An Overview of CADP 2014

Hubert Garavel

INRIA — Univ. Grenoble Alpes - LIG
http://convecs.inria.fr

http://convecs.inria.fr/

CADP

m A software toolbox for studying asychronous systems
m At the crossroads between:

» concurrency theory
» formal methods
» computer-aided verification

» compiler construction
m A continuous long-run effort:
» development of CADP started in the mid 80s
» initially: only 2 tools (CAESAR and ALDEBARAN)
» today: nearly 50 tools

r d

hua——— LI G VASY 2

Semantic models
and verification technologies

r 4
informatics #Fmathematics
6 sz——— LI G

LTS (Labelled Transition Systems)

m LTS = state-transition graph
» no information attached to states (except the initial state)
» information ("labels" or "actions") attached to transitions

hmﬂmn—“ S V= AST 4

CADP technologies for LTSs

m "Explicit" LTS (enumerative, global):
» comprehensive sets of states, transitions, labels
» BCG: a file format for storing large LTSs
» up to 2% states and transitions
» a set of tools for handling BCG files
m "Implicit" LTS (on the fly, local):
» defined by initial state and transition function
» Open/Caesar: a language-independent API
» many languages connected to Open/Caesar
» many tools developed on top of Open/Caesar

r d

&L7&a—-— ! VASY 5

BES (Boolean Equation Systems)

B Boolean variables, constants, and connectors
M |east (u) and greatest (v) fix points
B DAG of equation systems (no cycles — alternation-free)

Xy =, Xp V Xs

{ Xo =, X3 v@

M \X3:ux2/\@
1

r@:v Xg N\ Xg
{(Xg=y T

A

@_u

Mo\ Z(?:V b
(5 V Xg
s
=

VASY 6

CADP technologies for BESs

m BES can be given:
» explicitly (stored in a file)
» or implicitly (generated on the fly)

m CAESAR_SOLVE: a generic solver for BES

» works on the fly: solves while building the BES
» translates dynamically BES into Boolean graphs

» implements 9 resolution algorithms AO-A8
(general or specialized)

» generates diagnostics (examples or counter-examples)
» fully documented API

m BES SOLVE: a solver for explicit BES

&L?&d——— VASY 7

Specification languages

rd
: informatics #Fmathematics

Four specification languages in CADP

None of these languages is bound to a specific application domain
They have been used in software, hardware, telecom, bioinformatics...

m1l. LOTOS
» process calculus combining CSP [Hoare] and CCS [Milner]
» international standard ISO 8807:1989
» tools: CAESAR, CAESAR.ADT, CAESAR.BDD

m 2. EXP

» language for describing networks of communicating automata

» parallel composition operators (LOTOS, CCS, CSP, mCRL, etc.)
+ MEC-like synchronization vectors

» label hiding, renaming, cutting (using regexps), priorities
» tools: EXP2C, EXP.OPEN (on-the-fly partial order reductions)

informatics #Fmathematics '
&L’Z&a_——
9

Four specification languages in CADP

m 3. FSP

» process calculus designed for teaching purpose
» by Jeff Kramer and Jeff Magee (Imperial College)
» tools: FSP2LOTOS (translator to LOTOS+EXP), FSP.OPEN

m 4. LNT (formerly: LOTOS NT)
» a modern specification language for concurrent systems
» inspired from E-LOTOS (international standard ISO 15436:2001)
» funded by Bull and the MULTIVAL project of Minalogic
» tools: LNT2LOTOS (translation to LOTOS+C), LPP, LNT.OPEN

r d

informatics gFmathematics '
Ceiia-¥ -, 10

Main features of LNT

A careful mix of process calculi and functional languages

Key idea: be closer to mainstream programming language
m Types
» predefined types: boolean, integer, real, character, string, etc.
» ML-like inductive types + subranges, sets, lists, sorted lists, etc.
m Functions
» if, for, while, case + pattern-matching, return
m Processes: superset of functions
» nondeterministic choice, nondeterministic value selection
» multiway rendezvous, typed communication channels
m Modules

r d

: informatics #Fmathematics '

11

Connecting other languages to CADP

SA

WSDL-BPEL

pi-calculus

SDL

AADL

LNT

[

Fiacre

CHP

[

LOTOS |[€---

l

XP
\ P———

API

SystemC /
TLM

/

VASY 12

Model checking

4
informatics gFmathematics
6&% LI G

13

Three model-checkers in CADP

m EVALUATOR 3.6

» alternation-free modal u-calculus

extended with regular expressions on labels and action paths
libraries of standard property patterns

on-the-fly model checker built on top of Caesar_Solve BES solver

automatic generation of diagnostics (sequences, trees, or graphs
with cycles) to explain why a formula is true or false

m EVALUATOR 4.0

» extends p-calculus formula with typed data
» if, case, let statements ; quantifiers over finite domains

» on-the-fly model checking based on PBES (Parameterized
Boolean Equation Systems) ; automatic generation of diagnostics

r d

informatics #Fmathematics '
&L’?&a_——
- 14

Three model-checkers in CADP

m XTL
» functional language to express queries on explicit LTSs
encoded in the BCG format
data types: booleans, integers, reals, character, strings
LTS types: states, labels, edges, state sets, edge sets
rapid prototyping of LTS exploration algorithms

"non-standard" properties involving data: counting actions

B
B
B
» easy encoding of temporal logics: HML, CTL, ACTL, u-calculus
B
» XTL compiler: translates XTL to C code

B

possibility to import external C code

r d

informatics #Fmathematics '
&L’?&a_——
_ 15

Equivalence checking

4
informatics gFmathematics
6 Z’Z[a——— G

16

Equivalence checking

m An alternative approach to model checking:

formal verification without temporal logic formulas
m Principles:
» Old idea of program equivalence

» Compare two programs — generate and compare their LTSs

» Equivalence relations between LTSs:
LTSs are equivalent iff they have "the same" observable behaviour
many possible equivalence relations exist

» Bisimulations: a subclass of equivalence relations
states are equivalent iff they have the same future
stronger than usual trace (or language) equivalence
several bisimulation relations: strong, branching, etc.
efficient algorithms exist to compute bisimulations

» Preorder relations between LTSs:
An LTS contains another LTS if it can do all what the other does,

and possibly more (~ refinement and implementation relations)

VASY 17

Equivalence checking

m Practically:

» a large, complex LOTOS/LNT specification is compared against a
small, visibly correct LTS

» a large LTS is minimized to yield a smaller, equivalent one

m Equivalence checking is efficiently implemented in CADP
BCG_MIN, BISIMULATOR, EXP.OPEN, REDUCTOR

» minimization and comparison of LTSs

» explicit-state and on-the-fly algorithms (based on BES solving)
» 7 equivalence relations supported, with their preorders

» generates diagnostics to explain why comparison fails

r d

informatics #Fmathematics '
&L’Z&a_——
. 18

Fighting state explosion...

rd
informatics #Fmathematics
&L’Z&d——— G

19

Compositional verification

m A significant means of fighting state explosion
» A "silver bullet" applicable to process calculi only
» Implemented in several co-operating CADP tools
BCG_MIN, CAESAR, EXP.OPEN, PROJECTOR, SVL
m Principle:
» Divide the system into concurrent processes

» Generate the LTS of each separate processes
(possibly adding "interface" constraints to restrict this LTS)

» Minimize all the LTSs (for strong or branching bisimulation)

» Recombine in parallel all the minimized LTSs
(during LTS generation, interface constraints are checked)

» Result: a smaller, yet (strongly- or branching-) equivalent LTS

informatics #Fmathematics '
&L’?&a_——
20 -

Distributed verification

m Exploit NoWs, clusters, and grids
m Cumulate RAM and CPU of many remote machines

m Distributed LTS exploration
DISTRIBUTOR, PBG_MERGE, PBG_CP, PBG_INFO, PBG_MV,PBG_RM
» The LTS is built on the fly and partitioned into fragments
» Each fragments is a set of states and transitions
» Each fragment is built and stored on a different machine
» PBG = distributed LTS consisting of remote fragments

m Distributed BES resolution

BES_SOLVE

» The BES is built, partitioned, and solved on the fly

» Each fragment is a set of Boolean variables and logical
dependencies between variables

m In practice, linear scalability is observed

&m&a_—— . VASY 21

Beyond verification...

4
informatics gFmathematics
6 Z’Z[a——— G

22

Model-based testing

m Comparison between:
» a formal model (LOTOS, LNT)
» an actual implementation (software, hardware)

m On-line testing (co-simulation) EXEC/CAESAR
» simultaneous execution of model and implementation
» detection of diverging behaviour

m Off-line testing (test-case generation) TGV
» test cases automatically generated from the model
» test purposes (scenarios), pass/fail verdicts

m Trace checking (off-ling analysis of log files) SEQ.OPEN

informatics #Fmathematics '
&L?&&L——
23

Quantitative analysis

m Combining functional verification (Boolean results) and
performance evaluation (numerical results)
m Interactive Markov Chains (IMCs) [Hermanns-98]
» combination of LTSs and continuous-time Markov chains
» parallel composition ("rate" transitions do not synchronize)
» theory permits compositional generation/minimization of IMCs

m Supported by CADP:
» Compositional generation of IMCs
BCG_MIN, DETERMINATOR, EXP.OPEN, SVL
» Steady-state and transient solvers for IMCs
BCG_STEADY and BCG_TRANSIENT
» Simulation for IMCs CUNCTATOR

m Also: Interactive Probabilistic Chains (IPCs)
» combination of LTSs and discrete-time Markov chains

r d

ez ¥ - VASY 24

Integration between CADP tools

r 4
: informatics #Fmathematics

25

26

A layered software architecture

EUCALYPTUS SVL
graphical user interface script language

AN

Tools invoked from the command line

l

Code libraries with APIs

r 4
informatics g#Fmathematics '
Ye)/ B

EUCALYPTUS graphical user interface

Er
Fils

EUCRLYFTIE Toasel

Wisi

A simple user interface:

Familiz Hindo Hill

Coas b poly. sl Lo TR
bcoopan /imp' o 1141_2E5E 1 bog
L Lt S L e] 000 8 | sl gy

AL boa

{coneon Lackibin marail sikor, o
" ek sy = gt b bk il
| | o , Tdemilon >
Eg | E& @ 1 oo sty Besstth-First search Slywlthe
e i il . e saqusvats) found o depth 53
. .
el |00k, ey poly. i b sey L i fard chpth B
1 I Cinitial rtatar
@ I ﬁ TRAS [HL IFERD TFF
1 c.sr THL DTG Dh (fd TBOC_ (A TACOLL 1 TMO0G°
; : Iy Dﬁg“;sall IPEl'\.-l:- UILJW:B i I'IJJ:\'A.I. AT
il Lol IFALH WA | i [
mbat palu.h L s
[nformation

m Dialog boxes
m Online help
Minimalistic, yet usable

User contributions:

™ Raduca Ling Gl debarn

Fird cmardlocks, ..
Pedctim of polic £ 1iemlocks.,

Strong Equinalance

w Dwersational Equiuslence

* Crarcerd

Hidirg File doptionall

Fervaming File {optioeed t

Resdsrtion Pelatic Find peth to atata,,

F [
v Trarcduirg Em'\'«“: CRL L] v--ulas

Safecy Eq.-ml.'#w-e

[rrm—

I Reduca uring Fritools

Errong Bqulwalenos
Eranching Equivalencs

w Wik Equlalenos

Ctanded

Resdution Felation

" FROCT_TRANFER M0 1ML IRERD IR0 IRETREPOOME 1UTEOR W0
BET AT IHL 180 (KL SH
"FREEUT] ML IFERD TR
“LHI_PUT i 130 KT Su IFLIC. IFALSE, TREY
'W‘I [N 13 1ML IRERD
TR (ML IO W] TE I|I.I. ¥
1:(JET i T lw Tpl TBOC SH TR0 COLL T1WD0E°
"EE. TR |3 IFLIEH |
*LHI_CET i I0UTI 0 lw ip TBOC_SH VLG (FRLEE. TRLE) W0
W‘:‘E _TRAFER IH0 IHL IFLLER 10 'EW NIl 'W‘DI"' Lo
CET ML VI 100 IR TR SH 1K G0 L
PROIET_TRARGFER (ML INC ICTLBE] . im "!WESP."II LU R e
_BEF (W (MO TE FILL (ROCDS
FROET_TRARSFER (0 1M DD HEITE KILL i 1WETRESF DDME (OUTQ[9 TRO00°
"FRE_[AD W IHI ICOLMEITE_KIIL 1™
=527 AT i1 180
" FREE_UTD 1HL '(I'A.IPI“ KILL ¥
BT GET iHL 1 [R010 (A0 (R0 IRIC_3H IR0 0L I0UOIe™
"1HLBEP IHL IFLIEH TP
*FORET_TRINSFER (L 1H0 (FLLES fo0 |RETRESP_DOHE 10UTO0G 1C0°
HEE 1) lm i -msn L0
"FEEE_UT |3 IFLIEH
" Eif_TR lm lu'cI1E Fum i
'Dt TET IHL VTG TR0 (RO ROC_SH IROLEOLL 1TMOIC”
FRET I'P)llS.FEP. Im lm IDCLAH 160 IRETRESF_MIL 10UTIG 10
" EE.|

TRAS M0 I [
n‘l CET i .mlmn B0 (a0 TROCSH PG FRLSE.
Bl

Ro Ty iy

TRET TR 0L | [l °

<dewdlock

chibidar bh ~dapth 1 4 fuzerad jorparaniF| [

Decislon Method

w Binary becizion Iurn

Cange)

» configuration files for various editors: emacs, jedit, a2ps

» several Eclipse plugins for CADP

r d

|

informatics #Fmathematics
&LZ&&L—— L1 G

SVL script language

m SVL is both:

» a script language to describe verification scenarios
» a compiler that translates SVL scripts to shell scripts

m Using SVL is optional (as well as EUCALYPTUS)

m Advantages:
» higher level than command-line tool invocations
» provides a unified textual interface above CADP tools
» eases writing of compositional verification scenarios
» implements automated verification tactics
» targets both naive and expert users

m SVL is being regularly enhanced

informatics #Fmathematics '
hua_-—
28

Forthcoming SVL extension for traceability

property DigitReadiness (d)

"It is always possible for the subscriber to press on digit Sd"
is

-- verification using model-checking

"system.Int" |= [true*] (< "DIAL !ISd" > true);

expected TRUE ;

-- verification using equivalence checking

strong comparison

(total rename "DIAL !Sd" -> "DIAL ISd", ".*" -> "OTHER" in
"system.Int") == "result_Sd.aut";

expected TRUE; e OTHER DIAL !d

e

informatics ##mathematics '
6Z2&a——— LI G 29

end property

Conclusion

4
informatics gFmathematics
63’2‘&——— LI G

30

Conclusion

CADP: bringing concurrency theory to practice

m A comprehensive toolbox:

» 50 tools, 20 code libraries

» modular, extensible using well-defined, stable APIs
m A significant software development effort:

» platforms: Linux, MacOS X, Solaris, Windows

» large documentation (700+ pages)

» emphasis on quality and backward compatibility

m Free for academic users

r d

informatics #Fmathematics '
&L’Z&a-—— :
L 31

=

Dissemination and impact

| mapgquest

m CADP licenses granted for 10,000+ machines

m 60+ university lectures based on CADP since 2002

m 170+ case studies tackled using CADP

m 80+ academic software tools reusing CADP components
AV ToT R http://cadp.inria.fr

r d

informatics #Fmathematics '
&L?&&L——
32

	An Overview of CADP 2014
	CADP
	Semantic models�and verification technologies
	LTS (Labelled Transition Systems)
	CADP technologies for LTSs
	BES (Boolean Equation Systems)
	CADP technologies for BESs
	Specification languages
	Four specification languages in CADP
	Four specification languages in CADP
	Main features of LNT
	Connecting other languages to CADP
	Model checking
	Three model-checkers in CADP
	Three model-checkers in CADP
	Equivalence checking
	Equivalence checking
	Equivalence checking
	Fighting state explosion…
	Compositional verification
	Distributed verification
	Beyond verification…
	Model-based testing
	Quantitative analysis
	Integration between CADP tools�
	A layered software architecture
	EUCALYPTUS graphical user interface
	SVL script language
	Forthcoming SVL extension for traceability
	Conclusion�
	Conclusion
	Dissemination and impact

