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CADP

m A software toolbox for studying asychronous systems
m At the crossroads between:

» concurrency theory
» formal methods
» computer-aided verification

» compiler construction
m A continuous long-run effort:
» development of CADP started in the mid 80s
» initially: only 2 tools (CAESAR and ALDEBARAN)
» today: nearly 50 tools
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Semantic models
and verification technologies
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LTS (Labelled Transition Systems)

m LTS = state-transition graph
» no information attached to states (except the initial state)
» information ("labels" or "actions") attached to transitions
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CADP technologies for LTSs

m "Explicit" LTS (enumerative, global):
» comprehensive sets of states, transitions, labels
» BCG: a file format for storing large LTSs
» up to 2% states and transitions
» a set of tools for handling BCG files
m "Implicit" LTS (on the fly, local):
» defined by initial state and transition function
» Open/Caesar: a language-independent API
» many languages connected to Open/Caesar
» many tools developed on top of Open/Caesar
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BES (Boolean Equation Systems)

B Boolean variables, constants, and connectors
M |east (u) and greatest (v) fix points
B DAG of equation systems (no cycles — alternation-free)
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CADP technologies for BESs

m BES can be given:
» explicitly (stored in a file)
» or implicitly (generated on the fly)

m CAESAR_SOLVE: a generic solver for BES

» works on the fly: solves while building the BES
» translates dynamically BES into Boolean graphs

» implements 9 resolution algorithms AO-A8
(general or specialized)

» generates diagnostics (examples or counter-examples)
» fully documented API

m BES SOLVE: a solver for explicit BES
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Specification languages
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Four specification languages in CADP

None of these languages is bound to a specific application domain
They have been used in software, hardware, telecom, bioinformatics...

m1l. LOTOS
» process calculus combining CSP [Hoare] and CCS [Milner]
» international standard ISO 8807:1989
» tools: CAESAR, CAESAR.ADT, CAESAR.BDD

m 2. EXP

» language for describing networks of communicating automata

» parallel composition operators (LOTOS, CCS, CSP, mCRL, etc.)
+ MEC-like synchronization vectors

» label hiding, renaming, cutting (using regexps), priorities
» tools: EXP2C, EXP.OPEN (on-the-fly partial order reductions)
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Four specification languages in CADP

m 3. FSP

» process calculus designed for teaching purpose
» by Jeff Kramer and Jeff Magee (Imperial College)
» tools: FSP2LOTOS (translator to LOTOS+EXP), FSP.OPEN

m 4. LNT (formerly: LOTOS NT)
» a modern specification language for concurrent systems
» inspired from E-LOTOS (international standard ISO 15436:2001)
» funded by Bull and the MULTIVAL project of Minalogic
» tools: LNT2LOTOS (translation to LOTOS+C), LPP, LNT.OPEN
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Main features of LNT

A careful mix of process calculi and functional languages

Key idea: be closer to mainstream programming language
m Types
» predefined types: boolean, integer, real, character, string, etc.
» ML-like inductive types + subranges, sets, lists, sorted lists, etc.
m Functions
» if, for, while, case + pattern-matching, return
m Processes: superset of functions
» nondeterministic choice, nondeterministic value selection
» multiway rendezvous, typed communication channels
m Modules
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Connecting other languages to CADP
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Model checking
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Three model-checkers in CADP

m EVALUATOR 3.6

» alternation-free modal u-calculus

extended with regular expressions on labels and action paths
libraries of standard property patterns

on-the-fly model checker built on top of Caesar_Solve BES solver

automatic generation of diagnostics (sequences, trees, or graphs
with cycles) to explain why a formula is true or false

m EVALUATOR 4.0

» extends p-calculus formula with typed data
» if, case, let statements ; quantifiers over finite domains

» on-the-fly model checking based on PBES (Parameterized
Boolean Equation Systems) ; automatic generation of diagnostics
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Three model-checkers in CADP

m XTL
» functional language to express queries on explicit LTSs
encoded in the BCG format
data types: booleans, integers, reals, character, strings
LTS types: states, labels, edges, state sets, edge sets
rapid prototyping of LTS exploration algorithms

"non-standard" properties involving data: counting actions

B
B
B
» easy encoding of temporal logics: HML, CTL, ACTL, u-calculus
B
» XTL compiler: translates XTL to C code

B

possibility to import external C code

r d
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Equivalence checking

4
informatics gFmathematics
6 Z’Z[a——— G

16



Equivalence checking

m An alternative approach to model checking:

formal verification without temporal logic formulas
m Principles:
» Old idea of program equivalence

» Compare two programs — generate and compare their LTSs

» Equivalence relations between LTSs:
LTSs are equivalent iff they have "the same" observable behaviour
many possible equivalence relations exist

» Bisimulations: a subclass of equivalence relations
states are equivalent iff they have the same future
stronger than usual trace (or language) equivalence
several bisimulation relations: strong, branching, etc.
efficient algorithms exist to compute bisimulations

» Preorder relations between LTSs:
An LTS contains another LTS if it can do all what the other does,

and possibly more  (~ refinement and implementation relations)
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Equivalence checking

m Practically:

» a large, complex LOTOS/LNT specification is compared against a
small, visibly correct LTS

» a large LTS is minimized to yield a smaller, equivalent one

m Equivalence checking is efficiently implemented in CADP
BCG_MIN, BISIMULATOR, EXP.OPEN, REDUCTOR

» minimization and comparison of LTSs

» explicit-state and on-the-fly algorithms (based on BES solving)
» 7 equivalence relations supported, with their preorders

» generates diagnostics to explain why comparison fails
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Fighting state explosion...
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Compositional verification

m A significant means of fighting state explosion
» A "silver bullet" applicable to process calculi only
» Implemented in several co-operating CADP tools
BCG_MIN, CAESAR, EXP.OPEN, PROJECTOR, SVL
m Principle:
» Divide the system into concurrent processes

» Generate the LTS of each separate processes
(possibly adding "interface" constraints to restrict this LTS)

» Minimize all the LTSs (for strong or branching bisimulation)

» Recombine in parallel all the minimized LTSs
(during LTS generation, interface constraints are checked)

» Result: a smaller, yet (strongly- or branching-) equivalent LTS
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Distributed verification

m Exploit NoWs, clusters, and grids
m Cumulate RAM and CPU of many remote machines

m Distributed LTS exploration
DISTRIBUTOR, PBG_MERGE, PBG_CP, PBG_INFO, PBG_MV,PBG_RM
» The LTS is built on the fly and partitioned into fragments
» Each fragments is a set of states and transitions
» Each fragment is built and stored on a different machine
» PBG = distributed LTS consisting of remote fragments

m Distributed BES resolution

BES_SOLVE

» The BES is built, partitioned, and solved on the fly

» Each fragment is a set of Boolean variables and logical
dependencies between variables

m In practice, linear scalability is observed
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Beyond verification...
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Model-based testing

m Comparison between:
» a formal model (LOTOS, LNT)
» an actual implementation (software, hardware)

m On-line testing (co-simulation) EXEC/CAESAR
» simultaneous execution of model and implementation
» detection of diverging behaviour

m Off-line testing (test-case generation) TGV
» test cases automatically generated from the model
» test purposes (scenarios), pass/fail verdicts

m Trace checking (off-ling analysis of log files) SEQ.OPEN
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Quantitative analysis

m Combining functional verification (Boolean results) and
performance evaluation (numerical results)
m Interactive Markov Chains (IMCs) [Hermanns-98]
» combination of LTSs and continuous-time Markov chains
» parallel composition ("rate" transitions do not synchronize)
» theory permits compositional generation/minimization of IMCs

m Supported by CADP:
» Compositional generation of IMCs
BCG_MIN, DETERMINATOR, EXP.OPEN, SVL
» Steady-state and transient solvers for IMCs
BCG_STEADY and BCG_TRANSIENT
» Simulation for IMCs CUNCTATOR

m Also: Interactive Probabilistic Chains (IPCs)
» combination of LTSs and discrete-time Markov chains
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Integration between CADP tools

r 4
: informatics #Fmathematics

25



26

A layered software architecture

EUCALYPTUS SVL
graphical user interface script language

AN

Tools invoked from the command line

l

Code libraries with APIs
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EUCALYPTUS graphical user interface
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» configuration files for various editors: emacs, jedit, a2ps

» several Eclipse plugins for CADP
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SVL script language

m SVL is both:

» a script language to describe verification scenarios
» a compiler that translates SVL scripts to shell scripts

m Using SVL is optional (as well as EUCALYPTUS)

m Advantages:
» higher level than command-line tool invocations
» provides a unified textual interface above CADP tools
» eases writing of compositional verification scenarios
» implements automated verification tactics
» targets both naive and expert users

m SVL is being regularly enhanced
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Forthcoming SVL extension for traceability

property DigitReadiness (d)

"It is always possible for the subscriber to press on digit Sd"
is

-- verification using model-checking

"system.Int" |= [true*] (< "DIAL !ISd" > true);

expected TRUE ;

-- verification using equivalence checking

strong comparison

(total rename "DIAL !Sd" -> "DIAL ISd", ".*" -> "OTHER" in
"system.Int") == "result_Sd.aut";

expected TRUE; e OTHER DIAL !d

e
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Conclusion

4
informatics gFmathematics
63’2‘&——— LI G

30



Conclusion

CADP: bringing concurrency theory to practice

m A comprehensive toolbox:

» 50 tools, 20 code libraries

» modular, extensible using well-defined, stable APIs
m A significant software development effort:

» platforms: Linux, MacOS X, Solaris, Windows

» large documentation (700+ pages)

» emphasis on quality and backward compatibility

m Free for academic users
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Dissemination and impact

| mapgquest

m CADP licenses granted for 10,000+ machines

m 60+ university lectures based on CADP since 2002

m 170+ case studies tackled using CADP

m 80+ academic software tools reusing CADP components
AV ToT R http://cadp.inria.fr
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