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1 The Agent-based Perspective

Imitation is a powerful learning mechanism and a general agent-based approach
must be used in order to identify the most interesting and significant problems,
rather than the prominent ad hoc approaches in imitation robotics research so
far. The traditional approach concentrates in finding an appropriate mechanism
for imitation and developing a robot control architecture that identifies salient
features in the movements of an (often visually observed) model, and maps
them appropriately (via a built-in and usually static method) to motor outputs
of the imitator [7, 8]. Model and imitator are usually not interacting with each
other, neither do they share and perceive a common context. Effectively this
kind of approach limits itself to answering the question of how to imitate for
a particular robotic system and its particular imitation task. This has led to
many diverse approaches to robot controllers for imitative learning that are
difficult to generalize across different contexts and to different robot platforms.
In contrast to the above, the agent-based approach for imitation considers the
behaviour of an autonomous agent in relation to its environment, including other
autonomous agents. The mechanisms underlying imitation are not divorced
from the behaviour-in-context, including the social and non-social environments,
motivations, relationships among the agents, the agents individual and learning
history etc. [4].

Such a perspective helps unfold the full potential of research on imitation and
helps in identifying challenging and important research issues. The agent-based
perspective has a broader view and includes five central questions in designing
experiments on research on imitation: who to imitate, when to imitate, what to
imitate, how to imitate and how to evaluate a successful imitation. A systematic
investigation of these research questions can show the full potential of imitation
from an agent-based perspective. In addition to deciding who, when and what
to imitate, an agent must employ the appropriate mechanisms to learn and
carry out the necessary imitative actions. The embodiment of the agent and
its affordances will play a crucial role, as stated in the correspondence problem
[12]:
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Given an observed behaviour of the model, which from a given start-
ing state leads the model through a sequence (or hierarchy [or pro-
gram]) of sub-goals in states, action and/or effects, one must find
and execute a sequence of actions using ones own (possibly dissim-
ilar) embodiment, which from a corresponding starting state, leads
through corresponding sub-goals - in corresponding states, actions,
and/or effects, while possibly responding to corresponding events.

This informal statement1 of the correspondence problem draws attention
to the fact that the agents may not necessarily share the same morphology or
may not share access to the same affordances even among members of the same
“species”. This is true for both biological agents (e.g. differences in height
among humans) and artificial agents (e.g. differences in motor and actuator
properties). Having similar embodiments and/or affordances is just a special
case of the more general problem. In order to study the correspondence problem
we developed the alice (Action Learning via Imitation between Corresponding
Embodiments) generic imitation framework, and implemented it in different
simple software testbeds2.

2 ALICE Overview

The imitative performance of an agent with a dissimilar embodiment to the
model will not be successful unless the correspondence problem between the
model and the imitator is (at least partially) solved.

To address this in an easy to generalize way, we developed alice (Action
Learning for Imitation via Correspondences between Embodiments) as a generic
framework for building up correspondences based on any generating method for
attempts at imitation. This framework is related to statistical string parsing
models of social learning from ethology [3] and also the Associative Sequence
Learning (ASL) theory from psychology [6].

The alice framework (shown in Fig. 1) creates a correspondence library that
relates the actions, states and effects of the model (that the imitator is being
exposed to) to actions (or sequences of actions) that the imitator agent is capa-
ble of, depending on its embodiment and/or affordances. These corresponding
actions are evaluated according to a metric and can be looked up in the library
as a partial solution to the correspondence problem when the imitator is next
exposed to the same model action, state or effect. It is very important to note
that the choice of metric can have extreme qualitative effects on the imitators
resulting behaviour [1], and on whether it should be characterized as ‘imitation’,
‘emulation’, ‘goal emulation’, etc. [12].

1 For a formal statement of the correspondence problem relating to the use of different error
metrics and for other applications, see also [9, 10, 11]

2 These testbeds were implemented using the Swarm agent simulation system (http:\\wiki.
swarm.org).
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Fig. 1: The ALICE framework. The percepts of the imitator arising from the
model’s behavior (actions, states and effects) and proprioceptive informa-
tion (state) of the imitator form a key that is used by the correspondence
library (if it matches any of the existing entry keys at that stage of the
library’s growth) and the generating mechanism to produce a sequence
of one or more proposed action(s). These are evaluated using a metric,
and the correspondence library is updated accordingly with the result-
ing suggested action(s) for the imitator. In parallel (shown in the figure
using a gray color), the history mechanism can be used to discover any
action sequences from the history, that can improve any of the exist-
ing library entries. The history is composed by the sequence of all the
actions performed so far by the imitator.
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2.1 The Generating Mechanism

The generating mechanism is used in the alice framework to produce the con-
tents of the correspondence library; it can be any algorithm or mechanism that
generates actions (or sequences of actions) that are valid (i.e. within the agent’s
repertoire) and possible in the context of the imitator. Sophisticated applica-
tions of alice can benefit by replacing, in a modular way, this action generating
mechanism with a more sophisticated one, appropriate to the given application.
In the alice framework, no direct feedback from the model is used, instead the
metrics are used to evaluate the imitation attempts.

2.2 The History Mechanism

If only the actions found by the generating mechanism are used to build-up
the correspondence library, the performance of the imitator would be directly
limited by the choice of the algorithm. Moreover, some of the stored actions,
although valid solutions to the correspondence problem, may become invalid in
certain contexts. The history mechanism helps to overcome these difficulties:
The imitator can examine its own history to discover further correspondences
without having to modify or improve the generating algorithm used. These
correspondences will be sequences of actions since, no matter how simplistic,
the generating mechanism is required to be able to explore the entire search-
space of single actions. An agent’s history is defined as the list of actions
that were performed so far by the agent while imitating the model together
with their resulting state and effects. This kind of history provides valuable
experience data that can then be used to extract useful mappings to improve
and add to the correspondence library created up to that point. This approach
can be useful to overcome possible limitations of the generating mechanism [1].

2.3 Building up the correspondence library

When the imitating agent is exposed to each action, state and effect that com-
prises the model behaviour, the generating mechanism produces a candidate
corresponding action. If there is no entry in the correspondence library related
to the current action, state and effect of the model, a new entry is created, using
these as entry keys with the generated action as the (initial) solution3.

If instead an entry already exists, the new action is compared to the stored
action4. If the generated action is worse, according to the metric used, then it is
discarded and the existing action from the correspondence library is performed.
If on the other hand the new action is better, then it is performed by the agent
and the library entry is updated. This could mean that the new action simply
replaces the already existing one, or is added as an alternative solution.

3 More precisely, the contents of the perceptual key depend on the metric the agent is using,
for example each of the keys will only contain state(s) and action(s) if a composite state-action
metric is used.

4 There is generally more than one stored corresponding action (or sequence of actions) for
each entry, reflecting alternative ways to achieve the same result.
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Fig. 2: Two Chessworld examples. Two imitator agents (solid paths), a
Bishop (left) and a Knight (right) attempt to imitate the movements
of the model Queen agent (dotted path).

Over time as the imitating agent is being exposed to the model agent the cor-
respondence library will reflect a partial solution to he correspondence problem
that can be used to achieve a satisfactory imitation performance. Effectively
alice provides a combination of learning and memory to help solve the corre-
spondence problem. There is generalization in that the learned corresponding
actions (or sequence of actions) can be reused by the imitator in new situations
and contexts.

A more detailed description of the alice framework can be found in [2].

3 The Chessworld Testbed

The creation of Chessworld was inspired by the need to implement a shared
environment for interacting agents of different embodiments affording different
relationships to the world. In the rules of the game of chess, each player controls
an army of chess pieces consisting of a variety of different types with different
movement rules. We borrow the notion of having different types of chess pieces
able to move according to different movement rules, and we treat them as agents
with dissimilar embodiments moving on the chequered board. Note that the
actual game of chess is not studied. We simply make use of the familiar context
of chess in a generic way, to illustrate the correspondence problem in imitation.

The range of possible behaviours by the chess agents is limited to movement-
related ones. As a model agent performs a random walk on the board, an
imitator observes the sequence of moves used and the relevant displacements
achieved and then tries to imitate them, starting from the same starting point.
Considering the moves sequentially the agent will try to match them, eventually
performing a similar walk on the board. This imitative behaviour is performed



3 The Chessworld Testbed 6

after exposure to a complete model behaviour with no obstacles present, neither
static (e.g. walls) nor dynamic (e.g. other moving chess pieces), besides the edges
of the board which can obstruct movement.

An action for a given agent is defined as a move from its repertoire, resulting
in a relative displacement on the board. For example, a Knight agent can
perform move E2N1 (hop two squares east and one square north) resulting in
a displacement of (−2, +1) relative to its current square.

Addressing what to imitate, the model random walk is segmented into rela-
tive displacements on the board by using different granularities. For example,
end-point level granularity ignores all the intermediate squares visited and em-
ulates the overall goal (i.e. cumulative displacement) of the model agent. In
contrast, path level granularity not only considers all the squares visited by the
model but also the intermediate ones that the chess piece ‘slides across’ on the
chessboard while moving. Between these two extremes, trajectory level granu-
larity considers the sequence of relative displacements achieved by the moves of
the model during the random walk.

Depending on the embodiment as a particular chess piece, the imitator agent
must find a sequence of actions from its repertoire to sequentially achieve each of
those displacements. The assessment of how successful a sequence is in achiev-
ing a displacement and moving the agent as close as possible to the target
square can be evaluated using different simple geometric metrics (Hamming
norm, Euclidean distance and infinity norm) that measure the difference be-
tween displacements on the chessboard.

3.1 ALICE in Chessworld

The alice realization in Chessworld (seen in Fig. 3) corresponds model actions
(moves that result in a relative displacement of the chess piece on the board) to
actions (or more probably sequences of actions) that can be performed by the
imitator. The generating mechanism is a simple greedy algorithm, returning
sequences of actions from the imitator agent’s repertoire. The list of past moves
performed by the imitator is defined as the history, from which the agent’s
history mechanism is looking for sequences of actions that can achieve the same
relative displacement as model action entries in the correspondence library. The
history mechanism is used in parallel to take advantage of this experiential data,
compensating for the generating mechanism not allowing moves that locally
might increase the distance, but globally reduce the error, within the generated
sequences. The success and character of the imitation observed can be greatly
affected by agent embodiment, together with the use of different metrics and
sub-goal granularities.

For a more detailed description of Chessworld and the alice implementation
in this testbed, see [1].
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Fig. 3: The ALICE framework as realized in the Chessworld testbed.
Note that compared to the generic version of the framework (shown in
Figure 1), proprioceptive information from the imitator is not used here,
as the realization of the alice framework in Chessworld only considers
the action aspects of the agent’s behavior and not the state or the effects.
Other components are as explained in Fig. 1.

4 The Rabit Testbed

The Rabit (Robotic Arm emBodiment for Imitation Testbed) environment was
created as simple, yet ‘rich enough’ to allow for several dissimilarly embodied
model and imitator agents to be considered. A Rabit agent (see Fig. 4) occupies
a two-dimensional workspace and is embodied as a robotic arm that can have
any number of rotary joints, each of varying length. Each agent embodiment
is described by the vector L = [ℓ1, ℓ2, ℓ3 · · · , ℓn], where ℓi is the length of the
ith joint. There are no complex physics in the workspace and the movement
of the arms is simulated using simple forward kinematics but without collision
detection or any static restraints (in other words, the arms can bend into each
other). Our intention is to demonstrate the features of the imitative mechanism
and not to build a faithful simulator.

An action of a given agent is defined as a vector describing the change of
angle for each of the joints, A = [α1, α2, α3, · · · , αn], where n is the number of
its joints. These angles are relative to the previous state of the arm and can
only have three possible values, +10◦ (anti-clockwise), 0◦ or −10◦ (clockwise).

A state of an agent is defined as the absolute angle for each of the joints,
S = [σ1, σ2, σ3, · · · , σn], where n is the number of its joints. A distinction can
be made between the previous state and the current state (the state of the arm
after the current action was executed). As a result of the possible actions, the
absolute angle at each joint can be anywhere in the range of 0◦ to 360◦ (modulo
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Fig. 4: Example embodiment of a Rabit agent. A two-joint robotic arm,
with arms of length ℓ1 and ℓ2, moving from state S to state S′ to state
S′′, as it sequentially performs actions A, A′, and A′′. Note that the
effects are not shown in this figure.

Fig. 5: Different examples of Rabit behaviours. Shown are four different
effect trails (the agent embodiment is not shown), drawn by the end tip
of the each agent manipulator arm. All agents shown have the same
embodiment L = [20, 20, 20].

360◦) in but only in multiples of 10◦.
The end tip of the arm can leave a trail of ‘paint’ on the workspace, as it

moves along the workspace. The effect is defined as a directed straight line
segment connecting the end tip of the previous and the current states of the
arm (approximating the paint trail). The effect is internally implemented as a
vector of displacement E = (xc −xp, yc −yp), where (xp, yp) and (xc, yc) are the
end tip coordinates for the previous and current state respectively.

The model behaviour is broken down as a sequence of actions that move
the robotic arm of the agent from the previous state to the current state, while
leaving a behind a trail of paint as the effect. The nature of the experimental
testbed with the fixed base rotary robotic arms favours circular looping effects
and the model behaviours used in the experiments were designed as such (see
Fig. 5).

Each complete behaviour (or “pattern”) that returns the arm to its initial
state observed by the imitator is called an exposure, and the imitator is exposed
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to repeated instances of the same behavioural pattern. At the beginning of each
new exposure it is possible to reset the imitating agent to the initial state. This
resetting is called synchronization in our experiments.

4.1 Metrics

The imitating agents can perceive the actions, states and effects of the model
agents, and also their own actions, states and effects, and therefore we define
several metrics to evaluate the similarity between them. Ideally the metric value
should be zero, indicating a perfect match. An example of using the different
metrics described below is shown in Fig. 6.

4.1.1 State metric

The state metric calculates the average distance between the various joints of
an agent (posed in a particular state) and the corresponding joints of another
agent5 (posed in a different state) as if they were occupying the same workspace.
Ideally this distance should be zero when the arms take corresponding poses,
but this may not be possible due to embodiment differences. Using forward
kinematics, the coordinates of the ends for each joint are found.

xi =

i−1
∑

j=1

xj + ℓi cos(

i
∑

j=1

σj) (1a)

yi =

i−1
∑

j=1

yj + ℓi sin(

i
∑

j=1

σj) (1b)

If both agents have the same number of joints the correspondence between
them is straightforward; the Euclidean distance for each pair is calculated, the
distances are then all summed and divided by the number of joints to give the
metric value.

di =
√

(xmodel

i − ximitator

i )2 + (ymodel

i − yimitator

i )2 (2)

µstate =
1

n

n
∑

i=1

di (3)

If the agents have a different number of joints, then some of the joints of
the agent with more are ignored. To find which joint corresponds with which,
the ratio of the larger over the smaller number of joints is calculated, and if
not integer, is rounded to the nearest one. The ith joint of the agent with the
smaller number of joints, will correspond to the (ratio × i)th joint of the agent
with the larger number of joints. For example if one of the agents has twice the
number of joints, only every second joint will be considered.

5 The state metric can be used not only between different agents, but also to evaluate the
similarity between two states of the same agent. This is true for the action and the effect
metric as well.
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Effect Metric

State before 2 = [60,−10,30]
State before 1 = [20,30,40]

State before Metric

State after 2 = [50,−20,40]
State after 1 = [30,30,50]

State after Metric

Action2 = [−10,−10,10]
Action1 = [10,0,10]

Action Metric

State after = [50,−20,40]
State before = [60,−10,30]
Action = [−10,−10,10]
Agent2

State after = [30,30,50]
State before = [20,30,40]
Action = [10,0,10]
Agent1

Fig. 6: An example of using the metrics to compare actions, states
(before and after) and effects between two Rabit agents, Agent1

(top, left) and Agent2 (top, right). The figure visualizes the vectors
used (depending on the metric) and the distances that are summed and
then averaged to give each metric value. Both agents have the same
embodiment L = [20, 20, 20].
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Fig. 7: The ALICE framework as realized in the Rabit testbed. Note
that compared to the generic version of the framework (shown in Figure
1), the history mechanism is not used in parallel to update the correspon-
dence library, as the realization of the alice framework in Rabit testbed
considers only single actions and not sequences. Other components are
as explained in Fig. 1.

4.1.2 Action metric

For the action metric, the same algorithm as the one described above for the
state metric is used, but considering the action vectors instead of the state
vectors. The value in the case of the state metric represents an absolute position
error; for the action metric, it represents the relative error between the changes
of the state angles, due to the compared actions.

4.1.3 Effect metric

The effect metric is defined as the Euclidean length of the vector difference
between two effects (x1, y1) and (x2, y2).

µeffect =
√

(x1 − x2)2 + (y1 − y2)2 (4)

4.2 ALICE implementation

In the Rabit implementation of alice, each entry in the correspondence library
can use as a key the action/state/effect of the observed model agent and the
current state of the imitator, as perceptual and proprioceptive components re-
spectively. The key can be composed of just a single of these aspects (e.g.
action only), or a combination (e.g. action, state and the imitator’s state for
proprioception).

For the generating mechanism, an algorithm that returns single random (yet
valid) actions is used. It is possible to replace it with a more complex generating
mechanism (i.e. inverse kinematics), but the idea is to have a mechanism that
simply returns valid actions from the search space. In order to speed up the
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learning, it is possible to generate more than one random action and choose a
best one.

It is possible not to require an exact match for the perceptual and/or the
proprioceptive components of the trigger key, but a loose one that is “close
enough”, controlled by a threshold. We call this loose perceptual matching and
we hypothesized that it should support learning and generalization.

In the current implementation, each entry can store up to three possible
corresponding actions that can be seen as possible alternatives6.

For a more detailed description of Rabit and the alice implementation in
this testbed, see [2].

5 Experiments on aspects of imitation

Using the robotic arm testbed we conducted various experiments to study the
possibility of social transmission of behaviours through heterogeneous agents,
the effect of proprioception, loose perceptual matching and synchronization on
the imitation learning performance, and also the robustness of the alice mech-
anism when the imitator embodiment changes during the learning process, and
also after achieving a successful imitative performance.

5.1 Cultural transmission of behaviours and emergence of

‘proto-culture’

Besides being a powerful learning mechanism, imitation broadly construed is
required for cultural transmission (e.g. [5]). Transmission of behavioural skills
by social learning mechanisms like imitation may also be fundamental in non-
human cultures, e.g. in chimpanzees [14], whales and dolphins [13]. The robotic
arm testbed makes it possible to study examples of behavioural transmission via
imitation, with an imitator agent acting as a model for another imitator. If the
original model and the final imitator have the same embodiment but the inter-
mediate imitator a different one, we can look at how the different embodiment
and the choice of metrics for the evaluation of a successful imitation attempt
can affect the quality of the transmitted behaviour.

The example shown in Fig. 8 shows such a transmission of the original model
behaviour via an intermediate agent. Although the intermediary has a different
embodiment, the original model and final imitator have the same embodiment,
and the model behavioural pattern is transmitted perfectly. This is partially
helped by the use of the action metric for evaluation to overcome the dissim-
ilar embodiment of the transmitting agent. This example serves as proof of
the concept that by using social learning and imitation, rudimentary cultural
transmission with variability is possible among robots, even heterogeneous ones.

6 Note that the history mechanism which also considers sequences of past imitative attempts
when updating the correspondence library entries is not implemented in the Rabit testbed since
simple action to action correspondence suffices here. In contrast, corresponding sequences of
actions are necessary in Chessworld as most chess pieces are unable to move as far as their
model using only a single action.
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Fig. 8: An example of social transmission. The original model (L =
[20, 20, 20]) is shown to the left. In the middle, an imitator (L = [30, 30])
acts also as a model for the imitator on the right (L = [20, 20, 20]). Both
imitators use the action metric.

The choice of metrics and the particular embodiment of the agents greatly af-
fect the qualitative aspects of imitation, making not every combination suitable
for passing on model behaviours, besides crucial aspects of the model behaviours
themselves. Note that in Fig. 8, the intermediate agent imitates qualitatively
differently, due to its dissimilar embodiment. If the particular embodiment of
the intermediate agent greatly distorts the model pattern, then such a trans-
mission might be impossible.

The examples shown in Figs. 9 and 10 illustrate the emergence of ‘proto-
culture’ in a cyclically ordered chain of three and eight imitators with no overall
model. The agents imitate only the agent clockwise from them, using the action
metric. Initially they move randomly, as the generating mechanism is trying to
discover correspondences for the (also random) actions of their model. Over
time, they are able to imitate each other’s actions and a stable behavioral pat-
tern emerges.

Different runs yield different emergent culturally sustained behaviors. The
location and orientation of the emergent pattern is different in each agent’s
workspace, since the location and orientation are irrelevant to the action metric;
they will depend on the state of the agent at the moment that it has solved its
correspondence problem. Each agent’s state will vary as a result of the agents
not synchronizing.

The cultural transmission of skills through a heterogeneous population of
robots using the alice framework could potentially be applied to the acquisi-
tion and transmission of skills in more complex populations of robots, involved
in carrying out useful tasks, e.g. on the shop-floor of a factory, with new ro-
bots coming and going acquiring behaviors by observation without having to
be explicitly programmed and without humans having to develop different con-
trol programs for different types of robots that need to perform the same task.
Instead, the robots would autonomously create their own programs (using so-
cial learning) and correspondence libraries, even as new types of robots with
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Fig. 9: Examples of emerging ‘proto-culture’. Two groups of three Rabit

agents. All the agents on the left have L = [20, 20, 20] and all the agents
on the right have L = [15, 15, 15, 15]. Each agent imitates the agent on
its left (anti-clockwise) and acts as a model for the agent on its right
(clockwise). The emergent behaviour is composed of a single action.
[10, 10, 0] left, [10,−10,−10,−10] right.

different embodiments come and go from the population.

5.2 Synchronization

At the end of each exposure of the imitating agent to the model, it is possible
to reset the imitator arm to the same initial position, as a result synchronizing
the imitation attempt to the model behaviour. We conducted ten experimen-
tal runs, each with two imitating agents trying to imitate a model agent, one
of them synchronizing with the model by resetting to the initial outstretched
initial state after the completion of each exposure, and the other starting each
attempt from the final reached state of the previous attempt (ideally the same
as the initial state, as all the model patterns are designed as closed loops). Both
model and imitator agents had the same embodiment (L = [20, 20, 20]) and the
metric used was a weighted half-half combination of the action and state met-
rics. Both imitating agents use proprioception and allow for a 10% margin of
looseness for matching the trigger keys (see section 5.4 below). The generating
mechanism was creating five random actions to choose from. Each run lasted
twenty exposures and the maximum metric value for each exposure was logged.
The ratio of the maximum error of the imitating agent that uses synchroniza-
tion over the maximum error of the agent that does not reset back the start
position at the end of each exposure can be seen in the bottom panel of Fig.
11, constantly decreasing and below 1. This indicates that the numerator is
minimized faster than the denominator, indicating that it is very difficult for an
imitating agent that does not synchronize to reach again states relevant to the
model pattern if the initial imitation attempts are not successful. This reduces
the chance to update and improve the relevant correspondence library entries as
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Fig. 10: More examples of emerging ‘proto-culture’. Two groups of eight
Rabit agents. All the agents on the left have L = [15, 15, 15, 15]. The
agents on the right have alternating embodiments L = [30, 30] and
L = [15, 15, 15, 15]. Each agent imitates the agent on its left (anti-
clockwise) and acts as a model for the agent on its right (clockwise).
The emergent behaviour is composed of a single action. [10,−10,−10, 0]
left, [10, 10] and [0, 10, 0, 10] right

the agent wanders with no point of reference. If the state space is large enough,
it is possible for the agent to get completely lost.

5.3 Proprioceptive matching

The correspondence library entry keys can contain both perceptive (the action,
state and effect of the model agent) and proprioceptive (the imitators own state
at the time of the observation) data. It is possible to ignore the prioperception
and trigger the keys based only on the perception.

We conducted ten experimental runs, each with two imitating agents trying
to imitate a model agent, one of them using proprioception, the other not.
Both model and imitator agents had the same embodiment (L = [20, 20, 20])
and the metric used was a weighted half-half combination of the action and
state metrics. Both imitating agents used a loose perceptual matching of 10%
(see section 5.4 below) and the generating mechanism was creating five random
actions to choose from. Each run lasted twenty exposures and the maximum
error metric value for each exposure was logged.

The ratio of the maximum error per exposure of the imitating agent that
does not use proprioceptive matching over the maximum error of the imitating
agent that does can be seen in Fig. 12 (bottom panel), constantly decreasing and
below 1. This indicates that the numerator is minimized faster than the denom-
inator. This indicates that ignoring the proprioceptive component improves the
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Fig. 11: Experiments comparing the use of synchronization. The av-
erage maximum error metric value of robotic agents over 10 exposures
using synchronization (top panel) vs. not using synchronization (middle
panel). The ratio of the maximum error per exposure of the imitating
agent using synchronization over the maximum error of the imitating
agent that does not use synchronization (bottom panel) indicates a
comparative many-fold reduction of error with use of synchronization.
In each panel, the thicker line shows the average values of all the ten ex-
periments, with the bars indicating the standard deviation. Both model
and imitator agents have the same embodiment L = [20, 20, 20] and the
imitator agents use a half-half composite of the action and state metrics.
Both imitators use proprioception and allow for 10% loose perceptual
matching.
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Fig. 12: Experiments comparing using and not using proprioception.
The maximum error metric value of robotic agents over 10 exposures
not using proprioception (top panel) vs. using proprioception (middle
panel) when searching through the correspondence library entry keys.
The ratio of the maximum error per exposure of the imitating agent
not employing proprioception over the maximum error of the imitating
agent that does (bottom panel) indicates some comparative reduction
of error when not using proprioception. In each panel, the thicker
line shows the average values of all the ten experiments, with the bars
indicating the standard deviation. Both model and imitator agents
have the same embodiment L = [20, 20, 20] and the imitator agents use
a half-half composite of the action and state metrics. Both imitators
synchronize and allow for 10% loose perceptual matching.
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performance rate. Ignoring the proprioceptive component of the entry keys will
confine the number of entries only to the number of different actions, states and
effects that define each model pattern, resulting in a much smaller search space.
This reduced number of entries in the correspondence library will have the op-
portunity to update and improve more often, and explains the performance rate
improvement. However given enough time, it is expected that proprioception
would allow the imitator to eventually learn much finer control in distinguishing
appropriate choices of matching actions depending on its own body state7.

5.4 Loose perceptual matching

When the alice mechanism looks in the correspondence library to find the
relevant entry to the currently perceived model actions, states and effects, it is
possible not to require an exact match of the entry keys, but one that is close
enough, depending on a threshold. We conducted ten experimental runs under
the same conditions. Each run consisted of twenty exposures to the model
behaviour for two imitating agents, one of them accepting a 10% margin of
looseness for the trigger keys and the other one requiring an exact match, both
using proprioception. Model and imitator agents have the same embodiment
(L = [20, 20, 20]) and the metric used was a weighted half-half combination of
the action and state metrics. The generating mechanism for the imitating agents
was creating five random actions to choose from. The maximum metric value
for each exposure was logged and is shown in Fig. 13, using loose matching (top
panel) and exact matching (middle panel).

The ratio of the maximum error of the agent that uses loose over the agent
that uses exact matching can be seen in the bottom panel of Fig. 13, constantly
decreasing and below 1. This indicates that the numerator is minimized faster
than the denominator, showing a faster improvement of performance for the
imitator agent using loose matching. Examining the middle panel of Fig. 13,
there is no obvious performance improvement in this early stage of learning,
although the same amount of time is enough to minimize the error for the
agent using a loose matching in the top panel. This is mostly due to the large
number of entries created in the correspondence library due to the different
proprioceptive states that the agent visits during the imitation attempts. The
exact match requirement will create a large number with the same perceptive
but different proprioceptive part of the keys.

5.5 Changes in the agent embodiment

For each agent, vector L defines its embodiment, the number of arm segments
and their lengths. We can define a growth vector G, of same size as L. By adding
(or subtracting) these two vectors we get L, a new embodiment with modified
joint lengths, simulating the development of the agent. The growth vector can
either increase or reduce the length for each of the joints. The number of joints

7 In this implementation, using proprioception increases the size of the search space by a
factor of 36 to the nth power, where n is the number of joints in the imitator.
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Fig. 13: Experiments comparing the use of loose perceptual matching.
The average maximum error metric value of robotic agents over 10
exposures using loose matching (top panel) vs. using exact matching
(middle panel). The ratio of the maximum error per exposure of the
imitating agent using loose matching over the maximum error of the
imitating agent that uses exact matching (bottom panel) indicates a
comparative many-fold reduction of error with use of loose matching.
In each panel, the thicker line shows the average values of all the ten
experiments, with the bars indicating the standard deviation. Both
model and imitator agents have the same embodiment L = [20, 20, 20]
and the imitator agents use a half-half composite of the action and state
metrics. Both imitators synchronize and use proprioception.
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Fig. 14: Example of an agent imitating with a changing embodiment.
The initial embodiment of the imitator is L = [20, 20, 20] (top left).
Shown are the effect trails of the imitator (left to right, top to bot-
tom) for ten consecutive imitation attempts. A growth vector G =
[−1,−1,−1] is used.The final embodiment is L = [10, 10, 10] (bottom
right).

must remain constant because such a change makes the existing contents so far of
the correspondence library invalid8. The growth vector can be used to simulate
the body development of the imitator agent during the learning process.

Figs. 14 to 16 show examples of imitator agents that try to imitate a model
while a growth vector is used after each imitation attempt, modifying their
embodiment9. In these examples, the growth vecors equally expand or shorten
the length of the imitator’s arm segments. Although the imitator constantly
changes embodiment, the learning process is relatively unaffected, resulting in
a robust imitation performance.

The metric used in these examples is the action metric, compensating for
the large range of dissimilar embodiments, and the difference in what they
afford. The choice of metrics greatly affects the character and quality of the
imitation, especially between dissimilar embodiments. For example if the effect
metric is used instead of the action metric, very poor results are observed, as
the paint strokes created by the shorter joints cannot successfully compensate
for the longer strokes achieved by the longer arms of the reference model. Fig.
17 shows an example of the qualitative effect if the state metric is used, instead
of the action metric. The growth vector used is G = [0,−1, 0], shortening
the imitator’s middle arm segment. The action metric is less affected by the
embodiment modification, resulting in a “smaller” version of the model’s effect
trail (shown in gray). In contrast, the imitator using the state metric effectively

8 A robotic arm with a different number of joints would not be able to perform the stored
actions, as they describe the angle changes for each of the existing arm joints when those
actions were created.

9 The model agents preserve a constant embodiment.
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Fig. 15: Example of an agent imitating with a changing embodiment.
The initial embodiment of the imitator is L = [10, 10, 10] (top left).
A growth vector G = [1, 1, 1] is used.The final embodiment is L =
[20, 20, 20] (bottom right).

Fig. 16: Example of an agent imitating with a changing embodiment.
The initial embodiment of the imitator is L = [10, 10, 10] (top left).
A growth vector G = [1, 1, 1] is used.The final embodiment is L =
[20, 20, 20] (bottom right).
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Action metric State Metric

Fig. 17: Qualitative effect of the metric used by an imitating agent
that changes embodiment. Both imitator agents have the same
initial embodiment as the model (L = [20, 20, 20]). The figure showns
the imitators after ten imitation attempts, having used a growth vector
G = [0,−1, 0] after each exposure, with modified embodiments L =
[20, 10, 20]. The imitator on the left used the action metric, while the
imitator on the right used the state metric. The superimposed grey
trail shows the model effect pattern for qualitative comparison.

tries to conserve the shape of the pattern by performing actions that acheive
similar states.

These examples show that the alice mechanism can be robust enough (with
a certain tolerance) to compensate for embodiment changes during the initial
learning stage (or even later, if the imitator can be again exposed to the model).

6 Conclusions and Discussion

In nature, many organisms’ bodies grow and change in the course of their lives.
Still the ones that learn socially are able to retain and adapt socially trans-
mitted capabilities despite these changes, whether injurious or natural, to their
embodiment. Robots too and other artificial agents that learn socially could
benefit from such robustness to embodiment changes. Such a capacity to adapt
socially learning despite embodiment change has been demonstrated here via an
artificial intelligence learning mechanism framework (ALICE), where the learn-
ing is guided by previous experience and evaluation according to given metrics
to solve a correspondence problem.

We also showed that loose perceptual matching and synchronization with the
demonstrator each resulted in faster learning with lower error rates. Counter-
intuitively, in the experiments here use of proprioception in building up a cor-
respondence slowed learning. This is most likely due to the larger state space
— there is more to learn if proprioception is employed; however, we hypothe-
size that further work will show that its employment is ultimately beneficial for
longer term learn in more complex scenarios.

The work here demonstrates the principle that artificial social learning mech-
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anisms, such as implementations of ALICE, for solving the correspondence prob-
lem can be used in populations of robots or agents, to achieve cultural trans-
mission in such populations, even heterogeneous ones consisting of individuals
whose embodiments are dissimilar. This may in the future prove useful in the
autonomous social learning and adaptation of groups of robots, on factory shop
floor or elsewhere, and in social learning interactions in which heterogeneous
agents are in involved, e.g. in human-robot interaction. For example, a hu-
man might demonstrate a task to a factory robot, which then carries it out,
adapting its actions even when its embodiment is perturbed (e.g. by wear-and-
tear). Later, when new model robots with different kinds of actuators, degrees
of freedom, and so on, come to work in the factory, they acquire skills and
task capabilities by learning socially from the robots that are already there.
Over generations of robots, cultural knowledge is transmitted, with the robots
adapting it to their own changing embodiments.
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