
Development and Formal
Verification of a Flight Stack for a

High-Altitude Micro Glider

Emanuel Regnath
Toulouse, 10.10.2017

Intro Approach Devel Results

2

Motivation

Intro Approach Devel Results

https://www.brightwork.com/blog/project-failures-boeings-787-dreamliner

3

Formal Verification

Rejected because considered to …

• require a lot of additional specification

• require user interaction; little automation

• require experts; results are difficult to understand ?
?
?

Intro Approach Devel Results

4

Mission – Novel Weather Balloon

Intro Approach Devel Results

5

Introduction to the Scenario

Elevon left

Servo left

Flight Controller

100mm

Sensors

IMUBaro MagGPS

Intro Approach Devel Results

6

The Roll of System Testing

Intro Approach Devel Results

• Full system tests, including external effects (wind, etc..)
• Risky and high effort (Time&Money) as little as possible⇒
• Germany: Must not fy above 100m AGL limited⇒

7

Development Process

Coding Static Analysis Lab Test Drop Test

Debugging

Next Iteration

Debugging

Design Phase Development Process Final Flight

1. Fast: before compiling
2. Normal: Continuous Integration with git
3. Nightly “deep” verification runs with long timeouts

Intro Approach Devel Results

8

Finding Defects – Expectation

• most by static analysis (each developer & nightly runs)
• replace unit testing
• identify under-specification

• few by system testing
• defects which were missed by static analysis
• defects which require context beyond source code
• logging of exceptions: no reproduction issues

• none during operation
• nevertheless: logging of exceptions & in-air reset

Static Analysis System Testing Operation

Intro Approach Devel Results

9

 Ada 2012
 Language

 SPARK 2014
 Language

Ada & SPARK
ISO-8652

GNAT compiler
by Adacore

<compiles>

GNATprove
by Adacore

<verifies>

<defines>

Intro Approach Devel Results

10

SW Architecture

Intro Approach Devel Results

Drivers

Modules

Manager MagBaro IMU Servo nvRAM SD Console

UbloxM8 HMC5883LMPU6000MS5611 PX4IO FM25V01 XBeeFAT32

Estimator LoggerController

Tasks

Kalman

BuzzerGPS

HAA
Interface Lay.
Abstraction Lay.
Presentation Lay.

SPI UART I2C

Mission Logger

Profiler

11

SW Architecture

Intro Approach Devel Results

Drivers

Modules

Manager MagBaro IMU Servo nvRAM SD Console

UbloxM8 HMC5883LMPU6000MS5611 PX4IO FM25V01 XBeeFAT32

Estimator LoggerController

Tasks

Kalman

BuzzerGPS

HAA
Interface Lay.
Abstraction Lay.
Presentation Lay.

SPI UART I2C

Mission Logger

Profiler

SPARK

Ada (NON-SPARK)

12

Verification Goals
We want to formally verify

Absence of
run-time errors

Division by zero, overfows

Integration
Correctness

Valid inputs and outputs

Information Flow
Global variables,

Input to output dependencies

Functional
Behavior

Input to output relation

Physical Dimensions
Compliance with

 physical laws

Intro Approach Devel Results

13

Verification Goals
We want to formally verify

Absence of
run-time errors

Division by zero, overfows

Integration
Correctness

Valid inputs and outputs

Information Flow
Global variables,

Input to output dependencies

Functional
Behavior

Input to output relation

Physical Dimensions
Compliance with

 physical laws

Intro Approach Devel Results

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

package MyPack with SPARK_Mode is

 subtype Percentage is Natural;

 Global_Ratio : Percentage;

 procedure set_ratio(alt, maxalt : Integer)
 is begin
 Global_Ratio := alt * 100 / maxalt;
 end set_ratio;

end MyPack;

Absence of Run-Time Errors

Intro Approach Devel Results

15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

package MyPack with SPARK_Mode is

 subtype Percentage is Natural;

 Global_Ratio : Percentage;

 procedure set_ratio(alt, maxalt : Integer)
 is begin
 Global_Ratio := alt * 100 / maxalt;
 end set_ratio;

end MyPack;

Absence of Run-Time Errors

Mypack:9:35 medium: overflow check might fail
Mypack:9:41 medium: divide by zero might fail
Mypack:9:41 medium: range check might fail

Intro Approach Devel Results

16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

package MyPack with SPARK_Mode is

 subtype Percentage is Natural;

 Global_Ratio : Percentage;

 procedure set_ratio(alt, maxalt : Integer) with
 Pre => alt,maxalt > 0 and alt < Integer'Last/100
 is begin
 Global_Ratio := alt * 100 / maxalt;
 end set_ratio;

 set_ratio(42, 62);
end MyPack;

Absence of Run-Time Errors

Intro Approach Devel Results

17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

package MyPack with SPARK_Mode is

 subtype Percentage is Natural;

 Global_Ratio : Percentage;

 procedure set_ratio(alt, maxalt : Integer) with
 Pre => alt,maxalt > 0 and alt < Integer'Last/100
 is begin
 Global_Ratio := alt * 100 / maxalt;
 end set_ratio;

 set_ratio(42, 62);
end MyPack;

Absence of Run-Time Errors

Mypack:10:35 info: overflow check proved
Mypack:10:41 info: division check proved
Mypack:10:41 info: range check proved
Mypack:13:3 info: Precondition proved

Intro Approach Devel Results

18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

package MyPack with SPARK_Mode is

 subtype Tar_Alt is Integer range 10 .. 10_000;
 subtype Alt is Integer range 0 .. 100_000;
 subtype Percentage is Natural;

 Global_Ratio : Percentage;

 procedure set_ratio(val : Alt; max : Tar_Alt)
 is begin
 Global_Ratio := val * 100 / max;
 end set_ratio;

end MyPack;

Absence of Run-Time Errors

Intro Approach Devel Results

19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

package MyPack with SPARK_Mode is

 subtype Tar_Alt is Integer range 10 .. 10_000;
 subtype Alt is Integer range 0 .. 100_000;
 subtype Percentage is Natural;

 Global_Ratio : Percentage;

 procedure set_ratio(val : Alt; max : Tar_Alt)
 is begin
 Global_Ratio := val * 100 / max;
 end set_ratio;

end MyPack;

Absence of Run-Time Errors

Mypack:11:35 info: overflow check proved
Mypack:11:41 info: division check proved
Mypack:11:41 info: range check proved

Intro Approach Devel Results

20

Verification Goals
We want to formally verify

Absence of
run-time errors

Division by zero, overfows

Integration
Correctness

Valid inputs and outputs

Information Flow
Global variables,

Input to output dependencies

Functional
Behavior

Input to output relation

Physical Dimensions
Compliance with

 physical laws

Intro Approach Devel Results

21

Verification Goals
We want to formally verify

Absence of
run-time errors

Division by zero, overfows

Integration
Correctness

Valid inputs and outputs

Information Flow
Global variables,

Input to output dependencies

Functional
Behavior

Input to output relation

Physical Dimensions
Compliance with

 physical laws

Intro Approach Devel Results

22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

package MyPack with SPARK_Mode is

 subtype Percentage is Natural;

 Global_Ratio : Percentage;

 procedure set_ratio(alt, maxalt : Integer)
 is begin
 Global_Ratio := alt * 100 / maxalt;
 end set_ratio;

end MyPack;

Flow Analysis

Intro Approach Devel Results

Mypack:9:19 info: initialization of "Global_Ratio" proved

23

Verification Goals
We want to formally verify

Absence of
run-time errors

Division by zero, overfows

Integration
Correctness

Valid inputs and outputs

Information Flow
Global variables,

Input to output dependencies

Functional
Behavior

Input to output relation

Physical Dimensions
Compliance with

 physical laws

Intro Approach Devel Results

24

Verification Goals
We want to formally verify

Absence of
run-time errors

Division by zero, overfows

Integration
Correctness

Valid inputs and outputs

Information Flow
Global variables,

Input to output dependencies

Functional
Behavior

Input to output relation

Physical Dimensions
Compliance with

 physical laws

Intro Approach Devel Results

25

Dimension Checking
Scientific: angular rate = 20 deg / 100 ms = 200 deg/s

C Program:
 1
 2
 3
 4

Float angle = 20;
Float dt = 0.1;

Float rate = dt / angle;

Intro Approach Devel Results

 1
 2
 3
 4
 5

angle : Angle_Type := 20.0 * Degree; -- Value: 0.524
dt : Time_Type := 100.0 * Milli * Second; -- Value: 0.100
rate : Angular_Velocity_Type := dt / angle;

yaw : Angle_Type := 20.0;

SPARK Program:

26

Dimension Checking
Scientific: angular rate = 20 deg / 100 ms = 200 deg/s

C Program:
 1
 2
 3
 4

Float angle = 20;
Float dt = 0.1;

Float rate = dt / angle;

Intro Approach Devel Results

 1
 2
 3
 4
 5

angle : Angle_Type := 20.0 * Degree; -- Value: 0.524
dt : Time_Type := 100.0 * Milli * Second; -- Value: 0.100
rate : Angular_Velocity_Type := dt / angle;

yaw : Angle_Type := 20.0;

SPARK Program:

Mypack:3:17 dimensions mismatch in assignment
Mypack:3:17 expected dimension [A.T**(-1)], found [T.A**(-1)]
Mypack:5:17 warning: assumed to be "20.0 Rad"

27

Verification Goals
We want to formally verify

Absence of
run-time errors

Division by zero, overfows

Integration
Correctness

Valid inputs and outputs

Information Flow
Global variables,

Input to output dependencies

Functional
Behavior

Input to output relation

Physical Dimensions
Compliance with

 physical laws

Intro Approach Devel Results

28

Verification Goals
We want to formally verify

Absence of
run-time errors

Division by zero, overfows

Integration
Correctness

Valid inputs and outputs

Information Flow
Global variables,

Input to output dependencies

Functional
Behavior

Input to output relation

Physical Dimensions
Compliance with

 physical laws

Intro Approach Devel Results

29

Functional Requirements
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

-- Functional Requirement
function FR_poshold_iff_no_course() return Boolean is (
 (Have_Course and G_state.mode /= MODE_POSHOLD) or
 (not Have_Course and G_state.mode = MODE_POSHOLD)
) with Ghost;

-- Functional Requirement
function FR_arrive_iff_near_target() return Boolean is (
 if (Have_Home_Position and Have_My_Position) then
 (dist2home < TARGET_R and G_state.mode = MODE_ARRIVED) or
 (dist2home >= TARGET_R and dist2home <= 2.0*TARGET_R) or
 (dist2home > 2.0*TARGET_R and G_state.mode /= MODE_ARRIVED)
 else G_state.mode /= MODE_ARRIVED
) with Ghost;

-- Update the controller mode, depending on state
procedure Update_Homing() with
 Post => FR_poshold_iff_no_course and FR_arrive_iff_near_target;

Intro Approach Devel Results

30

Verification Goals
We want to formally verify

Absence of
run-time errors

Division by zero, overfows

Integration
Correctness

Valid inputs and outputs

Information Flow
Global variables,

Input to output dependencies

Functional
Behavior

Input to output relation

Physical Dimensions
Compliance with

 physical laws

Intro Approach Devel Results

31

Final GNATprove Results

Intro Approach Devel Results

• SPARK subprogram coverage: 82%

32

Final GNATprove Results

Intro Approach Devel Results

33

Final GNATprove Results
Totals of verified properties

Absence of
run-time errors

1487 / 1711 (86.9%)

Integration
Correctness

277 / 282 (98.2%)

Information Flow
1539 / 1540 (99.9%)

Functional
Requirements
2 / 2 (100%)

Physical Dimensions
?/? (100%)

Intro Approach Devel Results

34

Final GNATprove Results

Intro Approach Devel Results

35

Final Flight on 2016-09-14
Target Altitude: 6100 m AGL

Intro Approach Devel Results

36

Final Flight on 2016-09-14

Intro Approach Devel Results

37

Finding Defects – Reality

• most by static analysis (each developer & nightly runs)
• removed all stupid bugs
• identified under-specification

• few by system testing
• masking defects during analysis
• ignoring failed proofs
• incomplete specification

• one during operation
• faulty but non-crashing behavior
• missed during system testing
• unverified assumptions about sensor data (beyond code)

Intro Approach Devel Results

Static Analysis System Testing Operation

38

Conclusion

Intro Approach Devel Results

• Very little debugging work
• Practically no exceptions during system testing
• No issues with reproduction and isolation of failures

• SPARK tools work very well
• Defect detection with almost no additional effort
• Results are precise: Mypack:9:35: overflow check might fail
• Effective multi-threading: separation of critical tasks
• Verification automation as continuous integration with git
• Verification of physical dimensions
• Floats are difficult but possible
• Verification of high-level behavior is difficult but possible

code released to open source: https://github.com/tum-ei-rcs/StratoX

39

Questions

40

References
• M. Becker, E. Regnath, Samarjit Chakraborty “Development and Verification of a Flight Stack for a

High-Altitude Glider in Ada/SPARK 2014”, In 36th International Conference on Computer Safety,
Reliability and Security (SAFECOMP), Trento, IT.

• “Airworthiness directives; the boeing company airplanes”, Federal Aviation Administration, Tech.
Rep. 2015-10066, May 1, 2015.

• Adacore, SPARK 2014 reference manual.
• Adacore, SPARK 2014 user guide, version 18.0.
• Ada reference manual, ISO/IEC Std. 8652, 2012

41

Formal Verification

42

GNATprove internal

GNATprove gnat2why

Alt-Ergo

CVC4

Z3

gnatwhy3

WhyML
.wml

SPARK
.adb/.ads

AdaLib Info
.ali

SMTLIB

.why

Result
.spark

Frontend Verification Platform Solver Backends

43

GNATprove internal

my_sub(a : Integer) is
begin

 add(a);

 sub(a);

end my_sub;

preconditions

postconditions

precondition
add(x : Integer) is
begin
 ...
end add;

precondition
sub(x : Integer) is
begin
 ...
end sub;

postcondition

postcondition

44

FP Underflow

 1
 2
 3
 4
 5

-- Float Underflow
function Sin (x : Float) return Float with
 Post => Sin'Result in -1.0 .. 1.0; -- OK

pragma Assert ((Sin(x))**2 in -1.0 .. 1.0); -- Might fail

45

Final GNATprove Results
SPARK Analysis Total Flow Interval Proved Justified Unproven
Data Dependencies
Flow Dependencies
Initialization 1540 1510 29 1
Non Aliasing 16 16
Run-Time Checks 1711 366 1117 4 224
Assertions 15 15
Functional Contracts 282 277 5
LSP Verification
Total 3564 1526 366 1409 33 230

Subprogram Coverage : 538 / 1227 (43.8%) 538 / 654 (82%)
Proven Properties: 3334 / 3564 (93.5%)
Proven Run-Time Errors: 1487 / 1711 (86.9%)

