
Data-dependent Constructs in
Concurrency-aware eXecutable Domain-Specific

Modeling Languages?

Florent Latombe1, Xavier Crégut1, Benôıt Combemale2, Julien De Antoni3,
and Marc Pantel1

1 University of Toulouse, IRIT, Toulouse, France
first.last@irit.fr

2 University of Rennes I, IRISA, Inria, Rennes, France
first.last@irisa.fr

3 Univ. Nice Sophia Antipolis, CNRS, I3S, Inria, Sophia Antipolis, France
first.last@polytech.unice.fr

Abstract. Following Plotkin’s Structural Operational Semantics (SOS)
principles, execution semantics for Domain-Specific Modeling Languages
(DSMLs) can be specified as a set of guarded rewrite rules. The emer-
gence of modern highly-parallel platforms calls for DSMLs where concur-
rency is a first-order concept (Concurrency-aware DSMLs). In SOS, the
concurrency model is encoded either in the rule structure representing
the execution context (making it costly to execute), in the internal states
of the guards (making it difficult to analyze) or implicitly inherited from
the meta-language used (making it implementation-dependent). Some
languages, such as Erlang or Akka, make explicit the concurrency model
and how it triggers the concurrency agnostic atomic rules. But concur-
rency often depends on the results of those rules, e.g. in conditional
statements, which raises the need for an explicit and unambiguous way
to specify the communication between the rewrite rules and the concur-
rency model. We propose a dedicated meta-language to specify how the
model of concurrency of a DSML is conditioned by the results of rewrite
rules and illustrate our approach on fUML.

Keywords: Operational Semantics, Domain-Specific Languages, Mod-
els of Concurrency, Metamodelling, Model-Driven Engineering

1 Introduction

Software-intensive systems evolve in heterogeneous environments (including dis-
tributed or parallelized environments) where the implementations of concur-
rency and communication concerns can vary greatly. Moreover, these systems
are usually designed by various stakeholders, whose particular expertise can

? This work is partially supported by the ANR INS Project GEMOC (ANR-12-INSE-
0011)



be capitalized in eXecutable Domain-Specific Modeling Languages (xDSMLs).
Concurrency-aware xDSMLs make explicit the Model of Concurrency and Com-
munication (MoCC), which favors adaptability to various possible execution en-
vironments and eases reasoning about the concurrency of an xDSML. This paper
focuses on dealing with language constructs whose semantics depend on runtime
data from the domain of the xDSML, e.g. in Conditional Statements where the
branch taken depends on the result of the evaluation of a guard.

Traditionally, the operational semantics of an xDSML can be defined by fol-
lowing Plotkin’s Structural Operational Semantics (SOS) approach [32], which
consists in defining the behavioral semantics of a language as a set of inference
rules specifying the semantics of the concepts from the Abstract Syntax (AS)
of the xDSML. Concurrency in SOS is encoded either in the rule structure rep-
resenting the execution context (making it costly to execute as each step can
modify the whole term that must then be wholly analyzed to decide the next
step), in the internal states of the guards (for instance when a guard depends on
data modified by another SOS rule, making it difficult to analyze as full arith-
metic is too expressive) or implicitly inherited from the meta-language used to
define the rewrite rules (thus making it implementation-dependent).

Currently, language workbenches [18, 24] used to specify and implement
xDSMLs provide meta-languages with an implicit model of concurrency that
is imposed to the xDSMLs. Therefore, the first step towards Concurrency-aware
xDSMLs is to capture the MoCC using an appropriate meta-language [11]. The
SOS is thus split in a concurrent part, the MoCC, and atomic SOS rules. The
MoCC is used to define a partial ordering of the atomic SOS rules describing
the semantics of the concepts in the AS of the xDSML. But the concurrency of
an xDSML often depends on data from the domain, i.e. on the conclusions of
previously-executed atomic SOS rules. For instance, a Conditional Statement is
a language construct which consists in evaluating a condition and in executing
one of the branches depending on the result of the evaluation of the condition.
The MoCC is not able to define a partial ordering of the SOS rules that depends
on such data. Therefore, a communication must be specified between the MoCC
and the atomic SOS rules so that the right branch is executed. Our contribu-
tion consists in a dedicated meta-language to specify this communication and
its integration in the GEMOC Studio4 for validation purposes.

The rest of this paper is structured as follows: in Sect. 2 we present the
xDSML that we will use to illustrate our approach. Section 3 presents back-
ground knowledge on the architecture of a Concurrency-aware xDSML and its
application to the illustrative xDSML. In Sect. 4 we identify how to specify the
communication between the MoCC and the atomic SOS rules. Section 5 details
our implementation and its application on the example and discusses the advan-
tages of our approach. Section 6 presents related work. Finally, Sect. 7 concludes
and proposes perspectives for future work.

4 http://gemoc.org/studio/

http://gemoc.org/studio/


Fig. 1. Excerpt from the Abstract Syntax of fUML

2 Illustrative Example

The Foundational Subset for Executable UML Models (fUML) [29] is an ex-
ecutable subset of UML which specifies the behavioral semantics for Activity
Diagrams. An excerpt of its AS is given in Fig. 1. For the sake of simplicity, we
restrain ourselves to the classes present in this excerpt and we model a Behavior

as a String. At runtime, fUML ActivityNodes can create, consume, transfer or
duplicate tokens (depending on their role) which may be either control tokens
(representing the passing of control along a ControlFlow edge) or object tokens
(representing the passing of data along an ObjectFlow edge).

Our focus is on DecisionNode (in red on Fig 1): it is a kind of Control

Node for which outgoing ActivityEdges must have a guard expression (Value
Specification). The semantics of DecisionNode is given in English on page
371 of the UML Superstructure Specification5. Executing a DecisionNode con-
sists in evaluating the guards of its outgoing edges in an unspecified order and
propagating the execution on one of the edges whose guard is evaluated to true.
Note that in fUML, a DecisionNode always represents an exclusive choice, so
even if several outgoing edges are possible, only one will be executed.

We take the example of an activity that consists in determining what to drink
at a coffee break. We want to drink coffee or tea if they are available; else, we
want to drink water. Figure 2 gives a fUML model of this activity.

In this example, execution starts at the InitialNode on the left. Then the
ExecutableNode “Check Table for Drinks” returns the list of available drinks
from the table through an OutputPin. The DecisionNode then passes this list
to the guard of each outgoing ActivityEdge. The guard evaluates to true if the
list of drinks contains the specified drink, thus leading to one of the Executable

5 http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF


Fig. 2. fUML activity modelling the determination of what to drink based on what is
available on the table

Nodes “Drink Coffee” if coffee is available, “Drink Tea” if tea is available, “Drink
Water” otherwise. The MergeNode brings together the three exclusive branches,
after which we have finished our drinking activity (hence the FinalNode).

3 Background on the Architecture of a
Concurrency-aware xDSML and its Runtime

This paper extends previous work done in [8] by Combemale et al.. In this section,
we present the elements from [8] upon which we will build our contribution in
Sect. 4. We illustrate each concept on fUML.

3.1 Design of a Concurrency-aware xDSML

The architecture of a Concurrency-aware xDSML as illustrated by Fig. 3 com-
prises 5 Language Aspects. The Abstract Syntax captures the syntactic con-
cepts of the domain and their relationships. An excerpt from the AS of fUML
was given on Fig. 1. The semantic mapping between the AS and the Seman-
tic Domain of the xDSML is implemented by the 4 other Language Aspects.
First, the Domain-Specific Actions (DSA) represent the runtime state (Execu-
tion Data, ED) and the atomic operations (Execution Functions, EFs) of the
domain. Some of the Execution Functions consist in modifying the ED of the
model during the execution, e.g. executing an ActivityNode modifies the tokens
held by its incoming and/or outgoing ActivityEdges. These EFs correspond to
the conclusions of atomic SOS rules. Other EFs consist in retrieving information
from the model, either about the model itself (e.g. the list of tokens held by an
ActivityEdge), or computed based on data from the model (e.g. the boolean
result of the evaluation of the guard of an ActivityEdge). These EFs correspond
to the premises of the atomic SOS rules. In the context of this paper, we will
use the data returned by these EFs to condition the rest of the execution, so
we denominate them as the Feedback Values. The DSA of fUML are shown on
Fig. 4 as a metamodel extending the AS: the classes ControlToken and Object

Token extend the abstract class Token. ObjectToken holds some piece of data



Fig. 3. Architecture of the Language Aspects constituting a Concurrency-Aware
xDSML, and their counterparts at the Model Level (M1)

available through the get() operation. An ActivityEdge holds a list of Tokens
and provides the evaluate() operation to evaluate its guard. An ActivityNode

provides the execute() operation to implement its execution.

Second, the Model of Concurrency and Communication defines a partial or-
dering on MoccEvents using MoccConstraints. MoccEvents are mapped to AS
concepts by the MoCC2AS Mapping, which makes the MoCC reusable for differ-
ent languages. MoccEvents represent when something is scheduled to happen on

Fig. 4. The Domain-Specific Actions of fUML



the associated AS concept. MoccConstraints are scheduling constraints between
these events, defining for instance whether or not two events may happen con-
currently. The ordering between MoccEvents is partial, there can be an indefinite
number of event occurrences between two other ones. For instance, a Precedence
constraint between two MoccEvents A and B ensures that the nth occurrence
of A happens before the nth occurrence of B, but it does not mean that ev-
ery occurrence of A is followed immediately by an occurrence of B. For fUML,
the MoCC contains 4 MoccEvents: mocc executeNode, mapped to Activity

Node of the AS to schedule when a node is to be executed; mocc evaluateGuard

mapped to ActivityEdge to schedule when the guard of an edge must be eval-
uated; mocc doExecuteTarget and mocc doNotExecuteTarget also mapped to
ActivityEdge to represent whether or not the target of an ActivityEdge must
be executed after having evaluated its guard. The MoccConstraints consist in
the following. The execution of the source of any ActivityEdge must be done
before the execution of its target. The evaluation of the guard of an Activity

Edge must lead to a result which is exclusively mocc doExecuteTarget or mocc
doNotExecuteTarget. Executing a DecisionNode triggers the concurrent evalu-
ation of all the guards of its outgoing ActivityEdges. Only one of the outgoing
branches of a DecisionNode can be taken therefore there is an exclusion between
the mocc doExecuteTarget of the outgoing ActivityEdges.

Finally, the Domain-Specific Events (DSE) bridge the gap between the DSA
and the MoCC by specifying a 1-to-1 mapping between some of the MoccEvents
and the Execution Functions. For fUML, the Domain-Specific Event Execute

ActivityNode maps the MoccEvent mocc evaluateGuard to the Execution Func-
tion ActivityEdge.evaluate() and EvaluateGuard maps mocc executeNode

to ActivityNode.execute().

3.2 Runtime of a Concurrency-aware xDSML

The Language Aspects depend on the AS so their counterparts at the model level
(M1) depend on the Model, as shown in the lower part of Fig. 3. First, the Exe-
cution Model (EM) is the result of the compilation of the MoCC and MoCC2AS
using the model (1 on Fig. 3). It defines MoccEvent instances in the context of
the Model’s elements (depending on the MoCC2AS Mapping). It also specifies a
partial ordering between MoccEvent instances thanks to MoccConstraints. The
EM is interpreted by the Solver. When asked, the Solver provides the set of
the next possible Scheduling Solutions. A Scheduling Solution is composed of
occurrences of MoccEvent instances. Second, the Operationable Model (OpM)
is the result of the compilation of the DSA using the model (2 on Fig. 3). It
defines the data which represent the execution state of the model (Execution
Data instances) and the atomic SOS operations available on this model (Execu-
tion Functions instances). The OpM is interpreted by the DSA Executor, which
provides a mechanism to dynamically execute an Execution Function instance of
the OpM. Finally, the MSE Specification, where MSE stands for Model Specific
Event (instance of Domain-Specific Event), is the result of the compilation of the
DSE with the EM and the OpM (3 on Fig. 3). It specifies the mapping between



Fig. 5. The four steps to conduct one step of execution of a model conforming to a
Concurrency-aware xDSML

the MoccEvent instances from the EM and the Execution Function instances of
the OpM. Its interpreter is called the Matching Engine.

The Solver, DSA Executor and Matching Engine are coordinated together by
the Execution Engine. The Execution Engine provides a number of pre-defined
Scheduling Policies to select one Scheduling Solution among the set of possible
ones returned by the Solver. In particular, one of them consists in asking the end-
user to choose, allowing for step-by-step execution of the model. Figure 5 shows
the 4 steps required to implement one execution step. 1) the Solver produces
a set of possible Scheduling Solutions (representing the allowed futures) based
on the constraints in the Execution Model. 2) the Scheduling Policy selects one
Scheduling Solution among the possible ones. 3) the Matching Engine matches
the corresponding Model-Specific Event occurrences for this step using the MSE
Specification and returns the Execution Function instances they are mapped
to. Since not every MoccEvent is mapped to an Execution Function by a DSE,
not every MoccEvent instance is mapped to an Execution Function instance. 4)
the DSA Executor executes the Execution Function instances in the OpM. This
results in either some Execution Data being modified (for instance, executing the
InitialNode creates a ControlToken on its outgoing ActivityEdge), or some
Feedback Value being returned (when evaluating the guard of an ActivityEdge).

3.3 Shortcomings of the current approach

When a language construct like DecisionNode depends on a Feedback Value such
as the result of the evaluation of the guards, there is a need for a DSA→MoCC
communication which we call the Feedback Mechanism. In [8], the focus was



placed on the MoCC→DSE and DSE→DSA mappings. The DSA→MoCC com-
munication was identified but not specified or implemented. Currently, the return
values of the executed EF instances are not used, and the Scheduling Policy used
by the Execution Engine implements an arbitrary choice between the outgoing
branches of the DecisionNode. We propose in this paper a dedicated meta-
language to specify how to use the Feedback Value so that the Scheduling Policy
can only select Scheduling Solutions compatible with the Feedback Value and
its integration in the GEMOC Studio for validation purposes.

4 Contribution

Our contribution overview is given in Fig. 6. Its elements are labelled in red
with bolder borders. The three steps to implement the Feedback Mechanism are
visible on Fig. 6 and described below. 1) the Feedback Value returned by an
Execution Function instance is transmitted to the MSE Occurrence that orig-
inally triggered that Execution Function instance. 2) the Feedback Interpreter
interprets a new specification called the Feedback Specification using the Feed-
back Value. The Feedback Specification contains the Feedback Policy associated
to every Model-Specific Event whose associated Execution Function instance re-
turns a value. The Feedback Policy of an MSE specifies how to transform the
Feedback Value returned by its Execution Function instance into a set of Feed-
back Constraints. 3) the Feedback Constraints are used by a new entity called
the Scheduling Filter placed between the Solver and the Scheduling Policy. The
role of the Scheduling Filter is to remove, among the Scheduling Solutions re-
turned by the Solver, the ones that are not compatible with the Feedback Value.
For instance if the guard of an ActivityEdge evaluates to false, it will remove
the Scheduling Solutions that have occurrences of mocc doExecuteTarget, and
therefore the target of that edge cannot be executed. In our approach, the Feed-
back Specification is specified at the language level, so Domain-Specific Events
can have a Feedback Policy only if the Execution Function they trigger returns
a value. In the rest of this section, we describe the Abstract Syntax and the
semantics of the meta-language used to specify the Feedback Specification.

4.1 Abstract Syntax of the meta-language

The AS of the meta-language used to specify the Feedback Specification is given
in Fig. 7. A Feedback Policy is composed of Feedback Rules. Each Rule is com-
posed of a Feedback Filter and a Feedback Consequence. A Filter is a predicate on
the return type of the Execution Function referenced by the associated Domain-
Specific Event. A Consequence is a reference to a MoccEvent. Every Policy must
also have a default Rule which has no Filter.

4.2 Semantics of the meta-language

When considering a Feedback Value, a Feedback Policy transmits it to all of
its Feedback Rules (except for the default one), which transmit it to their re-



spective Feedback Filter. Each filter is executed against the Feedback Value to
determine if the associated Feedback Consequence must be applied. If none of
the Feedback Rules is triggered by the Feedback Value, the default Feedback
Rule of the Feedback Policy must be triggered. After this first phase, there is
at least one Feedback Consequence to apply: either a list of Feedback Conse-
quences whose associated Feedback Filter was validated by the Feedback Value,
or the default one (the Feedback Value did not validate any of the Feedback Fil-
ters). For instance, evaluating the guard of an ActivityEdge returns a boolean
value. If this value is ’true’, then the consequence is that the corresponding Moc-
cEvent mocc doExecuteTarget may have an occurrence (and implicitly, that

Fig. 6. Global view of the Feedback Mechanism (DSA→DSE→MoCC Communication)

Fig. 7. Excerpt from the MetaModel of the meta-language to specify the Feedback
Policies



mocc doNotExecuteTarget may not, since they are in exclusion). This will re-
sult in an occurrence of the DSE ExecuteActivityNode for the target of this
edge, which is what is expected when a guard returns true. If the Feedback Value
is ’false’, then the default rule is that mocc doNotExecuteTarget may have an
occurrence (and implicitly that mocc doExecuteTarget may not) which means
that the target of this edge will not be executed. The role of the default Feedback
Rule is similar to that of the ’default’ case or of the ’else’ branch of conditional
statements in General-purpose Programming Languages (GPLs). Having a de-
fault Feedback Rule is necessary because there may be an indefinite number of
Scheduling Solutions between two occurrences of events, therefore relying on an
event not occurring is not possible. The absence of consequence to a Feedback
Value (for instance if all the guards return ’false’, none of the branches is ex-
ecuted) must thus be modelled explicitly as a MoccEvent, which is what the
Feedback Consequence of the default Feedback Rule represents.

Once the Feedback Consequences to apply have been determined, they are
transformed into Feedback Constraints used as input by the Scheduling Filter.
They specify which Scheduling Solutions must be removed from the set of pos-
sible ones provided by the Solver. The Filter keeps these constraints until one of
the Solutions selected by the Scheduling Policy includes an occurrence of at least
one of the Feedback Consequences to apply. For instance, the Filter removes all
the Solutions with occurrences of mocc doNotExecuteTarget for edges whose
guard evaluated to true. Thus, either the next selected Solution has an occur-
rence of mocc doExecuteTarget for one of these edges, and the Constraints can
be removed (the data-dependent part of the conditional statement has been im-
plemented); or not, in which case the Constraints remain in the Filter. This is
due to the fact that, in our approach, there may be an indefinite number of steps
between a cause (evaluating the guard of an ActivityEdge) and its consequence
(mocc doExecuteTarget). There may also be several Solutions even after the
Filter has been applied. For instance, if both Tea and Coffee are available on the
table, it is the Policy that implements the decision to choose between the two.
Were DecisionNode not an exclusive selection, there would be a third option
consisting in drinking both.

These semantics are based on a prerequisite: the MoccEvents referenced by
the Feedback Consequences must not have occurrences outside of the context
of the Feedback Mechanism. This is enforced by construction via an idiomatic
construction in the MoCC Language. These MoccEvents only represent the de-
cision resulting from a Feedback Value (executing one branch or another) so
their occurrences cannot be as a consequence from another MoccEvent. As a
consequence, these MoccEvents cannot be mapped to Domain-Specific Events.
For instance, selecting one of the outgoing branches of a DecisionNode has
nothing to do with the nodes on this branch. This is why the Domain-Specific
Event ExecuteActivityNode is mapped to the MoccEvent mocc executeNode

and not to mocc doExecuteTarget. Instead, there are causality constraints be-
tween mocc doExecuteTarget and mocc executeNode so that every occurrence
of the first one causes an occurrence of the second one.



5 Implementation and Evaluation

Our contribution has been implemented in the GEMOC Studio, based on pre-
vious work done in [9, 8]. It is integrated in the Eclipse Modeling Framework
(EMF) [15] to benefit from its large ecosystem.

5.1 Implementation

Abstract Syntax. We rely on Ecore, a meta-language at the heart of EMF [15]
implementing EMOF [30], the OMG6 standard meta-meta-model for Model-
Driven Engineering, for specifying the Abstract Syntax of an xDSML. The as-
sociated Static Semantics are usually expressed in terms of OCL invariants [31].
Figure 1 shows the Ecore MetaModel of our fUML implementation.

Domain-Specific Actions. We rely on the Kermeta 3 Action Language (K3AL) [14],
built on top of xTend [6] to implement the Execution Data as a set of classes,
attributes and references aspectized onto a metaclass of the AS and the Execu-
tion Functions as operation implementations aspectized onto a metaclass of the
AS. An excerpt of the Domain-Specific Actions for fUML was given on Fig. 4 as
a MetaModel extending the AS of fUML (the implementation of the Execution
Functions were not shown in this figure). K3AL, just like xTend, compiles into
Java Bytecode and provides a DSA Executor which uses the Java Reflection API
in order to dynamically execute Execution Functions.

Model of Concurrency and Communication and MoCC2AS Mapping.
To specify the MoCC, we use MoCCML [11], a declarative meta-language de-
signed to express constraints between events which can be capitalized into li-
braries agnostic of any AS. The mapping between the MoCC and the AS is
defined with the Event Constraint Language (ECL) [12], an extension of OCL
which allows the definition of events for concepts from the AS (MoccEvents), and
the instantiation of MoCCML Constraints over these events (MoccConstraints).
ECL is compiled to a Clock Constraint Specification Language (CCSL) [25] model
interpreted by the TimeSquare [13] tool.

Domain-Specific Events and Feedback Specification. As the meta-language
from Sect. 4 is at the same level as the DSE, the same language is used to spec-
ify the DSE and the Feedback Specification. Our implementation is called the
Gemoc Events Language (GEL). It allows the declaration of Domain-Specific
Events implementing the mapping between a MoccEvent defined in ECL and
an Execution Function whose signature given in the AS of the xDSML is imple-
mented in K3AL. Figure 8 gives an example of the GEL Concrete Syntax (de-
fined using xText [6]) and the links between the Concrete and Abstract Syntaxes
shown on Fig. 7. The Domain-Specific Event ExecuteActivityNode has occur-

6 http://omg.org/



Fig. 8. The ExecuteActivityNode Domain-Specific Event defined using GEL

rences whenever the MoccEvent mocc executeNode has an occurrence in the se-
lected Scheduling Solution, and triggers the Execution Function execute() from
ActivityNode in the DSA. GEL also allows the specification of the Feedback
Policy of a Domain-Specific Event if the associated Execution Function returns a
result. Feedback Filters are specified using an expression language derived from
OCL [31]. For instance, the Domain-Specific Event EvaluateGuard shown in
Fig. 9 has a Feedback Policy. It has occurrences whenever mocc evaluateGuard

has an occurrence in the selected Scheduling Solution, and triggers the Execu-
tion Function evaluateGuard() of the class ActivityEdge when occurring. Its
boolean result is then stored into the local variable result and depending on its
value, either mocc doExecuteTarget or mocc doNotExecuteTarget is allowed
to occur. Using a Model conforming to the AS of the xDSML, the EM and the
OpM, GEL can be compiled into its Model Level counterpart, which is visible
on Fig. 6 (the MSE Specification and the Feedback Specification).

5.2 Evaluation

In our approach, the MoCC specifies that all the outgoing branches of a Decision

Node can be executed after the DecisionNode, and that only one of them will
actually happen (in exclusion with the other ones). Thanks to our contribution,
the Scheduling Filter (using the Feedback Constraints) removes the possibility
to execute any branch whose guard evaluated to false. This is illustrated in the
lower half of Fig. 10. Later on, the Scheduling Policy is able to select which
one of the legitimately possible branches is executed. Note that the relations

Fig. 9. The Domain-Specific Event EvaluateGuard and its Feedback Policy defined
using GEL



between the different branches depend only on the MoCC (exclusion in the
case of DecisionNode). We could implement conditional statements with more
complex branching strategies. For instance, the difference between Decision

Node and the Switch Statement of a GPL is that there is no order of evaluation
of the guards, unlike in most GPLs where the first possible case is executed; and
there is no possible fallthrough, unlike in many GPLs (C, Java, . . . as opposed
to Pascal or Ruby). Such variations could be implemented by specifying the
right constraints (for example, a precedence relation between the evaluations
of the guards) between the MoccEvents. Without our contribution, the only
way to implement conditional statements would be to specify in the MoCC
that all outgoing branches must be executed, e.g. that the three Executable

Nodes “Drink Coffee”, “Drink Tea” and “Drink Water” must be executed. The
exclusive selection would be implemented by storing the Feedback Value into the
Execution Data and adding a check at the beginning of the Execution Function
implementation to ensure that the guard has evaluated to true and that no
other choice has been taken yet (should several guards evaluate to true, only
one of the outgoing branches can be taken). This is illustrated in the upper-
half of Fig. 10. In that case, the MoCC would not be an accurate model of the
concurrency because the causality between the evaluation of a guard and its
consequences are not modelled: all the possible consequences must be executed,
and the analysis of the result of the guard is done in the Execution Function
implementations. The exclusion between the outgoing branches of the Decision

Node would also not be visible in the MoCC, but instead would be encoded in
the EF implementations. Moreover, the MoCC would not be able to know which
of the branches was really executed, so the next Scheduling Solutions it would

Fig. 10. Implementing conditionals without (upper half), respectively with (lower
half), our contribution



provide would consist in proceeding with the execution on all the branches, so
all the other EFs would need to start by checking if they can really be executed.
Ultimately, the MoCC would end up spread all over the EF implementations.
This breaks the purpose of the MoCC as a first-order concept for the concurrency
of an xDSML. Our approach maintains the strict separation of concerns between
the MoCC and the DSA of an xDSML.

6 Related Work

Theoretical computer science has studied and formalized models of concurrency
for a long time now, establishing well-known concepts such as Petri Nets [28, 22];
Process Algebras [21, 27, 26]; Agha’s Actor Model [1] and its implementations
in Erlang [4] or in Scala [19]. Some tools allow the design of multi-paradigm sys-
tems based on models of concurrency, such as Ptolemy [7, 17], ModHel’X [20], or
Metropolis [5], but they lack the support for DSL design. DSL editors, usually
called Language Workbenches, [18] such as Metacase’s MetaEdit+ [36], Jet-
Brain’s MPS [37], Microsoft’s DSL Tools [10], Spoofax [23], Rascal [34], Whole
Platform [33], Itemis’ xText/xBase [16] do not provide an explicit model of the
concurrency of the semantics of the DSLs created. Instead, the implicit model
of concurrency is usually the one used by the hosting platform or language. Our
approach aims at providing a Language Workbench with the tools to define the
explicit model of concurrency used by the created DSL. Implementing condi-
tional statements when the control flow is loosely coupled to the data has been
a problem for other communities. Event-driven programming such as promoted
by node.js [35] usually uses a form of Callback, inspired from the Continuation-
passing style of programming [2]. This can lead to a complicated programming
style commonly known as “Callback hell” [3], where the control flow is spread all
over the code. This is one of the many reasons for the development of languages
or libraries based on the Actor Model [1], such as Erlang [4] or Scala’s Akka
actors [19]. In our approach, since the model of concurrency is concretized in the
MoCC, analyzing and reasoning about it is not an issue, at the cost of having
to specify the communication between the MoCC and the DSA.

7 Conclusion and Perspectives

Most languages rely heavily on the use of data-dependent constructs such as con-
ditionals or conditional-based constructs, therefore being able to implement them
in Concurrency-aware xDSMLs is an important feature. Implementing these con-
structs was intricate previously [8] and led to an inaccurate Model of Concur-
rency and Communication and complex Domain-Specific Actions. Using our ap-
proach, it is possible to implement such language constructs while keeping the
concurrency concern entirely in the MoCC and the Execution Functions and Ex-
ecution Data simpler. In fUML, DecisionNode represents an unordered exclusive
selection, but it is possible to implement more advanced data-dependent con-
structs such as a Switch Statement with fallthrough or a Switch Statement with



parallel branches (equivalent to a Fork with guards on the outgoing branches).
Our approach, validated in the GEMOC language workbench, can be imple-
mented in other existing language workbenches, as long as they provide the
adequate meta-languages for the Language Aspects presented in Sect. 3. In this
paper we have considered the Execution Functions as atomic synchronous op-
erations which modify the Execution Data or return data from the model. But
we have identified the need for composite Execution Functions, for instance in
order to be able to implement xDSMLs whose semantics are defined recursively;
and the need for asynchronous Execution Functions, for example in the case
where the expression of a Conditional Statement takes a long time to compute.
These issues raise a lot of concerns with regards to the MoCC and the handling
of data (arguments and exceptions) between the Execution Functions. Future
works target solutions to these issues.

References

[1] Agha, G.A.: Actors: A model of concurrent computation in distributed systems.
Tech. rep., DTIC Document (1985)

[2] Appel, A.W.: Compiling with continuations. Cambridge University Press (2007)
[3] Armstrong, J.: Red and green callbacks (2013), http://joearms.github.io/

2013/04/02/Red-and-Green-Callbacks.html

[4] Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent programming
in ERLANG. Citeseer (1993)

[5] Balarin, F., Lavagno, L., Passerone, C., Sangiovanni-Vincentelli, A., Sgroi, M.,
Watanabe, Y.: Modeling and designing heterogeneous systems. In: Concurrency
and Hardware Design, pp. 228–273. Springer (2002)

[6] Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend.
Packt Publishing Ltd (2013)

[7] Buck, J.T., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: A framework for
simulating and prototyping heterogeneous systems (1994)

[8] Combemale, B., De Antoni, J., Vara Larsen, M., Mallet, F., Barais, O., Baudry, B.,
France, R.: Reifying Concurrency for Executable Metamodeling. In: Martin Erwig,
R.F.P., van Wyk, E. (eds.) 6th International Conference on Software Language
Engineering (SLE 2013). Lecture Notes in Computer Science, Springer-Verlag,
Indianapolis, ’Etats-Unis (2013), http://hal.inria.fr/hal-00850770

[9] Combemale, B., Hardebolle, C., Jacquet, C., Boulanger, F., Baudry, B.: Bridg-
ing the Chasm between Executable Metamodeling and Models of Computation.
In: SLE2012 - 5th International Conference on Software Language Engineering.
LNCS, Springer (Sep 2012), http://hal.inria.fr/hal-00725643

[10] Cook, S., Jones, G., Kent, S., Wills, A.C.: Domain-specific development with visual
studio dsl tools. Pearson Education (2007)

[11] De Antoni, J., Issa Diallo, P., Teodorov, C., Champeau, J., Combemale, B.: To-
wards a Meta-Language for the Concurrency Concern in DSLs. In: Design, Au-
tomation and Test in Europe Conference and Exhibition (DATE’15). Grenoble,
France (Mar 2015), https://hal.inria.fr/hal-01087442

[12] De Antoni, J., Mallet, F.: Ecl: the event constraint language, an extension of ocl
with events. Tech. rep., Inria (2012)

[13] De Antoni, J., Mallet, F.: Timesquare: Treat your models with logical time. In:
Objects, Models, Components, Patterns, pp. 34–41. Springer (2012)

http://joearms.github.io/2013/04/02/Red-and-Green-Callbacks.html
http://joearms.github.io/2013/04/02/Red-and-Green-Callbacks.html
http://hal.inria.fr/hal-00850770
http://hal.inria.fr/hal-00725643
https://hal.inria.fr/hal-01087442


[14] DIVERSE-team: Github for k3al (2015), http://github.com/diverse-project/
k3/

[15] Eclipse-Foundation: Eclipse modeling framework homepage (2015), http://www.
eclipse.org/modeling/emf/

[16] Efftinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., von Massow, R., Hassel-
bring, W., Hanus, M.: Xbase: implementing domain-specific languages for java.
In: ACM SIGPLAN Notices. vol. 48, pp. 112–121. ACM (2012)

[17] Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity-the ptolemy approach. Proceedings of
the IEEE 91(1), 127–144 (2003)

[18] Fowler, M.: Language workbenches: The killer-app for domain specific languages
(2005), http://martinfowler.com/articles/languageWorkbench.html

[19] Gupta, M.: Akka essentials. Packt Publishing Ltd (2012)
[20] Hardebolle, C., Boulanger, F.: Modhelx: A component-oriented approach to multi-

formalism modeling. In: Models in Software Engineering, pp. 247–258. Springer
(2008)

[21] Hoare, C.A.R., et al.: Communicating sequential processes, vol. 178. Prentice-hall
Englewood Cliffs (1985)

[22] Jensen, K.: Coloured Petri nets: basic concepts, analysis methods and practical
use, vol. 1. Springer Science & Business Media (1997)

[23] Kats, L.C., Visser, E.: The spoofax language workbench: rules for declarative
specification of languages and ides. In: ACM Sigplan Notices. vol. 45, pp. 444–
463. ACM (2010)

[24] LanguageWorkbenchesChallenge: Language workbenches challenge comparing
tools of the trade (2014), http://www.languageworkbenches.net/

[25] Mallet, F.: Clock constraint specification language: specifying clock constraints
with uml/marte. Innovations in Systems and Software Engineering 4(3), 309–314
(2008), http://dx.doi.org/10.1007/s11334-008-0055-2

[26] Milner, R.: Communicating and mobile systems: the pi calculus. Cambridge uni-
versity press (1999)

[27] Milner, R., Milner, R., Milner, R., Milner, R.: A calculus of communicating sys-
tems, vol. 92. springer-Verlag Berlin (1980)

[28] Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

[29] OMG: fuml specification (2013), http://www.omg.org/spec/FUML/
[30] OMG: Mof specification (2014), http://www.omg.org/spec/MOF/
[31] OMG: Ocl specification (2014), http://www.omg.org/spec/OCL/
[32] Plotkin, G.D.: A structural approach to operational semantics (1981)
[33] Solmi, R.: Whole platform (2005)
[34] van der Storm, T.: The Rascal language workbench. CWI. Software Engineering

[SEN] (2011)
[35] Tilkov, S., Vinoski, S.: Node. js: Using javascript to build high-performance net-

work programs. IEEE Internet Computing 14(6), 0080–83 (2010)
[36] Tolvanen, J.P., Kelly, S.: Metaedit+: Defining and using integrated domain-

specific modeling languages. In: Proceedings of the 24th ACM SIGPLAN Con-
ference Companion on Object Oriented Programming Systems Languages and
Applications. pp. 819–820. OOPSLA ’09, ACM, New York, NY, USA (2009),
http://doi.acm.org/10.1145/1639950.1640031

[37] Voelter, M., Pech, V.: Language modularity with the mps language workbench. In:
Software Engineering (ICSE), 2012 34th International Conference on. pp. 1449–
1450. IEEE (2012)

http://github.com/diverse-project/k3/
http://github.com/diverse-project/k3/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://martinfowler.com/articles/languageWorkbench.html
http://www.languageworkbenches.net/
http://dx.doi.org/10.1007/s11334-008-0055-2
http://www.omg.org/spec/FUML/
http://www.omg.org/spec/MOF/
http://www.omg.org/spec/OCL/
http://doi.acm.org/10.1145/1639950.1640031

	Data-dependent Constructs in Concurrency-aware eXecutable Domain-Specific Modeling Languages 

