Timed Automata - From Theory to Implementation

Patricia Bouyer

LSV - CNRS & ENS de Cachan

Model-checking

Model-checking

Roadmap

- ~ Timed automata, decidability issues
- Some extensions of the model
- Implementation of timed automata

Timed automata, decidability issues

- presentation of the model
- decidability of the model
- the region automaton construction

Timed automata

- ✓ A finite control structure + variables (clocks)
- ✓ A transition is of the form:

✓ An enabling condition (or guard) is:

$$g ::= x \sim c \mid x - y \sim c \mid g \wedge g$$

where $\sim \in \{\langle, \leq, =, \geq, \rangle\}$

x,y: clocks

x,y: clocks

$$\ell_0$$
 $\xrightarrow{\delta(4.1)}$ ℓ_0 \xrightarrow{a} ℓ_1 $\xrightarrow{\delta(1.4)}$ ℓ_1 \xrightarrow{b} ℓ_2 \times 0 4.1 4.1 5.5 0 \times 0 4.1 0 1.4 1.4

x,y: clocks

(clock) valuation

x,y: clocks

(clock) valuation

 \rightarrow timed word (a, 4.1)(b, 5.5)

Emptiness checking

Emptiness problem: is the language accepted by a timed automaton empty?

reachability properties

(final states)

basic liveness properties

(Büchi (or other) conditions)

Emptiness checking

Emptiness problem: is the language accepted by a timed automaton empty?

reachability properties

(final states)

basic liveness properties

(Büchi (or other) conditions)

Theorem: The emptiness problem for timed automata is decidable. It is PSPACE-complete.

[Alur & Dill 1990's]

Equivalence of finite index

Equivalence of finite index

"compatibility" between regions and constraints

Equivalence of finite index

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

Equivalence of finite index

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

Equivalence of finite index

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

→ a bisimulation property

Equivalence of finite index

region defined by $I_x =]1; 2[, I_y =]0; 1[$ $\{x\} < \{y\}$

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

→ a bisimulation property

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

→ a bisimulation property

The region automaton

timed automaton \otimes region abstraction

 $\ell \xrightarrow{g,a,C:=0} \ell'$ is transformed into:

 $(\ell,R) \xrightarrow{\alpha} (\ell',R')$ if there exists $R'' \in Succ_t^*(R)$ s.t.

$$\checkmark$$
 R" \subseteq g

$$\checkmark$$
 [$C \leftarrow 0$] $R'' \subseteq R'$

 $\mathcal{L}(reg. aut.) = UNTIME(\mathcal{L}(timed aut.))$

where UNTIME($(a_1, t_1)(a_2, t_2)...$) = $a_1a_2...$

An example [AD 90's]

Partial conclusion

→ a timed model interesting for verification purposes

Numerous works have been (and are) devoted to:

- ✓ the "theoretical" comprehension of timed automata
- extensions of the model (to ease the modelling)
 - expressiveness
 - analyzability
- ✓ algorithmic problems and implementation

Some extensions of the model

- ✓ adding constraints of the form $x y \sim c$
- adding silent actions
- \checkmark adding constraints of the form $x + y \sim c$
- adding new operations on clocks

Adding diagonal constraints

$$x-y\sim c$$
 and $x\sim c$

✓ Decidability: yes, using the region abstraction

Expressiveness: no additional expressive power

Adding diagonal constraints (cont.)

c is positive

copy where $x - y \le c$ x := 0x := 0

→ proof in [Bérard, Diekert, Gastin, Petit 1998]

copy where x - y > c

Adding diagonal constraints (cont.)

Open question: is this construction "optimal"?

In the sense that timed automata with diagonal constraints

are exponentially more concise than diagonal-free timed automata.

Adding silent actions

[Bérard, Diekert, Gastin, Petit 1998]

- ✓ Decidability: yes (actions has no influence on the previous construction)
- ✓ Expressiveness: strictly more expressive!

Adding constraints of the form $x+y\sim c$

$$x+y\sim c$$
 and $x\sim c$

[Bérard, Dufourd 2000]

✓ Decidability: - for two clocks, decidable using the abstraction

- for four clocks (or more), undecidable!
- Expressiveness: more expressive! (even using two clocks)

$$\{(a^n, t_1 \dots t_n) \mid n \ge 1 \text{ and } t_i = 1 - \frac{1}{2^i}\}$$

$$x + y = 1$$
, a, $x := 0$

The two-counter machine

Definition. A two-counter machine is a finite set of instructions over two counters (x and y):

✓ Incrementation:

```
(p): x = x + 1; goto (q)
```

✓ Decrementation:

```
(p): if x>0 then x:=x-1; goto (q) else goto (r)
```

Theorem. [Minsky 67] The emptiness problem for two counter machines is undecidable.

Undecidability proof

- → simulation of decrement of d
 - increment of c

We will use 4 clocks: • u, "tic" clock (each time unit)

 \bullet x_0, x_1, x_2 : reference clocks for the two counters

" x_i reference for c" \equiv "the last time x_i has been reset is the last time action c has been performed"

[Bérard, Dufourd 2000]

Undecidability proof (cont.)

✓ Increment of counter c:

✓ Decrement of counter c:

Adding constraints of the form $x+y\sim c$

✓ Two clocks: decidable! using the abstraction

✓ Four clocks (or more): undecidable!

Adding constraints of the form $x+y \sim c$

✓ Two clocks: decidable! using the abstraction

- Three clocks: open question
- ✓ Four clocks (or more): undecidable!

Adding new operations on clocks

Several types of updates: $x := y + c, x \times c, x \Rightarrow c, \text{ etc...}$

Adding new operations on clocks

Several types of updates: $x := y + c, x \times c, x \Rightarrow c, etc...$

✓ The general model is undecidable.

(simulation of a two-counter machine)

Adding new operations on clocks

Several types of updates: x := y + c, x := c, etc...

✓ The general model is undecidable.

(simulation of a two-counter machine)

- Only decrementation also leads to undecidability
 - Incrementation of counter x

Decrementation of counter x

Decidability

The classical region automaton construction is not correct.

Decidability (cont.)

- $\mathcal{A} \quad \leadsto \quad \mathsf{Diophantine linear inequations system}$
 - → is there a solution?
 - → if yes, belongs to a decidable class

Examples:

- $m{arphi}$ constraint $m{ imes}\sim m{c}$
- \checkmark constraint $x y \sim c$
 - ✓ update $x : \sim y + c$ $\max_{x \le max_y + c}$
 - and for each clock z, $\max_{x,z} \ge \max_{y,z} + c$, $\max_{z,x} \ge \max_{z,y} c$
 - update x :< c
 c ≤ max_x
 and for each clock z, max_z ≥ c + max_{z x}

The constants (\max_{x}) and $(\max_{x,y})$ define a set of regions.

c ≤ max_x

c ≤ max_{x,v}

Decidability (cont.)

The bisimulation property is met.

$$\max_{x} \leq \max_{x} - 1$$

Decrementation x := x - 1

 $\max_{x} \leq \max_{x} - 1$

Decrementation x := x - 1

 $\max_{x} \leq \max_{x} - 1$

$$\max_{x} \leq \max_{x} - 1$$

Decidability (cont.)

	Diagonal-free constraints	General constraints
x := c, x := y	PSPACE-complete	PSPACE-complete
x := x + 1		Undecidable
x := y + c		
x := x - 1	Undecidable	
x :< c	Pspace-complete	PSPACE-complete
x :> c		Undecidable
x :∼ y + c		
y + c <: x :< y + d		
y + c <: x :< z + d	Undecidable	

[Bouyer, Dufourd, Fleury, Petit 2000]

Implementation of Timed Automata

- analysis algorithms
- ✓ the DBM data structure
- a bug in the forward analysis

Notice

The region automaton is not used for implementation:

- suffers from a combinatorics explosion
 (the number of regions is exponential in the number of clocks)
- no really adapted data structure

Notice

The region automaton is not used for implementation:

- suffers from a combinatorics explosion
 (the number of regions is exponential in the number of clocks)
- no really adapted data structure

Algorithms for "minimizing" the region automaton have been proposed...

[Alur & Co 1992] [Tripakis, Yovine 2001]

Notice

The region automaton is not used for implementation:

- suffers from a combinatorics explosion
 (the number of regions is exponential in the number of clocks)
- no really adapted data structure

Algorithms for "minimizing" the region automaton have been proposed...

[Alur & Co 1992] [Tripakis, Yovine 2001]

...but on-the-fly technics are preferred.

forward analysis algorithm:
compute the successors of initial configurations

F

I

forward analysis algorithm:
compute the successors of initial configurations

forward analysis algorithm:
compute the successors of initial configurations

backward analysis algorithm:
compute the predecessors of final configurations

forward analysis algorithm:
compute the successors of initial configurations

backward analysis algorithm:
compute the predecessors of final configurations

$$\underbrace{\ell} \qquad \qquad g, \ \alpha, \ C := 0$$

$$\underbrace{\ell'} \qquad \qquad \qquad Z$$

The exact backward computation terminates and is correct!

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

"Every set of valuations which is computed along the backward computation is a finite union of regions"

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

"Every set of valuations which is computed along the backward computation is a finite union of regions"

Let R be a region. Assume:

- \vee $v \in \stackrel{\longleftarrow}{R}$ (for ex. $v + t \in R$)
- \vee $v' \equiv_{reg.} v$

There exists t' s.t. $v' + t' \equiv_{reg.} v + t$, which implies that $v' + t' \in R$ and thus $v' \in \widehat{R}$.

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

"Every set of valuations which is computed along the backward computation is a finite union of regions"

But, the backward computation is not so nice, when also dealing with integer variables...

$$i := j.k + \ell.m$$

A zone is a set of valuations defined by a clock constraint

$$\varphi ::= x \sim c \mid x - y \sim c \mid \varphi \wedge \varphi$$

zones

Non termination of the forward analysis

→ an infinite number of steps...

"Solutions" to this problem

(f.ex. in [Larsen, Pettersson, Yi 1997] or in [Daws, Tripakis 1998])

inclusion checking: if $Z \subseteq Z'$ and Z' still handled, then we don't need to handle Z

→ correct w.r.t. reachability

• • •

"Solutions" to this problem

(f.ex. in [Larsen, Pettersson, Yi 1997] or in [Daws, Tripakis 1998])

- inclusion checking: if $Z \subseteq Z'$ and Z' still handled, then we don't need to handle Z
 - → correct w.r.t. reachability

activity: eliminate redundant clocks

[Daws, Yovine 1996]

→ correct w.r.t. reachability

$$q \xrightarrow{g,\alpha,C:=0} q' \implies Act(q) = clocks(g) \cup (Act(q') \setminus C)$$

. .

"Solutions" to this problem (cont.)

 \checkmark convex-hull approximation: if Z and Z' are computed then we overapproximate using "Z \sqcup Z'".

→ "semi-correct" w.r.t. reachability

"Solutions" to this problem (cont.)

 \checkmark convex-hull approximation: if Z and Z' are computed then we overapproximate using "Z \sqcup Z'".

→ "semi-correct" w.r.t. reachability

extrapolation, a widening operator on zones

The DBM data structure

DBM (Difference Bounded Matrice) data structure

[Dill 1989]

$$(x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4)$$
 x_1

$$\begin{array}{c} x_0 \\ x_1 \\ x_2 \end{array} \begin{bmatrix} +\infty & -3 & +\infty \\ +\infty & +\infty & 4 \\ 5 & +\infty & +\infty \end{bmatrix}$$

The DBM data structure

DBM (Difference Bounded Matrice) data structure

[Dill 1989]

$$(x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4)$$

$$\begin{array}{ccccc} x_0 & x_1 & x_2 \\ x_0 & +\infty & -3 & +\infty \\ x_1 & +\infty & +\infty & 4 \\ x_2 & 5 & +\infty & +\infty \end{array}$$

Existence of a normal form

The DBM data structure

DBM (Difference Bounded Matrice) data structure

[Dill 1989]

$$(x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4)$$

$$\begin{array}{ccccc} x_0 & x_1 & x_2 \\ x_0 & +\infty & -3 & +\infty \\ x_1 & +\infty & +\infty & 4 \\ x_2 & 5 & +\infty & +\infty \end{array}$$

Existence of a normal form

All previous operations on zones can be computed using DBMs

The extrapolation operator

Fix an integer k

("*" represents an integer between -k and +k)

$$\begin{bmatrix} * & & \\ * & & * & \\ * & & * & * \\ \hline & & & * & * \\ \hline & & & * & * \\ \hline & & & & * \\ \hline \end{bmatrix}$$

"intuitively", erase non-relevant constraints

→ ensures termination

The extrapolation operator

Fix an integer k

("*" represents an integer between -k and +k)

* + * * * * * *

"intuitively", erase non-relevant constraints

→ ensures termination

The extrapolation operator

Fix an integer k

("*" represents an integer between -k and +k)

* +\infty * * * * * * *

"intuitively", erase non-relevant constraints

→ ensures termination

Challenge

Propose a good constant for the extrapolation:

keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

- Several correctness proofs can be found
- ✓ Implemented in tools like UPPAAL, KRONOS, RT-SPIN...
- Successfully used on real-life examples

Challenge

Propose a good constant for the extrapolation:

keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

- Several correctness proofs can be found
- ✓ Implemented in tools like UPPAAL, KRONOS, RT-SPIN...
- Successfully used on real-life examples

However...

A problematic automaton

A problematic automaton

$$v(x_1) = 0$$

 $v(x_2) = d$
 $v(x_3) = 2a + 5$
 $v(x_4) = 2a + 5 + d$

A problematic automaton

$$v(x_1) = 0$$

 $v(x_2) = d$
 $v(x_3) = 2a + 5$
 $v(x_4) = 2a + 5 + d$

The problematic zone

The problematic zone

If a is sufficiently large, after extrapolation:

Criteria for a good abstraction operator Abs:

Criteria for a good abstraction operator Abs:

easy computation

Abs(Z) is a zone if Z is a zone

[Effectiveness]

Criteria for a good abstraction operator Abs:

- easy computation
 Abs(Z) is a zone if Z is a zone
- finiteness of the abstraction {Abs(Z) | Z zone} is finite

[Effectiveness]

[Termination]

Criteria for a good abstraction operator Abs:

- ✓ easy computation [Effectiveness]

 Abs(Z) is a zone if Z is a zone
- \checkmark completeness of the abstraction [Completeness] $Z \subset Abs(Z)$

Criteria for a good abstraction operator Abs:

- ✓ easy computation [Effectiveness]
 Abs(Z) is a zone if Z is a zone
- ✓ completeness of the abstraction [Completeness] $Z \subset Abs(Z)$
- ✓ soundness of the abstraction [Soundness] the computation of (Abs ∘ Post)* is correct w.r.t. reachability

Criteria for a good abstraction operator Abs:

- ✓ easy computation [Effectiveness]

 Abs(Z) is a zone if Z is a zone
- ✓ finiteness of the abstraction [Termination]
 {Abs(Z) | Z zone} is finite
- ✓ completeness of the abstraction [Completeness] $Z \subset Abs(Z)$
- ✓ soundness of the abstraction [Soundness] the computation of (Abs ∘ Post)* is correct w.r.t. reachability

For the previous automaton,

no abstraction operator can satisfy all these criteria!

Why that?

Assume there is a "nice" operator Abs.

The set $\{M DBM \text{ representing a zone } Abs(Z)\}\$ is finite.

→ k the max. constant defining one of the previous DBMs

We get that, for every zone Z,

$$Z \subseteq Extra_k(Z) \subseteq Abs(Z)$$

Problem!

Open questions:

- which conditions can be made weaker?
- find a clever termination criterium?
- use an other data structure than zones/DBMs?

What can we cling to?

Diagonal-free: only guards $x \sim c$

(no guard $x - y \sim c$)

Theorem: the classical algorithm is correct for diagonal-free timed automata.

What can we cling to?

Diagonal-free: only guards $x \sim c$

(no guard $x - y \sim c$)

Theorem: the classical algorithm is correct for diagonal-free timed automata.

General: both guards $x \sim c$ and $x - y \sim c$

Proposition: the classical algorithm is correct for timed automata that use *less* than 3 clocks.

(the constant used is bigger than the maximal constant...)

Conclusion & Further Work

- Decidability is quite well understood.
- A rather big problem with the forward analysis of timed automata needs to be solved.
 - a very unsatisfactory solution for dealing with diagonal constraints.
 - maybe the zones are not the "optimal" objects that we can deal with.

To be continued...

- ✓ Some other current challenges:
 - adding C macros to timed automata
 - reducing the memory consumption via new data structures

Bibliography

- [ACD+92] Alur, Courcoubetis, Dill, Halbwachs, Wong-Toi. Minimization of Timed Transition Systems. CONCUR'92 (LNCS 630).
 - [AD90] Alur, Dill. Automata for Modeling Real-Time Systems. ICALP'90 (LNCS 443).
 - [AD94] Alur, Dill. A Theory of Timed Automata. TCS 126(2), 1994.
 - [ALO2] Aceto, Laroussinie. Is your Model-Checker on Time? On the Complexity of Model-Checking for Timed Modal Logics. JLAP 52-53, 2002. 2002.
 - [BD00] Bérard, Dufourd. Timed Automata and Additive Clock Constraints. IPL 75(1-2), 2000.
- BDFPOOa] Bouyer, Dufourd, Fleury, Petit. Are Timed Automata Updatable? CAV'00 (LNCS 1855).
- BDFP00b] Bouyer, Dufourd, Fleury, Petit. *Expressiveness of Updatable Timed Automata.*MFC5'00 (LNCS 1893).
- BDGP98] Bérard, Diekert, Gastin, Petit. Characterization of the Expressive Power of Silent Transitions in Timed Automata. Fundamenta Informaticae 36(2-3), 1998.
 - [BF99] Bérard, Fribourg. Automatic Verill cation of a Parametric Real-Time Program: the ABR Conformance Protocol. CAV'99 (LNCS 1633).

Bibliography (cont.)

- ouyer03] Bouyer. Untameable Timed Automata! STACS'03 (LNCS 2607).
- ouyer04] Bouyer. Forward analysis of updatable timed automata. To appear in FMSD, 2004
 - [Dill89] Dill. Timing Assumptions and Verial cation of Finite-State Concurrent Systems. Aut. Verif. Methods for Fin. State Sys. (LNCS 1989).
 - [DT98] Daws, Tripakis. Model-Checking of Real-Time Reachability Properties using Abstractions. TACAS'98 (LNCS 1384).
 - [DY96] Daws, Yovine. Reducing the Number of Clock Variables of Timed Automata. RTSS'96.
- [LPY97] Larsen, Pettersson, Yi. UPPAAL in a Nutshell. Software Tools for Technology Transfer 1(1-2), 1997.
- Ninsky67] Minsky. Computation: Finite and In[] nite Machines. 1967.
 - [TY01] Tripakis, Yovine. Analysis of Timed Systems using Time-Abstracting Bisimulations. FMSD 18(1), 2001.
- Hytech: http://www-cad.eecs.berkeley.edu:80/~tah/HyTech/
- Kronos: http://www-verimag.imag.fr/TEMPORISE/kronos/
- Uppaal: http://www.uppaal.com/

Quizz (1)

- 1. Let Z_1 and Z_2 be two zones.
 - \checkmark $Z_1 \cap Z_2$ is a zone.
 - \checkmark $Z_1 \cup Z_2$ is a zone.
 - ✓ The convex hull of $Z_1 \cup Z_2$ is a zone.
- 2. Let C_1 and C_2 be two disjoint convexes, C_1 is also supposed to be open. Then there exists an hyperplan H that separates C_1 and C_2 .

Quizz (1)

- 1. Let Z_1 and Z_2 be two zones.
 - \checkmark $Z_1 \cap Z_2$ is a zone.
 - \checkmark $Z_1 \cup Z_2$ is a zone.
 - ✓ The convex hull of $Z_1 \cup Z_2$ is a zone.
- 2. Let C_1 and C_2 be two disjoint convexes, C_1 is also supposed to be open. Then there exists an hyperplan H that separates C_1 and C_2 .

Quizz (1)

- 1. Let Z_1 and Z_2 be two zones.
 - \checkmark $Z_1 \cap Z_2$ is a zone.
 - \checkmark $Z_1 \cup Z_2$ is a zone.
 - ✓ The convex hull of $Z_1 \cup Z_2$ is a zone.
- 2. Let C_1 and C_2 be two disjoint convexes, C_1 is also supposed to be open. Then there exists an hyperplan H that separates C_1 and C_2 .

Quizz (2)

3. Let Z_1 and Z_2 be two disjoint zones. Then there exists an hyperplan H, whose equation is x - y = c or x = c for some clocks x and y and constant c, that separates Z_1 and Z_2 .

4. Let Z_1 and Z_2 be two disjoint zones. Then there is a projection π from the set of clocks X on a subset of clocks Y ($2 \le \#Y < \#X$) such that $\pi(Z_1) \cap \pi(Z_2) = \emptyset$.

Quizz (3)

- 5. Let Z be a zone and R a region. If $Z \cap R = \emptyset$, then there exists a constraint $x-y \sim c$ defining R (y may be the clock which is always 0) such that $Z \cap (x-y \sim c) = \emptyset$.
- 6. Let Z be a zone "generated" by a timed automaton. Then for each pair of clocks (x,y), either $Z \cap (x-y<0) = \emptyset$ or $Z \cap (x-y>0) = \emptyset$.
- 7. Let Z_i be zones (such that $\bigcup_i Z_i$ is convex). Then,

$$Approx_{k}(\bigcup_{i} Z_{i}) = \bigcup_{i} (Approx_{k}(Z_{i}))$$

8. Let \mathcal{A} be a timed automaton. There exists a constant k, syntactically depending on the constraints of \mathcal{A} , such that bounding all the clocks by k in the whole automaton does not change the truth or the falsity of the reachability properties.

Quizz (3)

- 5. Let Z be a zone and R a region. If $Z \cap R = \emptyset$, then there exists a constraint $x-y \sim c$ defining R (y may be the clock which is always 0) such that $Z \cap (x-y \sim c) = \emptyset$.
- 6. Let Z be a zone "generated" by a timed automaton. Then for each pair of clocks (x,y), either $Z \cap (x-y<0) = \emptyset$ or $Z \cap (x-y>0) = \emptyset$.
- 7. Let Z_i be zones (such that $\bigcup_i Z_i$ is convex). Then,

$$Approx_{k}(\bigcup_{i} Z_{i}) = \bigcup_{i} (Approx_{k}(Z_{i}))$$

8. Let \mathcal{A} be a timed automaton. There exists a constant k, syntactically depending on the constraints of \mathcal{A} , such that bounding all the clocks by k in the whole automaton does not change the truth or the falsity of the reachability properties.

M

Plan of one of the proofs (2nd proof)

$Approx_k(Z) \subseteq Z_{\cong_k}$

- ✓ let $\sigma \in Approx_k(Z)$
- ✓ prove $\{\sigma' \in Z \mid \sigma' \cong_k \sigma\}$ is not empty
- this set is defined by:
 - the constraints defining Z,
 - $x = \sigma(x)$ whenever $\sigma(x) \le k$,

stronger than the constraint in Z

• x > k whenever $\sigma(x) > k$

--- this defines a DBM on the set of real numbers

w use the property that a DBM $(m_{i,j})_{i,j=1...n}$ represents the empty set iff there exists a sequence of distinct indices $(i_j)_{j=1...p}$ such that

$$m_{i_1,i_2} + ... + m_{i_{p-1},i_p} + m_{i_p,i_1} < 0$$

check what can be these negative cycles...

k-equivalence

$$\sigma \cong_k \sigma' \iff \forall x$$
 either $\sigma(x) = \sigma'(x)$
or $\sigma(x) > k$ and $\sigma'(x) > k$

