
© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Validation and Verification of Time
Properties of the Functional Level of

Autonomous Vehicles

Félix Ingrand
(Mohammed Foughali,

Anthony Mallet)
LAAS-RIS

October 10, 2017

Autonomous Vehicle and Software

Software represents a large part of the development of Autonomous Vehicle,
yet, most of it is not V&V…

…while it is for some of these complex systems:

2

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Cmd

PotentialField

Scanodometry

Navigation

target

Localization SafetyPilot

IMU

pose PFCmd

map

Task:
plan 100ms
Services:
SetParams
GotoTargetPort
Stop

Task:
pilot 40ms
Services:
SetParams*
Stop
SpeedMergeAnd
AvoidObstacles

Task:
plan 500 ms
Services:
GotoPosition
Stop

Task: io 10ms
Services:
perm, add_me

Task: filter
10ms
Services:
perm

Attribute Service
Function Service
Activity Service

Robotic Software Architecture

3

Cmd

PotentialField

Scanodometry

Navigation

target

Localization SafetyPilot

IMU

pose PFCmd

map

Task:
plan 100ms
Services:
SetParams
GotoTargetPort
Stop

Task:
pilot 40ms
Services:
SetParams*
Stop
SpeedMergeAnd
AvoidObstacles

Task:
plan 500 ms
Services:
GotoPosition
Stop

Task: io 10ms
Services:
perm, add_me

Task: filter
10ms
Services:
perm

Attribute Service
Function Service
Activity Service

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Robotic Software Architecture

3

Cmd

PotentialField

Scanodometry

Navigation

target

Localization SafetyPilot

IMU

pose PFCmd

map

Task:
plan 100ms
Services:
SetParams
GotoTargetPort
Stop

Task:
pilot 40ms
Services:
SetParams*
Stop
SpeedMergeAnd
AvoidObstacles

Task:
plan 500 ms
Services:
GotoPosition
Stop

Task: io 10ms
Services:
perm, add_me

Task: filter
10ms
Services:
perm

Attribute Service
Function Service
Activity Service

3IncludedFrenchDCTechnologies
Inadditiontotheopen-sourcematerial,somemethodsandtechnologieswillbeillustratedonthe
showcase.Fornow,thefollowingtechnologiesfromtheFranceDesignCenterareconsideredtobe
included:

•HAZOP-UML:themethodologywillbeillustratedononeortwooperationspecification;

•SMOF:monitorswillbesynthetizedfortwosafetyrules;

•MAUVE:animplementationofthesoftwarearchitectureusingtheMAUVEmiddlewarewill
beprovided,alongwithreal-timeanalysisresults;

•Genom:thedesignofthesoftwarearchitectureusingGenomwillbeprovided,alongwith
someanalysisresults;

•AltaRica:thedescriptionofthesafetyassessmentonapartofthefunctionnalarchitecture
willbedescribed.

4RoboticplatformfromONERA
TheplatformusedfortestingthesoftwarearchitectureisaRobotnikSummit-XLownedand
equippedbyONERA(figure1).TherobotisequipedwithaIMU(InertialMeasurementUnit),
aGPSsensor,Hokuyolasersensorsandavideocamera.

Figure1:Summit-XLequipedbyONERA

Theplaformdimensionsareshowninfigure2.

5MaterialHosting
AprojectonGitLabwillbecreatedundertheurlhttps://gitlab.com/osmosisinordertohost
documentationoftheshowcaseaswellasspecificgitprojectsforsources.

2

RobotDriverGPSDriver

Task:
txxx yyyms
Services:
S1
S2
S3

Task:
odometry
25ms
Services:
TrackOdoS
tart
TrackOdoS
top

Task:
command
40ms
Services:
TrackSpee
dStart
TrackSpee
dStop

IMUDriver

Task:
Update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

LaserDriver

Task:
scan 100ms
Services:
SetParams*
ConnectDevice
Scan
StopScan

pose

Teleop

Teleop
Cmd

Task:
check 100ms
Services:
Teleop
Stop

joystick

Cmd

PotentialField

Scanodometry

Navigation

target

Localization SafetyPilot

IMU

pose PFCmd

map

Task:
plan 100ms
Services:
SetParams
GotoTargetPort
Stop

Task:
pilot 40ms
Services:
SetParams*
Stop
SpeedMergeAnd
AvoidObstacles

Task:
plan 500 ms
Services:
GotoPosition
Stop

Task: io 10ms
Services:
perm, add_me

Task: filter
10ms
Services:
perm

Attribute Service
Function Service
Activity Service

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Robotic Software Architecture

4

Functional Level

odometry

follower

commandspeed_
limit

anticolfusion

state

locomotion

path

mission_
manager

safety_
scan

safety_lidar

loc_
scan

localisation_
lidar
Task:
acquire
Services:
perm

Task:
odometry
Services:
perm

Task:
command
Services:
perm
openDoors
closeDoors

Task:
acquire
Services:
perm

Task:
follow
Services:
follow_path
stop

Task:
name period
Services:
name …

Task:
analyse
Services:
perm

Task: io
Services:
perm

Task: filter
Services:
perm

Functional Level

actual
velocityIMU

nhfc

Task: main 1ms
Services:
Init
Servo
Stop

cmd
velocity

desired
state

maneuverpom

state

mikrokopter

Task:
plan ap
Services:
Goto
WayPoint
TakeOff

Task:
exec 5ms
Services:
perm

Task: io 1ms
Services:
perm, add_me

Task: filter 1ms
Services:
perm

Task:
main 1ms
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm ap
Services:
perm
connect
monitor

mocap
pose

optitrack
Task:
publish ap
Services:
Init
(pos updated
100Hz)

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

What do robotic software developers want?

Check that the autonomous bus drives safely
Stop in time when an obstacle has been detected
The door does no open while moving
Speed command is produced “timely”
Path following remain in bound

Check that the robot has a consistant perception/
action loop

Laser scan/freq and range
speed control (freq and value)
Time for an emergency stop

5

Functional Level

odometry

follower

commandspeed_
limit

anticolfusion

state

locomotion

path

mission_
manager

safety_
scan

safety_lidar

loc_
scan

localisation_
lidar
Task:
acquire
Services:
perm

Task:
odometry
Services:
perm

Task:
command
Services:
perm
openDoors
closeDoors

Task:
acquire
Services:
perm

Task:
follow
Services:
follow_path
stop

Task:
name period
Services:
name …

Task:
analyse
Services:
perm

Task: io
Services:
perm

Task: filter
Services:
perm

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

What do robotic software developers want?
Check that the drone flies safely

Tasks are scheduled as specified
Control laws are properly run
Propeller velocity command is produced “timely”
Consistant perception/action loop
Localisation properly “merged”
Time taken for an emergency stop (hover in the
current place)
No deadlock upon start

6

Functional Level

actual
velocityIMU

nhfc

Task: main 1ms
Services:
Init
Servo
Stop

cmd
velocity

desired
state

maneuverpom

state

mikrokopter

Task:
plan ap
Services:
Goto
WayPoint
TakeOff

Task:
exec 5ms
Services:
perm

Task: io 1ms
Services:
perm, add_me

Task: filter 1ms
Services:
perm

Task:
main 1ms
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm ap
Services:
perm
connect
monitor

mocap
pose

optitrack
Task:
publish ap
Services:
Init
(pos updated
100Hz)

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Software Validation and Verification

Require formal models and “checking” techniques

either with models directly “verifiable” (e.g., Petri nets, timed
automata, etc)

or with models which can be obtained or “translated” from
specifications

7

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Different Situations w.r.t. Using Formal Models on
Autonomous Robots

Already model based (decisional : planning, monitoring,
FDIR, observing)

Directly using formal framework (e.g. synchronous
approaches: Esterel/Lustre/Signal) (Mihaela’s talk)

No model at all (checking the code after “formalizing”
what it does or the properties it should satisfy)

Partial models (software engineering models: e.g.
GenoM; specification models: UML, RobotML, etc;
components based: BCM)

8

Functional Level

NHFC

tank

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

level

desired
state

GPS
pose

state

Task:
main 1ms
Services:
Init
Servo
Stop

Task:
main 100ms
Services:
Spray
Stop
Refill
Purge

Task:
exec 5ms
Service:
perm

Task:
main 100ms
Services:
Init

Task:
main 1ms
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm 1ms
Services:
perm
connect
monitor

Task: io 1ms
Services:
perm, add_me

Task: filter 1ms
Services:
perm

Task:
plan ap
Services:
Goto
WayPoint
TakeOff

Decisional Level

Observing

Monitoring

MODELS

FAPE

Acting

Planning

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Different Situations w.r.t. Using Formal Models on
Autonomous Robots

Already model based (decisional : planning, monitoring,
FDIR, observing)

Directly using formal framework (e.g. synchronous
approaches: Esterel/Lustre/Signal) (Mihaela’s talk)

No model at all (checking the code after “formalizing”
what it does or the properties it should satisfy)

Partial models (software engineering models: e.g.
GenoM; specification models: UML, RobotML, etc;
components based: BCM)

8

Functional Level

NHFC

tank

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

level

desired
state

GPS
pose

state

Task:
main 1ms
Services:
Init
Servo
Stop

Task:
main 100ms
Services:
Spray
Stop
Refill
Purge

Task:
exec 5ms
Service:
perm

Task:
main 100ms
Services:
Init

Task:
main 1ms
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm 1ms
Services:
perm
connect
monitor

Task: io 1ms
Services:
perm, add_me

Task: filter 1ms
Services:
perm

Task:
plan ap
Services:
Goto
WayPoint
TakeOff

Decisional Level

Observing

Monitoring

MODELS

FAPE

Acting

Planning

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Functional Level

NHFC

tank

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

level

desired
state

GPS
pose

state

Task:
main 1ms
Services:
Init
Servo
Stop

Task:
main 100ms
Services:
Spray
Stop
Refill
Purge

Task:
exec 5ms
Service:
perm

Task:
main 100ms
Services:
Init

Task:
main 1ms
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm 1ms
Services:
perm
connect
monitor

Task: io 1ms
Services:
perm, add_me

Task: filter 1ms
Services:
perm

Task:
plan ap
Services:
Goto
WayPoint
TakeOff

Decisional Level

Observing

Monitoring

MODELS

FAPE

Acting

Planning

Functional level : GenoM
Modules

Services (control flow)
Ports (data flow)

Our Approach

9

BIP (Verimag)

Fiacre/TINA (LAAS/VerTICS)

Model-Driven Software
Engineering

Formal Methods/ 
Frameworks

}
}UPPAAL (Uppsala & Aalborg

University)

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Functional Level

NHFC

tank

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

level

desired
state

GPS
pose

state

Task:
main 1ms
Services:
Init
Servo
Stop

Task:
main 100ms
Services:
Spray
Stop
Refill
Purge

Task:
exec 5ms
Service:
perm

Task:
main 100ms
Services:
Init

Task:
main 1ms
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm 1ms
Services:
perm
connect
monitor

Task: io 1ms
Services:
perm, add_me

Task: filter 1ms
Services:
perm

Task:
plan ap
Services:
Goto
WayPoint
TakeOff

Decisional Level

Observing

Monitoring

MODELS

FAPE

Acting

Planning

Functional level : GenoM
Modules

Services (control flow)
Ports (data flow)

Our Approach

9

BIP (Verimag)

Fiacre/TINA (LAAS/VerTICS)

Model-Driven Software
Engineering

Formal Methods/ 
Frameworks

}
}

BIP  
Fiacre

UPPAAL

UPPAAL (Uppsala & Aalborg
University)

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

GenoM
• To design a typical generic module which will be instantiated

according to each specific module
• a module is a program
• a module has I/O

•control: requests to start services/reports their results
•data: ports in(to read external data) and out (to write

external data)
• it supports a cyclic control task (aperiodic)
• and one or more cyclic tasks, periodic or aperiodic
• it provides services (fast and slow) to which we will associate C/C++

code
•in the control task
•and the executions task(s)

• the slow one can have different steps (automata) to perform their
processing

• services share a common data structure for the need of their
computation (parameters, computed values, internal state variables,
etc)

• execution tasks may have a permanent activity
• there may be exceptions, and incompatible services (they cannot run

at the same time)

10

RequestsReports

Clients

Ports
Ports

Ports

In

Out

Ports

Control Task

Execution Tasks

Attribute and Function
Services

Activity Services

IDS

Permanent Activities

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

GenoM
•Specify components

•IDS
•Ports
•Tasks
•Services

•Attribute, function
and activity (automata)
•and attached codels…

11

RequestsReports

Clients

Ports
Ports

Ports

In

Out

Ports

Control Task

Execution Tasks

Attribute and Function
Services

Activity Services

IDS

Permanent Activities

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

GenoM .gen & codels (example)

12

GenoM models:
.idl & .gen
- IDS
- Services (automata)
- Ports
- Tasks
- Exceptions
- etc

Control task

Execution task: plan

Stop
mv_plan_exec

_stop

Ether

plan
mv_goto_

plan

Start
mv_curr
ent_sate

_start

pause

initial state

interrupt

end of execution cycle
interruption signal

exec
mv_plan_

exec

wait
mv_plan_
exec_wait

pause

validate
validate_goto

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

GenoM .gen & codels (example)

12

GenoM models:
.idl & .gen
- IDS
- Services (automata)
- Ports
- Tasks
- Exceptions
- etc

Control task

Execution task: plan

Stop
mv_plan_exec

_stop

Ether

plan
mv_goto_

plan

Start
mv_curr
ent_sate

_start

pause

initial state

interrupt

end of execution cycle
interruption signal

exec
mv_plan_

exec

wait
mv_plan_
exec_wait

pause

validate
validate_goto

Codels
.c & .cc
WCET

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Why are GenoM specifications good for V&V?
Codel granularity (better parallelism specification)

Internal and external shared data access is fully specified
(ports, IDS, and nothing else)

Automata specification provides execution sequence and
time/period management

Task are clearly specified (how many, periodic, sporadic)

Template mechanism…

13

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

14

GenoM pocolibs module

lib_c_client

lib_oprs_client

OpenPRS OPs OpenPRS supervisor

ROS Comm module

ROS .msg  
.srv .action

Codels
.c & .cc

lib_codels

validate
svalidate(){...}

start
sstart(){...}

step1
sstep1(){...}

step2
sstep2(){...}

stop
sstop(){...}

OK step1

step1

step2

ether
ether

ether

GenoM
Models:
.idl & .gen
- Services
 (automata)
- Port
- Task

pocolibs/server

pocolibs/client/c

openprs/client

skeleton

Templates

ros/client/c

ros/client/ros

ros/server

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Three V&V frameworks
BIP (Verimag)

TINA/Fiacre (LAAS/Vertics)

UPPAAL (Uppsala & Aalborg University)

15

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

16

CHAPTER 3. THE BIP FRAMEWORK

Sender

Send1 Send2 Send3

Max1

Max2

Sing1 Sing2

p2(x) p2(x)

p3(z)

p2(x)

p3(z)

p0
2(z)

p1 p1 p1

p0
1

(a) Composite component representation.

compound type Sender

component Basic Send1
component Basic Send2
component Basic Send3

connector Max Max1(Sender1.p2,Send2.p2)
connector Max Max2(Max1.p3,Send3.p2)
connector Singleton Sing1 (Send1.p1)
connector Singleton Sing2 (Send2.p1)

export port Intport p�2 is Max2.p3
export port Intport p�1 is Send3.p1

end

(b) BIP code of the compound component.

Figure 3.7: An example of compound component in BIP.

4 The BIP Tool-Chain

This section presents the implementation of the BIP framework, formally described in the
previous sections, in the form of a tool-chain called the BIP tool-chain. The BIP Tool-chain
provides a complete implementation, with a rich set of tools for the modeling, the execution
and the verification (both static and on-the-fly) of BIP models.

4.1 General Overview

The overview of the BIP tool-chain is shown in figure 3.8. It includes the following tools:

• The BIP language. It is used to build models using components, connectors and
priorities and describes components architecture. It is used for the BIP description
source.

• Source-to-source transformation tools. They are used to transform various program-
ming models, using di�erent laguages, into BIP models. The translation of a pro-
gramming model into a BIP model allows its representation,in a rigorous semantic
framework. There exist several translations, including LUSTRE, MATLAB/Simulink,
AADL, GeNoM applications, NesC/TinyOS applications, C software and DOL sys-
tems.

30

CHAPTER 3. THE BIP FRAMEWORK

Sender

Send1 Send2 Send3

Max1

Max2

Sing1 Sing2

p2(x) p2(x)

p3(z)

p2(x)

p3(z)

p0
2(z)

p1 p1 p1

p0
1

(a) Composite component representation.

compound type Sender

component Basic Send1
component Basic Send2
component Basic Send3

connector Max Max1(Sender1.p2,Send2.p2)
connector Max Max2(Max1.p3,Send3.p2)
connector Singleton Sing1 (Send1.p1)
connector Singleton Sing2 (Send2.p1)

export port Intport p�2 is Max2.p3
export port Intport p�1 is Send3.p1

end

(b) BIP code of the compound component.

Figure 3.7: An example of compound component in BIP.

4 The BIP Tool-Chain

This section presents the implementation of the BIP framework, formally described in the
previous sections, in the form of a tool-chain called the BIP tool-chain. The BIP Tool-chain
provides a complete implementation, with a rich set of tools for the modeling, the execution
and the verification (both static and on-the-fly) of BIP models.

4.1 General Overview

The overview of the BIP tool-chain is shown in figure 3.8. It includes the following tools:

• The BIP language. It is used to build models using components, connectors and
priorities and describes components architecture. It is used for the BIP description
source.

• Source-to-source transformation tools. They are used to transform various program-
ming models, using di�erent laguages, into BIP models. The translation of a pro-
gramming model into a BIP model allows its representation,in a rigorous semantic
framework. There exist several translations, including LUSTRE, MATLAB/Simulink,
AADL, GeNoM applications, NesC/TinyOS applications, C software and DOL sys-
tems.

30

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

Encoder

get
[0 � x � +⇥]e

⇤
next
[100 � x � 120]d

{x}

q0

[0 � x � 50]d[50 � x � 60]d

q1

q2

encb

⇤⇤

enca

get next

atomic type Encoder
export port intPort get
export port intPort intPort next
port intPort enca compute
port intPort encb

clock x unit millisecond

place q0
place q1
place q2

initial to q0

on get from q0 to q1
when x in [0,-] eager
on enca from q1 to q2
when x in [50,60] delayable
on encb from q1 to q2
when x in [0,50] delayable
on next from q2 to q0
when x in [100,120] delayable
reset x

end

Figure 5.9: The encoder component declaration in BIP.

Priorities

Priorities are used for inhibiting an interaction, called the low interaction, whenever another
interaction, called the high interaction, is enabled. Priorities can be guarded by boolean
conditions, which depend on the value of variables. We can extend priorities with the notion
of time, by adding delays for the application of priority rules. A priority with a delay of d
means that its lower interaction is inhibited by its high interaction whenever the latter is
possible in d units of time.

Definition 25 (Priority Rule) A priority is a tuple (C,�d), where C is a state pred-
icate (boolean condition) characterizing the states where the priority applies and �d is a
partial order that gives the priority order on a set of interactions A =

�
A� and d is the

delay of application of the priority.

For a1 ⇤ A and a2 ⇤ A, a priority rule is textually expressed as C ⇥ a1 �d a2. When
the state predicate C is true and both interactions a1 and a2 specified in the priority rule
are enabled, the higher priority interaction, i.e., a2 is selected for execution with a delay of
d time units.

74

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

Encoder

get
[0 � x � +⇥]e

⇤
next
[100 � x � 120]d

{x}

q0

[0 � x � 50]d[50 � x � 60]d

q1

q2

encb

⇤⇤

enca

get next

atomic type Encoder
export port intPort get
export port intPort intPort next
port intPort enca compute
port intPort encb

clock x unit millisecond

place q0
place q1
place q2

initial to q0

on get from q0 to q1
when x in [0,-] eager
on enca from q1 to q2
when x in [50,60] delayable
on encb from q1 to q2
when x in [0,50] delayable
on next from q2 to q0
when x in [100,120] delayable
reset x

end

Figure 5.9: The encoder component declaration in BIP.

Priorities

Priorities are used for inhibiting an interaction, called the low interaction, whenever another
interaction, called the high interaction, is enabled. Priorities can be guarded by boolean
conditions, which depend on the value of variables. We can extend priorities with the notion
of time, by adding delays for the application of priority rules. A priority with a delay of d
means that its lower interaction is inhibited by its high interaction whenever the latter is
possible in d units of time.

Definition 25 (Priority Rule) A priority is a tuple (C,�d), where C is a state pred-
icate (boolean condition) characterizing the states where the priority applies and �d is a
partial order that gives the priority order on a set of interactions A =

�
A� and d is the

delay of application of the priority.

For a1 ⇤ A and a2 ⇤ A, a priority rule is textually expressed as C ⇥ a1 �d a2. When
the state predicate C is true and both interactions a1 and a2 specified in the priority rule
are enabled, the higher priority interaction, i.e., a2 is selected for execution with a delay of
d time units.

74

Time

CHAPTER 3. THE BIP FRAMEWORK

code two types of ports. A pure event port ePort that does not have any associated vari-
ables, and provides the mechanism for event synchronization only. The port out is of type
InPort, which associates an integer variable with a port. A port in an atomic component
is not visible to its environment unless it is exported explicitily. In the above example, both
port p1 and p2 are exported. It is necessary to export a port if it has to be used in some
connector for synchronization purpose.

Basic

x = assign−value ()

p1 p2(x)

empty full

p2

p1

[x > 0]

(a) An atomic component.

port type IntPort (int x)
port type ePort ()

atomic type Basic
data int x = 0
export port ePort p1() is p1
export port intPort p2(x) is p2

place empty
place full

initial to empty

on p1 from empty to full
do { x = assign-value();}

on p2 provided [x > 0]
from full to empty

end

(b) BIP code of the atomic component.

Figure 3.2: An example of an open atomic component in BIP.

3.2 Connectors

Composition of components allows to build a system as a set of components that interact
by respecting constraints of an interaction model. Connectors are used to specify possible
interaction patterns between the ports of components.

Definition 8 (Connector) A connector � define sets of ports of atomic components Bi

wich can be involved in an interaction. It is formalized by � = (P� , A� , p[x]) where:

• P� is the support set of �, that is the set of ports that � may synchronize.
• A� ⇥ 2P� is a set of interactions a each labeled by the triple (Pa, Ga, Fa) where:

– Pa is the set of ports pii�I , I ⇥ [1, n] that take part of an interaction a,
– Ga is the guard of a, a predicate defined on variables

�
pi�a Vpi ,

– Fa is the data transfer function of a, defined defined on variables
�

pi�a Vpi .

• p is the exported port of the connector �.

25

CHAPTER 3. THE BIP FRAMEWORK

code two types of ports. A pure event port ePort that does not have any associated vari-
ables, and provides the mechanism for event synchronization only. The port out is of type
InPort, which associates an integer variable with a port. A port in an atomic component
is not visible to its environment unless it is exported explicitily. In the above example, both
port p1 and p2 are exported. It is necessary to export a port if it has to be used in some
connector for synchronization purpose.

Basic

x = assign−value ()

p1 p2(x)

empty full

p2

p1

[x > 0]

(a) An atomic component.

port type IntPort (int x)
port type ePort ()

atomic type Basic
data int x = 0
export port ePort p1() is p1
export port intPort p2(x) is p2

place empty
place full

initial to empty

on p1 from empty to full
do { x = assign-value();}

on p2 provided [x > 0]
from full to empty

end

(b) BIP code of the atomic component.

Figure 3.2: An example of an open atomic component in BIP.

3.2 Connectors

Composition of components allows to build a system as a set of components that interact
by respecting constraints of an interaction model. Connectors are used to specify possible
interaction patterns between the ports of components.

Definition 8 (Connector) A connector � define sets of ports of atomic components Bi

wich can be involved in an interaction. It is formalized by � = (P� , A� , p[x]) where:

• P� is the support set of �, that is the set of ports that � may synchronize.
• A� ⇥ 2P� is a set of interactions a each labeled by the triple (Pa, Ga, Fa) where:

– Pa is the set of ports pii�I , I ⇥ [1, n] that take part of an interaction a,
– Ga is the guard of a, a predicate defined on variables

�
pi�a Vpi ,

– Fa is the data transfer function of a, defined defined on variables
�

pi�a Vpi .

• p is the exported port of the connector �.

25

Behavior
CHAPTER 3. THE BIP FRAMEWORK

Sender1 Sender2

p3(z)

p1(x) p2(y)

G : (p1.x > 0)&&(p2.y > 0)

Fup : z = Max(p1.x, p2.y)

Fdown : p1.x = p2.y = z

(a) Connector.

connector type Max (intPort p1, intPort p2)
data int z
define [p1p2]

on p1p2 provided (p1.x > 0) && (p2.y > 0)
up { z = Max (p1.x , p2.y);}
down { p1.x = p2.y = z ;}

export port intPort p3(z)

end

(b) Connector type definition code in BIP.

Figure 3.4: An example of a connector between two components in BIP

true. In the up function, the Max of the variables associated with the ports is calculated and
stored in the connector variable z. As a result of the data transfer, the variables associated
with the ports are set to the maximum of thier values, through the action down.

Hierarchical connectors

We have seen that a connector has an option to define a port and export it. This allows
a connector to be used as a port in other connectors, and create structured connectors. The
representation of structured connectors require connectors to be treated as expressions with
typing and other operations on groups of connectors. This led to a formalization of the
algebra of connectors defined in [25, 26]. The Algebra of Connectors is a compact notation
for algebric representation and manipulation of connectors and formalizes the concept of
connectors supported by the BIP component model.

Figure 3.5 shows two hierarchical connectors :

• The AtomicBroadcast (a) involves four ports s, r1, r2, r3. It represents a communica-
tion schema between a sender s and multiple reveivers ri, where either a message is
received by all the ri, or by none. Ports ri are strongly synchronized and the synchro-
nization with the trigger port s is done via an exported port. This means that either
s or interaction s.r1.r2.r3 is possible.

• The CausalChain (b) involves the same ports with a di◆erent structure. It represents
a communication schema in which if a message is received by ri, it has also to be
received by rj , for j < i.

27

CHAPTER 3. THE BIP FRAMEWORK

Sender1 Sender2

p3(z)

p1(x) p2(y)

G : (p1.x > 0)&&(p2.y > 0)

Fup : z = Max(p1.x, p2.y)

Fdown : p1.x = p2.y = z

(a) Connector.

connector type Max (intPort p1, intPort p2)
data int z
define [p1p2]

on p1p2 provided (p1.x > 0) && (p2.y > 0)
up { z = Max (p1.x , p2.y);}
down { p1.x = p2.y = z ;}

export port intPort p3(z)

end

(b) Connector type definition code in BIP.

Figure 3.4: An example of a connector between two components in BIP

true. In the up function, the Max of the variables associated with the ports is calculated and
stored in the connector variable z. As a result of the data transfer, the variables associated
with the ports are set to the maximum of thier values, through the action down.

Hierarchical connectors

We have seen that a connector has an option to define a port and export it. This allows
a connector to be used as a port in other connectors, and create structured connectors. The
representation of structured connectors require connectors to be treated as expressions with
typing and other operations on groups of connectors. This led to a formalization of the
algebra of connectors defined in [25, 26]. The Algebra of Connectors is a compact notation
for algebric representation and manipulation of connectors and formalizes the concept of
connectors supported by the BIP component model.

Figure 3.5 shows two hierarchical connectors :

• The AtomicBroadcast (a) involves four ports s, r1, r2, r3. It represents a communica-
tion schema between a sender s and multiple reveivers ri, where either a message is
received by all the ri, or by none. Ports ri are strongly synchronized and the synchro-
nization with the trigger port s is done via an exported port. This means that either
s or interaction s.r1.r2.r3 is possible.

• The CausalChain (b) involves the same ports with a di◆erent structure. It represents
a communication schema in which if a message is received by ri, it has also to be
received by rj , for j < i.

27

Interaction

CHAPTER 3. THE BIP FRAMEWORK

Max1 Max2

Max2 : < Max1 :

r s2s1

⇥ = {s1.r, s2.r}

s2.r s1.r

(a) An Example of a priority
relation.

connector Max1 (s1, r)
connector Max2 (s2, r)

priority maximal if (s1.x > s2.x)
Max2 < Max1

(b) BIP code of the priority relation.

Figure 3.6: An example of priorities in BIP.

• Q is a set of states, which is the cartesian product of the sets of control sates of the
composed components S =

�n
i=1 Si.

• �⌅⇥ is a set of transitions of the form (q,�, g, f, q�), where :
– q = (q1, ..., qn), qi being a control state of the ith component.
– � is a feasible interaction in ⇥ associated with a guarded command (G�, F�),

such that there exists a subset J ⇤ {1, ..., n} of components with transitions
{(qj , pj , gj , fj , q�j)}j⇥J and � = {pj}j⇥J .

– g =
⇥

j⇥J gj ⇧G�.
– f = F�; [fj]j⇥J . That is, the computation starts with the execution of F� followed

by by the execution of all the functions fj in some arbitrary order. The result is
independent of this order as components have disjoint sets of variables.

• P is a set of exported ports. Indeed, a connector can be associated with exported ports.
This allows a connector to be used as a port in other connectors, and create structured
conectors. Those ports allow also to build compound components.

Example 7 Figure 3.7(a) shows a compound component Sender consisting of three com-
ponents, Send1, Send2 and Send3 of type Basic (described in Figure 3.2). They interact
by using connectors of type Max described in Figure 3.4 to compute the maximal value pro-
duced by the components. It exports two ports p�2 and p�1. Port p�2 results from the components
synchronizations through their p2 ports. Port p�1 is the exported port p1 of the Send3 com-
ponent. Ports p1 of Send1, Send2 are wrapped into singleton connectors since they are
neither exported by the compound component nor involved in any interaction. Figure 3.7(b)
presents the corresponding BIP code.

29

CHAPTER 3. THE BIP FRAMEWORK

Max1 Max2

Max2 : < Max1 :

r s2s1

⇥ = {s1.r, s2.r}

s2.r s1.r

(a) An Example of a priority
relation.

connector Max1 (s1, r)
connector Max2 (s2, r)

priority maximal if (s1.x > s2.x)
Max2 < Max1

(b) BIP code of the priority relation.

Figure 3.6: An example of priorities in BIP.

• Q is a set of states, which is the cartesian product of the sets of control sates of the
composed components S =

�n
i=1 Si.

• �⌅⇥ is a set of transitions of the form (q,�, g, f, q�), where :
– q = (q1, ..., qn), qi being a control state of the ith component.
– � is a feasible interaction in ⇥ associated with a guarded command (G�, F�),

such that there exists a subset J ⇤ {1, ..., n} of components with transitions
{(qj , pj , gj , fj , q�j)}j⇥J and � = {pj}j⇥J .

– g =
⇥

j⇥J gj ⇧G�.
– f = F�; [fj]j⇥J . That is, the computation starts with the execution of F� followed

by by the execution of all the functions fj in some arbitrary order. The result is
independent of this order as components have disjoint sets of variables.

• P is a set of exported ports. Indeed, a connector can be associated with exported ports.
This allows a connector to be used as a port in other connectors, and create structured
conectors. Those ports allow also to build compound components.

Example 7 Figure 3.7(a) shows a compound component Sender consisting of three com-
ponents, Send1, Send2 and Send3 of type Basic (described in Figure 3.2). They interact
by using connectors of type Max described in Figure 3.4 to compute the maximal value pro-
duced by the components. It exports two ports p�2 and p�1. Port p�2 results from the components
synchronizations through their p2 ports. Port p�1 is the exported port p1 of the Send3 com-
ponent. Ports p1 of Send1, Send2 are wrapped into singleton connectors since they are
neither exported by the compound component nor involved in any interaction. Figure 3.7(b)
presents the corresponding BIP code.

29

Priority

BIP Model example

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

GenoM to BIP
A template that produces the BIP
model of any GenoM specification
for the PocoLibs implementation

example:

Functional Level

speed

robmotion

scan

roblaser

pos

robloco

robmap

map

Task:
map 50ms
Services:
Init
FuseMap
StopFuse

Task:
motion 500ms
Services:
Init
GotoPosition
Stop

Task:
scan 50ms
Services:
Init
StartScan
StopScan

Task:
odo 50ms
Services:
InitPort
GetPos
OdoStart
OdoStop
MonitorArea

Task:
track 50ms
Services:
TSStart
TSStop

17

From GenoM3 to BIP

From GenoM3 to BIP: Task Manager + Timer (top)

idle

ready

reqgp

managemd

managegp

reqmd
reqmon

reqmd

reqgp

reqmon

free

norequest

norequest

managemd2

managegp2

intermd

intergp

actmd

actgp

release

clear

launch

finished

clock c

reqgp

reqmd

reqmon

norequest

intergp

actmd

actgp

clear

finished

launch

immediate

immediate

reqsetsp

reqsetspsetspwait

setspeed

resfree

freeres

reqsetsp

resfreefreeres

control

idle

reqgp

reqmd

reqmon

reqsetsp

norequest

waiting

finished

norequest

finished

reqsetsp

reqgp

reqmon

reqmd

client

ether

activate

start
running

stop

idle

voidvoid

act

hold

launch
run

inter

interrupt

clear

interruptfinished

nointer

voidfinished

void

md1

interrupt

hold

inter

clear

void

launch

act run

ether

activate

start
running

stop

idle

voidvoid

act

hold

launch
run

inter

interrupt

clear

interruptfinished

nointer

voidfinished

void

md2

ether

activate

start
running

stop

idle

voidvoid

act

hold

launch
run

inter

interrupt

clear

interruptfinished

nointer

voidfinished

void

gp1

ether

activate

start
running

stop

idle

voidvoid

act

hold

launch
run

inter

interrupt

clear

interruptfinished

nointer

voidfinished

void

gp2

ether

activate

start
running

stop

idle

voidvoid

act

hold

launch
run

inter

interrupt

clear

interruptfinished

nointer

voidfinished

void

mon1
void

clear

interrupt

ether

activate

start
running

stop

idle

voidvoid

act

hold

launch
run

inter

interrupt

clear

interruptfinished

nointer

voidfinished

void

mon2

clear

interrupt

nointer

nointer

endmd1

startmd1

idle

tick

beginmd1

cyclemd1

skipmd1

ended

tick

reset c

clock cmanager

beginmd1

cyclemd1

endmd2

startmd2

beginmd2

endgp1

startgp1

begingp1

endgp2

startgp2

begingp2

endmon1

startmon1

beginmon1

endmon2

startmon2

beginmon2

reset c

cyclemd2

reset c

cyclegp1

reset c

cyclegp2
reset c

cyclemd1
reset c

cyclemd1

reset c

finish

skipmd1

skipmd2

skipgp1

skipgp2

skipmon1

skipmon2

ended

starttest

tick

tick

timer
when c>=Pi

clock c

finished

inter

run

finished

inter

run

finished

inter

run

finished

inter

run

finished

inter

run

finished

void

beginmd2

cyclemd2

skipmd2

beginmon1

cyclemon1

skipmon1

begingp2

cyclegp2

skipgp2

beginmon2

cyclemon2

skipmon2

hold

sig

signal
start

intermediate

notify sig

sig

sig

endsig

hold

endsig

exec3

exec2

exec1

start

wait

end,
stop

toexec

finished

begin

mdinst1

pause resfree

interrupted

finished

begin

freeres

clock c
idle begin

reset c

resfree
reset c

pause

toend
interrupted

reset c
freeres
reset c

interrupted

reset c

exec3

exec2

exec1

start

wait

end,
stop

toexec

finished

begin

mdinst2

pause resfree

interrupted

finished

begin

freeres

clock c
idle begin

reset c

resfree
reset c

pause

when c==0

toend
when c==0

interrupted
reset c

freeres
reset c

interrupted

reset c

exec

start

wait

end,
stop

toexec

finished

begin

gpinst1

pause

interrupted

finished

begin
clock c

idle begin
reset c

pause

toend

interrupted

reset c

interrupted

reset c

start

wait

stop

finished

moninst1

pause

interrupted

finished

begin
clock c

idle begin
reset c

interrupted

reset c

reset c

reset c

reset c

exec

start

wait

end,
stop

toexec

finished

begin

gpinst2

pause

interrupted

finished

begin
clock c

idle begin
reset c

pause

toend

interrupted

reset c

interrupted

reset c

reset c

reset c

reset c

interrupted

reset c

pause
begin
reset c

start

wait

stop

finished

moninst2

pause

interrupted

finished

begin
clock c

idle begin
reset c

interrupted

reset c

interrupted

reset c

pause
resume

reset c

tostop
reset c

tostop
reset c

intermd

interrupt

hold

clear

void

launch

act

interrupt

hold

clear

void

launch

act

interrupt

hold

clear

void

launch

act

// same as intermd

// same idea for md2

// same idea for gp2

// same idea for md2

begingp1

cyclegp1

skipgp1

// same idea for gp1

// same idea for gp2

// same idea for mon1

// same idea for mon2

(control.finished,client.finished) < launch connectors

Priorities

take

locksetsp
free

taken

give

give

check
take

check

take

lockmd
free

taken

give

give

check

take

check

// same for md2

c == 0

inv = 0

c == 0

reset c
end

end

inv = 0

inv = 0

inv = 0

inv = 0

inv = 0

inv = 0

inv = 0

test

nosig

nosig

check

c == 0

c == 0

c == 0

c == 0

c == 0

c == 0

c == 0

c == 0

reset c

reset c

inv <= wcet

check

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

reset c
reset c reset c

reset c

Jacques Combaz (Verimag) GenoM3/BIP September 20, 2016 23 / 29

/* plan timer */

atom type TIMER_plan_robmotion()
clock c unit millisecond
export port Port tick()
place loop
initial to loop

on tick
from loop to loop
provided (c>=500.0)
do { c = 0; }

end

Invariants extraction and sat solver RT D-Finder
Runtime Checking with the RT BIP Engine

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Fiacre example
mbufabuf

ssn

n
idle

send

waita

idle

send

waita

wait]4,5]

mbuf! ssn

abuf? n
if n=ssn then
ssn:= not ssn

Sender

18

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Fiacre Model
example:
Alternate Bit
Protocol

Buffer

idle

ooii

buf

pk

ii? pk
on not (full buf)
buf:=enq(buf,pk);

on not (empty buf)
oo! first buf
buf:=deq(buf);

wait [0,1]
on not (empty buf)

buf:=deq(buf);

Receiver

abufmbuf

rcve

ack

mbuf? m
if n=rsn then
rsn:= not rsn

abuf? m

rsn

m

Buffer

iioo

idle

buf

pk

ii? pk
on not (full buf)
buf:=enq(buf,pk);

on not (empty buf)
oo! first buf
buf:=deq(buf);

wait [0,1]
on not (empty buf)

buf:=deq(buf);

Sender

mbufabuf

ssn

n
idle

send

waita

idle

send

waita

wait]4,5]

mbuf! ssn

abuf? n
if n=ssn then
ssn:= not ssn

minp [0,0]

aout [0,1]

mout [0,1]

ainp [0,2]

19

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

ABP FIACRE example automatically translated
to Time Petri Net (TINA)

20

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

GenoM to Fiacre
A template that produces the Fiacre
model of any GenoM specification
for the PocoLibs implementation

example:

Functional Level

speed

robmotion

scan

roblaser

pos

robloco

robmap

map

Task:
map 50ms
Services:
Init
FuseMap
StopFuse

Task:
motion 500ms
Services:
Init
GotoPosition
Stop

Task:
scan 50ms
Services:
Init
StartScan
StopScan

Task:
odo 50ms
Services:
InitPort
GetPos
OdoStart
OdoStop
MonitorArea

Task:
track 50ms
Services:
TSStart
TSStop

process timer (&tick: bool) is
states start
from start
wait [0.5,0.5];
tick := true;
to start

process Manager (&tick: bool, ...) is
states start, manage
from start
wait [0,0];
on tick;
tick := false;
if (...) /* no active activity */
then to start
else to manage end
from manage
wait [0,0];
... /* execute one active activity */
if (...) /* no more activities */
then to start
else to manage end

21

Model Checking
(on the TPN equivalent model)

TINA
(GotoPosition Service Automata)

The complete model
for RobMotion

• 250 places

• 506 transitions

22

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

GenoM to UPPAAL
A template that produces the UPPAAL
model of any GenoM specification
for the PocoLibs implementation

example:

Functional Level

speed

robmotion

scan

roblaser

pos

robloco

robmap

map

Task:
map 50ms
Services:
Init
FuseMap
StopFuse

Task:
motion 500ms
Services:
Init
GotoPosition
Stop

Task:
scan 50ms
Services:
Init
StartScan
StopScan

Task:
odo 50ms
Services:
InitPort
GetPos
OdoStart
OdoStop
MonitorArea

Task:
track 50ms
Services:
TSStart
TSStop

23

Model Checking

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

24

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

24

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

25

GenoM pocolibs module

lib_c_client

lib_oprs_client

OpenPRS OPs OpenPRS supervisor

ROS Comm module

ROS .msg  
.srv .action

Codels
.c & .cc

lib_codels

validate
svalidate(){...}

start
sstart(){...}

step1
sstep1(){...}

step2
sstep2(){...}

stop
sstop(){...}

OK step1

step1

step2

ether
ether

ether

GenoM
Models:
.idl & .gen
- Services
 (automata)
- Port
- Task

pocolibs/server

pocolibs/client/c

openprs/client

skeleton

Templates

ros/client/c

ros/client/ros

ros/server

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

25

GenoM pocolibs module

lib_c_client

lib_oprs_client

OpenPRS OPs OpenPRS supervisor

ROS Comm module

ROS .msg  
.srv .action

Codels
.c & .cc

lib_codels

validate
svalidate(){...}

start
sstart(){...}

step1
sstep1(){...}

step2
sstep2(){...}

stop
sstop(){...}

OK step1

step1

step2

ether
ether

ether

GenoM
Models:
.idl & .gen
- Services
 (automata)
- Port
- Task

pocolibs/server

pocolibs/client/c

openprs/client

skeleton

Templates

ros/client/c

ros/client/ros

ros/server

BIP module

BIP model

lib_BIP_Engine

D-Finder

bip/model

fiacre/model Fiacre model TINA model

selt
frac

uppaal/model

UPPAAL model

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Verification results FIACRE/TINA
✓ Schedulability of execution tasks
property sched is always (navigation/robmap/manager/state manage) => not
(navigation/robmap/manager/value tick)

Verification with TINA: FALSE

✓ Progress of activities
property no_block is (navigation/robmap/manager/state manage) leadsto
(navigation/robmap/manager/state start)

Verification with TINA: TRUE

✓ Position port update bounded in time
Final result 1 second and 274 ms

✓ RobMotion Stop leads to RobLoco stopping the robot
property bounded_stop_1 is (robmotion/control_task/state Stop_req) leadsto
(robmotion/GotoPosition/state stop) within [0,0.5]
property bounded_stop_2 is (robmotion/GotoPosition/state stop) leads to leave
(robloco/TSStart/state update) within [0,0.06]

26

Functional Level

speed

robmotion

scan

roblaser

pos

robloco

robmap

map

Task:
map 50ms
Services:
Init
FuseMap
StopFuse

Task:
motion 500ms
Services:
Init
GotoPosition
Stop

Task:
scan 50ms
Services:
Init
StartScan
StopScan

Task:
odo 50ms
Services:
InitPort
GetPos
OdoStart
OdoStop
MonitorArea

Task:
track 50ms
Services:
TSStart
TSStop

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Verification results FIACRE/TINA
✓ Schedulability of execution tasks
property schedulability_main is always (microkopter/main/state executing ⇒ not
(main_period_signal))

Verification with TINA: FALSE

Hold for all tasks with an octo-core but not with a quad-core ODROID-C0

27

Functional Level

actual
velocityIMU

nhfc

Task: main 1ms
Services:
Init
Servo
Stop

cmd
velocity

desired
state

maneuverpom

state

mikrokopter

Task:
plan ap
Services:
Goto
WayPoint
TakeOff

Task:
exec 5ms
Services:
perm

Task: io 1ms
Services:
perm, add_me

Task: filter 1ms
Services:
perm

Task:
main 1ms
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm ap
Services:
perm
connect
monitor

mocap
pose

optitrack
Task:
publish ap
Services:
Init
(pos updated
100Hz)

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Verification with UPPAAL
✓ Overall, similar properties than the one

expressed in Fiacre

✓ SMC extension to take into account the
probability transition in the service automata

28

Functional Level

actual
velocityIMU

nhfc

Task: main 1ms
Services:
Init
Servo
Stop

cmd
velocity

desired
state

maneuverpom

state

mikrokopter

Task:
plan ap
Services:
Goto
WayPoint
TakeOff

Task:
exec 5ms
Services:
perm

Task: io 1ms
Services:
perm, add_me

Task: filter 1ms
Services:
perm

Task:
main 1ms
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm ap
Services:
perm
connect
monitor

mocap
pose

optitrack
Task:
publish ap
Services:
Init
(pos updated
100Hz)

 codel<start> nhfc_main_start(…) yield init;
 codel<init> nhfc_main_init(…)yield pause::init, control;
 codel<control> nhfc_main_control(…)yield pause::control;
 codel<stop> mk_main_stop(…)yield ether;

nhfc: 1 transitions for main, from nhfc_start to nhfc_init.
nhfc: 134679 transitions for main, from nhfc_init to nhfc_pause_init.
nhfc: 1 transitions for main, from nhfc_init to nhfc_control.
nhfc: 379484 transitions for main, from nhfc_control to nhfc_pause_control.
nhfc: 1 transitions for main, from nhfc_stop to nhfc_ether.

nhfc: nhfc_main_start called: 1 times, wcet: 0.000293.
nhfc: nhfc_main_init called: 134680 times, wcet: 0.000018.
nhfc: nhfc_main_control called: 379484 times, wcet: 0.000035.
nhfc: mk_main_stop called: 1 times, wcet: 0.000019.

stop
mk_main_stop
0,019ms

Ether

start
nhfc_main

_start
0,293ms

pause

initial state

interrupt

end of execution cycle
interruption signal

init
nhfc_main

_init
0,018ms

control
nhfc_main
_control

0,035ms

pause

1

134679

1

379484
1

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

The Fiacre-PocoLibs template is complete and tested on numerous modules (model
over multiple modules and ports communication), UPPAAL has a slight performance
advantage.

The BIP-PocoLibs model is complete, but has been a disappointment with respect to RT
D-Finder

The BIP-PocoLibs model for the BIP Engine is complete and functional, but the BIP
Engine needs more work

Current GenoM V&V templates

29

Offline  
PocoLibs

Online 
PocoLibs

Online 
ROS

BIP +
RT D-Finder ++ Under Dev

FIACRE ++ Under Dev Proposal

UPPAAL +++

UPPAAL SMC ++

Middleware

Fr
am

ew
or

k

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Added the WCET declaration in the .gen specification file, but we are NOT
checking codels

We are not checking against a model of the environment

Specific scheduling policy (no preemption) and codel non-interruptibility…

Still requires good knowledge of GenoM AND the formal framework as to
write properties to check, and analyse the results…

Current state, limit of the approach

30

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

We derive a formal model from robotic functional component specification

We get a very fine grained and low level formal model of the complete functional
layer internal code execution and interactions

Three V&V techniques are considered: model  
checking (TINA/Fiacre & UPPAAL) and  
automatic invariant composition and  
satisfiability (BIP/RT-D-Finder).

BIP and now Fiacre also provide an engine  
to run the model

Conclusion

31

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

Long term research agenda

Run Time Verification

Deeper model (codel arguments, SDI, algo, check the codel, etc)

Evolve toward decisional level (Planning/Acting/Monitoring)

Clarify platform dependent model (scheduling policy, #CPU/#Core)

32

© Félix Ingrand, LAAS/CNRS, 2017

LAAS
CNRS

33

Thanks to

Verimag: Saddek Bensalem, Jacques Combaz, Souha Ben-Rayana  

LAAS/VerTICS: Bernard Berthomieu, Silvano Dal Zilio, Pierre Emanuel Hladik

Mälardalen University: Cristina Seceleanu

Part of this work is funded by the  
H2020 European project CPSE Labs

