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Abstract—This paper proposes a tracking system called
VooDoo for 3d tracking of human body movements based on a 3d
body model and the Iterative Closest Point (ICP) algorithm. The
proposed approach is able to incorporate raw data from different
input sensors, as well as results from feature trackers in 2d or
3d. All input data is processed within the same model fitting
step by modeling all input measurements in 3d model space. The
system has been implemented and runs in realtime at appr. 10-
14 Hz. Experiments with complex human movements exhibit the
characteristics and advantages of the proposed approach.

I. INTRODUCTION

Robots that are meant to cooperate closely with humans,
and especially with untrained persons which are not familiar
with the domain of robotics, need a deep understanding
of the intentions, activities, actions and movements of their
interaction partner.
This is on the one hand due to the fact that the robot

needs the ability to predict the global plan as well as single
movements of the human in order to plan its own actions
and movements in an efficient way with respect to the overall
goal. Even if parts of the goal can be explicitly communicated
between human and robot, there are in most cases several
ways to reach a given goal, especially in a cooperation context.
Thus, not only motion prediction, but also activity recognition
is an indispensable feature for such a robot.
On the other hand, a shared workspace between robot

and human puts up high safety demands. This includes not
only collision detection, but also haptic interaction and shared
object and tool manipulation. Therefore, observation and pre-
diction of the human’s movements is badly needed in a robot
system that is designed to work together with humans.
Many tracking systems for humans have been proposed in

literature, some of which are discussed in sec. II. Most of
these are designed for one special input sensor, and all internal
models are based on this assumption.
This paper introduces a 3d body model based tracking sys-

tem called VooDoo, and especially proposes a new approach
for fusion of different input sensors and cues for tracking.
This approach is able to incorporate tracking information
from 3d sensors like Time-of-Flight-cameras (ToF) or stereo
reconstruction together with cues from 2d based trackers like a
monocular camera. The system is designed to work only with
sensors on-board the robot.

The system is able to track a person in realtime at about
10-14 Hz in 3d. Results are shown with different input sensors.

II. STATE OF THE ART

For observation and tracking of human movements, many
different sensors and models have been used. This includes
invasive sensors like magnetic field trackers (see [1], [2]) that
are fixed to the human body. Within the context of human robot
interaction in every-day life, this approach is not feasible;
non-invasive tracking approaches must be applied. Most of
these are based on vision systems, or on multi-sensor fusion
(see [3]). Systems which rely on distributed sensors (see [4])
are not practicable in the given domain; the tracking system
must be able to rely only on sensors mounted on the robot.
Tracking of humans and human body parts using vision is

investigated by a lot of research groups and several surveys
exist (see [5], [6], [7], [8]). Hence, there is a big variety of
methods ranging from simple 2d approaches such as skin color
segmentation (e.g. [9]) or background subtraction techniques
(e.g. [10]) up to complex reconstructions of the human body
pose. [11] shows how to learn the appearance of a human
using texture and color.
Sidenbladh [12] used a particle filter to estimate the 3d

pose in monocular images. Each particle represents a specific
configuration of the pose which is projected into the image and
compared with the extracted features. [13] use a shape-from-
silhouette approach to estimate the human’s pose. A similar
particle filtering approach is used in [14]. The whole body is
tracked based on edge detection, with only one camera. The
input video stream is captured with 60 Hz, which implies only
small changes of the configuration between two consecutive
frames. As it is a 2d approach, ambiguities of the 3d posture
can hardly be resolved.
An ICP-based approached for pose estimation is shown in

[15]. The authors use cylinders to model each body part. In
[16] the same authors show how they model joint constraints
for their tracking process. However, it the effect of the ICP
is partially removed when the constraints are enforced. Nev-
ertheless, parts of the work described in this paper are based
on the work of Demirdjian et al.
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Fig. 1. Sensor head (left), 2d image (middle left), disparity image (middle
right), 3d image (right)

III. USED FRAMEWORK
This section describes the framework which is used for the

presented work: Used sensors, the ICP algorithm which forms
the basis, the articulated 3d human model and the joint model
within the body model.

A. Sensor Data
In the described framework, two different sensors are used

to demonstrate the capabilities of the algorithm: A time-of-
flight (ToF) camera and a standard stereo camera head with
depth data reconstruction generate 3d point clouds, and the
color information of the camera is used to track face and hands
with a simple skin color model in 2d.
The Swissranger ToF camera uses a resolution of 160×124

pixels. The output consists of a dense depth image and an
intensity image. The depth range is configured to 0.5 m ≤
range ≤ 7.5 m, the accuracy lies within a few centimeters.
Intensity data is not used within the current context, as the
intensity image has very low resolution and high noise due to
the sensor concept.
The stereo camera (mega-d from videre design) is used at

a resolution of 320 × 240. The disparity image is computed
based on a calibration obtained offline.
The sensors and the raw data can be seen in fig. 1.

B. Iterative Closest Point Algorithm
This section gives a short introduction to the Iterative

Closest Point (ICP) algorithm. The goal of the ICP is to
match two indexed sets of the same points which are given
in different coordinate systems and calculate the translation !t
and rotation R that transform the first coordinate system into
the second. For person tracking, the first set corresponds to
the data points of the sensor and the second set corresponds
to points on the surface of a rigid body. Following [17], the
first set is denoted P = {!pi}, the second one X = {!xi}. Both
sets have the same size with Nx = Np = N and each point
!pi corresponds to point !xi.
Because the sensor data is always corrupted with noise, no

exact solution exists. Instead, the problem is transformed into
the minimization of a sum of squared distances:

f(R,!t) =
1
N

N∑

i=1

||R(!xi) + !t− !pi||2 (1)

For a complete description of how to compute the optimal
translation and rotation, see [18].
The sensor data consists of a list of data points, which

has to be matched to a geometrical description of the body.
To retrieve the ordered list of point pairs needed for the

ICP, the correspondences between data and model have to be
constructed.
This is done by calculating for each data point !pi the geo-

metrically closest point on the model giving !xi. In the second
step the optimal translation and rotation can be estimated and
applied to the model. This process is then repeated until the
absolute value of the transformation is below some threshold.
The Iterative Closest Point steps are:
1) For the given model and the data points calculate the
closest points giving CP0

2) Calculate the sum of squared distances between data
points and model points giving d0(M,CP0)

3) Estimate rotation and translation and apply to the model
4) Calculate new set of closest point with the new position
of the model giving CPi

5) Calculate the sum of squared distances between data
points and model points giving di(M,CPi)

6) If di−1(M,CPi−1)−di(M,CPi) < ε the iteration stops,
otherwise go to step 3.

Note that computation of closest point relations is by far the
most time consuming step in the ICP process, since it includes
a set of geometric calculations for each data point in the point
cloud.

C. Human Body Model
For the tracking system a 3d body model is used. Each

body part is represented with a degenerated cylinder.The top
and the bottom of each cylinder is described by an ellipse.
The ellipses are not rotated to each other and the planes are
parallel.
The overall body model is built in a tree-like hierarchy

starting with the torso as root body part. Each child is
described with a degenerated cylinder and the corresponding
transformation from its parent. Up to now the body model
consists of ten body parts (torso, head, two for each arm and
two for each leg) which is depicted on the left of fig. 2. It
should be mentioned that this body model is not necessarily
restricted to humans, and also other bodies can be modeled
easily.
If the fusion algorithm also incorporates data from feature

trackers (like some vision based algorithms, or magnetic field
trackers that are fixed on the human body), it is required to
identify certain feature points on the human body. This is done
following the H—Anim Specification (see [19]).

D. Joint Model
The joint model is based on the concept of introducing

elastic bands into the body model. These elastic bands repre-
sent the joint constraints. For the ICP algorithm, these elastic
bands can be modeled as artificial correspondences and will
thus be considered automatically in each computation step (see
sec. IV-B.6).
For each junction of model parts, a set of elastic bands

is defined (see fig. 2). These relations set up corresponding
points on both model parts. The corresponding points can then
be used within the model fitting process to adjust the model
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a)

c)

b)

Fig. 2. Different joint type models. Universal Joint 3 DoF a), Hinge Joint 1
DoF + 2 restricted DoF b), Elliptic Joint 3 restricted DoF c)

configuration according to all sensor data input and to the
defined constraints.
This approach allows for modeling of different joint types.

Within the described tracking system, three types are used:
• Universal Joints have 3 full degrees of freedom (e.g.
human shoulder).
Universal joints are modeled by one point-to-point cor-
respondence (one elastic band), see fig. 2 a).

• Hinge Joints have one real degree of freedom, the others
being almost fixed (e.g. elbow or knee).
Hinge joints are modeled by a set of correspondences
which are distributed along a straight line, see fig. 2 b).

• Elliptic Joints have all degrees of freedom highly re-
stricted. An example on the human body is the neck:
Motion is possible in all 3 degrees of freedom, but very
limited in range.
Elliptic joints are modeled by a set of correspondences
distributed along an ellipse, see fig. 2 c).

For details of the joint model, see also [20].

IV. SENSOR FUSION ALGORITHM FOR TRACKING

The goal of the VooDoo tracking system is to track the
posture of a human body in 3d by matching the internal 3d
body model with the current input sensor data. Thus, the
tracking system offers three interfaces: sensor data stream
(input), parameter configuration (input), and current posture
estimation (output). All sensor data formats that can be ex-
ploited are described in section IV-A. The configuration values
we have identified will be described in sec. IV-B along with
the processing steps.
The current posture estimation output is given with respect

to the hierarchical body model defined in sec. III-C. In each
time step, the whole body model is provided. This allows for
changes not only in the body pose (joint angle space), but also
for changes in the model itself (configuration and parameters
of the body model). This may concern scaling of the model for
different persons with varying body heights, or even addition
and deletion of body parts in case of changing tracking targets
or other effects. This can be useful e.g. if the tracked person
is holding and handling a big object, which then can be added
easily to the tracked configuration.
The VooDoo tracking algorithm is depicted in fig. 3. The

next section describes possible input data, while sec. IV-B
depicts the processing steps within the tracking loop.

A. Input data
The proposed tracking algorithm is able to include, process

and fuse different kinds of sensor data (see also fig. 3):
• Free 3d points from ToF-sensors or from pure stereo
depth images. The system has to decide whether to use
these points as measurements of the tracked model. For
a point that is not discarded, the corresponding point on
the model surface is computed.

• 3d points on the human body that are e.g. generated
by a stereo vision system that tracks a person in image
space and generates the corresponding 3d points by stereo
reconstruction.

• 3d points assigned to a single body part may also be
generated by a stereo vision system tracking special body
parts like the face or the hands.

• 3d point-to-point relations are 3d points that can be
assigned to a given point on the tracked human body.
Thus, tracking of special features or points (e.g. with
markers, or magnetic field trackers attached to the human
body) can be integrated.

• 2d point-to-line relations can e.g. be derived from a 2d
image space based tracker. The pixel in the image plane
together with the focal point define a ray in 3d, which
corresponds to the point on the human body that has been
detected in the image.

This data can originate from any sensor that gives data in
the described format. Obviously, all input data has to be
transformed into the tracker coordinate system before it is used
within the system.

B. Processing
For the ICP matching algorithm, a list of corresponding

point pairs has to be set up for each limb (see also sec. III-
B). Therefore, all “free” 3d points have to be analyzed in
order to decide whether they correspond to points on the
tracked model. Otherwise, they are discarded. Additionally, all
given correspondences from other tracking procedures and the
background knowledge on joint constraints have to be added
to the correspondences list. Then, the optimal resulting model
configuration has to be computed. These steps are performed
iteratively until an optimum of the configuration is reached.
Before the input data of one time step is processed, it is

possible to adjust internal model parameters. This can be e.g.
the model scale factor, or particular cylinder sizes. Even limbs
can be added to or removed from the model.
The tracking algorithm and the sensor fusion approach are

now described step by step.
1) Prefiltering free 3d points: The whole point cloud of

free 3d points from used depth sensors is processed in order
to remove all points that are not contained within the bounding
box of the body model (see fig. 3, step BB Check whole body).
This is done on the assumption that the body configuration
changes only locally between two time frames. A parameter
defines an additional enlargement of the bounding box prior
to this filtering step.
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Fig. 3. The complete VooDoo algorithm (“BB” = Bounding Box)

The resulting point list is concatenated with any sensor data
input that has already assigned its measured 3d points with the
tracked body (see sec. IV-A). This results in a list of 3d points
which are close to the body model and thus are candidates for
measurements of the tracked body.
2) Assigning points to limb models: The point list is now

processed in order to assign measured points to dedicated
limb models based on the bounding box of each limb model
(see fig. 3, step BB Check body parts). Again, the bounding
boxes can be enlarged by a parameter to take the maximum
possible displacement into account. Points that do not fall in
any bounding box are again removed. Several behaviors can
be selected for points that belong to more than one bounding
box (overlap): These points are either shared between limb
models, exclusively assigned to one limb or shared only in case
of adjacent limbs. This last method avoids collisions between
limbs that are not directly connected.
The resulting point list can be joined with any sensor data

input that has already assigned its measured 3d points with
dedicated limbs of the tracked body (see sec. IV-A). The
resulting point list contains candidates for measurements of
each limb.
3) Point Number reduction: The resulting point list can

be downsampled before the calculation of the closest points
to reduce the overall number of points (see fig. 3, step
Downsampling). This step is controlled by three parameters:
the sampling factor, and minimum and maximum number of
points per limb. Thus, it is possible to reduce the number of
points for limbs with many measurements, but maintain all
points for limbs which have been measured with only a few
points.
4) Closest point computation: The closest point calculation

is the most time-consuming step in the whole loop. For each
remaining data point, the corresponding model point on the
assigned limb model has to be computed for the ICP matching
step (see fig. 3, step Closest Point). This involves several
geometric operations. Depending on the resulting distance
between data and model point, all points within a given

maximum distance are kept and the correspondence pair is
stored in the output list. All other points are deleted.
3d point-to-point relations from input data (see sec. IV-

A) can now be added to the resulting list, which holds now
corresponding point pairs between data set and model.
5) Addition of 2d measurements: Each 2d measure (e.g.

tracked features in 2d image plane of a camera) of a feature on
the human body defines a ray in 3d which contains the tracked
feature. This fact is used to add the 2d tracking information to
the 3d point correspondences (see fig. 3, step Closest point on
line): For each reference point on the body model, the closest
point on the straight line is computed and added to the list.
6) Joint model integration: The joint model for each junc-

tion is added as artificial point correspondences for each
limb, depending on the limb type (see fig. 3, step Joint
model). According to sec. III-D, the correspondences can be
interpreted as elastic bands which apply dedicated forces to
the limbs to maintain the model constraints. Thus, artificial
correspondences will keep up the joint constraints in the fitting
step.
7) Model fitting: When the complete list of corresponding

point pairs has been set up, the optimal transformation between
model and data point set can be computed according to sec. III-
B (fig. 3, step Least squares). The transformation is computed
seperately for each limb.
When all transformations have been computed, they can be

applied to the model. The quality measure defined in sec. III-B
is used for the fitting. Steps IV-B.1 to IV-B.7 are repeated until
the quality measure is below a given threshold or a maximum
number of steps have been performed.

C. Sensor model

Each used data source has its own stochastic parameters
which have to be taken into account. The described approach
offers a very simple method for this: each input date is
weighted with a measure that describes its accuracy. The ICP
algorithm then incorporates these weights in the model fitting
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step. Thus it is possible to weight a 2d face tracker much
higher than a single 3d point from a ToF camera.
It is important to note that an increased weight for a single

point does not affect the time needed for the computation.

V. EXPERIMENTS AND RESULTS

The described tracking procedure has been implemented and
tested with the sensors described in sec. III-A. The tracking
runs online at a framerate of appr. 10-14 Hz on a Pentium 4
with 3.2 GHz.
Different test series have been performed to evaluate the

VooDoo system: First, the same data sequences have been
processed using different input sensor configurations to test the
fusion, and second, a set of 100 sequences has been recorded
and processed. The tracking result has then been evaluated
manually for consistency with the recorded body movements
to evaluate the overall system performance.
Fig. 4 shows example images from a sequence of 15 sec-

onds containing a “bow” and a “wave” movement. The first
row shows the scene image, which has been also used for
segmentation of face and hands. The second and third row
contain the tracking result with 3d data only (row 2) and 2d
data only (row 3), where the 3d data has been acquired with
the ToF camera and the 2d data is derived from skin color
segmentation in one image of the stereo camera. The rays in
3d defined by the skin color features can be seen here. Row 4
shows the tracking result with both inputs used.
For the shown results, the following weights for the input

data have been used: 3d data points w = 1.0, face tracker
w = 30.0, hand tracker w = 20.0.
Different conclusions can be drawn from the results:
• Huge movements are easily detected by the 3d data based
tracking: The “bow” movement is tracked quite well. On
the other hand, fast movements with the extremities may
cause failures when only 3d data is used, as with the
“wave” movement.

• Tracking only with a 2d feature tracker works quite well
for the tracked body parts. Nevertheless, the body config-
uration can not be determined only from 2d features (see
frame 81). To do this, a lot more background information
on the human body would be needed.

• Fusion of both input sensors in 3d shows very good
results: Huge body movements as well as fine and fast
movements of the extremities can be recognized, and the
algorithm is able to reliably track the body configuration.

The second evaluation step consisted in recording a set
of 100 sequences which contained ten different movements
from several persons: e.g. point somewhere, walk, wave, shake
hands with somebody, bow or clap. The tracking result has
then been evaluated and classified manually into one of three
classes: (0) Tracking lost somewhere within the sequence, (1)
acceptable deviations like a temporally lost (but recovered)
forearm within a walking sequence, and (2) good congruence
between original and resulting model movements. The evalua-
tion result is depicted in tab. I, the average result is $ = 1.58.

TABLE I
EVALUATION RESULT WITH 100 SEQUENCES

Tracking result 0 1 2
# of sequences 5 32 63

VI. DISCUSSION
The proposed tracking approach does not include any back-

ground knowledge apart from kinematic constraints, i.e. no
assumptions like “the torso stands always upright” are made.
This implies on the one hand that all possible configurations
can be recognized; on the other hand, the tracking can only
succeed if the input data contains all necessary information to
determine the human posture, and no tracking hypothesis can
be generated for temporarily invisible body parts or ambiguous
configurations.
The current framerate is appr. 10-14 Hz. The computation

time depends on several factors: It scales linearly with the
number of measured 3d points on the model; background
points are removed in an early stage and do not distinctly
influence framerate. It also depends on the number of ICP
steps performed in each frame, which is appr. 3-15, depending
on the desired accuracy and the speed of the movement.
Sec. V has shown that tracking based only on the mea-

surements of the ToF camera is not sufficient. Especially
movements along the main axis of the body (e.g. sitting down)
can hardly be detected, which substantiates again the use of
different data inputs for a fusion algorithm.

VII. CONCLUSION
This paper has proposed a new way for fusion of different

input cues for tracking of a human body. The proposed
algorithm is able to process 3d as well as 2d input data
from different sensors like ToF-cameras, stereo or monocular
images. It is based on a 3d body model which consists of a set
of degenerated cylinders, which are connected by an elastic
bands joint model. The proposed approach runs in realtime and
is able to track complex movements like walking or bowing.
It even recognizes postures with the arms outstretched directly
towards the sensor.
The described way of adding 2d measurements to a 3d

matching process is one of the main innovations. The idea of
adding artificial point correspondences from non-3d sensors or
background knowledge to the 3d matching process can even
be exploited further: Future works will investigate methods
to include valid ranges for joints via addition of artificial
correspondences. Other unsolved issues are the initialization
process, or the computation of an optimal scale factor for the
model to incorporate the ability to track persons of different
height without manually resizing the model.
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[1] M. Ehrenmann, R. Zöllner, O. Rogalla, S. Vacek, and R. Dillmann,

“Observation in programming by demonstration: Training and execution
environment,” in Proceedings of Third IEEE International Conference
on Humanoid Robots, October 2003, Karlsruhe, Karlsruhe and Munich,
Germany, 2003.

COGNIRON FP6-IST-002020                                Appendix

Appendix page 46 of 101



Frame # 5 50 81 120 129 144

Scene

3d data

2d data

Fusion
Fig. 4. Experiments with different sensor inputs, taken from a sequence containing a “bow” and a “wave” movement. The frame number is displayed on
the top. The used 2d and 3d correspondences have been added to the resulting model images.

[2] S. Calinon and A. Billard, “Recognition and reproduction of gestures
using a probabilistic framework combining pca, ica and hmm,” in
Proceedings of the International Conference on Machine Learning
(ICML), Bonn, Germany, 2005.

[3] J. Fritsch, M. Kleinehagenbrock, S. Lang, T. Plötz, G. A. Fink,
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