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The tool TINA – Construction of abstract state spaces for Petri nets

and Time Petri nets

B. BERTHOMIEU*, P.-O. RIBET and F. VERNADAT

In addition to the graphic-editing facilities, the software tool Tina proposes the
construction of a number of representations for the behaviour of Petri nets or
Time Petri nets. Various techniques are used to extract views of the behaviour of
nets, preserving certain classes of properties of their state spaces. For Petri nets,
these abstractions help prevent combinatorial explosion, relying on so-called par-
tial order techniques such as covering steps and/or persistent sets. For Time Petri
nets, which have, in general, infinite state spaces, they provide a finite symbolic
representation of their behaviour in terms of state classes.

1. Introduction

Tina (TIme Petri Net Analyser)1 is a software environment for the editing and
analysis of Petri net and Time Petri net (Merlin and Farber 1976). In addition to the
usual editing and analysis facilities of such environments (computation of marking
reachability sets, coverability trees, semi-flows), Tina offers various abstract state
space constructions that preserve specific classes of properties of the concrete state
spaces of the nets. These classes of properties may be general properties (reachability
properties, deadlock freeness, liveness), specific properties relying on the linear struc-
ture of the concrete space state (linear time temporal logic properties, test equiva-
lence), or properties relying on its branching structure (branching time temporal
logic properties, bisimulation).

The proposed abstractions operate either on timed systems (represented by Time
Petri nets) or on untimed systems (represented by Petri nets). For timed systems,
such abstractions are mandatory, as these systems typically admit infinite concrete
state spaces. Finite abstractions for their behaviour are obtained by the classical
technique of state classes and its recent developments. For untimed systems, com-
putation of abstract state spaces helps to prevent combinatorial explosion. In this
case, Tina uses reduction techniques based on so-called ‘partial order’ methods, such
as persistent (stubborn) sets, covering steps, and their combinations.

Tina would typically be used as the front-end of a model-checker, providing
it reduced state spaces on which the desired properties can be checked more effi-
ciently than on the original state space (when available). To offer a complete ‘model-
checking’ chain, Tina may present its results in a variety of formats, understood by
popular model checkers or behaviour equivalence checkers, including MEC (Arnold
et al. 1994), a �-calculus formula checker, Aldébaran (Fernandez and Mounier 1991),
and BCG (Fernandez et al. 1996).
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This paper presents an overview of the capabilities of the tool Tina. It is orga-
nized as follows. Section 2 briefly discusses the proposed ‘classical’ analysis tech-
niques (reachability and coverability sets, structural techniques). Section 3 is
concerned with untimed systems. It presents the various ‘partial order’ exploration
methods implemented and relates them to the classes of properties preserved.
Section 4 discusses abstraction techniques for timed systems. It first recalls the
classical state classes technique, which preserves linear time properties of the con-
crete state space, and then a recent refinement preserving branching time properties.
Section 5 describes the interfaces of Tina, and its software architecture: user inter-
face, editing facilities, input and output formats, and inter-operability with model
checkers.

2. Classical methods

The first group of tools provided by Tina comprises the ‘classical’ constructions
for Petri nets, like those of the reachability graph and the coverability graph. These
standard constructions will not be described here, since details can be found in
textbooks such as Diaz (2001). Tina implements a specific technique (not described
here) for efficiently checking the boundedness property of nets while computing the
marking graph of Petri nets. Construction of the reachability graph stops when a
place is found unbounded, or when an optional limit on the number of markings, or
on the marking of individual places, has been reached. This last feature may be used
for on-the-fly verification of properties reducible to a reachability property.

Coverability graphs allow one to compute unbounded places, their computation
relying on the well-known Karp and Miller (1969) algorithm. As these graphs are not
unique, several heuristics are proposed to construct them, attempting to minimize
either the number of marking classes or the computation time.

Still among classical methods, but in the family of structural methods, Tina can
compute the generator sets for semi-flows on places or transitions of a net (Diaz
2001). This tool will later be complemented by a group of tools dedicated to struc-
tural techniques (exploiting invariants deduced from flows and semi-flows).

3. Partial order techniques

3.1. Background
The so-called partial order techniques (see Godefroid 1996 for a survey) con-

stitute the framework of the reduction techniques proposed in Tina. These techni-
ques are aimed at preventing combinatorial explosion due to the representation of
parallelism by interleaving. Figure 1(left) shows the state space of a system made up
of three components executing some action in parallel, the interleaving semantics
representing its behaviour by a cube. Since the three events are independent, all
execution paths reach the same final state. If n components were involved, the
state space would be a hypercube with 2n vertices and n� 2n�1 edges.

A first family of partial order techniques consists of, under certain conditions,
exploring only one path among all equivalent possible paths. This strategy was
initially developed by Valmari (1990) with the ‘stubborn’ sets theory, and generalized
by Godefroid and Wolper (1991) with the notion of ‘persistent’ sets. In the case of
persistent sets, only a subset of the enabled transitions is examined; the derived graph
is then a subgraph of the whole graph.

An alternative approach is that of the ‘Covering steps’ of Vernadat et al. (1996)
and Vernadat and Ribet (2003). In that approach, all enabled transitions are
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considered, but independent events are grouped into transition steps. Firing tran-
sition steps is atomic. The resulting graph is referred to as the Covering Step Graph
(CSG).

The benefits obtained in the case of n parallel events are summarized in figure 1.
In an exhaustive exploration, both the number of vertices and edges are exponential,
as already seen. When exploration is reduced to a single path, the exponential factor
disappears. The latter method (covering steps) is optimal in that case, as the number
of vertices (and edges) is independent of the number of concurrent events.

‘Partial Order’ reductions take advantage of an independence relation between
events. In practice, the exact relation is not available, as computing it requires
building the exhaustive state space first. Therefore, implementations typically rely
on approximations of the independence relation. Such approximations may be com-
puted by static analysis of the various formal system descriptions (place/transition
net, variable/transition system, synchronized automaton, etc.) (Godefroid and
Wolper 1991). Tina uses place/transition nets and approximates the independence
relation by structural independence, defined as follows: t1 and t2 are independent iff
Preðt1Þ \ Preðt2Þ ¼ ; (i.e. transitions t1 and t2 share no input place).

A reduction technique is characterized by the compression factor it offers, but
also by the analysis power it provides. ‘Partial order’ techniques are general tech-
niques which can be specialized to preserve specific classes of properties (Godefroid
1996); reduction strategies depend upon the class of properties to be preserved. Tina
proposes three kinds of reductions: the first kind allows one to verify general prop-
erties (absence of deadlock, liveness), the other two are devoted to the verification of
specific properties relying on the linear structure or branching structure of state
spaces, respectively. For properties concerning the linear structure, two methods
ensure preservation of linear time temporal logic properties and linear behavioural
equivalence, respectively. For properties relying on the branching structure, a single
abstraction is proposed, preserving weak bisimilarity.

The techniques proposed by Tina will be illustrated by Milner’s scheduler exam-
ple (Milner 1985). The Petri net figure 2 represents the complete system (schedulerþ
n sites): n sites cyclically execute action ai then action bi. A scheduler constrains the
execution of the whole system in such a way that the n sites perform actions
a1, a2, . . . , an in that order, repetitively. Figure 3 shows the behaviour of the

Figure 1. Behaviour graphs for three independent events.
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system, for two sites, as a labelled transitions system (LTS). For n sites the exhaus-
tive LTS has n� 2n vertices and ðn2 þ nÞ � 2n�1 edges.

3.2. Preservation of deadlocks
This section describes the three methods Tina offers for computing a reduced

LTS possessing all the deadlock states present in the exhaustive LTS.

3.2.1. Persistent sets
A set E of transitions is persistent in a state s iff all transitions not in E that are

enabled in s or in states reachable from s by firing transitions not in E are indepen-
dent of all transitions in E (Godefroid 1996).

A persistent set E contains at least all transitions that have to be explored
from a specific state s in order to discover all potential deadlocks: no transition
in E can be disabled by firing a sequence of transitions not in E. Note that the set
of transitions enabled at s is always persistent in s.

The reduced graph is computed by adding the following rules to any classical
enumeration algorithm: for each reached state s, compute a persistent set associated
with s and explore only transitions from this set.

Figure 2. Milner’s scheduler for n ¼ 2.
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Figure 3. Milner’s scheduler – Exhaustive LTS for n ¼ 2.
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Figure 4 shows a possible reduced state space for the scheduler example with
two sites (the exhaustive state space is kept in the background). In the initial state 1,
only one transition, A1, is enabled and so the sole persistent set is fA1g. In state 2, two
transitions, B1 and A2, are enabled and independent: therefore, we can choose either
the persistent set fB1g or the set fA2g; the second was chosen.

3.2.2. Covering step graph
Covering step graphs (CSG) were introduced in Vernadat et al. (1996). The states

of a CSG are states of the exhaustive graph, but transitions are steps, i.e. sets of
independent transitions. If there exists a step from a state s to a state s0 in the CSG,
then all sequences made of all transitions in the step are firable from s and lead to s0.
CSG further obey a covering property: every sequence in the exhaustive graph can be
extended so that it is covered by a step sequence in the CSG. Figure 5 shows a
possible covering step graph for the scheduler example. To illustrate the covering
property, note that, for example, the sequence A1:A2:B2:B1, extended by A1, is
covered in the CSG by the step sequence fA1g:fA2,B1g:fA1,B2g.

CSG preserve global reachability properties such as liveness and existence of
deadlock, and also maximal traces (modulo Mazurkiewicz’s trace equivalence
(Mazurkiewicz 1986)). Any LTS may be seen as a CSG by taking the empty inde-
pendence relation.
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Figure 5. Milner’s scheduler – Covering step graph for n ¼ 2.

1

2

34 5

6

78

A1

A2

B2B1

B2

B1

B2

B2 B1

A2B1

A1

 1 

 2 

 3 

 6 

 7  8  5 

A1

A2

B1

A1

B1B2

A2

Figure 4. Milner’s scheduler – Persistent graph for n ¼ 2.
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3.2.3. Persistent step graphs
The technique of persistent steps (PSG) is a specialization of covering steps

especially devoted to the sole preservation of deadlock states (Ribet et al. 2002).
It combines the persistent sets and the transition steps methods. In each state a per-
sistent set is chosen, and then transition steps are computed on this subset of transi-
tions.

Ribet et al. (2002) show that persistent step graphs generalize both persistent set
and covering step graphs. Like the technique of persistent sets, the persistent steps
technique requires a strategy to choose persistent sets in each explored state.
Ribet et al. (2002) also show that there is no instance of the persistent steps method
which is better in all cases than the method of persistent sets. In other words, a
particular exploration based on persistent sets only (without steps) can be better than
all strategies using steps. In practice, the graph obtained by the PSG construction is
smaller than the graphs obtained with both the persistent sets and covering steps
constructions. Some computing experiments are reported in the next section.

3.2.4. Computing experiments
Table 1 shows the number of states obtained with the exhaustive, persistent sets,

CSG, and PSG methods for different examples. All values were computed by Tina
on a SunBlade 100 Unix workstation, except for the exhaustive case of the Scheduler
example, which was computed analytically.

In all reduction cases, the exponential factor disappears. It is interesting to note
that, in some examples (e.g. Philosophers), the persistent set construction yields a
smaller graph than the CSG construction, whereas, in other examples (e.g.
Scheduler), the CSG construction performs better. The PSG results are as good as
the best result obtained with persistent sets and covering steps.

Table 2 shows computational results for the swimming pool example of Fribourg
and Bérard (1999), also shown in the figure. For this example the PSG performs
better, in state counts and computation time, than the other two techniques.

3.3. Preservation of linear structure
The constructions presented in this section preserve the linear structure of state

spaces. Two instances are discussed: the first preserves (linear) behavioural equiva-
lence, and the second preserves linear time temporal logic formulas.

3.3.1. Failure semantics
A specialization of the CSG was given by Vernadat and Michel (1997) that

preserves ‘failure semantics’ (Van Glabbeck 1990). The construction is parameter-

Model Exhaustive Persistent CSG PSG

1 Scheduler 300 � 6� 1092 1394 301 301
2 Philosopher 8 103 681 233 31 231 227
3 Data base 10 196 831 191 31 31
4 Token Ring 10 35 840 99 52 51
5 Manufacturing system 2034 455 979 360

Table 1. Comparing reduction methods.
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ized by a set of observable transitions. Preservation of the linear structure of the state
space requires two additional conditions on the basic CSG construction:

– a step of the transition must be either reduced to a single observable transition
or only composed of unobservable transitions,

– a step cannot contain a transition conflicting with an observable transition.

Let us take the previous scheduler example, and consider observable all synchro-
nization actions between the scheduler and the sites, so TObs ¼ fAi : i 2 Sitesg. The
resulting LTS can be used to show that each site is alternatively scheduled.
Moreover, since failure semantics is divergent-sensitive, it is also possible to verify
that, always, action Ai eventually happens after action Ai�1.

The figure on the left depicts the minimal equivalent LTS
produced for n ¼ 3. In the general case, the minimal equivalent
LTS consists of n states and n arcs. The size of the CSG preserving
failure semantics is quadratic, with n2 þ n states and 2� n2 edges,
whereas the size of the exhaustive graph is exponential.

3.3.2. Linear time temporal logic LTL�X

Considering the specific set of atomic variables occurring in a LTL formula,
we can define a subset of transitions which are ‘significant’ with respect to the
truth value of the formula. According to these significant transitions, a CSG special-
ization for LTL�X (LTL without a next-time operator) is proposed which is stutter-
ing equivalent to the exhaustive graph. This means that any stuttering formula
defined with these atomic variables is preserved by the reduced graph. Because
any formula of LTL�X (Peled 1998) is stuttering-invariant, this LTL�X specialization
(Ribet et al. 2003) of CSG can be employed to verify a formula of LTL�X.

For Milner’s scheduler example, consider the property that, from any reachable
state, the scheduler will always come back to its initial marking M1. This property
can be written by an LTL�X formula: � ¼&ð^M1Þ. The exhaustive graph for 10
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k
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t4t3

in cabin (2)

t5t2

left tray

t6

in cabin (1)

t1

took tray

k Persistent CSG PSG

10 857 0:00:00 367 0:00:00 87 0:00:00
235 4 602 707 6:40:00 2 19 742 0:01:03 2112 0:00:01
500 9 97 517 0:21:10 4497 0:00:02
600 5397 0:00:02
2� 105 � 1.8� 106 0:16:26

Table 2. Swimming pool example.
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sites has 10 240 states. Because the marking of place M1 is only modified by transi-
tions A1 and A10, a reduced graph can be computed considering these transitions as
‘significant’. The property � can then be verified on this reduced graph, which only
has 15 states.

In general, LTL formulas are verified by checking that the language of the
synchronized product of the automaton representing the system with the Bucchi
automaton of the negated formula is empty. If the formula is an LTL�X formula,
then, instead of using the full automaton representing the system, one can use any
abstraction of it preserving the validity of the formula to be verified. Reducing the
automata to be synchronized will result in smaller synchronized automata. For our
example, for instance, the synchronized graph obtained from the exhaustive graph
has 20 186 states, whereas that obtained from the reduced graph has only 26 states.
Further, the truth value of the formula may be checked on the fly while computing
the synchronized product.

3.4. Preservation of branching structure
Vernadat et al. (1996) proposes a specialization of the CSG that preserves weak

bisimulation. Observational equivalence is defined with respect to a set of observable
events. Preservation of the branching structure of the state space requires three
additional conditions on the basic CSG construction:

– transition steps are computed only on ‘conflict-free’ transitions (independent
of all others),

– transition steps must contain, at most, one observable transition,
– in order not to lose the branching structure, sub-steps containing only unob-

servable transitions must be added.

To illustrate this abstraction, consider the data base system presented by Valmari
(1989). This system consists of n� 2 managers and a mechanism ensuring mutual
exclusion for critical operations. Each manager may either enter the critical opera-
tion and then release the other managers or be frozen by another manager – per-
forming the critical operation – then unfrozen. We consider a local observation
where observable events are those of a specific manager (!enter, !release, ?frozen,
?unfrozen).

The minimal weakly bisimilar LTS according to this obser-
vation is presented on the left. Note the presence of the
characteristic ‘silent event’ � from the initial state. Since the
observation is local, the size of the minimal weakly bisimilar
LTS is constant (four states and five edges), the size of the
equivalent step graph obtained is quadratic in n, while the
size of the exhaustive graph is exponential (� n� 3n�1 states
and n2 � 3n�2 edges).

4. State class graphs of Time Petri nets

4.1. Time Petri nets, states, state classes
Time Petri nets are Petri nets in which a non-negative real interval IsðtÞ, with

rational end-points, is associated with each transition t of the net (Merlin and Farber
1976). Function Is is called the Static interval function.
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A state of a TPN is a pair s ¼ ðm, IÞ, where m is a marking and I is a function
called the interval function. Function I : T ! Iþ associates a real non-negative
temporal interval with every transition enabled at m. Initially, s0 ¼ ðm0, I0Þ, with
I0ðtÞ ¼ IsðtÞ for every transition enabled at the initial marking m0. MinðIðtÞÞ and
MaxðIðtÞÞ denote the lower and upper end-points of interval I(t), respectively
(when I(t) is not upper-bounded, we let MaxðIðtÞÞ ¼ 1).

States evolve as follows: assume the current state is s ¼ ðm, IÞ, t is enabled at m,
and became enabled for the last time at time �. Then t cannot fire before time
� þMinðIðtÞÞ, and must fire no later than � þMaxðIðtÞÞ, except if firing another
transition before t made t no longer enabled. Firing transitions takes no time.

This rule defines on the state set a timed reachability relation denoted t@�
���!. One

has s t@�
��! s0 if transition t may fire from state s at relative time �; we then say that t is

firable from s at �. The state space of a Time Petri net is the set of states reachable
from its initial state s0, equipped with the timed reachability relation t@�

���!. The
relation ð9�Þðs t@�

���! s0Þ is abbreviated s t
�! s0.

A firing schedule is a sequence ðti@�iÞ1�i�n of successively firable timed transi-
tions. Its support is the sequence of transitions t1 . . . tn. The firing domain of a state
ðm, IÞ is the set of vectors f�jð8kÞð�

k
2IðkÞÞg, with their components indexed by the

transitions enabled at m.
As transitions may fire at any time in their temporal intervals, the states of a

Time Petri net generally admit an infinity of successors by the timed reachability
relation. Any finite representation of this state space must thus rely on some agglom-
eration of states. These agglomerations are called state classes.

In their most general definition, state class spaces are covers of the state
space equipped with a transition relation satisfying property (EE) below (c and c0

denote state sets). Further, it is assumed that all states in a state class bear the same
marking.

(EE) ð8t 2 TÞð8c, c0Þðc
t
! c0 , ð9s 2 cÞð9s0 2 c0Þðs

t
! s0ÞÞ

In this framework, several different state class spaces may be defined from a single
state space, depending on the properties of the state spaces the agglomeration pre-
serves. Note that transitions between state classes are no longer timed, and state
classes and their reachability relation allow one to abstract time from the behaviour
of a net. The tool Tina proposes several state class space constructions, preserving
either the properties of the state space one can express in linear time temporal logics
(such as LTL), or those expressed in branching time temporal logics (such as CTL).

To enable a synthetic definition of the state class spaces investigated, it is con-
venient to first introduce characteristic systems: for every firing sequence �, the
(relative) times at which transitions in the sequence may fire (variables � ), and the
state reached (described by its firing domain, variables �), are related by an inequal-
ity system of the following form, called the characteristic system of sequence �:

(1) P� � p,
(2) 0 � �, e � �þM� � l, with ek ¼ MinðIsðkÞÞ, lk ¼ MaxðIsðkÞÞ.

Subsystem (1) describes the vectors of possible relative firing times � for all
transitions in �. For every such �, subsystem (2) describes the firing domain of the
state reached.

These systems, readily computed (Berthomieu and Vernadat 2003), can be pre-
sented as a tree KG rooted at K�. System K� characterizes the set of states (generally
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infinite) reachable from the initial state by firing schedules of support �. Conversely,
to the state graph of the net, tree KG is finitely branching, but it may still be infinite,
as it has as many nodes as there are firable sequences.

4.2. Preserving LTL properties, linear state classes
4.2.1. Linear state classes, construction LSCG

Concerning Time Petri nets, the first state class graph construction provided by
Tina is the classic one introduced by Berthomieu and Menasche (1983), and further
accounted for by Berthomieu and Diaz (1991). It can be explained as follows.

For every firing sequence �, let C� be the set of states reachable by schedules of
support � (as characterized by characteristic system K�). Markings and firing
domains are extended to such sets of states as follows: the marking of C� is the
marking of any of its component states (recall that all states in a class bear the same
marking), and the firing domain of C� is the union of the firing domains of all states
constituting C�. Consider now the equivalence relation ffi satisfied by two such state
sets when they have the same marking and firing domain.

The linear state class graph (LSCG) is the set of sets C�, for all firable sequences
�, considered modulo equivalence ffi, and equipped with the transition relation: c t

! c0

iff ð9s 2 cÞð9s0 2 c0Þðs t
! s0Þ.

The LSCG coincides with the graph obtained from the tree of characteristic
systems by identifying nodes equivalent by ffi (that is, systems with equal solution
sets after elimination of the � path variables). A direct construction was proposed by
Berthomieu and Menasche (1983). The LSCG of the net presented in figure 6 admits
83 classes and 160 transitions.

The LSCG preserves those properties of the state graph of the net expressible
as formulas of linear time temporal logics (such as LTL), hence its name. It can
be shown that, when two characteristic systems K� and K�0 are equivalent by ffi, with
� and �0 leading to the same marking, then the subtrees of KG they define are
isomorphic. This implies preservation by LSCG of all traces and maximal traces
of the state graph, and thus of LTL properties.

4.2.2. Linear state classes with multi-enabledness, construction LSCGm

In the LSCG construction, every enabled transition is associated with exactly
one temporal variable describing the firing domain. In addition to the basic LSCG
construction, Tina provides a variant introduced by Berthomieu (2001) in which self-
concurrent, or multiply enabled, transitions are associated with as many temporal
variables as there are enabled instances of the transition.

This interpretation has several practical uses, notably when the presence of
tokens in the places of the net is interpreted as the arrival of events. The treatment
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Figure 6. A Time Petri net.
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of Berthomieu (2001), consisting of ordering enabling instances of self-concurrent
transitions according to their date of birth, may also help to handle symmetry of the
state space: this makes it possible to model k similar processes by a single net, the
marking of which is parameterized by k. This contributes to the reduction of
the state space. The construction preserves the linear time temporal properties of
the state graph.

4.2.3. Strong linear state class graphs, construction SSCG
A third construction also preserving LTL properties is proposed. As in

section 4.2.1, let C� be the set of states reachable by firing schedules of support �.
The strong linear state classes are exactly those sets C� that are not considered
modulo equivalence ffi, but simply modulo their natural set equality. These classes
yield the strong state class graph (SSCG).

A construction of the SSCG is given by Berthomieu and Vernadat (2003). Strong
linear classes are represented by a marking associated with an inequality system
expressed in terms of ‘clock domains’ rather than firing domains. The clock g

t
associated with the enabled transition t is the time elapsed since t was last enabled.
The clock system associated with strong class C� coincides with subsystem (1) of the
characteristic system K�, with equations g ¼ M� added (g are the clock variables,
bijectively associated with the enabled transitions), and then variables � eliminated.

Clock vectors denote states. It is shown by Berthomieu and Vernadat (2003)
that an equivalence relation � can be computed for strong classes represented by
a marking and a clock domain such that C� � C�0 iff they denote equal sets of states.
Briefly, if all enabled transitions have bounded temporal intervals, then equivalence
� coincides with equality of the solution sets of the clock systems. When this is not
the case, an extra operation, called relaxation, has to be performed on clock systems,
before their comparison.

Like the LSCG, the SSCG preserves LTL properties, but it is typically larger
than the LSCG in terms of number of classes, and its computation is more expensive.
The SSCG construction would thus be a poor replacement for the LSCG. In fact, it
is only provided because it constitutes the starting point of the construction preser-
ving branching time properties, described in the next section. The SSCG of the net
presented in figure 6 admits 107 classes and 205 transitions.

4.3. Preservation of CTL* properties, atomic state classes (ASCG)
Branching properties are those expressed in branching time temporal logics such

as CTL or CTL*, or in modal logics like HML or the �-calculus. In the absence of
silent transitions, it is known that these properties are preserved by the bisimulation.
Any graph of classes bisimilar with the state graph of the net (time information
omitted for the latter) preserves all its branching properties. This section addresses
constructions that yield a state class graph bisimilar with the state graph.

A first such construction was proposed by Yoneda and Ryuba (1998). Tina offers
an alternative construction introduced in Berthomieu and Vernadat (2003), under
the name atomic state class graph (ASCG). As for computing bisimulations on an
LTS, this graph is built by a technique similar to the ‘partition refinement’ technique
of Paige and Tarjan (1987) and Tripakis and Yovine (1996). A class is said to be
atomic, or stable, if it is atomic versus any other class. A class is atomic versus
another if each of its states has a successor state in the latter or none has. The
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graph of atomic state classes is obtained by refinement of the strong state class graph
discussed in section 4.2.3: its classes are partitioned until all of them are atomic.

Technically, every unstable class is partitioned by computing linear constraints,
non-redundant in its clock system, and such that the constraints are necessary for a
state to have a successor in the target class considered.

This construction is generally expensive (though finite, the number of necessary
class splits may be very large), but it allows verification of the largest set of proper-
ties. Some computational results will be presented in section 4.5. Atomic state classes
are represented like strong state classes, that is as a marking associated with an
inequality system on the clock space. The ASCG of the net presented in figure 6
admits 101 classes and 431 transitions.

4.4. Preservation of quantitative temporal properties
Finally, there is a class of properties of great practical interest, but for which no

dedicated construction is proposed by Tina: that of ‘quantitative’ temporal proper-
ties as may be expressed in, for example, the TCTL logic.

Although no dedicated support is provided for proving such properties, many of
them can be verified using the standard technique of observers. This technique
consists of encoding a ‘quantitative’ property p of the net into a qualitative (LTL
or CTL*) property p0 of the net augmented with an auxiliary ‘observer’ component,
in such a way that p0 holds in the augmented net if and only if p holds in the original
net. Then, to check p, it suffices to invoke the construction of Tina that preserves the
intended group of properties on the augmented net, and prove p0 on that abstraction.
The technique is applicable to a large class of properties, notably those reducible to
reachability properties.

4.5. Example and comparisons
Figure 7 shows a Time Petri net version of the classical level crossing example

(Bérard et al. 2001). The net models are obtained by the parallel composition of n
train models (lower left), synchronized with a controller model (upper left, n instan-
tiated), and a barrier model (upper right). The specifications mix timed and untimed
transitions (those labeled App).

For each model, we constructed with Tina its LSCG, SSCG and ASCG. Sizes
and computing times obtained on a SunBlade 100 Unix workstation are also shown
in figure 7. Computing times for the ASCG are much longer than those for the LSCG
or SSCG, but that construction preserves more properties. Safety properties such
as ‘the barrier is closed when a train crosses the road’ can be checked on any graph,
but liveness properties such as ‘when no train approaches, the barrier eventually
opens’ must be checked on the ASCG. Temporal properties such as ‘when a train
approaches, the barrier closes within some given delay’ generally translate to safety
or liveness properties of the net composed of ‘observer nets’ deduced from the
properties.

Note the fast increase in the number of classes with the number of trains, for all
constructions. For this particular example, this number could be greatly reduced by
exploiting the symmetries of the state space resulting from replication of the train
model. For linear state classes, an alternative is allowed by the variant LSCGm of the
LSCG construction discussed in section 4.2.2, in which a transition enabled k times is
associated with k distinct intervals, instead of one. For our example, symmetries
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could be handled by modelling trains by a single copy of the train model shown in
figure 7, marked by n, instead of n copies, and using that interpretation of multi-
enabledness.

5. User interface

The Tina toolbox is implemented in a modular way. These modules can be used
independently or in combination. Modules include:

– a graphic editor for Petri nets, Time Petri nets, or automata, including auto-
matic drawing facilities;

– a tool for building state space abstractions, implementing all the constructions
presented in the previous sections; and

– a structural analysis tool (in progress).
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Figure 7. Level crossing example.
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Used alone, the editor produces files that later can be read by the state space
construction and structural analysis tools. But these tools may also be invoked
without leaving the editor, and the editor is able to edit and draw their outputs.

Used alone, the construction and analysis tools behave like filters. This
eases their insertion into specific or existing development chains. Their command
line allows one to select the desired abstraction. They admit as input descriptions
in either graphical format (produced by the graphic editor) or textual format
(produced by hand or by program), and may produce their results in a variety of
formats.

The textual input format is simple and intuitive. Several output formats are
available, including a ‘verbose’ format for pedagogical uses, the automata and
BCG formats of the tools Aldébaran (Fernandez and Mounier 1991) and BCG
(Fernandez et al. 1996) for equivalence analysis, and the MEC (Arnold et al.
1994) format for checking �-calculus formulas. In this way, Tina may be used as
a front end by a number of verification tools, possibly at the expense of writing
a simple conversion filter translating one of the available output formats into one
accepted by the tool used.

A screen snapshot of a typical Tina session is shown in figure 8, with a Time Petri
net being edited, the textual result of a behaviour construction, and a graphical
representation of the behaviour built.

6. Conclusion

This paper describes Tina, a software tool for the editing and analysis of Petri
nets and Time Petri nets. In addition to the standard functionalities of such tools
(editing, classical reachability and structural analyses), Tina proposes the computa-
tion of abstract state spaces.

Different abstractions are proposed that preserve various classes of properties:
general reachability properties, or specific properties – preserving either the linear
or branching structure of the concrete state space – expressed using either temporal
logics or behavioural equivalence. Two abstractions based on ‘partial orders’ and
‘state classes’ apply to untimed systems and timed systems, respectively. For timed
systems, building abstract spaces is mandatory since the concrete state spaces are
generally infinite; abstract spaces are finite symbolic representations for the infinite
concrete state spaces. For untimed systems, abstract state spaces help prevent com-
binatorial explosion. In highly concurrent systems, they often result in a drastic size
reduction of the state space.

The application domain of Tina is wide. Tina is being used in several industrial
projects; it belongs, for example, to the set of verification tools retained for the
RNTL COTRE2 project. Besides industrial applications, the different constructions
proposed by Tina make it a very useful tool for education or training.

For the ‘partial order’ approaches, work in progress concerns the complementa-
rities between the available techniques, notably those between covering steps and
‘ample sets’ for LTL�X model-checking. For timed systems, techniques to ease ver-
ification of quantitative temporal properties (like those expressed in, for example,
TCTL) are being investigated. Finally, investigations are ongoing concerning the

2Composants Temps Réel, Real time components, http://www.laas.fr/COTRE
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possible combinations of ‘partial order’ and ‘state classes’ techniques in order to
compact further the symbolic state spaces of timed systems.
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