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Abstract—In this paper, we present a new approach for
fusion of different measurements and sensors for 3D model
based tracking. The underlying model of the tracked body
is defined geometrically with generalized cylinders, which can
hierarchically be connected by different kinds of joints. This
results in an articulated body model with constrained kinematic
degrees of freedom. The fusion approach incorporates this
model knowledge together with the measurements, and tracks
the target body iteratively with an extended Iterative Closest
Point approach.

The resulting tracking system named VooDoo is used to track
humans in a Human-Robot Interaction (HRI) context. We only
rely on sensors on board the robot, i.e. a color camera, a 3d
time-of-flight camera and a laser range finder. The system runs
in realtime (~ 20Hz) and is able to robustly track a human in
the vicinity of the robot. The pose and trajectory of the human
interaction partner can then be used for haptic interaction like
hand-overs, and for activity and gesture recognition.

I. INTRODUCTION

With growing computational capacities and new emerging
sensor technologies, tracking of articulated motion has be-
come popular during the last decade. Especially when the
field of application does not allow invasive measurement
methods like marker based tracking, attachment of magnetic
field trackers or active light or sound source devices, it
has become evident that fusion of different complementary
sensors is the only way to obtain stable and robust tracking
results.

Human Motion Capture (HMC) is one important appli-
cation for model based tracking methods. Especially the
field of robotics puts up high demands for HMC systems.
Robots that are meant to cooperate closely with humans,
and especially with untrained persons which are not familiar
with the domain of robotics, need accurate knowledge about
the current human pose. This is on the one hand due to the
fact that the robot needs the ability to predict the global
plan as well as single movements of the human in order
to plan its own actions and movements in an efficient way
with respect to the overall goal. On the other hand, a shared
workspace between robot and human puts up high safety
demands. This includes not only collision detection, but also
haptic interaction and shared object and tool manipulation.

Many tracking systems for humans have been proposed
in literature, some of which are discussed in sec. II. Most
of these are designed for one special input sensor, and all
internal models are based on this assumption.

This paper introduces a 3d body model based tracking sys-
tem called VooDoo, and especially proposes a new approach
for fusion of different input sensors and cues for tracking.
This approach is able to incorporate tracking information
from 3d sensors like Time-of-Flight-cameras (ToF) or stereo
reconstruction together with cues from 2d based trackers like
a monocular camera. The system is designed to work only
with sensors on-board the robot. It is able to track a person
in realtime at about 20-25 Hz in 3d. Results are shown with
different input sensors.

Sec. II gives an overview of related work, sec. III and IV
describe in detail the tracking target model and the proposed
algorithm. The implied sensor model is described in sec. V,
and sec. VI gives and evaluates the results.

II. RELATED WORK

For observation and tracking of human movements, many
different sensors and models have been used. This includes
invasive sensors like magnetic field trackers (see [1], [2])
that are fixed to the human body. Within the context of
human robot interaction in every-day life, this approach is not
feasible; non-invasive tracking approaches must be applied.
Most of these are based on vision systems, or on multi-sensor
fusion (see [3]). Systems which rely on distributed sensors
(see [4]) are not practicable in the given domain; the tracking
system must be able to rely only on sensors mounted on the
robot.

Tracking of humans and human body parts using vision is
investigated by a lot of research groups and several surveys
exist (see [5], [6], [7], [8]). Hence, there is a big variety
of methods ranging from simple 2d approaches such as
skin color segmentation (e.g. [9]) or background subtraction
techniques (e.g. [10]) up to complex reconstructions of the
human body pose. [11] shows how to learn the appearance
of a human using texture and color.

Sidenbladh [12] used a particle filter to estimate the
3d pose in monocular images. Each particle represents a
specific configuration of the pose which is projected into the
image and compared with the extracted features. [13] use
a shape-from-silhouette approach to estimate the human’s
pose. A similar particle filtering approach is used in [14].
The whole body is tracked based on edge detection, with
only one camera. The input video stream is captured with
60 Hz, which implies only small changes of the configuration



between two consecutive frames. As it is a 2d approach,
ambiguities of the 3d posture can hardly be resolved.

An ICP-based (Iterative Closest Point) approached for
pose estimation is shown in [15]. The authors use cylinders
to model each body part. In [16] the same authors show
how they model joint constraints for their tracking process.
However, the effect of the ICP is partially removed when
the constraints are enforced. Nevertheless, parts of the work
described in this paper are based on the work of Demirdjian
et al.

III. TRACKING TARGET MODEL

The articulated tracking target model consists of limbs
or body parts and joints which define the model structure
through establishing connections between the body parts.

A. Body Model

For the tracking system a 3d body model is used. Each
body part is represented with a degenerated cylinder.The top
and the bottom of each cylinder is described by an ellipse.
The ellipses are not rotated to each other and the planes are
parallel.

The overall body model is built in a tree-like hierarchy.
Each body part is described with a degenerated cylinder and
the corresponding transformation from its parent. The model
for a human body e.g. consists of ten body parts (torso, head,
two for each arm and two for each leg) which is depicted
on the left of fig. 1. However, the model definition is not
restricted to humans.

If the fusion algorithm also incorporates data from feature
trackers (like some vision based algorithms, or magnetic field
trackers that are fixed to the body), it is required to identify
certain feature points on the body. For humans, this is done
following the H—Anim Specification (see [18]).

B. Joint Model

The joint model is based on the concept of introducing
elastic bands between two connected model parts. These
elastic bands represent the joint constraints. For the ICP
algorithm, these elastic bands can be modeled as artificial
correspondences and will thus be considered automatically
in each computation step (see sec. [V-B.6).

Fig. 1. Different joint type models. Universal Joint 3 DoF a), Hinge Joint
1 DoF + 2 restricted DoF b), Elliptic Joint 3 restricted DoF c)

For each junction of model parts, a set of elastic bands
is defined (see fig. 1). These relations set up corresponding
points on both model parts. The corresponding points can
then be used within the model fitting process to adjust the

model configuration according to all sensor data input and
to the defined constraints.

This approach allows for modeling of different joint types.
Within the described tracking system, three types are used:

o Universal Joints have 3 full degrees of freedom (e.g.
human shoulder).
Universal joints are modeled by one point-to-point
correspondence (one elastic band), see fig. 1 a).

« Hinge Joints have one real degree of freedom, the
others being almost fixed (e.g. elbow or knee).
Hinge joints are modeled by a set of correspondences
which are distributed along a straight line, see fig. 1 b).

« Elliptic Joints have all degrees of freedom highly
restricted. An example on the human body is the neck:
Motion is possible in all 3 degrees of freedom, but very
limited in range.
Elliptic joints are modeled by a set of correspondences
distributed along an ellipse, see fig. 1 c).

For details of the joint model, see also [19].

IV. SENSOR FUSION ALGORITHM FOR TRACKING

The goal of the VooDoo tracking system is to track the
posture of a modeled body in 3d by matching the internal
3d body model with the current input sensor data. A full
description can also be found in [17].

The current posture estimation is given with respect to
the hierarchical body model defined in sec. III-A. In each
time step, the whole body model is provided. This allows
for changes not only in the body pose (joint angle space),
but also for changes in the model itself (configuration and
parameters of the body model). This may concern scaling of
the model for different targets with varying body heights, or
even addition and deletion of body parts in case of changing
tracking targets or other effects. This can be useful e.g. if the
tracked person is holding and handling a big object, which
then can be added easily to the tracked configuration.

The VooDoo tracking algorithm is depicted in fig. 2. The
next section describes possible input data, while sec. IV-B
depicts the processing steps within the tracking loop.

A. Input data

The proposed tracking algorithm is able to include, process
and fuse different kinds of sensor data (see also fig. 2):

o Free 3d points from ToF-sensors or from pure stereo
depth images. The system has to decide whether to use
these points as measurements of the tracked model. For
a point that is not discarded, the corresponding point on
the model surface is computed.

e 3d points with reference to the target that are e.g.
generated by a stereo vision system that tracks a person
in image space and generates the corresponding 3d
points by stereo reconstruction.

o 3d points assigned to a single body part may also be
generated by a stereo vision system tracking special
body parts like the human face or the hands.

o 3d points with reference points on the tracking target for
tracking of special features or points (e.g. with markers,
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Fig. 2.  The complete VooDoo algorithm (“BB” denoting “Bounding Box”)

or magnetic field trackers attached to the body) can be
integrated.

o 2d features with reference points to the target can e.g.
be derived from a 2d image space based tracker. The
pixel in the image plane together with the focal point
define a ray in 3d, which corresponds to the reference
point on the target.

This data can originate from any sensor that gives data in
the described format. Obviously, all input data has to be
transformed into the tracker coordinate system before it is
used within the system.

B. Processing

For the ICP matching algorithm, a list of corresponding
point pairs has to be set up for each limb (for a complete ICP
overview, please refer to [20] and [21]). Therefore, all “free”
3d points have to be analyzed in order to decide whether they
correspond to points on the tracked model. Otherwise, they
are discarded. Additionally, all given correspondences from
other tracking procedures and the background knowledge on
joint constraints have to be added to the correspondences
list. Then, the optimal resulting model configuration has to
be computed. These steps are performed iteratively until an
optimum of the configuration is reached.

Before the input data of one time step is processed, it is
possible to adjust internal model parameters. This can be
e.g. the model scale factor, or particular cylinder sizes. Even
limbs can be added to or removed from the model.

The tracking algorithm and the sensor fusion approach
are now described step by step, along the process depicted
in fig. 2.

1) Prefiltering free 3d points: The whole point cloud
of free 3d points from used depth sensors is processed in
order to remove all points that are not contained within
the bounding box of the body model (see fig. 2, step BB
Check whole body). This is done on the assumption that the
body configuration changes only locally between two time
frames. A parameter defines an additional enlargement of the
bounding box prior to this filtering step.

The resulting point list is concatenated with any sensor
data input that has already assigned its measured 3d points
with the tracked body (see sec. IV-A). This results in a list
of 3d points which are close to the body model and thus are
candidates for measurements of the tracked body.

2) Assigning points to limb models: The point list is now
processed in order to assign measured points to dedicated
limb models based on the bounding box of each limb model
(see fig. 2, step BB Check body parts). Again, the bounding
boxes can be enlarged by a parameter to take the maximum
possible displacement into account. Points that do not fall in
any bounding box are again removed. Several behaviors can
be selected for points that belong to more than one bounding
box (overlap): These points are either shared between limb
models, exclusively assigned to one limb or shared only in
case of adjacent limbs. This last method avoids collisions
between limbs that are not directly connected.

The resulting point list can be joined with any sensor data
input that has already assigned its measured 3d points with
dedicated limbs of the tracked body (see sec. IV-A). The
resulting point list contains candidates for measurements of
each limb.

3) Point Number reduction: The resulting point list can
be downsampled before the calculation of the closest points
to reduce the overall number of points (see fig. 2, step
Downsampling). This step is controlled by three parameters:
the sampling factor, and minimum and maximum number of
points per limb. Thus, it is possible to reduce the number
of points for limbs with many measurements, but maintain
all points for limbs which are described by only a few
measurements.

4) Closest point computation: The closest point calcula-
tion is the most time-consuming step in the whole loop. For
each remaining data point, the corresponding model point
on the assigned limb model has to be computed for the ICP
matching step (see fig. 2, step Closest Point). This involves
several geometric operations. Depending on the resulting
distance between data and model point, all points within a
given maximum distance are kept and the correspondence
pair is stored in the output list. All other points are deleted.



3d point-to-point relations from input data (see sec. IV-
A) can now be added to the resulting list, which holds now
corresponding point pairs between data set and model.

5) Addition of 2d measurements: Each 2d measure (e.g.
tracked features in 2d image plane of a camera) of a feature
on the human body defines a ray in 3d which contains the
tracked feature. This fact is used to add the 2d tracking
information to the 3d point correspondences (see fig. 2, step
Closest point on line): For each reference point on the body
model, the closest point on the straight line is computed and
added to the list.

6) Joint model integration: The joint model for each
junction is added as artificial point correspondences for each
limb, depending on the limb type (see fig. 2, step Joint
model). According to sec. III-B, the correspondences can be
interpreted as elastic bands which apply dedicated forces to
the limbs to maintain the model constraints. Thus, artificial
correspondences will keep up the joint constraints in the
fitting step.

7) Model fitting: When the complete list of corresponding
point pairs has been set up, the optimal transformation be-
tween model and data point set can be computed (fig. 2, step
Least squares). The transformation is computed seperately
for each limb.

When all transformations have been computed, they can
be applied to the model. Steps IV-B.1 to IV-B.7 are repeated
until the displacement is below a given threshold or a
maximum number of steps have been performed.

V. SENSOR MODEL

Each used data source has its own stochastic parameters
which have to be taken into account. The described approach
offers a very simple method for this: each input date is
weighted with a measure that describes its accuracy. The
ICP algorithm then incorporates these weights in the model
fitting step. Thus it is possible to weight a 2d face tracker
much higher than a single 3d point from a ToF camera, or
to weight 3d points from a ToF-camera slightly higher than
points from the stereo reconstruction due to the measuring
principle and the sensor accuracy.

It is important to note that an increased weight for
a single point does not affect the time needed for the
computation. This is very important and is due to the
fact that in the presented approach, each measurement is
projected into model space. This is different to e.g. particle
filtering approaches, where each particle is projected into
each sensor’s measurement space to compute the likelihood.
In consequence, adding a sensor source to the tracking
framework increases computation time only with the number
of different measurements from the sensor.

An example configuration can be seen in fig. 3. The
model consists of two cylinders, connected by a linear
joint. The measurements contain a 3d point cloud, and a 3d
measurement of one end point. This configuration can e.g.
result from a stereo depth image of a human arm and a color
based hand tracker.

Fig. 3. Different weights for measurements from different sensors,
projected into 3D model space. The depicted point sizes correspond to
the sensor data weight, the lines indicate the closest-point relations. These
pictures motivated the system name VooDoo.

VI. RESULTS AND EVALUATION

The described tracking procedure has been implemented
and tested with a time-of-flight camera and a stereo camera.
The tracking runs online at a framerate of appr. 20-25 Hz on
a Pentium 4 with 3.2 GHz with a model of a human body,
consisting of 10 cylinders with 9 joints.

For the experiments, the same data sequences have been
processed using different input sensor configurations to test
the fusion. Fig. 4 shows example images from a sequence of
15 seconds containing a “bow” and a “wave” movement. The
first row shows the scene image, which has been also used
for segmentation of face and hands. The second and third row
contain the tracking result with 3d data only (row 2) and 2d
data only (row 3), where the 3d data has been acquired with
the ToF camera and the 2d data is derived from skin color
segmentation in one image of the stereo camera. The rays
in 3d defined by the skin color features can be seen here.
Row 4 shows the tracking result with both inputs used.

For the shown results, the following weights for the input
data have been used: 3d data points w = 1.0, face tracker
w = 30.0, hand tracker w = 20.0.

Different conclusions can be drawn from the results:

« Huge movements are easily detected by the 3d data
based tracking: The “bow” movement is tracked quite
well. On the other hand, fast movements with the
extremities may cause failures when only 3d data is
used, as with the “wave” movement.

o Tracking only with a 2d feature tracker works quite
well for the tracked body parts. Nevertheless, the body
configuration can not be determined only from 2d fea-
tures (see frame 81). To do this, a lot more background
information on the human body would be needed.

o Fusion of both input sensors in 3d shows very good
results: Huge body movements as well as fine and
fast movements of the extremities can be recognized,
and the algorithm is able to reliably track the body
configuration.

As already stated in sec. V, the computational effort and
thus the framerate depend on the true number of different
measurements, independent of the particular weights. To
evaluate the computational performance and framerate of
the presented method, several analyses have been carried
out. The model corresponds again to the human body model
depicted in fig. 4.

The computational effort for one frame depends first of
all on the number of ICP steps needed. The number of
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iterations again depends on the body displacement between
two consecutive frames. Fig. 5 shows the number of required
ICP steps during a typical tracking sequence for a human
body model. During phases without large movements, one
iteration is enough to approximate the body pose (frame 500
to 570). Extensive movements are compensated by more ICP
iteration steps per frame (650 to 800).

The required time per frame obviously increases with the
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number of needed ICP steps. This relation is shown in fig. 6.
A maximum number of 6 ICP steps has turned out to be
a good tradeoff between time consumption per frame and
tracking accuracy. This leads to a frame period of 20 — 70 ms,
which corresponds to a framerate of 14.2 to 50 Hz. The
maximum framerate in our framework is only constrained
by the camera framerate, which is 30 Hz.

The relation between the number of body measurements
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and the computational effort for one ICP step is depicted in
fig. 7. For each measurement of the target, several computa-
tions have to be carried out. This leads to the dependency in
fig. 7. As expected, the time scales linearly with the number
of measurements.

These results show that the presented tracking approach
is able to incorporate several thousand measurements with
reasonable computational effort. One disadvantage of the
depicted iterative process is the negative dependency between
target displacement and computational effort: The faster the
target moves, the longer the tracking needs for one frame,
which again leads to larger displacements due to the low
framerate. To overcome this, one has to find a good tradeoff
between accuracy and framerate. This compromize depends
on the tracking target characteristics, as well as on the
application which utilizes the Human Motion Capture data.

VII. CONCLUSION

This paper has proposed a way for fusion of different
input cues for tracking of an articulated body. The proposed
algorithm is able to process 3d as well as 2d input data
from different sensors like ToF-cameras, stereo or monocular
images. It is based on a 3d body model which consists of
a set of degenerated cylinders, and which are connected by
an elastic bands joint model. The proposed approach runs in
realtime. It has been demonstrated with a human body model
for pose tracking.

The described way of adding 2d measurements to a 3d
matching process is one the main innovation.

Future works will investigate methods to include valid
ranges for joints via addition of artificial correspondences
similar to the joint constraint model.
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