Timed Automata - From Theory to Implementation

Patricia Bouyer

LSV - CNRS \& ENS de Cachan

Model-checking

Does
the system
satisfy
the property?

Modelling

Model-checking

Does
the system
satisfy
the property?

Model-checking
Algorithm

Roadmap

\checkmark Timed automata, decidability issues
\checkmark Some extensions of the model
\checkmark Implementation of timed automata

Timed automata, decidability issues

\checkmark presentation of the model
\checkmark decidability of the model
\checkmark the region automaton construction

Timed automata

\checkmark A finite control structure + variables (clocks)
\checkmark A transition is of the form:

\checkmark An enabling condition (or guard) is:

$$
g::=x \sim c|x-y \sim c| g \wedge g
$$

where $\sim \in\{\langle, \underline{,},=, \geq\rangle$,

Timed automata (example)

x, y : clocks

Timed automata (example)

x, y : clocks

	ℓ_{0}	$\xrightarrow{\delta(4.1)}$	$\ell_{0} \xrightarrow{a}$	ℓ_{1}	$\xrightarrow{\delta(1.4)}$	ℓ_{1} \times 0	4.1
y	0		4.1		5.5	0	
	4.1	0		1.4	1.4		

Timed automata (example)

x, y : clocks

(clock) valuation

Timed automata (example)

x, y : clocks

(clock) valuation
\rightarrow timed word $(a, 4.1)(b, 5.5)$

Emptiness checking

Emptiness problem: is the language accepted by a timed automaton empty?
\checkmark reachability properties
(final states)
\checkmark basic liveness properties
(Büchi (or other) conditions)

Emptiness checking

Emptiness problem: is the language accepted by a timed automaton empty?
\checkmark reachability properties
(final states)
\checkmark basic liveness properties
(Büchi (or other) conditions)

Theorem: The emptiness problem for timed automata is decidable. It is PSPACE-complete.
[Alur \& Dill 1990's]

The region abstraction

Equivalence of finite index

The region abstraction

Equivalence of finite index
\checkmark "compatibility" between regions and constraints

The region abstraction

Equivalence of finite index
\checkmark "compatibility" between regions and constraints
\checkmark "compatibility" between regions and time elapsing

The region abstraction

Equivalence of finite index
\checkmark "compatibility" between regions and constraints
\checkmark "compatibility" between regions and time elapsing

The region abstraction

Equivalence of finite index
\checkmark "compatibility" between regions and constraints
\checkmark "compatibility" between regions and time elapsing
\rightarrow a bisimulation property

The region abstraction

Equivalence of finite index
region defined by

$$
\begin{gathered}
\left.I_{x}=\right] 1 ; 2\left[, I_{y}=\right] 0 ; 1[\\
\{x\}<\{y\}
\end{gathered}
$$

\checkmark "compatibility" between regions and constraints
\checkmark "compatibility" between regions and time elapsing
\rightarrow a bisimulation property

The region abstraction

Equivalence of finite index

region defined by

$$
\begin{gathered}
\left.I_{x}=\right] 1 ; 2\left[, I_{y}=\right] 0 ; 1[\\
\{x\}<\{y\}
\end{gathered}
$$

successor regions
\checkmark "compatibility" between regions and constraints
\checkmark "compatibility" between regions and time elapsing
\rightarrow a bisimulation property

The region automaton

timed automaton \otimes region abstraction

$\ell \xrightarrow{\text { g.a, }::=0} \ell^{\prime}$ is transformed into:
$(\ell, R) \xrightarrow{a}\left(\ell^{\prime}, R^{\prime}\right)$ if there exists $R^{\prime \prime} \in \operatorname{Succ}_{+}^{*}(R)$ s.t.

$$
\begin{array}{ll}
\checkmark & R^{\prime \prime} \subseteq g \\
\vee & {[C \leftarrow 0] R^{\prime \prime} \subseteq R^{\prime}}
\end{array}
$$

$\mathcal{L}($ reg. aut. $)=\operatorname{UNTIME}(\mathcal{L}($ timed aut. $))$
where $\operatorname{UNTIME}\left(\left(a_{1}, t_{1}\right)\left(a_{2}, t_{2}\right) \ldots\right)=a_{1} a_{2} \ldots$

An example [AD 90's]

Partial conclusion

\rightarrow a timed model interesting for verification purposes
Numerous works have been (and are) devoted to:
\checkmark the "theoretical" comprehension of timed automata
\checkmark extensions of the model (to ease the modelling)

- expressiveness
- analyzability
\checkmark algorithmic problems and implementation

Some extensions of the model

\checkmark adding constraints of the form $x-y \sim c$
\checkmark adding silent actions
\checkmark adding constraints of the form $x+y \sim c$
\checkmark adding new operations on clocks

Adding diagonal constraints

$$
x-y \sim c \text { and } x \sim c
$$

\checkmark Decidability: yes, using the region abstraction

\checkmark Expressiveness: no additional expressive power

Adding diagonal constraints (cont.)

Adding diagonal constraints (cont.)

Open question: is this construction "optimal"?

In the sense that timed automata with diagonal constraints are exponentially more concise than diagonal-free timed automata.

Adding silent actions

$$
\xrightarrow{g, \varepsilon, C:=0}
$$

[Bérard,Diekert,Gastin,Petit 1998]
\checkmark Decidability: yes (actions has no influence on the previous construction)
\checkmark Expressiveness: strictly more expressive!

Adding constraints of the form $x+y \sim c$

$$
x+y \sim c \text { and } x \sim c
$$

[Bérard,Dufourd 2000]
\checkmark Decidability: - for two clocks, decidable using the abstraction

- for four clocks (or more), undecidable!
\checkmark Expressiveness: more expressive! (even using two clocks)

$$
\left\{\left(a^{n}, t_{1} \ldots t_{n}\right) \mid n \geq 1 \text { and } t_{i}=1-\frac{1}{2^{i}}\right\}
$$

The two-counter machine

Definition. A two-counter machine is a finite set of instructions over two counters (x and y):
\checkmark Incrementation:
(p): $x:=x+1$; goto (q)
\checkmark Decrementation:

```
(p): if x>0 then x:= x-1; goto (q) else goto (r)
```

Theorem. [Minsky 67] The emptiness problem for two counter machines is undecidable.

Undecidability proof

\rightarrow simulation of \bullet decrement of d

- increment of c

We will use 4 clocks: • u, "tic" clock (each time unit)

- x_{0}, x_{1}, x_{2} : reference clocks for the two counters

$$
\begin{aligned}
& x_{i} \text { reference for } c " \equiv \\
& \text { "the last time } x_{i} \text { has been reset is } \\
& \text { the last time action } c \text { has been performed" }
\end{aligned}
$$

[Bérard,Dufourd 2000]

Undecidability proof (cont.)

\checkmark Increment of counter c :

\checkmark Decrement of counter c :

Adding constraints of the form $x+y \sim c$

\checkmark Two clocks: decidable! using the abstraction

\checkmark Four clocks (or more): undecidable!

Adding constraints of the form $x+y \sim c$

\checkmark Two clocks: decidable! using the abstraction

\checkmark Three clocks: open question
\checkmark Four clocks (or more): undecidable!

Adding new operations on clocks

Several types of updates: $x:=y+c, x:<c, x:>c$, etc...

Adding new operations on clocks

Several types of updates: $x:=y+c, x:<c, x:>c$, etc...
\checkmark The general model is undecidable.
(simulation of a two-counter machine)

Adding new operations on clocks

Several types of updates: $x:=y+c, x:<c, x:>c$, etc...
\checkmark The general model is undecidable.
(simulation of a two-counter machine)
\checkmark Only decrementation also leads to undecidability

- Incrementation of counter x

- Decrementation of counter x

Decidability

image by $y:=1$
\rightarrow the bisimulation property is not met

The classical region automaton construction is not correct.

Decidability (cont.)

$\mathcal{A} \leadsto$ Diophantine linear inequations system
$\rightsquigarrow \quad$ is there a solution?
\rightsquigarrow if yes, belongs to a decidable class

Examples:

```
\(\checkmark\) constraint \(x \sim c\)
    \(c \leq \max _{x}\)
\(\checkmark\) constraint \(x-y \sim c\)
    \(c \leq \max _{x, y}\)
\(\checkmark\) update \(x: \sim y+c\)
\(\max _{x} \leq \max _{y}+c\)
and for each clock \(z, \max _{x, z} \geq \max _{y, z}+c, \max _{z, x} \geq \max _{z, y}-c\)
\(\checkmark\) update \(x:<c\)
```



```
and for each clock \(z, \max _{z} \geq c+\max _{z, x}\)
```

The constants (max $)$ and (max $x_{x, y}$) define a set of regions.

Decidability (cont.)

The bisimulation property is met.

What's wrong when undecidable?

Decrementation $x:=x-1$

$$
\max _{x} \leq \max _{x}-1
$$

What's wrong when undecidable?

Decrementation $x:=x-1$

$$
\max _{x} \leq \max _{x}-1
$$

What's wrong when undecidable?

Decrementation $x:=x-1$

$$
\max _{x} \leq \max _{x}-1
$$

What's wrong when undecidable?

Decrementation $x:=x-1$

$$
\max _{x} \leq \max _{x}-1
$$

What's wrong when undecidable?

Decrementation $x:=x-1$

$$
\max _{x} \leq \max _{x}-1
$$

What's wrong when undecidable?

Decrementation $x:=x-1$

$$
\max _{x} \leq \max _{x}-1
$$

What's wrong when undecidable?

Decrementation $x:=x-1$

$$
\max _{x} \leq \max _{x}-1
$$

Decidability (cont.)

	Diagonal-free constraints	General constraints
$x:=c, x:=y$		PSPACE-complete
$x:=x+1$	PSPACE-complete	Undecidable
$x:=y+c$		
$x:=x-1$		Undecidable
$x:<c$		USPACE-complete
$x:>c$		
$x: \sim y+c$		
$y+c<: x:<y+d$		
$y+c<: x:<z+d$		

[Bouyer, Dufourd,Fleury,Petit 2000]

Implementation of Timed Automata

\checkmark analysis algorithms
\checkmark the DBM data structure
\checkmark a bug in the forward analysis

Notice

The region automaton is not used for implementation:
\checkmark suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)
\checkmark no really adapted data structure

Notice

The region automaton is not used for implementation:
\checkmark suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)
\checkmark no really adapted data structure

Algorithms for "minimizing" the region automaton have been proposed...
[Alur \& Co 1992] [Tripakis,Yovine 2001]

Notice

The region automaton is not used for implementation:
\checkmark suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)
\checkmark no really adapted data structure

Algorithms for "minimizing" the region automaton have been proposed...
[Alur \& Co 1992] [Tripakis,Yovine 2001]
...but on-the-fly technics are preferred.

Reachability analysis

\checkmark forward analysis algorithm: compute the successors of initial configurations

I

Reachability analysis

\checkmark forward analysis algorithm: compute the successors of initial configurations

Reachability analysis

\checkmark forward analysis algorithm: compute the successors of initial configurations

\checkmark backward analysis algorithm: compute the predecessors of final configurations

Reachability analysis

\checkmark forward analysis algorithm: compute the successors of initial configurations

\checkmark backward analysis algorithm: compute the predecessors of final configurations

Note on the backward analysis

Note on the backward analysis

Note on the backward analysis

Z

$[C \leftarrow 0]^{-1}(Z \cap(C=0))$

Note on the backward analysis

z

$[C \leftarrow 0]^{-1}(Z \cap(C=0))$

Note on the backward analysis

z

Note on the backward analysis

The exact backward computation terminates and is correct!

Note on the backward analysis (cont.)

If \mathcal{A} is a timed automaton, we construct its corresponding set of regions.
Because of the bisimulation property, we get that:
"Every set of valuations which is computed along the backward computation is a finite union of regions"

Note on the backward analysis (cont.)

If \mathcal{A} is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

"Every set of valuations which is computed along the backward computation is a finite union of regions"

Let R be a region. Assume:
$\checkmark v \in \overleftarrow{R}$ (for ex. $v+t \in R$)
$\checkmark \quad v^{\prime} \equiv$ reg. v
There exists t^{\prime} s.t. $v^{\prime}+t^{\prime} \equiv$ reg. $v+t$, which implies that $v^{\prime}+t^{\prime} \in R$ and thus $v^{\prime} \in \overleftarrow{R}$.

Note on the backward analysis (cont.)

If \mathcal{A} is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

"Every set of valuations which is computed along the backward computation is a finite union of regions"

But, the backward computation is not so nice, when also dealing with integer variables...

$$
\mathrm{i}:=\mathrm{j} \cdot \mathrm{k}+\ell \cdot \mathrm{m}
$$

Forward analysis of TA

A zone is a set of valuations defined by a clock constraint

$$
\varphi::=x \sim c|x-y \sim c| \varphi \wedge \varphi
$$

Forward analysis of TA

zones
Z
$[C \leftarrow 0](\vec{Z} \cap g)$

Forward analysis of TA

Forward analysis of TA

Forward analysis of TA

Z
$[C \leftarrow 0](\vec{Z} \cap g)$

Forward analysis of TA

Z

$[C \leftarrow 0](\vec{Z} \cap g)$

\rightarrow a termination problem

Non termination of the forward analysis

\rightarrow an infinite number of steps...

"Solutions" to this problem

> (f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])
\checkmark inclusion checking: if $Z \subseteq Z^{\prime}$ and Z^{\prime} still handled, then we don't need to handle Z
\rightarrow correct w.r.t. reachability

"Solutions" to this problem

> (f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])
\checkmark inclusion checking: if $Z \subseteq Z^{\prime}$ and Z^{\prime} still handled, then we don't need to handle Z
\rightarrow correct w.r.t. reachability
\checkmark activity: eliminate redundant clocks
[Daws,Yovine 1996]
\rightarrow correct w.r.t. reachability

$$
q \xrightarrow{\text { g.a, }:=0}=q^{\prime} \Rightarrow \operatorname{Act}(q)=\operatorname{clocks}(g) \cup\left(\operatorname{Act}\left(q^{\prime}\right) \backslash C\right)
$$

"Solutions" to this problem (cont.)

\checkmark convex-hull approximation: if Z and Z^{\prime} are computed then we overapproximate using " $Z \sqcup Z^{\prime \prime}$ ".
\rightarrow "semi-correct" w.r.t. reachability

"Solutions" to this problem (cont.)

\checkmark convex-hull approximation: if Z and Z^{\prime} are computed then we overapproximate using " $\mathrm{Z} \sqcup \mathrm{Z}$ ".
\rightarrow "semi-correct" w.r.t. reachability

\checkmark extrapolation, a widening operator on zones

The DBM data structure

DBM (Difference Bounded Matrice) data structure

[Dill 1989]

$$
\left(x_{1} \geq 3\right) \wedge\left(x_{2} \leq 5\right) \wedge\left(x_{1}-x_{2} \leq 4\right) \quad \begin{aligned}
& x_{0} \\
& x_{1} \\
& x_{2}
\end{aligned}\left[\begin{array}{ccc}
x_{0} & x_{1} & x_{2} \\
+\infty & -3 & +\infty \\
+\infty & +\infty & 4 \\
5 & +\infty & +\infty
\end{array}\right]
$$

The DBM data structure

DBM (Difference Bounded Matrice) data structure
[Dill 1989]

$$
\left(x_{1} \geq 3\right) \wedge\left(x_{2} \leq 5\right) \wedge\left(x_{1}-x_{2} \leq 4\right) \quad \begin{array}{ccc}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\left[\begin{array}{ccc}
x_{0} & x_{1} & x_{2} \\
+\infty & -3 & +\infty \\
+\infty & +\infty & 4 \\
5 & +\infty & +\infty
\end{array}\right]
$$

\checkmark Existence of a normal form

$$
\left[\begin{array}{ccc}
0 & -3 & 0 \\
9 & 0 & 4 \\
5 & 2 & 0
\end{array}\right]
$$

The DBM data structure

DBM (Difference Bounded Matrice) data structure
[Dill 1989]

$$
\left(x_{1} \geq 3\right) \wedge\left(x_{2} \leq 5\right) \wedge\left(x_{1}-x_{2} \leq 4\right) \quad \begin{gathered}
x_{0} \\
x_{1} \\
x_{2}
\end{gathered}\left[\begin{array}{ccc}
x_{0} & x_{1} & x_{2} \\
+\infty & -3 & +\infty \\
+\infty & +\infty & 4 \\
5 & +\infty & +\infty
\end{array}\right]
$$

\checkmark Existence of a normal form

$$
\left[\begin{array}{ccc}
0 & -3 & 0 \\
9 & 0 & 4 \\
5 & 2 & 0
\end{array}\right]
$$

\checkmark All previous operations on zones can be computed using DBMs

The extrapolation operator

Fix an integer k

\checkmark "intuitively", erase non-relevant constraints
\rightarrow ensures termination

The extrapolation operator

Fix an integer k

$$
\left[\begin{array}{ccc}
* & >\mathrm{k} & * \\
* & * & * \\
<-\mathrm{k} & * & *
\end{array}\right] \quad \rightsquigarrow \quad\left[\begin{array}{ccc}
* & +\infty & * \\
* & * & * \\
-\mathrm{k} & * & *
\end{array}\right]
$$

\checkmark "intuitively", erase non-relevant constraints

2
("*" represents an integer between $-k$ and $+k$)

The extrapolation operator

Fix an integer k

$$
\left[\begin{array}{ccc}
* & (>\mathrm{k} & * \\
* & * & * \\
<-\mathrm{k} & * & *
\end{array}\right]
$$

("*" represents an integer between $-k$ and $+k$)

\checkmark "intuitively", erase non-relevant constraints

\rightarrow ensures termination

Challenge

Propose a good constant for the extrapolation:
\checkmark keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton
\checkmark Several correctness proofs can be found
\checkmark Implemented in tools like UPPAAL, KRONOS, RT-SPIN...
\checkmark Successfully used on real-life examples

Challenge

Propose a good constant for the extrapolation:
\checkmark keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton
\checkmark Several correctness proofs can be found
\checkmark Implemented in tools like UPPAAL, KRONOS, RT-SPIN...
\checkmark Successfully used on real-life examples

However...

A problematic automaton

A problematic automaton

A problematic automaton

Error
$v\left(x_{1}\right)=0$
$v\left(x_{2}\right)=d$
$v\left(x_{3}\right)=2 a+5$
$v\left(x_{4}\right)=2 a+5+d$

The problematic zone

The problematic zone

If a is sufficiently large, after extrapolation:
[1;3]

does not imply

$$
x_{1}-x_{2}=x_{3}-x_{4}
$$

General abstractions

Criteria for a good abstraction operator Abs:

General abstractions

Criteria for a good abstraction operator Abs:
\checkmark easy computation
$\mathrm{Abs}(Z)$ is a zone if Z is a zone

General abstractions

Criteria for a good abstraction operator Abs:
\checkmark easy computation
[Effectiveness]
$\mathrm{Abs}(Z)$ is a zone if Z is a zone
\checkmark finiteness of the abstraction
[Termination]
$\{A b s(Z) \mid Z$ zone $\}$ is finite

General abstractions

Criteria for a good abstraction operator Abs:
\checkmark easy computation
$\operatorname{Abs}(Z)$ is a zone if Z is a zone
\checkmark finiteness of the abstraction
[Effectiveness]
[Termination]
$\{A b s(Z) \mid Z$ zone $\}$ is finite
\checkmark completeness of the abstraction $Z \subseteq A b s(Z)$

General abstractions

Criteria for a good abstraction operator Abs:
\checkmark easy computation
$\operatorname{Abs}(Z)$ is a zone if Z is a zone
\checkmark finiteness of the abstraction
$\{A b s(Z) \mid Z$ zone $\}$ is finite
\checkmark completeness of the abstraction $Z \subseteq A b s(Z)$
\checkmark soundness of the abstraction
[Termination]
[Effectiveness]
[Completeness]
[Soundness]
the computation of $(\mathrm{Abs} \circ \mathrm{Post})^{*}$ is correct w.r.t. reachability

General abstractions

Criteria for a good abstraction operator Abs:
\checkmark easy computation
[Effectiveness]
$\mathrm{Abs}(Z)$ is a zone if Z is a zone
\checkmark finiteness of the abstraction
[Termination]
$\{A b s(Z) \mid Z$ zone $\}$ is finite
\checkmark completeness of the abstraction
[Completeness]
$Z \subseteq A b s(Z)$
\checkmark soundness of the abstraction
the computation of (Abs ○ Post)* is correct w.r.t. reachability

For the previous automaton,
no abstraction operator can satisfy all these criteria!

Why that?

Assume there is a "nice" operator Abs.
The set $\{\mathrm{M} D B M$ representing a zone $\mathrm{Abs}(\mathrm{Z})\}$ is finite.
$\rightarrow k$ the max. constant defining one of the previous DBMs
We get that, for every zone Z,

$$
Z \subseteq E x+a_{k}(Z) \subseteq A b s(Z)
$$

Problem!

Open questions: - which conditions can be made weaker?

- find a clever termination criterium?
- use an other data structure than zones/DBMs?

What can we cling to?

Diagonal-free: only guards $x \sim c$

$$
\text { (no guard } x-y \sim c \text {) }
$$

Theorem: the classical algorithm is correct for diagonal-free timed automata.

What can we cling to?

Diagonal-free: only guards $x \sim c$

$$
\text { (no guard } x-y \sim c \text {) }
$$

Theorem: the classical algorithm is correct for diagonal-free timed automata.

General: both guards $x \sim c$ and $x-y \sim c$
Proposition: the classical algorithm is correct for timed automata that use less than 3 clocks.
(the constant used is bigger than the maximal constant...)

Conclusion \& Further Work

\checkmark Decidability is quite well understood.
\checkmark A rather big problem with the forward analysis of timed automata needs to be solved.

- a very unsatisfactory solution for dealing with diagonal constraints.
- maybe the zones are not the "optimal" objects that we can deal with.

To be continued...
\checkmark Some other current challenges:

- adding C macros to timed automata
- reducing the memory consumption via new data structures

Bibliography

ACD+92] Alur, Courcoubetis, Dill, Halbwachs, Wong-Toi. Minimization of Timed Transition Systems. CONCUR'92 (LNCS 630).
[AD90] Alur, Dill. Automata for Modeling Real-Time Systems. ICALP'90 (LNCS 443).
[AD94] Alur, Dill. A Theory of Timed Automata. TCS 126(2), 1994.
[ALO2] Aceto, Laroussinie. Is your Model-Checker on Time? On the Complexity of Model-Checking for Timed Modal Logics. JLAP 52-53, 2002. 2002.
[BDOO] Bérard, Dufourd. Timed Automata and Additive Clock Constraints. IPL 75(1-2), 2000.
3DFPOOa] Bouyer, Dufourd, Fleury, Petit. Are Timed Automata Updatable? CAV'00 (LNCS 1855).
BDFPOOb] Bouyer, Dufourd, Fleury, Petit. Expressiveness of Updatable Timed Automata. MFCS'OO (LNCS 1893).

BDGP98] Bérard, Diekert, Gastin, Petit. Characterization of the Expressive Power of Silent Transitions in Timed Automata. Fundamenta Informaticae 36(2-3), 1998.
[BF99] Bérard, Fribourg. Automatic VeriDcation of a Parametric Real-Time Program: the ABR Conformance Protocol. CAV'99 (LNCS 1633).

Bibliography (cont.)

ouyer03] Bouyer. Untameable Timed Automata! STACS'03 (LNCS 2607).
ouyer04] Bouyer. Forward analysis of updatable timed automata. To appear in FMSD, 2004
[Dill89] Dill. Timing Assumptions and Verilcation of Finite-State Concurrent Systems. Aut. Verif. Methods for Fin. State Sys. (LNCS 1989).
[DT98] Daws, Tripakis. Model-Checking of Real-Time Reachability Properties using Abstractions. TACAS'98 (LNCS 1384).
[DY96] Daws, Yovine. Reducing the Number of Clock Variables of Timed Automata. RTSS'96.
[LPY97] Larsen, Pettersson, Yi. UPPAAL in a Nutshell. Software Tools for Technology Transfer 1(1-2), 1997.

Minsky67] Minsky. Computation: Finite and InDnite Machines. 1967.
[TY01] Tripakis, Yovine. Analysis of Timed Systems using Time-Abstracting Bisimulations. FMSD 18(1), 2001.

Hytech: http://www-cad.eecs.berkeley.edu:80/~tah/HyTech/
Kronos: http://www-verimag.imag.fr/TEMPORISE/kronos/
Uppaal: http://www.uppaal.com/

Quizz (1)

1. Let Z_{1} and Z_{2} be two zones.
$\checkmark Z_{1} \cap Z_{2}$ is a zone.
$\checkmark Z_{1} \cup Z_{2}$ is a zone.
\checkmark The convex hull of $Z_{1} \cup Z_{2}$ is a zone.
2. Let C_{1} and C_{2} be two disjoint convexes, C_{1} is also supposed to be open. Then there exists an hyperplan H that separates C_{1} and C_{2}.

Quizz (1)

1. Let Z_{1} and Z_{2} be two zones.
$\checkmark Z_{1} \cap Z_{2}$ is a zone.
$\checkmark Z_{1} \cup Z_{2}$ is a zone.
\checkmark The convex hull of $Z_{1} \cup Z_{2}$ is a zone.
2. Let C_{1} and C_{2} be two disjoint convexes, C_{1} is also supposed to be open. Then there exists an hyperplan H that separates C_{1} and C_{2}.

Quizz (1)

1. Let Z_{1} and Z_{2} be two zones.
$\checkmark Z_{1} \cap Z_{2}$ is a zone.
$\checkmark Z_{1} \cup Z_{2}$ is a zone.
\checkmark The convex hull of $Z_{1} \cup Z_{2}$ is a zone.
2. Let C_{1} and C_{2} be two disjoint convexes, C_{1} is also supposed to be open. Then there exists an hyperplan H that separates C_{1} and C_{2}.

Quizz (2)

3. Let Z_{1} and Z_{2} be two disjoint zones. Then there exists an hyperplan H, whose equation is $x-y=c$ or $x=c$ for some clocks x and y and constant c, that separates Z_{1} and Z_{2}.

4. Let Z_{1} and Z_{2} be two disjoint zones. Then there is a projection π from the set of clocks X on a subset of clocks $Y(2 \leq \# Y<\# X)$ such that $\pi\left(Z_{1}\right) \cap \pi\left(Z_{2}\right)=\emptyset$.

Quizz (3)

5. Let Z be a zone and R a region. If $Z \cap R=\emptyset$, then there exists a constraint $x-y \sim c$ defining R (y may be the clock which is always 0) such that $Z \cap(x-y \sim$ $c)=\emptyset$.
6. Let Z be a zone "generated" by a timed automaton. Then for each pair of clocks (x, y), either $Z \cap(x-y<0)=\emptyset$ or $Z \cap(x-y>0)=\emptyset$.
7. Let Z_{i} be zones (such that $\bigcup_{i} Z_{i}$ is convex). Then,

$$
\operatorname{Approx}_{k}\left(\bigcup_{i} Z_{i}\right)=\bigcup_{i}\left(\operatorname{Approx}_{k}\left(Z_{i}\right)\right)
$$

8. Let \mathcal{A} be a timed automaton. There exists a constant k, syntactically depending on the constraints of \mathcal{A}, such that bounding all the clocks by k in the whole automaton does not change the truth or the falsity of the reachability properties.

Quizz (3)

5. Let Z be a zone and R a region. If $Z \cap R=\emptyset$, then there exists a constraint $x-y \sim c$ defining R (y may be the clock which is always 0) such that $Z \cap(x-y \sim$ $c)=\emptyset$.
6. Let Z be a zone "generated" by a timed automaton. Then for each pair of clocks (x, y), either $Z \cap(x-y<0)=\emptyset$ or $Z \cap(x-y>0)=\emptyset$.
7. Let Z_{i} be zones (such that $\bigcup_{i} Z_{i}$ is convex). Then,

$$
\operatorname{Approx}_{k}\left(\bigcup_{i} Z_{i}\right)=\bigcup_{i}\left(\operatorname{Approx}_{k}\left(Z_{i}\right)\right)
$$

8. Let \mathcal{A} be a timed automaton. There exists a constant k, syntactically depending on the constraints of \mathcal{A}, such that bounding all the clocks by k in the whole automaton does not change the truth or the falsity of the reachability properties.

Plan of one of the proofs (2nd proof)

$\operatorname{Approx}_{k}(Z) \subseteq Z_{\cong_{k}}$

\checkmark let $\sigma \in$ Approx $_{k}(Z)$
\checkmark prove $\left\{\sigma^{\prime} \in Z \mid \sigma^{\prime} \cong_{k} \sigma\right\}$ is not empty
\checkmark this set is defined by:

- the constraints defining Z,
- $x=\sigma(x)$ whenever $\sigma(x) \leq k$, stronger than the constraint in Z
- $x>k$ whenever $\sigma(x)>k$
\longrightarrow this defines a DBM on the set of real numbers
\checkmark use the property that a $D B M\left(m_{i, j}\right)_{i, j=1 . . n}$ represents the empty set iff there exists a sequence of distinct indices $\left(i_{j}\right)_{j=1 . . p}$ such that

$$
m_{i_{1}, i_{2}}+\ldots+m_{i_{p-1}, i_{p}}+m_{i_{p}, i_{1}}<0
$$

\checkmark check what can be these negative cycles...

k-equivalence

$$
\sigma \cong \cong_{k} \sigma^{\prime} \Longleftrightarrow \forall x \left\lvert\, \begin{aligned}
& \text { either } \sigma(x)=\sigma^{\prime}(x) \\
& \text { or } \sigma(x)>k \text { and } \sigma^{\prime}(x)>k
\end{aligned}\right.
$$

