
An Overview of CADP 2014

Hubert Garavel
INRIA – Univ. Grenoble Alpes – LIG

http://convecs.inria.fr

http://convecs.inria.fr/

VASY 2

CADP
A software toolbox for studying asychronous systems
At the crossroads between:

concurrency theory
formal methods
computer-aided verification
compiler construction

A continuous long-run effort:
development of CADP started in the mid 80s
initially: only 2 tools (CAESAR and ALDEBARAN)
today: nearly 50 tools

Semantic models
and verification technologies

3

VASY 4

LTS (Labelled Transition Systems)

LTS = state-transition graph

no information attached to states (except the initial state)
information ("labels" or "actions") attached to transitions

VASY 5

CADP technologies for LTSs
"Explicit" LTS (enumerative, global):

 comprehensive sets of states, transitions, labels
 BCG: a file format for storing large LTSs
 up to 244 states and transitions
 a set of tools for handling BCG files

"Implicit" LTS (on the fly, local):
 defined by initial state and transition function
 Open/Caesar: a language-independent API
 many languages connected to Open/Caesar
 many tools developed on top of Open/Caesar

VASY 6

BES (Boolean Equation Systems)

x1 =µ x2 ∨ x3

x2 =µ x3 ∨ x4

x3 =µ x2 ∧ x7 M1

x4 =µ x5 ∨ x6

x5 =µ x8 ∨ x9

x6 =µ F M2

x7 =ν x8 ∧ x9

x8 =ν T

x9 =ν F
M3

 Boolean variables, constants, and connectors
 least (µ) and greatest (ν) fix points
 DAG of equation systems (no cycles – alternation-free)

VASY 7

CADP technologies for BESs
BES can be given:

 explicitly (stored in a file)
 or implicitly (generated on the fly)

CAESAR_SOLVE: a generic solver for BES
 works on the fly: solves while building the BES
 translates dynamically BES into Boolean graphs
 implements 9 resolution algorithms A0-A8
 (general or specialized)
 generates diagnostics (examples or counter-examples)
 fully documented API

BES_SOLVE: a solver for explicit BES

Specification languages

8

Four specification languages in CADP
None of these languages is bound to a specific application domain
They have been used in software, hardware, telecom, bioinformatics…

1. LOTOS
 process calculus combining CSP [Hoare] and CCS [Milner]
 international standard ISO 8807:1989
 tools: CAESAR, CAESAR.ADT, CAESAR.BDD

2. EXP
language for describing networks of communicating automata
parallel composition operators (LOTOS, CCS, CSP, mCRL, etc.)
+ MEC-like synchronization vectors
label hiding, renaming, cutting (using regexps), priorities
 tools: EXP2C, EXP.OPEN (on-the-fly partial order reductions)

 9

Four specification languages in CADP
3. FSP

 process calculus designed for teaching purpose
by Jeff Kramer and Jeff Magee (Imperial College)
 tools: FSP2LOTOS (translator to LOTOS+EXP), FSP.OPEN

4. LNT (formerly: LOTOS NT)
a modern specification language for concurrent systems
inspired from E-LOTOS (international standard ISO 15436:2001)
funded by Bull and the MULTIVAL project of Minalogic
tools: LNT2LOTOS (translation to LOTOS+C), LPP, LNT.OPEN

10

Main features of LNT
A careful mix of process calculi and functional languages
Key idea: be closer to mainstream programming language

Types
 predefined types: boolean, integer, real, character, string, etc.
 ML-like inductive types + subranges, sets, lists, sorted lists, etc.

Functions
 if, for, while, case + pattern-matching, return

Processes: superset of functions
 nondeterministic choice, nondeterministic value selection
 multiway rendezvous, typed communication channels

Modules

11

VASY 12

Connecting other languages to CADP

SystemC /
TLM

AADL

LOTOS

Fiacre LNT FSP BIP 1

SAM EB3 WSDL-BPEL

Open/Caesar
API

EXP

CHP

pi-calculus SDL

Model checking

13

Three model-checkers in CADP
EVALUATOR 3.6

 alternation-free modal µ-calculus
 extended with regular expressions on labels and action paths
 libraries of standard property patterns
 on-the-fly model checker built on top of Caesar_Solve BES solver
 automatic generation of diagnostics (sequences, trees, or graphs
with cycles) to explain why a formula is true or false

EVALUATOR 4.0
extends µ-calculus formula with typed data
if, case, let statements ; quantifiers over finite domains
 on-the-fly model checking based on PBES (Parameterized
Boolean Equation Systems) ; automatic generation of diagnostics

14

Three model-checkers in CADP
XTL

 functional language to express queries on explicit LTSs
 encoded in the BCG format
 data types: booleans, integers, reals, character, strings
 LTS types: states, labels, edges, state sets, edge sets
 rapid prototyping of LTS exploration algorithms
 easy encoding of temporal logics: HML, CTL, ACTL, µ-calculus
 "non-standard" properties involving data: counting actions
 XTL compiler: translates XTL to C code
 possibility to import external C code

15

Equivalence checking

16

VASY 17

Equivalence checking
An alternative approach to model checking:
 formal verification without temporal logic formulas
Principles:

 Old idea of program equivalence
 Compare two programs → generate and compare their LTSs
 Equivalence relations between LTSs:
 LTSs are equivalent iff they have "the same" observable behaviour
 many possible equivalence relations exist
 Bisimulations: a subclass of equivalence relations
states are equivalent iff they have the same future
stronger than usual trace (or language) equivalence
several bisimulation relations: strong, branching, etc.
efficient algorithms exist to compute bisimulations
Preorder relations between LTSs:
An LTS contains another LTS if it can do all what the other does,
and possibly more (∼ refinement and implementation relations)

Equivalence checking
Practically:

a large, complex LOTOS/LNT specification is compared against a
small, visibly correct LTS
a large LTS is minimized to yield a smaller, equivalent one

Equivalence checking is efficiently implemented in CADP
BCG_MIN, BISIMULATOR, EXP.OPEN, REDUCTOR

minimization and comparison of LTSs
explicit-state and on-the-fly algorithms (based on BES solving)
7 equivalence relations supported, with their preorders
generates diagnostics to explain why comparison fails

18

Fighting state explosion…

19

20

Compositional verification
A significant means of fighting state explosion

 A "silver bullet" applicable to process calculi only
 Implemented in several co-operating CADP tools
 BCG_MIN, CAESAR, EXP.OPEN, PROJECTOR, SVL

Principle:
 Divide the system into concurrent processes
 Generate the LTS of each separate processes
(possibly adding "interface" constraints to restrict this LTS)
 Minimize all the LTSs (for strong or branching bisimulation)
 Recombine in parallel all the minimized LTSs
(during LTS generation, interface constraints are checked)
Result: a smaller, yet (strongly- or branching-) equivalent LTS

VASY 21

Distributed verification
Exploit NoWs, clusters, and grids
Cumulate RAM and CPU of many remote machines
Distributed LTS exploration
DISTRIBUTOR, PBG_MERGE, PBG_CP, PBG_INFO, PBG_MV,PBG_RM

The LTS is built on the fly and partitioned into fragments
Each fragments is a set of states and transitions
Each fragment is built and stored on a different machine
PBG = distributed LTS consisting of remote fragments

Distributed BES resolution
 BES_SOLVE

The BES is built, partitioned, and solved on the fly
Each fragment is a set of Boolean variables and logical
dependencies between variables

In practice, linear scalability is observed

Beyond verification…

22

Model-based testing
Comparison between:

 a formal model (LOTOS, LNT)
 an actual implementation (software, hardware)

On-line testing (co-simulation) EXEC/CAESAR

 simultaneous execution of model and implementation
 detection of diverging behaviour

Off-line testing (test-case generation) TGV

 test cases automatically generated from the model
 test purposes (scenarios), pass/fail verdicts

Trace checking (off-line analysis of log files) SEQ.OPEN
23

VASY 24

Quantitative analysis
Combining functional verification (Boolean results) and
performance evaluation (numerical results)
Interactive Markov Chains (IMCs) [Hermanns-98]

combination of LTSs and continuous-time Markov chains
parallel composition ("rate" transitions do not synchronize)
theory permits compositional generation/minimization of IMCs

Supported by CADP:
 Compositional generation of IMCs

 BCG_MIN, DETERMINATOR, EXP.OPEN, SVL
Steady-state and transient solvers for IMCs

 BCG_STEADY and BCG_TRANSIENT
 Simulation for IMCs CUNCTATOR

Also: Interactive Probabilistic Chains (IPCs)
combination of LTSs and discrete-time Markov chains

Integration between CADP tools

25

26

A layered software architecture

Code libraries with APIs

Tools invoked from the command line

EUCALYPTUS
graphical user interface

SVL
script language

27

EUCALYPTUS graphical user interface
A simple user interface:

File types
Contextual menus
Dialog boxes
Online help

Minimalistic, yet usable

User contributions:
configuration files for various editors: emacs, jedit, a2ps
several Eclipse plugins for CADP

SVL script language
SVL is both:

 a script language to describe verification scenarios
 a compiler that translates SVL scripts to shell scripts

Using SVL is optional (as well as EUCALYPTUS)
Advantages:

 higher level than command-line tool invocations
 provides a unified textual interface above CADP tools
 eases writing of compositional verification scenarios
 implements automated verification tactics
 targets both naive and expert users

SVL is being regularly enhanced
 28

Forthcoming SVL extension for traceability
property DigitReadiness (d)
 "It is always possible for the subscriber to press on digit $d"
is
 -- verification using model-checking
 "system.lnt" |= [true*] (< "DIAL !$d" > true) ;
 expected TRUE ;
 -- verification using equivalence checking
 strong comparison
 (total rename "DIAL !$d" -> "DIAL !$d", ".*" -> "OTHER" in

 "system.lnt") == "result_$d.aut" ;
 expected TRUE ;
end property

29

OTHER DIAL !d

Conclusion

30

Conclusion
 CADP: bringing concurrency theory to practice

A comprehensive toolbox:
 50 tools, 20 code libraries
 modular, extensible using well-defined, stable APIs

A significant software development effort:
 platforms: Linux, MacOS X, Solaris, Windows
 large documentation (700+ pages)
 emphasis on quality and backward compatibility

 Free for academic users

31

Dissemination and impact

 CADP licenses granted for 10,000+ machines
 60+ university lectures based on CADP since 2002
 170+ case studies tackled using CADP
 80+ academic software tools reusing CADP components

 More: …………………………………………… http://cadp.inria.fr
32

	An Overview of CADP 2014
	CADP
	Semantic models�and verification technologies
	LTS (Labelled Transition Systems)
	CADP technologies for LTSs
	BES (Boolean Equation Systems)
	CADP technologies for BESs
	Specification languages
	Four specification languages in CADP
	Four specification languages in CADP
	Main features of LNT
	Connecting other languages to CADP
	Model checking
	Three model-checkers in CADP
	Three model-checkers in CADP
	Equivalence checking
	Equivalence checking
	Equivalence checking
	Fighting state explosion…
	Compositional verification
	Distributed verification
	Beyond verification…
	Model-based testing
	Quantitative analysis
	Integration between CADP tools�
	A layered software architecture
	EUCALYPTUS graphical user interface
	SVL script language
	Forthcoming SVL extension for traceability
	Conclusion�
	Conclusion
	Dissemination and impact

