞, 0−∞, 0− 0, 0− 0,−∞− 0,−∞− 0,
−∞− 0} < a5 < min{∞− 0,∞− 0,∞−−∞,
∞−−∞, 0−−∞, 0−−∞, 0−−∞}.

Choosing a5 = 1 will do. The minimum and maximum
thresholds in column 5 are computed using (4); e.g. the top-
most (1,∞] is (max{0, 0 + 1},min{∞,∞+ 1}].

In the next step, we have to choose a4 so that

max{1−∞, 1− 1, 1− 0,−∞− 0, 0− 0,−∞− 0,
−∞− 0} < a4 < min{∞− 1,∞− 0,
∞−−∞, 0−−∞, 1−−∞, 0−−∞, 0−−∞}.

Choosing a4 = 2 will do. Note that the bound 1 − 0 <
a4 comes from the middle box of the fifth column and thus
ultimately from x3∨x4. Our algorithm enforces that a4 > a5,
which must hold for an LPB representing x3 ∨ x4.

In the next step, a3 can also be chosen to be any number
> 1 so we choose 2 again. In the next step, 2 < a2 < 4 must
hold so we choose a2 = 3. Finally, 3 < a1 < 5 must hold so
we choose a1 = 4. We obtain the LPB 4x1 + 3x2 + 2x3 +
2x4 + x5 ≥ (4, 5].

We have seen in the example how our algorithm works.
However, since the choice of ak+1 is not unique in general,
a bad choice of ak+1 might later lead to non-applicability of
Thm. 10, making the algorithm incomplete. We will discuss
this below.

Another problem seems to be that ak+1 could be forced
to be between neighbouring integers, in which case it cannot
be an integer itself. However, in this case, one can multiply
all LPBs of the current system by 2 before proceeding so
that ak+1 can be chosen to be an integer.

From the construction of the successors it follows that
all formulae in a column together have size less than all

4x1 + 3x2+ 3x2+

2x3 + 2x4+ 2x3 + 2x4+ 2x3 + 2x4+ 2x4+
∑5
i=6 aixi

x5 ≥ . . . x5 ≥ . . . x5 ≥ . . . x5 ≥ . . . x5 ≥ . . . ≥ . . .

(1,∞] (0,∞]

(3,∞] (1,∞] (0,∞]
(4, 5] (2, 3] (0, 1] (0,∞]

(4, 5] (−∞, 0]

(1, 2] (1,∞]
(1, 2] (−∞, 0] (−∞, 0]

(4, 5] (−∞, 0]

(0, 1] (0,∞]

(0, 1] (−∞, 0] (−∞, 0]

(0, 1] (0, 1] (−∞, 0] (−∞, 0] (−∞, 0]
(−∞, 0] (−∞, 0] (−∞, 0] (−∞, 0]

(−∞, 0]

Table 2: LPBs for Ex. 7

formulae in the column to the left of it, so that the entire
table has size less than |φ| · (m+1). One can thus show that
the complexity of the algorithm is polynomial in the size of
φ, while the size of φ itself can be exponential in m.

4.1 The Symmetry Issue
The symmetry of variables is very important in this sec-

tion, in Theorem 5, Def. 8, and implicitly also in Theorem
10. Whenever we have variables with the same occurrence
pattern, then these variables must be symmetric if the DNF
represents a threshold function. Put differently, our way
of exploiting symmetries by node sharing is incorrect if the
variables in question are not actually symmetric. The sym-
metry can be checked while constructing the “tree”: when-
ever the lower child of one node ought to be identical to the
upper child of another node, as described above, then one
must generate both children and check that they are indeed
identical. If not, the DNF is not a threshold function.

In our code, this check is optional, which is good for ex-
perimentation. We observe, and this was not obvious to
us, that the test is really necessary, i.e., there are examples
where without the test, we wrongly obtain a result.

A simple such example is the following: (x1 ∧ x2) ∨ (x1 ∧
x4)∨(x2∧x3)∨(x3∧x4). The trick for designing this example
is to start with the DNF for x1+x2+x3+x4 ≥ 2 and remove
the two clauses (x1 ∧ x3) and (x2 ∧ x4). By doing so, the
occurrence pattern for each variable is {[2, 2]}; x1 and x3 are
symmetric to each other; x2 and x4 are symmetric to each
other; but x1 or x3 are not symmetric to x2 or x4.

Without the symmetry test, the program wrongly com-
putes the result x1 + x2 + x3 + x4 ≥ 2.

Note that the example crucially depends on the variable
numbering, i.e., the order in which the variables are treated
in the “tree” construction (which is arbitrary a-priori since
the variables all have the same occurrence patterns). For
a different ordering, even without the symmetry test, no
result will be computed, because some numerical constraint
will not be satisfiable.

The test has a cost, of course (switching it off may make
the code run around 20% faster), but nevertheless, exploit-
ing the symmetries helps limit the combinatorial “explosion”

in constructing the “tree”. As future work, we want to make
the test more efficient by using a sorted representation of
clauses.

4.2 Completion According to [7]
Concerning completeness, Coates and Lewis propose a“re-

pair” procedure which they take 23 pages to describe! We
briefly explain the main idea of this procedure, using Table
2 for illustration: consider the third column. There are two
pairs of sibling nodes in this column: (4, 5], (1, 2], and (0, 1],
(−∞, 0]. According to the basic procedure described above,
each pair enforces a lower and upper bound on the choice of
a2: 4−2 < a2 < 5−1 and 0−0 < a2 < 1−−∞, respectively.

The generalisation lies in recognising that not just sib-
lings, but any pair of nodes in the column enforces bounds
on a certain coefficient combination. E.g., the pair (1, 2],
(−∞, 0] enforces 1 − 0 < a1 < 2 − −∞. The repair pro-
cedure looks at some nodes in columns already treated by
the basic procedure to see if those nodes imply contradicting
bounds for some coefficient combination. E.g. it might be
that one can read off some column that 4 < a1−a3 +a4 < 3
which is a contradiction showing that some previous choice
of coefficient was bad.

We do not go into any details, but we want to make some
remarks:

1. In spite of trying hard, we do not understand the de-
scription of [7] sufficiently well to be able to state pre-
cisely in how far it corresponds to our implementation.

2. Our current implementation is still incomplete.

3. Taken to the extreme, the solution of [7] amounts to
collecting at least the constraints of the linear program
(see Sec. 3), showing that there is a kind of continuum
between the “numerically flavoured” LP algorithm and
the“combinatorial”algorithm of this section. This sug-
gests that one might design a combination of the two
algorithms.

4. In [7] it is conjectured that the basic procedure is com-
plete up to about m = 9; our experiments reveal that
it is already incomplete for m = 6.

5. We had more than a dozen rounds of extending our
code to cover some extremely rare cases — an exercise
in combinatorics indeed.

6. During all those extensions one charming property of
our repair procedure was preserved: the procedure
only looks at a constant number of nodes per column
(in fact, at most six)! Readily sacrificing this property
might be the conceptually easiest, but computationally
complex, way to achieve completeness.

7. It can happen that a run of the combinatorial algo-
rithm requires several calls to the “repair” procedure.

5. EXPERIMENTS
Both algorithms have been implemented in C++ based

on a previous implementation in Java [16, 19].
In order to evaluate algorithms for the threshold recog-

nition problem, one needs benchmark DNFs. In [14], all
monotone (unate) Boolean functions of up to 5 variables
are considered as input. For 6 variables, 200,000 “random”
monotone functions are chosen as input. However, we be-
lieve that for testing purposes, it is better to use DNFs for
which it is known that they are threshold functions. To do
so, one should generate LPBs and convert them into DNFs.

We tested both algorithms by generating LPBs where the
coefficients are all positive and non-increasing from a1 to
am. Up to m = 7, we generated all LPBs up to equivalence
(28262 LPBs for m = 7). For m = 8, we enumerated 248k
LPBs which is a bit less than 10% of the existing LPBs.

For bigger m, the number of LPBs becomes too big and
so we generated a “random” sample of LPBs. We do not
describe our method in detail here, but it was guided by the
following principles: (1) the method should be simple and
avoid ad-hoc choices; (2) it should be possible to calibrate
how big the increase from the smallest to the biggest coeffi-
cient is; (3) every coefficient vector (for given m) should have
a positive probability, however small, of being generated.

For m = 9, 10, we generated 30000 benchmarks, for m =
11 to 15, we generated 3000, for m = 16 to 20, we generated
300, and for m = 21 to 22, we generated 60. To give some
idea, we blindly picked three of the generated coefficient
sequences (which were then transformed to DNFs to create
the benchmarks) for m = 15: 3 3 3 2 2 2 1 1 1 1 1 1 1 1 1,
135 127 55 43 36 32 31 27 25 14 13 11 6 3 1, 8 7 7 7 6 6 5 5
4 4 4 2 2 2 2.

Figure 1 shows the failure rate of the current implemen-
tation of the combinatorial algorithm, i.e., which percent-
age of the benchmarks it was not able to solve due to its
incompleteness. The x-axis shows m, and the y-axis the
percentage in logarithmic scale. Note that for m ≤ 7, the
failure rate is 0, although strictly speaking this cannot be
displayed in logarithmic scale. Up to m = 14, the failure
rate is less than 1% while rising up to 18.3% for m = 22.
We are still working on the problem of making the repair
procedure complete while preserving the property that its
effort is constant per column.

Figure 2 shows the percentage of problems that required
at least one call to the repair procedure to be solved. The x-
axis shows m, and the y-axis the percentage in linear scale.
The picture is not so clear, but it appears that for higher
m the repair procedure is required more often. As future
work, we want to look at heuristics that guess the right

5 10 15 20

10−2

10−1

100

101

Figure 1: Failure rate in %

5 10 15 20

0

5

10

15

20

Figure 2: Percentage of the successful calls requiring
repair

coefficient in the first place, thus reducing the need for any
repair procedure.

Figure 3 shows the runtime per problem for both algo-
rithms in ms, as well as the problem size. We used a machine
with an Intel Core i7-2620M processor running at 2.7 GHz
with 3 GB RAM. As before, the x-axis shows m. The y-axis
is in logarithmic scale. We first observe that the combinato-
rial algorithm could solve problems up to m = 23 in a couple
of seconds, while the LP algorithm appears to scale worse
and needs around 30 seconds for the biggest problems.2 Sec-
ond, the runtime seems to be exponential in m. Let us now
discuss the problem size. Note that the input to our proce-
dure is a DNF. The combinatorics wants it that the size of
the (randomly generated) DNFs grows exponentially in m.
More precisely, we define the size of a DNF as the number
of clauses in it (denoted t in Sec. 3) multiplied by the av-
erage number of literals per clause, or equivalently, simply
the number of literal occurrences in the DNF. The average
number of clauses appears to be roughly 0.46 ·1.633m, while

2The LP algorithm ran out of memory for m = 23.

5 10 15 20

10−2

100

102

104

106 Comb. alg.

LP alg.

Input size

Figure 3: Runtime

the average clause length is m
2

with remarkable precision,
so that the input size is O(m · t). The size, around 243000
for m = 22, is shown in the figure. The fact that the curve
is almost a perfect straight line and appears to be parallel
to the curve for the runtime of the combinatorial algorithm
shows that the input size increases at the same rate as that
runtime, which means that the algorithm appears to run in
time linear to the input, whereas the LP algorithm performs
worse.

We now discuss the savings due to symmetry, as men-
tioned in Sec. 4. A simple and appropriate way of measur-
ing these saving is to look at the final true nodes in the
“tree”. In the original approach by Coates and Lewis [7],
nodes containing true and false are not expanded any fur-
ther, but symmetries are not exploited. With that approach,
one can see that every final true node corresponds to exactly
one clause in the original DNF, since the true node is ob-
tained by successively splitting away all the variables from
the clause.

Now, in our approach, we also do not expand true and
false any further, but we also exploit symmetries. Thus if we
take the number of final true nodes in our “tree” and divide
it by the number of clauses in the DNF, then this is a good
measure for how big our “tree” is relative to the size it would
have without exploiting the symmetry. Figure 4 shows this
relative size (given as percentage) for our benchmarks. It
is not completely clear but it might be that in theory this
relative size goes asymptotically to a value around 15%.

6. CONCLUSION
In this paper, we have presented the implementations of

two algorithms for the threshold recognition problem. The
first algorithm works by a translation to linear programming,
while the second is combinatorial, i.e., it works by taking the
formula apart and counting the variables in it in a certain
way. The second algorithm has first been presented in [7, 6]
and rediscovered later [18], although with a more powerful
treatment of the symmetries in a formula.

It is unsatisfactory that our current implementation of the
combinatorial algorithm is incomplete. However, recently a
method has been presented [14] which appears to be “much
more” incomplete. For 6 variables, it identifies only 70% of

5 10 15 20

20

40

60

80

100

Figure 4: Number of final true nodes / number of
clauses

the threshold functions. In experiments, the authors were
able to identify 36 10-variable threshold functions among
10000 candidate functions — unfortunately, nobody knows
how many of those 10000 functions actually were threshold
functions, so that the statement says little about the real
power of their method. As stated in 1961 [7], problems of
this size can still be solved by hand: 30 minutes for a 6-
variable function, 4 hours for a 12-variable function. The
work uses the Chow parameters [8] of each variable as basis
for deciding the coefficient. We plan to investigate similar
ideas, but only to provide our algorithm with some heuristic
value for each coefficient, hoping that this will reduce the
need for backtracking.

7. REFERENCES
[1] Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and

Karem A. Sakallah. Generic ILP versus specialized 0-1
ILP: an update. In Lawrence T. Pileggi and Andreas
Kuehlmann, editors, Proceedings of the 2002
IEEE/ACM International Conference on
Computer-Aided Design, pages 450–457. ACM, 2002.

[2] Peter Barth. Linear 0-1 inequalities and extended
clauses. In Andrei Voronkov, editor, Proceedings of the
4th International Conference on Logic Programming
and Automated Reasoning, volume 698 of LNCS, pages
40–51. Springer-Verlag, 1993.

[3] Peter Barth and Alexander Bockmayr. Solving 0-1
problems in CLP(PB). In Proceedings of the 9th
Conference on Artificial Intelligence for Applications.
IEEE, 1993.

[4] Stefan Bolus. Power indices of simple games and
vector-weighted majority games by means of binary
decision diagrams. European Journal of Operational
Research, 210(2):258–272, 2011.

[5] Donald Chai and Andreas Kuehlmann. A fast
pseudo-Boolean constraint solver. In Proceedings of
the 40th Design Automation Conference, pages
830–835. ACM, 2003.

[6] Clarence L. Coates, R. B. Kirchner, and Philip M.
Lewis II. A simplified procedure for the realization of

linearly-separable switching functions. IRE
Transactions on Electronic Computers, 1962.

[7] Clarence L. Coates and Philip M. Lewis II.
Linearly-separable switching functions. Journal of
Franklin Institute, 272:366–410, 1961. Also in an
expanded version, GE Research Laboratory,
Schenectady, N.Y., Technical Report No.61-RL-2764E.

[8] Yves Crama and Peter L. Hammer. Boolean
Functions: Theory, Algorithms, and Applications.
Encyclopedia of Mathematics and its Applications.
Cambridge University Press, May 2011.

[9] Heidi E. Dixon. Automating Pseudo-Boolean Inference
within a DPLL Framework. PhD thesis, University of
Oregon, 2004.

[10] Heidi E. Dixon and Matthew L. Ginsberg. Combining
satisfiability techniques from AI and OR. The
Knowledge Engineering Review, 15:31–45, 2000.

[11] Martin Fränzle and Christian Herde. Efficient SAT
engines for concise logics: Accelerating proof search for
zero-one linear constraint systems. In Moshe Y. Vardi
and Andrei Voronkov, editors, Proceedings of the 10th
International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning, volume 2850 of
LNCS, pages 302–316. Springer-Verlag, 2003.

[12] Martin Fränzle and Christian Herde. HySAT: An
efficient proof engine for bounded model checking of
hybrid systems. Formal Methods in System Design,
30(3):179–198, 2007.

[13] Tejaswi Gowda and Sarma B. K. Vrudhula.
Decomposition based approach for synthesis of
multi-level threshold logic circuits. In ASP-DAC,
pages 125–130. IEEE, 2008.

[14] Ashok Kumar Palaniswamy, Manoj Kumar Goparaju,
and Spyros Tragoudas. Scalable identification of
threshold logic functions. In R. Iris Bahar, Fabrizio
Lombardi, David Atienza, and Erik Brunvand, editors,
ACM Great Lakes Symposium on VLSI, pages
269–274. ACM, 2010.

[15] Uri N. Peled and Bruno Simeone. Polynomial-time
algorithms for regular set-covering and threshold
synthesis. In Discrete Applied Mathematics,
volume 12, pages 57–69, 1985.

[16] Christian Schilling. Solving the Threshold Synthesis
Problem of Boolean Functions by Translation to
Linear Programming. Bachelor thesis, Universität
Freiburg, 2011.

[17] Ching Lai Sheng. Threshold Logic. Academic Press,
1969.

[18] Jan-Georg Smaus. On Boolean functions encodable as
a single linear pseudo-Boolean constraint. In
Pascal Van Hentenryck and Laurence Wolsey, editors,
Proceedings of the 4th International Conference on
Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization
Problems, volume 4510 of LNCS, pages 288–302.
Springer-Verlag, 2007.

[19] Fabian Wenzelmann. Solving the Threshold Synthesis
Problem of Boolean Functions by a Combinatorial
Algorithm. Bachelor thesis, Universität Freiburg, 2011.

[20] Robert O. Winder. Threshold Logic. PhD thesis,
Department of Mathematics, Princeton University,
Princeton, U.S.A., 1962.

