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Abstract— This paper deals with visual recognition and
tracking of people and gestures from a camera mounted on
a tour-guide robot in a human, cluttered, environment. The
particle filtering framework enables the fusion of visual cues,
both into an importance function from which the particles
are sampled, and into a measurement model used for weights
definition. The multi-cues associations prove to be more robust
than any of the cues individually. For the purpose of gestures
recognition, a tracker is proposed which handles multiple
hand configurations templates. Finally, implementation and
experiments on a tour-guide robot are presented in order to
highlight the relevance and complementarity of the developed
visual functions. Extensions are finally discussed.

I. INTRODUCTION AND FRAMEWORK

The development of robots acting as museum tour-guides

is a motivating challenge, so that a considerable number

of mature robotic systems have been developed during the

last decade (see a survey in [2]). Their dedicated hardware

and software classically consist of three main components:

mobility, safety, and interactivity.

To our knowledge, Rhino [3] was the first robot to be

deployed in a densely populated museum. Rhino and the

second generation robot Minerva [14] infer people’s loca-

tion during an interaction session from laser scan data and

distance filtering. Minerva as well as Mobot [10], are able

to generate a deep inner understanding of their environments

but they do not emphasize the interaction part so much.

Though these and others tour-guide robots have led to

remarkable results in terms of interaction, their vision-based

capabilities remain surprisingly limited. We recently devel-

oped a mobile robot named Rackham whose role is also

to guide visitors by proposing either group or personalized

tours. In this context, the autonomy capacities of Rackham

are fully oriented towards navigation in human environments

but also vision-based human-robot interaction. This paper fo-

cuses on several monocular visual modalities, namely (1) recog-

nition and tracking of persons so as to interpret their mo-

tion in the exhibition, and (2) interpretation of commanding

gestures in order to improve the communication capabilities

between the robot and its tutors.

People or gestures tracking from a platform operating in a

museum is a very challenging task. As the robot’s evolution

takes place into cluttered and densely crowded environments,

several hypotheses concerning the tracking parameters to be

estimated must be handled at each instant, and a robust

integration of multiple visual cues together with automatic

re-initialization capabilities are required. The aim is to de-

fine computationally efficient strategies, yet discriminatory

enough to detect and coarsely track either the whole human
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body or body parts in complex scenes. Monte Carlo simula-

tion methods, also known as particle filters [4] constitute one

of the most powerful frameworks for tracking. Their popular-

ity stems from their simplicity, ease of implementation, and

modeling flexibility over a wide variety of applications. The

principle is to represent the posterior distribution by a set of

samples—or particles—with associated importance weights.

At initial time, this weighted particle set is defined from the

state vector initial probability distribution. Its propagation

between two consecutive sampling consists in two steps:

the particles are first drawn from an importance function

which aims at exploring “relevant areas” of the state space,

e.g. by mixing measured data with prior knowledge and

dynamics; then, they are properly weighted, often entailing

their likelihoods defined from the measurement function, so

that the point-mass distribution they define is a consistent

approximation of the posterior.

This framework is well-suited to the aforementioned re-

quirements. Indeed, it makes no restrictive assumption on

the probability distributions entailed in the characterization

of the problem, and enables an easy fusion of diverse kinds

of measurements. Last, some of the numerous particle filter-

ing strategies proposed in the literature are expected to fit

the specifications of the different modalities which compose

the Rackham interaction mechanisms. Another observation

concerns data fusion. It can be argued that data fusion using

particle filtering schemes has been fairly seldom exploited

within this tracking context [13]. Using multiple cues si-

multaneously, both into the importance and measurement

functions of the underlying estimation scheme, allows to use

complementary and redundant information but also enables

a more robust tracking and automatic target recovery.

The paper is organized as follows. Section II describes

Rackham and outlines its embedded visual modalities. Sec-

tion III focuses on a proximal interaction modality involving

image-based face recognition. Section IV describes the se-

tups which best fulfill the requirements for the people track-

ing modalities in terms of filtering strategies and visual cues.

Section V details the commanding gestures interpretation

modalities. Section VI reports on the implementation of all

these modalities on our robot. Last, section VII summarizes

our contribution and puts forward some future extensions.

II. RACKHAM AND ITS ON-BOARD VISUAL MODALITIES

A. Characteristics and typical tasks

Rackham is an iRobot B21r mobile platform. Its standard

equipment has been extended with one pan-tilt Sony camera

EVI-D70, one digital camera mounted on a Directed Percep-

tion PTU, one ELO touch-screen, a pair of loudspeakers, an
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optical fiber gyroscope and wireless Ethernet (Figure 1(a)).

All the functions are embedded into the “LAAS” layered

software architecture [1], see Figure 1(b).

The envisaged typical tasks are as follows. When Rackham

is left alone with no mission, it tries to find out people whom

he could interact with, a behavior hereafter called “search

for interaction”. As soon as a lonely visitor or a group of

individuals comes into its neighborhood, it introduces itself

and tries to identify its interlocutors out of the detected

faces. When no interlocutor is known, a learning session

of all the detected faces inside the camera field of view

is launched while a “guidance mission” is defined through

the touch-screen. This way, the robot will further be able

to switch between multiple persons appropriately during the

mission execution. Whenever all known persons leave, the

robot detects this and stops. If, after a few seconds, no

interlocutor is re-identified, the robot restarts a “search for

interaction” session. Otherwise, when at least one known

user is re-identified, the robot proposes to continue the

ongoing mission. Any mission can be stopped or selected by

using simple communicative gestures, without any contact.

Gestures are natural means that are particularly valuable

in crowded environments where speech recognition may be

garbled or drowned out.

B. Dedicated visual modalities

The design of visual modalities has been undertaken

within the demonstration scenario depicted above. Four vi-

sual modalities, encapsulated in the modules ICU or GEST,

have been outlined which the robot must basically embed:

1) The “proximal interaction”, where the interlocutors

select the area to visit through the touch-screen. Here,

the robot remains static and possibly learns their faces

thanks to the camera EVI-D70. This modality involves

face detection and recognition at short H/R distances

(< 1m) but no tracking mechanism.

2) The “guidance mission”, where the robot drives the

visitors to the selected area, keeping the visual contact

with any member of the guided group even if some of

them may move away. This modality involves both face

recognition and upper human body tracking at medium

H/R distances ([1; 3]m).

3) The “interaction through static commanding ges-

tures”, where the aim is to recognize a number of

well-defined purposeful hand postures performed by
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Fig. 1. (a) Rackham, (b) Rackham’s layered software architecture.

(a) (b) (c) (d)
Fig. 2. The four visual modalities of the Rackham robot repeated in our
lab: (a) search for interaction, (b) proximal interaction, (c) guidance mission,
(d) interaction by gestures.

the users at medium H/R distances in order to com-

municate a limited set of commands to the robot. This

way, the user can modify the goal of the ongoing

mission, stop the robot, drive it towards another area

to visit, etc.

4) The “search for interaction”, where the robot, static

and left alone, tracks visitors in order to heckle them

when they enter the exhibition. This modality involves

either the whole human body tracking at long H/R dis-

tances (> 3m) or the upper human body tracking/face

recognition at medium H/R distances.

III. FACE RECOGNITION

This function aims to classify bounding boxes F of

detected faces from Viola’s detector [16] into either one class

Ct out of the set {Cl}1≤l≤M – corresponding to M users

faces presumably learnt offline – or into the void class C∅.

Our approach consists in performing PCA and keeping as

an eigenfaces basis B(Ct) the first eigenvectors accounting

for a predefined ratio η of the total class variance. The

approach was evaluated on a face database composed of

6000 examples of M = 10 individuals acquired by the robot

in a wide range of typical conditions (illumination changes,

variations in facial orientation and expression, etc). A crossed

evaluation enables the selection of the most meaningful

image preprocessing and error norms association in terms of

False Acceptance Rate (FAR), and sensitivity. One evaluated

error norm is inspired from the Distance From Face Space

(DFFS). A given face F = {F(i), i ∈ {1, . . . , nm}} is

linked to the class Ct by its error norm

D(Ct,F) =
∑nm

i=1(F(i) −Fr,t(i) − µ)2,

and its associated likelihood

L (Ct|F) = N (D(Ct,F); 0, σt)

where F − Fr,t is the difference image of mean µ, σt terms

the standard deviation of the error norms within the Ct’s

training set, and N (.;m,σ) is the Gaussian distribution with

moments m and covariance σ.

As shown in Table I, histogram equalization coupled to

our error norm are shown to outperform the other techniques

for our database. In fact, the sensitivity is increased of 6.8%
compared to the DFFS, while the False Acceptance Rate is

very low (0.95%).

From a set of M learnt tutors (classes) noted {Cl}1≤l≤M

and a detected face F , we can define for each class Ct the

likelihood L l
k = L (Ct|F) for the detected face F at time k
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Distance Preproc. FAR Sensitivity η

Euclidean None 4.38% 4.46% 0.40

Equal. 5.22% 6.40% 0.80

S+C 4.58% 7.52% 0.90

DFFS None 3.17% 18.44% 0.35

Equal. 1.50% 41.28% 0.90

S+C 2.45% 10.40% 0.35

Our error norm None 1.92% 19.44% 0.35

Equal. 0.95% 48.08% 0.70

S+C 2.03% 10.06% 0.30

TABLE I

ANALYSIS OF SOME IMAGE PREPROCESSING METHODS (NONE,

HISTOGRAM EQUALIZATION, SMOOTH AND CONTOUR FILTER) AND

DISTANCE MEASUREMENTS.

and the posterior probability P (Ct|F , zk) of labeling to Ct

at time k
{

P (C∅|F , zk) = 1 and ∀t P (Ct|F , zk) = 0 when ∀t L
t
k < τ

P (C∅|F , zk) = 0 and ∀t P (Ct|F , zk) =
L

t
k

P

p L
p
k

otherwise .

where τ is a threshold predefined during a learning step [5],

and C∅ refers to the void class.

IV. PEOPLE TRACKING

A. Framework

The “search for interaction” and “guidance mission”

modalities (see section II-B) involve face recognition as

well as the whole/upper human body tracking. The aim of

tracking is to fit a template relative to the tracked visitor all

along the video stream, through the estimation of its image

coordinates (u, v) and its scale factor s. All these parameters

are accounted for in the state vector xk related to the k-th

frame. With regard to the dynamics model p(xk|xk−1), the

image motions of observed people are difficult to characterize

over time. This weak knowledge is formalized by defining

the state vector as xk = [uk, vk, sk]
′

and assuming that its

entries evolve according to mutually independent random

walk models, viz. p(xk|xk−1) = N (xk|xk−1,Σ), where

covariance Σ = diag(σ2
u, σ2

v , σ2
s).

The following filtering strategies are then evaluated in or-

der to check which best fulfill the requirements of the “search

for interaction” and “guidance mission” tracking modalities:

CONDENSATION [6], ICONDENSATION [7], hierar-

chical scheme [13] and Rao-Blackwellized Subspace SIR

with History Sampling RBSSHSSIR [15]. Each modality

is evaluated on a database of sequences acquired from

the robot in a wide range of typical conditions: clut-

tered environments, appearance or lighting changes, spo-

radic disappearance of the targeted subject, jumps in his/her

dynamics, etc. These evaluations, available at the URL

www.laas.fr/∼lbrethes/HRI, emphasize the need of

taking into account both the dynamics and the measurements

zk into the importance function q(.) so that

q(xk|xk−1,zk)=α π(xk|zk)+β p(xk|xk−1)+(1−α−β) p0(xk), (1)

where p0 is the prior at initial time, and α, β ∈ [0; 1].
Besides, the most persistent cues are used in the particles

weighting stage through the measurement function p(zk|xk).

The others, logically intermittent, permit an automatic ini-

tialization thanks to π(.) and help recovery from transient

tracking failures. Finally, a last requirement concerns the

design of efficient trackers both in terms of selected visual

cues and filtering strategies.

The current processing sampling rates range from 20Hz

to 50Hz on a 3GHz Pentium IV personal computer, for

a particles number within [100; 200]. These considerations

motivate our choices depicted hereafter for the two people

tracking modalities.

1. Upper human body tracker: From the above guidelines,

we opt for the ICONDENSATION scheme. Regarding

the measurement function, we consider multiple patches of

distinct color distributions related to the head and the torso

of the guided person (figure 3), each with its own Nbi-bin

normalized color reference histogram in channels {R,G,B}
(resp. termed hc

ref,1, hc
ref,2). The color likelihood model

p(zc
k|xk) is based on the Bhattacharyya distances between

the two histograms pairs {hc
xk,i, h

c
ref,i}i=1,2. This multi-

part extension is more accurate, thus avoiding the drift

and possible subsequent loss, experienced sometimes by

the single-part version. To overcome the ROIs’ appearance

changes in the video stream, the target reference models

are updated at time k from the computed estimates through

a first-order filtering process [11]. To avoid tracker fail-

ures induced by these models updates, we also consider

a shape-based likelihood p(zs
k|xk) which depends on the

sum of the squared distances between Np points uniformly

distributed along a head silhouette template correspond-

ing to xk and their nearest image edges [6]. Finally, as-

suming mutually independent cues, the unified measure-

ment function comes as p(zs
k, zc

k|xk) = p(zs
k|xk).p(zc

k|xk).

p(z  |x )s
kk

s
kkπ(z  |x )

p(z  |x )c
kk

Fig. 3. The body
tracking template.

In the considered human centered en-

vironment, more than one authorized

person can be in the robot vicinity, so

that the system may endlessly switch

between the targeted person and other

people, e.g. which show similar clothes

appearance. From these considerations,

the guidance modality must logically

involve face recognition in the impor-

tance function π(.) in (1). For the selected class Ct repre-

senting the current tutor, this becomes, with NB the number

of detected faces and pj = (uj , vj) the centroid coordinate

of each face Fj – the time k being omitted for compactness

reasons –

π(x|zS) ∝
NB
∑

j=1

P (Ct|Fj , z).N (x; pj ,diag(σ2
uj

, σ2
vj

)).

The initializations of the histograms hc
ref,1, h

c
ref,2 are

achieved during the “proximal interaction” phase from these

frames which lead to P (Ct|Fj , z) probabilities equal to one.

In the tracking loop, the histogram model hc
ref,2 (torso) is re-

initialized with the current values when the user verification

is highly confident, typically P (Ct|Fj , z) = 1.

2. Whole human body tracker: Evaluations have been
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performed in the same way as before so as to characterize

the trackers associated with this modality. The two filters

ICONDENSATION and RBSSHSSIR strategies ar well

suited. Importance and measurement functions are based

on the motion and color Nbi-bin normalized histograms

of ROIs including the whole human body (Figure 4).

(x  |z )π

p(z   |x )

p(z   |x )

k
m

c
k

k
m

k

k

k

Fig. 4. The “search
for interaction” tem-
plate.

The importance function π(xk|z
m
k ) in-

volves a motion detector based on the

Bhattacharyya distance between a uni-

form motion histogram hM
ref and his-

tograms of regions located on the nodes

of a regular grid overlaid on the dif-

ference of two successive images [13].

This cue is also used in the motion

likelihood model p(zm
k |xk). From the

detected regions, a Nbi- bin normalized

histogram in channels {R,G,B} is defined (annoted hc
ref ).

As previously, the color likelikood model p(zc
k|xk) favors

candidate histograms hc
xk

which are close to this reference

histogram hc
ref . These cues are assumed mutually indepen-

dent conditioned on the state, i.e. weak correlation exists

between the color, and motion of the tracked objets. Conse-

quently, the unified measurement function thus factorizes as:

p(zc
k, zm

k |xk) = p(zc
k|xk).p(zm

k |xk).

V. COMMANDING GESTURES INTERPRETATION

A. Framework

The last modality concerns communicative gestures. These

fall into two main categories, namely acts or symbols.

Interpreting act-based gestures is not trivial in our context,

as both the targeted person and the robot are moving during

the “guidance mission”. We thus focus on symbolic gestures

which are expressed by hand postures and/or canonical

displacements. Due to space reasons, only static hand pos-

tures are depicted here. The reader is referred to videos

available at the URL www.laas.fr/∼lbrethes/HRI
for a handling of such gestures but also for a similar handling

of dynamic gestures.

Many studies have been undertaken in order to interpret

hand gestures with a single camera [12]. Conventional ap-

proaches involve two sequential stages, namely the tracking

stage and the recognition stage

Our approach does not distinguish so clearly these

tasks. Indeed, the aim is to recognize, in the track-

ing loop, a number of well-defined hand configura-

tions which represent a limited set of commands that

the user can communicate to the robot. We opt for

the mixed-state CONDENSATION [8], an extension

of CONDENSATION to state vectors which gather

continuous-valued pose parameters (denoted xk) and discrete

indexes ck encoding the hand configurations. The state

vector becomes Xk = (x′
k, r′k)′, where the entry θk of the

continuous part xk = (uk, vk, θk, sk)′ encodes the template

situation. The continuous state components are assumed to

evolve according to mutually independent Gaussian random

walk models. The discrete state entry rk evolves according

to predefined transition probabilities p(rk|rk−1). Besides, the

weighting stage relies on the evaluation of the likelihood

p(zk|Xk) = prk
(zk|xk).

The MAP estimate [r̂k]MAP = arg maxrk
p(rk|z1:k) of rk

can be approximated by

r̂k = arg max
l

X

i∈Υl

w
(i)
k

; Υl ={i : X
(i)
k

=(l,x
(i)
k

)},

where i indexes the i-th particle X
(i)
k with probability – or

“weight” – w
(i)
k . It then follows

x̂k =

P

i∈Υr̂k

w
(i)
k

x
(i)
k

P

i∈Υr̂k

w
(i)
k

; Υr̂k
={i : X

(i)
k

=(r̂k,x
(i)
k

)}.

B. Implementation and evaluations

The discrete index switching probabilities – related to the

seven configuration types (Table II) – are defined manually,

so as to reflect the lexicon associated with commands.

Fig. 5. The
template with its
seven ROIs.

Hand configurations are represented

by coarse 2D rigid models, such as

their silhouette contours, by means of

splines. We suggest to classify static hand

gestures as either direction-oriented (e.g.

“turn-left”, “turn-right”, “move-forward”,

“move-backward”) or motion-oriented

(“move”, “stop”).

As was done for people tracking, the unified measurement

function fuses color and shape cues. Further, defining the

color likelihood on multiple patches proves efficient to

discriminate between hand configurations. This is achieved

within our color model by splitting the tracked region into

ROIs corresponding to the palm and fingers (Figure 5).

Two reference histograms hc
ref and h¬c

ref are considered

in the likelihood p(zc
k|xk). The histogram hc

ref is related

to a human skin color distribution trained from an images

database [9], while the histogram h¬c
ref is selected to be

uniform in order to accommodate to the background varia-

tions. Local Bhattacharyya distances on the ROIs can exhibit

the presence or absence of open fingers, thus improving the

discriminative power between templates associated with con-

figurations. Assuming pixel-wise independence, the color-

based likelihood p(zc
k|xk) factorizes as

p(zc
0, . . . , zc

6|x) =
Y

i∈{0}∪O

phc

(zc
i |x)

Y

j∈C

ph¬c

(zc
j |x)

where O (resp. C) gathers the indexes of the ROIs cor-

responding to open (resp. closed) fingers, i = 0 indexes

the palm, and subscripts/superscripts k and ref have been

omitted for compactness reason. Practically, the smaller is the

color discrepancy between a given ROI and hc
ref or h¬c

ref (de-

pending on the open fingers of the tested configuration), the

higher is its associated probability. The tracker initialization

logically involves skin-blobs detection.

Evaluations have been performed for this modality. Ta-

ble II shows the results of a quantitative comparison with or

without cues fusion for heavy cluttered background. It can

be noticed that fusing shape and color seldom leads to a

posture misclassification. Figure 6 shows a recognition run

for such a modality.
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Fig. 6. “Interaction through commanding gestures”: hand configurations tracking on a sequence involving cluttered background when fusing color and
shape cues in the particles likelihood.

(a) (b) (c) (d) (e) (f) (g)

Fig. 7. Switch between modalities. (a) and (g) INIT, (b) Search for interaction, (c) Body tracking, (d) Proximal interaction, (e) and (f) Guidance mission.

Shape cue Shape and color cues

N= 100 200 400 100 200 400

61% 83% 83% 94% 94% 94%

0% 0% 0% 100% 100% 100%

8% 30% 17% 75% 80% 83%

41% 43% 43% 70% 96% 96%

100% 100% 100% 100% 100% 94%

1% 0% 7% 95% 95% 96%

0% 0% 0% 85% 97% 97%

Total 13% 18% 19% 89% 93% 94%

TABLE II

AVERAGE RECOGNITION RATE PER CONFIGURATION vs PARTICLES

NUMBER ON SEQUENCES INCLUDING CLUTTERED BACKGROUND WITH

OR WITHOUT MULTIPLE CUES FUSION.

VI. DESCRIPTION OF OUR VISION-BASED MODULES

The module ICU – for “I see you” – encapsulates the

aforementioned person recognition/tracking modalities while

the module GEST – for “Gestures tracking” – relates to the

gestures recognition system. Subsection VI-A enumerates all

the visual functions provided by the module ICU. Subsec-

tion VI-B details the way how the modules ICU and GEST

are entailed in the tour-guide scenario, and discusses the

automatic switching between trackers.

A. Visual functions provided by the module ICU

These can be organized into three broad categories.

a) Functions related to human body/limbs detection:

Independently from the tracking loop, the Viola’s face de-

tector can be invoked depending on the current H/R distance

and the scenario status.

b) Functions related to user face recognition: The face

recognition process underlies the following functions

• a face learning function based on the face-based detec-

tor in order to train the classifier;

• a face classification function based on these training

examples and eigenfaces representation;

• a user presence function which updates a presence table

of the robot’s users thanks to (2). The probability of the

presence of the class/person Ct at time k is updated by

applying the following recursive Bayesian scheme from

the classifier ouputs in the p previous frames, i.e.

P (Ct|z
k
k−p) =

"

1 +
1 − P (Ct|zk)

P (Ct|zk)
.
1 − P (Ct|z

k−1
k−p

)

P (Ct|z
k−1
k−p

)
.

p(Ct)

1 − p(Ct)

#−1

, (2)

where

p(Ct) =
1

M
, p(Ct|zk) =

1

NB

NB
X

j=1

p(Ct|(Fj)k, zk)

with NB the number of detected faces F at time

k. During the execution of the mission, the robot

can decide to switch from a targeted person to an-

other one depending on both: (i) the classification

probabilities {P (Cl|Fj), l ∈ {1, ..,M}} for each

detected face Fj , j = 1, . . . , NB at time k, (ii)

the classes with the highest presence probabilities

{P (Cl|zk
k−p), l ∈ {1, ..,M}} in the p previous frames.

c) Functions related to user tracking: These are

• the two tracking functions characterized and evaluated

in section IV. Recall that they have been designed so

as to best suit to the interaction modalities;

• an estimator of the H/R distance of the targeted person

from the scale sk of the updated template during the

tracking loop.

The robot activates these functions depending on the current

H/R distance, user identification and scenario status. The next

subsection details the way how they are scheduled.

B. Heuristic-based switching between trackers

A finite-state automaton can be defined from the tour-

guide scenario outlined in section II, as illustrated in Fig-

ure 8. Its four states are respectively associated to the INIT

mode and to the three aforementioned interaction modalities.

Two heuristics relying on the current H/R distance and

the presence table status allow to characterize most of the

transitions in the graph. The robot in INIT mode invokes the

motion-based detector thanks to π(xk|z
m
k ), so that any visitor

entering the exhibition initializes the whole body tracking
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Fig. 8. Transitions between tracking modalities.

(arrow 1). The robot assumes that the visitors are willing

to interact when they have come closer and their frontal

faces are frequently detected. If so, a “proximal interaction”

begins (arrow 3). The face learning function and the human

presence table update function are possibly invoked if no

visitor is known in the robot surroundings. When starting

the “guidance mission”, the robot launches the upper human

body tracker (arrow 4). During its execution, the robot can

involve multiple persons into interaction but does remain

visually in contact with only one of them, especially when

the targeted person suddenly moves away. The robot dis-

placements can be controlled without any contact thanks to

the module GEST. Finally, the robot returns in INIT mode

when: (i) no moving blobs are detected (arrow 2), (ii) all the

presence probabilities go below a certain threshold (arrow

5), (iii) the end mission is signified by the user (arrow 6).

Thanks to an efficient modular implementation, all the ICU

and GEST functions can be executed in real time on our

robot. Experiments show their complementary and efficiency

in cluttered scenes (Figure 7).

VII. CONCLUSION

This paper has presented the development of a set of visual

functions dedicated to H/R interaction for our tour-guide

robot. We introduced mechanisms for data fusion within

particle filtering to develop trackers combining/fusing visual

cues, including face recognition, in order to track people or

gestures.

A first contribution relates to visual data fusion with

respect to the considered robotics scenarii. Data fusion

using particle filtering schemes has been extensively tackled,

typically by Pérez et al. in [13]. The authors propose a hier-

archical particle filtering algorithm, which successively takes

into account the measurements so as to efficiently draw the

particles. To our belief, using multiple cues simultaneously,

both into importance and measurement functions, enables a

more robust failures detection and recovery. More globally,

other existing particle filtering strategies have been evaluated

in order to check which people trackers best fulfill the

requirements for the envisaged modalities. From this guiding

principle, an extension for understanding hand configurations

is also proposed.

A second contribution relates to the integration of the

developped visual functions on our robot to highlight their

relevance and complementarity. To our knowledge, quite

few mature robotic systems enjoy such advanced capabil-

ities of human and gestures perception. To illustrate our

tour-guide scenario, the reader is referred to the URL

www.laas.fr/∼tgerma/rackham for videos or more

images.

Several directions are currently studied regarding our

trackers. First, we study how to fuse other information such

as stereo or sound cues. The sound cue won’t just contribute

to the localization in the image plane, but will also endow the

tracker with the ability to switch its focus between speakers.

Second, our tracking modalities will be made much more

active.
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