
A Conservative Extension of Synchronous
Data-flow with State Machines

Marc Pouzet
LRI

Marc.Pouzet@lri.fr

Journées FAC
15 – 16 mars 2007

Toulouse

Joint work with Jean-Louis Colaço, Grégoire Hamon and Bruno Pagano

1

A Bit of History

Arround 1984, several groups introduced domain-specific languages to
program/design control embedded systems.

• Lustre (Caspi & Halbwachs, Grenoble): data-flow (block diagram) formalisms
with functional (deterministic) semantics;

• Signal (Benveniste & Le Guernic, Rennes): data-flow formalisms with
relational (non-deterministic) semantics to model also under-specified systems;

• Esterel (Berry & Gonthier, Sophia): hierarchical automata and process
algebra (and SCCS flavor)

All these languages were recognised to belong to the same family, sharing the same
synchronous model of time.

2

The Synchronous Model of Time

• a global logical time scale shared by all the processes;

• every event can be tagged according to this global time scale;

• parallel processes all agree on the presence/absence of events during those
instants;

• parallel process do not fight for resources (as opposed to time-sharing
concurrency): P ||Q means that P and Q (virtually) run in parallel;

• this reconcile parallelism and determinism

i7

o

i

o1 o2 o3 o4 o5 o6 o7

i1 i2 i3 i4 i5 i6

maximal reaction time maxn∈IN (tn − tn−1) ≤ bound

3

Extension Needs for Synchronous Tools

Arround 1995, with Paul Caspi, we identified several “language” needs in
synchronous tools

• modularity (libraries), abstraction mechanisms

• how to mix dataflow (e.g., Lustre) and control-flow (e.g., Esterel) in a unified
way?

• language-based approach (vs verification) in order to statically guaranty some
properties at compile time: type and clock inference (mandatory in a graphical
tool), absence of deadlocks, etc.

• links with classical techniques from type theory (e.g., mathematical proof of
programs, certification of a compiler)

4

The origins of Lucid Synchrone

What are the relationships between:

• Kahn Process Networks

• Synchronous Data-flow Programming (e.g., Lustre)

• (Lazy) Functional Programming (e.g., Haskell)

• Types and Clocks

• State machines and stream functions

What can we learn from the relationships between
synchronous and functional programming?

5

Lucid Synchrone

Build a laboratory language to investigate those questions

• study extensions for SCADE/Lustre

• experiment things and write programs!

• Version 1 (1995), Version 2 (2001), V3 (2006)

6

Milestones

• Synchronous Kahn Networks [ICFP’96]

• Clocks as types [ICFP’96]

• Compilation (co-induction vs co-iteration) [CMCS’98]

• Clock calculus à la ML [Emsoft’03]

• Causality analysis [ESOP’01]

• Initialization analysis [SLAP’03, STTT’04]

• Higher-order and typing [Emsoft’04]

• Mixing data-flow and state machines [EMSOFT’05, EMSOFT’06]]

• N-Synchronous Kahn Networks [EMSOFT’05, POPL’06]

7

Some examples (V3)

• int denotes the type of integer streams,

• 1 denotes the (infinite) constant stream of 1,

• usual primitives apply point-wise

c t f t . . .

x x0 x1 x2 . . .

y y0 y1 y2 . . .

if c then x else y x0 y1 x2 . . .

8

Combinatorial functions

Example: 1-bit adder

let xor x y = (x & not (y)) or (not x & y)

let full_add(a, b, c) = (s, co)

where

s = (a xor b) xor c

and co = (a & b) or (b & c) or (a & c)

The compiler automatically infer the type and clock signature.

val full_add : bool * bool * bool -> bool * bool

val full_add :: ’a * ’a * ’a -> ’a * ’a

9

Full Adder (hierarchical)

Compose two “half adder”

let half_add(a,b) = (s, co)

where

s = a xor b

and co = a & b

b
s

co

a

Instantiate it twice

let full_add(a,b,c) = (s, co)

where

(s1, c1) = half_add(a,b)

and (s, c2) = half_add(c, s1)

and co = c1 or c2
c1

a

b

s1

c
s

s2
co

10

Temporal operators

Operators fby, ->, pre

• fby: unit initialized delay

• ->: stream initialization operator

• pre: non initialized delay (register)

x x0 x1 x2 . . .

y y0 y1 y2 . . .

x fby y x0 y0 y1 . . .

pre x nil x0 x1 . . .

x -> y x0 y1 y2 . . .

11

Sequential functions

• Functions may depend on the past (the system has a state)

• Example: edge front detector

let node edge x = x -> not (pre x) & x

val edge : bool => bool

val edge :: ’a -> ’a

x t f t t t f . . .

edge x t f t f f f . . .

In the V3, we distinguish combinatorial functions (->) from sequential ones (=>)

12

Polymorphism (code reuse)

let node delay x = x -> pre x

val delay : ’a => ’a

val delay :: ’a -> ’a

let node edge x = false -> x <> pre x

val edge : ’a => ’a

val edge :: ’a -> ’a

In Lustre, polymorphism is limited to a set of predefined operators (e.g,
if/then/else, when) and do not pass abstraction barriers.

Other features: higher-order, data-types, etc.

Question: How to mix data-flow and control-flow in an arbitrary way?

13

Designing Mixed Systems

Data dominated Systems: continuous and sampled systems, block-diagram
formalisms
↪→ Simulation tools: Simulink, etc.
↪→ Programming languages: SCADE/Lustre, Signal, etc.

Control dominated systems: transition systems, event-driven systems, Finite
State Machine formalisms
↪→ StateFlow, StateCharts
↪→ SyncCharts, Argos, Esterel, etc.

What about mixed systems?

• most system are a mix of the two kinds: systems have “modes”

• each mode is a big control law, naturally described as data-flow equations

• a control part switching these modes and naturally described by a FSM

14

Extending SCADE/Lustre with State Machines

SCADE/Lustre:

• data-flow style with synchronous semantics

• certified code generator

Motivations

• activation conditions between several “modes”

• arbitrary nesting of automata and equations

• well integrated, inside the same language (tool)

• in a uniform formalism (code certification, code quality, readability)

• be conservative: accept all Scade/Lustre and keep the semantics of the kernel

• which can be formely certified (to meet avionic constraints)

• efficient code, keep (if possible) the existing certified code generator

15

First approach: linking mechanisms

• two (or more) specific languages: one for data-flow and one for control-flow

• “linking” mechanism. A sequential system is more or less represented as a pair:

– a transition function f : S × I → O × S

– an initial memory M0 : S

• agree on a common representation and add some glue code

• this is provided in most academic and industrial tools

• PtolemyII, Simulink + StateFlow, Lustre + Esterel Studio SSM, etc.

16

An example: the Cruise Control (SCADE V5.1)

17

Observations

• automata can only appear at the leaves of the data-flow model: we need a finer
integration

• forces the programmer to make decisions at the very beginning of the design
(what is the good methodology?)

• the control structure is not explicit and hidden in boolean values: nothing
indicate that modes are exclusive

• code certification?

• efficiency/simplicity of the code?

• how to exploit this information for program analysis and verification tools?

Can we provide a finer integration of both styles inside a unique
language?

18

Extending Synchronous Data-flow with Automata

[EMSOFT05]

Basis

• Mode-Automata by Maraninchi & Rémond [ESOP98, SCP03]

• SignalGTI (Rutten [EuroMicro95] and Lucid Synchrone V2 (Hamon & Pouzet
[PPDP00])

Proposal

• extend a basic clocked calculus with automata constructions

• base it on a translation semantics into well clocked programs; gives both the
semantics and the compilation method

Two implementations

• Lucid Synchrone language and compiler

• ReLuC compiler of SCADE at Esterel-Technologies; the basis of SCADE V6
(released in summer 2007)

19

Semantic principles

• only one set of equations is executed during a reaction

• two kinds of transitions: Weak delayed (“until”) or Strong (“unless”)

• both can be “by history” (H* in UML) or not (if not, both the SSM and the
data-flow in the target state are reseted

• at most one strong transition followed by a weak transition can be fired during
a reaction

• at every instant:

– what is the current active state?

– execute the corresponding set of equations

– what is the next state?

• forbids arbitrary long state traversal, simplifies program analysis, better
generated code

20

Translation semantics into well-clocked programs

• use clocks to give a precise semantics: we know how to compile clocked
data-flow programs efficiently

• give a translation semantics into the basic clocked data-flow language;

• clocks are fundamental here: classical one-hot (clock-less) coding (as done for
circuits) does not allow to generate good sequential code afterwards

• type and clock preserving source-to-source transformation

– T : ClockedBasicCalculus + Automata → ClockedBasicCalculus

– H ` e : ty iff H ` T (e) : ty

– H ` e : cl iff H ` T (e) : cl

21

A clocked data-flow basic calculus

Expressions:

e ::= C | x | e fby e | (e, e) | x(e)

| x(e) every e

| e when C(e)

| merge e (C → e) ... (C → e)

Equations:

D ::= D andD | x = e

Enumerated types:

td ::= type t | type t = C1 + ... + Cn | td; td

Basics:

• synchronous data-flow semantics, type system, clock calculus, etc.

• efficient compilation into sequential imperative code

22

N-ary Merge

merge combines two complementary flows (flows on complementary clocks) to
produce a faster one:

Merge

.. b1b2b3b4b5b6b7

.. a2 a1

.. b1b2b3b4b5b6b7 a1a2a3

a3

introduced in Lucid Synchrone V1 (1996), input language of ReLuC

Example: merge c (a when c) (b whenot c)

Generalization:

• can be generalized to n inputs with a specific extension of clocks with
enumerated types

• the sampling e when c is now written e when True(c)

• the semantics extends naturally and we know how to compile it efficiently

• thus, a good basic for compilation

23

Reseting a behavior

• in Scade/Lustre, the “reset” behavior of an operator must be explicitly
designed with a specific reset input

let node count () = s where

rec s = 0 -> pre s + 1

let node resetable_counter r = s where

rec s = if r then 0 else 0 -> pre s + 1

• painful to apply on large model

• propose a primitive that applies on node instance and allow to reset any node
(no specific design condition)

24

Modularity and reset

Specific notation in the basic calculus: x(e) every c

• all the node instances used in the definition of node x are reseted when the
boolean c is true

• the reset is “asynchronous”: no clock constraint between the condition c and
the clock of the node instance

is-it a primitive construct? yes and no

• modular translation of the basic language with reset into the basic language
without reset [PPDP00]

• essentially a translation of the initialization operator ->

• e1 -> e2 becomes if true -> c then e1 else e2

• very demanding to the code generator whereas it is trivial to compile!

• useful translation for verification tools, basic for compilation

• thus, a good basic for compilation

25

Automata extension

• Scade/Lustre implicit parallelism of data-flow diagrams

• automata can be composed in parallel with these diagrams

• hierarchy: a state can contain a parallel composition of automata and data-flow

• each hierarchy level introduces a new lexical scope for variables

26

An example: the Franc/Euro converter

eu = v;

c

cc

v fr

eu

EuroFranc

fr = v;

eu = v/6.77957;

fr = v*6.55957;

in concrete (Lucid Synchrone) syntax:

let node converter v c = (euro, fr) where

automaton

Franc -> do fr = v and eur = v / 6.55957

until c then Euro

| Euro -> do fr = v * 6.55957 and eu = v

until c then Franc

end

Remark: fr and eur are shared flow but with only one definition at a time

27

Strong vs Weak pre-emption

Two types of transitions can be considered

let node converter v c = (euro, fr) where

automaton

Franc -> do fr = v and eur = v / 6.55957

unless c then Euro

| Euro -> do fr = v * 6.55957 and eu = v

unless c then Franc

end

• until means that the escape condition is executed after the body has been
executed

• unless means that the escape condition is executed before and determines the
active state of the reaction

28

Equations and Expressions in States

• every state defines the current value of a shared flow

• a flow must be defined only once per cycle

• the Lustre “pre” is local to its upper state (pre e gives the previous value of e,
the last time e was alive)

• the substitution principle of Lustre is still true at a given hierarchy ⇒
data-flow diagrams make sense!

• the notation last x gives access to the latest value of x in its scope (Mode
Automata in the Maraninchi & Rémond sense)

• an absent definition for a shared flow x is implicitly complemented (i.e.,
x = last x)

29

Mode Automata, a simple example

x = 0 1 2 3 4 5 4 3 2 1 0 −1 −2 −3 −4 −5 −4 −3 −2 −1 0 ...

Up Down

x = last x − 1x = 0 −> last x + 1

H

H
x = 5

x = −5

let node two_modes () = x where

rec automaton

Up -> do x = 0 -> last x + 1

until x = 5 continue Down

| Down -> do x = last x - 1

until x = -5 continue Up

end

Remark: replacing until by unless would lead to a causality error!

30

The Cruise Control with Scade 6

31

The extended language

e ::= · · · | last x

D ::= D andD | x = e

| match e with C → D ... C → D

| reset D every e

| automaton S → u s ... S → u s

u ::= letD inu | do D w

s ::= unless e then S s | unless e continue S s | ε
w ::= until e then S w | until e continue S w | ε

32

Translation semantics

• several steps in the compiler, each of them eliminating one new construction

• must be preserve type (in the general sense)

Several steps

• compilation of the automaton construction into the control structures
(match/with)

• compilation of the reset construction between equations into the basic reset

• elimination of shared memory last x

33

Translation

T (reset D every e) = letx = T (e) inCResetx T (D)

where x 6∈ fv(D) ∪ fv(e)

T (match e with C1 → D1 ... Cn → Dn) = CMatch (T (e))

(C1 → (T (D1),Def (D1)))

...

(Cn → (T (Dn),Def (Dn)))

T (automaton S1 → u1 s1 ... Sn → un sn) = CAutomaton

(S1 → (TS1(u1),TS1(s1)))

...

(Sn → (TSn(un),TSn(sn)))

34

Static analysis

• they should mimic what the translation does

• well typed source programs must be translated into well typed basic programs

Typing: easy

• check unicity of definition (SSA form)

• can we write last x for any variable?

• No (in Lucid Synchrone): only shared variables can be accessed through a last

• otherwise, possible confusion with the regular pre

Clock calculus: easy under the following conditions

• free variables inside a state are all on the same clock

• the same for shared variables

• corresponds exactly to the translation semantics into merge

35

Initialization analysis

More subtle: must take into account the semantics of automata

let node two x = o where

automaton

S1 -> do o = 0 -> last o + 1

until x continue S2

| S2 -> do o = last o - 1 until x continue S1

end

o is clearly well defined. This information is hidden in the translated program.

let node two x = o where

o = merge s (S1 -> 0 -> (pre o) when S1(s) + 1)

(S2 -> (pre o) when S2(s) - 1)

and

ns = merge s (S1 -> if x when S1(s) then S2 else S1)

(S2 -> if x when S2(s) then S1 else S2)

and

clock s = S1 -> pre ns

36

This program is not well initialized:

let node two x = o where

automaton

S1 -> do o = 0 -> last o + 1

unless x continue S2

| S2 -> do o = last o - 1

until x continue S1 end

• we can make a local reasoning

• because at most two transitions are fired during a reaction (strong to weak)

• compute shared variables which are necessarily defined during the initial
reaction

• intersection of variables defined in the initial state and variables defined in the
successors by a strong transition

• implemented in Lucid Synchrone (soon in ReLuC)

37

New questions and extensions

A more direct semantics

• the translation semantics is good for compilation but...

• can we define a more “direct” semantics which expresses how the program
reacts?

• we introduce a logical reaction semantics

Further extensions

• can we go further in closing the gap between synchronous data-flow and
imperative formalisms?

• Parameterized State Machines: this provides a way to pass local
information between two states without interfering with the rest of the code

• Valued Signals: these are events tagged with values as found in Esterel and
provide an alternative to regular flows when programming control-dominated
systems

38

Parameterized State Machines

• it is often necessary to communicate values between two states upon taking a
transition

• e.g., a setup state communicate initialization values to a run state

Setup Run
cond/x<−...

• can we provide a safe mechanism to communicate values between two states?

• without interfering with the rest of the automaton, i.e.,

• without relying on global shared variables (and imperative modifications) in
states nor transitions?

Parameterized states:

• states can be Parameterized by initial values which can be used in turn in the
target automaton

• preserves all the properties of the basic automata
39

A typical example

several modes of normal execution and a failure mode which needs some contextual
information

let node controller in1 in2 = out where

automaton

| State1 ->

do out = f (in1, in2)

until (out > 10) then State2

until (in2 = 0) then Fail_safe(1, 0)

| State2 ->

let rec x = 0 -> (pre x) + 1 in

do out = g (in1,x)

until (out > 1000) then Fail_safe(2, x)

| Fail_safe(error_code, resume_after) ->

let rec

resume = resume_after -> (pre resume) - 1 in

do out = if (error_code = 1) then 0

else 1000

until (resume <= 0) then State2

end
40

Parameterized states vs global modifications on transitions

Is all that useful?

• expressiveness? every parameterized state machine can be programmed with
regular state machines using global shared flows

• efficiency? depends on the program and code-generator (though parameters
only need local memory and are not all alive at the same time)

But this is bad!

• who is still using global shared variables to pass parameters to a function in a
general-purpose language?

• passing this information through shared memory would mean having global
shared variables to hold it

• they would receive meaningless values during normal execution and be set on
the transition itself

• this breaks locality, modularity principles and is error-prone

• making sure that all such variables are set correctly before being use is not
trivial

41

Parameterized states

• we want the language to provides a safer way to pass local information

• complementary to global shared variables and do not replace them

• keep the communication between two states local without interfering with the
rest of the automaton

• do not raise initialization problems

• reminiscent to continuation passing style (in functional programming)

• yet, we provide the same compilation techniques (and properties) as in the case
of unparameterized state machines (initialization analysis, causality, type and
clocks)

42

Example (encoding Mealy machines)

• reduces the need to have equations on transitions

• adding equations on transitions is feasible but make the model awfully
complicated

cn/on

c1/o1

S

T1

Tn

automaton

...

| S(v) -> do o = v unless c1 then T1(o1)

...

unless cn then Tn(on)

...

end

43

Valued Signals and Signal Pattern Matching

• in a control structure (e.g., automaton), every shared flow must have a value at
every instant

• if an equation for x is missing, it keeps implicitly its last value (i.e.,
x = last x is added)

• how to talk about absent value? If x is not produced, we want it to be absent

• in imperative formalisms (e.g., Esterel), an event is present if it is explicitly
emitted and considered absent otherwise

• can we provide a simple way to achieve the same in the context of data-flow
programming?

44

An example

let node vend drink cost v = (o1, o2) where

match v >= cost with

true ->

do emit o1 = drink

and o2 = v - cost

done

| false ->

do o2 = v done

end

• o2 is a regular flow which has a value in every branch

• o1 is only emitted when (v >= cost) and is supposed to be absent otherwise

45

Accessing the value of a valued signal

• the value of a signal is the one which is emitted during the reaction

• what is the value in case where no value is emitted?

• Esterel: keeps the last computed value (i.e., implicitly complement the value
with a register)

emit S(?A + 1)

this is unsafe and raises initialization problems: what is the value if it has
never been emitted?

• need extra methodology development rules to guard every access by a test for
presence

present A then ... emit S(?A + 1) ...

provide a programming construct which forbid the access to a signal which is not
emitted

46

Signal pattern matching

• a pattern-matching construct testing the presence of valued signals and
accessing their content

• a block structure and only present value can be accessed

let node sum x y = o where

present

| x(v) & y(w) -> do emit o = v + w done

| x(v1) -> do emit o = v1 done

| y(v2) -> do emit o = v2 done

| _ -> do done

end

47

Signals as existential clock types

let node sum x y = o where

present

| x(v) & y(w) -> do emit o = v + w done

| x(v1) -> do emit o = v1 done

| y(v2) -> do emit o = v2 done

| _ -> do done

end

• o is partially defined and should have clock ck on (?x∧?y)∨?x∨?y if x and y are
themselves on clock ck

• giving it the existential type Σ(c : ck).ck on c, that is, “exists c on clock ck such
that the result is on clock ck on c is a correct abstraction

48

Clock type of a signal: a dependent pair ck sig = Σ(c : ck).ck on c made of:

• a boolean sequence c which is itself on clock type ck

• a sequence sampled on c, that is, with clock type ck on c

The flow is boxed with its presence information

• this is a restriction compared to what can provide a synchronous data-flow
language equipped with a powerful clock calculus

• but this is the way Esterel valued signal are implemented

• reminiscent to the constraints in Lustre to return the clock of a sampled
stream

Clock verification (and inference) only need modest techniques

• box/unbox mechanisms of a Milner type system + extension by Laufer &
Odersky for abstract data-types

H ` e : ck on c

H ` emit x = e : [x : ck sig]

49

Translation Semantics

• parameterized state machines and signals can be combined in an arbitrary way

• a translation semantics of the extension into a basic language

Example

let node sum (a, b, r) = o where

automaton

| Await -> do unless a(x)&b(y) then Emit (x + y)
| Emit (v) -> do emit o = v unless r then Await

50

• a signal of type t is represented by a pair of type bool× t

• nil stands for any value with the right type (think of a local stack allocated
variable

let node sum (a, b, r) = o where

match pnextstate with

| Await -> match (a, b) with

| ((True, x), (True, x)) -> state = Emit(x + y)
| -> state = Await

| Emit(v) -> match r with

| true -> state = Await

| false -> state = Emit(v)
and

match state with

| Await -> o = (False,nil) and nextstate = Await

| Emit(v) -> o = (True,nil) and nextstate = Emit(v)
and

pnextstate = Await -> pre nextstate

51

Conclusion

• An extension of a data-flow language with automata constructs

• various kinds of transitions, yet quite simple

• translation semantics relying on the clock mechanism which give a good
discipline

• the existing code generator has not been modified and the code is (at least as)
efficient than direct ad-hoc techniques

• fully implemented in Lucid Synchrone; integration in Scade 6 is under way

• distribution and documentation: www.lri.fr/∼pouzet/lucid-synchrone

52

References

[1] Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. Mixing Signals and
Modes in Synchronous Data-flow Systems. In ACM International Conference
on Embedded Software (EMSOFT’06), Seoul, South Korea, October 2006.

[2] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. A Conservative Extension
of Synchronous Data-flow with State Machines. In ACM International
Conference on Embedded Software (EMSOFT’05), Jersey city, New Jersey,
USA, September 2005.

[3] Grégoire Hamon and Marc Pouzet. Modular Resetting of Synchronous
Data-flow Programs. In ACM International conference on Principles of
Declarative Programming (PPDP’00), Montreal, Canada, September 2000.

53

