
Noname manuscript No.
(will be inserted by the editor)

Formal Proofs of Rounding Error Bounds
With application to an automatic positive definiteness check.

Pierre Roux

Received: date / Accepted: date

Abstract Floating-point arithmetic is a very efficient solution to perform computa-
tions in the real field. However, it induces rounding errors making results computed
in floating-point differ from what would be computed with reals. Although numerical
analysis gives tools to bound such differences, the proofs involved can be painful,
hence error prone. We thus investigate the ability of a proof assistant like Coq to
mechanically check such proofs. We demonstrate two different results involving ma-
trices, which are pervasive among numerical algorithms, and show that a large part
of the development effort can be shared between them.

Keywords floating-point arithmetic · rounding error · numerical analysis · proof
assistant · Coq · matrices · Cholesky decomposition

1 Introduction

Floating-point arithmetic is a very efficient solution to perform computations in the
real field R. Unfortunately, intermediate results of computations need to be rounded
to fit in the floating-point format used. Due to this rounding errors, final results of
computations differ from what would have been obtained by computing in the real
field R, although both results usually remain pretty close.

Fortunately, each rounding can only introduce a bounded error. By combining
these atomic errors, one can get a bound on the error affecting the final result. Numeri-
cal analysis [10] thus aims at bounding these differences between results of numerical
algorithms using floating-point or real arithmetic. Using such mathematical proper-
ties, rigorous results can be obtained despite the use of floating-point arithmetic [14],
ensuring that no disastrous rounding error can happen during the computation.

This work was done while the author was a visiting researcher at LRI, Inria Saclay – Île-de-France.

Pierre Roux
ISAE, ONERA
E-mail: pierre.roux@onera.fr

2 Pierre Roux

More precisely, denoting f a function in the real field R and f̃ its actually com-
puted floating-point counterpart, we have f̃ (x) = f (x)+ e. The value e is called the
forward error and is expected to be negligible in front of f (x). When f̃ (x) = f (x+d),
d is called a backward error. The goal is then to prove some bound b, preferably as
small as possible, such that |e| ≤ b(x) (respectively |d| ≤ b(x)).

Proofs of this kind of mathematical results are hard to automate when they involve
an arbitrary number of operations and are therefore mostly done by hand. However,
they can be particularly painful and repetitive which make them specially error prone.
That is why we want to investigate the ability of a proof assistant, namely Coq [1,6],
to check them. Matrices being pervasive in numerical algorithms, we will particularly
focus on them.

Formal proofs of error bounds have already been performed with proof assistants
such as HOL [9] or Coq [3] or with automatic tools such as Gappa [7]. Yet, to the
extent of author’s knowledge, those work only address results with a fixed number
of basic arithmetic operations whereas algorithms with an arbitrary, parameterized,
number of operations are targeted in this paper.

The paper is organized as follows. The remainder of this section first introduces
our motivating example (Section 1.1) and a secondary example (Section 1.2), then
gives basic properties of floating-point arithmetic (Section 1.3) and eventually details
a simple proof about summations (Section 1.4). Section 2 then gives the detailed
specification of floating-point arithmetic used while Section 3 shows how error terms
can be combined. Section 4 eventually details proofs of numerical analysis results
involving matrices, Section 5 deals with overflows, that were ignored until there, and
Section 6 concludes.

1.1 Motivating Example: Cholesky Decomposition

We will use as motivating example throughout this paper a Cholesky decomposi-
tion which is a typical example of numerical algorithm involving matrices. Checking
positive definiteness of matrices is one common use of Cholesky decomposition. A
symmetric matrix A ∈ Rn×n is said to be positive semi-definite, written A� 0, when
for all x ∈ Rn, xT Ax≥ 0.

To prove that a scalar a ∈ R is non negative, one can exhibit some r ∈ R such
that a = r2 (typically r =

√
a). Similarly, one can prove that a symmetric matrix

A ∈ Rn×n is positive semi-definite by exposing a matrix R such that A = RT R (for
xT (RT R)x = (Rx)T (Rx) = ‖Rx‖2

2 ≥ 0 for all x ∈ Rn). The Cholesky decomposition
algorithm, shown on Figure 1, can compute such a matrix R, thus playing on matrices
a similar role to the square root on reals. Indeed, taking as input a symmetric matrix
A ∈ Rn×n, if the algorithm runs to completion, without ever attempting to take the
square root of a negative value or perform a division by zero, it returns a matrix R
such that A = RT R (this can be proven by induction on n). Thus, the mere termination
of the Cholesky decomposition without error is enough to prove A � 0. Conversely,
the decomposition will terminate without error for all symmetric positive definite
matrix A (i.e., such that for all x ∈ Rn, if x 6= 0 then xT Ax > 0).

Formal Proofs of Rounding Error Bounds 3

R := 0;
for j from 0 to n−1 do

for i from 0 to j−1 do
Ri, j :=

(
Ai, j−∑

i−1
k=0 Rk,iRk, j

)
/Ri,i ;

od

R j, j :=
√

A j, j−∑
j−1
k=0 Rk, j

2 ;
od

Fig. 1 Cholesky decomposition: from a symmetric matrix A ∈ Rn×n, attempts to compute R such that
A = RT R. The resulting matrix R is upper-triangular (its elements Ri, j with i≤ j are the only one assigned
after the initialization to 0). The elements Ri, j are computed from left to right (outer loop) and from top
to bottom (inner loop), each element being assigned exactly once a value obtained from the corresponding
element Ai, j of the input A and previously computed elements of R (i.e., elements on its top left). Due
to the three nested loops (one being hidden in the Σ notation), the algorithm performs Θ(n3) arithmetic
operations (that is n

√
n operations if n is the size of the input).

This would work perfectly if the algorithm were run using real arithmetic. How-
ever, performing it with floating-point arithmetic, it could run to completion while
A 6� 0, due to rounding errors. That is, there could be x ∈ Rn such that xT Ax < 0.
But rounding errors remain bounded, so that there exists a bound c ∈ R such that,
if the floating-point Cholesky decomposition of A succeeds, then for all x ∈ Rn,
xT Ax≥−c‖x‖2

2. That is A+ cI � 0. The successful floating-point Cholesky decom-
position of A− cI eventually proves1 that A � 0. Moreover, such a constant c can
be easily computed from simple characteristics of A and the floating-point arithmetic
format used.

It can be noticed that the method is not complete. In particular, if A is positive
semi-definite but not positive-definite (i.e., there is x 6= 0 such that xT Ax = 0), then
A− cI is not positive semi-definite and the Cholesky decomposition will certainly
fail. Thus, rather than just proving that a matrix A is positive semi-definite A � 0,
the method could as well prove that A is positive definite A � 0. This is done by
choosing c such that if the decomposition succeeds, then for all x, xT Ax > −c‖x‖2

2
(strict inequality instead of the wide one above). This ability to prove only strict, and
not wide, inequalities is a common characteristic of this kind of numerical methods,
due to the rounding errors [14].

1.2 Secondary Example: Ellipsoidal Invariants for Linear Controllers

Figure 2 shows a code modeling a typical linear controller. One may want to prove
that, as long as the value of u ∈Rp remains bounded (‖u‖∞ ≤ 1), the value of x in Rn

will remain bounded along any execution of this code.
This is the case if and only if there exists a positive definite matrix P ∈ Rn×n

and a scalar λ ∈ R such that “xT Px ≤ λ” is an inductive loop invariant. That is
“xT Px ≤ λ” holds before entering the loop (i.e., for x = 0, which amount to λ ≥ 0)
and if it holds before an iteration of the loop (i.e., if xT Px ≤ λ) then it still holds

1 Indeed, A− cI leads to another bound c′ but c′ ≤ c (c.f., Corollary 4.4, page 15 for details).

4 Pierre Roux

x := 0;
while true do

// u models input read from sensors
u := ?(−1, 1); // random value in Rp with ‖u‖∞ ≤ 1
x := Ax+Bu;
// send orders to actuators and wait for next period

od
Fig. 2 Model of a typical linear controller: such a controller can be used to maintain a physical system
in a wanted state, when one can get some physical quantities of the system thanks to some sensors and
has to act accordingly on the system through some actuators. The body of the infinite loop is repeatedly
executed at periodic instants of time (for instance, every 10 milliseconds). At each iteration, the variable
u first receives values from the sensors (this value being bounded, for instance between −1 and 1). Then,
the variable x is updated according to its value from the previous iteration and the value of u. Finally, the
value of x could be used to send some orders to the actuators.

after the iteration (i.e., (Ax+Bu)T P(Ax+Bu) ≤ λ for any u such that ‖u‖∞ ≤ 1).
Denoting x = (x0, . . . ,xn−1), the expression xT Px is a polynomial of degree 2 in the
n variables x0,. . . , xn−1 and when P is positive definite, the set

{
x ∈ Rn

∣∣ xT Px≤ λ
}

is, geometrically speaking, an ellipsoid. Since the variable x remains in the bounded
set ε along any execution of the program, it remains bounded. All this is illustrated
on Figure 3.

The goal will be to show that an invariant “xT Px ≤ λ” for an ideal program
executed with real arithmetic (i.e., Ax+Bu computed in the real field) remains valid,
under some conditions, for the actual program using floating-point arithmetic (i.e.,
Ax+Bu computed with floating-point arithmetic).

1.3 Definitions and Basic Properties

Definition 1.1 F ⊂ R denotes the set of floating point values, ◦ : R→ F a round-
ing function (toward +∞ or to nearest for instance) and fl(e) ∈ F the floating point
evaluation of expression e from left to right2.

Example 1.2 Assuming 1, 2 and 3 are floating-point values, fl(1+2+3) denotes the
value ◦(◦(1+2)+3).

In practice, a floating-point value f ∈ F is encoded as a mantissa m ∈ Z and an
exponent e ∈ Z such that f = mβ e where β is the radix (commonly 2). Since f is
encoded with a constant number of bits, m lies in a bounded range. More precisely, if
the mantissa m is encoded with a precision of prec bits: |m|< β prec. To fully exploit
the available precision, m and e can be chosen such that |m| ≥ β prec−1. Such numbers
are called normalized.

The exponent e also lies in a bounded range. We will initially treat e as unbounded
above which means that we ignore potential overflows3. In contrary, e is bounded
below: e≥ emin. This leads to an underflow phenomena: numbers close to 0 (i.e., with

2 Order of evaluation matters since floating point operations are not associative.
3 They will be taken into account later (c.f., Section 5).

Formal Proofs of Rounding Error Bounds 5

{
x
∣∣ xT Px≤ λ

}

{
Ax
∣∣ xT Px≤ λ

}

{
Ax(k)+Bu

∣∣ ||u||∞ ≤ λ
}

x(k)

Ax(k)

Fig. 3 “xT Px ≤ λ” is an inductive invariant: for any x(k) is in the dark gray ellipse (i.e., xT
(k)Px(k) ≤ λ),

Ax(k) is in the light gray one. The white box represents the potential values of Bu. Eventually, Ax(k)+Bu
is in the original dark gray ellipse (i.e., (Ax(k)+Bu)T P(Ax(k)+Bu)≤ λ).

absolute value less than β emin+prec−1) cannot be represented with the usual precision
of prec bits. However, these numbers can be represented with a decreased precision
when they are not too close from 0 (i.e., with absolute value larger than β emin). Such
numbers are called denormalized.

Thus, a real number x ∈ R not too close from 0 can be represented by a normal-
ized number ◦(x) ∈ F such that |x−◦(x)| ≤ β 1−prec |x| (or

(
β 1−prec/2

)
|x| if ◦ is a

rounding to nearest). Otherwise, a denormalized number has to be used, and only
|x−◦(x)| ≤ β emin can be guaranteed (or β emin/2 if ◦ is a rounding to nearest).

Definition 1.3 eps ∈ R and eta ∈ R are constants, depending on the floating-point
format used, such that for all x ∈ R, ◦(x) ∈ F satisfies either |x−◦(x)| ≤ eps |x| or
|x−◦(x)| ≤ eta.

Example 1.4 For the IEEE754 [11] binary644 format with ◦ a rounding to nearest,
we have eps= 2−53 (' 10−16) and eta= 2−1075 (' 10−323).

These constants allow to bound the rounding errors of the basic arithmetic oper-
ations.

4 Usual implementation of the type double in C.

6 Pierre Roux

Property 1.5 For all x,y ∈ F

∃δ ∈ R, |δ | ≤ eps∧fl(x� y) = (1+δ)(x� y), for � ∈ {+,−}
∃δ ,η ∈ R, |δ | ≤ eps∧|η | ≤ eta∧fl(x� y) = (1+δ)(x� y)+η , for � ∈ {×,/}
∃δ ∈ R, |δ | ≤ eps∧fl

(√
x
)
= (1+δ)

√
x.

For multiplication and division, the above property is a direct consequence of
Definition 1.3. For addition, subtraction and square root, it also takes into account
that, under mild conditions on the floating-point format, these operations are exact in
case of underflow.

1.4 Simple Example: the Sum

The previous bounds on rounding errors of basic operations can be combined to get
bounds on the error of larger expressions, as for instance a summation in the following
classic result [10,14].

We first define γn that will be extensively used in the following.

Definition 1.6 For all n ∈ N, γn := neps
1−neps .

These terms are particularly useful to accumulate relative errors (1+ δ) thanks,
among others, to the following property.

Lemma 1.7 (phi_gamma) For all i, j ∈N, δ ∈R j−i, if 2(j− i)eps< 1 and for all k,
|δk| ≤ eps, then

∃θ , |θ | ≤ γ j−i∧
j−1

∏
k=i

(1+δk) = 1+θ .

Theorem 1.8 (fsum_l2r_err_abs) For all n ∈ N, a ∈ Fn, if 2(n−1)eps< 1, then∣∣∣∣∣fl
(

n−1

∑
i=0

ai

)
−

n−1

∑
i=0

ai

∣∣∣∣∣≤ γn−1

n−1

∑
i=0
|ai| .

The following proof is a good example of how equalities with error terms are used
to derive such results. It gives a first overview of the properties and lemmas required
about these error terms.

Proof We have by direct application of Property 1.5

fl

(
n−1

∑
i=0

ai

)
= fl

(
fl

(
n−2

∑
i=0

ai

)
+ xn−1

)
= (1+δn)

(
fl

(
n−2

∑
i=0

ai

)
+ xn−1

)

for some δn−1 ∈ R, |δn−1| ≤ eps. Then

fl

(
n−1

∑
i=0

ai

)
= (1+δn−1)

(
(1+δn−2)

(
fl

(
n−3

∑
i=0

ai

)
+ xn−2

)
+ xn−1

)

Formal Proofs of Rounding Error Bounds 7

for some δn−2 ∈ R, |δn−2| ≤ eps. By an immediate induction

fl

(
n−1

∑
i=0

ai

)
=

(
n−1

∏
j=1

(1+δ j)

)
a0 +

n−1

∑
i=1

(
n−1

∏
j=i

(1+δ j)

)
ai (1)

for some δ j ∈ R,
∣∣δ j
∣∣ ≤ eps. Then by Lemma 1.7, for all i ∈ J1,n− 1K, there exist

θn−i ∈ R such that |θn−i| ≤ γn−i and ∏
n−1
j=i (1+δ j) = 1+θn−i, hence

fl

(
n−1

∑
i=0

ai

)
= (1+θn−1)a0 +

n−1

∑
i=1

(1+θn−i)ai =
n−1

∑
i=0

ai +

(
θn−1 a0 +

n−1

∑
i=1

θn−i ai

)
.

(2)
Finally, since for all i ∈ J1,n−1K, |θn−i| ≤ γn−i ≤ γn−1, there exists θ ∈ R such that
|θ | ≤ γn−1 and

fl

(
n−1

∑
i=0

ai

)
=

n−1

∑
i=0

ai +θ

n−1

∑
i=0
|ai| (3)

which enables to conclude.

One may notice that this result admits somewhat simpler proofs by direct induc-
tion. This more complicated proof was chosen in order to illustrate some basic use of
the error terms δ and θ which play a key role in proofs of more complicated results5.

It is also worth noting that this is a rather simple result and that proofs of more
complicated results can rapidly involve more error terms. The use of a proof assistant
then becomes a good way to get some confidence that no term is accidentally dropped
or mixed with another which can easily happen with pen and paper proofs.

2 Specification of Floating-Point Arithmetic

We now detail the formal specification of floating-point arithmetic used in our Coq
development and already informally introduced in Section 1.3.

As seen in Property 1.5 and Theorem 1.8, both definitions and proofs make inten-
sive use of real numbers with a bounded absolute value. To ease the manipulation of
these error terms, we use a dependent record bounded r packing a real number with
a proof that its absolute value is less than a non-negative real number r:

Record bounded (r : R) :=
{ bounded_val :> R; bounded_prop : |bounded_val| ≤ r }.

Since the set of floating-point values F is a subset of R, we will similarly define
floating point values as a value in R along with a proof that it lies in F:

Record Ff format :=
{ F_val :> R; F_prop : format F_val }.

5 Moreover, this choice improves modularity of the Coq code by sharing lemmas with other results.

8 Pierre Roux

where format is a predicate over R identifying real numbers that are in F.

The floating-point arithmetic specification is then given by the following large
record which will be used as parameter of all our subsequent developments.

Record Float_spec := {
(** format x means that x ∈ R is a floating-point value *)
format : R → Prop;
(** The type of floating-point values (coercible to R). *)
F := Ff format;
(** 0 and 1 must be floating-point numbers. *)
format0 : format 0; format1 : format 1;
(** The opposite of a floating point number is a floating point number. *)
format_opp x : format x -> format (- x);
(** Bound on the relative error (normalized numbers, no underflow). *)
eps : R; eps_pos : 0≤ eps; eps_lt_1 : eps< 1;
(** Bound on the absolute error (denormalized, when underflow occurs). *)
eta : R; eta_pos : 0 < eta;
(** Some rounding. *)
frnd : R→ F; frnd_spec x :
∃ (d : bounded eps) (e : bounded eta), frnd x = (1+d)x+e :> R;
(** Addition. *)
fplus (x y : F) : F := frnd (x+y);
fplus_spec x y : ∃ d : bounded eps, fplus x y = (1+d)(x+y) :> R;
fplus_spec2 (x y : F) : y ≤ 0 → fplus x y ≤ x;
(** Multiplication. *)
fmult (x y : F) : F := frnd (x×y);
fmult_spec (x y : F) := frnd_spec (x×y);
fmult_spec2 x : 0 ≤ fmult x x;
(** Square root. *)
fsqrt (x : F) : F := frnd

√
x;

fsqrt_spec x : ∃ d : bounded eps, fsqrt x = (1+d)
√
x :> R;

}.

The unary minus fopp is then derived from format_opp and the subtraction and
division of x and y are defined respectively as fplus x (fopp y) and frnd (x/y).

Having performed our proofs with a proof assistant, we are guaranteed that the
above record contains all the hypotheses about floating-point arithmetic used in these
proofs. It is interesting to notice that this specification of floating-point arithmetic
is really broad. In particular, it encompasses floating-point formats with gradual or
abrupt underflow (i.e., denormalized numbers are respectively used or not) and any
rounding mode. Fixed-point arithmetic can even be handled by just setting eps to 0,
i.e., no relative, only absolute error occur. However, most of our developments are
carried on with floating-point arithmetic in mind and the proved bounds might be
pretty poor in a fixed-point arithmetic setting.

Formal Proofs of Rounding Error Bounds 9

It is common practice in numerical analysis to ignore underflows [10]. Although
this gives good indications on the numerical behavior of algorithms, underflows can
appear with any practical implementation of floating-point arithmetic, potentially
breaking such results. In our development, they are taken into account, thanks to
the eta constant.

In our Coq development, the above specification of floating-point arithmetic is
proved to hold for the floating point format with gradual underflow and rounding to
nearest with any tie-break rule modeled in the Flocq library [4] with parameters cor-
responding to the binary64 format4 (albeit without NaNs nor overflows, c.f., record
binary64 in our development). Other formats such as binary326 could be obtained
by just modifying two constants defining size of the mantissa and minimal exponent.

In contrary to underflows, not handling NaNs and overflows does not constitute
an actual issue. In fact, results considering those special values can easily be derived
from results in our model with only finite values as will be shown in Section 5.

3 Combining Error Terms

3.1 Bounded Error Terms

Values of the type bounded defined at beginning of Section 2 are coercible to R and
we developed a few helpful lemmas about them. The two following lemmas can be
used to create such values.

Lemma 3.1 (bounded_le_1) ∀r1,r2 ∈ R, |r1| ≤ r2⇒∃b : bounded 1, r1 = br2

Lemma 3.2 (bounded_scale)
∀r1,r2 ∈ R,b1 : bounded r1,0 < r2⇒∃b2 : bounded r2, b1 = b2

r1
r2

It is often needed to say that a value of type bounded b is also of type bounded b′ for
any b′ ≥ b (for instance, in proof of Theorem 1.8, to state that the θn−i : bounded γn−i
are all of type bounded γn−1):

Lemma 3.3 (widen_bounded)
∀r,r′ ∈ R,∀b : bounded r,r ≤ r′⇒∃b′ : bounded r′, b = b′

It is also common to get bounds of the form be with b : bounded r and e a complicated
expression we want to replace by a simpler expression e′ ≥ e:

Lemma 3.4 (bounded_larger_factor)
∀r,r1,r2 ∈ R,∀b : bounded r, |r1| ≤ |r2| ⇒ ∃b′ : bounded r, br1 = b′ r2

Error terms are compatible with basic arithmetic operations:

Lemma 3.5 (bounded_opp, bounded_plus, bounded_mult)

∀r : R,∀b : bounded r,∃b′ : bounded r, b′ =−b

∀r1,r2 : R,∀b1 : bounded r1,∀b2 : bounded r2,∃b′ : bounded (r1 + r2), b′ = b1 +b2

∀r1,r2 : R,∀b1 : bounded r1,∀b2 : bounded r2,∃b′ : bounded (r1 r2), b′ = b1 b2

6 Usual implementation of type float in C.

10 Pierre Roux

Finally, probably the most important lemma about error terms allows to factor them
and was exemplified between (2) and (3) in the proof of Theorem 1.8:

Lemma 3.6 (bounded_distrl, big_bounded_distrl)

∀r,r1,r2 ∈ R,∀b1,b2 : bounded r,∃b′ : bounded r, b1 r1 +b2 r2 = b′ (|r1|+ |r2|)

∀r,∈ R,∀n : N,∀a ∈ Rn,∀b : (bounded r)n,∃b′ : bounded r, ∑
i

bi ai = b′
(

∑
i
|ai|
)

It is worth noting that this last property involves tuples (a and b) and sums of an
arbitrary number of terms (∑i biai for instance). Those are efficiently handled thanks
to the bigop operator from the SSReflect library [2].

3.2 Accumulating Relative Errors

As already seen, for instance in the proof of Theorem 1.8 (between (1) and (2)), error
terms of the form (1+ δ1) . . .(1+ δn), with |δi| ≤ eps, easily occur when relative
errors accumulate. The terms γn := neps

1−neps nicely enable to compact them into 1+θn,
|θn| ≤ γn as will be exposed in this section.

Most of the following lemmas require hypothesis of the form neps< 1 for vari-
ous values of n. In our Coq code, a set of small lemmas7 allow to easily manipulate
theses hypothesis so that they do not constitute an annoying burden in practice. First,
a few very basic properties of the γn are proved. Namely, that they are non nega-
tive (provided neps < 1), strictly less than 1 (provided 2neps < 1) and constitute a
monotone sequence: for all n≤ m, γn ≤ γm (provided meps< 1).

We then get some more interesting properties.

Lemma 3.7 ([10, Lemma 3.3], gamma_{mult{,_nat},plus{_mult„_eps})
For all n,m ∈ N

n≤ m⇒ 2meps< 1⇒ γn γm ≤ γn

(nm)eps< 1⇒ nγm ≤ γnm

(n+m)eps< 1⇒ γn + γm + γn γm ≤ γn+m

(n+m)eps< 1⇒ γn + γm ≤ γn+m

(n+1)eps< 1⇒ γn +eps≤ γn+1

Allowing to prove properties about the θn : bounded γn.

7 For instance: (n+1)eps< 1⇒ neps< 1.

Formal Proofs of Rounding Error Bounds 11

Lemma 3.8 ([10, Lemma 3.3], gammap1_{mult{,_epsp1},div{_le,}})
For all n,m ∈ N, for all θn : bounded γn, θm : bounded γm and δ : bounded eps

2(n+m)eps< 1⇒
∃θn+m : bounded γn+m, (1+θn)(1+θm) = 1+θn+m

2(n+1)eps< 1⇒
∃θn+1 : bounded γn+1, (1+θn)(1+δ) = 1+θn+1

m≤ n⇒ 2(n+m)eps< 1⇒
∃θn+m : bounded γn+m, (1+θn)/(1+θm) = 1+θn+m

2(n+2m)eps< 1⇒
∃θn+2m : bounded γn+2m, (1+θn)/(1+θm) = 1+θn+2m

Lemma 3.9 (phi_gamma,inv_phi_gamma)
For all i, j,n ∈ N, δ : (bounded eps)n, if 0≤ i≤ j ≤ n then

2(j− i)eps< 1⇒∃θ j−i : bounded γ j−i,
j−1

∏
k=i

(1+δk) = 1+θ j−i

(j− i)eps< 1⇒∃θ j−i : bounded γ j−i,
1

∏
j−1
k=i (1+δk)

= 1+θ j−i

It should be noted that, unlike the terms γn, the subscripts n in the notation θn are only
present to improve readability but don’t hold any semantic value.

It is also interesting to notice about the division [10, §3.4] that, although (accord-
ing to Lemma 3.8) (1+θn)/(1+θm) = 1+θn+m only holds for m≤ n, according to
the above lemma ∏n(1+δi)/∏m(1+δi) = 1+θn+m even when m > n.

The notations δ and θn, with |δ | ≤ eps and |θn| ≤ γn, used in the above lemmas
are particularly convenient and popular to carry proofs about error bounds. In fact,
like the Landau big O notation, they greatly simplify proofs by enabling the use of
simple equalities8 instead of a collection of inequalities, or limits. However, it is easy
to misuse them or forget hypotheses, such as m≤ n in Lemma 3.8. The use of a proof
assistant ensures that this does not happen.

3.3 First Applications

Thanks to all the above lemmas, the Theorem 1.8, bounding the rounding error of
a sum, is easily proven (c.f., fsum_l2r_err_abs in our Coq development). Similar
results are also proved for the dotproduct of two vectors of floating point values.

Lemma 3.10 (fdotprod_l2r_err_abs)
For all n ∈ N and a,b ∈ Fn, if 2neps< 1, then∣∣∣∣∣fl

(
n−1

∑
i=0

ai bi

)
−

n−1

∑
i=0

ai bi

∣∣∣∣∣≤ γn

(
n−1

∑
i=0
|ai bi|

)
+2neta.

8 See for instance the proof of Theorem 1.8, page 6.

12 Pierre Roux

Another example, in case the first operand a is constituted of real numbers, which
have to be rounded to floating-point values prior to computation of the dotproduct.
This will be used in the last application of this paper.

Lemma 3.11 (fdotprod_l2r_fstr_err)
For all n ∈ N, a ∈ Rn and b ∈ Fn, if 2(n+1)eps< 1, then∣∣∣∣∣fl

(
n−1

∑
i=0

ai bi

)
−

n−1

∑
i=0

ai bi

∣∣∣∣∣≤ γn+1

(
n−1

∑
i=0
|ai bi|

)
+2

(
n+

n−1

∑
i=0
|bi|
)
eta.

Due to the presence of existential quantifiers in most intermediate lemmas, proof
style in the Coq proof assistant heavily relies on forward proving. This does not ap-
pear to add much burden to the proof writing process, as long as proofs are well
structured into lemmas of reasonable size9. Otherwise, one can first provide some
dummy terms and later step back to replace them by the, then more obvious, ade-
quate terms. Using the evar mechanism of Coq might also be a solution. In the “big
enough numbers” for ε,η proofs about limits [5], constraints of the form η ≤ ηk are
first accumulated as a list of the ηk and then simplified as η ≤mink ηk. Unfortunately,
we are manipulating equalities of arithmetic expressions involving error terms rather
than inequalities and we do not see such an easy simplification in this setting.

4 Errors on Matrix Operations

4.1 Real Numbers Matrices

As stated in the introduction (Section 1.1), we intend to prove numerical analysis
results on algorithms involving matrices. In our Coq development, we borrow matrix
algebra from the SSReflect library [8]. But we also need some results which are
specific to matrices of real numbers. We therefore introduce some basic definitions
and lemmas about pointwise orders and absolute values, dotproducts and quadratic
norms.

First, the pointwise extensions of the order ≤ and < as well as the absolute value
|.| are defined and a group of lemmas are proved about them. Most of these lemmas
are just lifting of the existing results on the real field R: reflexivity and transitivity
of the order ≤, compatibility of this order with matrix addition or scaling, triangular
inequality of the absolute value (∀A,B ∈ Rn×m, |A+B| ≤ |A|+ |B|) and so on.

In order to deal with quadratic norms, we first define positive (semi-)definite ma-
trices. A matrix P ∈ Rn×n is said to be positive semi-definite, written P � 0, when
for all x ∈ Rn, xT Px ≥ 0 and it is said to be positive definite, written P � 0, when
for all x 6= 0, xT Px > 0. Thus for a symmetric (PT = P) positive definite matrix P,
we define the dotproduct of two vectors x,y ∈ Rn as xT Py and the quadratic norm
‖x‖P as

√
xT Px. The dotproduct is then proven to actually be a dotproduct (bilinear,

symmetric, definite and non negative). It follows that the quadratic norm is definite

9 Which is just good programming practice.

Formal Proofs of Rounding Error Bounds 13

non-negative and satisfies the scaling property (‖λx‖P = |λ |‖x‖P) which eventually
enables to prove two usual inequalities: the Cauchy-Schwarz inequality:

∀x,y ∈ Rn,
∣∣xT Py

∣∣≤ ‖x‖P ‖y‖P

and the triangular inequality:

∀x,y ∈ Rn, ‖x+ y‖P ≤ ‖x‖P +‖y‖P.

In the particular case when P := I, the quadratic norm will be written ‖.‖2 and a few
additional properties are proved: ∀x,y ∈ Rn,

|x| ≤ |y| ⇒ ‖x‖2 ≤ ‖y‖2

‖|x|‖2 = ‖x‖2∥∥[1 . . .1]T∥∥2 =
√

n

‖x‖1 ≤
√

n‖x‖2

where ‖x‖1 := ∑i |xi|.
We eventually needed 110 lemmas. Thanks to the nice SSReflect matrices [8],

they are proved using only 394 lines of tactics (hence an average of 3.6 lines of tactic
per lemma, the longest proof being the Cauchy-Schwarz inequality with 36 lines of
tactic).

4.2 Main Application: Cholesky Decomposition

As explained in Section 1.1, given a matrix A we want to check its positive definite-
ness, that is to prove A� 0. This will be done by proving that there exists a constant
c ∈ R such that when the Cholesky decomposition (c.f., Figure 1) of A− cI, per-
formed with floating-point arithmetic, runs to completion without error (square root
of negative value or division by zero), then A� 0. We follow the proof in [13]10.

The first lemmas proved deal with the two “basic blocks” of the Cholesky decom-
position: the assignments performed in the inner then the outer loop (c.f., Figure 1,
page 3). The two following lemmas are proved with tools similar to the one required
for Lemmas 3.10 and 3.11 about floating-point sums and dotproducts.

Lemma 4.1 ([13, Lemma 2.1], lemma_2_1) For all n ∈ N, a,b ∈ Fn, c,d ∈ F, if
d 6= 0 and 2(n+1)eps< 1, then∣∣∣∣∣c−∑

i
aibi−d ỹ

∣∣∣∣∣≤ γn+1

(
∑

i
|aibi|+ |d ỹ|

)
+2eta(k+1+ |d|) .

where ỹ := fl
(

c−∑i aibi
d

)
.

10 Actually, part of it. We only consider matrices of real numbers whereas [13] also handles complex
numbers. [13] also offers improved bounds for sparse matrices and a non-positive-definiteness check.

14 Pierre Roux

Lemma 4.2 ([13, Lemma 2.2], lemma_2_2_{1,2}) For all n ∈ N, a ∈ Fn, c ∈ F, if
2(n+2)eps< 1 and fl

(
c−∑i a2

i
)
≥ 0, then∣∣∣∣∣c−∑

i
a2

i − ỹ2

∣∣∣∣∣< γn+2

(
∑

i
a2

i + ỹ2

)
+2eta(k+1) .

and

ỹ2 +∑
i

a2
i ≤

c+2etak
1− γn+2

where ỹ := fl
(√

c−∑i a2
i

)
.

Then, given two matrices A, R̃ ∈ Fn×n the proposition cholesky_spec A R̃ ex-
presses that R̃ is the floating-point Cholesky factor of A and is defined as follows

∀i, j ∈ J1,nK, i < j⇒ R̃i, j = fl

(
Ai, j−∑

i−1
k=1 R̃k,iR̃k, j

R̃i,i

)
∧∀ j ∈ J1,nK, R̃ j, j = fl

(√
A j, j−∑

j−1
k=1 R̃2

k, j

)
.

(4)

This corresponds to the algorithm presented in Figure 1, page 3.
Eventually, the proposition cholesky_success A R̃ states that the floating-point

Cholesky decomposition of A runs to completion without error (and returns R̃):

cholesky_spec A R̃∧∀i ∈ J1,nK, R̃i,i > 0.

The constraint R̃i,i > 0 obviously prevents divisions by zero. The way it prevents tak-
ing square roots of negative values is a bit more subtle. According to the specification
of fl

(√
.
)

(c.f., fsqrt_spec, page 8), fl(
√

x) = (1+d)
√

x and
√

x is defined as 0 for
all x≤ 0 in the Coq standard library for reals. Thus, fl(

√
x)> 0 guarantees that x > 0.

With this specification of the floating-point Cholesky decomposition, the follow-
ing main theorem can be proved about it.

Theorem 4.3 ([13, Theorem 2.3]) For all n ∈N (n≥ 1), for all A, R̃ ∈ Fn×n, m ∈R,
if 2(n+2)eps< 1, AT = A, for all i, Ai,i ≤ m and cholesky_success A R̃, then

∀x ∈ Rn,x 6= 0⇒−|x|T ∆A |x|< xT Ax

where ∆Ai, j :=αi, j di d j+4eta(n+2+m) with αi, j := γmin(i, j)+2 and di :=
√

Ai,i+2ieta
1−αi,i

.

This theorem is proved thanks to the above Lemmas 4.1 and 4.2 and the lemmas
about matrices of real numbers described in Section 4.1.

Here is an idea of the kind of tiny mistakes that can be hard to spot in pen and
paper proofs and may only be unveiled when trying to mechanically check them. In
the original paper [13], the proof accidentally made the assumption that R̃i,i ≤ Ai,i

where R̃i,i := fl
(√

Ai,i−∑R2
k, j

)
. This may be slightly false since

√
x can be larger

Formal Proofs of Rounding Error Bounds 15

than x ∈ (0,1) but this was completely overlooked by the author of this paper11 when
first checking the proof by hand. Although very minor, the issue only appeared when
translating the proof in Coq (and was easily fixed since

√
x≤ x+1).

The previous theorem is pretty useless by itself but the following corollary looks
closer from what we are looking for.

Corollary 4.4 ([13, Corollary 2.4]) For all n∈N (n≥ 1), for all A, Ã∈ Fn×n, c∈R,
if 2(n+2)eps< 1, AT = A and for all i, 0≤ Ai,i and

∀x ∈ Rn, ‖x‖2 = 1⇒ |x|T ∆A |x| ≤ c

and ÃT = Ã and
∀i, j ∈ J1,nK, i < j⇒ Ãi, j = Ai, j

∀i ∈ J1,nK, Ãi,i ≤ Ai,i− c

then, if there exists R̃ ∈ Fn×n such that cholesky_success Ã R̃, we have

A� 0.

Proof (sketch) By definition of Ã, for any x ∈Rn, if ‖x‖= 1, then xT Ax≥ xT Ãx+c.
From the theorem, we get xT Ãx>−|x|T ∆Ã |x|. Since ∆Ã≤∆A (elementwise inequal-
ity, c.f., Delta_At_le_Delta_A in the code), xT Ax >−|x|T ∆A |x|+ c≥ 0.

Finally, it is proven that any value larger than

γ2n+2

2
tr(A)+4eta(n+1)

(
2(n+2)+max

i
Ai,i

)
(5)

will work as constant c in the above corollary as long as 4(n+ 2)eps < 1. Thus,
an appropriate constant c can easily be computed, for instance with floating-point
arithmetic with rounding toward +∞. Then Ã is computed by subtracting cI to A
and the floating point Cholesky decomposition is performed. If it runs to completion
without error, this rigorously proves that A � 0. This automatic positive definiteness
check is efficient as it is performed with O(n3) floating-point operations for a matrix
A of size n×n.

The bound 4(n + 2)eps < 1 is not a practical issue since it only implies n <
1

4eps −2 which is huge for practical values of eps. For instance, for the binary64 for-
mat, eps= 2−53 which leads to the constraint n < 251−2 (' 1015). In practice, eta
being very small compared to eps (eps = 2−53 and eta = 2−1075 for the binary64
format), the second term of the bound (5) is negligible with respect to the first term
γ2n+2

2 tr(A). This means that, when the diagonal coefficients of the matrix A are of
order of magnitude12 1, the bound (5) is mostly n2eps.

Thanks to the previous corollary, positive definiteness check can be performed
on matrices A of floating-point values (A ∈ Fn×n). However, if the matrix X we want

11 As well as the author and reviewers of the original paper.
12 A preprocessing can fit all diagonal coefficients in the interval [0.25,1]. Indeed, A � 0 when A′ :=

DT AD� 0 for any non-singular matrix D. By choosing D= diag(d0, . . . ,dn−1), we have A′i, j = did jAi, j . By
choosing the di as powers of 2, these multiplications are exact in floating point arithmetic (if no underflow
(nor overflow) occurs) and we can guarantee A′i,i ∈ [0,25,1] [13].

16 Pierre Roux

to check has coefficients in the real field (X ∈ Rn×n), we first have to round them to
floating-point values in F and we will end up checking some matrix A ∈ Fn×n such
that |X−A|i, j ≤ Ri, j := eps |A|i, j + eta. Such interval matrices are easily handled
thanks to the following corollary.

Corollary 4.5 ([13, Corollary 2.7]) For all n ∈ N (n ≥ 1), for all A, Ã ∈ Fn×n, R ∈
Rn×n, c,r ∈ R, if 2(n+2)eps< 1, AT = A, R≥ 0 and for all i, 0≤ Ai,i and

∀x ∈ Rn,‖x‖2 = 1⇒ |x|T ∆A |x| ≤ c

and
∀x ∈ Rn,‖x‖2 = 1⇒ |x|T R |x| ≤ r

and ÃT = Ã and
∀i, j ∈ J1,nK, i < j⇒ Ãi, j = Ai, j

∀i ∈ J1,nK, Ãi,i ≤ Ai,i− c− r

then, if there exists R̃ ∈ Fn×n such that cholesky_success Ã R̃, we have

∀X ∈ Rn×n,XT = X ⇒ |X−A| ≤ R⇒ X � 0.

Since n max
{

Ri, j
∣∣ i, j ∈ J1,nK

}
is a suitable value for r, this gives an effective crite-

rion for positive definiteness of a matrix X with coefficients in the real field R.
The whole Coq development eventually counts 3.5 kloc. Among them, 0.4 are

devoted to the specification of floating-point arithmetic (described in Section 2), 0.2
to bounded error terms (Section 3.1), 0.6 to the γn terms and their properties (Sec-
tion 3.2), 0.4 to basic lemmas about sums and dotproducts (Sections 1.4 and 3.3) and
0.8 to matrices of real numbers (Section 4). Finally, the main theorem and corollaries
(this section) take 1.0 kloc and the remainder (0.1 kloc) is constituted of miscella-
neous lemmas. This appears particularly reasonable, considering the original result is
a far from trivial 6 page long paper proof [13].

4.3 Another Application: Impact of Rounding Errors on Ellipsoidal Invariants

To assert the reusability of our developments for numerical analysis results involving
matrices, we targeted another property. We will see that three quarters of the previous
development can be directly reused.

As introduced in Section 1.2, we are given an invariant “xT Px ≤ λ” for the pro-
gram of Figure 2 executed with real arithmetic and we want to prove, under some
conditions, that it is also an invariant for the same program executed with floating-
point arithmetic.

Here is the basic idea. The fact that the invariant is inductive for real arithmetic
can be expressed as the following property

∀x ∈ Rn,∀u ∈ Rp,xT Px≤ λ ⇒‖u‖∞ ≤ 1⇒ (Ax+Bu)T P(Ax+Bu)≤ λ .

But in practice, there will be some margin and we will be given the property

∀x ∈ Rn,∀u ∈ Rp,xT Px≤ λ ⇒‖u‖∞ ≤ 1⇒ (Ax+Bu)T P(Ax+Bu)≤ λ
′.

Formal Proofs of Rounding Error Bounds 17

x ∈
{

x
∣∣ xT Px≤ λ

}

fl(Ax+Bu) ∈
{

x
∣∣ xT Px≤ λ ′′

}
Ax+Bu ∈

{
x
∣∣ xT Px≤ λ ′

}

Fig. 4 When x is in an ellipsoid of radius λ , Ax + Bu is in a smaller ellipsoid of radius λ ′ < λ and
fl(Ax+Bu) is then in a slightly larger ellipsoid of radius λ ′′ > λ (and hopefully λ ′′ ≤ λ). The figure is not
to scale, the difference between λ ′ and λ ′′ being usually orders of magnitude smaller than with λ .

for some λ ′ < λ . That is if x is in the ellipsoid
{

x
∣∣ xT Px≤ λ

}
, then Ax + Bu is

in the smaller ellipsoid
{

x
∣∣ xT Px≤ λ ′

}
. Computed with floating-point arithmetic,

fl(Ax+Bu) will be equal to Ax+Bu plus a small rounding error and will then lie in
a slightly larger ellipsoid

{
x
∣∣ xT Px≤ λ ′′

}
with λ ′′ > λ ′. If λ ′′ ≤ λ , then

∀x ∈ Rn,∀u ∈ Rp,xT Px≤ λ ⇒‖u‖∞ ≤ 1⇒ fl(Ax+Bu)T Pfl(Ax+Bu)≤ λ ,

which means that the invariant is also inductive for floating-point arithmetic. This is
illustrated on Figure 4.

The following theorem shows that λ ′′ ≤
(√

λ ′+
√

λ a+b
)2

with a and b very

small constants depending on A, B, P and the floating-point format used. That is λ ′′

is only slightly larger than λ ′ (and then hopefully less than λ).

Theorem 4.6 For all n, p ∈ N, A,P ∈ Rn×n, B ∈ Rn×p, s,s′,λ ,λ ′ ∈ R, if 2(n+ p+
1)eps< 1, PT = P, P� 0, sP− I � 0, s′ I−P� 0, then for all x ∈ Fn, u ∈ Fp if

xT Px≤ λ , ‖u‖∞ ≤ 1 and (Ax+Bu)T P(Ax+Bu)≤ λ
′

then

fl(Ax+Bu)T Pfl(Ax+Bu)≤
(√

λ ′+
√

λ a+b
)2

where a := γn+p+1
√

ss′
√

n‖A‖F +2
√

ss′n
√

neta
and b := γn+p+1

√
s′
√

p‖B‖F +2
√

s′(n+2p)
√

neta

where ‖M‖F denotes the Frobenius norm of the matrix M (i.e., ‖M‖F :=
√

∑i, j M2
i, j).

For typical values (n≤ 10, p≤ 10, coefficients of A and B of order of magnitude
1, ss′ ≤ 104, s′ ≤ λ and eta� eps ' 10−16 for binary64),

√
λ a+ b ≤ 10−10

√
λ

which is very small with respect to a typical relative difference of 10−4 between λ

and λ ′ [12]. Thus λ ′′ ≤ λ always holds in practical cases.

18 Pierre Roux

Here are the main lines of the proof. fl(Ax+Bu) being defined as fl
(
[A B][xT uT]T

)
(recall that fl(expr) means expr computed from left to right), for all i, fl(Ax+Bu)i
is a dotproduct and Lemma 3.11 gives for all i, fl(Ax+Bu)i = (Ax+Bu)i + e with
|e| ≤ b(x,u) (c.f., Lemma 3.11 for the details of b). ‖u‖∞ ≤ 1 is an hypothesis. Then,
the hypothesis sP− I � 0 and xT Px ≤ λ allow to prove ‖x‖∞ ≤

√
sλ (lemma_2 in

ellipsoid_error.v, proved using the lemmas on matrices of Section 4.1). These
are the main ingredients of the following lemma.

Lemma 4.7 (lemma_3 in ellipsoid_error.v) For all n, p ∈ N, A,P ∈ Rn×n, B ∈
Rn×p, s,λ ∈R, if 2(n+ p+1)eps< 1, P� 0, sP− I � 0, then for all x ∈ Fn, u ∈ Fp

if
xT Px≤ λ and ‖u‖∞ ≤ 1

then there exists d : (bounded 1)n such that

fl(Ax+Bu) = Ax+Bu

+diag(d)
(√

sλ (γn+p+1 cA +2nceta)+ γn+p+1 cB +2(n+2p)ceta
)

where cA :=
[
∑ j A0, j, . . . ,∑ j An−1, j

]T , cB :=
[
∑ j A0, j, . . . ,∑ j An−1, j

]T
and ceta := [eta, . . . ,eta]T .

From the hypothesis s′ I − P � 0, we get for all x ∈ Rn, ‖diag(d)x‖P ≤
√

s′‖x‖2
(lemma_4) and the proof of the theorem finally follows thanks to matrix manipula-
tions and lemmas of Section 4.1.

Among the 3.1 kloc needed to prove this theorem, 2.3 are shared with the develop-
ment performed for the previous Section 4.2. Again, 0.8 kloc of Coq is a reasonably
small amount of code for translating such a non trivial 4 page long paper proof.

5 Considering Potential Overflows

Until now, the possibility of overflows has been ignored. This section shows how
previous results can be extended taking them into account. The basic idea is to use
the fact that, as long as no overflow occurs, results are the same than in the previous
model without overflows. An extension to overflows of the floating-point model of
Section 2 is first given before exemplifying it on the Cholesky decomposition result
of Section 4.2.

5.1 Specification of Floating-Point Arithmetic with Overflows

To the normalized and denormalized numbers already considered, the IEEE754 stan-
dard adds special values −∞ and +∞ to handle overflows and NaN (Not a Number)
to handle undefined operations (for instance 0/0). The new following specification
handles this additional values by basically stating that when the result of an operation
is not one of them, then the operation behaves as already defined in Section 2.

Formal Proofs of Rounding Error Bounds 19

Record Float_infnan_spec := {
(** Type of floating-point values (either finite, infinite or NaN). *)
FI : Set;
(** finite f means that the floating-point number f is finite. *)
finite : FI → Prop;
(** Underlying unbounded floating-point format. FI and F fis match when finite
holds. *)
fis : Float_spec;
(** Associates the corresponding value in F fis for finite values or 0 for infinities
and NaN. *)
FI2F : FI → F fis;
FI2F_spec x : (FI2F x 6= 0 :> R) → finite x;
(** Opposite *)
fiopp : FI → FI;
fiopp_spec x : finite (fiopp x) →
FI2F (fiopp x) = fopp (FI2F x) :> R;
fiopp_spec_f x : finite (fiopp x) → finite x;
(** Addition *)
fiplus : FI → FI → FI;
fiplus_spec x y : finite (fiplus x y) →
FI2F (fiplus x y) = fplus (FI2F x) (FI2F y) :> R;
fiplus_spec_fl x y : finite (fiplus x y) → finite x;
fiplus_spec_fr x y : finite (fiplus x y) → finite y;

Multiplication and square root are very similar (and omitted for brevity). Only the
division slightly differs because f/±∞ = 0 for any finite f .

fidiv : FI → FI → FI;
fidiv_spec x y : finite (fidiv x y) → finite y →
FI2F (fidiv x y) = fdiv (FI2F x) (FI2F y) :> R;
fidiv_spec_fl x y : finite (fidiv x y) → finite x;
}.

In our Coq development, the above specification is proved to hold for the bit-level
model of binary64 in the Flocq library [4] (c.f., record binary64_infnan) with the
binary64 of Section 2 as underlying model fis.

5.2 Example: Cholesky Decomposition

The specification cholesky_spec_infnan of the Cholesky decomposition is the
same as (4), page 14, with the arithmetic operations replaced by the one of the new
specification above. cholesky_success_infnan is then defined as

cholesky_spec_infnan A R̃∧∀i ∈ J1,nK, FI2F R̃i,i > 0.

20 Pierre Roux

It is worth noting that FI2F R̃i,i > 0 implicitly states that R̃i,i is finite. This enables to
prove the following lemma

Lemma 5.1 (cholesky_success_infnan_cholesky_success) For A, R̃∈ FIn×n,
if cholesky_success_infnanA R̃, then cholesky_success (MFI2FA) (MFI2F R̃)
with MFI2F M the matrix with coefficients FI2F Mi, j.

Thus, if the other hypothesis of Corollary 4.4 hold, MFI2F A � 0 (i.e., A � 0 if all
element of A are finite).

The Coq development for this extension to overflows counts 0.5 kloc. Among
them, 0.1 are devoted to the specification described in Section 5.1, 0.2 to prove
that the bit-level model of binary64 from the Flocq library satisfy it and 0.2 to the
Cholesky decomposition example.

6 Conclusion

We formally proved, using the proof assistant Coq [1,6], two results bounding round-
ing errors of numerical computations and involving matrices and common numerical
analysis tools [10]. Our Coq development is available at http://cavale.enseeiht.
fr/formalbounds2014/. It indicates that performing such proofs within proof as-
sistants is tractable and that a large part of the proof effort could be reused for similar
results. Our development is based on a broad high-level floating-point specification
and we have proved that this specification is satisfied by the model of the binary64
format from the Flocq library of floating-point arithmetic for Coq [4].

The fact that we were able to translate, far from trivial, multiple pages paper
proofs in about 1 kloc of Coq is a very encouraging achievement. It is also worth
noting that performing mechanically checked proofs gave the opportunity to fix a
few small mistakes in the proofs, thus asserting the interest of formalized proofs.

We eventually hope that a large part of our code can be reused in future develop-
ments, for instance about numerical integration of ODEs.

It would also be interesting to study a recent work offering sharper bounds [15].

Acknowledgements The author wants to express its deepest thanks to Sylvie Boldo and Guillaume
Melquiond as well as to Érik Martin-Dorel and Pierre-Marie Pédrot for their help regarding this work.

References

1. Yves Bertot, Pierre Castéran, Gérard Huet, and Christine Paulin-Mohring. Interactive theorem proving
and program development : Coq’Art : the calculus of inductive constructions. Texts in theoretical
computer science. Springer, Berlin, New York, 2004. Données complémentaires http://coq.inria.fr.

2. Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. Canonical big operators. In Ot-
mane Aït Mohamed, César A. Muñoz, and Sofiène Tahar, editors, TPHOLs, volume 5170 of Lecture
Notes in Computer Science, pages 86–101. Springer, 2008.

3. Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela Mayero, Guillaume Melquiond,
and Pierre Weis. Formal proof of a wave equation resolution scheme: The method error. In Matt
Kaufmann and Lawrence C. Paulson, editors, Interactive Theorem Proving, First International Con-
ference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings, volume 6172 of Lecture Notes in
Computer Science, pages 147–162. Springer, 2010.

http://cavale.enseeiht.fr/formalbounds2014/
http://cavale.enseeiht.fr/formalbounds2014/

Formal Proofs of Rounding Error Bounds 21

4. Sylvie Boldo and Guillaume Melquiond. Flocq: A Unified Library for Proving Floating-point Algo-
rithms in Coq. In Proceedings of the 20th IEEE Symposium on Computer Arithmetic, pages 243–252,
Tübingen, Germany, July 2011.

5. Cyril Cohen. Construction of real algebraic numbers in coq. In Lennart Beringer and Amy P. Felty,
editors, ITP, volume 7406 of Lecture Notes in Computer Science, pages 67–82. Springer, 2012.

6. The Coq development team. The Coq proof assistant reference manual, 2012. Version 8.4.
7. Florent de Dinechin, Christoph Quirin Lauter, and Guillaume Melquiond. Assisted verification of ele-

mentary functions using Gappa. In Hisham Haddad, editor, Proceedings of the 2006 ACM Symposium
on Applied Computing (SAC), Dijon, France, April 23-27, 2006, pages 1318–1322. ACM, 2006.

8. Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale Reflection Extension for the
Coq system. Research Report RR-6455, INRIA, 2008.

9. John Harrison. Floating point verification in HOL. In E. Thomas Schubert, Phillip J. Windley, and
Jim Alves-Foss, editors, Higher Order Logic Theorem Proving and Its Applications, 8th International
Workshop, Aspen Grove, UT, USA, September 11-14, 1995, Proceedings, volume 971 of Lecture Notes
in Computer Science, pages 186–199. Springer, 1995.

10. Nicholas Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1996.

11. IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. IEEE Standard 754-2008,
2008.

12. Pierre Roux and Pierre-Loïc Garoche. Computing quadratic invariants with min- and max-policy
iterations: A practical comparison. In Cliff B. Jones, Pekka Pihlajasaari, and Jun Sun, editors, FM
2014: Formal Methods - 19th International Symposium, Singapore, May 12-16, 2014. Proceedings,
volume 8442 of Lecture Notes in Computer Science, pages 563–578. Springer, 2014.

13. Siegfried Rump. Verification of positive definiteness. BIT Numerical Mathematics, 46:433–452,
2006.

14. Siegfried Rump. Verification methods: Rigorous results using floating-point arithmetic. Acta Numer-
ica, 19:287–449, May 2010.

15. Siegfried Rump and Claude Pierre Jeannerod. Improved backward error bounds for lu and cholesky
factorizations. SIAM Journal on Matrix Analysis and Applications, 35(2):684–698, 2014.

	Introduction
	Specification of Floating-Point Arithmetic
	Combining Error Terms
	Errors on Matrix Operations
	Considering Potential Overflows
	Conclusion

