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Misc.

Thanks!
Presentation based on the work and material of many. Among others:

I Andrew J. Reynolds

I Haniel Barbosa

I Leonardo de Moura

I Bruno Dutertre

I . . .
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SMT = SAT + expressiveness

I SAT solvers

¬
[

(p⇒ q)⇒
[

(¬p⇒ q)⇒ q
]]

I Congruence closure (uninterpreted symbols + equality)

a = b ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b))

]
I adding arithmetic

a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
I . . .

I What about quantifiers?
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Quantifiers in SMT

Why?

I SMT theories are often not sufficient
What if you need your own ones?

I Verification: e.g. reasoning about all processes (∀p)

I Expressivity

This talk is not about:

I quantifier elimination, e.g. for Presburger or real closed fields

I SMT finite model finding [Reynolds13]

I superposition
I extensions of SAT/ground SMT towards full FOL and a long list of works in

between FOL ATP and SMT, e.g. Avatar [Voronkov14], Inst-Gen [Korovin13],
SGGS [Bonacina17], Model-Evolution [Baumgartner14], SUP(LA) [Althaus09],. . .

I . . .
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Quantifiers in SMT

/ Full first-order logic is undecidable
there is no decision procedure that always terminates, and always provide a SAT
or UNSAT answer

, First-order logic is semi-decidable
refutationally complete procedures terminate on UNSAT

, if finite model property, then decidable

/ Presburger with even one unary predicate is not even semi-decidable [Halper91]

, Pragmatic approaches are quite successful

Why does the pragmatic SMT approach work?

I Verification problems are big and shallow
I FOL provers more suitable to find intricate proofs
I SMT solvers good to deal with long, mostly ground, reasoning

Working hypothesis

Quantifier handling for pure FOL will work well enough for SMT
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Standard techniques

I Moving quantifiers around: prenex form

I Eliminating one kind of quantifiers: Skolemization

I From arbitrary Boolean combination to sets of clauses: CNF transformation

We will assume when needed that quantified formulas are universally quantified clauses
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From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]

To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧
[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals
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Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀xQ(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀xQ(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x . S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?
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What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x))⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀xQ(x)⇒ Q(a), this grounds the problem
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Instance in an SMT context

∀x̄ ϕ(x̄)⇒ ϕσ

where σ is a ground substitution for variables x̄
E.g. ∀x̄ ϕ(x̄) is ∀x . S(x) ≡ R(x), σ is x 7→ a, ϕσ is S(a) ≡ R(a)

Remarks
I Above formula is a FOL tautology. E.g. (∀x . S(x) ≡ R(x))⇒ (S(a) ≡ R(a))

I ∀x̄ ϕ(x̄) gets abstracted as a propositional variable in the SAT solver, that has a meaning only for
the instantiation module

I ϕσ gets abstracted as a Boolean combination of propositional variables. . .

I . . . that have meaning at the level of the ground theory reasoner

I ϕσ gets “activated”/relevant only in the models where p∀x̄ ϕ(x̄) is true.

We might refer to ϕσ as the instance, but remember: all is fine at the level of the SAT
solver/ground SMT solver
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Instantiation techniques
The framework

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Ground SMT solver enumerates assignments E ∪Q
E set of ground literals

Q set of quantified clauses

Instantiation module generates instances of Q that will further feed E

classic Herbrand Theorem: instantiate with all possible terms in language
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E-matching/Trigger-based instantiation (e) [Detlefs05]

Search for relevant instances according to a set of triggers and E-matching

I E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}
I Assume trigger P (x)

I Find substitution σ for x such P (x) is a know term (in E)

I Suitable substitutions are x 7→ a, x 7→ b, or x 7→ c
E.g. E |= P (x)[x/a] = P (a) and P (a) ∈ E

I Formally

e(E, ∀x̄. ϕ) 1. Select a set of triggers {t̄1, . . . t̄n} for ∀x̄. ϕ
2. For each i = 1, . . . , n, select a set of substitutions Si s.t

for each σ ∈ Si, E |= t̄iσ = ḡi for some tuple ḡi ∈ TE .

3. Return
⋃n

i=1 Si
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E-matching/Trigger-based instantiation

Ideal for expanding definitions/rewriting rules

I Example

∀x∀y . sister(x, y) ≡
(female(x) ∧mother(x) = mother(y) ∧ father(x) = father(y))

sister(Eliane,Elöıse)

sister(Elöıse,Elisabeth)

¬sister(Eliane,Elisabeth)

I Adding trigger sister(x, y) to quantified formula suffices for SMT solver to prove
unsatisfiability

Remarks

I Decision procedure for, e.g., expressive arrays, lists [Dross16]

I Mostly efficient (see later evaluation)

I But can easily blow or avoid the right instances

I Requires triggers (human or auto-generated)
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Conflict-based instantiation (c) [Reynolds14]

Search for one instance of one quantified formula in Q that makes E unsatisfiable

I E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

I Since E, P (b) ∨R(b) |= ⊥, this strategy returns x 7→ b

I Formally

c(E, ∀x̄. ϕ) Either return σ where E |= ¬ϕσ, or return ∅
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c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

f(a) = f(b) ∧ g(b) 6= h(c) |= (f(x) = f(z) ∧ h(y) 6= g(z))σ

I Each literal in the right hand side restricts σ

I f(x) = f(z): either x = z or x = a ∧ z = b or x = b ∧ z = a

I h(y) 6= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c, z 7→ b}
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c: solving the problem with E-ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground, find substitution σ
s.t. E |= Lσ

I Variant of classic (non-simultaneous) rigid E-unification
I NP-complete

I NP: solutions can be restricted to ground terms in E ∪ L
I NP-hard: reduction of 3-SAT

I CCFV: congruence closure with free variables [Barbosa17]

I sound, complete and terminating calculus for solving E-ground (dis)unification
I goal oriented
I efficient in practice
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c evaluation (1/2) [Reynolds14]

I Evaluation on SMT-LIB,
TPTP, Isabelle benchmarks

I Using conflict-based
instantiation (cvc4+ci),
require an order of magnitude
fewer instances to prove
unsatisfiability w.r.t.
E-matching alone
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c evaluation (2/2) [Barbosa17]
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veriT: + 800 out of 1 785 unsolved problems

CVC4:+ 200 out of 745 unsolved problems

* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB, which have 10 495 benchmarks annotated as unsatisfiable,

with 30s timeout.



25/49

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References



26/49

Model-based instantiation/MBQI (m) [Ge09]

Build a candidate model for E ∪Q and instantiate with counter-examples from model
checking

I E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

I Assume that PM = λx. ite(x = c, >, ⊥) and RM = λx.⊥

I Since M |= ¬ (P (a) ∨R(a)), this strategy may return x 7→ a

I Formally

m(E, ∀x̄. ϕ) 1. Construct a model M for E

2. Return x̄ 7→ t̄ where t̄ ∈ T (E) and M |= ¬ϕ[x̄/t̄],
or ∅ if none exists
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Why can’t we directly use Herbrand instantiation?

Theorem (Herbrand)

A finite set of Skolem formulas is unsatisfiable if and only if there exists a finite
unsatisfiable set of Herbrand instances

I The earliest theorem provers relied on Herbrand instantiation
I Instantiate with all possible terms in the language

I Enumerating all instances is unfeasible in practice!

I Enumerative instantiation was then discarded

Revisiting enumerative instantiation with benefits:

I strengthening of Herbrand theorem

I efficient implementation techniques
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Theorem (Strengthened Herbrand)

If R is a (possibly infinite) set of instances of Q closed under Q-instantiation w.r.t.
itself and if E ∪R is satisfiable, then E ∪Q is satisfiable.

Direct application to

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

I Ground solver enumerates assignments E ∪Q
I Instantiation module generates instances of Q



29/49

Theorem (Strengthened Herbrand)

If there exists an infinite sequence of finite satisfiable sets of ground literals Ei and of
finite sets of ground instances Qi of Q such that

I Qi =
{
ϕσ | ∀x̄. ϕ ∈ Q, dom(σ) = {x̄} ∧ ran(σ) ⊆ T (Ei)

}
;

I E0 = E, Ei+1 |= Ei ∪Qi;

then E ∪Q is satisfiable in the empty theory with equality
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Enumerative instantiation (u) [Reynolds18]

u(E, ∀x̄. ϕ)
1. Choose an ordering � on tuples of ground terms
2. Return x̄ 7→ t̄ where t̄ is a minimal tuple of terms w.r.t �,

such that t̄ ∈ T (E) and E 6|= ϕ[x̄/t̄], or ∅ if none exist

I E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

I u chooses an ordering on tuples of terms, e.g. a ≺ b ≺ c

I Since E 6|= P (a) ∨R(a), enumerative instantiation returns x 7→ a
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u as an alternative for m

I Enumerative instantiation plays a similar role to m

I It can also serve as a “completeness fallback” to c and e

I However, u has advantages over m for UNSAT problems

I And it is significantly simpler to implement
I no model building
I no model checking
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Example

E = {¬P (a), R(b), S(c)}
Q = {∀x. R(x) ∨ S(x), ∀x. ¬R(x) ∨ P (x), ∀x. ¬S(x) ∨ P (x)}

M =

 PM = λx.⊥,
RM = λx. ite(x = b, >, ⊥),
SM = λx. ite(x = c, >, ⊥)

 , a ≺ b ≺ c

ϕ x s.t. M |= ¬ϕ x s.t. E 6|= ϕ m(E,∀x. ϕ) u(E,∀x. ϕ)

R(x) ∨ S(x) a a x 7→ a x 7→ a
¬R(x) ∨ P (x) b a, b, c x 7→ b x 7→ a
¬S(x) ∨ P (x) c a, b, c x 7→ c x 7→ a

I u instantiates uniformly so that less new terms are introduced

I m instantiates depending on how model was built

I u directly leads to E ∧Q[x/a] |= ⊥
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Advanced u: restricting enumeration space

I Strengthened Herbrand Theorem allows restriction to T (E)

I Sort inference reduces instantiation space by computing more precise sort
information

I E ∪Q = {a 6= b, f(a) = c} ∪ {P (f(x))}
I a, b, c, x : τ
I f : τ → τ and P : τ → Bool

I This is equivalent to Es ∪Qs = {a1 6= b1, f12(a1) = c2} ∪ {P2(f12(x1))}
I a1, b1, x1 : τ1
I c2 : τ2
I f12 : τ1 → τ2 and P : τ2 → Bool

I u would derive e.g. x 7→ c for E ∪Q, while for Es ∪Qs the instantiation x1 7→ c2 is
not well-sorted
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Advanced u: entailment checks

Two-layered method for checking whether E |= ϕ[x̄/t̄] holds

I cache of instances already derived

I on-the-fly rewriting of ϕ[x̄/t̄] modulo E
with extension to other theories through theory-specific rewriting
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Advanced u: term ordering
Instances are enumerated according to the order

(t1, . . . , tn) ≺ (s1, . . . , sn) if


maxn

i=1 ti ≺ maxn
i=1 si, or

maxn
i=1 ti = maxn

i=1 si and

(t1, . . . , tn) ≺lex (s1, . . . , sn)

for a given order � on ground terms.

If a ≺ b ≺ c, then

(a, a) ≺ (a, b) ≺ (b, a) ≺ (b, b) ≺ (a, c) ≺ (c, b) ≺ (c, c)

I instances with c considered only after considering all cases with a and b

I goal is to introduce new terms less often
I order on T (E) fixed for finite set of terms t1 ≺ . . . ≺ tn

I instantiate in order with t1, . . . , tn
I then choose new non-congruent term t ∈ T (E) and have tn ≺ t
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Experimental evaluation (UNSAT)
CVC4 configurations on unsatisfiable benchmarks

6000 8000 10000 12000 14000 16000 18000 20000
10−1

100

101

102

C
PU

tim
e

(s
)

e+u
e;u
e+m
e;m
e
u
m

I 42 065 benchmarks: 14 731 TPTP + 27 334 SMT-LIB

I e+u: interleave e and u

I e;u: apply e first, then u if it fails

I All CVC4 configurations have c; as prefix
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Experimental evaluation (SAT)

Library # u e;u e+u e m e;m e+m

TPTP 14731 471 492 464 17 930 808 829
UF 7293 39 42 42 0 70 69 65

Theories 20041 3 3 3 3 350 267 267

Total 42065 513 537 509 20 1350 1144 1161
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Conclusion

I Quantifiers in SMT: handled in an ad hoc manner

I Techniques presented here are pure FOL with equality
(i.e. not “Modulo Theories”)

I Reasonably effective nonetheless

Coarse algorithm

I Skolemize (in a more or less clever way)

I solve ground part of the problem

I eliminate irrelevant information from ground assignment

I conflict-based instantiation

I e-matching/trigger-based instantiation

I model-based instantiation

I enumerative instantiation
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Perspectives
I New instantiation techniques

E.g. currently investigating machine learning

I More convergence with state-of-the-art FOL techniques from saturation theorem
proving

I Symbiosis with quantifier elimination for theory reasoning

Unsatisfiability modulo combination of theories. . .

. . . cannot be complete (as soon as we mix UF and linear arithmetic), but can we be
complete with SMT techniques at least for, e.g., the FOL theory of Presburger
extended with UF?
(needs induction however)

Keep in mind, for quantifier handling:

I innovative 6= improving over the best
I innovative = solving what other techniques do not
I best solvers are portfolios
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Finding out more about SMT / SMT-LIB

I Andrew Reynolds, VTSA 2017

I Web site of the SMT-LIB initiative:
http://www.smtlib.org/

I Web site of the SMT-COMP:
http://www.smtcomp.org/

I Getting the SMT-LIB input language standard:
http://www.smtlib.org/language.shtml

I Getting some examples of input language:
http://www.smtlib.org/examples.shtml

http://www.smtlib.org/
http://www.smtcomp.org/
http://www.smtlib.org/language.shtml
http://www.smtlib.org/examples.shtml
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