
1/49

Quantifier handling in SMT

Pascal Fontaine

Univ. of Lorraine, CNRS, Inria, LORIA

IFSE: journées FAC

Toulouse, 28 March 2019

2/49

Misc.

Thanks!
Presentation based on the work and material of many. Among others:

I Andrew J. Reynolds

I Haniel Barbosa

I Leonardo de Moura

I Bruno Dutertre

I . . .

3/49

SMT = SAT + expressiveness

I SAT solvers

¬
[

(p⇒ q)⇒
[

(¬p⇒ q)⇒ q
]]

I Congruence closure (uninterpreted symbols + equality)

a = b ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b))

]
I adding arithmetic

a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
I . . .

I What about quantifiers?

4/49

Quantifiers in SMT

Why?

I SMT theories are often not sufficient
What if you need your own ones?

I Verification: e.g. reasoning about all processes (∀p)

I Expressivity

This talk is not about:

I quantifier elimination, e.g. for Presburger or real closed fields

I SMT finite model finding [Reynolds13]

I superposition
I extensions of SAT/ground SMT towards full FOL and a long list of works in

between FOL ATP and SMT, e.g. Avatar [Voronkov14], Inst-Gen [Korovin13],
SGGS [Bonacina17], Model-Evolution [Baumgartner14], SUP(LA) [Althaus09],. . .

I . . .

5/49

Quantifiers in SMT

/ Full first-order logic is undecidable
there is no decision procedure that always terminates, and always provide a SAT
or UNSAT answer

, First-order logic is semi-decidable
refutationally complete procedures terminate on UNSAT

, if finite model property, then decidable

/ Presburger with even one unary predicate is not even semi-decidable [Halper91]

, Pragmatic approaches are quite successful

Why does the pragmatic SMT approach work?

I Verification problems are big and shallow
I FOL provers more suitable to find intricate proofs
I SMT solvers good to deal with long, mostly ground, reasoning

Working hypothesis

Quantifier handling for pure FOL will work well enough for SMT

6/49

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

7/49

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

8/49

Standard techniques

I Moving quantifiers around: prenex form

I Eliminating one kind of quantifiers: Skolemization

I From arbitrary Boolean combination to sets of clauses: CNF transformation

We will assume when needed that quantified formulas are universally quantified clauses

9/49

From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]

To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧
[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

9/49

From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver

SAT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]

Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

9/49

From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

9/49

From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

9/49

From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

9/49

From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Ground SMT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

9/49

From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Ground SMT solver

Assignment

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

9/49

From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Ground SMT solver

Assignment

Instantiation
module

Instance

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

9/49

From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Ground SMT solver

Assignment

Instantiation
module

Instance

Model UNSAT (proof/core)

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

9/49

From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver
Ground SMT solver

Assignment

Instantiation
module

Instance

Model UNSAT (proof/core)

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

9/49

From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver

Model UNSAT (proof/core)

Assignment

Instantiation
module

Instance

Ground
SMT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

9/49

From SAT to SMT,. . . and then to quantified SMT

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

10/49

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀xQ(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀xQ(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x . S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

10/49

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀xQ(x) ∨ ∀x . S(x) ≡ R(x)

]

To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧
[
p ∀xQ(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x . S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

10/49

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀xQ(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀xQ(x) ∨ p ∀x . S(x)≡R(x)

]

Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x . S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

10/49

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀xQ(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀xQ(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x . S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

10/49

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀xQ(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀xQ(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x . S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

10/49

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀xQ(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀xQ(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x . S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

10/49

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀xQ(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀xQ(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x . S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

10/49

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀xQ(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀xQ(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x . S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

10/49

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀xQ(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀xQ(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x . S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

11/49

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀xQ(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀xQ(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x))⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀xQ(x)⇒ Q(a), this grounds the problem

11/49

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀xQ(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀xQ(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x))⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀xQ(x)⇒ Q(a), this grounds the problem

11/49

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀xQ(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀xQ(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x))⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀xQ(x)⇒ Q(a), this grounds the problem

11/49

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀xQ(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀xQ(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x))⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀xQ(x)⇒ Q(a), this grounds the problem

11/49

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀xQ(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀xQ(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x))⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀xQ(x)⇒ Q(a), this grounds the problem

11/49

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀xQ(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀xQ(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x))⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀xQ(x)⇒ Q(a), this grounds the problem

12/49

Instance in an SMT context

∀x̄ ϕ(x̄)⇒ ϕσ

where σ is a ground substitution for variables x̄
E.g. ∀x̄ ϕ(x̄) is ∀x . S(x) ≡ R(x), σ is x 7→ a, ϕσ is S(a) ≡ R(a)

Remarks
I Above formula is a FOL tautology. E.g. (∀x . S(x) ≡ R(x))⇒ (S(a) ≡ R(a))

I ∀x̄ ϕ(x̄) gets abstracted as a propositional variable in the SAT solver, that has a meaning only for
the instantiation module

I ϕσ gets abstracted as a Boolean combination of propositional variables. . .

I . . . that have meaning at the level of the ground theory reasoner

I ϕσ gets “activated”/relevant only in the models where p∀x̄ ϕ(x̄) is true.

We might refer to ϕσ as the instance, but remember: all is fine at the level of the SAT
solver/ground SMT solver

13/49

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

14/49

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

15/49

Instantiation techniques
The framework

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Ground SMT solver enumerates assignments E ∪Q
E set of ground literals

Q set of quantified clauses

Instantiation module generates instances of Q that will further feed E

classic Herbrand Theorem: instantiate with all possible terms in language

16/49

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

17/49

E-matching/Trigger-based instantiation (e) [Detlefs05]

Search for relevant instances according to a set of triggers and E-matching

I E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}
I Assume trigger P (x)

I Find substitution σ for x such P (x) is a know term (in E)

I Suitable substitutions are x 7→ a, x 7→ b, or x 7→ c
E.g. E |= P (x)[x/a] = P (a) and P (a) ∈ E

I Formally

e(E, ∀x̄. ϕ) 1. Select a set of triggers {t̄1, . . . t̄n} for ∀x̄. ϕ
2. For each i = 1, . . . , n, select a set of substitutions Si s.t

for each σ ∈ Si, E |= t̄iσ = ḡi for some tuple ḡi ∈ TE .

3. Return
⋃n

i=1 Si

17/49

E-matching/Trigger-based instantiation (e) [Detlefs05]

Search for relevant instances according to a set of triggers and E-matching

I E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}
I Assume trigger P (x)

I Find substitution σ for x such P (x) is a know term (in E)

I Suitable substitutions are x 7→ a, x 7→ b, or x 7→ c
E.g. E |= P (x)[x/a] = P (a) and P (a) ∈ E

I Formally

e(E, ∀x̄. ϕ) 1. Select a set of triggers {t̄1, . . . t̄n} for ∀x̄. ϕ
2. For each i = 1, . . . , n, select a set of substitutions Si s.t

for each σ ∈ Si, E |= t̄iσ = ḡi for some tuple ḡi ∈ TE .

3. Return
⋃n

i=1 Si

18/49

E-matching/Trigger-based instantiation

Ideal for expanding definitions/rewriting rules

I Example

∀x∀y . sister(x, y) ≡
(female(x) ∧mother(x) = mother(y) ∧ father(x) = father(y))

sister(Eliane,Elöıse)

sister(Elöıse,Elisabeth)

¬sister(Eliane,Elisabeth)

I Adding trigger sister(x, y) to quantified formula suffices for SMT solver to prove
unsatisfiability

Remarks

I Decision procedure for, e.g., expressive arrays, lists [Dross16]

I Mostly efficient (see later evaluation)

I But can easily blow or avoid the right instances

I Requires triggers (human or auto-generated)

19/49

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

20/49

Conflict-based instantiation (c) [Reynolds14]

Search for one instance of one quantified formula in Q that makes E unsatisfiable

I E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

I Since E, P (b) ∨R(b) |= ⊥, this strategy returns x 7→ b

I Formally

c(E, ∀x̄. ϕ) Either return σ where E |= ¬ϕσ, or return ∅

20/49

Conflict-based instantiation (c) [Reynolds14]

Search for one instance of one quantified formula in Q that makes E unsatisfiable

I E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

I Since E, P (b) ∨R(b) |= ⊥, this strategy returns x 7→ b

I Formally

c(E, ∀x̄. ϕ) Either return σ where E |= ¬ϕσ, or return ∅

21/49

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

f(a) = f(b) ∧ g(b) 6= h(c) |= (f(x) = f(z) ∧ h(y) 6= g(z))σ

I Each literal in the right hand side restricts σ

I f(x) = f(z): either x = z or x = a ∧ z = b or x = b ∧ z = a

I h(y) 6= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c, z 7→ b}

21/49

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

E = {f(a) = f(b), g(b) 6= h(c)}, Q = {∀xyz. f(x) = f(z)→ h(y) = g(z)}

f(a) = f(b) ∧ g(b) 6= h(c) |= (f(x) = f(z) ∧ h(y) 6= g(z))σ

I Each literal in the right hand side restricts σ

I f(x) = f(z): either x = z or x = a ∧ z = b or x = b ∧ z = a

I h(y) 6= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c, z 7→ b}

21/49

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

E = {f(a) = f(b), g(b) 6= h(c)}, Q = {∀xyz. f(x) = f(z)→ h(y) = g(z)}

f(a) = f(b) ∧ g(b) 6= h(c) |= (f(x) = f(z) ∧ h(y) 6= g(z))σ

I Each literal in the right hand side restricts σ

I f(x) = f(z): either x = z or x = a ∧ z = b or x = b ∧ z = a

I h(y) 6= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c, z 7→ b}

21/49

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

E = {f(a) = f(b), g(b) 6= h(c)}, Q = {∀xyz. f(x) = f(z)→ h(y) = g(z)}

f(a) = f(b) ∧ g(b) 6= h(c) |= (f(x) = f(z) ∧ h(y) 6= g(z))σ

I Each literal in the right hand side restricts σ

I f(x) = f(z): either x = z or x = a ∧ z = b or x = b ∧ z = a

I h(y) 6= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c, z 7→ b}

21/49

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

E = {f(a) = f(b), g(b) 6= h(c)}, Q = {∀xyz. f(x) = f(z)→ h(y) = g(z)}

f(a) = f(b) ∧ g(b) 6= h(c) |= (f(x) = f(z) ∧ h(y) 6= g(z))σ

I Each literal in the right hand side restricts σ

I f(x) = f(z): either x = z or x = a ∧ z = b or x = b ∧ z = a

I h(y) 6= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c, z 7→ b}

21/49

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

E = {f(a) = f(b), g(b) 6= h(c)}, Q = {∀xyz. f(x) = f(z)→ h(y) = g(z)}

f(a) = f(b) ∧ g(b) 6= h(c) |= (f(x) = f(z) ∧ h(y) 6= g(z))σ

I Each literal in the right hand side restricts σ

I f(x) = f(z): either x = z or x = a ∧ z = b or x = b ∧ z = a

I h(y) 6= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c, z 7→ b}

21/49

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

E = {f(a) = f(b), g(b) 6= h(c)}, Q = {∀xyz. f(x) = f(z)→ h(y) = g(z)}

f(a) = f(b) ∧ g(b) 6= h(c) |= (f(x) = f(z) ∧ h(y) 6= g(z))σ

I Each literal in the right hand side restricts σ

I f(x) = f(z): either x = z or x = a ∧ z = b or x = b ∧ z = a

I h(y) 6= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}

or
σ = {x 7→ a, y 7→ c, z 7→ b}

21/49

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

E = {f(a) = f(b), g(b) 6= h(c)}, Q = {∀xyz. f(x) = f(z)→ h(y) = g(z)}

f(a) = f(b) ∧ g(b) 6= h(c) |= (f(x) = f(z) ∧ h(y) 6= g(z))σ

I Each literal in the right hand side restricts σ

I f(x) = f(z): either x = z or x = a ∧ z = b or x = b ∧ z = a

I h(y) 6= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c, z 7→ b}

21/49

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

E = {f(a) = f(b), g(b) 6= h(c)}, Q = {∀xyz. f(x) = f(z)→ h(y) = g(z)}

f(a) = f(b) ∧ g(b) 6= h(c) |= (f(x) = f(z) ∧ h(y) 6= g(z))σ

I Each literal in the right hand side restricts σ

I f(x) = f(z): either x = z or x = a ∧ z = b or x = b ∧ z = a

I h(y) 6= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c, z 7→ b}

22/49

c: solving the problem with E-ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground, find substitution σ
s.t. E |= Lσ

I Variant of classic (non-simultaneous) rigid E-unification
I NP-complete

I NP: solutions can be restricted to ground terms in E ∪ L
I NP-hard: reduction of 3-SAT

I CCFV: congruence closure with free variables [Barbosa17]

I sound, complete and terminating calculus for solving E-ground (dis)unification
I goal oriented
I efficient in practice

22/49

c: solving the problem with E-ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground, find substitution σ
s.t. E |= Lσ

I Variant of classic (non-simultaneous) rigid E-unification

I NP-complete
I NP: solutions can be restricted to ground terms in E ∪ L
I NP-hard: reduction of 3-SAT

I CCFV: congruence closure with free variables [Barbosa17]

I sound, complete and terminating calculus for solving E-ground (dis)unification
I goal oriented
I efficient in practice

22/49

c: solving the problem with E-ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground, find substitution σ
s.t. E |= Lσ

I Variant of classic (non-simultaneous) rigid E-unification
I NP-complete

I NP: solutions can be restricted to ground terms in E ∪ L
I NP-hard: reduction of 3-SAT

I CCFV: congruence closure with free variables [Barbosa17]

I sound, complete and terminating calculus for solving E-ground (dis)unification
I goal oriented
I efficient in practice

23/49

c evaluation (1/2) [Reynolds14]

I Evaluation on SMT-LIB,
TPTP, Isabelle benchmarks

I Using conflict-based
instantiation (cvc4+ci),
require an order of magnitude
fewer instances to prove
unsatisfiability w.r.t.
E-matching alone

24/49

c evaluation (2/2) [Barbosa17]

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

veriT: + 800 out of 1 785 unsolved problems

CVC4:+ 200 out of 745 unsolved problems

* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB, which have 10 495 benchmarks annotated as unsatisfiable,

with 30s timeout.

25/49

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

26/49

Model-based instantiation/MBQI (m) [Ge09]

Build a candidate model for E ∪Q and instantiate with counter-examples from model
checking

I E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

I Assume that PM = λx. ite(x = c, >, ⊥) and RM = λx.⊥

I Since M |= ¬ (P (a) ∨R(a)), this strategy may return x 7→ a

I Formally

m(E, ∀x̄. ϕ) 1. Construct a model M for E

2. Return x̄ 7→ t̄ where t̄ ∈ T (E) and M |= ¬ϕ[x̄/t̄],
or ∅ if none exists

26/49

Model-based instantiation/MBQI (m) [Ge09]

Build a candidate model for E ∪Q and instantiate with counter-examples from model
checking

I E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

I Assume that PM = λx. ite(x = c, >, ⊥) and RM = λx.⊥

I Since M |= ¬ (P (a) ∨R(a)), this strategy may return x 7→ a

I Formally

m(E, ∀x̄. ϕ) 1. Construct a model M for E

2. Return x̄ 7→ t̄ where t̄ ∈ T (E) and M |= ¬ϕ[x̄/t̄],
or ∅ if none exists

27/49

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

28/49

Why can’t we directly use Herbrand instantiation?

Theorem (Herbrand)

A finite set of Skolem formulas is unsatisfiable if and only if there exists a finite
unsatisfiable set of Herbrand instances

I The earliest theorem provers relied on Herbrand instantiation
I Instantiate with all possible terms in the language

I Enumerating all instances is unfeasible in practice!

I Enumerative instantiation was then discarded

Revisiting enumerative instantiation with benefits:

I strengthening of Herbrand theorem

I efficient implementation techniques

28/49

Why can’t we directly use Herbrand instantiation?

Theorem (Herbrand)

A finite set of Skolem formulas is unsatisfiable if and only if there exists a finite
unsatisfiable set of Herbrand instances

I The earliest theorem provers relied on Herbrand instantiation
I Instantiate with all possible terms in the language

I Enumerating all instances is unfeasible in practice!

I Enumerative instantiation was then discarded

Revisiting enumerative instantiation with benefits:

I strengthening of Herbrand theorem

I efficient implementation techniques

28/49

Why can’t we directly use Herbrand instantiation?

Theorem (Herbrand)

A finite set of Skolem formulas is unsatisfiable if and only if there exists a finite
unsatisfiable set of Herbrand instances

I The earliest theorem provers relied on Herbrand instantiation
I Instantiate with all possible terms in the language

I Enumerating all instances is unfeasible in practice!

I Enumerative instantiation was then discarded

Revisiting enumerative instantiation with benefits:

I strengthening of Herbrand theorem

I efficient implementation techniques

29/49

Theorem (Strengthened Herbrand)

If R is a (possibly infinite) set of instances of Q closed under Q-instantiation w.r.t.
itself and if E ∪R is satisfiable, then E ∪Q is satisfiable.

Direct application to

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

I Ground solver enumerates assignments E ∪Q
I Instantiation module generates instances of Q

29/49

Theorem (Strengthened Herbrand)

If there exists an infinite sequence of finite satisfiable sets of ground literals Ei and of
finite sets of ground instances Qi of Q such that

I Qi =
{
ϕσ | ∀x̄. ϕ ∈ Q, dom(σ) = {x̄} ∧ ran(σ) ⊆ T (Ei)

}
;

I E0 = E, Ei+1 |= Ei ∪Qi;

then E ∪Q is satisfiable in the empty theory with equality

Direct application to

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

I Ground solver enumerates assignments E ∪Q
I Instantiation module generates instances of Q

29/49

Theorem (Strengthened Herbrand)

If there exists an infinite sequence of finite satisfiable sets of ground literals Ei and of
finite sets of ground instances Qi of Q such that

I Qi =
{
ϕσ | ∀x̄. ϕ ∈ Q, dom(σ) = {x̄} ∧ ran(σ) ⊆ T (Ei)

}
;

I E0 = E, Ei+1 |= Ei ∪Qi;

then E ∪Q is satisfiable in the empty theory with equality

Direct application to

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

I Ground solver enumerates assignments E ∪Q
I Instantiation module generates instances of Q

30/49

Enumerative instantiation (u) [Reynolds18]

u(E, ∀x̄. ϕ)
1. Choose an ordering � on tuples of ground terms
2. Return x̄ 7→ t̄ where t̄ is a minimal tuple of terms w.r.t �,

such that t̄ ∈ T (E) and E 6|= ϕ[x̄/t̄], or ∅ if none exist

I E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

I u chooses an ordering on tuples of terms, e.g. a ≺ b ≺ c

I Since E 6|= P (a) ∨R(a), enumerative instantiation returns x 7→ a

31/49

u as an alternative for m

I Enumerative instantiation plays a similar role to m

I It can also serve as a “completeness fallback” to c and e

I However, u has advantages over m for UNSAT problems

I And it is significantly simpler to implement
I no model building
I no model checking

32/49

Example

E = {¬P (a), R(b), S(c)}
Q = {∀x. R(x) ∨ S(x), ∀x. ¬R(x) ∨ P (x), ∀x. ¬S(x) ∨ P (x)}

M =

 PM = λx.⊥,
RM = λx. ite(x = b, >, ⊥),
SM = λx. ite(x = c, >, ⊥)

 , a ≺ b ≺ c

ϕ x s.t. M |= ¬ϕ x s.t. E 6|= ϕ m(E,∀x. ϕ) u(E,∀x. ϕ)

R(x) ∨ S(x) a a x 7→ a x 7→ a
¬R(x) ∨ P (x) b a, b, c x 7→ b x 7→ a
¬S(x) ∨ P (x) c a, b, c x 7→ c x 7→ a

I u instantiates uniformly so that less new terms are introduced

I m instantiates depending on how model was built

I u directly leads to E ∧Q[x/a] |= ⊥

33/49

Advanced u: restricting enumeration space

I Strengthened Herbrand Theorem allows restriction to T (E)

I Sort inference reduces instantiation space by computing more precise sort
information

I E ∪Q = {a 6= b, f(a) = c} ∪ {P (f(x))}
I a, b, c, x : τ
I f : τ → τ and P : τ → Bool

I This is equivalent to Es ∪Qs = {a1 6= b1, f12(a1) = c2} ∪ {P2(f12(x1))}
I a1, b1, x1 : τ1
I c2 : τ2
I f12 : τ1 → τ2 and P : τ2 → Bool

I u would derive e.g. x 7→ c for E ∪Q, while for Es ∪Qs the instantiation x1 7→ c2 is
not well-sorted

34/49

Advanced u: entailment checks

Two-layered method for checking whether E |= ϕ[x̄/t̄] holds

I cache of instances already derived

I on-the-fly rewriting of ϕ[x̄/t̄] modulo E
with extension to other theories through theory-specific rewriting

35/49

Advanced u: term ordering
Instances are enumerated according to the order

(t1, . . . , tn) ≺ (s1, . . . , sn) if


maxn

i=1 ti ≺ maxn
i=1 si, or

maxn
i=1 ti = maxn

i=1 si and

(t1, . . . , tn) ≺lex (s1, . . . , sn)

for a given order � on ground terms.

If a ≺ b ≺ c, then

(a, a) ≺ (a, b) ≺ (b, a) ≺ (b, b) ≺ (a, c) ≺ (c, b) ≺ (c, c)

I instances with c considered only after considering all cases with a and b

I goal is to introduce new terms less often
I order on T (E) fixed for finite set of terms t1 ≺ . . . ≺ tn

I instantiate in order with t1, . . . , tn
I then choose new non-congruent term t ∈ T (E) and have tn ≺ t

36/49

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

37/49

Experimental evaluation (UNSAT)
CVC4 configurations on unsatisfiable benchmarks

6000 8000 10000 12000 14000 16000 18000 20000
10−1

100

101

102

C
PU

tim
e

(s
)

e+u
e;u
e+m
e;m
e
u
m

I 42 065 benchmarks: 14 731 TPTP + 27 334 SMT-LIB

I e+u: interleave e and u

I e;u: apply e first, then u if it fails

I All CVC4 configurations have c; as prefix

38/49

Experimental evaluation (SAT)

Library # u e;u e+u e m e;m e+m

TPTP 14731 471 492 464 17 930 808 829
UF 7293 39 42 42 0 70 69 65

Theories 20041 3 3 3 3 350 267 267

Total 42065 513 537 509 20 1350 1144 1161

39/49

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

40/49

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

41/49

Conclusion

I Quantifiers in SMT: handled in an ad hoc manner

I Techniques presented here are pure FOL with equality
(i.e. not “Modulo Theories”)

I Reasonably effective nonetheless

Coarse algorithm

I Skolemize (in a more or less clever way)

I solve ground part of the problem

I eliminate irrelevant information from ground assignment

I conflict-based instantiation

I e-matching/trigger-based instantiation

I model-based instantiation

I enumerative instantiation

42/49

Perspectives
I New instantiation techniques

E.g. currently investigating machine learning

I More convergence with state-of-the-art FOL techniques from saturation theorem
proving

I Symbiosis with quantifier elimination for theory reasoning

Unsatisfiability modulo combination of theories. . .

. . . cannot be complete (as soon as we mix UF and linear arithmetic), but can we be
complete with SMT techniques at least for, e.g., the FOL theory of Presburger
extended with UF?
(needs induction however)

Keep in mind, for quantifier handling:

I innovative 6= improving over the best
I innovative = solving what other techniques do not
I best solvers are portfolios

43/49

Finding out more about SMT / SMT-LIB

I Andrew Reynolds, VTSA 2017

I Web site of the SMT-LIB initiative:
http://www.smtlib.org/

I Web site of the SMT-COMP:
http://www.smtcomp.org/

I Getting the SMT-LIB input language standard:
http://www.smtlib.org/language.shtml

I Getting some examples of input language:
http://www.smtlib.org/examples.shtml

http://www.smtlib.org/
http://www.smtcomp.org/
http://www.smtlib.org/language.shtml
http://www.smtlib.org/examples.shtml

44/49

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

45/49

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

46/49

References I

[Althaus09] Ernst Althaus, Evgeny Kruglov, and Christoph Weidenbach.
Superposition modulo linear arithmetic SUP(LA).
In Silvio Ghilardi and Roberto Sebastiani, editors, Frontiers of Combining Systems (FroCoS),
volume 5749 of Lecture Notes in Computer Science, pages 84–99. Springer, 2009.

[Baaz01] Matthias Baaz, Uwe Egly, and Alexander Leitsch.
Normal form transformations.
In John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning,
volume I, chapter 5, pages 273–333. Elsevier Science B.V., 2001.

[Barbosa17] Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds.
Congruence closure with free variables.
In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms for Construction and Analysis
of Systems (TACAS), volume 10206 of Lecture Notes in Computer Science, pages 214–230.
Springer, 2017.

[Baumgartner14] Peter Baumgartner.
Model evolution-based theorem proving.
IEEE Intelligent Systems, 29(1):4–10, 2014.

[Bonacina17] Maria Paola Bonacina and David A. Plaisted.
Semantically-guided goal-sensitive reasoning: Inference system and completeness.
J. Autom. Reasoning, 59(2):165–218, 2017.

47/49

References II

[Detlefs05] David Detlefs, Greg Nelson, and James B. Saxe.
Simplify: A Theorem Prover for Program Checking.
J. ACM, 52(3):365–473, 2005.

[Dross16] Claire Dross, Sylvain Conchon, Johannes Kanig, and Andrei Paskevich.
Adding decision procedures to SMT solvers using axioms with triggers.
J. Autom. Reasoning, 56(4):387–457, 2016.

[Ge09] Yeting Ge and Leonardo Mendonça de Moura.
Complete instantiation for quantified formulas in satisfiabiliby modulo theories.
In Ahmed Bouajjani and Oded Maler, editors, Computer Aided Verification (CAV), volume 5643 of
Lecture Notes in Computer Science, pages 306–320. Springer, 2009.

[Halper91] Joseph Y. Halpern.
Presburger arithmetic with unary predicates is Π1

1 complete.
The Journal of Symbolic Logic, 56(2):637–642, June 1991.

[Korovin13] Konstantin Korovin.
Inst-gen - A modular approach to instantiation-based automated reasoning.
In Andrei Voronkov and Christoph Weidenbach, editors, Programming Logics - Essays in Memory
of Harald Ganzinger, volume 7797 of Lecture Notes in Computer Science, pages 239–270.
Springer, 2013.

48/49

References III

[Nonnengart01] Andreas Nonnengart and Christoph Weidenbach.
Computing small clause normal forms.
In John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning,
volume I, chapter 6, pages 335–367. Elsevier Science B.V., 2001.

[Reynolds18] Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine.
Revisiting enumerative instantiation.
In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for Construction and Analysis
of Systems (TACAS), volume 10806 of Lecture Notes in Computer Science, pages 112–131.
Springer, 2018.

[Reynolds14] Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura.
Finding conflicting instances of quantified formulas in SMT.
In Formal Methods In Computer-Aided Design (FMCAD), pages 195–202. IEEE, 2014.

[Reynolds13] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstić, Morgan Deters, and Clark Barrett.
Quantifier Instantiation Techniques for Finite Model Finding in SMT.
In MariaPaola Bonacina, editor, Proc. Conference on Automated Deduction (CADE), volume 7898
of Lecture Notes in Computer Science, pages 377–391. Springer, 2013.

49/49

References IV

[Voronkov14] Andrei Voronkov.
AVATAR: the architecture for first-order theorem provers.
In Armin Biere and Roderick Bloem, editors, Computer Aided Verification (CAV), volume 8559 of
Lecture Notes in Computer Science, pages 696–710. Springer, 2014.

	Introduction
	Quantifiers and SMT: the basics
	Instantiation techniques
	E-matching/trigger-based instantiation (e)
	Conflict-based instantiation (c)
	Model-based instantiation (m)
	Enumerative instantiation (u)
	Experimental evaluation

	Conclusion
	References

