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Abstract Predicting distributed application performance is a constant challenge to
researchers, with an increased difficulty when heterogeneous systems are involved.
Research conducted so far is limited by application type, programming language, or
targeted system. The employed models become too complex and prediction cost in-
creases significantly. We propose dPerf, a new performance prediction tool. In dPerf,
we extended existing methods from the frameworks Rose and SimGrid. New methods
have also been proposed and implemented such that dPerf would perform (i) static
code analysis and (ii) trace-based simulation. Based on these two phases, dPerf pre-
dicts the performance of C, C++ and Fortran applications communicating using MPI
or P2PSAP. Neither one of the used frameworks was developed explicitly for per-
formance prediction, making dPerf a novel tool. dPerf accuracy is validated by a
sequential Laplace code and a parallel NAS benchmark. For a low prediction cost
and a high gain, dPerf yields accurate results.

Keywords Performance prediction · Distributed applications · Automatic static
analysis · Block benchmarking · Trace-based simulation · dPerf

1 Introduction

The field of parallel and distributed computing has represented the point of interest
for many researchers since several decades ago. The constant need for increasing
the computing power leads to the development of numerous performance predic-
tion methods and tools. These mainly help researchers in choosing the computing
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architecture that best suits the requirements of their scientific applications. Nowa-
days, technological improvements make traditional prediction methods completely
inefficient, and those that are more recent cannot handle the complexity of today’s
computing systems.

We present dPerf (distributed Performance prediction), a performance prediction
method, which is based on previous works [5] and [12]. In dPerf, we implemented
our method for performance prediction of High Performance Computing (HPC) ap-
plications written for parallel or distributed systems for centralized or decentralized
architectures. It supports three of the most intensively used programming languages
in the sphere of HPC: C, C++, and Fortran. In addition, the distributed programs can
communicate using either P2PSAP [10, 23], or MPI [36]. dPerf uses externally de-
veloped frameworks for extending static analysis methods and the trace-based sim-
ulation mechanism. dPerf is the result of defining and implementing new methods
for block benchmarking and instrumentation such that the outcome of our tool would
be the performance prediction of the input code. dPerf addresses homogeneous or
heterogeneous systems, it produces fast predictions, it offers support for C, C++
or Fortran code, it gives accurate prediction with a reduced slowdown, it supports
distributed applications which communicate using MPI or P2PSAP, and it defines
a novel method for taking into account the cache memory effect and the compiler
optimization levels.

The work presented in the following has been previously presented in a more
briefly manner in [7]. In the current paper, we detail more on the latest related work,
we go into detail concerning the methodology and the requirements, and from ex-
perimental point of view, we present results from three experimental sets using all
compiler optimization levels. We performed experiments with two applications, one
sequential and the other parallel. We validate our prediction framework from sequen-
tial point of view and then we prove its accuracy on two different distributed comput-
ing systems.

Section 2 presents relevant previous work in the field of performance prediction
for parallel and distributed applications. Our motivation and the requirements for
the presented work are explained in Sect. 3. The results obtained experimentally are
presented in Sect. 4, followed by conclusions and perspectives in Sect. 5.

2 Related Work

Performance prediction tools are proposed in parallel with the technological advance-
ment. A great amount of effort is needed for building a tool that would efficiently
handle nowadays architectures due to the high complexity of current hardware de-
vices. The performance prediction must be obtained without significant costs so that
developers can quickly have an insight on the applications that they are developing
for a target platform not available throughout the development process.

We classify performance prediction methods and tools into analytical, profile-
based, and hybrid. All methods presented in this section are compared directly to
our proposition, dPerf, in Tables 1 and 2.
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Table 2 Performance and efficiency. Comparison of dPerf to most relevant performance tools

Tool Values

Slowdown Speedup Accuracy Pred. cost

dPerf 0.2–1.1 – >80 %a approx. 1c

LogP assumed �1 – assumed high �1 (very high)

LogGP assumed �1 – >80 % �1 (very high)

van Gemund’03 assumed �1 – 50–90 % �1 (very high)

P3T >1 – >98 % >1

Saavedra’96 75–95 %

ChronosMix 0.02–0.25 – >85% �1e or 1f

HAMEb assumed �1b – assumed poorb assumed lowb

MPI-Sim – <12 >80 % –

SMPI <1 – poor very low

POEMS assumed �1 – low to high �1 (very high)

Snavely’01h ≥1 – >80 % �1

DIMEMAS ≥1 – >80 % –

ScalaTrace >1 – assumed high –

DeRose’09 �1f – assumed high average

PHANTOM assumed �1g – >95 % assumed low

aAccuracy on more than 8 processes

bNot proven experimentally
cSlightly longer than one full execution

dStatic analysis
ePost-mortem analysis

fSeveral executions are required to build a knowledge base
gExecution done on one node, and prediction for N nodes

hLimited by DIMEMAS performance

Purely analytical methods had been employed in the work of [9] for LogP, [35]
for LogGP and [37]. To apply the aforementioned methods, a thorough understand-
ing of the algorithm under evaluation is necessary and this leads to a high cost for
obtaining a prediction. With respect to the above mentioned methods, dPerf takes
less time to obtain a prediction, addresses decentralized heterogeneous computing
systems, works with more than just the message passing implementations, supports
most commonly used programming languages in HPC, and takes into account com-
piler optimization levels.

Profile-based methods are those that make use of hardware counters or instru-
mented sources to retrieve data-dependency information at execution time. Relevant
work in this section has been undergone by [5, 13, 14, 31]. With respect to this cat-
egory of tools, dPerf brings a few improvements such as the support for a commu-
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nication protocol other than message passing, accepts more than one programming
language at input, and yields accurate results when different compiler optimization
levels are used.

An efficient trade-off is represented by hybrid methods, combining the analytical
model with information obtained through profiling. In our opinion, the supercom-
puting systems or the applications meant to run on these could be best evaluated and
estimated by applying hybrid methods due to the high complexity of the architectures
or algorithms under evaluation. HAME [18], a very interesting approach presented by
Li et al., predicts program performance in a static manner for application-tuning pur-
poses. Methods based on full simulation [6, 29] provide the most accurate predictions.
The results demand the design of an accurate model of the target architecture which
involves a high prediction cost. In order to keep development costs at a reasonable
level, trace-based simulators become widespread.

The simulator partially describes computing systems and the rest is supplied by
trace files. SimGrid [6] is a framework suitable for developing custom simulation
tools. SimGrid can perform full or trace-based simulations with its built-in SMPI and
MSG module, respectively. POEMS [1] is a very complex system for building end-to-
end modules which combines analysis, simulation, and direct measurement. Snavely
et al. [34] describes another approach that uses a performance prediction calculated
on a single-node computer, which is afterward passed to DIMEMAS [3] in order to
simulate the parallelism. ScalaTrace, presented in [24], is a method that regards only
the communication aspect in a parallel environment. A point of transition from per-
formance monitoring to performance analysis is emphasized in [30]. Authors present
an approach which uses a knowledge base along with a set of performance models.
Another relevant contribution in this field was brought by Zhai et al. in [39]. The au-
thors presented PHANTOM, a framework that addresses parallel applications written
in Fortran, communicating using MPI, and meant to run on either heterogeneous or
homogeneous platforms. By a quick comparison of PHANTOM to dPerf, we state
that our method supplies faster predictions, works with three of the most employed
languages in HPC, and offers support for distributed applications meant to run in
decentralized HPC systems.

With one exception, which is [39], the above mentioned methods address a lim-
ited number of aspects of nowadays parallel and distributed applications and sys-
tems. Some methods only work for single-processor systems, others only for homo-
geneous clusters of workstations. Some methods only apply to specific applications
or are addressing only message passing parallel programs. Other approaches lack
multi-application support or are too dependent on the target platform and network
topology. Because researchers demonstrated in [5, 11, 12] that static and semistatic
methods give promising results, we propose dPerf, the tool that we have developed,
for efficiently combining (i) automatic static analysis based on block benchmarking
with (ii) instrumented execution, and with (iii) trace-based simulation of the message-
exchange.
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Fig. 1 The dPerf framework containing static analyzer (for static analysis and instrumentation of the input
source code) and trace-based simulator

3 Methodology and requirements

At the current development state, performance prediction made by dPerf is still de-
pendent on the following factors: (i) the number of nodes, (ii) node architecture, and
(iii) application parameters (such as the problem size).

In order to predict application performance, the source code is analyzed, the trans-
formed code is run, instruction execution times are measured, and distributed network
topologies are simulated (see Fig. 1). For this, a series of requirements must be met.

3.1 Requirements

For fast and precise measurements that introduce very little noise in the measured sys-
tem, we make use of hardware (or performance) counters. The hardware counters are
easily accessible in GNU/Linux. Two of the most important measurement infrastruc-
tures that can enable the performance counters module are perfctr [28] and perfmon
[27]. Researchers affiliated with the University of Lugano presented a comparative
study in [38]. Based on this study, our approach uses perfctr.

We access the hardware counters using PAPI, the Performance Application Pro-
gramming Interface [25, 26]. Through PAPI, developers gain access to a wide range
of information given by the counters with a minimum noise level introduced into the
measured system, thus improving performance analysis results. Two interfaces are
available within the PAPI library: a high-level and a low-level interface. The PAPI
high-level interface is used for performing quick and simple measurements, such as
retrieving the total number of available hardware counters or getting the number of
nanoseconds (ns) since the previous call to PAPI, and so on. The PAPI low-level in-
terface is less restrictive and it provides an advanced interface for our performance
prediction tool. From the low-level interface of PAPI, we use PAPI_get_virt_nsec.
This method accesses the counters and gets the virtual (user) time in nanoseconds.
We are interested in capturing this (user) time. As shown in Fig. 2, the user time is the
time spent by a CPU only for the user process, without measuring the time spent on
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Fig. 2 Measuring the real and
virtual time cost with PAPI

CPU cycles of other processes. Before, timing was possible using calls to functions
such as gettimeofday. Even though it expresses the measurement in microseconds, its
real count is not based on microseconds, but it is dependent on the time slot assigned
to the process that made the call to gettimeofday. Some UNIX systems used to update
the gettimeofday value every 10 milliseconds [15]. Moreover, the processor cost for
calling the gettimeofday function itself is quite significant.

One very important requirement is for our tool, dPerf, to accept C, C++, and For-
tran, three of the most intensively used languages in distributed programming. At the
current development level, the source code used as input must be deterministic. Rose
[32] is a compiler infrastructure for building custom source-to-source program trans-
formation and analysis tools. It can analyze large scale applications. Since tools based
on Rose accept C, C++, Fortran, OpenMP, and UPC programs, they cover most appli-
cations running on parallel and distributed systems. Rose is most suited for building
tools for static analysis, as well as program and performance analysis. We have cho-
sen to develop our static analyzer for dPerf using Rose compiler mainly due to the
following reasons: (i) we aim at analyzing C, C++ and Fortran applications, (ii) no
information from the input code is lost during static analysis, (iii) the intermediate
representations (IR) in Rose provide the abstract syntax tree (AST) as well as the
system dependence graph (SDG), and (iv) the input code, statically transformed, is
available at output.

The Abstract Syntax Tree (AST) is the fundamental syntactic representation of
a single file source code. It can be easily analyzed and based on its traversal any
transformation can be performed. dPerf uses the AST built by Rose to identify key
elements such as statements, basic blocks, and communication calls.

The System Dependence Graph (SDG) [19] is a supergraph containing the data and
control dependencies combined into one representation. The SDG is useful in solving
variable dependency such as finding the constant value of a conditional statement
parameter.
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SimGrid [6] is a project that gives developers the possibility to build custom simu-
lators of parallel and distributed computing systems. We use SimGrid’s MSG module
for customizing a trace-based simulator. This simulates the distributed network topol-
ogy and calculates the total predicted execution time. We extend existing communi-
cation primitives in MSG and we define other communication primitives for new pro-
tocols such as P2PSAP. Using the output from dPerf, SimGrid’s MSG module solves
the communication time aspect of our MPI application performance prediction.

3.2 Methodology

Our contribution in this field is focused on providing accurate performance predic-
tions which take into account compiler optimization. This contribution consists of
three main phases: (i) the automatic static analysis of an input code, (ii) the execution
of the instrumented code issued by the static analyzer, and (iii) trace-based simulation
for obtaining the final prediction. These phases are shown in Fig. 1. A demonstration
of performance prediction with dPerf can be seen in [8]. The following terminology
is employed throughout the rest of the paper:

– tnormal execution: reference time; time to run an application; measured from the be-
ginning and until the end of an application execution;

– tcompute: processor computation time; measured by the hardware counters in terms
of user cycles, i.e., no processor cycles assigned to other processes;

– tcommunication: communication time; characterized by an exchange of data between
participant processes;

– tprediction: necessary time to go through the entire prediction process for obtaining
a predicted time (see tpredicted bellow);

– tsimulation: time needed to run a trace-based simulation;
– tobtain trace files: time cost for obtaining execution traces; the counter of this duration

starts with the static analysis and ends once trace files are obtained; includes static
analysis and execution of the instrumented code;

– tpredicted: final result of the performance prediction process, i.e., the predicted ex-
ecution time for the input application; dPerf uses the simple block benchmarking
method;

– tthreshold predicted: similar to tpredicted; dPerf applies the optimized block benchmark-
ing method.

Automatic static analysis dPerf uses Rose methods to obtain the intermediate rep-
resentations AST and SDG for the given input code. Using the AST, dPerf decom-
poses the input code into instruction blocks. Each block is verified for MPI function
calls. At this point in the analysis process, two different techniques can be employed:
(i) a simple block benchmarking and (ii) an optimized block benchmarking.

The simple block benchmarking technique only marks the end of an instruction
block and prepares the output of communication parameters for the creation of trace
file later-on at execution time. Later in the prediction process, this leads to output
traces as in the following listing:
p0 compute 5385
p0 Isend p0 8429748
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p0 Recv p0
p0 compute 46447205
Lines shown above correspond to computation and communication lines of code, as
they occur in the source file. Computation cost is expressed in nanoseconds, while
communication is expressed in bytes. For instance, p0 compute 5385 means that on
process 0, a block of instructions has computed for 5385 nanoseconds, measurement
taken by the hardware counters. Similarly, p0 Isend p0 8429748 means that process
0 performs an Isend toward itself (process 0) and an amount of 8429748 bytes are
transferred.

Optimized block benchmarking, which we also named the Threshold iteration rule,
is a method which we propose and which we implemented in dPerf. It extends the
simple block benchmarking by reducing loop boundaries to a minimum but represen-
tative number of iterations which preserves computation and communication char-
acteristics. This method can only be used on loops with independent iterations. The
decision if loops have data-dependent or independent iterations is taken based on
SDG analysis. If loops are data-dependent, the Threshold iteration rule cannot be
applied. This approach is a block benchmarking method that takes into account the
instruction prefetching effect. We observed that after a certain number of iterations,
the time per iteration is constant within a small error interval. Let the reference num-
ber of iterations of a block be denoted by th, or threshold, with tth being the time in
nanoseconds where th is reached. For a block with a single iteration, the Threshold
iteration rule is expressed as follows:

tavgiteration
= tth

th
(1)

where tavgiteration
is the average time for one block iteration, value that takes into ac-

count the time for loading data into memory. If the estimated time for the entire loop
is denoted by tloop estimated, for the above mentioned we have

tloop estimated = tavgiteration
× 1 = tth

th
(2)

In the case of blocks belonging to loop statements with n cycles, formula (2) be-
comes:

tloop estimated = tavgiteration
× n = tth

th
× n (3)

Above th, tavgiteration
is constant or within an εth error interval. Let x be the number of

iterations of a block, and tx its average execution time, then

εth = tx − tth, ∀x > th (4)

The curve tavgiteration
in Fig. 3 is obtained from running a sample instruction block.

This sample consists of a loop, the number of iterations being indicated on abscissa.
During the first few iterations, data prefetching implies a great time cost. As the
loop reiterates, it can be noticed that costs related to data being loaded into memory
are decreasing. From the shape of the tavgiteration

curve, we state that for most loops,
the time cost per loop iteration decreases with the increase in number of iterations.
Based on the above observation, an error interval ε can be defined. Let εth be the error
percentage level defined in formula (4) such that for any x number of iterations, the
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Fig. 3 Threshold and possible
error levels for a sample
instruction block consisting of a
loop

time per iteration tavgiteration
is always smaller than εth. In Fig. 3, if 2 % is the maximum

accepted error (εth = 2 %), then a minimum of 30 out of 100 iterations are required.
For εth = 10 %, only 10 out of 100 iterations are necessary to correctly estimate the
loop overall execution time.

We extend this principle to the various optimization levels available with G++. We
observed that for the same sample block of instructions as the one in the Fig. 3, the
execution time decreases as the number of reiterations of the same block takes place.

For Fig. 3, for a chosen εth, we propose the threshold method which only iterates
a minimum number of times that provides sufficient information for estimating the
time cost for the complete number of iterations. The estimation is done, as expressed
in formula (3), by measuring the first th iterations, computing an average tavgiteration

multiplied by the number of iterations n of the original loop.
There are two practical cases that may occur when applying the threshold iteration

rule:

– the loop does not contain calls for communication, or
– the loop contains communication.

In both cases, the trace files obtained later in the prediction process will only contain
tloop estimated. Optimized block benchmarking when loops do not contain communi-
cation calls means reducing the loop upper boundary to a minimum significant level.
For loops containing communication calls, in addition to the previous case, the traces
contain a succession of computation times and communication parameters. For this
reason, at the first iteration of the loop under evaluation, the communication param-
eters are stored aside. For the next iterations, we no longer evaluate the communica-
tions, but only apply the remaining of the threshold rule, until we obtain tavgiteration

.

Dynamic analysis In this second prediction phase, a transformed code previously
obtained from the static analyzer is built and executed for different compiler opti-
mization levels: 0, 1, 2, 3, and s. Each level provides an optimization degree that we
take into account when comparing dPerf predictions to the execution of the original
code. The use of compiler optimization places dPerf predictions in real execution
conditions. Executing the instrumented code generates trace files corresponding to
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each participant process.The traces contain only computation times and the relevant
parameter for each communication. Computation is measured using hardware coun-
ters and is expressed in nanoseconds.

Trace-based simulation and prediction result The trace files obtained through dy-
namic analysis are used for simulating the network and for computing tpredicted, the
overall prediction of the test application. Among the innovations brought by the
method that we present in this paper we mention a reduced slowdown due to the
two block benchmarking techniques that we propose: (i) the simple and (ii) the op-
timized block benchmarking techniques. The slowdown is the unit of measurement
for the efficiency of performance prediction tools. It is defined as the ratio of the time
for obtaining a performance prediction to the normal application execution time. The
slowdown is expressed per process, based on measurements taken on the same archi-
tecture.

slowdown = tprediction

tnormal execution × Nb_Processes
(5)

where

tprediction = tobtain trace files + tsimulation (6)

In general, performance prediction tools have a slowdown greater than one, i.e., most
tools take longer to predict performances than to execute an application. dPerf is char-
acterized by a reduced slowdown. This means that in our case, dPerf has a gain, and
not a slowdown. The gain is the inverse of the slowdown. Per simulated process, dPerf
yields prediction results faster than the execution time, except for some very rare
cases. For example, if a prediction tool has a slowdown s, then it means that calculat-
ing the performance prediction for an application (tprediction) is slowed down s times
(per simulated process) with respect to the normal execution time (tnormal execution).

tprediction = s × tnormal execution (7)

If a performance prediction is calculated for an architecture consisting of Np pro-
cesses, then the time for obtaining the prediction is

tprediction = s × tnormal execution × Np (8)

tobtain trace files is the time taken to statically analyze the input source code plus a one
time execution of the code transformed by dPerf in order to obtain the trace files.
tsimulation is the time taken by SimGrid MSG to perform a trace-based simulation.

dPerf support for modifying loop boundaries is undergoing, thus not fully ready
yet. At this point, loop boundary modifications are based on the information available
through the IR available with Rose.

A dependency analysis was performed and we obtained the same precision for a
gain in dPerf prediction greater than 1, being close to 90 (see Fig. 4b). The corre-
sponding slowdown is presented in Fig. 4a.
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Fig. 4 The slowdown and the gain for dPerf when using simple and loop-boundaries modification

4 Experiments

This section describes in detail the experimental work done with dPerf. At first, we
use a sequential implementation of the Laplace transform in order to prove the ac-
curacy of the approach used in dPerf. We denote this scenario by Seq. Laplace. Our
approach is afterward tested on a distributed system with low heterogeneity, denoted
by NAS IS 1. A third validation is done on another distributed architecture highly
heterogeneous referred to as NAS IS 2,. The input code for NAS IS 1 and NAS IS 2,
scenarios is the NAS Integer Sort benchmark [4, 22], and their system topologies are
shown in Fig. 6 and Fig. 7, respectively. Laplace is simple sequential code, but op-
posed to this, NAS IS is communication-intensive code for parallel and distributed
systems.

4.1 Laplace transform—sequential application

By using the C implementation of the Laplace transform [17], we show the precision
of dPerf on a single process.

Reference values and the compiler We use the GCC compiler for building the code.
The validation implies comparing the prediction obtained with dPerf to a reference
time. This reference time is the actual execution duration of the Laplace transform on
a real platform. We denote this time by texec, treal exec, or tnormal execution. The code is
build, in turn, using GCC optimization level 0, 1, 2, 3, and s. We aim at remaining
accurate in our prediction when we use a simple or threshold-based block bench-
marking method.

The Seq. Laplace computing system consists of one computing machine having
the following characteristics: Intel Core 2 Duo @ 2.26 GHz, 3 MB cache.

Acquiring reference time begins by compiling the original Laplace code, in turn,
with every relevant optimization level available in GCC and then run each binary in
order to have the real execution time. The measurement of the reference time is taken
with the time command. We store the user time and we compare it to the predicted
time with respect to the optimization level.
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Calculating the predicted time The Laplace code is passed at input to our tool dPerf.
An AST is obtained and since Laplace is sequential, no communication calls exists,
hence dPerf only applies the simple block benchmarking technique. Then it prepares
the code for instrumentation by inserting calls to PAPI at the beginning and at the
end of the Laplace transform. The static analyzer in dPerf yields a slightly modified
code (see [16]). When using the optimized block benchmarking technique, dPerf ap-
plies the simple block benchmarking and, in addition, it analyzes out-most loops and
tries to reduce their boundaries to a minimum threshold. This shortens the time to
obtain a prediction with dPerf while taking into account the cache memory effect.
This provides a good accuracy while reducing prediction cost. The resulting code is
compiled, in turn, with GCC optimization levels 0, 1, 2, 3, s, and by running each
binary we obtain execution traces. The traces contain execution times of instruction
blocks in the Laplace code. The traces are passed to SimGrid MSG, but as the code
is sequential, the network time is zero, hence the measurement of the instrumented
code is equal to the prediction with dPerf.

Comparison of reference and predicted times In Fig. 5, the reference execution time
is compared to a prediction obtained by dPerf with simple block benchmarking, and
then by using dPerf with loop boundaries modification. Both predictions made by
dPerf are close to the real execution time. This is confirmed by the corresponding
error levels presented in the same figure. We state that dPerf can apply either one of
the two block benchmarking techniques while preserving accuracy of the results.

Efficiency of our approach The experiments give an accurate result due to the two
block benchmarking techniques implemented in dPerf. The prediction error remains
acceptable for sequential programs and the slowdown is approximately one for any
optimization level used at compilation time. For this reason, the slowdown is not
presented graphically. A more interesting value for slowdown is obtained for parallel
and distributed applications.

4.2 NAS Integer Sort—communication-intensive, distributed application

A C/MPI application is used for verifying the accuracy of dPerf on distributed sys-
tems. We present two experimental set-ups and the corresponding prediction results.
Our framework is validated by two sets of experiments denoted by NAS IS 1 and
NAS IS 2,, the only difference between the two scenarios being the architecture het-
erogeneity.

Input source code The application to be evaluated and whose performance will be
predicted is the Integer Sorting code of the NAS Parallel Benchmark suite. The code
was written in C and the message exchange is done through MPI. This benchmark is
available under a single source file. Throughout the experiments, the problem size of
class A is used, this being suited for HPC systems.

Reference values and the compiler Similar to Seq. Laplace, we use the GCC com-
piler and the reference time is measured for compiler optimization levels 0, 1, 2, 3,
and s.
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Fig. 5 Seq. Laplace; Reference time compared to (i) prediction using the simple block benchmarking and
(ii) prediction using outer-loop boundaries modification. The last two values in each figure is the prediction
error

We denote the execution time of IS on a real platform by texec, treal exec, or
tnormal execution, and we use this time as a reference.

Number of computing nodes The number of computing nodes (for simplicity re-
ferred to as nodes) is set to 2n. n ∈ {1,2,3,4}, i.e., we use 2, 4, 8, and 16 nodes.
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Fig. 6 NAS IS 1 active nodes during a parallel run and the network complexity when increasing the
number of nodes

NAS IS 1 computing system and network topology The experimental set-up NAS
IS 1 (see Fig. 6) consists of a heterogeneous system composed of 16 machines (or
nodes) spread over two sites. The network complexity with respect to the number of
parallel processes in use is detailed in Fig. 6.

– nodes 0–7 (orange in Fig. 6): Intel Pentium D @ 2.8 GHz, 1 MB cache, 1 Gbps
network adapters;

– nodes 8–15 (yellow): Intel Core 2 Duo @ 2.33 GHz, 4 MB cache, 1 Gbps network
adapters.

We emphasize that at this point we only consider one available processor core per
machine. All communications are internode ones and as soon as we switch from 8
to 16 nodes, the architecture becomes heterogeneous. The network consists of the 16
nodes connected using:
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Fig. 7 NAS IS 2, active nodes during a parallel run and the network complexity when changing the number
of nodes

– srt_1, an HP Procurve 2848 switch, supporting 1 Gbps on each port;
– srt_2, a Cisco Catalyst 2900XL, with Ethernet ports of 100 Mbps;
– Campus network, a set of routing switches on a ring-based topology, connecting

srt_1 and srt_2, with a bandwidth of 100 Mbps.

NAS IS 2, computing system and network topology The experimental set-up NAS IS
2, (see Fig. 7) consists of a system with a higher degree of heterogeneity than NAS IS
1, composed of 16 machines (nodes 0 to 15) spread over four sites. In NAS IS 2, the
network degree of complexity reaches a maximum level from four processes and up
(see Fig. 7).

– node 0 (cyan in Fig. 7): Intel Bi-Xenon @ 2.8 GHz, 512 KB cache, 3 GB RAM,
1 Gbps network adapters;

– nodes 1, 6, 13–15 (green): Intel Core 2 Duo @ 3 GHz, 6 MB cache, 1 GB RAM,
1 Gbps network adapters;

– nodes 3,7 (purple): Intel Pentium 4 @ 3 GHz, 1 GB cache, 1 GB RAM, 1 Gbps
network adapters;

– nodes 2, 4, 5, 8–12 (orange): Intel Core 2 Duo @ 2.33 GHz, 4 MB cache, 1 Gbps
network adapters.

As in the case of NAS IS 1, we only consider one available processor core per ma-
chine. The network consists of the 16 nodes connected using:
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– swrt, Linksys WRT54GL router, with Ethernet ports of 100 Mbps;
– srt, FORE Systems ES 2810 switch, with Ethernet ports of 100 Mbps;
– sat, Allied Telesyn AT-FS708LE switch, with Ethernet ports of 100 Mbps;
– Campus network, a set of routing switches on a ring-based topology, connecting

swrt, srt, sat, and node 0, with a bandwidth of 100 Mbps.

4.2.1 Validating our framework by NAS IS 1

In the following, we describe the method for calculating tpredicted (or tsimulated), an
estimation of IS execution time. All values used for computing the predicted time are
an average of ten measurements.

Acquiring reference time A first step is to compile the original unaltered code of
IS, in turn, with every optimization level available in GCC and then run IS on 2, 4,
8, 16 nodes in order to have the real execution time. The values stored at this point
are compared against the predicted time with respect to the optimization level and the
number of parallel processes.

Calculating the predicted time IS is passed at input to dPerf. If dPerf is set to use
the simple block benchmarking technique, then it identifies all MPI routines and pre-
pares the blocks for instrumentation. If dPerf is configured to use the optimized block
benchmarking technique, then it identifies all MPI routines and prepares the blocks
for instrumentation with respect to the threshold iteration rule. When loops without
communication are found, the threshold iteration (th) is calculated and the loop upper
boundary is set to th. The transformed IS code obtained at the end of the static analy-
sis is much smaller than the original IS. When blocks containing communication are
found, dPerf computes th, then it inserts the necessary calls to the PAPI library before
and after each MPI communication call.

After static analysis, the transformed IS code is compiled using each optimiza-
tion level, for 2, 4, 8, 16 parallel processes, and set the problem size to CLASS = A.
Similar to the acquisition of the reference time, the recently built variations of the
transformed IS code are run and upon each execution one trace file for every parallel
process is obtained. In turn, the trace files corresponding to each instrumented exe-
cution run are passed at input for SimGrid MSG. We emphasize that at this point,
SimGrid’s MSG module, the one responsible for the trace-replay mechanism, simu-
lates the communication over any chosen network topology. The platform description
file can be found in [8]. SimGrid MSG replays the traces and outputs the predicted
time for each scenario. The results are compared in the remaining part of this section.

Comparison of reference and predicted times The first set of results to draw our
attention is presented in Fig. 8. We observe that our prediction framework yields
results that are very close to the actual execution time of IS; this being validated for
all optimization levels. NAS IS is a communication-intensive benchmark. For this
reason, the error bars in Fig. 8 show that for a low number of employed nodes (2 in
our case), the error can reach levels up to 23 %. For the same reason, the prediction
error decreases below 10 %, as more messages are exchanged between processes.

At this point, we can state that dPerf can apply either one of the two block bench-
marking techniques while preserving accuracy of the results.
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Fig. 8 NAS IS 1. dPerf prediction; reference execution time; prediction error; simulation time

Efficiency of our framework For one heterogeneous cluster with fixed nodes and N

different network topologies, the cost to obtain a performance prediction is

tprediction1
= tobtain trace files + tsimulation (9)

for the very first topology, and

tpredictioni
= tsimulation with i = 2..N (10)
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for the 2nd to Nth topologies, since tobtain trace files remains unchanged and is already
known. This results in having

tper prediction =
∑N

j=1 tpredictionj

N
(11)

From formulae (9), (10), and (11) we obtain

tper prediction = tobtain trace files + tsimulation × N

N
(12)

tper prediction = tobtain trace files

N
+ tsimulation (13)

Figure 8 denotes the importance of using execution and trace-based simulation.
A first experiment with the given input parameters is represented in the figure by
tprediction bars. If we want a prediction for the same input parameters but for a different
network configuration, then we rerun the trace-based simulation. This operation is
represented by tsimulation in Fig. 8. The change in network topology and the rerun of
the simulation output a completely new prediction result with an insignificant time
cost. The more we test other network topologies, the more tper prediction decreases.

Figure 9 shows that dPerf has a gain instead of a slowdown. Both block bench-
marking methods implemented in dPerf work with a slowdown inferior to 1.1. The
gain corresponding to dPerf predictions at each relevant optimization level in GCC
is, on average, between 10 and 65, knowing that a gain of 1 means a prediction cost
equal to a normal execution cost.

When choosing one method or another, dPerf searches for the outer most loops
with independent iteration variables. If such loops are found, the optimized block
benchmarking is applied. If not, then dPerf uses simple block benchmarking.

4.2.2 Validating our framework by NAS IS 2,

The validation steps were previously explained for NAS IS 1 and, therefore, we only
present the second set of results which corresponds to the second experimental set-up
(see Fig. 7).

Comparison of reference and predicted times These results are of particular interest
due to the high heterogeneity of the system and network. The system has a medium
complexity when IS is executed on two processes (see Fig. 7a), and becomes of high
complexity as soon as IS starts turning on four processes or more, as seen in Fig. 7(b,
c, d). The first results depicted in Fig. 10 show the prediction obtained with dPerf with
respect to the reference execution time tnormal execution, and the error in prediction. The
accuracy in prediction has a slightly different behavior than the one in NAS IS 1 due
to the increased heterogeneity level of the system. However, the predicted time yields
a smaller error as the number of processes increases above the value four, meaning
that our estimation becomes more accurate for 8 and 16 processes.

The accuracy in the case of NAS IS 1 is high, but the precision of our framework for
NAS IS 2, also remains high, for all optimization levels, given its degree of complexity
(see Fig. 7).

For NAS IS 2„ the comparison between reference, prediction, and threshold-
prediction times is depicted in Fig. 10.
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Fig. 9 NAS IS 1; Slowdown and gain; The legend of (e) also applies to figures (a to d)

Efficiency of our framework For the experimental set-up NAS IS 2„ we calculated
the slowdown for a simple prediction with dPerf and compared it to the prediction
when dPerf uses loop-boundaries modification. The slowdown varies from one com-
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Fig. 10 Results for NAS IS 2,. The legend shown in figure (e) also applies to figures (a to d)

piler optimization to another, as it can be seen in Fig. 11. The slowdown was calcu-
lated according to formulae (5) to (8).

For all experimental results presented above, we state that our performance pre-
diction method yields accurate results with a time cost that decreases proportionally
to the number of network topologies tested.
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Fig. 11 The slowdown and gain for NAS IS 2,. The legend of figure (e) also applies to figures (a to d)

5 Conclusion and future work

In this paper, we presented our approach for predicting performance for distributed
applications running in a heterogeneous environment. This approach was imple-
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Fig. 12 Performance prediction at any point in an application life-cycle

mented in dPerf, having three main components: (i) the automatic static analyzer,
which uses our techniques for benchmarking instruction blocks in a simple or op-
timized manner, (ii) the runtime dependency solver through execution, and (iii) the
trace-based simulator which computes the performance prediction. The current de-
velopment state and the accuracy of our method was tested using NAS Integer Sort.

The approach presented is a continuous effort to obtain a performance prediction
method with scalable and architecture-independent results. We grant special atten-
tion to the use of the System Dependence Graph, a representation that we intend to
exploit in such a manner as to entirely solve all data-dependencies. Our near-future
development plans aim at reducing as much as possible the dependence of dPerf pre-
dictions on the computing system. We intend for dPerf to provide prediction results
throughout the entire development, thus the entire life-cycle, of a distributed appli-
cation (see Fig. 12). Regarding network simulation, we are interested in adding P2P
support to SimGrid MSG and estimate the performance of distributed applications in
the P2P environment. We are constantly looking into related work in order to improve
our method and to integrate support for multicore machines. We envisage analyzing
the source code in assembler, inspired by the work of [20, 21, 33] to provide scalable
architecture-independent traces. Our model could considerably increase its precision,
and it would be an important feature for dPerf when predicting performance for reg-
ular and P2P systems.
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