
04.02.2014

Vérification par preuve formelle de
logiciel de vol spatial

« Preuve de modèle, preuve de programme »

-

CYCLE DE CONFÉRENCES TECHNIQUES SUR LES
MÉTHODES FORMELLES DE DÉVELOPPEMENT

Aurore Dupuis (CNES) aurore.dupuis@cnes.fr
Stéphane Duprat (AtoS) stephane.duprat@atos.net

mailto:aurore.dupuis@cnes.fr
mailto:stephane.duprat@atos.net

2

04/02/2014

Stéphane Duprat
Aurore Dupuis

Motivations

▶ Main reasons to use verification by proof

– Quality of verification

• Exhaustivity

• Non ambiguous representation

– Costs

• Reduce cost of verification phase

• Reduce cost during total lifecycle of software

• Reduce maintenance costs

3

04/02/2014

Stéphane Duprat
Aurore Dupuis

Objectives

▶ Main objectives:

1. Formal proof integration into the V-development cycle for embedded project

2. Formal proof advantages compared to validation by test

3. Frama-C Technical maturity Evaluation

4. Cost impact evaluation compared to validation by test

4

04/02/2014

Stéphane Duprat
Aurore Dupuis

Context

▶ Two space embedded software have been used for this study

– Software 1: Embedded software already validated by test

• Known validation by test costs

• Bugs undiscovered by test

– Software 2: Embedded software currently in development

• Specification and conception undefined

• Architecture based on components

5

04/02/2014

Stéphane Duprat
Aurore Dupuis

Tooling

▶ Frama-C platform

– Deductive proof (Hoare, Dijkstra)

– Function contracts with ACSL

• ‘requires’ = preconditions

• ‘ensures’ = postcondition

• ‘behavior’ and ‘assumes’ :

fonctionnal cases

• ‘assigns’ : defines side effects

/*@

 @ behavior b_neg:

 @ assumes p<0;

 @ ensures P1: \result == -1;

 @ behavior b_pos:

 @ assumes p>=0;

 @ ensures P1: \result == 0;

 @*/

int f1_bis(int p)

{

 ...

ACSL contract ACSL contract

Source code under
verification

Source code under
verification

Stubs (Observators
by ACSL contracts)
Stubs (Observators
by ACSL contracts)

▶ Topology of a proof project

6

04/02/2014

Stéphane Duprat
Aurore Dupuis

Methodology

Step 2 :

Step 2 :
Proof

verification

Hight Level
Requirement

Formal
Specification

Result
of proof

Low Level
Requirement

C source
code

(Software Requirements)

(design)

Step 1 for

Formalization

Step 1 for
A :

Formalization

Solution A

Step 1 for

Formalization

Step 1 for
B :

Formalization

Solution B

Step 1 for

Formalization

Step 1 for
B :

Formalization

Solution C

7

04/02/2014

Stéphane Duprat
Aurore Dupuis

Study

▶ Proof on Software 1

– First apply Solution B (formalization at the design level) : considered not
relevant for this use case

– Secondly, Solution A (formalization at le Software Requirement level)

– Results:2 bugs detected

• One about a comparison between two pointers of a circular buffer.

– Formalization with the mathematic modulo

– Problem at the end of a range

• Second one on the arguments passed to a System Call

– Formalization of the interface of the mktime() system call

– Missing initialization of an input field

– Non functional property (not defined in Software Requirement)

8

04/02/2014

Stéphane Duprat
Aurore Dupuis

Study

/*@
 axiomatic math_mod
 {
 logic integer math_mod(integer a, integer b);
 axiom math_mod1 : \forall integer a,b; 0<=a<b && b>0 ==> math_mod(a,b)==a;
 axiom math_mod2 : \forall integer a,b; -b<=a<0 && b>0 ==>

math_mod(a,b)==a+b;
 }
*/

/*@
 axiomatic detection
 {
 predicate range_ko(integer index1, integer index2, integer size, integer

delta) = 0<math_mod((index2-index1),size)<delta;

}
*/

 behavior b2all_range_ok:
 assumes ! range_ko(INDEX_W, INDEX_READ, NB_ELEMT, DELTA_NOM);
 ensures b2all_range_ok: FLAG_ERROR == \old(FLAG_ERROR);

Example

9

04/02/2014

Stéphane Duprat
Aurore Dupuis

Study

▶ Proof on Software 2

– Software with only source code

– Solution C considered as not relevant

– Solution B ReEngineering a design from source code + formalization of the
design

– Results

• Simple functions well verified without bugs

• Technical difficulties encountered for other functions

• Methodological result : function contract for design description

10

04/02/2014

Stéphane Duprat
Aurore Dupuis

Study

▶ Formal proof integration into the V-development cycle for embedded project

– Formalization of high level requirement if better, although HLR are not
entirely formalized

▶ Formal proof advantages compared to validation by test

– Exhaustive, non ambiguous, no need of hardware to execute tests programs

▶ Frama-C Technical maturity Evaluation

– Proof feature was in development, some difficulties with data aliasing
(multiple access to same location of memory)

▶ Cost impact evaluation compared to validation by test

– Quality of verification already demonstrated

– Waiting for improvements of the tool to use it in a more general way

11

04/02/2014

Stéphane Duprat
Aurore Dupuis

Conclusion

▶ Verification HLR

– Close to informal specification, good traceability

– High quality level

▶ Formal Verification for hard point verification

– Mix of skills : integrated team (functional specialist + formal proof specialist)

▶ Current limitation

– Tool definition : requires program well typed, no low level semantic

– Tool maturity : need improvements for alias cases, floating points

▶ For a more extensive usage

– Context of design or low level requirement:
 Methodologically ok, maturity of tool expected soon

– For low level:
 Good use case in proof of integration driver + applicative

04.02.2014

Thank you

Atos, the Atos logo, Atos Consulting, Atos Worldline, Atos Sphere,
Atos Cloud and Atos WorldGrid

are registered trademarks of Atos SA. June 2011

© 2011 Atos. Confidential information owned by Atos, to be used by
the recipient only. This document, or any part of it, may not be
reproduced, copied, circulated and/or distributed nor quoted without
prior written approval from Atos.

