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Incremental Learning of Tasks From User
Demonstrations, Past Experiences,

and Vocal Comments
Michael Pardowitz, Steffen Knoop, Ruediger Dillmann, Member, IEEE, and Raoul D. Zöllner

Abstract—Since many years the robotics community is envision-
ing robot assistants sharing the same environment with humans.
It became obvious that they have to interact with humans and
should adapt to individual user needs. Especially the high variety
of tasks robot assistants will be facing requires a highly adaptive
and user-friendly programming interface. One possible solution
to this programming problem is the learning-by-demonstration
paradigm, where the robot is supposed to observe the execution
of a task, acquire task knowledge, and reproduce it. In this paper,
a system to record, interpret, and reason over demonstrations of
household tasks is presented. The focus is on the model-based
representation of manipulation tasks, which serves as a basis for
incremental reasoning over the acquired task knowledge. The
aim of the reasoning is to condense and interconnect the data,
resulting in more general task knowledge. A measure for the
assessment of information content of task features is introduced.
This measure for the relevance of certain features relies both on
general background knowledge as well as task-specific knowledge
gathered from the user demonstrations. Beside the autonomous
information estimation of features, speech comments during the
execution, pointing out the relevance of features are considered
as well. The results of the incremental growth of the task knowl-
edge when more task demonstrations become available and their
fusion with relevance information gained from speech comments
is demonstrated within the task of laying a table.

Index Terms—Human–robot interaction, programming by
demonstration, task learning.

I. INTRODUCTION

DURING the last years, humanoid robotics became a major
trend in the robotics community. Generally, the service ro-

bot design is dominated in all facets by the fact that in the future
more and more robots are supposed to act in close cooperation
with humans. In order to persist in the depicted scenario, these
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robots have to autonomously adapt their behavior and actions
to the users needs and preferences. Therefore, a very important
property of robot assistants is learning, since it enables robots to
cope with everyday situations and natural (household or office)
environments in a way that pays attention to their users. This
means that through the learning process, on the one hand, new
skills and tasks have to be acquired, and on the other hand, the
knowledge of the system has to be adapted to new contexts and
situations.

Robot assistants coping with these demands must be
equipped with innate skills and should learn livelong from their
users. Supposedly, these are no robot experts and require a
system that adapts itself to their individual needs. For meeting
these requirements, a new paradigm for teaching robots is
defined to solve the problems of skill and task transfer from
human (user) to robot, as a special way of knowledge transfer
between man and machine.

Obviously, systems capable of this knowledge transfer
require the following:

1) powerful sensor systems to gather as much information
as possible by observing human behavior or processing
explicit instructions like commands or comments;

2) a methodology to transform observed information for a
specific task to a robot-independent and flexible knowl-
edge structure;

3) actuator systems using this knowledge structure to gen-
erate actions that will accomplish the acquired task in a
specific target environment.

This approach to task learning is widely known as pro-
gramming by demonstration (PbD). A crucial point in task
learning is to exactly capture the user’s intention. Usually, this
is achieved by observing multiple demonstrations of the same
task and identifying the common features of the task as the
user’s inherent intention. On the other hand, initially requesting
multiple demonstrations of a single task would annoy the user.
Therefore, PbD systems should be capable of learning a task
from a single demonstration in order to allow first executions,
monitored by the user. Incremental learning approaches that
gradually refine task knowledge and generalize it as more
demonstrated examples become available pave the way toward
suitable PbD systems for humanoid robots.

One aspect that can only be learned incompletely from a
single user demonstration is the degree of freedom with respect
to the sequence the subparts of a certain task can be scheduled.
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This knowledge allows the robot system to execute them in a
sequence that can be optimized with respect to speed, energy
consumption or path length. In order to learn these aspects
from multiple demonstrations, common subtasks of different
demonstrations of the same task have to be identified. This
needs an explicit measurement of subtask similarity, that in turn
relies on the similarity of features of each subtask. Different
features have different importance attached. Here, an approach
is proposed that allows to estimate the relevance of a feature,
based on background knowledge, its occurrence probability in
all demonstrations of a certain task and vocal comments the
user can give while demonstrating the task to be learned by the
system.

The remainder of this paper is organized as follows. The
next section gives an overview on related work concerning
PbD and task learning from user demonstrations. Section III
describes the system for the acquisition of task knowledge
from a single user demonstration and the general representation
of task knowledge, called macrooperators (MOs). Section IV
introduces task precedence graphs (TPGs), the representation
for the sequential structure of a task and proposes a method for
reasoning on the underlying precedence graph of a task with
two or more sequential demonstrations given. The methods
for identifying corresponding subtasks within different task
demonstrations described in Section V are an important pre-
liminary for this computation. Heuristical relevance estimates
for task features based on the current task demonstrations, past
experiences, and spoken user comments are used to compute
the similarity of tasks and subtasks and will be discussed in
Section VI section. Finally, the methods described in earlier
sections are evaluated in Section VII.

II. TEACHING ROBOT ASSISTANTS: AN OVERVIEW

A classification of methods [1], [2] for teaching robot as-
sistants in an intuitive way might be done according to the
type and granularity of knowledge which is supposed to be
transferred between human and robot. Here, the proposed
methods for learning from human activities can be categorized
into subsymbolic skill learning systems (see Section II-A) and
symbolic task acquisition systems (see Section II-B). Work
specially focusing the analysis of sequences of actions is treated
in Section II-C.

A. Skill Learning

For the term “skill,” different definitions exist in literature.
In this paper, it will be used as follows. A skill denotes an
action (i.e., manipulation or navigation), which contains a close
sensor-actuator coupling. In terms of representation, it denotes
the smallest symbolic entity which is used for describing an
action.

Examples for skills are grasps or moves of manipulated
objects with constraints like “move along a table surface,”
etc. The classical “peg in hole” problem can be modeled as a
skill, for example using a force controller [3]. Skill learning
means to find the control function π, which satisfy the equation
U(t) = π(X(t), Z(t)) and transfers sensor data and internal

Fig. 1. Process of skill transfer.

states to actuator output. The model of the skill transfer process
is visualized in Fig. 1 [4] reports successful learning of ad-
vanced skills through reinforcement learning. The robot system
is given the demonstration of a pendulum swingup, a human
challenging skill, and is able to reproduce that within 4–5 trials.

Successful learning of gestures is reported in [5]. The aim is
to reproduce trajectories of movements like waving or drawing
letters, aiming at a high similarity of the robot’s movements
to the demonstrated trajectories, applying different imitation
metrics [6].

However, teaching skills to robot assistants is time intensive
and affords a lot of knowledge about the system. Therefore,
looking at robot assistants were the user of the systems is not
an expert, it seems more feasible that the majority of the needed
skills are prelearned. The system would have a set of innate
skills and will only have to learn a few new skills during its
“life time.”

B. Task Learning

From the semantic point of view, a task denotes a more
complex action type than a skill. From the representation and
model side a task is usually seen as a sequence of skills.
In terms of knowledge representation, a task denotes a more
abstract view of actions, where the control mechanisms for
actuators and sensors are encapsulated in modules represented
by symbols.

Various task learning systems have been proposed with var-
ious sensor and actuator settings on different task domains
like assembly work [7], block world construction [8], [9] or
household manipulation [10]. In spite of all differences, a
similar task model is evincing.

A task T is understood as a sequence of skills [or elemen-
tary operators (EOs)] Si, the context including environmental
information or constraints Ei and internal states of the robot
system Zi are introduced as pre- and postconditions of the
skills. Formally, a task T can be described as

T = {(PreCond(Ei, Zi))Si (E(Ei, Zi))}

E = PostCond \ PreCond (1)

where E denotes the effect of a skill on the environment and the
internal robot states. Consequently, the goals and subgoals of a
task are represented by the effect of the task or the subsequence
of the skills.

A noticeable difference of tasks from skills is the fact that
tasks are state, but not time dependent like skills, and therefore
enable a higher generalization in terms of learning. Although
the sensory-motor skills in this representation are encapsulated
in symbols, learning and planning task execution for robot
assistants becomes very complex due to the fact that state



324 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 2, APRIL 2007

Fig. 2. Training center with dedicated sensor environment.

descriptions of environments (including humans) and internal
states highly complex.

C. Learning of Sequences of Actions

Sequential analysis has been applied to both the skill and the
task level.

1) Chen and Zelinsky [11] records multiple user demon-
strations of a complex manipulation skill of inserting a
spindle into supports. A minimal sequence of motions is
learned from five demonstrations, minimal in the sense of
the necessary succession of actions. Unnecessary actions
that do not appear in all demonstrations are pruned and
only the sequence of essential actions is retained.

2) Nicolescu and Mataric [12] stresses the role of verbal in-
teraction and feedback with and from the human teacher
to facilitate learning of sequential arrangements of be-
haviors. A navigation task for a Pioneer 2-DX mobile
robot was chosen as the task domain. The resulting task
description after several demonstrations contains mainly
the longest subsequence of navigation behaviors common
to all demonstrations of the task.

3) Sutton et al. [13] covers temporal abstraction in rein-
forcement learning of a two-layered task model. The task
domain is also from the navigation domain, dealing with
movement behaviors in multiroom indoor environments.
Several demonstrations of reaching a certain point in a
certain room from different starting positions are gen-
eralized to a behavior leading to the destination from
anywhere in the building.

Concluding from the methods presented in this section, one
can say that there is no general representation featuring both
sequential and concurrent activities on the task level, as well
as no methods for incremental and multimodal task learning in
the household robot domain. This need is met by the sequential
task representation proposed in Section IV and the interactive
task feature learning mechanisms in Section VI.

III. SYSTEM ARCHITECTURE AND TASK MODEL

The starting point for acquiring new task knowledge is a
PbD system developed for many years at our lab. This section
gives a brief overview of the segmentation process and the
manipulation task classes which can be learned by the system in
order to describe the gathered information and the assumptions
made during this process.

The main idea is to separate the acquisition of task knowl-
edge from the execution of the task on a specific robot in order
to achieve a robust task description from a vast external sensor
system installed in a so-called training center. The training
center is an environment for capturing human activity. For
experiments, a kitchenlike environment was set up where the
user may perform typical tasks such as loading a dishwasher,
depositing objects in a refrigerator, opening bottles, filling
glasses with liquid, etc. Since robustness and flexibility are
important for its acceptance, the workspace resembles that of
a real kitchen and various sensors are integrated for stable
observation (see Fig. 2). Table I contains a list of these sensors
and their output.

For ensuring a representation of robot invariant task knowl-
edge the observed demonstration will be transformed to an
abstract hardware-independent stripslike tree description called
MO relaying on basic skills (see Section II-A) called EOs. An
EO denotes an action that abstracts a sensory motor coupling
like a grasp or a linear move, etc. The EOs build the hardware
abstraction layer and have to be implemented on the robot
system depending on the available sensors and actors.

A. Classes of Manipulation Tasks

Within the framework of PbD, the basis for successfully
mapping task solutions from a human to a robot system is the
ability of the programming system to recognize and to interpret
human actions. It is important to note that humans tend to
perceive activity as a clearly separated sequence of subtasks,
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TABLE I
SENSORS AND OBSERVABLE FEATURES IN

TRAINING CENTER ENVIRONMENT

Fig. 3. Examples for the manipulation classes distinguished in a PbD system.

each of which directly realizes a specific subgoal [14]. The
solution of the overall problem is representable as a sequence
of such subtasks.

The most useful information for interpreting such a sequence
is to be found in the subgoals of each manipulation segment,
i.e., their contribution to the effect of the demonstration. Three
different classes of functional roles with different intended
subgoals can be distinguished (see Fig. 3).

1) Transport operations: are the simplest action classes of
robots in the role of servants or assistants. The change of
the external state (Cartesian position) of the manipulated
object serves as a formal distinguishing criterion of this
kind of task. Tasks like pick and place or fetch and
carry denoting the transport of objects are part of almost
all manipulations. Consequently, for modeling transport

actions, the trajectory of the manipulated object has to be
considered and modeled. In terms of teaching transport
actions to robots, the acquisition and interpretation of the
performed trajectory is therefore crucial.

2) Device handling: A more specialized class of manipula-
tion tasks deals with changing the internal state of objects
without the influence of other objects (like opening a
drawer, pushing a button, etc.). Every task changing an
internal state of an object without manipulating another
object belongs to this class. Actions of this class are
typically applied when using devices, but many other
objects also have internal states that can be changed (e.g.,
a bottle can be open or closed, filled or empty, etc.).
In terms of modeling device-handling tasks, transition
actions leading to an internal state change have to be
modeled. Additionally, the object models need to inte-
grate an adequate internal state description. Teaching this
kind of task requires observation routines able to detect
internal state changes by continuously tracking relevant
parameters.

3) Tool handling: The most distinctive feature for actions
belonging to the class of tool handling is the interaction
between two objects, typically a tool and some work-
piece. The interaction is related to the functional role
of objects used or the correlation between the functional
roles of all objects included in the manipulation, respec-
tively. The object model thus should contain a model
of the possible interaction modalities or functional roles
the object can take. According to different modalities
of interaction, considering contact, movements, etc., a
diversity of handling methods has to be modeled. In terms
of teaching robots, the observation and interpretation of
the actions can be done using parameters corresponding
to the functional role and the movements of the involved
objects.

These three distinguished classes cover the domain of perfor-
mative actions within household and workshop environments,
and allow to model and interpret human actions with respect
to the inherent semantics pursued. The following section deals
with the issue of how these three classes can be automatically
segmented from human demonstrations.

B. Segmentation of the Demonstration

The phases of the PbD process, described in [15], are a
segmentation of the sensor data followed by an analysis and
interpretation step for identifying a sequence of EOs which is
abstracted and generalized to a MO in a further step.

In order to process the above manipulation classes, the
segmentation of the sensor data is done in three phases.

1) Grasp segmentation: Here, a stable segmentation of grasp
and release actions is performed.

2) Trajectory segmentation: This phase extracts for each
grasp and release segment an approach and depart trajec-
tory and fragments the whole hand trajectories in elemen-
tary move operations like linear, or circular segments.
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TABLE II
PARAMETERS FOR BASIC SKILL SEGMENTATION

3) Statistic segmentation: For detecting object relations dur-
ing grasp phases, statistic parameters are used in order to
generate hypothesis on possible interactions using object-
role-dependent probabilities [16].

The segmentation of the user demonstration uses a lot of
background knowledge about the manipulation process and the
environment, respectively, the objects used in the demonstrated
manipulation. In Table II, the parameters used for the seg-
mentation are listed. The table shows the dependence of the
parameters from the manipulation class. For simple transport
actions, in addition to the grasp type, only the trajectory of
the objects is needed. Looking at device handling tasks, where
the manipulation changes the internal state of the manipulated
object (i.e., for an “open a door” action the state “door closed”
changes to “door open”) more information about the object has
to be included in the process. The most complex manipulation
in terms of detection is a tool handling since in this case the in-
teraction between the manipulated objects determines the goal
of the action. In this case, more information about the object
types and their functional roles is needed in order to detect and
describe this kind of manipulations.

The result of the segmentation step is a list of key points
which are indicating possible starting points of EOs. For gen-
erating an action (EO) sequence for each fragment a search
for an instantiation of EOs is made. The search is triggered
by the information about the type of these key points and a
confidence measure for this classification. The proof for the
instantiation of an EO requires an evaluation of several EO
conditions stored in the EOs. For example, for instantiating a
static grasp, a neuronal net is used in order to classify the grasp
and a positive classification will result in an instantiation of a
certain static grasp, i.e., circular grasp (see [17]).

C. Hierarchical Task Representation

Representing manipulation tasks as pure action sequences
is not flexible and also not scalable, especially when they are
used as input for planning systems (see [18]). Therefore, a
hierarchical representation is introduced in order to generalize
an action sequence according to the explanation-based theory

Fig. 4. Hierarchical model of a pick action.

Fig. 5. Representation of a manipulation segment.

[19] from a single demonstration and to combine EOs to more
complex compound tasks.

Looking only on manipulation tasks the assumption is made
that each manipulation consists of a grasp and a release ac-
tion. To cope with the above specified manipulation classes,
pushing or touching an object is interpreted as a grasp. The
representation of grasping an object constitutes a “pick” action
and consist of three subactions: an approach, a grasp type, and
a disapproach (Fig. 4). Each of these subactions consists of a
variable sequence of EOs of certain types (i.e., for the approach
and disapproach the EOs are move types and the grasp will be
of type grasp). A “place” action is treated analogously.

Between a pick and a place operation, depending on the
manipulation class, several basic manipulation operations can
be placed (Fig. 5). For example, a demonstration of the task
“pouring a glass of water” consists of the basic operations:
“pick a bottle,” “transport the bottle,” “pour in,” “transport the
bottle,” and “place the bottle.” A sequence of basic manipula-
tion operations starting with a pick and ending with a place is
abstracted to a manipulation segment.

The level of manipulation segments denotes a new abstrac-
tion level on closed subtasks of manipulation. In this context,
closed means that segments start and end with both hands free
and that the environmental state is stable. Furthermore, the
synchronization of EOs for left and right hands are included in
the manipulation segments. Pre- and postconditions describing
the state of the environment at the beginning and at the end
of a manipulation segment are sufficient for their instantia-
tion. The conditions are propagated from the EO level to the
manipulation segmentation level and are computed from the
environmental changes during the manipulation. In parallel to
the propagation of the conditions, a generalization in terms of
positions and object types and features is done.
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In this section, a system, capable of one-shot learning of
complex household task has been presented. The resulting hier-
archical task description called MO contains subtasks and pre-
and postconditions and is suitable as input for symbolical task
planning systems. So far, the system only takes into account
a single task demonstration and fails to generalize its task
knowledge when multiple demonstrations become available.
How this can be done is presented in the following section.

IV. LEARNING OF TPGS

This section is concerned with the representation of the
sequential features of a task and how it can be learned from
multiple user demonstrations of the same task. A formal de-
finition of the structure that contains the sequential order-
ing a task obeys is given. Additionally, a way a system
can make hypotheses about the sequential dependencies is
presented.

When a user performs a task, he performs its subparts (the
manipulation segments) in a sequential ordering that he has
chosen by random or by intent from all possible task execution
orders. For a system recording his actions, these appear as a
simple sequence of operations. In order to exploit the maximum
degrees of freedom, the task possesses at execution time, the
sequential constraints a valid task execution has to obey must
be known to the robot before the execution can start. Observing
a single demonstration of a certain task, the sequence chosen by
the user is influenced by two different aspects.

1) Sequential dependencies induced by the task to be solved.
These form temporal precedence relations that follow
from the attributes of the task to be done and environmen-
tal constraints. One simple example is the task of fetching
an object from the fridge. The subtask of opening the
fridge door must be accomplished before a robot can pick
the object.

2) Sequential execution of independent operations. Opera-
tions sequentially independent of each other that cannot
be performed in parallel have to be executed in any
order. This order may be chosen by user’s preferences or
according to any strategy or optimization criteria.

A learning system that builds knowledge about a task has to
make hypotheses about the underlying sequential task structure.
These hypotheses can be represented by TPGs.

Definition 1: A TPG for a task T is a directed graph P =
(N,R) with N being the set of subtasks o1, o2, . . . , on, and
R ⊂ N × N being the set of precedence relations a fault-
less task execution must comply with. A precedence relation
(o1, o2) ∈ R with o1, o2 ∈ N implies that the operation o1

must be complete before the execution of o2 can start. This is
abbreviated as o1 → o2.

A faultless execution of a task requires the chosen sequence
of operations to be consistent with its TPG, or, in other words,
fulfills every sequential relationship inherent to the TPG.

Definition 2: A demonstration D = (oi1 , oi2 , . . . , oin) with
oij ∈ N is said to comply with a TPG P = (N,R), if for every
precedence relation oi → oj ∈ R the operations oi = oik and

oj = oil appear in the correct sequential order, i.e., k < l. This
is denoted by P ! D.

For a system that is supplied with only a single user demon-
stration D = (o1, o2, . . . , on) of a task, it is hard to guess
the inherent TPG. Suppose that an operation oi is observed
before oj . Then, oi → oj can be part of the TPG, indicating
that in every valid task execution sequence oi must appear
before oj , or this observation can result from the fact that the
user had to chose any ordering for two sequential independent
actions (see above). The learning system can state different
hypotheses, ranging from the most restrictive TPG PD =
(N,RD) with

RD = {(oi, oj)|i < j} (2)

to the TPG with the most degrees of freedom, P ∗ = (N, ∅).
PD restricts the task to be executable only with the sequential
ordering observed in the user demonstration, P ∗ classifies every
order of actions as a valid task sequence. All other possible
TPGs the user demonstration complies with are valid as well.
In order to impose a structure on this set of valid hypotheses,
the “more general” partial ordering is defined.

Definition 3: A TPG G = (N,RG) is said to be more gen-
eral than a TPG of the same task S = (N,RS) if and only if
RG ⊂ RS . This is abbreviated as G ' S.

The remainder of this section deals with the topic of how a
valid hypothesis that complies with all task demonstrations can
be learned in an incremental way by using the more general
relation.

While the learning system cannot decide which TPG from
the set of consistent TPGs fits the task best after seeing
only one single example, it seems a viable approach to sup-
ply it with more sample demonstrations, applying different
task execution orders. In order to learn task knowledge from
even a single demonstration sufficient for execution but im-
proving the learned task when more knowledge in form of
task demonstrations is available, an incremental approach is
chosen.

Assuming that the system has learned the most specific TPG
Pm after obtaining a set of m Demonstrations {D1,D2, . . . ,
Dm}, a new demonstration of the same task Dm+1 is observed.
The next step is to adapt the learned TPG in a way that
incorporates the new knowledge. Mitchell [20] suggests that
this can be done by further generalizing the previous hypoth-
esis to a new one, covering the additional example. In order
not to generalize too far, that is, to ensure that no essential
precedence relations are dropped, the minimal generalization
of Pm that is consistent with Dm+1 must be chosen. Therefore,
one can state that the best choice for Pm+1 is the hypoth-
esis H with

H'Pm∧H !Dm+1∧() ∃H ′ :H ′!Dm+1∧H'H ′ 'Pm).
(3)

In computation terms, the new set of task precedence
relations Rm+1 can be expressed as a function of the previously
learned hypothesis Pm = (N,Rm) and the most restrictive
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hypothesis for the new observed demonstration PDm+1 =
(N,RDm+1), which can be computed according to (2)

Rm+1 = Rm ∩ RDm+1 . (4)

Now, one can state the process of incremental learning of
TPGs.

1) For the first training example D1, initialize the TPG
P1 = PD1 according to (2).

2) For each additional demonstration Dm+1 of the same
task, compute PDm+1 and update the hypothesis Pm+1

according to (4).

One issue not addressed until now is the question of when
the additional task demonstrations arrive. In the application
domain of household service robots, one cannot assume that
the user gives all demonstrations sufficient to learn the correct
TPG at once. Instead, it might take a long time between two
successive demonstrations of the same task. Moreover, the
task knowledge learned during past demonstrations has to be
utilized because it is likely that the user will require the robot to
execute the learned task without having taken into account all
task demonstrations that might appear in the future. Therefore,
the TPG learned by the system should be reliable enough to
ensure a faultless and, above all, secure task execution.

The incremental learning mechanism for TPGs presented in
this section allows a correct precedence graph to be learned
from even a single example while still maintaining the abil-
ity to incorporate new knowledge in order to refine the task
knowledge and to provide additional reordering opportunities
at execution time.

The user is given the possibility to provide the learning
system with another task demonstration, when during a robot’s
task execution he finds out, that the learned TPG is to restricted
to meet his intention.

V. RECOGNITION OF COMMON SUBTASKS APPLYING

SUBTASK SIMILARITY MEASURES

While the last section presented a method for learning the
sequential constraints of a task when in every task demonstra-
tion exactly the same subtasks are used, this is not likely to
be true for every task. Usually, the human demonstrator will
only use similar but partly different manipulation segments in
order to fulfill the same task. This section deals with the topic
of identifying the corresponding manipulation segments in two
or more demonstrations of the same task.

In order to recognize the matching manipulation segments
for two different task demonstrations, the ordering of the ma-
nipulations cannot be a reliable measure for subtask corre-
spondence as the sequence of subtasks performed is potentially
permuted. Although matching the segments that manipulate the
same class of objects seems to be a good idea at first, this
method fails as soon as there are multiple objects of the same
class present in the scene. Therefore, more features should be
taken into account to determine the similarity of subtasks and
establish sufficiently robust subtask correspondences in order
to identify operations of equal impact to the scene.

The features of a manipulation segment are organized along
the following classification.

1) Object features: These contain the class of the objects
manipulated or referenced in the certain subtask (cup,
plate, table, etc.) as well as their possible functional roles
(liquid container, object container, etc.).

2) Pre- and postcondition features: These contain the geo-
metrical relations that exist between the objects before or
after the performance of the subtask, respectively.

The base operation to assess feature conformance is the
measure of similarity sF for two sets of features A, B with

sF (A,B) =
|A ∩ B|
|A ∪ B| . (5)

This is the portion of common features in both feature sets.
It turned out that this straightforward approach exposes one

major drawback: As the number of features is relatively high
(about 250–300 features for tasks dealing with 3–5 objects)
and many of the features are irrelevant to the certain task to be
learned, the features carrying the relevant information will be
predominated by the irrelevant ones. The solution is to weight
each feature f depending on it is relevance to the task to be
learned with a weight w(f). This turns (5) into

sF (A,B) =
∑

f∈A∩B r(f)
∑

f∈A∪B r(f)
. (6)

The weight function r(f) could be influenced by several dif-
ferent aspects like background knowledge, information content
of features, and vocal elucidations; the user gives during the
demonstration of a task. This issue is discussed in greater detail
in the following section. For now, it is assumed, that a weight
function r(f) exists that somehow reflects the importance of a
feature.

With the weighted proportion of features sF as in (6) it is
possible to compute the similarities spre and spost of the pre-
and postcondition sets of two subtasks M1 and M2 and the
average of the subtask similarities ssub of the tasks. They are
set to

spre = sF (Precond(M1), Precond(M2)

spost = sF (Postcond(M1), Postcond(M2)

ssub =
1

|M1 ∪ M2|
∑

m1∈M1,m2∈M2

sM (m1,m2).

The (recursive) overall similarity sM of the two manipulation
segments M1, M2 is defined as the weighted average of the
pre- and postcondition similarity and the average of all subtask
similarities

sM (M1,M2) = αprespre + αpostspost + αsubssub.

In the experiments conducted in this paper, these weights
were normalized to 1/3. Once the subtask-similarity sM is
computed for every pairing of the task’s subtasks, the subtask
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correspondence pST is computed as the permutation that maxi-
mizes the sum of similarities

pST = arg max
p∈perm(subtasks)

∑

(M1,M2)∈p

sM (M1,M2).

With the subtask permutation pST the most restrictive hy-
pothesis PDi (see Section IV) on the underlying task prece-
dence structure can easily be constructed. This hypothesis can
then be utilized to learn sequential task constraints in the way
described in Section IV.

VI. INCREMENTAL ESTIMATION OF FEATURE RELEVANCE

USING VOCAL COMMENTS AND PAST EXPERIENCES

This section is concerned with the estimation of the relevance
of every feature to the task to be learned. Several information
channels can be used to guide this weighting process. This sec-
tion takes into account the physical demonstration and the vocal
communication channel. The first provides the representation of
actions as described in Section III. Here, task specific knowl-
edge (the feature occurrence probabilities over all demonstra-
tions of the same task) as well as background knowledge
(the feature occurrence probabilities over all demonstration the
robot has seen in his “lifetime”) can be applied.

One way to assess the relevance of a feature is to test its
occurrence over several different demonstrations of the same
task. Features with a high relevance to the task to be performed
have a great probability of occurrence, while features of lower
relevance will occur less frequently. According to Shannon, the
information content I(f) of a feature f with probability p(f) is
I(f) = − log2 p(f). As features with low information content
(= high probability of occurrence) to the specific task class
T should be favored, − log2(1 − p(f |T)) seems a reasonable
choice for the weight function.

On the other hand, one has to take into account that when
a completely new task is learned or only few demonstrations
of the same task are known so far, only little or no infor-
mation about the distribution of features in the specific task
class is known in advance, so the weight function from the
last paragraph will not produce reasonable results. The idea
is to introduce global background knowledge on the feature
distribution. When several demonstrations of different tasks
have been observed by the robot and incorporated into the
task knowledge base, it can be assumed that the features
that uniquely discriminate the task are those that have low
occurrence rates across the whole task knowledge base. Thus,
the information content to all other tasks T of feature f is
− log2 p(f |T).

An incremental learning system should be able to cope with
both situations: with no or sparse knowledge about the specific
task features at the initial learning steps as well as with more
task demonstrations coming available in later stages. Therefore,
a combination has to be found that favors the global information
content measure when no or few task demonstrations are avail-
able, and the task-specific relevance measure as more demon-
strations of the specific task become available. The (partial)
weight function for the assessment of feature relevence-based

solely on the current task and past experiences that fulfills those
requirements is

wdemo(f) = −
[

α log2 (1 − p(f |T)) + (1 − α) log2 p(f |T)
]

(7)

with the relative weighting α of the task-specific knowledge as

α = 1 − e−k·|T|.

In our experiments, we chose k = −(ln 0.25)/(5), such that
after observing five demonstrations of the same task, the pro-
portion of task specific to prior knowledge is 0.75 : 0.25 and
converging toward 1 for more demonstrations. This choice is
motivated by [21], stating that the important features of a task
can be sufficiently learned from feature occurrence statistics
with five demonstrations. This weight function should be nor-
malized to one, resulting in the relative importance of each
feature to the task

rdemo(f) =
wdemo(f)

∑

f ′∈F wdemo(f ′)
. (8)

When, additionally, vocal comments are available that corre-
spond with certain features, the estimate of (7) can be further
improved. In our system, comments have the form of “telling
the system what is going on.” For example, when laying the
table, the user can tell the system that he/she is putting the fork
to the right of the plate on the table. This enables the system to
guess that the effect of putting the fork to the right side of the
plate is of higher interest to the task than several other features.

Assuming that the evaluation of speech comments resulted in
a set V of features the user reputes important, one can state the
vocal part wvoc(f) of the weight function as

wvoc(f) =
{

1, f ∈ V
0, f )∈ V.

This focuses the system on the features the user highlighted
during the demonstrations by giving the vocal comments, while
ignoring the others. Again, this is transformed into the relative
importance function

rvoc(f) =
wvoc(f)

∑

f ′∈F wvoc(f ′)
.

Combining these two functions rdemo and rvoc is a crucial
issue. It is unclear a priori, whether the system should focus
on the vocal comments or the actual demonstrations. The first
are potentially incomplete as the user comments only parts of
the task while he/she rates others as clear and not in need of
a comment. On the other hand, the estimate of wdemo may
be too conservative and unreliable, especially during the first
demonstrations of the task, when only little information on the
feature distribution of the task class is available.

We propose an approach to this relying on the information
content [22]. As we are interested in the features that have
high relative weights rather than the ones that are estimated to
have low relevance to the task, − log(1 − r(f)) seems to be
a good choice (see above). The information contents Ivoc and
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Fig. 6. Learned task of laying the table: final object configuration to be
learned.

Idemo, respectively, for each input modality are calculated as
follows:

Ivoc = −
∑

f∈F
log (1 − rvoc(f))

Idemo = −
∑

f∈F
log (1 − rdemo(f)) .

Now, the final step is to design the overall weight function
r(f) as follows:

r(f) = Ivoc · wvoc(f) + Idemo · wdemo(f). (9)

The result in (9) presents an assessment of task features’ rel-
evance depending on the their occurrence in all demonstrations
of the task, vocal comments, and explanations given during the
tasks demonstrations and background knowledge in form of
demonstrations of other tasks already provided to the system.
All these different information channels are fused taking into
account their information content (the amount by which the
system can benefit from that information), providing sound
foundations for the measurement of task and subtask similarity
and higher level learning, e.g., of TPGs.

VII. RESULTS

This section reports and evaluates the experiments with the
system described in the preceding sections and analyses its
results.

The experiment consisted of teaching an everyday household
task from the domain of laying the table. The task for the system
to learn was to arrange the objects in a way that can be seen in
Fig. 6: A table should be laid on the silver place mat with a
plate, a fork to the right of it, and a cup behind the fork (from
the users point of view).

Four different demonstrations of the task were provided to
the system. In the first two demonstrations, the plate, the fork,
and the cup were placed in this order. In the third demonstration,
the first two operations were reversed, while in the last demon-
stration the cup was placed first, followed by the fork and the
plate. The following vocal comments were accompanying the
demonstrations: In the first two demonstrations, the user told
the system “I am putting the plate on the silver place mat, the

Fig. 7. Weight functions w(f) and wdemo(f) for certain features over
number of task demonstrations.

fork on the silver place mat to the right of the plate and the cup
on the mat to the west of the fork.” During the third and forth
demonstration the user said that he is putting the fork on the
mat, the plate to the left of the fork and the cup on the mat in a
way, that the fork is to the east of the cup.

The system could extract seven effects of the demonstrations
that were highlighted by the vocal comments. These are “plate
on place mat,” “fork on place mat,” “cup on place mat,” “fork
north of plate,” and “cup west of fork” after the first two
demonstrations and additionally “plate south of fork” and “fork
east of cup” after the third demonstration.

In Fig. 7, the relative weight function rdemo [see (8)], tak-
ing into account only the demonstrations, and the compound
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Fig. 8. Subtask similarity measure for the subtask of putting the plate on the
place mat over the number of demonstrations.

relative weight function r that combines rdemo with the infor-
mation from the vocal information channel [see (9)] are plotted
over the number of task demonstrations given for different
relations. Fig. 7(a) shows the weight function for a very relevant
effect: The fork should be put to the north of the plate. One
can see that the combined weight function r yields much larger
results for the relevance estimate than the weight function
rdemo deduced from the demonstrations alone. The interesting
decrease of the relative weight after the third demonstration
results from the two additional relations that occurred in the
user comments, distributing the overall weight of 1 over seven
instead of five effects in the vocal comment weight function
rvoc. Fig. 7(b) shows the weight functions for the relation
“fork east of cup.” In the first two demonstrations, this effect
was not mentioned by the user, so the weight is pretty low.
As soon as he highlights it in the third demonstration, the
relation’s weight rises. This shows the advantage of incremental
learning mechanisms that can adapt their hypotheses stated so
far by using additional knowledge in form of demonstrations
or comments. Fig. 7(c) shows the decrease of weight for an
irrelevant effect, that was only present in the first demonstration
by mistake. As it is not stressed by the user comments and does
not appear in later demonstrations, its weight decreases with
every user demonstration that is given to the system.

The improvement of the weight function applying vocal
comments to the subtask similarity measures [see (6)] is shown
in Fig. 8. One can see clearly that the subtask similarity is
far greater, leading to more reliable subtask correspondences,
which are essential for reidentifying common subtasks during
the learning of TPGs.

The first two demonstrations given to the system do not result
in a TPG different from the order of subtasks, as no alternative
sequences can be observed (see the first row of Table III).
After the third demonstration has been observed, the system can
apply the reasoning mechanisms on sequential independencies
presented in Section IV and obtains the knowledge that the
subtasks of putting the plate on the place mat and putting the
fork to the right of it are sequentially independent of each
other (see second row). After the last demonstration of the
task is presented, the TPG is completely learned. The system
now obtained the knowledge that each of the three subtasks

TABLE III
TPGS LEARNED INCREMENTALLY DURING THE EXPERIMENT. THE P Di

COLUMN LISTS THE MOST RESTRICTIVE TPGS LEARNED FROM SINGLE
DEMONSTRATIONS [SEE (2)], WHILE THE Pi COLUMN SHOWS THE

GENERALIZED TPGS LEARNED FROM ALL TASK DEMONSTRATIONS THE
SYSTEM HAS SEEN SO FAR (SEE SECTION IV FOR DETAILS)

can be performed independently of each other, that is during
execution the three subtasks can be scheduled in parallel or in
any order.

VIII. CONCLUSION

Based on hierarchical, functional, and goal-oriented task
models it is possible to acquire and structure task knowledge
from a human demonstration. The presented task models and
representations are restricted to manipulation tasks, which con-
tain at least one grasp operation. According to the explanation-
based theory task knowledge is acquired from a single
demonstration. The second part of this paper tackles the prob-
lem of structuring the acquired task knowledge trough rea-
soning. Hereby the concept of TPGs is introduced in order to
generalize task knowledge according to the order of subtasks.
The crucial point hereby is finding similarity measures for
subtasks or actions and since these are based on features the
relevance of the features for a certain task have to be estimated.
This is done by using the fusion of two information channels
namely estimating the relevance of features similar to the rule
induction using the information theory and deriving relevant
information from speech comments. Finally, a brief discussion
of the results shows how the task knowledge over lying a table
is acquired and processed.
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