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ABSTRACT
Learning from human demonstration is likely to be one of the
key features for service robots in household domains if they
are to be accepted by humans. To be of most benefit possible to
its user, the robot should go beyond simply imitating a user’s
demonstration but try to build task knowledge that is as general
and flexible as possible. One way to achieve this is equipping
the robot with the ability to reason about the task knowledge he
has already acquired in order to refine, generalize and complete
it.

A system to record and interpret manipulation task demon-
strations is presented in this paper. As a representation for the
sequential constraints a valid task execution must obey, task
precedence graphs (TPG’s) are introduced. Means of reasoning
on a task’s underlying TPG are proposed and evaluated within
two tasks from the household domain.

Index Terms— Learning manipulation tasks, programming by
demonstration (PbD), reasoning on tasks

I. INTRODUCTION

During the last years, humanoid robotics became a major
trend in the robotics community. One crucial point in human-
like machines is to design systems that learn the knowledge
the user has and transform it into knowledge utilizable by a
humanoid service robot. A major field of machine learning
in robotics is the acquisition of task knowledge in order to
spread the robot’s functionality and usefulness. One of the
most intuitive ways to acquire new task knowledge is to learn
it from the human user via demonstration and interaction. This
approach to task learning is widely known as Programming by
Demonstration (PbD).

A crucial point in task learning is to exactly capture the
user’s intention. Usually this is achieved by observing multiple
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demonstrations of the same task and identifying the common
features of the task as the user’s inherent intention. On the
other hand, initially requesting multiple demonstrations of a
single task would annoy the user. Therefore, PbD-systems
should be capable of learning a task from a single demon-
stration in order to allow first executions, monitored by the
user. Incremental learning approaches that gradually refine task
knowledge and generalize it as more demonstrated examples
become available pave the way towards suitable PbD-systems
for humanoid robots.

One aspect that can only be learned incompletely from a
single user demonstration is the sequence the subparts of a
certain task can be scheduled. Task knowledge should allow
the robot to chose its sequence of actions from a large set of
possibilities. On the other hand, some parts of tasks offer no
choice of the sequence in which they can be performed. So
the task knowledge must explicitly encode those in order to
ensure a reliable, faultless and safe execution of the task.

After seeing a single demonstration, PbD-systems can state
multiple valid hypotheses on the sequential constraints a task
must obey. When more demonstrations become available,
identical subtasks have to be identified and related to the
subtasks in other demonstrations. From these the sequential
structures of the new demonstrations can be deduced in order
to prune or refine the sequential hypotheses.

The remainder of this paper is organized as follows: The
next section gives an overview on related work concerning
programming by demonstration and task learning from user
demonstrations. Section III describes the system for the ac-
quisition of task knowledge from a single user demonstration,
viewing a task as a simple sequence of actions. Section IV
introduces task precedence graphs, the representation for the
sequential structure of a task. Section V proposes a method for
reasoning on the underlying precedence graph of a task with
two or more sequential demonstrations given. The methods
for identifying corresponding subtasks within different task
demonstrations described in section VI are an important pre-
liminary for this computation. Finally, the methods desscribed
in earlier sections are evaluated in section VII.

Proceedings of 2005 5th IEEE-RAS International Conference on Humanoid Robots

0-7803-9320-1/05/$20.00 ©2005 IEEE 424



Fig. 1. Training center with dedicated sensors

II. RELATED WORK
During the past years, programming by demonstration and

task learning systems have received increased attention. Differ-
ent approaches have been proposed and have been reviewed in
[1], [2]. Systems can be discriminated by the learning paradigm
applied.

Imitation learning systems are used to re-identify and ex-
ecute human motions [3], aiming at a high similarity of
the robot’s movements to the demonstrated trajectories [4].
These systems require a large set of task demonstrations for
generalizing the trajectory before the learning process can start.

Background knowledge based or deductive PbD-systems,
as presented in [5], [6], [7], usually require much less or
even only a single user demonstration to generate executable
task descriptions. These systems analyse and interpret the task
demonstration with respect to the changes and effects the user’s
actions affect the environment. When mapping the learned
task to the executing system, background knowledge based
approaches are used in order to replicate the effects in the
environment [8].

Sequential analysis of tasks is presented in [9], [10]. The
first records multiple user demonstrations of a complex ma-
nipulation skill. Unnecessary actions that do not appear in all
demonstrations are pruned and only the sequence of essential
actions is retained. The latter stresses the role of interaction
with the human user to facilitate learning of sequential ar-
rangement of behaviors in a navigation task.

III. ACQUIRING OPERATION SEQUENCES FROM
USER DEMONSTRATIONS

User demonstrations featuring a task to be learned by the
system are observed and analysed by a Programming by
Demonstration system developed at our institute in recent
years. This section gives a short overview of the task acquisi-
tion process and the classes of manipulation tasks that can be
detected and processed by our system.
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Fig. 2. Hierarchical representation of manipulation segments

During the performance of a task in a so called training-
center, the user is observed using different sensors. These
sensors include two data gloves for gathering the finger joint
angles, magnetic trackers for obtaining the hands’ position,
and two active stereo cameras mounted on pan-tilt-units for
object localisation and tracking (see figure 1). Further details
on the hardware used can be found in [11].

From the sensor input data, so called elementary operators
are extracted. Elementary operators (EO’s) are actions that
abstract a sensory motor coupling like primitive movement
types (linear moves etc.), grasping and ungrasping actions.
These EO’s abstract from the specific execution hardware and
are robot-independent from a system point of view, although
they have to be implemented on the specific target robot
system. EO’s are aggregated as primitives to so called macro-
operators (MO’s), containing the full task description. On
a basis level, elementary move operators are aggregated to
approach, depart and transport trajectories. Together with the
grasp and ungrasp EO’s, grabbing and releasing of objects
can be constructed. Between those gripper operations, various
basic manipulation operations are detected (like transport op-
erations, pouring operations and tool handling for instance).
For further details, please refer to [7]. On the highest level, a
sequence of manipulation segments is subsumed under a whole
task demonstration (see figure 2).

On each level in this hierarchical task representation, the
changes to the environment are induced from lower levels
of the hierarchy. The pre- and postconditions describing the
environmental states before and after the execution of each
macro-operator are propagated from the EO-level to the ma-
nipulation segment level and are computed from the environ-
mental changes during the manipulation. The environment, its
changes and the pre- and postconditions are described in terms
of first order predicate logics, based on a set of geometrical
inter-object relations (like “on”, “under”, “to the right of...”
or “contained in ...”) and intra-object predicates like object
class (“saucer”, “plate”, “table”) and internal state descriptors
(“opening angle”, “oven temperature”, “liquid level”, etc.,
depending on the object class).

The system covers a broad range of manipulation classes
drawn from the operations needed in a household environment:
Transport operations (Pick&Place), device handling (operating
household devices, opening a fridge) and tool handling (pour-
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ing liquids from a bottle to a glas, unscrewing a bottle etc.).
It depends on the condition that the user is doing all changes
in the environment (closed world assumption).

The result of the task acquisition process outlined in this
section is a task description, containing a sequence of manip-
ulation segments together with their pre- and post-conditions
and the hierarchical decomposition into elementary operators.
The manipulation segments are the basic building blocks of
a task and will also be called operations and subtasks in the
following sections.

IV. TASK PRECEDENCE GRAPHS
This section is concerned with the representation of the

sequential features of a task. A formal definition of the
structure that contains the sequential ordering a task obeys
is given. Additionally, a way a system can make hypotheses
about the sequential dependencies is presented.

When a user performs a task, he performs its subparts (the
manipulation segments) in a sequential ordering that he has
chosen by random or by intent from all possible task execution
orders. For a system recording his actions these appear as
a simple sequence of operations. In order to exploit the
maximum degrees of freedom the task posesses at execution
time, the sequential constraints a valid task execution has to
obey must be known to the robot before the execution can
start. Observing a single demonstration of a certain task, the
sequence chosen by the user is influenced by two magnitudes:

• Sequential dependencies induced by the task to be solved.
These form temporal precedence relations that follow
from the attributes of the task to be done and environ-
mental constraints. One simple example is the task of
fetching an object from the fridge. The subtask of opening
the fridge door must be accomplished before a robot can
pick the object.

• Sequential execution of independent operations. Oper-
ations sequentially independent of each other that can
not be performed in parallel have to be executed in any
order. This order may be chosen by user’s preferences or
according to any strategy or optimization criteria.

A learning system that builds knowledge about a task has
to make hypotheses about the underlying sequential task struc-
ture. These hypotheses can be represented by task precedence
graphs.

Definition 1: A task precedence graph (TPG) for a task T
is a directed graph P = (N,R) with N being the set of
subtasks o1, o2, . . . , on, and R ⊂ N × N being the set of
precedence relations a faultless task execution must comply
with. A precedence relation (o1, o2) ∈ R with o1, o2 ∈ N
implies that the operation o1 must be complete before the
execution of o2 can start. This is abbreviated as o1 → o2.

A faultless execution of a task requires the chosen sequence
of operations to be consistent with its TPG, or, in other words,
fulfills every sequential relationship inherent to the TPG.

Definition 2: A demonstration D = (oi1 , oi2 , . . . , oin) with
oij ∈ N is said to comply with a task precedence graph

P = (N,R), if for every precedence relation oi → oj ∈ R
the operations oi = oik and oj = oil appear in the correct
sequential order, that is k < l. This is denoted by P ! D.

For a system that is supplied with only a single user
demonstration D = (o1, o2, . . . , on) of a task, it is hard to
guess the inherent task precedence graph. Suppose that an
operation oi is observed before oj . Then, oi → oj can be
part of the TPG, indicating that in every valid task execution
sequence oi must appear before oj , or this observation can
result from the fact that the user had to chose any ordering for
two sequential independent actions (see above). The learning
system can state different hypotheses, ranging from the most
restrictive TPG PD = (N,RD) with

RD = {(oi, oj)|i < j} , (1)

to the TPG with the most degrees of freedom, P ∗ = (N, ∅).
PD restricts the task to be executable only with the sequential
ordering observed in the user demonstration, P ∗ classifies
every order of actions as a valid task sequence. All other
possible TPG’s the user demonstration complies with are valid
as well. In order to impose a structure on this set of valid
hypotheses, the “more general” partial ordering is defined.

Definition 3: A TPG G = (N,RG) is said to be more
general than a TPG of the same task S = (N,RS) if and
only if RG ⊂ RS . This is abbreviated as G ' S.

V. INCREMENTAL LEARNING OF TASK
PRECEDENCE GRAPHS

The last section stated that multiple valid hypotheses on the
sequential constraints of a task can exist. This sections deals
with the topic of how this set of valid hypotheses can be further
reduced in size.

While the learning system can not decide which task
precedence graph from the set of consistent TPG’s fits the
task best after seeing only one single example, it seems a
viable approach to supply it with more sample demonstrations,
applying different task execution orders. In order to learn
task knowledge from even a single demonstration sufficient
for execution but improving the learned task when more
knowledge in form of task demonstrations is available, an
incremental approach is chosen.

Assuming that the system has learned the most specific task
precedence graph Pm after obtaining a set of m Demonstra-
tions {D1, D2, . . . , Dm}, a new demonstration of the same
task Dm+1 is observed. The next step is to adapt the learned
task precedence graph in a way that incorporates the new
knowledge. [12] suggests that this can be done by further
generalizing the previous hypothesis to a new one, covering
the additional example. In order not to generalize too far, that
is, to ensure that no essential precedence relations are dropped,
the minimal generalization of Pm that is consistent with Dm+1

must be chosen. So one can state that the best choice for Pm+1

is the hypothesis H with

H ' Pm∧H ! Dm+1∧(!H ′ : H ′ ! Dm+1∧H ' H ′ ' Pm)
(2)
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In computation terms, the new set of task precedence rela-
tions Rm+1 can be expressed as a function of the previously
learned hypothesis Pm = (N,Rm) and the most restrictive
hypothesis for the new observed demonstration PDm+1 =
(N,RDm+1), which can be computed according to eq. 1:

Rm+1 = Rm ∩RDm+1 (3)

Now, one can state the process of incremental learning of
task precedence graphs:

1) For the first training example D1, initialize the task
precedence graph P1 = PD1 according to equation 1.

2) For each additional demonstration Dm+1 of the same
task, compute PDm+1 and update the hypothesis Pm+1

according to equation 3.
One issue not adressed until now is the question of when

the additional task demonstrations arrive. In the application
domain of household service robots one cannot assume that
the user gives all demonstrations sufficient to learn the correct
task precedence graph at once. Instead, it might take a long
time between two successive demonstrations of the same task.
Moreover, the task knowledge learned during past demonstra-
tions has to be utilised because it is likely that the user will
require the robot to execute the learned task without having
taken into account all task demonstrations that might appear
in the future. Therefore, the task precedence graph learned by
the system should be reliable enough to ensure a faultless and,
above all, secure task execution.

The incremental learning mechanism for task precedence
graphs presented in this section allows a correct precedence
graph to be learned from even a single example while still
maintaining the ability to incorporate new knowledge in order
to refine the task knowledge and to provide additional reorder-
ing opportunities at execution time.

The user is given the possibility to provide the learning
system with another task demonstration, when during a robot’s
task execution he finds out, that the learned task precedence
graph is to restricted to meet his intention.

VI. SUBTASK SIMILARITY MEASURES
While the last section presented a method for learning the

sequential constraints of a task when in every task demonstra-
tion exactly the same subtasks are used, this is not likely to
be true for every task. Usually the human demonstrator will
only use similar but partly different manipulation segments in
order to fulfill the same task. This section deals with the topic
of identifying the corresponding manipulation segments in two
or more demonstrations of the same task.

In order to identify the matching manipulation segments
for two different task demonstrations, the ordering of the
manipulations can not be a reliable measure for subtask corre-
spondence as the sequence of subtasks performed is potentially
permuted. Though matching the segments that manipulate the
same class of objects seems to be a good idea at first, this
method fails as soon as there are multiple objects of the
same class present in the scene. So more features should be

taken into account to determine the similarity of subtasks and
establish sufficiently robust subtask corespondences in order
to identify operations of equal impact to the scene.

The features of a manipulation segment are organized along
the following classification:

• Object features: These contain the class of the objects
manipulated or referenced in the certain subtask (cup,
plate, table etc.) as well as their possible functional roles
(liquid container, object container etc.).

• Pre- and Postcondition features: These contain the geo-
metrical relations that exist between the objects before or
after the performance of the subtask respectively.

Note that the correspondence of pre- and postcondition features
depends on the object correspondence, as when objects are
not matched correctly, the geometrical relations between them
will be less accurate. For this reason, a two-step approach is
applied: First the best object match is determined and the pre-
and postcondition similarity is calculated afterwards.

The base operation to gain corresponding features is the
measure of similarity sF for two sets of features A,B with

sF (A,B) =
|A ∩B|
|A ∪B| .

This is the portion of common features in all features in
both feature sets. In order to compute the best match of
corresponding objects, the object permutation is chosen that
maximizes the similarity of object features. With two sets of
object’s features O1,O2 the best object correspondence

pobj = arg max
p∈perm(obj)

sF (O1, p(O2))

with pobj being a permutation of the objects obj is chosen and
the object similarity amounts to sobj = sF (O1, pobj(O2)).
The optimal permutation can be computed using the standard
bipartite graph matching algorithm.

With the correct object correspondence, the similarities spre

and spost of the pre- and postcondition sets can be computed
using sF . The overall similarity sM of two manipulation
segments M1,M2 is defined as the weighted average of the
object-, pre- and postcondition similarity: sM = αobjsobj +
αprespre + αpostspost. In the experiments conducted in this
paper all weights were normalized to 1/3. Once the subtask-
similarity sM is computed for every pairing of the task’s
subtasks, the subtask correspondence pST is computed as the
maximum sum of similarities:

pST = arg max
p∈perm(subtasks)

∑

(M1,M2)∈p

sM (M1,M2).

With the subtask permutation pST the most restrictive
hypothesis PDi (see section V) on the underlying task prece-
dence structure can easily be constructed. This hypothesis can
then be utilised to learn sequential task constraints in the way
described in section V.
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Fig. 3. Recognition of corresponding task features for the first
experiment. Object correspondences are drawn with stipled,
subtask correspondences with solid lines. The sequential or-
dering of the subtasks is represented by bold arrows.

VII. EXPERIMENTS

In this section two experiments validating the method for
incremental learning of TPG’s are reported. The tasks to be
learned were chosen from the household domain; two tasks
for laying a table were selected.

The first task, a very simple example, was chosen to show
how the method works in detail. The task consists of laying
the table with a plate, a saucer and a cup to be placed on the
saucer. The placing of the plate is (sequentially) independent,
while the cup depends on the saucer to be placed first. In a
first demonstration the plate, the saucer and the cup are placed
in this order. The initial task precedence graph PD1 = P1 can
be seen in the first row of table II.

When a second demonstration of the same task was given,
the user chose another sequence: He first placed the saucer,
then the plate and last the cup. The system correctly recognizes
the object- and subtask correspondences with the methods
described in section VI. Table I shows the object- and subtask-
similarities and the selected correspondences. The results are
shown in figure 3.

With the methods described in section V the system was
able to learn the sequential independence of the saucer from
the plate (See second row of table II). Note that the operation
of placing the cup is still assumed to be dependent on the
plate.

A last user demonstration is observed with the order saucer
- cup - plate. Now the system eliminates the last unnecessary
precedence relation and is free to schedule the plate somewhere
in the task execution, while still ensuring that the saucer is

Object similarities:

D1\D2 obj2.1 obj2.2 obj2.3

obj1.1 0.6 0.5 1.0
obj1.2 1.0 0.5 0.6
obj1.3 0.5 1.0 0.5

Object correspondence:

pobj(o) =

8
<

:

obj1.2, when o = obj2.1
obj1.3, when o = obj2.2
obj1.1, when o = obj2.3

Subtask similarities:

D1\D2 ms2.1 ms2.2 ms2.3

ms1.1 0.5 0.85209507 0.44444445
ms1.2 0.7312238 0.4814815 0.46226415
ms1.3 0.4469496 0.45710456 0.79991335

Subtask correspondence:

pms(ms) =

8
<

:

ms1.2, when ms = ms2.1
ms1.1, when ms = ms2.2
ms1.3, when ms = ms2.3

Table I. Object and subtask similarities and correspondences
for first experiment.

i P Di Pi

1

2

3

Table II. Task precedence graphs learned incrementally during
the first experiment consisting of three task demonstrations.

placed before the cup.
A second experiment, consisting of a more complex example

of laying the table is presented in figures 4 and 5. The tasks
consists of laying the table with a soup spoon, a large, flat plate
under a soup plate, a saucer with a cup on it and a tea spoon
in this cup. In the initial object configuration the saucer is on
the soup plate, which requires the saucer to be removed from
its initial position before the soup plate can be manipulated.
Two demonstrations of this task are observed. The sequential
order of the performed subtasks is depicted in figure 5. Taking
into account these two demonstrations, the system learns the
correct task precedence graph, which is presented in figure 6.

VIII. CONCLUSION

This paper presents an approach to combining learning and
reasoning on tasks. Tasks are recorded from user demon-
strations, segmented, interpreted and stored in a data rep-
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Fig. 4. Start and end state of complex laying the table task
performed in second experiment. The task consists of arranging
6 objects on the silver tray.

D1:

D2:

Fig. 5. The two demonstrations performed for the second
experiment.

resentation called macro-operators. Reasoning methods are
applied to discover the task’s underlying sequential structure
and reordering possibilities.

This approach presents a step towards robots that learn
task knowledge from human demonstrations in an incremental
manner that allow them to refine and complete their learned
knowledge as additional data becomes available, and act as real
’intelligent’ robot servants in future household applications.
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