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Outline of the Talk

◮ Control of Timed Systems: Basics
• Verification and Control
• Control = Game

◮ Control of Discrete Event Systems
• Games, Strategies, Winning States
• Controllable Predecessors
• Results for Finite Games

◮ Control of Timed Systems
• Timed Automata
• Timed Game Automata
• Symbolic Algorithms for Timed Game Automata

◮ Advanced Subjects
• Implementable Controllers
• Optimal Controllers
• Efficient Algorithms for Controller Synthesis

◮ Conclusion
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Control of Timed Systems: Basics Verification and Control

Control of Discrete Event Systems
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◮ Introduced by Ramadge & Wonham [Ramadge & Wonham’87]

◮ Discrete Event System = Finite Automaton with

Controllable (Actc) and Uncontrollable (Actu) actions

◮ Specification = Control Objective = Language
e.g. “avoid sequences of actions leading to state Bad”

◮ How to restrict: disable some controllable transitions
[Ramadge & Wonham’89, Thistle & Wonham’94]
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Open System = 2-player game, Controller (C) vs Environment (E)

◮ Controller plays Actc moves, Environment plays Actu moves
◮ Control Objective = Winning condition on the game

“Avoid bad states” (safety) or “Enforce good states” (reachability)
◮ Control Problem: find a strategy (a controller) to win the game
◮ Various types of game models

◮ Finite or pushdown or counter automata . . .
◮ Timed or hybrid automata
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Control of Timed Systems: Basics Control = Game

Problems of Interest

Verification Problem (or Model Checking Problem)

Input: a model of the closed system S and a property ϕ
Problem: Does S satisfy ϕ ?

Control Problem CP(G,ϕ)

Input: a model of the open system (game) G and a property ϕ
Problem: Is there a strategy (controller) C s.t. (C ‖ G) satisfy ϕ ?

Control Synthesis Problem (CSP)

Input: a model of the open system (game) G and a property ϕ
Problem: If the answer to the CP(G,ϕ) is “yes”, can we effectively
compute a witness controller ?
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Strategy

◮ A strategy f gives for each finite run the controllable action to
take. We assume full observability of the system

◮ A strategy restricts the set of runs of the system.
from a state s it generates of subset of the runs of the initial game

◮ A strategy is winning from s if it generates only good runs.

Winning States

A state s is winning if there exists a winning strategy from s.
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π(X) = states from which one can enforce X with a controllable
action

π(X) = PredActc(X) \ PredActu(X)

Fixpoint Characterization of Winning States for Safety Games:
1 Let ϕ be a set of safe (good) states and G a game
2 Let W∗ be the greatest fixpoint of h(X) = ϕ∩ π(X)
3 W∗ is the set of winning states for (G,ϕ)
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π(X) = states from which one can enforce X with a controllable
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π(X) = PredActc(X) \ PredActu(X)

Fixpoint Characterization of Winning States for Safety Games:
1 Let ϕ be a set of safe (good) states and G a game
2 Let W∗ be the greatest fixpoint of h(X) = ϕ∩ π(X)
3 W∗ is the set of winning states for (G,ϕ)

◮ Decide CP: check that ℓ0 ∈W∗

◮ Synthesis Problem: Given W∗ and G, by def. of π we can build a
winning strategy
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Discrete Games Results for Finite Games

Results for Finite Games

Given G a finite game, ϕ a control objective
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Results for Finite Games

Given G a finite game, ϕ a control objective
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CP is decidable for ω-regular winning conditions.

Theorem (Effectiveness of CSP)

Strategy synthesis is effective. We can compute the most
permissive winning strategy.

Theorem (Positional Strategies are Sufficient)

Positional (or memoryless) strategies suffice to win finite-state
(turn-based) games with ω-regular winning conditions.
(The number of states of C is ≤ number of states of G.)
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Discrete Games Results for Finite Games

Time !

◮ Context : Real-Time Critical Systems
◮ Some expected properties are quantitative properties

e.g. scheduling
or “The system will answer within 10 t.u. after a request is issued”

◮ One solution: discrete time
◮ Can be “expensive”
◮ Not natural – Not accurate enough

◮ Real systems evolve in dense time

Use Dense Time models
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Control of Timed Systems

Next:

◮ Control of Timed Systems: Basics

◮ Control of Discrete Event Systems

◮ Control of Timed Systems
• Timed Automata
• Timed Game Automata
• Symbolic Algorithms for Timed Game Automata

◮ Advanced Subjects

◮ Conclusion
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Control of Timed Systems Timed Automata

Timed Automaton [Alur & Dill’94]

Guards
Resets
[Invariant]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2
c3; x := 0

x < 2;u

x > 3;u

Timed Automaton = Finite Automaton + clock variables

Run = sequence of discrete and time steps

ρ1 : (ℓ0,0)
1.55

–––––→ (ℓ0, 1.55)
c1

––→ (ℓ1, 1.55)
1.67

–––––→ (ℓ1,3.22)
u

–→ (Bad,3.22)

ρ3 : (ℓ0,0)
c1c2c3 in 1

2
––––––––––––→ (ℓ0,0)

c1c2c3 in 1
4

––––––––––––→ (ℓ0,0)
c1c2c3 in 1

8
––––––––––––→ · · ·

Zeno behaviour
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Control of Timed Systems Timed Automata

States & Symbolic States
◮ Q = L ×RClock

≥0 is the set of states of the TA q = (ℓ, v) ∈ Q

◮ Discrete Successors of X ⊆ Q by an action a:

Posta(X) = {q′ ∈ Q | q
a

–––→ q′ and q ∈ X}

◮ Time Successors of X ⊆ Q:

Postδ(X) = {q′ ∈ Q | ∃t ≥ 0 | q
t

––→ q′ and q ∈ X}

◮ Zone = conjunction of triangular constraints
x – y < 3, x ≥ 2∧ 1 < y – x < 2

◮ Symbolic State is defined by a State predicate (SP)
P = ∪i∈[1..n](ℓji , Zi), ℓji ∈ L, Zi is a zone
(ℓ1, 2 ≤ x < 4) or (ℓ0, x < 1∧ y – x ≥ 2) or (ℓ0, x ≤ 2)∪ (ℓ2, x > 0)
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◮ Symbolic State is defined by a State predicate (SP)
P = ∪i∈[1..n](ℓji , Zi), ℓji ∈ L, Zi is a zone
(ℓ1, 2 ≤ x < 4) or (ℓ0, x < 1∧ y – x ≥ 2) or (ℓ0, x ≤ 2)∪ (ℓ2, x > 0)

Effectiveness of Posta and Postδ

If P is a SP then Posta(P), Postδ(P) are SP and can be computed

effectively. (There is a symbolic version for Posta and Postδ.)
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States & Symbolic States
◮ Q = L ×RClock

≥0 is the set of states of the TA q = (ℓ, v) ∈ Q

◮ Discrete Successors of X ⊆ Q by an action a:
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x – y < 3, x ≥ 2∧ 1 < y – x < 2

◮ Symbolic State is defined by a State predicate (SP)
P = ∪i∈[1..n](ℓji , Zi), ℓji ∈ L, Zi is a zone
(ℓ1, 2 ≤ x < 4) or (ℓ0, x < 1∧ y – x ≥ 2) or (ℓ0, x ≤ 2)∪ (ℓ2, x > 0)

Decidability Result for TA Region Graph

The Reachability Problem for TA is PSPACE-Complete.
Build a finite abstraction: region automaton
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Control of Timed Systems Timed Game Automata

Timed Game Automata

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

Bad
x ≤ 4; c1

c2
c3; x := 0

x < 2; u

x > 3;u

◮ Introduced by Maler, Pnueli, Sifakis [Maler et al.’95]

◮ The controller continuously observes the system
time elapsing and discrete moves are observable

◮ The controller has the choice between two types of moves:
◮ “do nothing” (delay action)
◮ “do a controllable action” (among the ones that are possible)

◮ It can prevent time elapsing by taking a controllable move
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Control of Timed Systems Timed Game Automata

Strategies and Winning States
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x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

The strategy f: “Wait as long as the system permits”

ρ1 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
0.5

––––→ (ℓ1,4.5)
u

–→ (Bad,4.5)

ρ2 : (ℓ0,0)
4

––→ (ℓ0,4)
c1

––→ (ℓ1,4)
1.0

–––→ (ℓ1,5)
c2

–––→ (ℓ2,5)
c3

–––→ (ℓ0,0) · · ·
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The Strategy f′ as a Timed Automaton

z := 0 K0

[z ≤ 2]
K1

z = 2; c1

[z ≤ 2.5]

K2

z = 2.5
c2

[z ≤ 4]

z = 4;c3;z := 0

u

u

u
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Controllable Predecessors
π(X,Y) = states from which one can enforce X and avoid Y by:

time elapsing followed by a controllable action

Fixpoint Characterization of Winning States for Safety Games:
1 Let ϕ be a set of safe (good) states and G a game

2 Let W∗ be the greatest fixpoint of h(X) = ϕ∩ π(X,X)
3 W∗ is the set of winning states for (G,ϕ)
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2

=⇒ there is a symbolic version for h(X)
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Symbolic Algorithms for Safety Control

[Maler et al.’95, De Alfaro et al.’01] Details & Example

1 There is a symbolic version for π(X,Y)
2

=⇒ there is a symbolic version for h(X)

◮ Control Problem (CP): check that (ℓ0,0) ∈W∗

◮ Control Synthesis Problem (CSP): by definition of π there is a
strategy
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Symbolic Algorithms for Safety Control

[Maler et al.’95, De Alfaro et al.’01] Details & Example

1 There is a symbolic version for π(X,Y)
2

=⇒ there is a symbolic version for h(X)

Theorem (Termination)

The iterative computation of W∗ terminates for (G,ϕ) with G a
timed game automaton ϕ a ω-regular winning condition.
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Theorem (Termination)

The iterative computation of W∗ terminates for (G,ϕ) with G a
timed game automaton ϕ a ω-regular winning condition.
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The (Safety) Control Problem is decidable.
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Control of Timed Systems Symbolic Algorithms for Timed Game Automata

Symbolic Algorithms for Safety Control

[Maler et al.’95, De Alfaro et al.’01] Details & Example

1 There is a symbolic version for π(X,Y)
2

=⇒ there is a symbolic version for h(X)

Theorem (Termination)

The iterative computation of W∗ terminates for (G,ϕ) with G a
timed game automaton ϕ a ω-regular winning condition.

Theorem (Decidability of CP for Timed Game Automata)

The (Safety) Control Problem is decidable.

Theorem (Effectiveness of CSP)

If (ℓ0,0) ∈W∗ we can compute the most permissive positional
winning strategy.
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Control of Timed Systems Symbolic Algorithms for Timed Game Automata

Result of the Computation for the Example

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

Skip
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x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

Winning States

(ℓ0,0 ≤ x ≤ 3)
(ℓ1,0 ≤ x ≤ 3)
(ℓ2,2 ≤ x ≤ 5)

z := 0 K0

[z ≤ 3]

K1

[z ≤ 3]

K2
[2 ≤ z ≤ 5]

z ≤ 3; c1

c2
z ≥ 2c3; z := 0

u

u

u

The Most
Permissive
Controller
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Advanced Subjects

Next:

◮ Control of Timed Systems: Basics

◮ Control of Discrete Event Systems

◮ Control of Timed Systems

◮ Advanced Subjects
• Implementable Controllers
• Optimal Controllers
• Efficient Algorithms for Controller Synthesis

◮ Conclusion
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Advanced Subjects Implementable Controllers

Problems with Dense-Time Control (1) [C. et al.’02]

x := 0
y := 0 ℓ0 Bad

y > 0
c; y := 0

x ≥ 1;u

The System

The Controller is Zeno !!!

Solution: add non-Zenoness in the control objective
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Problems with Dense-Time Control (2) [C. et al.’02]

x :=]0, 1[
y := 0

[x ≤ 2]

ℓ0 ℓ1

ℓ2

Bad
x = 1 x := 0

a

y = 1
z := 0

b
z > 0
y := 0

c

d;x ≥ 1

d
x ≥ 1

◮ The controller is Non-Zeno; One untimed behavior: (ℓ0ℓ1ℓ2)
ω

◮ Let ∆k > 0 be the time spent in ℓ2 in the k-th loop from ℓ0 to ℓ0

◮ It implies: ∀k,∑k
i=1∆i < 1 – x0, with ∀i,∆i > 0
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◮ Must hold for ever:
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k=1 ∆k < 1 – x0 with ∀k,∆k > 0

The Controller is Non-Zeno but not Implementable !!!
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Sampling Control

◮ Let α ∈ Q∗ be a sampling rate
◮ An α-controller is a controller that can do actions only at

k · α, k ≥ 1 and k ∈ N
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◮ Let α ∈ Q∗ be a sampling rate
◮ An α-controller is a controller that can do actions only at
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Sampling Control

◮ Let α ∈ Q∗ be a sampling rate
◮ An α-controller is a controller that can do actions only at

k · α, k ≥ 1 and k ∈ N

Unknown Sampling Rate Control Problem (USR)

Input: Bad (states), G a TGA
Problem: Is there a sampling rate α ∈ Q∗ such that there is a
α-controller for G that avoids Bad ?

Theorem ([C. et al.’02])

The Unknown Sampling Rate Control Problem is undecidable.
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Summary of the Results

Decidability results for the safety control problem on LHA:
Known Switch Cond. Unknown Switch Cond.

Timed Auto.
√

[Maler et al.’95]
√

[Maler et al.’95]

Init. Rect. Auto
√

[Henzinger et al.’99] × [Henzinger et al.’95]
Rect. Auto. × [Henzinger et al.’99] × [Henzinger et al.’99]

Known Sampling Rate Unknown SR
Timed Auto.

√
[Hoffmann & Wong-Toi’92] × [C. et al.’02]

Init. Rect. Auto.
√

[Henzinger & Kopke’97] × [C. et al.’02]
Rect. Auto.

√
[Henzinger & Kopke’97] × [C. et al.’02]

√
: Decidable ×: Undecidable

Recent result [Bouyer et al.’06]
The reachability USR-CP is decidable for o-minimal automata.
Results on implementation of Timed Automata
[De Wulf et al.’04b, De Wulf et al.’04a, De Wulf et al.’05b]
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Optimal Controllers
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Optimal Reachability for Timed Automata

ℓ0 ℓ1

[y = 0]

ℓ2

ℓ3

Goal

a2

a3

x ≥ 2; a41 ≤ x ≤ 2 ; a1
y := 0

x ≥ 2 ; a5

◮ Reachability for Timed Automata [Alur & Dill’94]
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Optimal Reachability for Timed Automata

ℓ0 ℓ1

[y = 0]

ℓ2

ℓ3

Goal

a2

a3

x ≥ 2; a4
Cost := Cost + 1x ≤ 2 ; a1

y := 0

x ≥ 2 ; a5
Cost := Cost + 7

dCost

dt
= 10

dCost

dt
= 5

dCost

dt
= 1

◮ Reachability for Timed Automata [Alur & Dill’94]
◮ Optimal Reachability for Priced (or Weighted) Timed Automata

[Larsen et al.’01, Alur et al.’01]

(ℓ0,0,0)
1

––→ (ℓ0, 1, 1)
a1 a2

––––––→ (ℓ2, 1,0)
3

–––→ (ℓ2,4,3)
a4

––––→ (Goal,4,3)

Cost = 1 · 5 + 3 · 10 + 1 = 36
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Optimal Reachability for Timed Automata

ℓ0 ℓ1

[y = 0]

ℓ2

ℓ3

Goal

u

u

x ≥ 2; c21 ≤ x ≤ 2 ; c1
y := 0

x ≥ 2 ; c2

◮ Reachability for Timed Automata [Alur & Dill’94]
◮ Optimal Reachability for Priced (or Weighted) Timed Automata

[Larsen et al.’01, Alur et al.’01]
◮ Control for Timed Game Automata [Maler et al.’95]
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u

u

1 ≤ x ≥ 2; c21 ≤ x ≤ 2 ; c1
y := 0

x ≥ 2 ; c3

◮ Reachability for Timed Automata [Alur & Dill’94]
◮ Optimal Reachability for Priced (or Weighted) Timed Automata

[Larsen et al.’01, Alur et al.’01]
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Optimal Reachability for Timed Automata

ℓ0 ℓ1

[y = 0]

ℓ2

ℓ3

Goal

u

u

x ≥ 2; c2
Cost := Cost + 1x ≤ 2 ; c1

y := 0

x ≥ 2 ; c2
Cost := Cost + 7

dCost

dt
= 10

dCost

dt
= 5

dCost

dt
= 1

◮ Reachability for Timed Automata [Alur & Dill’94]
◮ Optimal Reachability for Priced (or Weighted) Timed Automata

[Larsen et al.’01, Alur et al.’01]
◮ Control for Timed Game Automata [Maler et al.’95]
◮ Time Optimal Control (Reachability) [Asarin & Maler’99]

Optimal Control for Priced Timed Game Automata ?
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A Small Example

ℓ0
dCost

dt
= 5

ℓ1

[y = 0]

ℓ2

dCost

dt
= 10

ℓ3
dCost

dt
= 1

Goal

x ≤ 2; c1
y := 0

u

u

x ≥ 2; c2
Cost := Cost + 1

x ≥ 2; c2
Cost := Cost + 7

◮ What is the best cost whatever the environment does ?
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y := 0

u

u

x ≥ 2; c2
Cost := Cost + 1

x ≥ 2; c2
Cost := Cost + 7

◮ What is the best cost whatever the environment does ?

inf
0≤t≤2

max{5t + 10(2 – t) + 1,5t + (2 – t) + 7} = 14 +
1

3
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A Small Example

ℓ0
dCost

dt
= 5

ℓ1

[y = 0]

ℓ2

dCost

dt
= 10

ℓ3
dCost

dt
= 1

Goal

x ≤ 2; c1
y := 0

u

u

x ≥ 2; c2
Cost := Cost + 1

x ≥ 2; c2
Cost := Cost + 7

◮ What is the best cost whatever the environment does ?
◮ Is there a strategy to achieve this optimal cost ?

Yes: wait in ℓ0 until t =
4
3 and then fire c1
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Advanced Subjects Optimal Controllers

A Small Example

ℓ0
dCost

dt
= 5

ℓ1

[y = 0]

ℓ2

dCost

dt
= 10

ℓ3
dCost

dt
= 1

Goal

x ≤ 2; c1
y := 0

u

u

x ≥ 2; c2
Cost := Cost + 1

x ≥ 2; c2
Cost := Cost + 7

◮ What is the best cost whatever the environment does ?
◮ Is there a strategy to achieve this optimal cost ?

Yes: wait in ℓ0 until t =
4
3 and then fire c1

◮ Can we compute such a strategy ?
Yes: but need memory sometimes
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Optimal Control Problems

ℓ0
dCost

dt
= 5

ℓ1

[y = 0]

ℓ2

dCost

dt
= 10

ℓ3

dCost

dt
= 1

Goal

x ≤ 2; c1
y := 0

u

u

x ≥ 2; c2
Cost := Cost + 1

x ≥ 2; c2
Cost := Cost + 7

Can we find algorithms for these problems on PTGA ?

1 Compute the optimal cost
2 Decide if there is an optimal strategy
3 Compute an optimal strategy (if one exists)
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From Optimal Control to Control

A Reachability TGA A

ℓ0
dCost

dt
= 5

ℓ1

[y = 0]

ℓ2

dCost

dt
= 10

ℓ3
dCost

dt
= 1

Goal

x ≤ 2; c1
y := 0

u

u

x ≥ 2; c2
Cost := Cost + 1

x ≥ 2; c2
Cost := Cost + 7

◮ Transform A in Linear Hybrid Game Automaton H(A)
◮ Define the reachability game for H(A) with goal: Goal∧Rsrc ≥ 0

Optimal Control for A ⇐⇒ Reachability Control for H(A)
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From Optimal Control to Control

A Linear Hybrid Game H(A)

ℓ0 ℓ1

[y = 0]

ℓ2

ℓ3

Goal

x ≤ 2; c1
y := 0

u

u
dRsrc
dt

= – 5

dRsrc
dt

= – 10

dRsrc
dt

= – 1

x ≥ 2; c2
Rsrc := Rsrc – 1

x ≥ 2; c2
Rsrc := Rsrc – 7
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Results [Bouyer et al.’04a, Bouyer et al.’04b]

Theorem (Reachability Control for LHA)

There is a semi-algorithm CompWin that computes the set of
winning states for LHA.
Uses polyhedra instead of zones.
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Results [Bouyer et al.’04a, Bouyer et al.’04b]

Let A be a Reachability Priced Timed Game Automaton such that:
◮ A is cost non-zeno i.e. ∃κ s.t. every cycle in the region

automaton of A has cost at least κ
◮ A is bounded i.e. all clocks in A are bounded
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Results [Bouyer et al.’04a, Bouyer et al.’04b]

Let A be a Reachability Priced Timed Game Automaton such that:
◮ A is cost non-zeno i.e. ∃κ s.t. every cycle in the region

automaton of A has cost at least κ
◮ A is bounded i.e. all clocks in A are bounded

Theorem (Non-Zeno Cost [Bouyer et al.’04a])

The algorithm CompWin terminates for H(A).

Theorem (Optimal Cost Computation [Bouyer et al.’04a])

1 Optimal Cost is computable.
2 Optimal Strategy Existence Problem is decidable.
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Results [Bouyer et al.’04a, Bouyer et al.’04b]

Let A be a Reachability Priced Timed Game Automaton such that:
◮ A is cost non-zeno i.e. ∃κ s.t. every cycle in the region

automaton of A has cost at least κ
◮ A is bounded i.e. all clocks in A are bounded

Theorem (Non-Zeno Cost [Bouyer et al.’04a])

The algorithm CompWin terminates for H(A).

Theorem (Optimal Cost Computation [Bouyer et al.’04a])

1 Optimal Cost is computable.
2 Optimal Strategy Existence Problem is decidable.

Theorem ([Brihaye et al.’05])

Non-Zeno Cost is a necessary assumption.
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Summary of the Results

What’s decidable about optimal reachability control?
◮ Non-Zeno Cost [Bouyer et al.’04a]
◮ O-minimal automata [Bouyer et al.’07]
◮ 1-clock PTGA (3EXPTIME) [Bouyer et al.’06a]

What’s UNdecidable about optimal control?
◮ 5-clock Zeno PTGA [Brihaye et al.’05]
◮ 3-clock Zeno PTGA [Bouyer et al.’06b]

What’s decidable for infinite schedules (safety) ?
◮ Mean Cost decidable for 1-player PTA [Bouyer et al.’04c]

What’s open?

Optimal Mean Cost for PTGA
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Efficient Controller Synthesis
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Reachability Control for Finite Games

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1

c

u2

c2
u3

c3

c4

→ Uncontrollable
→ Controllable

Aim: enforce Goal

◮ Semantics: no priority
Cont. must take a controllable action

◮ Winning run = a run containing Goal

◮ Strategy: based on the full history tells
which controllable action to fire
It restricts the set of behaviors of the
open system

◮ Winning strategy: all the runs in the
controlled system are winning

◮ Winning state = a state from which
there is winning strategy
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Advanced Subjects Efficient Algorithms for Controller Synthesis

Reachability Control for Finite Games

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1

c

u2

c2
u3

c3

c4

→ Uncontrollable
→ Controllable

Aim: enforce Goal

◮ Semantics: no priority
Cont. must take a controllable action

◮ Winning run = a run containing Goal

◮ Strategy: based on the full history tells
which controllable action to fire
It restricts the set of behaviors of the
open system

◮ Winning strategy: all the runs in the
controlled system are winning

◮ Winning state = a state from which
there is winning strategy

How to Solve Reachability Games?
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Backward Computation of Winning States

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1

c

u1

c2
c3

c4

c5

X = complement of X

Controllable Predecessors:

π(X) =

(

cPred(X) \ uPred(X)
)

Iterate π: Xi+1 = Xi ∪ π(Xi)
1 X0 = {Goal}
2 X1 = {Goal, ℓ2}
3 X2 = {Goal, ℓ2, ℓ4}
4 X3 = {Goal, ℓ2, ℓ4, ℓ3}
5 X4 = {Goal, ℓ2, ℓ4, ℓ3, ℓ1}
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Reachability Control for Timed Games

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1, x ≤ 1

u1, x > 1
u2

x < 1
x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

Safe Time Elapsing:
When is it safe to let time elapse
from q to q′ ?

q q′ ∈ X

Controllable Predecessors:

π(X) = Predt
(

X∪ cPred(X), uPred(X)
)

Timed Auto
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Summary of the Results for Reachability Control

Known Results for Timed (Game) Automata:
◮ Reachability in Timed Automata [Alur & Dill’94]
◮ Büchi Control for Timed Game Automata [Maler et al.’95]
◮ Time Optimal Control [Asarin & Maler’99]
◮ Optimal Control for Priced Timed Game Automata

[Bouyer et al.’04a]
◮ Half on-the-fly algorithm

[Altisen & Tripakis’99, Altisen & Tripakis’02]

New Results: True On-the-fly algorithm for reachability games
◮ Advantages: [Concur’05]

◮ avoid constructing all backward & forward reachable states
◮ allows for use of discrete variables (e.g. i := i + 1)

◮ Extends to Time-Optimal Control
◮ Extends to Partially Observable Games [ATVA’07]
◮ Efficient implementation in the tool UPPAAL-TiGA

[UPPAAL-TiGA’07]
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Liu & Smolka Algorithm [Liu & Smolka’98]

ℓ1

Win∗[ℓ1] = (0, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

Initialization:
Passed← {q0};

Waiting← {(q0, α, q
′) | α ∈ Act q

α
–→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting ≠ ∅)∧Win[q0] ≠ 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then {
Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting←Waiting ∪ {(q′, α, q′′) | q′ α
–→ q′′};

Win∗[q]← (0,#{q
u

––→});
if Win[q′] then Waiting←Waiting ∪ {e};

}
else (* reevaluate *)
Win∗[q]← Update(Win∗[q]) ;
if (Win∗[q] = (k,0) ∧ k ≥ 1) then {

Waiting←Waiting ∪ Depend[q];
Win[q]← 1;
}

if Win[q′] = 0 then Depend[q′]← Depend[q′]∪ {e};
endif

endwhile
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Win∗[ℓ1] = (0, 1)

ℓ2

ℓ3

ℓ4

Goal

ℓ5

→ Current
→ Explored Forwards
Dashed = in Waiting List

e = (ℓ1, c1, ℓ2)
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On-The-Fly Algorithm for Timed Games (1)

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1, x ≤ 1

u1, x > 1
u2

x < 1
x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

Using the Simulation Graph

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

ℓ5, x > 1
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Second Try (2) [Altisen & Tripakis’99, Altisen & Tripakis’02]

ℓ1

ℓ2

ℓ3

ℓ4

G

ℓ5

c1, x ≤ 1

u1, x > 1
u2

x < 1
x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

Stable Partitionning

ℓ1, x < 1 ℓ1, x = 1 ℓ1, x > 1

ℓ2, x < 1 ℓ2, x = 1 ℓ2, x > 1

ℓ3, x < 1 ℓ3, x = 1 ℓ3, x > 1

ℓ4, x < 1 ℓ4, x = 1 ℓ4, x > 1

G, x ≥ 2

ℓ5, x > 1

λ λ

λ λ
λ

λ λ

λ λ
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Towards a True On-The-Fly Algorithm

To Do:
◮ Write a Symbolic version of Liu & Smolka
◮ Use Symbolic states and Transitions
◮ Apply this to Timed Games

Key issues to be adressed:
◮ Symbolic States can be partially winning

compared to finite state games where 0 or 1

◮ When to propagate backwards ?
◮ Termination, Complexity ?
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Liu & Smolka for Timed Games

ℓ1, x ≥ 0

x ≤ 1

x > 1

x < 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] ( Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile
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Liu & Smolka for Timed Games

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

ℓ5, x > 1

x ≤ 1

x > 1

x < 1

x ≥ 2
x < 1

x ≤ 1

Skip algorithm

Initialization:
Passed← {S0} where S0 = {(ℓ0,0)}ր;
Waiting← {(S0, α, S

′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;
Main:
while ((Waiting ≠ ∅)∧ ((ℓ0,0) 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);
Waiting←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] ≠ ∅ then Waiting←Waiting∪ {e};

else (* reevaluate *)
Win∗←Predt(Win[S]∪ ⋃

S
c
–→T

cPred(Win[T]),
⋃

S
u
–→T

uPred(T \Win[T])) ∩ S;
if (Win[S] ( Win∗) then

Waiting←Waiting ∪ Depend[S]; Win[S]←Win∗;
Depend[S′]← Depend[S′]∪ {e};

endif
endwhile
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Advanced Subjects Efficient Algorithms for Controller Synthesis

Summary of the Results [Concur’05]

◮ A True on-the-fly algorithm for reachability control
◮ Winning Strategies can be computed
◮ Termination

A symbolic edge (S, α, T) will be at most (1+ # regions(T)) times
in Waiting list

◮ Complexity
A region may be in many symbolic states
Our algorithm: Not linear in the size of the region graph
hence not theoretically optimal

◮ However ... seems good in practice with UPPAAL-TiGA

Download at http://www.cs.aau.dk/~adavid/tiga/
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Time Optimality for Free

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

c1, x ≤ 1

u1, x > 1

u2
x < 1

x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1
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Advanced Subjects Efficient Algorithms for Controller Synthesis

Time Optimality for Free

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

z ≤ B

z ≤ B

z ≤ B

z ≤ B

z ≤ B

z ≤ B

c1, x ≤ 1

u1, x > 1

u2
x < 1

x := 0

c2, x ≥ 2
u3

x < 1

c3

c4, x ≤ 1

Assume:
◮ The initial state is winning
◮ We know an upper bound B of

the (optimal) time needed to
reach Goal

To compute the optimal time:
◮ Add a clock z (unconstrained at

the beginning)
◮ Add a global invariant z ≤ B

z

5

3

x
0 1
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Conclusion

Next:

◮ Control of Timed Systems: Basics

◮ Control of Discrete Event Systems

◮ Control of Timed Systems

◮ Advanced Subjects

◮ Conclusion
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Conclusion

Conclusion

◮ Recent Research Results:
◮ Implementability of controllers
◮ Optimality of controllers
◮ Efficient algorithms for solving Timed Games
◮ Control under Partial-Observation

◮ Ongoing work:
◮ Efficient Algorithms for Safety, Büchi games
◮ Data Structures for optimal control
◮ Optimal control for infinite schedules
◮ Synthesis of robust controllers
◮ Abstraction/Refinement for synthesis of controllers

Merci !
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Timed Automata [Alur & Dill’94]

A Timed Automaton A is a tuple (L, ℓ0, Act,X, inv, –→) where:

◮ L is a finite set of locations
◮ ℓ0 is the initial location
◮ X is a finite set of clocks
◮ Act is a finite set of actions

◮ –→ is a set of transitions of the form ℓ
g , a , R
–––––––→ ℓ′ with:

◮ ℓ, ℓ′ ∈ L,
◮ a ∈ Act
◮ a guard g which is a clock constraint over X
◮ a reset set R which is the set of clocks to be reset to 0

Clock constraints are boolean combinations of x ∼ k with x ∈ C and
k ∈ Z and ∼∈ {≤, <}.
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Semantics of Timed Automata

Let A = (L, ℓ0, Act,X, inv, –→) be a Timed Automaton.

A state (ℓ, v) of A is in L × RX
≥0

The semantics of A is a Timed Transition System
SA = (Q,q0, Act ∪ R≥0, –→) with:

◮ Q = L × RX
≥0

◮ q0 = (ℓ0,0)
◮ –→ consists in:

discrete transition: (ℓ, v)
a→ (ℓ′, v′) ⇐⇒















∃ ℓ
g , a , r

–––––––→ ℓ′ ∈ A
v |= g
v′ = v[r← 0]
v′ |= inv(ℓ′)

delay transition: (ℓ, v)
d→ (ℓ, v + d) ⇐⇒ d ∈ R≥0 ∧ v + d |= inv(ℓ)
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The Region Abstraction [Alur & Dill’94]

0 1 2 3 x

1

2

y
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The Region Abstraction [Alur & Dill’94]

0 1 2 3 x

1

2

y

Build an equivalence relation which is of finite index and is:
◮ “compatible” with clock constraints (g ::= x ∼ c g∧ g)

r, r′ ∈ R =⇒ ∀ constraints g, r |= g ⇐⇒ r′ |= g
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• •

Build an equivalence relation which is of finite index and is:
◮ “compatible” with clock constraints (g ::= x ∼ c g∧ g)

r, r′ ∈ R =⇒ ∀ constraints g, r |= g ⇐⇒ r′ |= g
◮ “compatible” with time elapsing
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The Region Abstraction [Alur & Dill’94]

0 1 2 3 x

1

2

y
region defined by
Ix =]1; 2[Iy =]0; 1[

{x} < {y}
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The Region Abstraction [Alur & Dill’94]

0 1 2 3 x

1

2

y
region defined by
Ix =]1; 2[Iy =]0; 1[

{x} < {y}

delay successors

Build an equivalence relation which is of finite index and is:
◮ “compatible” with clock constraints (g ::= x ∼ c g∧ g)

r, r′ ∈ R =⇒ ∀ constraints g, r |= g ⇐⇒ r′ |= g
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The Region Abstraction [Alur & Dill’94]

0 1 2 3 x

1

2

y
region defined by
Ix =]1; 2[Iy =]0; 1[

{x} < {y}

delay successors

successor by reset

Build an equivalence relation which is of finite index and is:
◮ “compatible” with clock constraints (g ::= x ∼ c g∧ g)

r, r′ ∈ R =⇒ ∀ constraints g, r |= g ⇐⇒ r′ |= g
◮ “compatible” with time elapsing

r, r′ ∈ R =⇒ same delay successor regions
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The Region Automaton

◮ For each transition ℓ
g,a,C:=0

–––––––––→ ℓ′ of the TA

◮ Build transitions in the region automaton RA: (ℓ, R)
a

–→ (ℓ′, R′) if:
◮ there exists R′′ a delay successor of R s.t.
◮ R′′ satisfies the guard g (R′′ ⊆ [[g]])
◮ R′′[C← 0] is included in R′

a TA and its region automaton RA are time-abstract bisimilar

◮ The region automaton is finite
◮ Language accepted by the RA = untimed language accepted by

the TA
a timed word w = (a, 1.2)(b,3.4)(a,6.256); untimed(w) = aba

◮ Language Emptyness can be decided on the RA
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Time-abstract bisimulation

∀ a

(ℓ0, v0)
a1,t1 (ℓ1, v1)

a2,t2 (ℓ2, v2)
a3,t3 . . .

(ℓ0, R0)
a1 (ℓ1, R1)

a2 (ℓ2, R2)
a3 . . .

with vi ∈ Ri for all i.
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Definition (Outcome in Timed Games)

Let G = (L, ℓ0, Act,X, E, inv) be a TGA and f a strategy over G. The
outcome Outcome((ℓ, v), f) of f from configuration (ℓ, v) in G is the
subset of Runs((ℓ, v), G) defined inductively by:

◮ (ℓ, v) ∈ Outcome((ℓ, v), f),

◮ if ρ ∈ Outcome((ℓ, v), f) then ρ′ = ρ
e

–––→ (ℓ′, v′) ∈ Outcome((ℓ, v), f)
if ρ′ ∈ Runs((ℓ, v), G) and one of the following three conditions
hold:

1 e ∈ Actu,
2 e ∈ Actc and e = f(ρ),
3 e ∈ R≥0 and ∀0 ≤ e′ < e,∃(ℓ′′, v′′) ∈ (L × RX

≥0) s.t. last (ρ)
e′

–––→
(ℓ′′, v′′)∧ f(ρ

e′
–––→ (ℓ′′, v′′)) = λ.

◮ an infinite run ρ is in ∈ Outcome((ℓ, v), f) if all the finite prefixes
of ρ are in Outcome((ℓ, v), f).
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States & Symbolic States

◮ Q = L × RClock
≥0 is the set of states of the TGA

q = (ℓ, v) ∈ Q
◮ Discrete predecessors of X ⊆ Q by an action a:

Preda(X) = {q ∈ Q | q
a

–––→ q′ and q′ ∈ X}
◮ Time predecessors of X ⊆ Q:

Predδ(X) = {q ∈ Q | ∃t ≥ 0 | q
t

––→ q′ and q′ ∈ X}

◮ Zone = conjunction of triangular constraints
x – y < 3, x ≥ 2∧ 1 < y – x < 2

◮ Symbolic State is defined by a State predicate (SP)
P = ∪i∈[1..n](ℓji , Zi), ℓji ∈ L, Zi is a zone
(ℓ1,2 ≤ x < 4) or (ℓ0, x < 1∧ y – x ≥ 2) or (ℓ0, x ≤ 2)∪ (ℓ2, x > 0)

Effectiveness of Preda and Predδ

If P is a SP then Preda(P), Predδ(P) are SP and can be computed

effectively. (There is a symbolic version for Preda and Predδ.)
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Symbolic Computation For Timed Games

X is a state predicate
◮ cPred(X) =

⋃

c∈Actc Pred
c(X) uPred(X) =

⋃

u∈Actu Pred
u(X)

cPred and uPred are effectively computable
◮ Predδ(X,Y): Time controllable predecessors of X avoiding Y:

q q′ ∈ X

Predδ(X,Y) is effectively computable for state predicates X,Y

◮ Controllable Predecessors Operator for Timed Games

πδ(X) = Predδ

(

cPred(X), uPred(X)
)

πδ(X) is effectively computable for state predicate X.
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Example of Computation for Safety Games

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2
[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0
x < 2; u

x > 3;u

•—•—•—•—•
0 1 2 3 4

•—•—•—•—•—•
0 1 2 3 4 5

•—•—•—•—•—•
0 1 2 3 4 5

Skip
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Existence of Cost Independent Strategies

Let A be a RPTGA such that:
◮ guards of u actions are strict
◮ guards on c actions are large

There is an optimal cost independent strategy

Is it necessary ?
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No Optimal Strategy

ℓ0

dCost

dt
= 1

ℓ1

dCost

dt
= 2

Goal
x < 1; c x = 1; c

x < 1 x ≤ 1

◮ define fε with 0 < ε < 1 by:
in ℓ0: f(ℓ0, x < 1 – ε) = λ, f(ℓ0, 1 – ε ≤ x < 1) = c
in ℓ1: f(ℓ1, x < 1) = λ, f(ℓ1, x = 1) = c
Cost(fε) = (1 – ε) + 2.ε = 1 + ε and OptCost = 1.

◮ given ε > 0, there is a sub-optimal strategy fε such that

|Cost((ℓ0,~0), fε) – OptCost((ℓ0,~0), G)| < ε

◮ New problem: given ε, compute such an fε strategy.
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No Optimal Cost-Independent Strategy
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ℓ0

dCost

dt
= 2

x < 1

ℓ1

dCost

dt
= 1

Goal
x < 1;u

y := x := 0
y > 0; c2

◮ Optimal cost is 2
◮ An optimal winning cost-dependent strategy f:

f(ℓ1, –, cost < 2) = λ and f(ℓ1, –, cost = 2) = c2
assume u taken at time (1 – δ0):

Cost(f, (ℓ0,0)) = 2 · (1 – δ0) + δ1 = 2

because according to f we have δ1 = 2 · δ0
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No Optimal Cost-Independent Strategy

ℓ0

dCost

dt
= 2

x < 1

ℓ1

dCost

dt
= 1

Goal
x < 1;u

y := x := 0
y > 0; c2

◮ Optimal cost is 2
◮ assume ∃ f∗ cost-independent: f∗ must wait in ℓ1 at least ε

assume u taken at time (1 – δ):

Cost(f∗, (ℓ0,0)) = 2 · (1 – δ) + ε

Take δ =
ε
4
: Cost(f∗, (ℓ0,0)) = 2 + ε

2 and OptCost(f∗) = 2 + ε
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Related Work for Optimal Control

◮ [La Torre et al.’02]
◮ Acyclic Priced Timed Game Automata
◮ Recursive definition of optimal cost
◮ Computation of the infimum of the optimal cost

i.e. OptCost = 2 could mean that it is 2 or 2 + ε
◮ No strategy synthesis

◮ [Alur et al.’04] (ICALP’04)
◮ Bounded optimality: optimal cost within k steps
◮ Complexity bound: exponential in k and #states of the PTGA
◮ No bound for the more general optimal problem
◮ Computation of the infimum of the optimal cost
◮ No strategy synthesis

◮ Our work [Bouyer et al.’04a]:
◮ Run-based definition of optimal cost
◮ We can decide whether ∃ an optimal strategy
◮ We can effectively synthesize an optimal strategy (if one exists)
◮ We can prove structural properties of optimal strategies
◮ Applies to Linear Hybrid Game (Automata)
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