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Roadmap

1 Timed automata, decidability issues

1 Some extensions of the model

1 Implementation of timed automata
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Timed automata, decidability issues

[ presentation of the model
0 decidability of the model

[0 the region automaton construction
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Timed automata

[0 A finite control structure + variables (clocks)

[J A transition is of the form:
g, a C:=0

RN

Enabling condition Reset to zero

[0 An enabling condition (or guard) is:
g = x~c | x-y~c | gAg

where ~ € {<,¢,=,2,>
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Timed automata (example)

X,y : clocks

x<H5,a,y:=0 ~ x-y>3,b, x:=0

@)

Y
6
—
Y
C‘P
N
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Timed automata (example)

X,y : clocks

x<H5,a,y:=0 x-y>3,b, x:=0

Lo ﬂﬂl bo —a , ¥4 M £1 _b o £>
x 0 41 41 5.5 0
y O 41 0 14 14
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Timed automata (example)

X,y : clocks

x-y>3,b, x:=0

— (%) (1)

b AL fy _a, ¥
4.1 4.1
4.1 0
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Timed automata (example)

X,y : clocks

y O 4.1 0) 14
(clock) valuation

[0 timed word (a,4.1)(b,5.5)
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Emptiness checking

Emptiness problem: is the language accepted by a timed automaton empty?

[0 reachability properties (final states)

[ basic liveness properties (Biichi (or other) conditions)
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Emptiness checking

Emptiness problem: is the language accepted by a timed automaton empty?

[0 reachability properties (final states)

[ basic liveness properties (Biichi (or other) conditions)

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete.

[Alur & Dill 1990's]
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The region abstraction

Y &
Equivalence of finite index
21
1 4
0 1 2 3 X
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The region abstraction

Y 4
Equivalence of finite index
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0 “compatibility” between regions and constraints
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The region abstraction

Y 4
Equivalence of finite index

A

0 1 2 3 X

0 “compatibility” between regions and constraints

0 “compatibility” between regions and time elapsing

[ a bisimulation property
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The region abstraction

Y 4
Equivalence of finite index

2 region defined by
/ L=]t:2[, T, <0: 1[
1 / 03 < 1)

0 1 2 3 X

0 “compatibility” between regions and constraints
0 “compatibility” between regions and time elapsing

[ a bisimulation property
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The region abstraction

Y 4
Equivalence of finite index

2 region defined by
/ L=]t:2[, T, <0: 1[
! {x} <{y}

/ successor regions
>

0 1 2 3 X

0 “compatibility” between regions and constraints

0 “compatibility” between regions and time elapsing

[ a bisimulation property
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The region automaton

timed automaton X) region abstraction

¢ _99¢=0 ¢ is transformed into:

(£,R) —a_, (¢,R)if there exists R” € Succi(R) s.t.

D RII g 9
0 [C+—0]JR" CR

L(reg. aut.) = UNTIME(L(timed aut.))
where UNTIME((a;, t1)(az,12)...) = a1az. ..
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An example [AD 90's]
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Partial conclusion

0 a timed model interesting for verification purposes

Numerous works have been (and are) devoted to:
0 the "theoretical” comprehension of timed automata

[ extensions of the model (to ease the modelling)
® expressiveness
e analyzability

[ algorithmic problems and implementation
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Some extensions of the model

O O O

FAC'2004 - Toulouse - 10 mars 2004

adding constraints of the form x-y ~ ¢
adding silent actions
adding constraints of the form x+y ~ ¢

adding new operations on clocks
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Adding diagonal constraints

[x—ywc and XNC}

[] Decidability: yes, using the region abstraction

Y\

N

/

/
/

.

0 1

2 X

[J Expressiveness: no additional expressive power
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Adding diagonal constraints (cont.)

C is positive copy where x-y<c

0 proof in [Bérard,Diekert,Gastin Petit 1998]
copy where x-y > ¢
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Adding diagonal constraints (cont.)

Open question: s this construction "optimal?
In the sense that timed automata with diagonal constraints
are exponentially more concise than diagonal-free timed automata.
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Adding silent actions

g, &, C:=0
> [Bérard,Diekert,Gastin Petit 1998]

[] Decidability: yes (actions has no influence on the previous construction)

[J Expressiveness: strictly more expressivel

1
o 0cx<1, b

x=1 ¢ x:=0

X

no n

o+ o
—~ 4 0
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Adding constraints of the form x+y ~

[ X+y~c and x~c } [Bérard,Dufourd 2000]

[ Decidability: - for two clocks, decidable using the abstraction

Y 4

5 /
1 /
0 1 2 X

- for four clocks (or more), undecidablel

[0 Expressiveness: more expressivel (even using two clocks)

x+y=1,a,x:=0

{(a",’rl...‘rn)lnzland‘rizl—%} —8
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The two-counter machine

Definition. A two-counter machine is a finite set of instructions over two
counters (x and y):

[1 Incrementation:
(p): x:=x+1; goto (Q)

[0 Decrementation:
(p): 1f x>0 then x:=x-1, goto (qg) else goto (r)

Theorem. [Minsky 67] The emptiness problem for two counter machines is
undecidable.
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Undecidability proof

c is unchanged c is incremented

d is decremented

[] simulation of e decrement of d
e increment of ¢

We will use 4 clocks: e u, "tic" clock (each time unit)
® Xo, X1, X2: reference clocks for the two counters

“the last time x; has been reset is
the last time action ¢ has been performed”

"x; reference for c"

[Bérard,Dufourd 2000]
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Undecidability proof (cont.)

[0 Increment of counter c:

Xg<2,u+x2=1,¢, x,:=0

X7 :=0 Xo>2, ¢, X2:=0
u=1 %, u:=0 u+x,=1

ref for c is xg ref for c is x;

[0 Decrement of counter c:

Xg<2,u+xp,=1,¢, xp:=0

X7 =0 Xg=2,¢, X2:=0

u+xp, =1

u=1 xp0=2, %, u:=0, x =0 @

FAC'2004 - Toulouse - 10 mars 2004 Timed Automata - From Theory to Implementation - p. 19




Adding constraints of the form x+y ~

[0 Two clocks: decidablel using the abstraction

Y,
5 /
: /
0 1 2 X

[0 Four clocks (or more): undecidablel
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Adding constraints of the form x+y ~

[0 Two clocks: decidablel using the abstraction

Y,
5 /
: /
0 1 2 X

(] {Thr'ee clocks: open question}

[0 Four clocks (or more): undecidablel
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Adding new operations on clocks

Several types of updates: x :=y+c, x <c, x>c,etc...
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Adding new operations on clocks

Several types of updates: x :=y+c, x <c, x>c,etc...

[0 The general model is undecidable.

(simulation of a two-counter machine)

FAC'2004 - Toulouse - 10 mars 2004 Timed Automata - From Theory to Implementation - p. 21



Adding new operations on clocks

Several types of updates: x :=y+c, x <c, x>c,etc...

[0 The general model is undecidable.

(simulation of a two-counter machine)

[J Only decrementation also leads to undecidability

® Incrementation of counter x

e T e e e I I e e e BN

N
]
o
N
I
\I-—\
N
1
o
N
11
o
<
I
<
|
—

® Decrementation of counter x
z=0 ™\ x21 f‘/\ z=0, x:=x-1 ‘Q !
V\\w | :
x=0 /'Q
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Decidability

OO OO
image by y := 1
1
|
. e 0 the bisimulation property is not met

The classical region automaton construction is not correct.
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Decidability (cont.)

A ~» Diophantine linear inequations system
~» is there a solution?
~ if yes, belongs to a decidable class

Examples:
[1 constraint x ~ ¢ C < Maxy
L] constraint x-y ~ ¢ C < MAXxy
L] update x i~ y+c maxx < maxy +Cc
and for each clock z, maxy ; > maxy ; + ¢, maxzx > maxzy - ¢
[J update x < c C < Maxx

and for each clock z, max; > ¢ + max; x

The constants (maxy) and (maxy ) define a set of regions.
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Decidability (cont.)

OO O
(
maxy 2 0 f
maxy = 2
maxy 2 0 + maxy.y
maxy = 1
q maxy >1 = \
maxyy = 1
maxyx 2 1+ maxy,
| maxy x = -1
| maxyy 21
Y
1
The bisimulation property is met. . v ,
X
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What's wrong when undecidable?

Decrementation x := x-1

maxy < maxy — 1

Y
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What's wrong when undecidable?

Decrementation x := x-1

maxy < maxy — 1

etc...

Y
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Decidability (cont.)

Diagonal-free constraints General constraints

Xi=C,Xizy PSPACE-complete
X:i=x+1 PSPACE-complete
XiZy+cC Undecidable
x:=x-1 Undecidable
X< C PsPACE-complete
alids PsPACE-complete
Ximyre Undecidable
y+c< xiky+d
y+c<« xi<xz+d Undecidable

[Bouyer,Dufourd,Fleury Petit 2000]
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Implementation of Timed Automata

[ analysis algorithms

[0 the DBM data structure
[0 abug in the forward analysis
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Notice

The region automaton is not used for implementation:

0 suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

[0 no really adapted data structure
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Notice

The region automaton is not used for implementation:

0 suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

[0 no really adapted data structure

Algorithms for "minimizing" the region automaton have been proposed...
[Alur & Co 1992] [Tripakis,Yovine 2001]
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Notice

The region automaton is not used for implementation:

0 suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

[0 no really adapted data structure

Algorithms for "minimizing" the region automaton have been proposed...
[Alur & Co 1992] [Tripakis,Yovine 2001]

..but on-the-fly technics are preferred.
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Reachability analysis

0 forward analysis algorithm:
compute the successors of initial configurations
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Reachability analysis

0 forward analysis algorithm:
compute the successors of initial configurations

[0 backward analysis algorithm:
compute the predecessors of final configurations
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Reachability analysis

0 forward analysis algorithm:
compute the successors of initial configurations

[0 backward analysis algorithm:
compute the predecessors of final configurations

[

I,
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Note on the backward analysis

g, a C:=0
[C— 0 (ZN(C=0)Ng Z
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Note on the backward analysis

g, a C:=0
[C— 0 (ZN(C=0)Ng Z

(7

FAC'2004 - Toulouse - 10 mars 2004 Timed Automata - From Theory to Implementation - p. 30



Note on the backward analysis

g, a C:=0
[C— 0 (ZN(C=0)Ng Z
Z [C — 0T (Zn (C=0)
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Note on the backward analysis

O,

g, a C:=0

[C— 0 (ZN(C=0)Ng

(/.

Z

FAC'2004 - Toulouse - 10 mars 2004

g

[C — 0T (Zn (C=0)

]

Z
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Note on the backward analysis

g, a C:=0

[C— 0 (ZN(C=0)Ng Z
y 4
V 4
A A A , A
Y 4
Y 4 /
( / d
Z [C — OTYZ N (C=0)) [C— 0T (ZN(C=0)Ng
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Note on the backward analysis

g, a C:=0

O,

[C— 0 (ZN(C=0)Ng

=

Y

g

[C— 0T (Zzn(C=0))

/

]

Z

)\/

=
> >

[C— 0T (ZN(C=0)Ng

The exact backward computation terminates and is correct!

FAC'2004 - Toulouse - 10 mars 2004
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Note on the backward analysis (cont.)

If Ais atimed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

"Every set of valuations which is computed along the backward
computation is a finite union of regions”

FAC'2004 - Toulouse - 10 mars 2004 Timed Automata - From Theory to Implementation - p. 31



Note on the backward analysis (cont.)

If Ais atimed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

"Every set of valuations which is computed along the backward
computation is a finite union of regions”

Let R be a region. Assume:

0 ve E(for' ex. v+t € R)

O v Er'eg. \%

There exists t’ s.t. v/ + ' =peg. v+ 1, which implies that v/ +1" € R and thus v/ € R
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Note on the backward analysis (cont.)

If Ais atimed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

"Every set of valuations which is computed along the backward
computation is a finite union of regions”

But, the backward computation is not so nice, when also dealing with integer
variables...

i:= j.k+€m
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Forward analysis of TA

g, a C:=0
zones L [C «— O](? Ng)

A zone is a set of valuations defined by a clock constraint

@ = Xx~c | x-y~c | oA
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Forward analysis of TA

g, a C:=0
zones L [C «+— O](? Ng)

(

Y
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Forward analysis of TA

g, a C:=0
zones L [C «+— O](? Ng)

z Z
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Forward analysis of TA

g, a C:=0
zones L [C «— O](? Ng)
L/ C/ ’§/
/
|
> > I >
Z Z Zn g
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Forward analysis of TA

g, a C:=0
zones L [C «+— O](? ng)
‘ / Ve Ve
/ /
| |
> > : > —
z 7 Zng [y — 0)Z ng)
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Forward analysis of TA

g, a C:=0
zones L [C «+— O](? ng)
‘ / Ve Ve
/ /
| |
> > : > —
z 7 Zng [y — 0)Z ng)

0 a termination problem
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Non termination of the forward analysis

o 1 2 3 4 5 x

0 an infinite number of steps...
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"Solutions” to this problem

(f.ex. IN [Larsen,Pettersson,Yi 1997] or in [Daws, Tripakis 1998])

0 inclusion checking: if Z C Z' and Z’ still handled, then we don't need
to handle Z

0 correct w.r.t. reachability
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"Solutions” to this problem

(f.ex. IN [Larsen,Pettersson,Yi 1997] or in [Daws, Tripakis 1998])

0 inclusion checking: if Z C Z' and Z’ still handled, then we don't need

to handle Z
[ correct w.r.t. reachability
[0 activity: eliminate redundant clocks [Daws Yovine 1996]
0 correct w.r.t. reachability
9.a,C:=0 , ,
q »q' = Act(q) = clocks(g) U (Act(q’) \ C)
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"Solutions” to this problem (cont.)

[0 convex-hull approximation: if Z and Z’' are computed then we
overapproximate using "Z U Z"".

[0 "semi-correct” w.r.t. reachability

Y
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"Solutions” to this problem (cont.)

[0 convex-hull approximation: if Z and Z’' are computed then we
overapproximate using "Z U Z"".

[0 "semi-correct” w.r.t. reachability

Y

[0 extrapolation, a widening operator on zones
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The DBM data structure

DBM (Difference Bounded Matrice) data structure [Dill 1989]
Xo X1 X2
X0 [ +oo -3  +o0 |
(X123) A (X2¢D) A (X1-%X2¢4) X1 | 0 +0 4
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DBM (Difference Bounded Matrice) data structure [Dill 1989]
Xo X1 X2
X0 [ +oo -3  +o0 |
(X123) A (X2¢D) A (X1-%X2¢4) X1 | 0 +0 4

[1 Existence of a hormal form

2] 0 -3 0]
)1 9 0 4
| 5 2 0]
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The DBM data structure

DBM (Difference Bounded Matrice) data structure [Dill 1989]
Xo X1 X2
X0 [ +oo -3  +o0 |
(X123) A (X2¢D) A (X1-%X2¢4) X1 | 0 +0 4

[1 Existence of a hormal form

2] 0 -3 0]
)1 9 0 4
| 5 2 0]

[ All previous operations on zones can be computed using DBMs
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The extrapolation operator

Fix an integer k "x" represents an integer between -k and +k)
. G - ol
%k %k %k > * * %

0 “intuitively”, erase non-relevant constraints

[1 ensures termination
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The extrapolation operator

Fix an integer k "x" represents an integer between -k and +k)
. D - . @ -
k %k k A * * b S

2 [1 ensures termination
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Challenge

Propose a good constant for the extrapolation:

O keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

[0 Several correctness proofs can be found
0 TImplemented in tools like UPPAAL, KRONOS, RT-SPIN...
[ Successfully used on real-life examples
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Challenge

Propose a good constant for the extrapolation:

O keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

[0 Several correctness proofs can be found
0 TImplemented in tools like UPPAAL, KRONOS, RT-SPIN...
[ Successfully used on real-life examples

However...
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A problematic automaton

X3¢ 3
, ’ )
X1, X3 =0 A
X2 = X1>2 X1 =3
O( 2 1 . 1 m(
Xg4-X3<2 x1:=0 N~

FAC'2004 - Toulouse - 10 mars 2004

The loop
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A problematic automaton

The loop

<3
R B2 )
X1,X3 = 0 U
- 2 3
O( X2 - X1 X1 m(
X4 = X3 <2 X1 = N~
Error
V(X1) =0
v(xz)=d
V(X3) =2a+b5

v(Xs)=2a+5+d

FAC'2004 - Toulouse - 10 mars 2004
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A problematic automaton

—/ %1 X3 i= 0 —/ % i= 0 S

Xp =2, X2:=0
X1 = 2
X1 = 0] ]
Xo = X1 > 2 X1=3 Xo = 2 Y The |00p
O O0—— 020
Xq-X3<2 x1:=0 Xp i=
Error
v(x1)=0 [1. 3] [2a+5]
00 : ———
v(x3)=2a+5 X1 X3 X4
v(x3)=2a+5+d [2a+3] [1. 3]
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The problematic zone

[1; 3] [2a+ 5]
e ——
X1 X3 X4
[2a + D] ; [1.3]: implies X1 - X2 = X3 - Xa.
T T T T l2av2.2a+41
T T T T T T T T l2av6i2a+8] T ”
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The problematic zone

[1; 3] [2a+ 5]
R
X1 X3 X4
[2a+ 5] ; [1.3]: implies X1 = X2 = X3 = Xa.

[2a+ 6;2a+ 8]

If ais sufficiently large, af ter extrapolation:

/ N\Xe .
X X%X“ does not imply
: S X1 = X2 = X3 - Xy4.
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General abstractions

Criteria for a good abstraction operator Abs:

FAC'2004 - Toulouse - 10 mars 2004 Timed Automata - From Theory to Implementation - p. 41



General abstractions

Criteria for a good abstraction operator Abs:

[ easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

FAC'2004 - Toulouse - 10 mars 2004 Timed Automata - From Theory to Implementation - p. 41



General abstractions

Criteria for a good abstraction operator Abs:

[ easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

[0 finiteness of the abstraction [Termination]
{Abs(Z) | Z zone} is finite

FAC'2004 - Toulouse - 10 mars 2004 Timed Automata - From Theory to Implementation - p. 41



General abstractions

Criteria for a good abstraction operator Abs:

[ easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone
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General abstractions

Criteria for a good abstraction operator Abs:

[ easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

[0 finiteness of the abstraction [Termination]
{Abs(Z) | Z zone} is finite

[0 completeness of the abstraction [Completeness]
Z C Abs(Z2)

[ soundness of the abstraction [Soundness]

the computation of (Abs o Post)* is correct w.r.t. reachability

For the previous automaton,
no abstraction operator can satisfy all these criterial
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Why that?

Assume there is a "nice" operator Abs.

The set {M DBM representing a zone Abs(Z)} is finite.

0 k the max. constant defining one of the previous DBMs

We get that, for every zone Z,

Z C Extrax(Z) C Abs(Z)
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Problem!

Open questions: - which conditions can be made weaker?
- find a clever termination criterium?
- use an other data structure than zones/DBMs?
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What can we cling to?

Diagonal-free: only guards x ~ ¢
(no guard x -y ~ c)

Theorem: the classical algorithm is correct for diagonal-free timed automata.
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What can we cling to?

Diagonal-free: only guards x ~ ¢
(no guard x -y ~ c)

Theorem: the classical algorithm is correct for diagonal-free timed automata.

General: both guards x ~ cand x-y ~ ¢

Proposition: the classical algorithm is correct for timed automata that use less
than 3 clocks.
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Conclusion & Further Work

[0 Decidability is quite well understood.

0 A rather big problem with the forward analysis of timed automata needs to
be solved.
e a very unsatisfactory solution for dealing with diagonal constraints.

e maybe the zones are not the “optimal” objects that we can deal with.

To be continued...

[0 Some other current challenges:
e adding C macros to timed automata
e reducing the memory consumption via new data structures
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Quizz (1)

1. Let Z; and Z, be two zones.

0 ZiNZ;is azone. O
0 ZyUZ; is a zone. [
(1 The convex hull of Z; UZ5 is a zone. 0

2. Let C; and C, be two disjoint convexes, C; is also supposed to be open. Then
there exists an hyperplan H that separates C; and C,. [

A
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Quizz (1)

1. Let Z; and Z, be two zones.
0 ZiNZ;is azone. O
0 ZyUZ; is a zone. n
(1 The convex hull of Z; UZ5 is a zone.
2. Let C; and C, be two disjoint convexes, C; is also supposed to be open. Then
there exists an hyperplan H that separates C; and C5. a
1 Hahn-Banach
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Quizz (2)

3. Let Z; and Z; be two disjoint zones. Then there exists an hyperplan H, whose
equation is x -y = c or x = ¢ for some clocks x and y and constant ¢, that

separates Z; and Z5.

4. Let Z; and Z, be two disjoint zones. Then there is a projection ™ from the set

/7

Y

of clocks X on a subset of clocks Y (2 < #Y < #X) such that n(Z{) nn(Z,) = 0. U

FAC'2004 - Toulouse - 10 mars 2004
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Quizz (3)

5. Let Z be a zone and R a region. If ZNR = 0, then there exists a constraint
x-y ~ c defining R (y may be the clock which is always 0) such that ZN(x-y ~
c)=0.

Let Z be a zone "generated” by a timed automaton. Then for each pair of
clocks (x,y), either ZN(x-y<0)=0orZN(x-y>0)=0.

7. Let Z; be zones (such that | J; Z; is convex). Then,

Approxk(U Z:) = U(APPPOXk(Zi))

8. Let A be a timed automaton. There exists a constant k, syntactically de-
pending on the constraints of A, such that bounding all the clocks by k in the
whole automaton does not change the truth or the falsity of the reachability
properties.
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Plan of one of the proofs (2nd proof)

bisimulati
Isimulation [Behrmann,Bouyer Fleury Larsen 200:

~k k-equivalence |

k1 > kz > ...
N\

i \ Approxy, (Z)
(7. —T l
l | Approx (Z)

"Almost easily” correct <
~ki

N Efficient representation
\ using DBMs
\

| o

"Obviously” correct  7_

Y
Not correct abs(Z)
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O let o € Approx,(Z)
prove {0’ € Z | o’ T d} is not empty
0 this set is defined by:
e the constraints defining Z,
e Xx = 0(x) whenever o(x) < k, stronger than the constraint in Z

e x>k whenever a(x) > k
~— this defines a DBM on the set of real numbers

[ use the property that a DBM (m;;)ij-1..» represents the empty set iff there
exists a sequence of distinct indices (ij)j-1.p such that

Mi i, ...+ M; + mipl.-l <0

p-1-lp

[0 check what can be these negative cycles...
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k-equivalence

either o(x) = o'(x)

> v
OFUT = VX | e(x) > k and o'(x) > k
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