INUVCITIVCT L4l == 159, LUUZ, T'1TUUSLUL, | CAGS
Published in LNCS 2529 @ Copyright Spring Verlag
Version du Tue Oct 15 18:07:38 MET DST 2002

On combining the Persistent Sets Method with
the Covering Steps Graph Method

Pierre-Olivier RIBET, Frangois VERNADAT, Bernard BERTHOMIEU

e-mail: {ribet,vernadat,berthomieu}@laas.fr

LAAS-CNRS
7 avenue du Colonel Roche F-31077 Toulouse cedex - France

Abstract. Concurrent systems are commonly verified after computing
a state graph describing all possible behaviors. Unfortunately, this state
graph is often too large to be effectively built. Partial-order techniques
have been developed to avoid combinatorial explosion while preserving
the properties of interest. This paper investigates the combination of two
such approaches, persistent sets and covering steps, and proposes partial
enumeration algorithms that cumulate their respective benefits.

Keywords: concurrent systems, state space exploration, partial-order, persis-
tent sets, covering steps graph, verification methods

1 Introduction

State space derivation constitutes the preliminary step of many verification
methods for concurrent systems. The state space is then analyzed by avail-
able efficient and automatic verification techniques, such as bisimulation and
model-checking. The combinatorial explosion is the main limitation of these ap-
proaches. The partial order techniques (see [GW93,Pel98] for a survey) are the
framework of the approach developed in this paper. Their basic principle is to
consider a single specific path among all the sequences which possess the same
Mazurkiewicz trace [Maz86]. In the case of persistent sets [WG93], only a sub-
set of enabled transitions is examined, the derived graph is then a subgraph of
the whole graph. In the case of covering steps [VAM96], all the transitions are
considered, but independent events are put together to build a single transition
step, the firing of this transition step is then atomic.

This paper investigates how these two methods can be used together, and
compares their combined use with that of the persistent sets or covering steps
alone. This paper focuses on deadlock detection. The main contribution of this
paper is a partial order method combining the respective advantages of the
persistent set and covering step graph methods. A general algorithm combining
persistent set and transition steps is proposed, that, for deadlock detection,
improves available persistent sets and covering steps based techniques. A specific
instance of this algorithm is given and studied on different examples.



Section 2 recalls the necessary basic notions and the persistent sets and cov-
ering steps graph constructions. A general algorithm combining persistent sets
and steps is described in Section 3, together with the proof that it preserves
deadlocks. Section 4 presents some computing experiments.

2 Partial Order Methods

2.1 Basic Notions

Definition 1. A Labeled Transition Systems (LTS) is a quadruple
Y =< 8,80, T,—> where: S 1s a set of states, sq a distinguished state in S |, T
is a set of transition labels, — is a set of labeled transitions (—C S x T x S).

¢
The following notations will be used: s— s’ iff (s,¢,s') €—. We say that ¢ is
¢ t
enabled in s (noted s—) iff 3s' € S : s— s'. Conversely ¢ is not enabled
i t
(noted s—) iff =(s—). The set of all enabled transitions in a state s is noted

t ¢

Enabled(s). Vw € T*,w = tytg.. .1, : so—w> s, iff 50—1> $1 /\31—2> s AN
tr

Sp—1— Sn

Definition 2. Independence Relation [GW93]:1 is an independence relation
t t
over T iff Vs, s1,80 € S,Vt1,t2 € T : (t1 # 12 As—s s1 A s> sg Aty lts) =

ta t1
(51—) s'A S9—> 5/)

If t11t5 and both #; and t5 are enabled in s then they can be fired in any order
from s, and both sequences t1t5 and t5t; lead from s to the same state s’. This
property is called the forward diamond property: independent transitions
commute.

The independence relation is extended from transition labels to sets of tran-
sition labels by VE1, s C T, E1 1 E2 ift V(t1,t2) € (E1x E3) : t1 1t For sequences
of transition labels, we note: Ywy, wa € T*, wq Lws iff ||w]|1]|ws|| where ||w]] is
the set of transition labels occurring in sequence w.

In the sequel, we will simply talk of transitions, instead of transition labels,
when no ambiguity arises.

The complement of relation ! is the conflict or dependence relation, de-
noted #. Its transitive closure [#] is the weak conflict relation, it is an equiva-
lence relation. The complement bﬂc of relation [ is the strong independence
relation. We have # C [ and f4° C 1. The function HA(t) = {t'|t'HAt} is the set
of all transitions conflicting with ¢. Transition ¢ is conflict free iff F4(t) = {¢}.

Definition 3. Two sequences of transitions are equivalent if they can be ob-
tained from each other by successive permutations of adjacent independent tran-
sitions. Equivalent sequences are called (Mazurkiewicz) traces [Maz86]. The trace
containing sequence w is denoted [w].



w w
Proposition 1. If 30—1> s1, 50—2> s9, and [w1] = [wy], then s1 = sy

This property is used in most partial order methods. Intuitively it implies
that, to check some property, it is generally not necessary to explore the entire
state graph when some transitions are independent.

Exhaustive Persistent set Step
1 path / Trace 1 set / Trace
63/‘.

ﬁ {e1, 62, €3}

2" states n + 1 states 2 states
n x 2"71 transitions n transitions 1 transition

Fig. 1. State graphs obtained for 3 independent transitions

As a simple example, consider a system made of three independent transi-
tions. Its state space is the cube shown in Figure 1. Proposition 1 implies that
there is only one terminal state. The persistent sets method will explore only
one path from the initial to the final state. With the covering steps method, all
three transitions will be fired simultaneously to reach that state in a single step.

&m0 O
-0

p4

ORE

pl

O30

p7 p8

ORE

p5

Fig. 2. Example Petri net

Structural independence relations: Availability of some independence rela-
tion is a prerequisite to apply partial order techniques. Computing the weakest



such relation is in general impossible, however. Instead, one generally relies on
stronger independence relation deduced from structural properties of the system
[GP93]. A structural approximation of the independence relation for Petri nets
is the following: #1 U5 t5 iff *¢1 N *ty = 0 [Rei85].

The Petri net represented in Figure 2 will be used to illustrate the exploration
algorithms proposed in this paper. It exhibits parallelism with ¢35 and ¢4, conflict
with to#t1 and t5#ts, and confusion [Rei85] with ¢ and #;.

2.2 State space derivation

Table 1 gives a state space derivation algorithm. It is similar to a breadth-first
standard exploration algorithm. Queue is a stack allowing to store the states
to be explored. G represents the set of labeled transitions and H is the set of
explored states (respectively named — and S in definition 1).

Applying this algorithm to the Petri net of Figure 2 builds an exhaustive
graph, which admits 60 states and 160 transitions, and includes 4 deadlocks.

The function develop_Exzhaustive() (state exploration) described on Table 1,
consists of firing all enabled transitions in a state, and adding all new states to
the graph.

In the sequel, each partial exploration algorithm is obtained by defining a
new function develop_name() to replace function develop_Fzhaustive().

Queue — s
H + {so} develop_exhaustive(E):
G « 0 /* computed graph */ for each ¢ in FE do
while Not Empty(Queue) do s’ + fire(s,t)
s + dequeue(Queue) G+ Gu{<s,t s >}
if Enabled(s) = 0 then if s’ ¢ H then
print “Deadlock” H« Hu{s'}
else enqueue(Queue, s')
develop_exhaustive(Enabled(s))

Table 1. State space derivation

2.3 Persistent sets

Persistent sets are particular stubborn sets [Val88a] in which all transitions are
enabled. Standard persistent sets exploration preserves deadlocks; numerous ex-
tensions have been proposed to preserve richer properties [Val90,GW93,Pel93].

Definition 4. Persistent sets [WG93]: A set P of transitions is persistent in a
state s iff all transitions not in P that are enabled in s or in states reachable
from s by firing transitions not in P, are independent of all transitions in P,
that is iff:
t — % w
Vi€EP :s— and VweP :s— s = ||w]|1 P.



A persistent set contains at least all transitions that have to be explored in
a specific state in order to discover all potential deadlocks. If P is a persistent
set in s, then no transition of P can be disabled by any sequence of firings of
transitions not in P. Note that the set Enabled(s) is always persistent in s.

Persistent set Graph algorithm (algorithm PG) : A generic exploration
algorithm taking advantage of persistent sets is shown in Table 2, where the new
function develop_PG() substitutes develop_exhaustive() in Table 1. Tt is similar
to a standard state exploration except that the set of transitions to be fired
from state s is determined from some function A(F). Function A(FE) returns a
persistent set in s.

develop_PG(E):
P+« A(E)
develop_ezhaustive(P)

Table 2. Generic persistent set graph algorithm (PG)

Proposition 2. PG exploration preserves deadlock states[Val88a]

Computation of persistent sets: A common approach consists of choosing
the persistent set as small as possible. In the general case, we don’t know how
to compute the minimal persistent set, but different approximations to choose
this persistent set have been proposed [God90,0ve81,Val89]. As pointed out by
[Val88b], minimising branching is a local optimisation; in some cases, the choice
of a larger set may result in a smaller final graph, that’s why the choice of a
minimal persistent set is only a heuristic. This instance of the PG will be referred
to as the P, G algorithm in the sequel.

Applying Pp,inG to our example net of Figure 2 produces the graph given in
Figure 3. In state sq, transitions tg,%1,%s,13,%4,%5 and ¢ are enabled. Because
HA(t2) C Enabled(sg), this set is persistent, and only transitions in this set
HA(t2) = {t2} need to be fire.

Fig. 3. PninG: PG computed with minimal branching strategy

It is important to notice that a set of enabled transitions generally admits
several distinct persistent sets, possibly of different cardinality. In state sq other



persistent sets could be chosen for example: {t3},{ta}, {to, %1}, {t5,t6} or any
union of these sets.

Hence, for computing the smallest one has to examine all subsets of enabled
transitions as possible candidates for persistent sets [Val89]. Further, if several
persistent sets are minimal, the choice of one becomes arbitrary.

2.4 Covering step graph

Covering step graphs were introduced in [VAM96]. In a covering step graph,
all transitions are visited, but independent events are grouped to constitute
a single transition step, the firing of this step is then atomic. Covering step
graphs preserve global reachability properties such as liveness (in the Petri net
sense [Rei85]) or presence of deadlock [VAM96]. The method can be specialised
for checking specific properties such as weak bisimulation [VAM96] or testing
equivalence [VM97].

Definition 5. A transition set w defines a transition step wrt ) iff Vi1, t2 € 7 :
t1 1t2. Step(T,1) denotes the set of transition steps derived from T wrt (.

The reachability relation — is extended to transition steps by:

) ™ 7\ {e}
s~>s,and Vs, s’ € S, m€ Step(T,1) : s~>s"iff Veen : s—s Se NSgmmmn> s

The diamond property (definition 2) can be generalised to transition se-
quences and steps [VAMO96].

Definition 6. Covering step graph : Let ¥ =< S,s,,T,—> be a LTS, 1 an
independence relation over X, and # = °.

X, =< S, 80, T.,, ~>, > is a covering step graph wrt, iff

(1) S, CS
(2) T, C Step(T)1) _ _

(3) Vs, s' € §,,Vm € T, : s~~>.s' implies s~>s'
(4) Vs € §,,Vs' € S,Yw e T* :

w o, . {35”ESR,EIw’ET*,EIﬁw.w/E];*:
s— s implies w' .
s'— 87 snmn>, 57 and [waw'lip gy = [Tw ] (1,2)

Condition (1) means that each state of the step graph is a state of the stan-
dard LTS. Condition (2) defines C'SG transitions as steps. Condition (3) means
that each step in the C'SG corresponds to a firing sequence in the standard LTS.
Finally, condition (4) expresses a “covering condition” between firing sequences
of the standard LTS and step sequences of the C'SG: Every sequence in the LTS
can be extended so that it is covered by a step sequence in the C'SG. Note that
all linearisation sequences of a step have the same Mazurkiewicz trace, and so
[r] is trivially defined. Any LTS may be seen as a C'SG by taking ! = 0.



Another way to approach covering step graph, is to consider trace automata
introduced in [God90,God96]. A trace automaton can be obtained easily from
a CSG. Each step has to be replaced by states and sequence of transitions,
corresponding to a possible linearisation of this step. Trace automaton can be
seen as an “unfolding” of a covering step graph.

Covering step graph derivation : An algorithm for computing the C'SG is
given in Table 3. The algorithm is implicitly parameterised by an independence
relation ). The enabled transitions are split into two subsets by means of functions
Ty and Tyr. Ty, holds the transitions to be explored in the standard way, and
Tm holds those whose exploration will be conducted within a step, referred to
as the “mergeable” transitions in the sequel. II7_ is the set of transition steps,
built by function I7.

develop_by _step(I7):

develop_CSG(E): for each =« in /I do

? :?(?Ez){ s' ¢ step_fire(s,m)

m M 7)_ ) G« Gu{<s,ms >}
develop_ezhaustive(T,) if s’ ¢ H then
IIr,, « (T ) H« Hu{s'}

develop_by_step(Ilr,,)

enqueue(Queue, s')

Table 3. Generic covering step graph algorithm

Requirements for Ty, Ty and II are expressed in proposition 3. Table 4
provides a specific definition for these functions. Function develop_by_step(IT),
defined in Table 3, is similar to function develop_exhaustive(E) (Table 1), except
that intermediate states are not stored. All transitions of the step are fired by
the function step_fire().

Proposition 3 (Conditions for T, T), and 177, ). Under the following con-
ditions, the algorithm in Table 3 produces a covering step graph [VAM96].
CAy) T, UT, = Enabled(s) and Ty, NTy, =0
CAy) ift € Ty, then t'HAt = t' € Enabled(s)
CBy) Vm € II, : w € Step(Enabled(s), [;cﬂc)

)

(

, (

Vs e S: (
(C'Bz) VP € Step(Enabled(s), Bﬂc), Arelly, :PCr

Tu(E) ={t € E|t'[#]t=t' € E}
TU(Evz) = E\TM(Evz)
1(E) = Hc(E/FA)

Table 4. Function definitions for C.SG using crossed conflicts

Step graph of crossed conflicts: Functions Ty, Ty and I are defined on
Table 4 [VAM96]. Function IT is defined using orthoproduct [PF90].

-~



The orthoproduct of IF = {F4, Es,...E,} is the set
Hc(lE) = {{61,62, .. .en} | (61,62, .. .en) e Fix FEy... x En}

Applied on our example Fig. 2 this algorithm produces the C'SG of Fig. 4.
In the initial state sg, the transition ¢y can’t be merged in a step, because this
transition is in conflict with a transition not enabled (¢1) (this is the confusion
case). Tu = {to}, Tm = {tg,t3,t4,t5,t6}, Tm/[#] = {{tg}, {tg}, {t4}, {t5,t6}},
He(Tm/[#]) = {{t2, 13,14, 15}, {t2, 3,14, 16} }.

t2 t3t4 t6 m t2 t3 t4 t5
< s0
tl i
t
< (21314 t6 kslj t2 t3 t4 t5

Fig.4. CSG using crossed conflicts

3 Persistent steps, combining PG and CSG

Persistent sets and covering steps contribute to the reduction of the state space
by addressing different aspects. We propose in the sequel an exploration method
taking advantage of both these techniques. Its correctness is proved, then its
benefits in terms of state space reduction are discussed.

3.1 PSG algorithm

A simple way to combine persistent sets and steps is to compute persistent
sets as in the PG algorithm, and then to compute steps from them. Persistent
sets are subsets of transitions whose exploration is sufficient to detect potential
deadlocks, steps are used to fire all these transitions “together” when possible.

The algorithm skeleton is shown in Table 5, referred to as the PSG (Persis-
tent Step Graph) algorithm in the sequel. Tts layout is similar to that of algorithm
CSG in Table 3. They differ by the following:

— PSG uses a persistent set computation function A(), as did PG (cf. Table 2);

— Treatment of “unmergeable” transitions Tyr: T, is empty when Enabled(s)
admits no proper persistent subsets. In that case, an exhaustive exploration
is performed, otherwise the transitions in 7Ty are not explored;

— Treatment of “mergeable” transitions Tys: In CSG, all transitions of Ty
were explored, only a subset of them, obtained by function A(), are explored

in PSG.



develop_PSG(E):

Tu « Tu(E,)

T < Tot(B,1)

If T, = 0 Then
develop_erhaustive(T,)

Else
P« A(Tw)
p « (P,
develop_by_step(IIp)

Table 5. Generic persistent step graph algorithm

To use this algorithm we have to choose an instance, like for PG and C'SG,
for parameter functions A() and I7(). That is why from this generic algorithm
a lot of exploration algorithm instances can be proposed. Some instances are
studied in section 3.3 (PpninSG), 3.4 (PSmasG) and 3.6 (HPSG). But first we

prove that any instance of PSG preserves deadlocks.

3.2 Preservation of deadlocks

The proof that the PSG preserves deadlocks of the state graph is similar to the
one given for the C'SG in [VAM96], it follows from a normalisation lemma.

Normalisation operator N: Operator N extracts from all sequence w of en-
abled transitions in a state s, a maximal step or a maximal prefix of a such step.
N : S x Step(T) x T* x T* v Step(T) x T* is defined as follows:

(E,w1) if we =€
(E,w.wa) it B € lI(A(Tn))
N(S,E,wl,UJQ) = N(s,EU{t},wl,w’) ift2w1,EU{t}EStGP(A(Tm)aBﬂC)a
and t ¢ E with wy = t.w'
N(s, E,wyi.t,w') otherwise, with ws = t.w’

w
Lemma 1 (Normalisation lemma). Let s € S,w, w1 € T* such that s— s,

N(s,0,¢,w)= (E,wy1) and F € II(A(Ta)). Then EC F = (F\ E)w;.

Proof. et s € S,w,w; € T such that s s', N(s,0,e,w) = (E,w;) and
F € ITo(1y,) with E C F. We prove by contradiction that F'\ Fw;:

Let R = F\ E. Assume there exists ¢ € ||wq|| such that 3¢, € R with t}t,,
wi = w tw’ t, lw.

Then we have t ) w’ and t € A(Ty). t 1w’ because ¢, 1 ', tHht,, and H4
is transitive. ¢ € A(Tys) follows from the definition of persistent sets because
t, € A(Tw) and tHht,.

There are two possible reasons why transition ¢+ was not added in E by the
normalisation function N: Either ¢ € E therefore t € F' and then t, € F', which
leads to a contradiction because t,fit. Or I teonpiice € E such that tcon price 1.



Then t,Bitcon iict and {t, teonfiict } € Step(A(Tar), b‘,ﬂc, s) which also leads to a
contradiction.

Proposition 4. PSG ezploration detects deadlocks

Proof. Let ¥ =< S,s,,T,—>, be a LTS and ! an independence relation over X

and # its complement. Let X, =< §,,s,,1,, ~>, > be a PSG obtained by the
algorithm in Table 5.
Assume there exists a deadlock state D. Let s be a state such that s € S,

with s— D (the initial state sg is always a such state).
That D € S, is proved by induction on |w|: the property is obvious if |w| = 0.
Assuming it holds for sequences of length k, let us prove it for any w of length

k+1.
E

Let (E,w1) = N(s,A(Txm),0, ¢, w) and so s—s D and s~>s’ﬂ> D
1. If E € II(A(Tyr)) then s’ € S,: the induction hypothesis is then applied on
wy with |wy| < k and s'— D
2. Else, by construction of N, E € Step(A(Tm),1) therefore IF € IT(A(Tar))
(condition C'By) such that E C F and (F'\ E)lw; (normalisation lemma 1).
R

Let R = F\ E, then s'~> and s~ D with Rlw;. Diamond property implies
R

D~> which leads to a contradiction since D is a deadlock.

3.3 Comparison of PG and PSG

Proposition 4 establishes correctness of the PSG algorithm, independently of
function A() for computing persistent sets. The following shows that, for each
such function A(), the graph built by PSG is at most as large at that built by
PG.

Proposition 5. PSG generalises PG

Proof. Any PG can be seen as an PSG: Taking IT(P,}) = {{t} | t € P} in the
PSG algorithm shown in Table 5, the graph generated is exactly that generated
by the PG algorithm in Table 2, assuming both use the same function A().

So, clearly, the PSG may produce graphs whose size is smaller than those
produced by PG. But not every PSG is the contraction of some PG. We inves-
tigate now a particular instance:

The minimising persistent set PSG algorithm, or P,,;, SG for short, uses
the same heuristic as P,,;, G for persistent set exploration, that is it minimises
local branching. Function A() is defined as follows:

A(s) = if Fg # 0 then Fg else fi(tmin), where
— Fpg is the largest subset of transitions of Enabled(s) which are con-
flict free.
— tmin chosen in Enabled(s) so that minimises Card([(t))

10



Note that, as PpinG, PminSG is not deterministic (the choice between several
minimal persistent set is arbitrary). Applying PpinSG to our example produces
the graph of Figure 5.

tl to tl to

t2 t3 t4

s5 sl s2
N

Fig.5. PninSG: PSG minimising persistent set

In the state sq, transitions tg,t3,4 are conflict free, and so A(sq) = Fg =
{t2,t3,t4}, and on this set only one step is build. In states s5 or s5 we obtain

Fr = 0 and chose A(s2) = A(ss) = [#](t0) = [#](t1) = {to,t1}
Proposition 6. Every Pp,;, SG is the contraction of some Pp,inG .

Proof Sketch. We show how to build a P,;,G from a Pp,;, SG. For this we
use the persistent set computation function defined for the Pp,;, SG to define a
new function to build the P,;,G . When the set used in P,,;, SG contains only
conflict free transitions, any subset of it is persistent, and we can take persistent
sets with one transition in each intermediate state. The proof that this set is
minimal in each state is trivial, and the resulting graph is obviously larger.

3.4 Comparison of CSG and PSG

Conversely to PG exploration, PSG does not generalise C'SG exploration. The
possibility to avoid the exploration of “unmergeable transitions” (7,,) allows to
build smaller graphs than those obtained by C'SG, however the covering property
is lost. Let us introduce another instance of the PSG, maximising steps.

t2 t3t4t6 t2 t3 t4 t5
sl @ s4

to to

Fig.6. PS4 G: PSG maximising steps

11



The maximising steps PSG algorithm, or PS4, G for short, maximises steps,
so more intermediate states are skipped. Tt uses A(s) = Enabled(s), as T), must
be as large as possible. The result of applying PSy,.;G to our example net is
shown Figure 6.

Proposition 7. Any PS,,.,;G graph is always smaller than CSG

Proof Sketch. Since T, is persistent, PS4, G does not fire the transitions in Ty,.
The graph obtained is then clearly a proper subgraph of the C'SG.

3.5 Theoretical/Practical point of view

In sections 3.3 and 3.4, we have proved that the PSG technique is more general
and more efficient than PG and C'SG techniques. From a theoretical point of
view, these results could be satisfactory. Nevertheless, from a practical point
of view, like for P, we have to consider a specific instance of PSG. We have
proposed the P, SG instance to generalise Pp;,G (and generally how to gen-
eralise a PG instance), and the PSy,.;G instance to improve C'SG. But ideally
we would like an instance of the PSG better than PG and CSG. Is it possible
to find a PSG instance which is deterministic and uses steps systematically, im-
proving all possible persistent set and covering step explorations? Unfortunately
the answer is negative. We consider the Petri net of Figure 7, made up of un-
connected components Loop, Ng, N1, ... Ny, to illustrate that such a PSG is
impossible.

o 0 Tg 1 TISO Pko
@_I.D_,GID_,Q 1 N,
Po T1 P1 T1 le

name 0 1
Loop @—’D—’Q' e g—'@ N,
n
oo B0 pn P
Fig. 7. Comparison of PpinSG and PpinG

The optimal P,,;, G explorations begins with component Loop, it has 1 state
and 1 transition. The worst case is obtained when exploration terminates by
Loop, the Pn;,G graph admits then Efzgkl + 1 states. In an implementation,
this non determinism would be typically resolved by choosing some ordering
on transitions, the graph size would depend on the ordering choosen. On the
following example (Figure 7), if steps are build, then the transition "name” will
be merged in a step, and so we can’t be as good as the best case of PpinG. In
that case, the benefit of the “ignoring problem” [God96] is lost because of steps.

12



3.6 A hybrid PSG

Algorithms P,,;,, SG and P.S,,4;G only differ by their persistent set computation
functions, that returns a minimal set in the former algorithm, and the full set
of enabled transitions in the second. There is a full range of PSG algorithms
between these. The heuristic proposed in the H PSG below has the advantage
of being deterministic in the sense that the graph size does not follow from an
arbitrary choice of the persistent set.

The Hybrid PSG algorithm, or H PSG for short, uses the following:

A(s) = if Fg # 0 then Fg else Enabled(s)
where Fg is the largest subset of transitions of Enabled(s) which are
conflict free.

The resulting graph for our example net is shown in Figure 8. Like for
PninSG in Figure 5, all conflict free transitions are fired in first state sg. Then
in state s, A(s1) = Enabled(s) = {to,t1,5,t6} and e ({{to,t1}, {t5,t6}}) =
{Hto, ts}, {to te}, {t1, 85}, {t1, e}

Fig.8. HPSG: Hybrid PSG

4 Summary of experiments

Evaluation of the different exploration algorithms on our example are sum-
marised in the following table. Note that all PSG strategies improve or equal
both P,,;,G and C'SG methods.

FEzxhaustive | PpinG | CSG | PpinSG | PSiezG | HPSG
States 60 12 8 8 7 6
Transitions 160 11 9 7 6 5

These algorithms have been applied to models of significant size and practical
interest. The first model is a version of Milner’s scheduler with 300 sites [Mil89],
the second is a model of the dining philosophers problem with 8 philosophers.

13



The third is the Data base system presented in [Jen86] and used in [Val89]. The
fourth example is a token ring with 10 stations [Cor96]. The fifth model is Naimi-
Trehel distributed mutual exclusion model with 5 sites [NT87], where neither
persistent or covering step tackles the explosion. The sixth model is defined
in [ZDD93,CX97] to represent a Manufacturing system. The seventh example,
describes Asynchronous Buffer[Pel93]. The results are summarised in Table 6.
PinG provides a smaller graph than CSG for Philosopher, Naimi-Trehel and
Manufacturing system examples while C'SG is better for the other examples
(Milner’s scheduler, Data Base, Token Ring and Asynchronous Buffer). For all
these examples, H PSG builds a smaller graph than both P,;,G' and CSG.

Model Exhaustive PninG| CSG |HPSG
1 Scheduler 300 2% xn~6.107] 1394 301| 301
2 Philosopher 8 103 681 233 |31 231 227
3 Data base 10 196 831 191 31 31
4 Token Ring 10 35 840 99 52 51
5 Naimi — Trehel 5 202 500 |40 006 | 52 681 [40 001
6 Manufacturing system 2 034 455 979 360
7 Asynchronous Buf fer 7 972 37 12 12

Table 6. Algorithm comparison. Legend: states number

The last example is the Swimming Pool model used in [BF99]. This model is
parametrised by an integer K representing both the number of available cabins
and baskets. Table 7 gives the size of the explored graphs and their computation
time.

K FExhaustive PrinG CSG HPSG

10 7 006 0:00:01 857 0:00:00 367 0:00:00 87 0:00:00

235 X — 4 602 707 9:47:00(219 742 0:01:32 2 112 0:00:01

240 X — X — 1229 217 0:01:42 2 157 0:00:01

500 X — X — 1997 517 0:31:0 4 497 0:00:02

600 X — X — X — 5397 0:00:02
15 000 X — X — X — 134 997 0:00:16
150 000| X — X — X — 11349 997 0:13:30
200 000| X — X — X — 1799997 0:24:11

Table 7. Evaluation on the Swimming Pool example. Legend:states number h:min:sec

On this example the H PSG algorithm really improves both the Pp,;,,G and
CSG. The exhaustive computation fails from K = 50 while partial explorations
succeed, Pp,;nG fails from K = 240 while C'SG fails from K = 600. The size of
the graph built by H PSG algorithm seems linear wrt K and H PSG succeeds
until at least K' = 200 000.

For experiment purposes, these exploration algorithms have been imple-
mented in a tool providing many other exploration algorithms for Petri nets or

14



Time Petri nets. The tool is available for download at http://www.laas.fr/tina.
Specific experiments not described here have shown that the run time overhead
of HPSG is lower than that of the C'SG, itself slightly greater than that of the
PG.

5 Conclusion

This paper presents a partial order technique (persistent steps graphs) based on
the well known persistent set and covering step methods. This technique is a gen-
eralisation of these methods. Persistent steps graph can ”simulate” and improve
persistent set and covering step methods. However there is no persistent steps
instance using steps, which is better in all cases than persistent sets, because
persistent sets are non deterministic, and the ignoring phenomena benefit may
be lost with steps. Nevertheless a deterministic instance gives interesting results
on concrete examples: in practice the graph obtained is always smaller than the
graph obtained with persistent sets and covering steps. The run time overhead
is close to the that of persistent sets method.

This paper concentrates on the problem of detecting reachable terminal
states. Partial exploration methods have to be compared again for preservation of
other classes of properties. For example the ignoring problem is an advantage for
deadlock detection, but must be avoid for more general safety properties[God96].
Prospective work concerns the preservation of specific properties (safety and live-
ness) including a study of ample set [Pel98] and a comparison of trace automata
obtained by persistent set and C'SG.

References

[BF99] B. Bérard and L. Fribourg. Reachability analysis of (timed) petri nets using
real arithmetic. In Proceedings of CONCUR’99, pages 178-193. Springer
Verlag, LNCS 1664, 1999.

[Cor96] J. C. Corbett. Evaluating deadlock detection methods for concurrent soft-
ware. [EEE Transactions on software engineering, VOL. 22(NO. 3), March
1996.

[CX97] F. Chu and X.Xie. Deadlock analysis of petri nets using siphons and math-
ematical programming. In IEEFE Trans. on Robotics and Automation, vol-
ume 13, pages 793-804, 1997.

[God90] P. Godefroid. Using partial orders to improve automatic verification methods.
In Proceedings of CAV’90, pages 321-340. ACM, DIMACS volume 3, 1990.

[God96] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Sys-
tems. Springer Verlag, LNCS 1032, 1996.

[GP93] P. Godefroid and D. Pirottin. Refining dependencies improves partial-order
verification methods. In Proceedings of CAV’93. Springer Verlag, LNCS 697,
1993.

[GW93] P. Godefroid and P. Wolper. Using partial orders for the efficient verification
of deadlock freedom and safety properties. Formal Methods in System Design,
2(2):149-164, 1993.

15



[Jen&6]

[Maz86]

[Mils9]
[NT87]
[Oves1]
[Pel93]
[Pel9s]
[PF90]

[Rei85]
[Val&8a]

[Valg8b]
[Val&9]

[Valoo]

K. Jensen. Couloured petri nets. In Petri Nets : Central Model and Their
Properties, pages 248-299. Springer-Verlag, LNCS 254, 1986.

A. Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relationships
to Other Model of Concurrency, Advances in Pelri nets 1986, Part II; Pro-
ceedings of an advanced Course, pages 279-324. Springer Verlag, LNCS 255,
1986.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

M. Naimi and M. Trehel. An improvement of the log N distributed algorithm
for mutual exclusion. In Proceedings of ICDCS’87, pages 371-377, Washing-
ton, D.C., USA, September 1987. IEEE Computer Society Press.

W. T. Overman. Verification of concurrent systems: function and timing.
PhD thesis, University of California, 1981.

D. Peled. All from one, one for all: On model checking using representatives.
In Proceedings of CAV’93, pages 409-423. Springer Verlag, LNCS 697, 1993.
Doron Peled. Ten years of partial order reduction. In Proceedings of CAV’98,
pages 17-28. Springer Verlag, LNCS 1427, 1998.

D. H. Pitt and D. Freestone. The derivation of conformance tests from lotos
specifications. TEFE Transactions on Software Engineering, 1990.

W. Reisig. Petri Nets : an Introduction. Springer-Verlag, EATCS, 1985.

A. Valmari. Error detection by reduced reachability graph generation. In
Proceedings of ATPN’88. Springer Verlag, LNCS 424, 1988.

A. Valmari. State Space Generation: Efficiency and Practicality. PhD thesis,
Tampere University of Technology, 1988.

A. Valmari. Stubborn sets for reduced state space generation. In Proceedings
of ATPN’89. Springer Verlag, LNCS 483, 1989.

A. Valmari. A stubborn attack on state explosion. In Proceedings of CAV’90,
pages 25-42. ACM, DIMACS volume 3, 1990.

[VAM96] F. Vernadat, P. Azéma, and F. Michel. Covering step graph. In Proceedings

[VM97]

[WG93]

of ATPN’96. Springer Verlag, LNCS 1091, 1996.
F. Vernadat and F. Michel. Covering step graph preserving failure semantics.
In Proceedings of ATPN’97. Springer Verlag, LNCS 1248, 1997.

P. Wolper and P. Godefroid. Partial-order methods for temporal verification.
In Proceedings of CONCUR’93. Springer Verlag, LNCS 575, 1993.

[ZDD93] M.C. Zhou, F. Dicesare, and A.A. Desrochers. A hybrid methodology for

synthesis of petri net models for manufacturing systems. In IFEFE Trans. on
Robotics and Automation 8:3, pages 350-361, 1993.

16



