

Analyse fonctionnelle des systèmes cyber-physiques avec incertitudes

Goran Frehse

Univ. Grenoble Alpes / CNRS – Verimag, France

Forum Méthodes Formelles Toulouse, 10 octobre, 2017

Outline

- Verification in Model Based Development
- Template Reachability in SpaceEx
- Applications
- Conclusions and Perspectives

Model-Based Development

Development Vision for Systems Mixing Software, Circuits and Mechanics (Fujitsu 2006)

http://www.fujitsu.com/downloads/EDG/binary/pdf/find/24-1e/2.pdf

Model-Based Development

Development Vision for Systems Mixing Software, Circuits and Mechanics (Fujitsu 2006)

http://www.fujitsu.com/downloads/EDG/binary/pdf/find/24-1e/2.pdf

Example: Controlled Helicopter

• 28-dim model of a Westland Lynx helicopter

- 8-dim model of flight dynamics
- 20-dim continuous $H\infty$ controller for disturbance rejection
- stiff, highly coupled dynamics

• Simulation

- single behavior

• Simulation

- single behavior

VERIMAG

Simulation vs Reachability

- Simulation
 - single behavior

- Reachability
 - cover of all behaviors

• Simulation

- deterministic
 - resolve nondet. using Monte Carlo etc.
- scalable for nonlinear dyn.

• Reachability

- nondeterministic
 - continuous disturbances...
 - implementation tolerances...
- scalable for linear dynamics

corner case simulation: check all extreme points

- n variables, T time steps
- initial set given by intervals = 2ⁿ vertices
- inputs given by intervals = 2ⁿ vertices

corner case simulation: check all extreme points

- n variables, T time steps
- initial set given by intervals = 2ⁿ vertices
- inputs given by intervals = 2^n vertices

 $2^{n} (2^{n})^{T}$ trajectories

• template reachability (interval enclosure):

T
$$O(n^3)$$
 operations

Outline

- Verification in Model Based Development
- Template Reachability in SpaceEx
- Applications
- Conclusions and Perspectives

SpaceEx Verification Platform

- reachability, monitoring, simulation ADHS'09, ICTSS'11, CAV '11
- open source: spaceex.imag.fr

SL2SX: Translating Simulink to SpaceEx

- semi-automatic, gentle subset of Simulink
 - continuous time linear blocks
 - steps, switches, etc.

Automotive Suspension from Simulink Example Library

SL2SX: Translating Simulink to SpaceEx

Automotive Suspension from Simulink Example Library

SL2SX: Translating Simulink to SpaceEx

Automotive Suspension from Simulink Example Library

Reachable States over Time

$$\dot{x}(t) = Ax(t) + u(t),$$

$$x(0) \in \mathcal{X}_0, u(t) \in \mathcal{U}$$

Template Reachability

Girard and Le Guernic, 2008

Template Reachability

Girard and Le Guernic, 2008

Template Reachability

- extended over intervals of time (convex hull+bloating)
- approximation error bounded

Example: Switched Oscillator

CAV'11

VERIMAG

• Low number of directions sufficient?

- here: 6 state variables

Outline

- Verification in Model Based Development
- Template Reachability in SpaceEx
- Applications
- Conclusions and Perspectives

Case Study: Electro-Mechanical Brake RTSS'14

Plant & Controller

Scheduler (timed automaton)

Case Study: Electro-Mechanical Brake

caliper position

Case Study: Electro-Mechanical Brake

physical properties: maximum impulse on contact (measured via current)

Case Study: Electro-Mechanical Brake

Daniel Hess. Safe Vehicle Cooperation in UnCoVerCPS. 2016

Case Study: Automated Driving

ESTEREL

BOSCH

Daniel Hess. Safe Vehicle Cooperation in UnCoVerCPS. 2016

ASSEL

Ш

reachability: final states contained in initial states

can be chained

tecnalia traping

DLR

Case Study: Automated Driving

VERIMAG

online:

from manœuvre automaton, choose safe subset

Daniel Hess. Safe Vehicle Cooperation in UnCoVerCPS. 2016

Case Study: Human-Robot Co-Existence

tecnalia) Inspiring

DLR

VERIMAG

BOSCH

Ш

ASSEL

Case Study: Human-Robot Co-Existence

VERIMAG

Experiment at TU Munich (Althoff et al.)

Case Study: Human-Robot Co-Existence

Conclusions and Perspectives

- Set-based simulation: exhaustive envelope
- Can account for uncertainty
 - modeling error, operating conditions
 - environment and user behavior
- Huge potential for online use
 - Verification: garantee safety
 - Monitoring: measurements conform to model
 - Prediction: trigger fail-safe in time

/ER<mark>I</mark>MAG