
A Framework for the Veri�cation of

Asynchronously Communicating Services

Florent Chevrou, Aurélie Hurault, Philippe Mauran, Philippe Quéinnec, and
Xavier Thirioux

IRIT � Université de Toulouse
2 rue Camichel

F-31000 Toulouse, France
http://www.irit.fr

Abstract. Verifying the compatibility of services is a crucial issue in ser-
vice oriented computing as this is a step to verify the correctness of the
whole composition in which these services participate. In this paper, we
present a framework to check services compatibility in the asynchronous
world. We propose an approach that takes into account in a generic and
uni�ed way several compatibility notions and more importantly several
asynchronous communication models (e.g. FIFO or causal). A system
is composed of a set of services, which communicate via channels. A
channel is not restricted to have a unique sender and a unique receiver.
Moreover, channels can be partitioned into groups associated to di�er-
ent communication models, and thus di�erent ordering properties, which
constitutes a composite communication model. The notions of system,
service, compatibility criteria and communication model are formalized
in the TLA+ framework in order to bene�t from its veri�cation tools.
As a result, a tool has been developed to generate the TLA+ speci�ca-
tion from the services behavioral descriptions and to verify whether they
are compatible for a given composite communication model and a given
compatibility criterion.

Keywords: Service composition, formal veri�cation, asynchronous
communication, compatibility, TLA+

1 Introduction

Building systems through selecting, and then assembling and coordinating o�-
the-shelf components or services is a thriving software production principle,
which is emblematically illustrated by the development of Cloud-based services.

The formal veri�cation of the correctness of the composition of a set of ser-
vices is crucial to this approach. We consider this issue in the particular per-
spective of the development of distributed software systems. In this setting,
the availability of the elementary services, as well as their interaction models
(e.g. synchronous or asynchronous, multicast or point to point) can directly
impact the properties of the global system, and especially its liveness proper-
ties. Although the question of characterizing the properties of a set of combined

2 F. Chevrou, A. Hurault, P. Mauran, P. Quéinnec, and X. Thirioux

services has been extensively studied for quite a long time (notions of design
by contract [24], of compatibility of communicating components [5, 20]), existing
works are restricted, to the best of our knowledge, to a speci�c interaction model
(either synchronous or asynchronous, or coupling via bounded bu�ers), to which
their formalization and veri�cation framework are dedicated. However, in dis-
tributed algorithms research, it has long been known that the properties of the
communication, and especially the order of message delivery, is essential to the
algorithm correctness. For instance, Chandy-Lamport snapshot algorithm [10]
requires that the communication between two processes is FIFO, and Misra ter-
mination detection algorithm [27] works with a ring containing each node once
if the communication ensures causal delivery, but requires a cycle visiting all
network edges if communication is only FIFO.

The presented work studies the e�ect of communication modalities on the
properties of composite systems, in order to integrate the heterogeneity, the
variability, and the diversity of interactions in distributed systems. This paper
presents and illustrates the formal and methodological framework used to carry
out this study. The outline of this paper is the following. Section 2 gives an
intuition on the objectives and the method. Section 3 presents and formalizes
the main notions: service, point to point communication model, and system. It
also presents several classical communication models (FIFO, causal, . . .). Sec-
tion 4 shows how services are speci�ed using CCS terms and used to generate
the associated TLA+ modules [18] to which model checking is applied. It then
de�nes the role of the compatibility properties in our framework with a model
checking approach. Section 5 illustrates our approach with a simple case study,
and provides the results obtained with TLC, the TLA+ model checker. Section 6
provides an overview of the conceptual background of this work and, eventually,
the conclusion draws perspectives after summing up this work.

2 Intuition

Consider two services (or peers, or processes) described by the transition sys-

tems
a!−→ · b!−→ and

a?−→ · b?−→, where a! and b! are interpreted as emission events
on channels a and b, and a? and b? are reception events on a and b. In the
synchronous world (i.e. CCS), the compatibility of these two processes is well
de�ned: both processes match on a �rst rendez-vous on a, then proceed to a sec-
ond rendez-vous on b, terminate. However, this is less clear in an asynchronous
world. Traditionally, from a distributed systems point of view, one considers
that the communication medium controls the message deliveries: it pushes mes-
sages up to the applications. Applications are limited to specify which channels
they listen to, but they cannot impose a delivery order. In our example, if the
communication medium ensures �fo ordering (i.e. messages from one process to
another are necessarily delivered in their emission order), then the message on
a is delivered before the message on b, and we can say that the two services
are compatible and terminate. However, if the communication medium is totally
asynchronous and does not ensure any ordering, the message on b may be de-

Veri�cation of Asynchronously Communicating Services 3

livered before the message on a, but the second process does not expect this
situation: compatibility is not guaranteed.

Among the di�culties, a service must be isolated from the other services: it
does not have to be ready for all kind of messages. For instance, if the previous

system also comprises two other services
c?−→ and

c!−→, a message on c may be in
transit. However the communication medium will never deliver this message to

the service
a?−→ · b?−→, as this message does not concern it. In a given state, the

interface of a service is de�ned as the set of messages it may consume later and
thus are of interest. Only messages in its interface are delivered to a service.

One last point is that the services communicate through channels, and mes-
sages do not have an explicit destination process. One strong point is that we
do not impose that channels have a unique sender and a unique receiver. Sev-
eral services may send messages on the same channel, and several services may
consume messages from the same channel. This allows to naturally describe ar-
bitrary client-server and publish-subscribe architectures. For instance, several
servers may consume from the same channel, allowing for distribution.

The goal of our framework is to verify various compatibility and incompati-
bility properties, such as the termination of all services (full compatibility), the
possibility that an unexpected message is delivered to a service (leading to a
fault), a forever blocking communication (a reception which never succeeds, or
an emission which is continuously refused by the communication medium). . .
Speci�c properties of the communication media are also of interest: if the ser-
vices terminate, is there any pending (unconsumed) message? Is the number of
in transit messages bounded by a given value?

3 Formalization

3.1 Notation

In this paper, we mainly use the classic mathematical notation, and in a few
cases, speci�c TLA+ notation [18] :

� Sequences and tuples are written 〈a1, a2, a3〉. 〈〉 is the empty sequence.
� In a transition predicate, x denotes the value of a variable x in the origin
state, and x′ denotes its value in the destination state. A prime is never used
to distinguish symbols but always means �in the next state�.

3.2 System Model

De�nition 1 (Service). Let C be an enumerable set of channels. A service Si
is a labeled transition system TSi = (Si, Ii, Ri, Li) where Si is the set of states, Ii
is the set of initial states, Li is a (enumerable) set of labels, and Ri ⊆ Si×Li×Si
is the transition relation.

The set of labels Li contains τ and a subset of
⋃
c∈C{c!, c?}. τ is the usual

internal action and we assume stuttering: ∀s ∈ Si : s
τ−→ s ∈ Ri. The labels c!

and c? will be interpreted as the sending of a message on channel c, and the
reception of a message from channel c.

4 F. Chevrou, A. Hurault, P. Mauran, P. Quéinnec, and X. Thirioux

To describe communication properties, we need to know the listened channels
in a given state. For instance, consider a state s where messages on the channels

c1 and c2 may be handled by Si (this means that s
c1?−−→ _ ∈ Ri and s

c2?−−→ _ ∈
Ri), and two messages are in transit on c1 and c2. If the communication ensures
a FIFO ordering and both messages have the same sender, then only the oldest
one may be delivered to the service. Thus, the other transition must be disabled
in this con�guration. However, if in the state s only the channel c2 is listened
to, the message on c2 may be delivered even if it is younger than the message
on c1.

De�nition 2 (Listened channels). Let s be a state in Si,

LCi(s) , {c ∈ C | ∃s2 ∈ Si : s
c?−→ s2 ∈ Ri}

De�nition 3 (Communication Model). A communication model CM is a
labelled transition system with stuttering (SCM , ICM , RCM , LCM), where SCM ,
ICM , RCM and LCM have the same meaning as above (sates, initial states,
transition relation, labels).

The set of labels contains τ , a subset of N×
⋃
c∈C{c!} (send events by service

i on channel c), and a subset of N×
⋃
c∈C{c?}×P(C) (receive events by service i

on channel c while listening to a set of channels).

The actual de�nition of a communication model depends on its characteristics
and examples are provided in section 3.3.

De�nition 4 (Composed System). The composed system System = (S, I,R)
is the product of the TSi : i ∈ 1..N with a communication model CM

� S ⊆ S1 × . . .× SN × SCM
� I = I1 × . . .× IN × ICM

� R =

s→ s′

 Internal actions

scm
τ−→ s′cm ∈ RCM

∧ ∀i ∈ 1..N : si
τ−→ s′i ∈ Ri

 ∨

Communication

∃i ∈ 1..N : ∃c ∈ C :
send(s, s′, i, c)
∨ receive(s, s′, i, c)

Thus, a system state s is a tuple (s1, . . . , sN , scm). Given a system state s,
we note si the projection πi(s) of s on Si, and sCM the projection of s on CM.

The transition relation of the composed system contains the internal actions
of each service on the one hand, and the communication transitions on the other
hand. Contrary to the synchronous model, where communication is a rendez-vous
between two services, asynchronous communication is modeled with distinct send
actions and receive actions:

send(s, s′, i, c) ,

si

c!−→ s′i ∈ Ri
scm

i,c!−−→ s′cm ∈ RCM
sk

τ−→ s′k ∈ Rk,∀k 6= i, cm

receive(s, s′, i, c) ,

si

c?−→ s′i ∈ Ri
scm

i,c?,L−−−−→ s′cm ∈ RCM where L = LCi(si)

sk
τ−→ s′k ∈ Rk,∀k 6= i, cm

Veri�cation of Asynchronously Communicating Services 5

To avoid in�nite stuttering, we assume a minimal progress property: the
services and the communication model can in�nitely stutter only if no other
transition can be done.

3.3 Asynchronous Communication Models

We informally describe �ve asynchronous communication models. Causal com-
munication is formally presented, and the formalization of the other communi-
cation models is in appendix A, as it is not required to understand the paper.
What follows is the logical descriptions of the communication models, not their
implementations which must nonetheless �t these descriptions. Of course, an
actual implementation of the system would use exact realizations of the com-
munication models, such as vector/matrix clocks for causality, or numbering for
�fo ordering. In the description, all communication models have a net variable,
which holds in transit messages. Depending on the communication model, this
variable may be a queue, a set, a bag, an array of queues. . .

Munique Unique FIFO This realizes a global �fo order: sent messages are put
in a unique FIFO queue. Messages are globally ordered, and must be consumed
in their send order. This model is unrealistic but is often a �rst step to decouple
send and reception events.

Minst Instantaneous FIFO Each service is equipped with a unique FIFO
input queue. The sender instantaneously adds a message to this queue, without
blocking. The receiver can remove from this queue later. This model is used for
instance in [2, 28] as an abstraction of asynchronous communication. This model
is as costly to implement as the synchronous communication model and is more
restrictive than the next asynchronous models, as the order of received messages
on a service is exactly the time-absolute order of their emissions, even when these
emissions are totally independent. This means that if Si consumes m1 (sent by
Sj) and later m2 (sent by Sk), Si knows that the sending on Sj occurs before
the sending on Sk in the global execution order, even if there is no causal link
between the two emissions.

Mcausal Causally Ordered Communication Messages are delivered in an
order compatible with the causality of their emission [17]. More precisely, if
message m1 is causally sent before m2 (which means that there is a causal path
from m1 send event to m2 send event), then they must not be consumed in a
reverse order (which means that if they are consumed by the same service, m1

cannot be consumed after m2).
The state of the communication model is (net,H1, . . . ,HN), composed of:

� net, the set of in transit messages
� for each service Si: Hi, the current causal past or history, that is the set of
messages on which the next emission is causally dependent.

6 F. Chevrou, A. Hurault, P. Mauran, P. Quéinnec, and X. Thirioux

� A �message� is a couple 〈 channel, causal past of the message〉.
� ICM = (∅, ∅, . . . , ∅) (Initially, all sets are empty).
� Send action on Si:

scm
i,c!−−→ s′cm ,

 H ′i = Hi ∪ {〈c,Hi〉}
net′ = net ∪ {〈c,Hi〉}
∀k 6= i : H ′K = Hk

� Receive action on Si: The message is not causally posterior to another in
transit message which may be consumed by this service:

scm
i,c?,L−−−−→ s′cm ,

∃〈c, h〉 ∈ net :
¬∃〈c2, h2〉 ∈ net : c2 ∈ L ∧ 〈c2, h2〉 ∈ h
net′ = net \ {〈c, h〉}
H ′i = Hi ∪ h ∪ {〈c, h〉}
∀k 6= i : H ′k = Hk

Mfifo FIFO Communication Messages from a same service to a same re-
ceiver are delivered in their emission order. Messages from di�erent services are
independently delivered. More precisely, if a service sends a message m1 and
later a message m2, and these two messages are consumed by a same service,
then m2 cannot be consumed before m1.

Masync Fully Asynchronous Communication This is unordered point-to-
point communication. Messages are arbitrarily delivered, without any ordering.

Bounded Models The previous de�nitions can easily be adapted to introduce
bounds on the size of net or on its projections (e.g. bounds on the number of in
transit messages for each channel).

3.4 Composite Communication Models

Channels can be partitioned according to their communication properties. Each
partition has its own communication model, and the global communication
model composed of the communication models associated to each class is called
a composite communication model. For instance, if the system uses �ve channels
{c1, c2, c3, c4, c5}, we can state that {c1, c4, c5} are causally ordered channels,
and {c2, c3} are �fo ordered channels. This means that messages on c1, c4, c5
are all causally linked and ordered, whereas messages on c2 and c3 are �fo or-
dered. Messages on c1 and c2, being in di�erent partitions, do not impose any
constraint on each other.

4 Framework

We present in this section a framework aimed at checking compatibility proper-
ties over a composition of a set of services and a communication model (possibly

Veri�cation of Asynchronously Communicating Services 7

CCS term
Transition

system

Completed
transition
system

TLA module

Service

Communication
model

Other services

System

Compatibility
properties

Compatibility
result

Fig. 1. Main Steps Performed by the Framework

composite). Services are speci�ed using CCS terms [25] and the associated tran-
sition systems are computed. They are then completed to add implicit faulty
receptions. The TLA+ speci�cation consists of the conjunction of these transi-
tion systems and the communication model transition system.

Figure 1 provides an overview of the di�erent steps and elements used to
perform the veri�cation of a service composition.

4.1 Services Speci�cation

De�nition 5 (Service Speci�cation). A service is a process speci�ed by a
CCS term where we consider:

� the empty process 0, neutral element of + and ‖,
� the pre�xing operator ·, to perform an action followed by a process. An action

is an internal action τ , or a send action c! over a channel c, or a receive
action c? on c,

� the choice operator +,
� the parallel composition operator ‖,
� and process identi�ers (de�ned by X , Process).

We derive a service transition system (de�nition 1) from its speci�cation using
the standard CCS rules [26, p.39], excluding the synchronous communication
rule. Renaming and restriction are currently not used but they would have no
impact on the compatibility veri�cation. Since we do not consider synchronous
communication, ‖ is similar to an interleaving operator. It can model internal
parallelism and dynamic creation of processes inside a given service.

4.2 Faulty Reception Completion

The faulty reception completion (FRC) consists in revealing the unexpected
receptions in a service and mark them as faulty by making the corresponding
added transitions point toward a faulty state denoted ⊥. The way transition
systems are completed follows the intuition in section 2. Informally, for each state
s where a reception transition exists, the interface of s, i.e. the set of channels
corresponding to possible future receptions, is computed. For each channel c in
the interface that is not already speci�ed as an alternative choice in the current

8 F. Chevrou, A. Hurault, P. Mauran, P. Quéinnec, and X. Thirioux

in-completion state, such a choice is provided by a transition toward ⊥ and

labeled by c? : s
c?−→ ⊥. These are called faulty receptions.

De�nition 6 (Faulty Reception Completion). Let TS = (S, I,R, L) be a
service. FRC(TS) , (S ∪ {⊥}, I, R ∪R2, L) with

R2 = {s c?−→ ⊥ | s ∈ RS(S), c ∈ IC(s) \ LC(s)}, and where

� ⊥ 6∈ S (the added faulty state)

� RS(S) , {s ∈ S | ∃c ∈ C, s′ ∈ S : s
c?−→ s′ ∈ R}

(states having at least one reception transition)

� IC(s) , {c ∈ C | ∃s1, s2 ∈ S : s→ s1 ∈ R∗ ∧ s1
c?−→ s2 ∈ R}

(interface of s: future possible receptions)

� LC(s) , {c ∈ C | ∃s′ ∈ S : s
c?−→ s′ ∈ R} (listened channels in state s)

For instance, let us consider the initial state in the service speci�ed by a?·b?·0.
The associated interface is {a, b}. Since in the initial state, there is no explicit

alternative to handle b?, the state is completed with a
b?−→ ⊥ transition. The

corresponding completed transition system is:

a? · b? · 0 a? //

b? **

b? · 0 b? // 0

⊥

When composed with a service a! · b! · 0 and an asynchronous communication
model, both a? and b? �rst transitions are possible, and b? leads to the faulty
state ⊥. When composed with a FIFO communication model, the �rst b? tran-
sition is impossible (because a must be delivered before), and the system always
reduces to 0.

4.3 Compatibility Checker

A compatibility property is given as an LTL formula over a system [22]. Let
System = (S, I,R) be a system. For a state s = (s1, . . . , sn, scm) ∈ S, we de�ne
the following predicates:

� 0∀ , ∀i ∈ 1..N : si = 0 (all services are in their terminal state)
� 0i , si = 0 (termination of service i)
� ⊥∃ , ∃i ∈ 1..N : si = ⊥ (an unexpected message has been delivered)

Inspired by section 2, the following compatibility properties are de�ned:

System termination The system always reaches a terminal state:
System |= ♦�0∀

Service termination The service i always reaches a terminal state:
System |= ♦�0i

No faulty reception No unexpected message ever occurs:
System |= �¬⊥∃

Veri�cation of Asynchronously Communicating Services 9

module causal
extends Naturals
constants CHANNEL, N
variables net , H
Init

∆
= ∧ net = {} ∧H = [i ∈ 1 . . N 7→ {}]

TransitingMessages
∆
= net 6= {}

nochange
∆
= unchanged 〈net , H 〉

internal
∆
= false

send(service, chan)
∆
=

∧ net ′ = net ∪ {〈chan, H [service]〉}
∧H ′ = [H except ! [service] = @ ∪ {〈chan, @〉}]

receive(service, chan, listened)
∆
= ∃ 〈c1, H 1〉 ∈ net : (

∧ c1 = chan
∧ net ′ = net \ {〈chan, H 1〉}
∧ ¬(∃ 〈c2, H 2〉 ∈ net : c2 ∈ listened ∧ 〈c2, H 2〉 ∈ H 1)
∧ H ′ = [H except ! [service] = @ ∪H 1 ∪ {〈chan, H 1〉}])

Fig. 2. TLA+ Module Associated to the Causal Communication Model

No forever blocking communication No communication event is forever
blocked (translated as no state is stable except termination and faulty re-
ception):
System |= �(0∀ ∨ ⊥∃ ∨ enabled(R))
where enabled(R) is true i� a transition is possible in the current state.

4.4 TLA+ speci�cations

The TLA+ framework [18] allows to describe transition systems, to reason about
them, and to verify LTL properties on them. A transition system is symbolically
described with variables, and actions are used to describe the transition relation.
TLA+ is based on the use of simple mathematics with the full expressive power
of sets and functions.

In our framework, the TLA+ speci�cation of a system consists of several
modules:

Communication models They follow the speci�cations in 3.3. They consist
of state variables representing the network state and, if necessary, histories.
Send and receive actions are parameterized by the service identi�er (used for
instance by the FIFO communication model), the channel, and the listened
channels in the case of reception. These actions follow the semantics of the
models formal de�nition. Figure 2 shows the TLA+ module associated to
the causal communication model as de�ned in 3.3.

Service management This module de�nes a vector data structure to represent
and manipulate the services states using program counters. A service consists
of a unique identi�er and a program counters. Predicates are also speci�ed
to evaluate 0∀ and ⊥∃.

10 F. Chevrou, A. Hurault, P. Mauran, P. Quéinnec, and X. Thirioux

module example
extends Naturals, servicemanagement
constants N , b, a
variables net1, H 1
Var1

∆
= 〈net1, H 1〉

Vars
∆
= 〈peers, Var1〉

Com
∆
= instance fifo with CHANNEL← {b, a}, N ← N

TypeInvariant
∆
= Com !TypeInvariant ∧ ServiceTypeInvariant

Init
∆
= ∧ Com !Init
∧ peers = 〈11, 13〉

t1(serv)
∆
= trans(serv , 11, 12) ∧ Com !send(serv , a) state 11

a!−→ state 12

t2(serv)
∆
= trans(serv , 12, 0) ∧ Com !send(serv , b) state 12

b!−→ 0

t3(serv)
∆
= trans(serv , 13, 15) ∧ Com !receive(serv , a, {b, a}) state 13

a?−−→ state 15

t4(serv)
∆
= trans(serv , 15, 0) ∧ Com !receive(serv , b, {b}) state 15

b?−→ 0

t5(serv)
∆
= trans(serv , 13, 1) ∧ Com !receive(serv , b, {b, a}) state 13

b?−→ ⊥

Fairness
∆
= ∀ i ∈ 1 . . N : (WFVars(t1(i)) ∧ . . . ∧WFVars(t5(i)))
∧WFVars(Com ! internal ∧ unchanged peers)

Next
∆
= ∃ i ∈ 1 . . N : (t1(i) ∨ . . . ∨ t5(i)) ∨ (Com ! internal ∧ unchanged peers)

Spec
∆
= Init ∧2[Next]Vars ∧ Fairness

Fig. 3. a! · b! · 0 Composed with a? · b? · 0: Generated TLA+ Module

Composition For a set of services and a communication model, a TLA+ mod-
ule is automatically generated according to the process described in 4.1. It
provides transition actions by combining a transition from the communica-
tion model module and a transition from the service management module to
update program counters accordingly. Figure 3 shows an example of such a
TLA+ module. We can see that two services are initialized in states num-
bered 13 and 11. Two transitions departing from state 13 reveal that two
alternatives are possible. One of them leads to state 1 after a reception from
b, and corresponds to a faulty reception added during the FRC on a? · b? · 0.

5 Results

5.1 Example

Let us consider an examination management system composed of a student, a
supervisor, a secretary, and a teacher. When the supervisor notices that a student
has failed and can resit, he sends the name of the student to the teacher and
the secretary, and the resit information to the student. If the student chooses to
resit, he answers ok and asks the teacher for the exam. The teacher then sends
the needed materials and then the exam, after which the student sends back his
answers, then the teacher sends a mark to the secretary. If the student declines
to resit, he informs the supervisor who sends a cancel message to the teacher
and the former mark to the secretary. Sample executions are depicted in �gure 4
and the system is speci�ed in �gure 5.

Next, consider the properties needed to make this work as intended. There is
a causal dependency between the studentname message and the examreq mes-
sage (the request for the exam must not arrive before the student name). This

Veri�cation of Asynchronously Communicating Services 11

Student

Secretary

Teacher

Supervisor

studentname

studentname

resit

ok

examreq

materials

exam

answers

mark

Student

Secretary

Teacher

Supervisor

studentname

studentname

resit

ko

cancel

mark

Fig. 4. Expected Executions Examples

Supervisor , studentname! · studentname! · resit! · (ok? · 0 + ko? · cancel! ·mark! · 0)
Secretary , studentname? ·mark? · 0
Student , resit? · (τ · ko! · 0 + τ · StudentOK)

StudentOK , ok! · examreq! ·materials? · exam? · answers! · 0
Teacher , studentname? · (cancel? · 0 + examreq? · TeacherExam)

TeacherExam , materials! · exam! · answers? ·mark! · 0

Fig. 5. Supervisor-Secretary-Student-Teacher Speci�cation

causal dependency comes from the resitmessage, which follows the studentname
message and is the cause of the examreq message. Causal communication is
thus required. Moreover, if a cancel message is sent, it should be received af-
ter the student's name by the teacher. Therefore, cancel is part of this causal
group. The same holds for the mark channel, since the secretary �rst expects
a studentname. Finally, the materials and the exam are sent in two separate
messages and are not expected to be received in the reverse order by the student.

We consider the �ve models de�ned in 3.3 and the composite model associated
to the following partition:

causal {studentname, resit, examreq, cancel,mark}
FIFO {materials, exam}

(no constraint) async. {ok, ko, answers}

5.2 Compatibility

In this example, studentname is a channel over which two messages are sent and
from which they are received by di�erent services (teacher and secretary). In ad-
dition, mark is a channel over which only one message is to transit, but it may

12 F. Chevrou, A. Hurault, P. Mauran, P. Quéinnec, and X. Thirioux

Unique Inst. Causal FIFO Async. Composite
Termination 4 4 4 5 5 4

Termination with an empty network 4 4 4 5 5 4

Partial termination (secretary) 4 4 4 5 5 4

No faulty receptions 4 4 4 5 5 4

No forever blocking communication 4 4 4 5 5 4

Fig. 6. Compatibility Results

be emitted by di�erent services (supervisor and teacher). Therefore, compatibil-
ity, especially termination of the secretary service, is not trivial. Consequently,
in addition to the already speci�ed compatibility properties de�ned in 4.3, we
also consider the termination of the secretary and we check if all messages have
been received upon full termination.

Figure 6 presents the results. It shows that causality is needed to ensure
compatibility of the composition. However it is not required over the whole
set of channels. Indeed, the composite model with the considered partition is
a restrictive enough communication model. In this example, with the chosen
composite communication model, model checking generates 135 distinct states.

6 Related Work

6.1 Compatibility Checking

Compatibility of services / software components has largely been studied, with
two main goals: Can services communicate and provide more complex services?
And can one service be replaced by another one (substitutability)?

These two notions of compatibility are di�erent. In the �rst case, the services
must be complementary, whereas in the second case they should provide the
same functionality. Classically, either the notion of simulation (as in [1]) or the
notion of trace inclusion (as in [9]) is used to express this sameness. In this
taxonomy, we can also include di�erent models of failure traces [16], where refusal
sets may be used to model (preservation of) process receiving capabilities and
therefore absence of forever pending messages. We are mainly interested in the
�rst problem. Many approaches exist to verify behavioral compatibility of web
services or software components.

Di�erent formalisms are used to represent the services: �nite-state ma-
chines [12, 9, 3, 13], process algebra [11, 6, 7], Petri nets [19, 29, 23]. Di�erent cri-
teria are used to represent compatibility: deadlock freedom [12, 13], unspeci�ed
receptions [5, 12], at least one execution leads to a terminal state [12, 3, 11, 19],
all the executions lead to a terminal state [3, 6], no starvation [13], divergence [6].
Domain application conditions are also used [9, 7]. The communication models
used are synchronous [12, 3, 13, 11, 6, 7] or instantaneous FIFO [2, 28].

To sum up, although some works are dedicated to several compatibility cri-
teria, all of them are dedicated to one communication model, mostly the syn-
chronous model. None of them proposes a veri�cation parameterized by both the

Veri�cation of Asynchronously Communicating Services 13

compatibility criteria and multiple communication models. Moreover, only a few
approaches also provide a tool to automatically check the proposed composition.
Compared to these works, we propose a uni�ed formalization of several commu-
nication models and several compatibility criteria, and a framework which allows
to check the correctness of a composition in a uni�ed manner, using any com-
bination of the communication models. Lastly, the prototype tool can return a
counterexample when a universal compatibility criteria is invalid.

6.2 System Description

IO automata Input/output automata [21] provide a generic way to describe
components that interact with each other thanks to input and output actions.
Those actions are partitioned into tasks over which fairness properties can be
de�ned in the same way fairness properties can be set over TLA+ actions. Com-
ponents can either describe processes or communication channels. They can also
be composed and some output actions can be made internal (hiding) in order to
specify complex systems. I/O automata can model asynchronous systems in a
broad sense. IO automata provide a powerful framework to describe distributed
systems, but are less practical to verify properties about them. Furthermore, few
tools have been developed to make use of IO automata and perform modeling
and property checking.

Process Calculi One of the interest of process calculi is their algebraic repre-
sentation which is simple, concise and powerful. The processes are described by
a term under an algebra. They are constructed from other processes thanks to
composition operators (parallel composition, sequence, alternative, . . .). The ba-
sic processes represent elementary actions, which are most often communication
operations (send or receive).

CCS [25] is an early and seminal calculus that we chose for its simplicity.
Its main disadvantage for our work is that communications are synchronous,
so we had to adapt its semantics. Milner also de�ned the π-calculus [26]. The
main di�erence is the introduction of parameters: channels can be communicated
through channels themselves. This allows to describe systems with dynamic con-
�gurations. Still, the π-calculus is also synchronous.

Richer process calculi exist, such as the Join-calculus [14] (and its extension
to mobility [15]) based on the re�exive CHAM (CHemical Abstract Machine) [4]
and also the Ambient calculus [8]. They allow the description of separated mem-
branes/domains, where processes interact with each other within a domain or
perform explicit actions to move in or out of domains. These calculi are mainly
used to model mobility, distribution, �rewalls and security properties. But they
are not �tted to our concerns for two reasons. Firstly, modelling distribution is
not straightforward (usually a mix of local communications and moves between
domains) whereas we want to keep it as simple as possible, as distribution is at
the core of our concerns. Secondly, they are not parameterized over communica-
tion models and directly encoding them would also be cumbersome.

14 F. Chevrou, A. Hurault, P. Mauran, P. Quéinnec, and X. Thirioux

7 Conclusion

This paper presents a framework to check services compatibility. Its originality
is to consider the asynchronous world, more complex but more realistic. Its key
features are that a system can use di�erent communication models (e.g. �fo or
causal) for di�erent groups of channels, and that channels are not restricted to
have a unique sender and a unique receiver. Our framework is also parametric
with regard to the compatibility criteria. The framework has been instantiated
in TLA+ and thus bene�ts from its tools, especially TLC model checker. The
TLA+ speci�cations are automatically generated from the service behavioral
descriptions.

On-going work aims at extending the asynchronous models, introducing
broadcast (analogous to a message consumed by more than one service) and
communication failures (mainly message loss). A second point of interest is to
verify if a given bound for a channel size is large enough. A last point is to �nd
the weakest (in the sense of less restrictive) communication model required to
achieve compatibility. Currently, the designer speci�es the channels partitioning,
and for each partition, which communication model is used. Then, compatibil-
ity can be veri�ed. It would be interesting to automatically discover the right
partitioning and the weakest communication models for these partitions.

References

1. A. Ait-Bachir, M. Dumas, and M.-C. Fauvet. BESERIAL: Behavioural Service
Analyser. In Business Process Management International Conference. Demo ses-

sion., pages 374�377, 2008. LNCS 5240.
2. S. Basu, T. Bultan, and M. Ouederni. Synchronizability for veri�cation of asyn-

chronously communicating systems. In 13th International Conference on Veri-

�cation, Model Checking, and Abstract Interpretation, VMCAI'12, pages 56�71.
Springer-Verlag, 2012.

3. B. Benatallah, F. Casati, and F. Toumani. Analysis and management of web service
protocols. In Conceptual Modeling � ER 2004, volume 3288 of Lecture Notes in

Computer Science, pages 524�541. Springer, 2004.
4. G. Berry and G. Boudol. The chemical abstract machine. Theor. Comput. Sci.,

96(1):217�248, 1992.
5. D. Brand and P. Za�ropulo. On communicating �nite-state machines. Journal of

the ACM, 30(2):323�342, Apr. 1983.
6. A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing web service chore-

ographies. Electron. Notes Theor. Comput. Sci., 105:73�94, Dec. 2004.
7. C. Canal, E. Pimentel, and J. M. Troya. Compatibility and inheritance in software

architectures. Sci. Comput. Program., 41(2):105�138, 2001.
8. L. Cardelli and A. D. Gordon. Mobile ambients. In First International Conference

on Foundations of Software Science and Computation Structure, FoSSaCS '98,
pages 140�155. Springer-Verlag, 1998.

9. H. S. Chae, J.-S. Lee, and J. H. Bae. An approach to checking behavioral compat-
ibility between web services. International Journal of Software Engineering and

Knowledge Engineering, 18(2):223�241, 2008.

Veri�cation of Asynchronously Communicating Services 15

10. K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states
of distributed systems. ACM Trans. Comput. Syst., 3(1):63�75, Feb. 1985.

11. S. Deng, Z. Wu, M. Zhou, Y. Li, and J. Wu. Modeling service compatibility
with pi-calculus for choreography. In 25th International Conference on Conceptual

Modeling, Conceptual Modeling - ER 2006, pages 26�39. Springer-Verlag, 2006.
12. F. Durán, M. Ouederni, and G. Salaün. A generic framework for n-protocol com-

patibility checking. Science of Computer Programming, 77(7-8):870�886, July 2012.
13. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Compatibility veri�cation for web

service choreography. In IEEE International Conference on Web Services, pages
738�, 2004.

14. C. Fournet and G. Gonthier. The re�exive cham and the join-calculus. In 23rd

ACM Symposium on Principles of Programming Languages, POPL '96, pages 372�
385. ACM, 1996.

15. C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of
mobile agents. In U. Montanari and V. Sassone, editors, CONCUR, volume 1119
of Lecture Notes in Computer Science, pages 406�421, 1996.

16. P. Gardiner, M. Goldsmith, J. Hulance, D. Jackson, B. Roscoe, B. Scattergood, and
P. Armstrong. FDR2 user manual. Technical report, Oxford University, november
2010.

17. L. Lamport. Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558�565, July 1978.

18. L. Lamport. Specifying Systems. Addison Wesley, 2003.
19. X. Li, Y. Fan, Q. Z. Sheng, Z. Maamar, and H. Zhu. A Petri net approach to

analyzing behavioral compatibility and similarity of web services. Trans. Sys. Man

Cyber. Part A, 41(3):510�521, May 2011.
20. N. Lohmann and K. Wolf. Decidability results for choreography realization. In

9th International Conference on Service-Oriented Computing, ICSOC'11, pages
92�107. Springer-Verlag, 2011.

21. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996.

22. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems

� Speci�cation. Springer-Verlag, 1992.
23. A. Martens. On compatibility of web services. Petri Net Newsletter, pages 12�20,

2003.
24. B. Meyer. Applying "design by contract". Computer, 25(10):40�51, Oct. 1992.
25. R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 1982.
26. R. Milner. Communicating and Mobile Systems: The π-calculus. Cambridge Uni-

versity Press, New York, NY, USA, 1999.
27. J. Misra. Detecting termination of distributed computations using markers. In

Proceedings of the Second Annual ACM Symposium on Principles of Distributed

Computing, PODC '83, pages 290�294. ACM, 1983.
28. M. Ouederni, G. Salaün, and T. Bultan. Compatibility checking for asynchronously

communicating software. In FACS'13, volume 8348 of LNCS, pages 310�328, 2013.
29. W. Tan, Y. Fan, and M. Zhou. A Petri net-based method for compatibility analysis

and composition of web services in business process execution language. IEEE T.

Automation Science and Engineering, 6(1):94�106, 2009.

16 F. Chevrou, A. Hurault, P. Mauran, P. Quéinnec, and X. Thirioux

A Formalization of the Asynchronous Communication

Models

A.1 Munique Unique FIFO

This realizes a global �fo order: all messages are put in a unique FIFO queue.
The state of the communication model is net, the queue of in transit messages.

� ICM = 〈〉 (Initially, no message in transit)
� Send action on Si:

scm
i,c!−−→ s′cm , net

′ = net ◦ 〈c〉

� Receive action on Si:

scm
i,c?,L−−−−→ s′cm , net = 〈c〉 ◦ net′

Observe that this looks like the fully asynchronous model (below), using a
queue instead of a bag. However this one is the strongest communication model,
whereas the fully asynchronous model is the weakest one.

A.2 Minst Instantaneous FIFO

Each service is equipped with a unique FIFO input queue. The sender instanta-
neously adds a message to this queue, without blocking. The receiver can remove
from this queue later. The order of received messages on a service is exactly the
time-absolute order of their emissions, even when these emissions are totally
independent.

The state of the communication model is (net,H) composed of:
� net, the set of in transit messages;
� H, the set of all sent messages (used as a history variable). Observe that
this is a global variable, which is consistent with the fact that Instantaneous
FIFO enforces a global ordering.

� A �message� is a couple 〈 channel, history of the message〉.
� ICM = (∅, ∅) (Initially, all sets are empty).
� Send action on Si:

scm
i,c!−−→ s′cm ,

{
H ′ = H ∪ {〈c,H〉}
net′ = net ∪ {〈c,H〉}

� Receive action on Si: The message is not time-absolute posterior to another
in transit message.

scm
i,c?,L−−−−→ s′cm ,

∃〈c, h〉 ∈ net :
¬∃〈c2, h2〉 ∈ net : c2 ∈ L ∧ 〈c2, h2〉 ∈ h
net′ = net \ {〈c, h〉}
H ′ = H

Veri�cation of Asynchronously Communicating Services 17

A.3 Mcausal Causally Ordered Communication

Described in the main part (section 3.3).

A.4 Mfifo FIFO Communication

The state of the communication model is (net,H1, . . . ,HN) composed of:
� net, the set of in transit messages;
� for each service Si: Hi, the current local emission past, that is the set of sent
messages.

� A �message� is a triplet 〈 channel, sender, history of the message〉.
� ICM = (∅, ∅, . . . , ∅) (Initially, all sets are empty)
� Send action on Si:

scm
i,c!−−→ s′cm ,

H ′i = Hi ∪ {〈c, i,Hi〉}
net′ = net ∪ {〈c, i,Hi〉}
∀k 6= i : H ′k = Hk

� Receive action on Si: The message is not posterior to another in transit
message coming from the same service j.

scm
i,c?,L−−−−→ s′cm ,

∃〈c, j, h〉 ∈ net :
¬∃〈c2, l, h2〉 ∈ net : l = j ∧ c2 ∈ L ∧ 〈c2, l, h2〉 ∈ h
net′ = net \ {〈c, j, h〉}
∀k : H ′k = Hk

A.5 Masync Fully Asynchronous Communication

The state of the communication model is net, the bag of in transit messages.

� ICM = ∅ (Initially, no message in transit)
� Send action on Si:

scm
i,c!−−→ s′cm , net

′ = net ∪ {{〈c〉}}

� Receive action on Si:

scm
i,c?,L−−−−→ s′cm , ∃〈c〉 ∈ net : net′ = net \ {{〈c〉}}

Observe that this is exactly the same as the Munique unique FIFO model,
except that the net is a bag, instead of a �fo queue.

