

#### Principles of AltaRica Language and tools for system safety assessment

#### January 2016 Pierre.Bieber@onera.fr, Christel.Seguin@onera.fr



THE FRENCH AEROSPACE LAB

retour sur innovation

## Outline

- System Safety Assessment
- AltaRica Basics
  - AltaRica Data Flow Language
  - Fault tree generation
- DAL Allocation

System safety analysis and limits of current approaches



# Hydraulic System



- Safety architecture: 3 independent lines
- About 20 components of 8 classes: reservoir, pumps, pipes, valves

## **ARP 4754 Safety Assessment Process**



#### **Classical failure propagation models and safety assessment techniques (cf ARP 4761)**

#### •Failure mode and effect analysis (FMEA)

- Model: from a local failure to its system effects / natural languages

| System:    |  |  | FMEA Description: |  |  |       | Date: |  |
|------------|--|--|-------------------|--|--|-------|-------|--|
| Subsystem: |  |  |                   |  |  | Sheet | of    |  |
| Item ATA:  |  |  | FTA References:   |  |  |       | File: |  |
| lien AA.   |  |  | Author:           |  |  |       | Rev:  |  |

| NAMES | CODE | MODE | FAILURE | PHASE | METHOD |   |
|-------|------|------|---------|-------|--------|---|
|       |      |      |         |       | 2      | 0 |
|       |      |      |         |       |        |   |

#### Functional FMEA template

#### •Fault tree analysis (FTA)

Model: from a system failure to its root causes / boolean formulae

-Computation: minimal cut sets / probability of occurrence of top event



FT unannunciated loss of wheel braking



#### Drawbacks of the classical Safety Assessment Approaches

- Fault Tree, FMEA
  - Give failure propagation paths without referring explicitly to a commonly agreed system architecture / nominal behavior =>
    - Misunderstanding between safety analysts and designers
    - Potential discrepancies between working hypothesis
- Manual exhaustive consideration of all failure propagations become more and more difficult, due to:
  - increased interconnection between systems,
  - integration of multiple functions in a same equipment
  - dynamic system reconfiguration

## Model based safety assessment rationales

- Goals
  - Propose formal failure propagation models closer to design models
  - Develop tools to
    - Assist model construction
    - Analyze automatically complex models
  - For various purposes
    - FTA, FMEA, Common Cause Analysis, Human Error Analysis, ...
    - since the earlier phases of the system development

#### Approaches

Extend design models (Simulink, SysML, AADL...) with failure modes Build dedicated failure propagation models (Figaro, AltaRica, Slim...)

## **Basics of AltaRica dataflow language**



## AltaRica language at a glance

- Language designed in late 90's at University of Bordeaux
  - for modelling both combinatorial and dynamic aspects of failure propagation
  - in a hierarchical and modular way
  - formally.



## A leading example: the basic reliability block



• Initially, the block performs the nominal function

## AltaRica basic block

From concepts to a concrete syntax:





Combinatorial part

## **AltaRica semantics**





#### Internal operations on mode automata

- Interconnection : mapping an input of an automaton with an output of another automaton
  - preserves all states, variables, transitions, assertions
  - Introduces new assertions: Block2.I = Block1.O for all pairs of connected interfaces
  - interleaving parallelism (only one transition at a time)
  - ! allowed only if variables are not circularly defined



# **AltaRica Model of the Hydraulic System**



### Safety assessment tools



# **Formal Requirement Modeling**

#### Example of safety requirement

- Requirement : "Total loss of hydraulic power is classified Catastrophic, the probability rate of this failure condition shall be less than 10<sup>-9</sup> /FH. <u>No single</u> <u>event shall lead to this failure condition</u> " (SSA ATA29)
- Extended qualitative requirements could be added to reveal architecture design concerns:

"if up to N individual failures occur then failure condition FC should not occur", with N= 0, 1, 2 if FC is Minor, Major or Hazardous, Catastrophic.

Observer nodes are added into the model to detect requirement violation



#### **Fault-Tree generation**

- A pair (output variable, target value) is selected
- A Fault Tree of faults leading to this situation is generated
- The fault tree can be exported to other tools (e.g. Arbor,...) to compute of minimal cut sets



# **Principles of Fault-Tree computation**

- To compute a fault-tree for a Failure Condition (FC) from an AltaRica Model:
- 1. Generate the model automaton
- 2. Select states where the FC holds
- 3. Compute event paths that leads from the initial state to the selected states



THE PRENCH ADDRESS LAB

# **Verification of Qualitative Requirements**

- Generate Minimal cut sets from the Fault Tree
  - Loss of Green Hydraulic : {{distg.fail}, {rsvg.fail}, {empg.fail, edpg.fail}, {empg.fail, eng1.fail}, {elec.fail, edpg.fail}, {elec.fail, eng1.fail}}
- The size of minimal cut sets for a FC in Sev should be greater or equal to NSev.



| Sev  | MIN | MAJ | HAZ | CAT |
|------|-----|-----|-----|-----|
| NSev | 1   | 2   | 2   | 3   |



## ! Classes of model

- Static/Dynamic Model
  - **Static** Model: the order of the events in the sequence as no influence on the current configuration
  - Dynamic Model : the last property is not verified => use sequence generation rather than fault tree generation





DAL



# **Development Assurance Level**

# • DAL

- DAL ranges from E to A
- The DAL is the level of rigor of development assurance tasks performed on functions and items (software, hardware)
- DAL allocation
  - DAL of a function depends on the severity of the most severe Failure Condition that this function fault contributes to.
  - A Qualitative analysis of the Minimal Cut Sets of the system has to be performed



# **DAL Allocation**

- Basic Allocation rule
  - If f1 appears in a MCS for of FC with severity HAZ then the DAL of f1 is B



- DAL downgrading rules
  - If f1 appears in a MCS in combination with f2 and f3 then the DAL of f1 could be downgraded if there is independence between f1, f2 and f3.



## AltaRica Tools available

- Cecilia OCAS from Dassault Aviation
  - Used for the first time for certification of flight control system of Falcon 7X in 2004
  - Tested by contributors of ARP 4761 (cf MBSA appendix)
- AltaRica free suite from Labri
  - compatible with data flow restriction, http://altarica.labri.fr/wp/
- Other tools
  - Safety Designer from Dassault System, Simfia from APSYS Airbus group, RAMSES from Airbus, AltaRica 3.0 (under development at IRT Systemix)
- And plugins to independent tools
  - NU-SMV (FBK Trento), MOCA-RP (Satodev Bordeaux), Arc (LaBri Bordeaux), EPOCH (ONERA)....
- DAL allocation
  - DALculator (ONERA)

