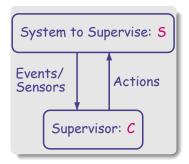
Control of Timed Systems

Franck Cassez

CNRS/IRCCyN Nantes, France

Formalisation des Activités Concurrentes (FAC) April 3-4, 2008 Toulouse, France

(□) (圖) (클) (클) (클) (③)



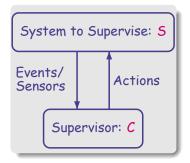
Journées FAC (April 2008)

Control of Timed Systems

-

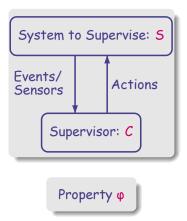
<ロ> < 四> < 四> < 三> < 三> < 三>

Build Safe Systems



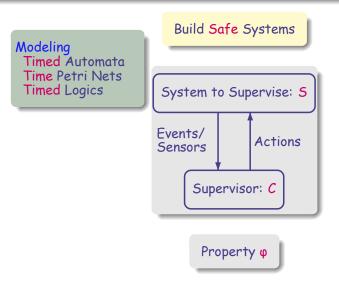
<ロ> < 四> < 四> < 三> < 三>

Build Safe Systems



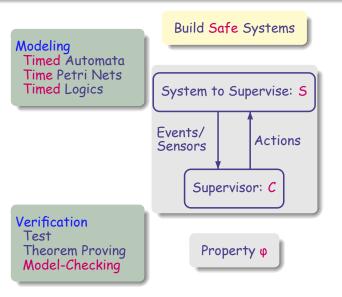
Journées FAC (April 2008)

<ロ> < 四> < 四> < 三> < 三> < 三>



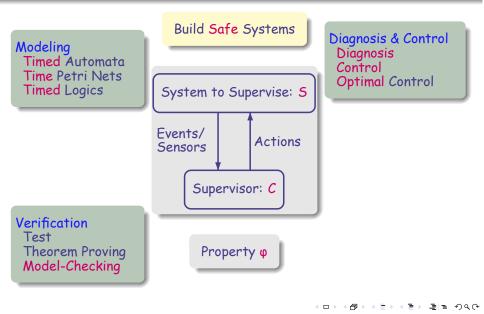
Journées FAC (April 2008)

<ロト < 同ト < 巨ト < 巨ト

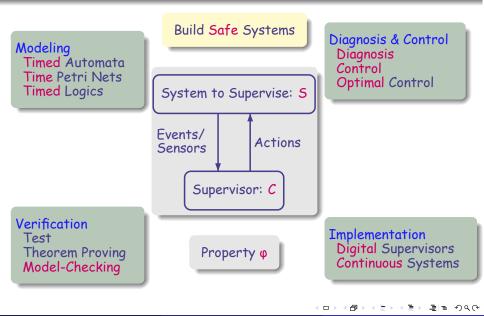


< ロ > < 同 >

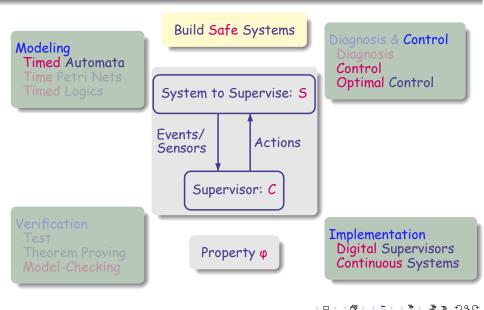
김 글 데 김 토 네 글 네



Journées FAC (April 2008)



Journées FAC (April 2008)



Journées FAC (April 2008)

Outline of the Talk

- Control of Timed Systems: Basics
 - Verification and Control
 - Control = Game
- ► Control of Discrete Event Systems
 - Games, Strategies, Winning States
 - Controllable Predecessors
 - Results for Finite Games
- Control of Timed Systems
 - Timed Automata
 - Timed Game Automata
 - Symbolic Algorithms for Timed Game Automata
- Advanced Subjects
 - Implementable Controllers
 - Optimal Controllers
 - Efficient Algorithms for Controller Synthesis
- Conclusion

Next:

- Control of Timed Systems: Basics
 - Verification and Control
 - Control = Game
- Control of Discrete Event Systems
- Control of Timed Systems
- Advanced Subjects
- Conclusion

< 🗆 🕨

Verification and Control

Verification and Control

Journées FAC (April 2008)

< 🗆 > < 🗗 >

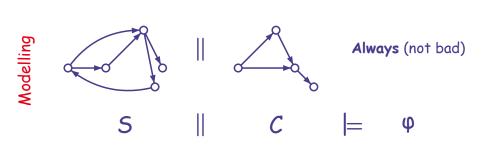
제 문어 제 문어

三日 わくや

Control of Timed Systems: Basics Verific

Verification and Control

Verification and Control

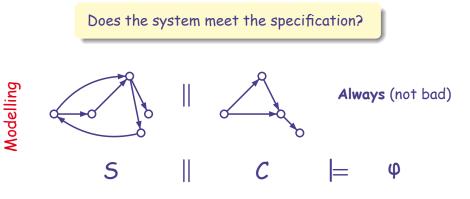


< D >

ð

3

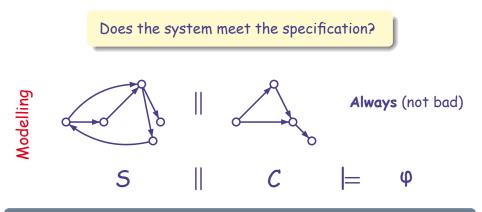
1



Verification and Control

< □ ▶

P



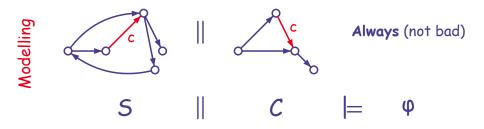
Model Checking Problem

Does the closed system (S \parallel C) satisfy ϕ ?

< □ ▶

Can we enforce the system to meet the specification?

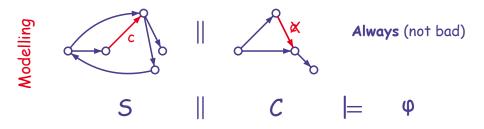
Verification and Control



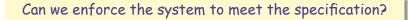
< □ ▶

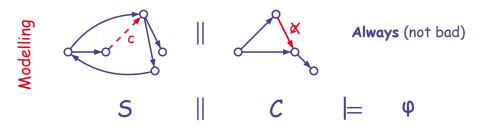
Can we enforce the system to meet the specification?

Verification and Control



< □ ▶





Control Problem

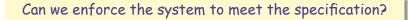
Can the open system S be restricted to satisfy φ ? Is there a Controller C such that $(S \parallel C) \models \varphi$?

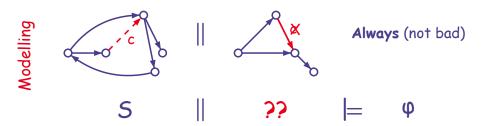
Journées FAC (April 2008)

F >

< □ ▶

글 🖌 🖌 글 🕨





Control Problem

Can the open system S be restricted to satisfy φ ? Is there a Controller C such that $(S \parallel C) \models \varphi$?

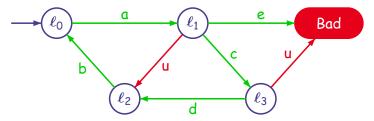
Journées FAC (April 2008)

F >

< □ ▶

글 🖌 🖌 🖻

Control of Discrete Event Systems

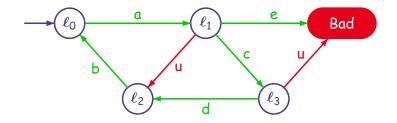


Introduced by Ramadge & Wonham [Ramadge & Wonham'87]

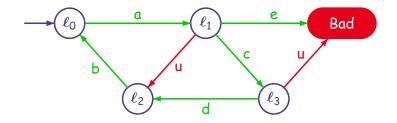
Discrete Event System = Finite Automaton with

Controllable (Act_c) and Uncontrollable (Act_u) actions

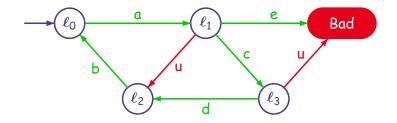
- Specification = Control Objective = Language e.g. "avoid sequences of actions leading to state Bad"
- How to restrict: disable some controllable transitions [Ramadge & Wonham'89, Thistle & Wonham'94]



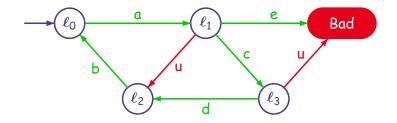
- Controller plays Act_c moves, Environment plays Act_u moves
- Control Objective = Winning condition on the game "Avoid bad states" (safety) or "Enforce good states" (reachability)
- Control Problem: find a strategy (a controller) to win the game
- Various types of game models
 - Finite or pushdown or counter automata ...
 - Timed or hybrid automata



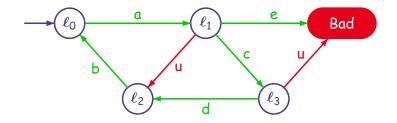
- Controller plays Act_c moves, Environment plays Act_u moves
- Control Objective = Winning condition on the game "Avoid bad states" (safety) or "Enforce good states" (reachability)
- Control Problem: find a strategy (a controller) to win the game
- Various types of game models
 - Finite or pushdown or counter automata ...
 - Timed or hybrid automata



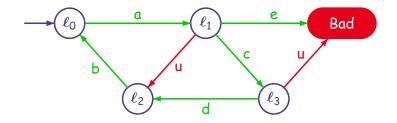
- Controller plays Act_c moves, Environment plays Act_u moves
- Control Objective = Winning condition on the game
 - "Avoid bad states" (safety) or "Enforce good states" (reachability)
- Control Problem: find a strategy (a controller) to win the game
- Various types of game models
 - Finite or pushdown or counter automata ...
 - Timed or hybrid automata



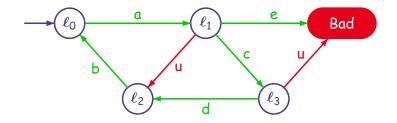
- Controller plays Act_c moves, Environment plays Act_u moves
- Control Objective = Winning condition on the game "Avoid bad states" (safety) or "Enforce good states" (reachability)
- Control Problem: find a strategy (a controller) to win the game
- Various types of game models
 - Finite or pushdown or counter automata ...
 - Timed or hybrid automata



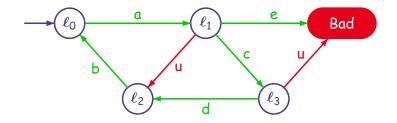
- Controller plays Act_c moves, Environment plays Act_u moves
- Control Objective = Winning condition on the game "Avoid bad states" (safety) or "Enforce good states" (reachability)
- Control Problem: find a strategy (a controller) to win the game
- Various types of game models
 - Finite or pushdown or counter automata ...
 - Timed or hybrid automata



- Controller plays Act_c moves, Environment plays Act_u moves
- Control Objective = Winning condition on the game "Avoid bad states" (safety) or "Enforce good states" (reachability)
- Control Problem: find a strategy (a controller) to win the game
- Various types of game models
 - Finite or pushdown or counter automata ...
 - Timed or hybrid automata



- Controller plays Act_c moves, Environment plays Act_u moves
- Control Objective = Winning condition on the game "Avoid bad states" (safety) or "Enforce good states" (reachability)
- Control Problem: find a strategy (a controller) to win the game
- Various types of game models
 - Finite or pushdown or counter automata ...
 - Timed or hybrid automata



- Controller plays Act_c moves, Environment plays Act_u moves
- Control Objective = Winning condition on the game "Avoid bad states" (safety) or "Enforce good states" (reachability)
- Control Problem: find a strategy (a controller) to win the game
- Various types of game models
 - Finite or pushdown or counter automata ...
 - Timed or hybrid automata

Verification Problem (or Model Checking Problem)

Input: a model of the closed system S and a property φ Problem: Does S satisfy φ ?

Control Problem $CP(G, \varphi)$

Input: a model of the open system (game) G and a property φ Problem: Is there a strategy (controller) C s.t. (C || G) satisfy φ ?

Control Synthesis Problem (CSP)

Input: a model of the open system (game) G and a property φ Problem: If the answer to the $CP(G, \varphi)$ is "yes", can we effectively compute a witness controller?

Verification Problem (or Model Checking Problem)

Input: a model of the closed system S and a property φ Problem: Does S satisfy φ ?

Control Problem $CP(G, \varphi)$

Input: a model of the open system (game) G and a property φ Problem: Is there a strategy (controller) C s.t. (C || G) satisfy φ ?

Control Synthesis Problem (CSP)

Input: a model of the open system (game) G and a property φ Problem: If the answer to the $CP(G, \varphi)$ is "yes", can we effectively compute a witness controller?

Verification Problem (or Model Checking Problem)

Input: a model of the closed system S and a property φ Problem: Does S satisfy φ ?

Control Problem $CP(G, \varphi)$

Input: a model of the open system (game) G and a property φ Problem: Is there a strategy (controller) C s.t. (C || G) satisfy φ ?

Control Synthesis Problem (CSP)

Input: a model of the open system (game) G and a property φ Problem: If the answer to the $CP(G, \varphi)$ is "yes", can we effectively compute a witness controller?

글 🖌 🖌 글 🕨

Verification Problem (or Model Checking Problem)

Input: a model of the closed system S and a property φ Problem: Does S satisfy φ ?

Control Problem $CP(G, \varphi)$

Input: a model of the open system (game) G and a property φ Problem: Is there a strategy (controller) C s.t. (C || G) satisfy φ ?

Control Synthesis Problem (CSP)

Input: a model of the open system (game) G and a property φ Problem: If the answer to the $CP(G, \varphi)$ is "yes", can we effectively compute a witness controller?

< ロ > < 同 >

지금 제지 문제 모님

Control of Timed Systems: Basics

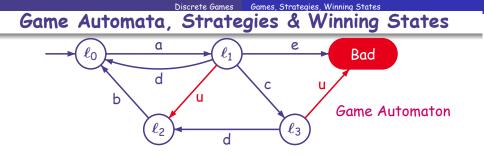
Control of Discrete Event Systems

- Games, Strategies, Winning States
- Controllable Predecessors
- Results for Finite Games

Control of Timed Systems

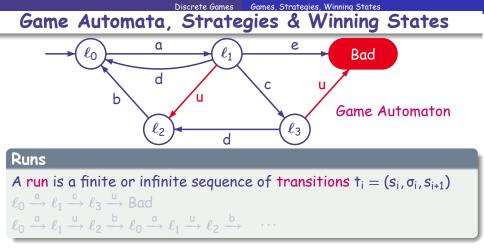
Advanced Subjects

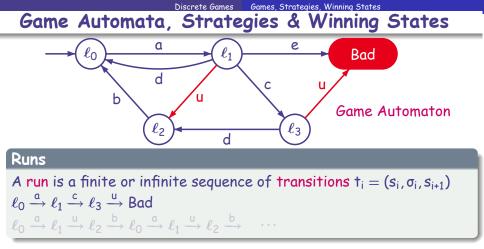
Conclusion

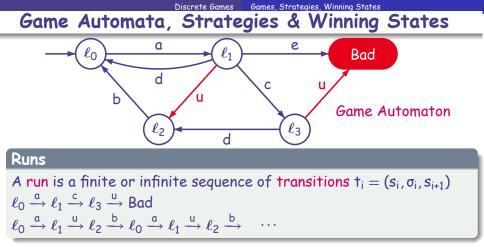


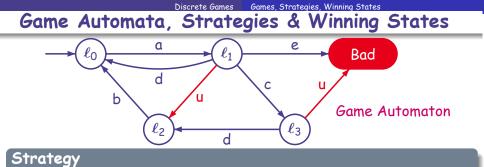
< □ > < 同

1

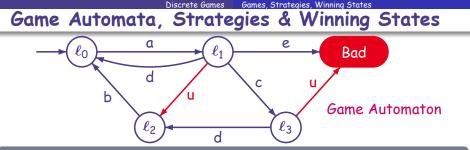








A strategy f gives for each finite run the controllable action to take. We assume full observability of the system



 A strategy f gives for each finite run the controllable action to take. We assume full observability of the system

Example of Strategies

$$f(\ell_0) = a$$

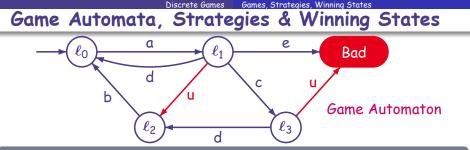
$$f(\ell_0 \xrightarrow{a} \ell_1) = c$$

$$f(\ell_0 \xrightarrow{a} \ell_1 \xrightarrow{u} \ell_2) = b$$

$$f(\ell_0 \xrightarrow{a} \ell_1 \xrightarrow{u} \ell_2 \xrightarrow{b} \ell_0 \xrightarrow{a} \ell_1) = e$$

$$\begin{array}{l} f'(\rho \rightarrow \ell_0) = a \\ f'(\rho \rightarrow \ell_1) = c \\ f'(\rho \rightarrow \ell_2) = b \\ f'(\rho \rightarrow \ell_3) = d \end{array}$$

Journées FAC (April 2008)



 A strategy f gives for each finite run the controllable action to take. We assume full observability of the system

Example of Strategies

$$f(\ell_0) = a$$

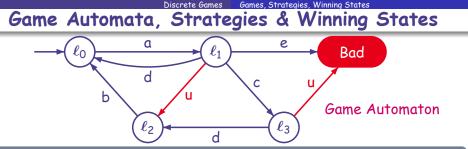
$$f(\ell_0 \xrightarrow{a} \ell_1) = c$$

$$f(\ell_0 \xrightarrow{a} \ell_1 \xrightarrow{u} \ell_2) = b$$

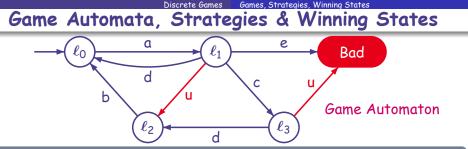
$$f(\ell_0 \xrightarrow{a} \ell_1 \xrightarrow{u} \ell_2 \xrightarrow{b} \ell_0 \xrightarrow{a} \ell_1) = e$$

$$\begin{array}{l} f'(\rho \rightarrow \ell_0) = a \\ f'(\rho \rightarrow \ell_1) = c \\ f'(\rho \rightarrow \ell_2) = b \\ f'(\rho \rightarrow \ell_3) = d \end{array}$$

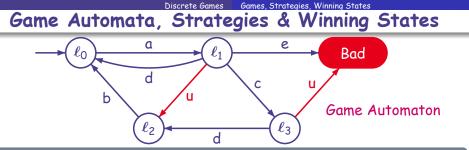
Journées FAC (April 2008)



- A strategy f gives for each finite run the controllable action to take. We assume full observability of the system
- A strategy restricts the set of runs of the system. from a state s it generates of subset of the runs of the initial game



- A strategy f gives for each finite run the controllable action to take. We assume full observability of the system
- A strategy restricts the set of runs of the system. from a state s it generates of subset of the runs of the initial game
- ► A strategy is winning from s if it generates only good runs.

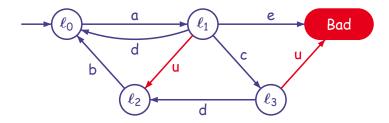


- A strategy f gives for each finite run the controllable action to take. We assume full observability of the system
- A strategy restricts the set of runs of the system. from a state s it generates of subset of the runs of the initial game
- ► A strategy is winning from s if it generates only good runs.

Winning States

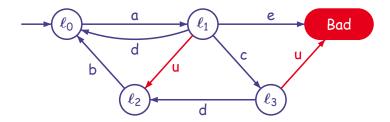
A state s is winning if there exists a winning strategy from s.

F >



에 문어 비용어

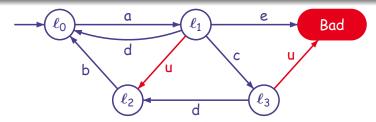
3



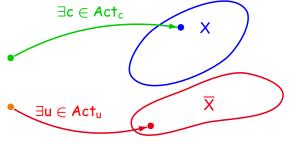
 $\pi(X) = \text{states}$ from which one can enforce X with a controllable action

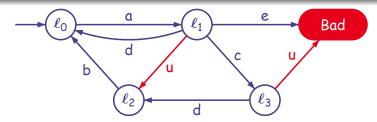
< □ >

P

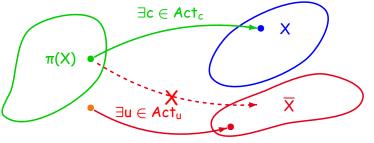


 $\pi(X) = \text{states}$ from which one can enforce X with a controllable action

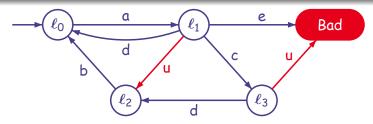




 $\pi(X) = \text{states}$ from which one can enforce X with a controllable action

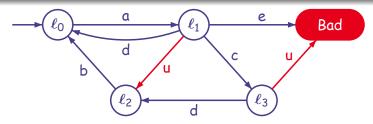


< □



 $\pi(X) = \text{states from which one can enforce } X \text{ with a controllable}$ action $\pi(X) = \text{Pred}^{\text{Act}_c}(X) \setminus \text{Pred}^{\text{Act}_u}(\overline{X})$

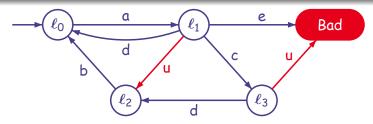
- **(1)** Let φ be a set of safe (good) states and G a game
- 2 Let W* be the greatest fixpoint of $h(X) = \varphi \cap \pi(X)$
- **3** W* is the set of winning states for (G, φ)



 $\pi(X) = \text{states from which one can enforce } X$ with a controllable action $\pi(X) = \text{Pred}^{\text{Act}_{V}}(X)$ $\text{Pred}^{\text{Act}_{V}}(\overline{X})$

 $\pi(\mathsf{X}) = \operatorname{Pred}^{\operatorname{Act}_{c}}(\mathsf{X}) \setminus \operatorname{Pred}^{\operatorname{Act}_{u}}(\overline{\mathsf{X}})$

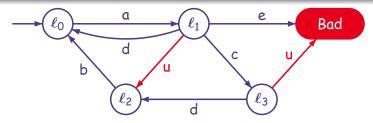
- **1** Let φ be a set of safe (good) states and G a game
- 2 Let W* be the greatest fixpoint of $h(X) = \varphi \cap \pi(X)$
- **3** W* is the set of winning states for (G, φ)



 $\pi(X) = \text{states from which one can enforce } X$ with a controllable action $\pi(X) = \text{Pred}^{\text{Act}_{V}}(X)$ $\text{Pred}^{\text{Act}_{V}}(\overline{X})$

 $\pi(\mathsf{X}) = \mathsf{Pred}^{\mathsf{Act}_{\mathsf{c}}}(\mathsf{X}) \setminus \mathsf{Pred}^{\mathsf{Act}_{\mathsf{u}}}(\overline{\mathsf{X}})$

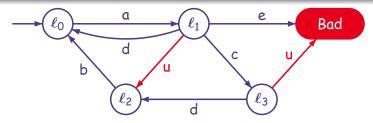
Fixpoint Characterization of Winning States for Safety Games:
Let φ be a set of safe (good) states and G a game
Let W* be the greatest fixpoint of h(X) = φ ∩ π(X)
W* is the set of winning states for (G, φ)



 $\pi(X) = \text{states from which one can enforce } X$ with a controllable action $\pi(X) = \text{Pred}^{\text{Act}_x}(X) \setminus \text{Pred}^{\text{Act}_x}(\overline{X})$

$$\pi(\mathsf{X}) = \operatorname{Pred}^{\operatorname{Act}_{c}}(\mathsf{X}) \setminus \operatorname{Pred}^{\operatorname{Act}_{u}}(\overline{\mathsf{X}})$$

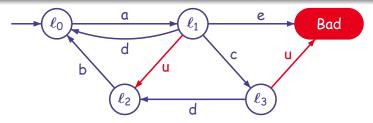
- 1 Let φ be a set of safe (good) states and G a game
- 2 Let W* be the greatest fixpoint of $h(X) = \varphi \cap \pi(X)$
- **3** W* is the set of winning states for (G, φ)



 $\pi(X) = \text{states from which one can enforce } X$ with a controllable action $\pi(X) = \text{Pred}^{Act_x}(X)$ $\text{Pred}^{Act_y}(\overline{X})$

$$\pi(\mathsf{X}) = \operatorname{Pred}^{\operatorname{Act}_{c}}(\mathsf{X}) \setminus \operatorname{Pred}^{\operatorname{Act}_{u}}(\overline{\mathsf{X}})$$

- **1** Let φ be a set of safe (good) states and G a game
- 2 Let W* be the greatest fixpoint of $h(X) = \varphi \cap \pi(X)$
- **3** W* is the set of winning states for (G, φ)
- ▶ Decide CP: check that $\ell_0 \in W^*$



 $\pi(X) =$ states from which one can enforce X with a controllable action

$$\pi(\mathsf{X}) = \operatorname{Pred}^{\operatorname{Act}_{c}}(\mathsf{X}) \setminus \operatorname{Pred}^{\operatorname{Act}_{u}}(\overline{\mathsf{X}})$$

- 1 Let φ be a set of safe (good) states and G a game
- 2 Let W* be the greatest fixpoint of $h(X) = \varphi \cap \pi(X)$
- **3** W* is the set of winning states for (G, φ)
- Decide CP: check that $\ell_0 \in W^*$
- Synthesis Problem: Given W* and G, by def. of π we can build a winning strategy

Given G a finite game, φ a control objective

< □ >

P

-

Given G a finite game, φ a control objective

The fixpoint computation of W* terminates

Given G a finite game, φ a control objective

Theorem (CP is Decidable)

CP is decidable for ω -regular winning conditions.

Given G a finite game, φ a control objective

Theorem (CP is Decidable)

CP is decidable for ω -regular winning conditions.

Theorem (Effectiveness of CSP)

Strategy synthesis is effective. We can compute the most permissive winning strategy.

Given G a finite game, φ a control objective

Theorem (CP is Decidable)

CP is decidable for ω -regular winning conditions.

Theorem (Effectiveness of CSP)

Strategy synthesis is effective. We can compute the most permissive winning strategy.

Theorem (Positional Strategies are Sufficient)

Positional (or memoryless) strategies suffice to win finite-state (turn-based) games with w-regular winning conditions. (The number of states of C is ≤ number of states of G.)

- Context : Real-Time Critical Systems
- Some expected properties are quantitative properties e.g. scheduling or "The system will answer within 10 t.u. after a request is issu
- One solution: discrete time
 - Can be "expensive"
 - Not natural Not accurate enough
- Real systems evolve in dense time

- Context : Real-Time Critical Systems
- Some expected properties are quantitative properties
 - e.g. scheduling or "The system will answer within 10 t.u. after a request is issued"
- One solution: discrete time
 - Can be "expensive"
 - Not natural Not accurate enough
- Real systems evolve in dense time

- Context : Real-Time Critical Systems
- Some expected properties are quantitative properties

 e.g. scheduling
 or "The system will answer within 10 t.u. after a request is issued"
- One solution: discrete time
 - Can be "expensive"
 - Not natural Not accurate enough
- Real systems evolve in dense time

- Context : Real-Time Critical Systems
- Some expected properties are quantitative properties

 e.g. scheduling
 or "The system will answer within 10 t.u. after a request is issued"
- One solution: discrete time
 - Can be "expensive"
 - Not natural Not accurate enough
- Real systems evolve in dense time

- Context : Real-Time Critical Systems
- Some expected properties are quantitative properties

 e.g. scheduling
 or "The system will answer within 10 t.u. after a request is issued"
- One solution: discrete time
 - Can be "expensive"
 - Not natural Not accurate enough
- Real systems evolve in dense time

- Context : Real-Time Critical Systems
- Some expected properties are quantitative properties

 e.g. scheduling
 or "The system will answer within 10 t.u. after a request is issued"
- One solution: discrete time
 - Can be "expensive"
 - Not natural Not accurate enough
- Real systems evolve in dense time

- Context : Real-Time Critical Systems
- Some expected properties are quantitative properties

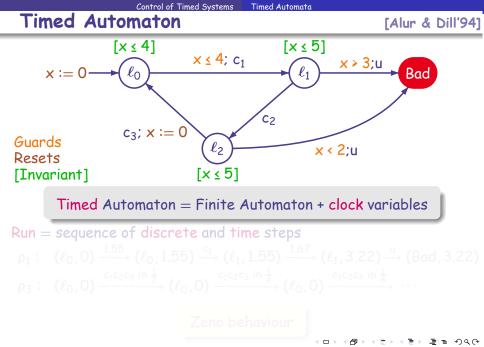
 e.g. scheduling
 or "The system will answer within 10 t.u. after a request is issued"
- One solution: discrete time
 - Can be "expensive"
 - Not natural Not accurate enough
- Real systems evolve in dense time

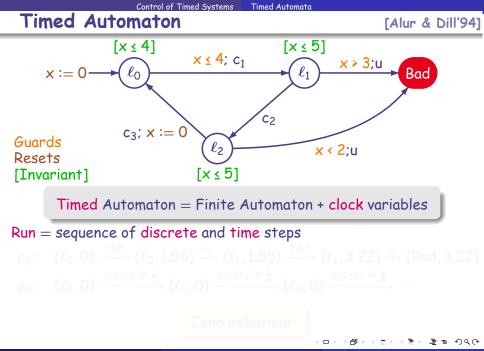
- Context : Real-Time Critical Systems
- Some expected properties are quantitative properties

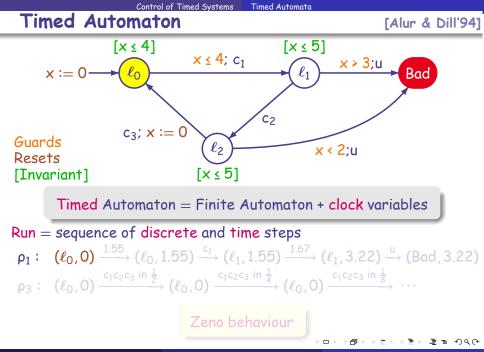
 e.g. scheduling
 or "The system will answer within 10 t.u. after a request is issued"
- One solution: discrete time
 - Can be "expensive"
 - Not natural Not accurate enough
- Real systems evolve in dense time

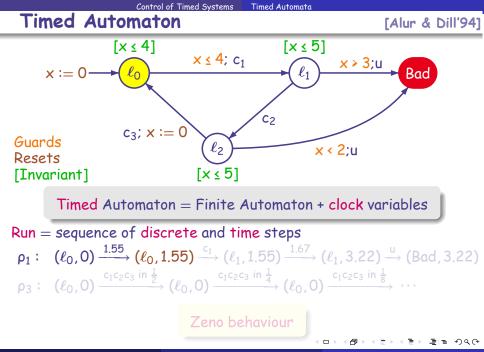
Control of Timed Systems: Basics

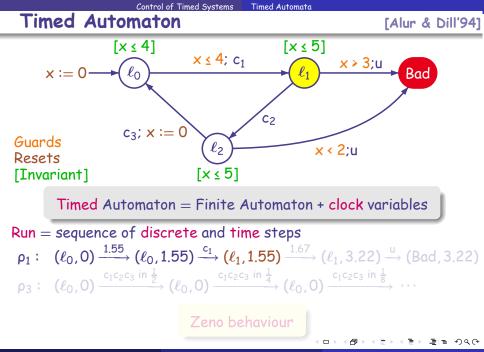
- Control of Discrete Event Systems
- Control of Timed Systems
 - Timed Automata
 - Timed Game Automata
 - Symbolic Algorithms for Timed Game Automata
- Advanced Subjects
- ► Conclusion

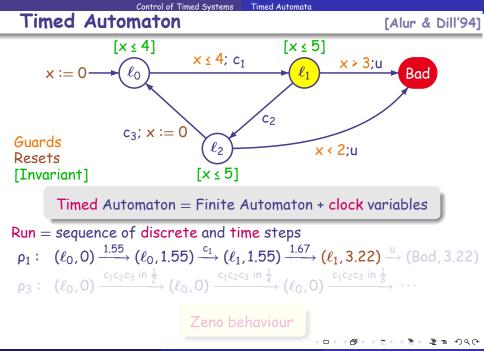


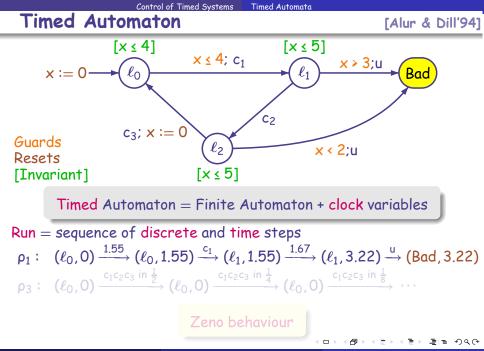


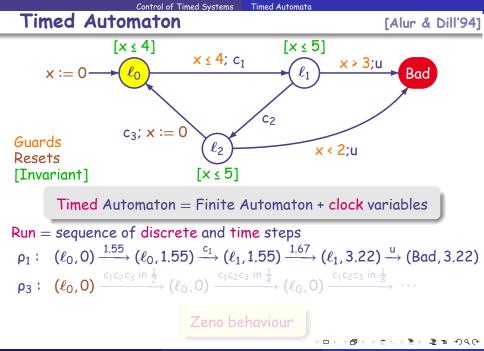


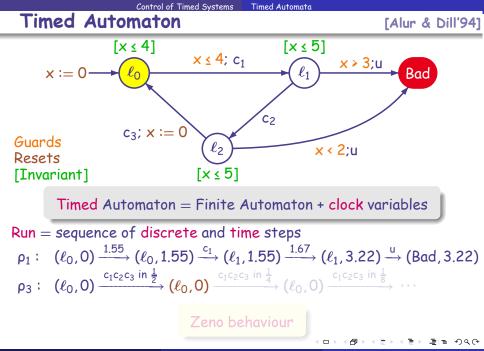


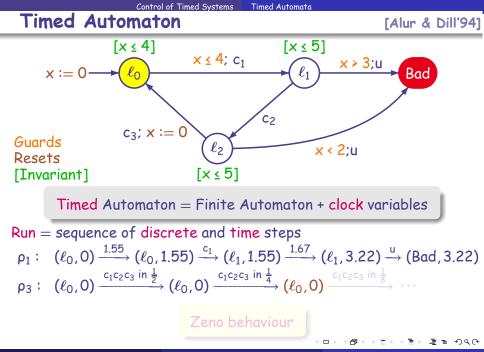


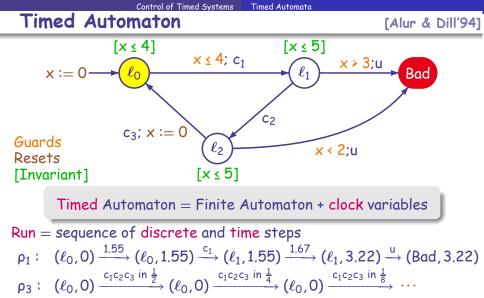






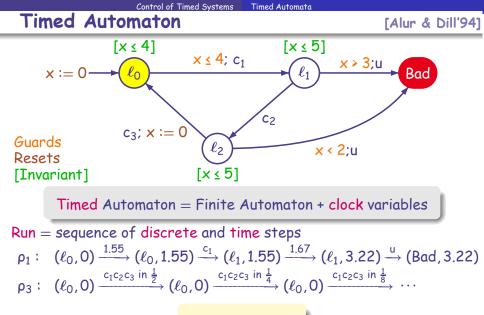






Zeno behaviour

Journées FAC (April 2008)



Zeno behaviour

Journées FAC (April 2008)

Control of Timed Systems Timed Automata States & Symbolic States

- ▶ $Q = L \times \mathbb{R}_{\geq 0}^{Clock}$ is the set of states of the TA $q = (\ell, v) \in Q$
- ► Discrete Successors of X ⊆ Q by an action a: $Post^{a}(X) = \{q' \in Q \mid q \xrightarrow{a} q' \text{ and } q \in X\}$
- ► Time Successors of X ⊆ Q: $Post^{\delta}(X) = \{q' \in Q \mid \exists t \ge 0 \mid q \xrightarrow{t} q' \text{ and } q \in X\}$
- Zone = conjunction of triangular constraints x-y<3, x≥2 ∧1<y-x<2</p>
- ▶ Symbolic State is defined by a State predicate (SP) $P = \bigcup_{i \in [1..n]} (\ell_{j_i}, Z_i), \ell_{j_i} \in L, Z_i \text{ is a zone}$ $(\ell_1, 2 \le x \le 4) \text{ or } (\ell_0, x \le 1 \land y - x \ge 2) \text{ or } (\ell_0, x \le 2) \cup (\ell_2, x \ge 0)$

Control of Timed Systems Timed Automata States & Symbolic States

- ▶ $Q = L \times \mathbb{R}_{\geq 0}^{Clock}$ is the set of states of the TA $q = (\ell, v) \in Q$
- ► Discrete Successors of X ⊆ Q by an action a: $Post^{a}(X) = \{q' \in Q \mid q \xrightarrow{a} q' \text{ and } q \in X\}$
- Time Successors of $X \subseteq Q$: $Post^{\delta}(X) = \{q' \in Q \mid \exists t \ge 0 \mid q \xrightarrow{t} q' \text{ and } q \in X\}$
- Zone = conjunction of triangular constraints $x y < 3, x \ge 2 \land 1 < y x < 2$
- ▶ Symbolic State is defined by a State predicate (SP) $P = \bigcup_{i \in [1..n]} (\ell_{j_i}, Z_i), \ell_{j_i} \in L, Z_i \text{ is a zone}$ $(\ell_1, 2 \le x \le 4) \text{ or } (\ell_0, x \le 1 \land y - x \ge 2) \text{ or } (\ell_0, x \le 2) \cup (\ell_2, x \ge 0)$

Control of Timed Systems Timed Automata

States & Symbolic States

- ▶ $Q = L \times \mathbb{R}_{\geq 0}^{Clock}$ is the set of states of the TA $q = (\ell, v) \in Q$
- ► Discrete Successors of X ⊆ Q by an action a: $Post^{a}(X) = \{q' \in Q \mid q \xrightarrow{a} q' \text{ and } q \in X\}$
- Time Successors of $X \subseteq Q$: $Post^{\delta}(X) = \{q' \in Q \mid \exists t \ge 0 \mid q \xrightarrow{t} q' \text{ and } q \in X\}$
- ► Zone = conjunction of triangular constraints $x - y < 3, x \ge 2 \land 1 < y - x < 2$
- ▶ Symbolic State is defined by a State predicate (SP) $P = \bigcup_{i \in [1..n]} (\ell_{j_i}, Z_i), \ell_{j_i} \in L, Z_i \text{ is a zone}$ $(\ell_1, 2 \le x \le 4) \text{ or } (\ell_0, x \le 1 \land y - x \ge 2) \text{ or } (\ell_0, x \le 2) \cup (\ell_2, x \ge 0)$

Control of Timed Systems Timed Automata

States & Symbolic States

- $Q = L \times \mathbb{R}^{Clock}_{\geq 0}$ is the set of states of the TA $q = (\ell, v) \in Q$
- ► Discrete Successors of X ⊆ Q by an action a: $Post^{a}(X) = \{q' \in Q \mid q \xrightarrow{a} q' \text{ and } q \in X\}$
- ► Time Successors of X ⊆ Q: $Post^{\delta}(X) = \{q' \in Q \mid \exists t \ge 0 \mid q \xrightarrow{t} q' \text{ and } q \in X\}$
- ► Zone = conjunction of triangular constraints $x y < 3, x \ge 2 \land 1 < y x < 2$
- ▶ Symbolic State is defined by a State predicate (SP) $P = \bigcup_{i \in [1..n]} (\ell_{j_i}, Z_i), \ell_{j_i} \in L, Z_i \text{ is a zone}$ $(\ell_1, 2 \le x \le 4) \text{ or } (\ell_0, x \le 1 \land y - x \ge 2) \text{ or } (\ell_0, x \le 2) \cup (\ell_2, x \ge 0)$

Effectiveness of $Post^{a}$ and $Post^{\delta}$

If P is a SP then $Post^{a}(P)$, $Post^{\delta}(P)$ are SP and can be computed effectively. (There is a symbolic version for $Post^{a}$ and $Post^{\delta}$.)

Journées FAC (April 2008)

Control of Timed Systems Timed Automata

States & Symbolic States

- ▶ $Q = L \times \mathbb{R}_{\geq 0}^{Clock}$ is the set of states of the TA $q = (\ell, v) \in Q$
- ► Discrete Successors of X ⊆ Q by an action a: $Post^{a}(X) = \{q' \in Q \mid q \xrightarrow{a} q' \text{ and } q \in X\}$
- ► Time Successors of X ⊆ Q: $Post^{\delta}(X) = \{q' \in Q \mid \exists t \ge 0 \mid q \xrightarrow{t} q' \text{ and } q \in X\}$
- ► Zone = conjunction of triangular constraints $x y < 3, x \ge 2 \land 1 < y x < 2$
- ▶ Symbolic State is defined by a State predicate (SP) $P = \bigcup_{i \in [1..n]} (\ell_{j_i}, Z_i), \ell_{j_i} \in L, Z_i \text{ is a zone}$ $(\ell_1, 2 \le x \le 4) \text{ or } (\ell_0, x \le 1 \land y - x \ge 2) \text{ or } (\ell_0, x \le 2) \cup (\ell_2, x \ge 0)$

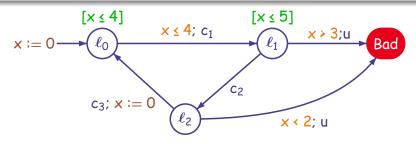
Decidability Result for TA

Region Graph

The Reachability Problem for TA is PSPACE-Complete. Build a finite abstraction: region automaton

Journées FAC (April 2008)

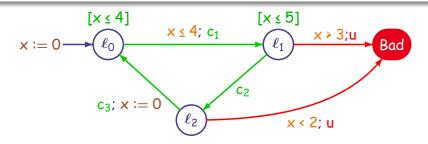
Timed Game Automata



Introduced by Maler, Pnueli, Sifakis [Maler et al.'95]

- ► The controller continuously observes the system time elapsing and discrete moves are observable
- ▶ The controller has the choice between two types of moves:
 - "do nothing" (delay action)
 - "do a controllable action" (among the ones that are possible)

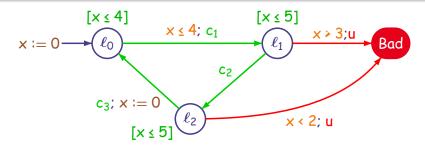
It can prevent time elapsing by taking a controllable move



Introduced by Maler, Pnueli, Sifakis [Maler et al.'95]

- The controller continuously observes the system time elapsing and discrete moves are observable
- > The controller has the choice between two types of moves:
 - "do nothing" (delay action)
 - "do a controllable action" (among the ones that are possible)
- ▶ It can prevent time elapsing by taking a controllable move

< ロ ト < 向

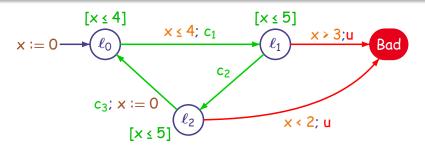


Journées FAC (April 2008)

< 🗆 🕨

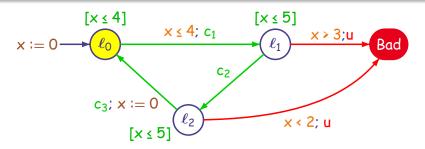
<日 > < 三 > < 三

=



The strategy f: "Wait as long as the system permits"

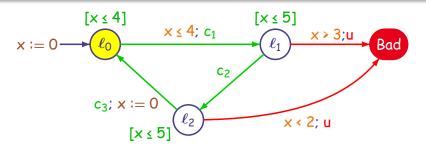
→ Ξ → < Ξ</p>



The strategy f: "Wait as long as the system permits"

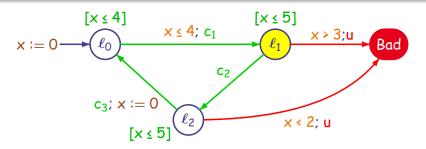


→ Ξ → < Ξ</p>



The strategy f: "Wait as long as the system permits"

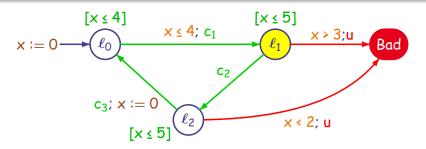
(신문) 신문



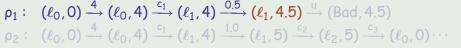
The strategy f: "Wait as long as the system permits"

< 🗗 🕨

(신문) 신문

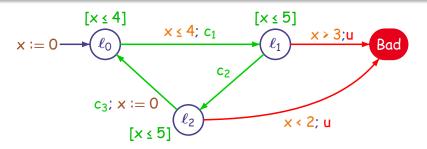


The strategy f: "Wait as long as the system permits"



< 🗗 🕨

지 문어 지 문어

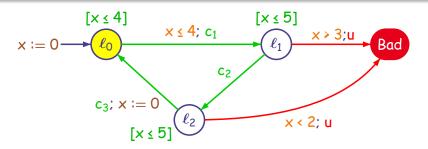


The strategy f: "Wait as long as the system permits" $\rho_{1}: \quad (\ell_{0}, 0) \xrightarrow{4} (\ell_{0}, 4) \xrightarrow{c_{1}} (\ell_{1}, 4) \xrightarrow{0.5} (\ell_{1}, 4.5) \xrightarrow{u} (Bad, 4.5)$ $\rho_{2}: \quad (\ell_{0}, 0) \xrightarrow{4} (\ell_{0}, 4) \xrightarrow{c_{1}} (\ell_{1}, 4) \xrightarrow{1.0} (\ell_{1}, 5) \xrightarrow{c_{2}} (\ell_{2}, 5) \xrightarrow{c_{3}} (\ell_{0}, 0) \cdots$

Journées FAC (April 2008)

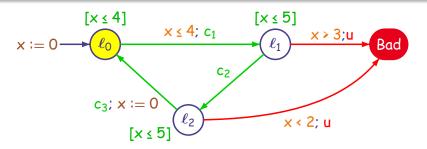
< 🗗 🕨

(신문) 신문)



The strategy f: "Wait as long as the system permits" on : $(l_0, 0) \xrightarrow{4} (l_0, 4) \xrightarrow{c_1} (l_1, 4) \xrightarrow{0.5} (l_1, 4, 5) \xrightarrow{u} (\text{Rod}, 4, 5)$

$$\rho_{2}: \quad (\ell_{0}, 0) \xrightarrow{4} (\ell_{0}, 4) \xrightarrow{c_{1}} (\ell_{1}, 4) \xrightarrow{1.0} (\ell_{1}, 5) \xrightarrow{c_{2}} (\ell_{2}, 5) \xrightarrow{c_{3}} (\ell_{0}, 0) \cdots$$



The strategy f: "Wait as long as the system permits"

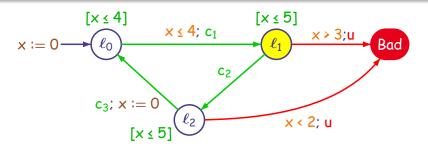
$$\rho_{1}: \quad (\ell_{0}, 0) \xrightarrow{4} (\ell_{0}, 4) \xrightarrow{c_{1}} (\ell_{1}, 4) \xrightarrow{0.5} (\ell_{1}, 4.5) \xrightarrow{u} (Bad, 4.5)$$

$$\rho_{2}: \quad (\ell_{0}, 0) \xrightarrow{4} (\ell_{0}, 4) \xrightarrow{c_{1}} (\ell_{1}, 4) \xrightarrow{1.0} (\ell_{1}, 5) \xrightarrow{c_{2}} (\ell_{2}, 5) \xrightarrow{c_{3}} (\ell_{0}, 0) \cdots$$

P

< □ ▶

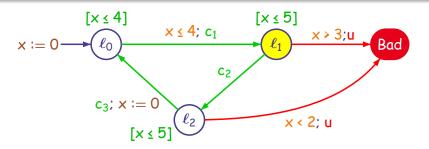
글 🕨 🖌 🖻



The strategy f: "Wait as long as the system permits"

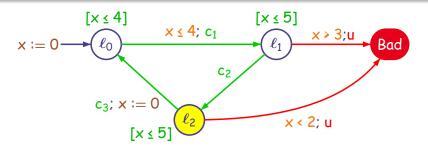
$$\rho_{1}: \quad (\ell_{0}, 0) \xrightarrow{} (\ell_{0}, 4) \xrightarrow{\sim} (\ell_{1}, 4) \xrightarrow{} (\ell_{1}, 4.5) \xrightarrow{} (Bad, 4.5)$$

$$\rho_{2}: \quad (\ell_{0}, 0) \xrightarrow{4} (\ell_{0}, 4) \xrightarrow{c_{1}} (\ell_{1}, 4) \xrightarrow{1.0} (\ell_{1}, 5) \xrightarrow{c_{2}} (\ell_{2}, 5) \xrightarrow{c_{3}} (\ell_{0}, 0) \cdots$$



The strategy f: "Wait as long as the system permits" $\rho_{1}: \quad (\ell_{0}, 0) \xrightarrow{4} (\ell_{0}, 4) \xrightarrow{c_{1}} (\ell_{1}, 4) \xrightarrow{0.5} (\ell_{1}, 4.5) \xrightarrow{u} (\text{Bad}, 4.5)$ $\rho_{2}: \quad (\ell_{0}, 0) \xrightarrow{4} (\ell_{0}, 4) \xrightarrow{c_{1}} (\ell_{1}, 4) \xrightarrow{1.0} (\ell_{1}, 5) \xrightarrow{c_{2}} (\ell_{2}, 5) \xrightarrow{c_{3}} (\ell_{0}, 0) \cdots$

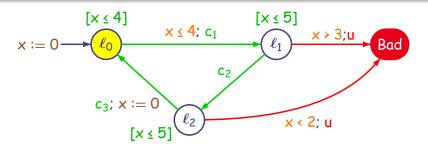
< 同 > < 三 > < 三 >



The strategy f: "Wait as long as the system permits" $\rho_{1}: \quad (\ell_{0}, 0) \xrightarrow{4} (\ell_{0}, 4) \xrightarrow{c_{1}} (\ell_{1}, 4) \xrightarrow{0.5} (\ell_{1}, 4.5) \xrightarrow{u} (Bad, 4.5)$ $\rho_{2}: \quad (\ell_{0}, 0) \xrightarrow{4} (\ell_{0}, 4) \xrightarrow{c_{1}} (\ell_{1}, 4) \xrightarrow{1.0} (\ell_{1}, 5) \xrightarrow{c_{2}} (\ell_{2}, 5) \xrightarrow{c_{3}} (\ell_{0}, 0) \cdots$

< 🗗 🕨

(신문) 신문)

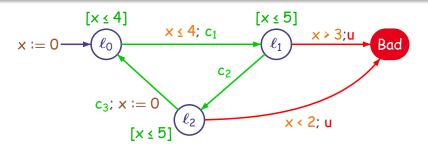


The strategy f: "Wait as long as the system permits" $\rho_1: (\ell_0, 0) \xrightarrow{4} (\ell_0, 4) \xrightarrow{c_1} (\ell_1, 4) \xrightarrow{0.5} (\ell_1, 4.5) \xrightarrow{u} (Bad, 4.5)$ $\rho_2: (\ell_0, 0) \xrightarrow{4} (\ell_0, 4) \xrightarrow{c_1} (\ell_1, 4) \xrightarrow{1.0} (\ell_1, 5) \xrightarrow{c_2} (\ell_2, 5) \xrightarrow{c_3} (\ell_0, 0) \cdots$

 $p_2: \quad (\ell_0, 0) \xrightarrow{4} (\ell_0, 4) \xrightarrow{c_1} (\ell_1, 4) \xrightarrow{1.0} (\ell_1, 5) \xrightarrow{c_2} (\ell_2, 5) \xrightarrow{c_3} (\ell_0, 0)$

< 🗗 🕨

(신문) 신문)



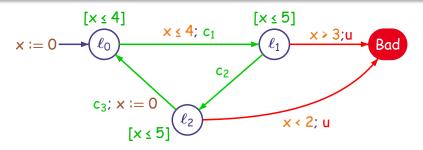
The strategy f: "Wait as long as the system permits" $\rho_1: (\ell_0, 0) \xrightarrow{4} (\ell_0, 4) \xrightarrow{c_1} (\ell_1, 4) \xrightarrow{0.5} (\ell_1, 4.5) \xrightarrow{u} (\text{Bad}, 4.5)$

$$\rho_{2}: \quad (\ell_{0}, 0) \xrightarrow{4} (\ell_{0}, 4) \xrightarrow{c_{1}} (\ell_{1}, 4) \xrightarrow{1.0} (\ell_{1}, 5) \xrightarrow{c_{2}} (\ell_{2}, 5) \xrightarrow{c_{3}} (\ell_{0}, 0) \cdots$$

P

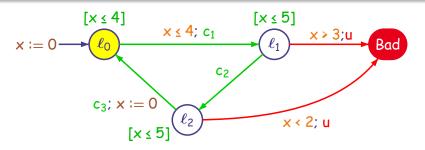
< □ ▶

김 글 대 김 글



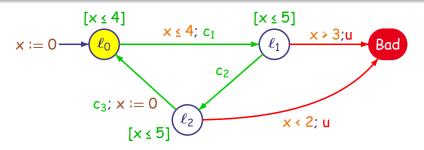
A winning strategy f'

 $\begin{array}{l} \text{in } \ell_0 \text{ at } x = 2 \text{ do } c_1 \text{; in } \ell_1 \text{ at } x = 2.5 \text{ do } c_2 \text{; in } \ell_2 \text{ at } x = 4 \text{ do } c_3 \\ \rho : \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \end{array}$



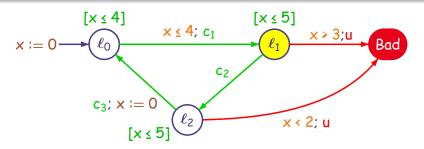
A winning strategy f'

 $\begin{array}{l} \text{in } \ell_0 \text{ at } x = 2 \text{ do } c_1 \text{; in } \ell_1 \text{ at } x = 2.5 \text{ do } c_2 \text{; in } \ell_2 \text{ at } x = 4 \text{ do } c_3 \\ \rho \text{ : } (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \end{array}$



A winning strategy f'

 $\begin{array}{l} \text{in } \ell_0 \text{ at } x = 2 \text{ do } c_1 \text{; in } \ell_1 \text{ at } x = 2.5 \text{ do } c_2 \text{; in } \ell_2 \text{ at } x = 4 \text{ do } c_3 \\ \rho \text{ : } (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \end{array}$

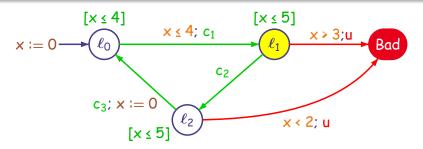


A winning strategy f'

in ℓ_0 at x = 2 do c₁; in ℓ_1 at x = 2.5 do c₂; in ℓ_2 at x = 4 do c₃ $\rho: \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2)$

< □ ▶

P

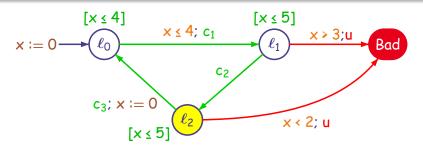


A winning strategy f'

in ℓ_0 at x = 2 do c_1 ; in ℓ_1 at x = 2.5 do c_2 ; in ℓ_2 at x = 4 do c_3 $\rho: \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{0.5} (\ell_1, 2.5)$

< □ ▶

P

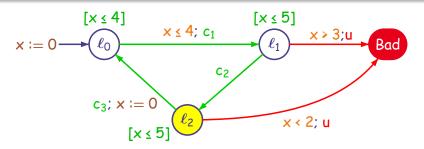


A winning strategy f'

in ℓ_0 at x = 2 do c_1 ; in ℓ_1 at x = 2.5 do c_2 ; in ℓ_2 at x = 4 do c_3 $\rho: \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{0.5} (\ell_1, 2.5) \xrightarrow{c_2} (\ell_2, 2.5)$

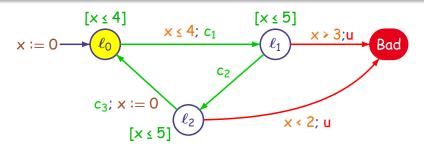
< □ ▶

P



A winning strategy f'

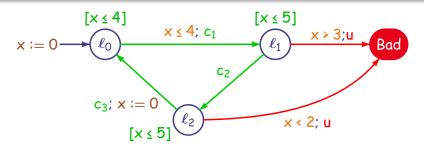
in ℓ_0 at x = 2 do c_1 ; in ℓ_1 at x = 2.5 do c_2 ; in ℓ_2 at x = 4 do c_3 $\rho: \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{0.5} (\ell_1, 2.5) \xrightarrow{c_2} (\ell_2, 2.5) \xrightarrow{1.5} (\ell_2, 4)$



A winning strategy f'

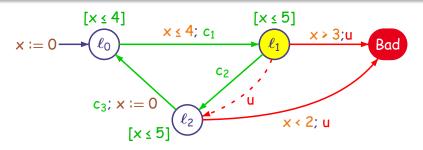
in ℓ_0 at x = 2 do c_1 ; in ℓ_1 at x = 2.5 do c_2 ; in ℓ_2 at x = 4 do c_3 $\rho: (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{0.5} (\ell_1, 2.5) \xrightarrow{c_2} (\ell_2, 2.5) \xrightarrow{1.5} (\ell_2, 4)$ $\xrightarrow{c_3} (\ell_0, 0)$

Journées FAC (April 2008)



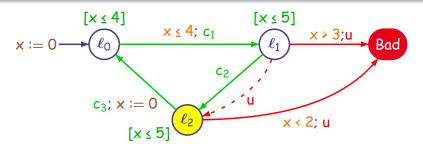
A winning strategy f'

in ℓ_0 at x = 2 do c_1 ; in ℓ_1 at x = 2.5 do c_2 ; in ℓ_2 at x = 4 do c_3 $\rho: \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{0.5} (\ell_1, 2.5) \xrightarrow{c_2} (\ell_2, 2.5) \xrightarrow{1.5} (\ell_2, 4)$ $\xrightarrow{c_3} (\ell_0, 0) \cdots$



A winning strategy f'

in ℓ_0 at x = 2 do c₁; in ℓ_1 at x = 2.5 do c₂; in ℓ_2 at x = 4 do c₃ $\rho: \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2)$



A winning strategy f'

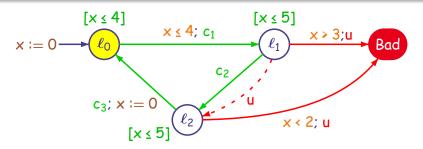
in ℓ_0 at x = 2 do c_1 ; in ℓ_1 at x = 2.5 do c_2 ; in ℓ_2 at x = 4 do c_3 $\rho: \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{\text{uat } \delta \leq 0.5} (\ell_2, 2 + \delta)$

Journées FAC (April 2008)

Control of Timed Systems

< □ ▶

P



A winning strategy f'

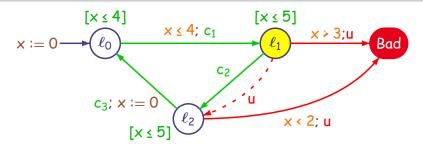
in ℓ_0 at x = 2 do c_1 ; in ℓ_1 at x = 2.5 do c_2 ; in ℓ_2 at x = 4 do c_3 $\rho: \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{uat \, \delta \leq 0.5} (\ell_2, 2 + \delta) \xrightarrow{c_3 at \, 2 - \delta} (\ell_0, 0)$

P

< □ ▶

김 글 대 김 글

Control of Timed Systems Timed Game Automata Strategies and Winning States



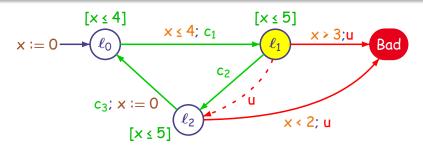
A winning strategy f'

in ℓ_0 at x = 2 do c_1 ; in ℓ_1 at x = 2.5 do c_2 ; in ℓ_2 at x = 4 do c_3 $\rho: \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{u \text{ at } \delta_{\underline{c}} 0.5} (\ell_2, 2 + \delta) \xrightarrow{c_3 \text{ at } 2 - \delta} (\ell_0, 0)$ $\rho': \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2)$

P

제 문어 제 문어

Control of Timed Systems Timed Game Automata Strategies and Winning States

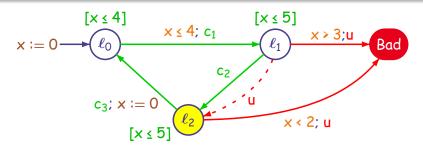


A winning strategy f'

in ℓ_0 at x = 2 do c_1 ; in ℓ_1 at x = 2.5 do c_2 ; in ℓ_2 at x = 4 do c_3 $\rho: \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{u \text{ at } \delta_{\leq} 0.5} (\ell_2, 2 + \delta) \xrightarrow{c_3 \text{ at } 2 - \delta} (\ell_0, 0)$ $\rho': \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{0.5} (\ell_1, 2.5)$

F >

에 듣어 이 들어



A winning strategy f'

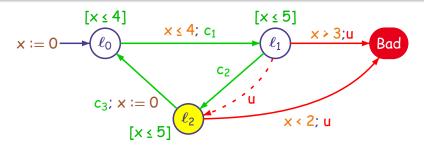
in ℓ_0 at x = 2 do c_1 ; in ℓ_1 at x = 2.5 do c_2 ; in ℓ_2 at x = 4 do c_3 $\rho: \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{u \text{ at } \delta_{\underline{s}} 0.5} (\ell_2, 2 + \delta) \xrightarrow{c_3 \text{ at } 2 - \delta} (\ell_0, 0)$ $\rho': \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{0.5} (\ell_1, 2.5) \xrightarrow{c_2} (\ell_2, 2.5)$

Journées FAC (April 2008)

< A >

< □ ▶

에 듣어 이 들어



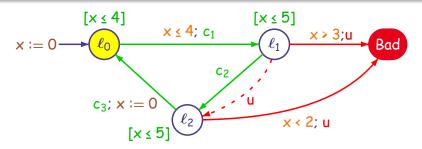
A winning strategy f'

in ℓ_0 at x = 2 do c_1 ; in ℓ_1 at x = 2.5 do c_2 ; in ℓ_2 at x = 4 do c_3 $\rho: \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{u \text{ at } \delta_{\leq} 0.5} (\ell_2, 2 + \delta) \xrightarrow{c_3 \text{ at } 2 - \delta} (\ell_0, 0)$ $\rho': \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{0.5} (\ell_1, 2.5) \xrightarrow{c_2} (\ell_2, 2.5) \xrightarrow{1.5} (\ell_2, 4)$

Journées FAC (April 2008)

< A >

에 문어 비분이



A winning strategy f'

in ℓ_0 at x = 2 do c_1 ; in ℓ_1 at x = 2.5 do c_2 ; in ℓ_2 at x = 4 do c_3 $\rho: (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{\text{uat } \delta \leq 0.5} (\ell_2, 2 + \delta) \xrightarrow{c_3 \text{ at } 2 - \delta} (\ell_0, 0)$ $\rho': (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{0.5} (\ell_1, 2.5) \xrightarrow{c_2} (\ell_2, 2.5) \xrightarrow{1.5} (\ell_2, 4)$ $\xrightarrow{c_3} (\ell_0, 0) \cdots$

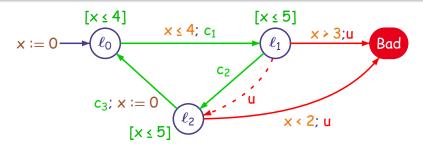
Journées FAC (April 2008)

< A >

< □ ▶

김 글 데 레 크 데

Control of Timed Systems Timed Game Automata Strategies and Winning States



A winning strategy f'

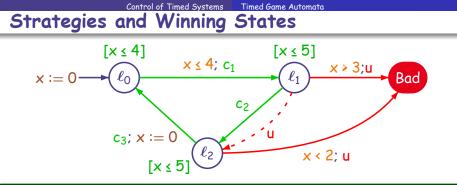
in ℓ_0 at x = 2 do c_1 ; in ℓ_1 at x = 2.5 do c_2 ; in ℓ_2 at x = 4 do c_3 $\rho: \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{\text{uat } \delta \le 0.5} (\ell_2, 2 + \delta) \xrightarrow{c_3 \text{ at } 2 - \delta} (\ell_0, 0)$ $\rho': \quad (\ell_0, 0) \xrightarrow{2} (\ell_0, 2) \xrightarrow{c_1} (\ell_1, 2) \xrightarrow{0.5} (\ell_1, 2.5) \xrightarrow{c_2} (\ell_2, 2.5) \xrightarrow{1.5} (\ell_2, 4)$ $\xrightarrow{c_3} (\ell_0, 0) \cdots$

Journées FAC (April 2008)

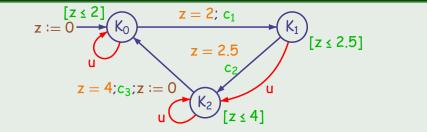
< A >

< □ ▶

김 글 데 레 크 데



The Strategy f' as a Timed Automaton

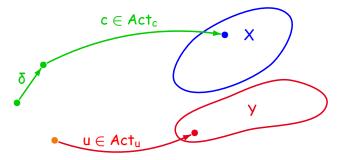


Journées FAC (April 2008)

 $\pi(X, Y) =$ states from which one can enforce X and avoid Y by: time elapsing followed by a controllable action

Fixpoint Characterization of Winning States for Safety Games:
Let φ be a set of safe (good) states and G a game
Let W* be the greatest fixpoint of h(X) = φ ∩ π(X, X)
W* is the set of winning states for (G, φ)

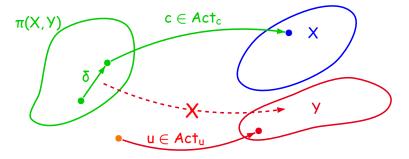
 $\pi(X, Y) =$ states from which one can enforce X and avoid Y by: time elapsing followed by a controllable action



Fixpoint Characterization of Winning States for Safety Games: • Let φ be a set of safe (good) states and G a game • Let W* be the greatest fixpoint of $h(X) = \varphi \cap \pi(X, \overline{X})$ • W* is the set of winning states for (G, φ)

Journées FAC (April 2008)

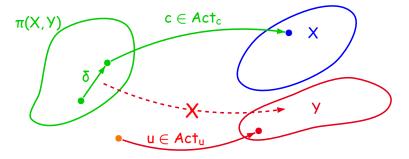
 $\pi(X, Y) =$ states from which one can enforce X and avoid Y by: time elapsing followed by a controllable action



Fixpoint Characterization of Winning States for Safety Games: • Let φ be a set of safe (good) states and G a game • Let W* be the greatest fixpoint of $h(X) = \varphi \cap \pi(X, \overline{X})$ • W* is the set of winning states for (G, φ)

Journées FAC (April 2008)

 $\pi(X, Y) =$ states from which one can enforce X and avoid Y by: time elapsing followed by a controllable action



Fixpoint Characterization of Winning States for Safety Games: Let φ be a set of safe (good) states and G a game
Let W* be the greatest fixpoint of h(X) = $\varphi \cap \pi(X, \overline{X})$ W* is the set of winning states for (G, φ) Symbolic Algorithms for Safety Control Symbolic Algorithms for Safety Control

[Maler et al.'95, De Alfaro et al.'01]

- There is a symbolic version for $\pi(X, Y)$
- $\textcircled{O} \Longrightarrow$ there is a symbolic version for h(X)

Details & Example

< □ ▶

P

Control of Timed Systems Symbolic Algorithms for Timed Game Automata Symbolic Algorithms for Safety Control

[Maler et al.'95, De Alfaro et al.'01]

- There is a symbolic version for $\pi(X, Y)$
- $\textcircled{O} \Longrightarrow$ there is a symbolic version for h(X)
 - \blacktriangleright Control Problem (CP): check that ($\ell_0,0)\in W^*$
 - \blacktriangleright Control Synthesis Problem (CSP): by definition of π there is a strategy

Control of Timed Systems Symbolic Algorithms for Timed Game Automata

Symbolic Algorithms for Safety Control

[Maler et al.'95, De Alfaro et al.'01]

- There is a symbolic version for $\pi(X, Y)$
- $\textcircled{O} \Longrightarrow$ there is a symbolic version for h(X)

Theorem (Termination)

The iterative computation of W^{*} terminates for (G, φ) with G a timed game automaton φ a w-regular winning condition.

Details & Example

Control of Timed Systems Symbolic Algorithms for Timed Game Automata

Symbolic Algorithms for Safety Control

[Maler et al.'95, De Alfaro et al.'01]

- There is a symbolic version for $\pi(X, Y)$
- $\textcircled{O} \Longrightarrow$ there is a symbolic version for h(X)

Theorem (Termination)

The iterative computation of W^{*} terminates for (G, φ) with G a timed game automaton φ a w-regular winning condition.

Theorem (Decidability of CP for Timed Game Automata)

The (Safety) Control Problem is decidable.

Details & Example

Control of Timed Systems Symbolic Algorithms for Timed Game Automata

Symbolic Algorithms for Safety Control

[Maler et al.'95, De Alfaro et al.'01]

- There is a symbolic version for $\pi(X, Y)$
- $\textcircled{O} \Longrightarrow$ there is a symbolic version for h(X)

Theorem (Termination)

The iterative computation of W^{*} terminates for (G, φ) with G a timed game automaton φ a w-regular winning condition.

Theorem (Decidability of CP for Timed Game Automata)

The (Safety) Control Problem is decidable.

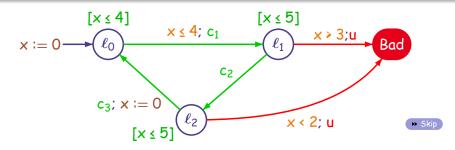
Theorem (Effectiveness of CSP)

If $(\ell_0, 0) \in W^*$ we can compute the most permissive positional winning strategy.

Journées FAC (April 2008)

Details & Example

Control of Timed Systems Symbolic Algorithms for Timed Game Automata Result of the Computation for the Example



Journées FAC (April 2008)

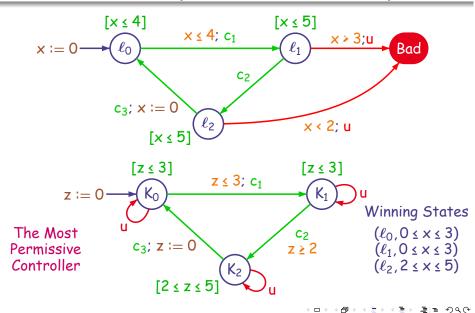
< □ >

ð

김 글 대 김 글

1

Control of Timed Systems Symbolic Algorithms for Timed Game Automata Result of the Computation for the Example



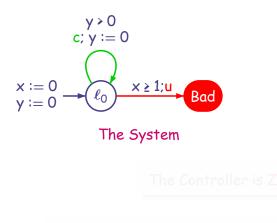
- Control of Timed Systems: Basics
- Control of Discrete Event Systems
- Control of Timed Systems
- Advanced Subjects
 - Implementable Controllers
 - Optimal Controllers
 - Efficient Algorithms for Controller Synthesis

Conclusion

Implementable Controllers

< □ >

P



Solution: add non-Zenoness in the control objective

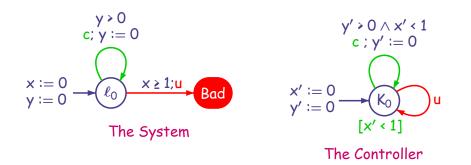
Journées FAC (April 2008)

Control of Timed Systems

< □ ▶

P

: ৩৭. 24 / 48

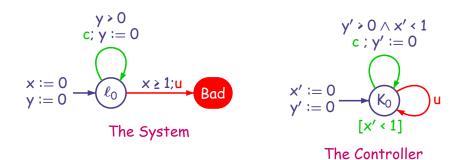


The Controller is Zeno !!!

Solution: add non-Zenoness in the control objective

Journées FAC (April 2008)

Control of Timed Systems

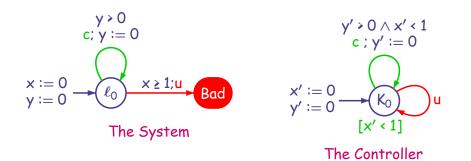


The Controller is Zeno !!!

Solution: add non-Zenoness in the control objective

Journées FAC (April 2008)

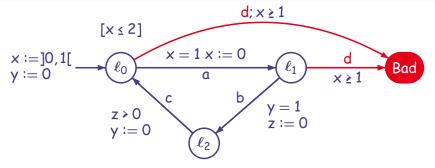
Control of Timed Systems



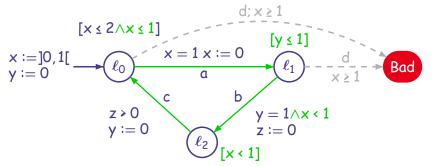
The Controller is Zeno !!!

Solution: add non-Zenoness in the control objective

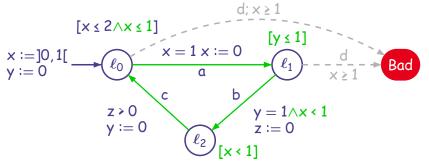
Journées FAC (April 2008)



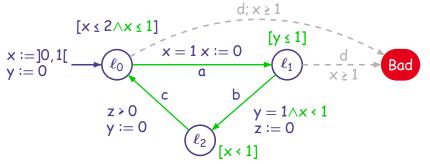
The controller is Non-Zeno; One untimed behavior: (ℓ₀ℓ₁ℓ₂)^ω
 Let Δ_k > 0 be the time spent in ℓ₂ in the k-th loop from ℓ₀ to ℓ₀
 It implies: ∀k, ∑^k_{i=1}Δ_i < 1 − x₀, with ∀i, Δ_i > 0



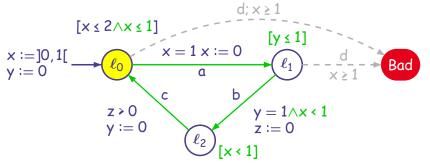
The controller is Non-Zeno; One untimed behavior: (ℓ₀ℓ₁ℓ₂)^w
 Let Δ_k > 0 be the time spent in ℓ₂ in the k-th loop from ℓ₀ to ℓ₀
 It implies: ∀k, ∑^k_{i=1}Δ_i < 1 − x₀, with ∀i, Δ_i > 0



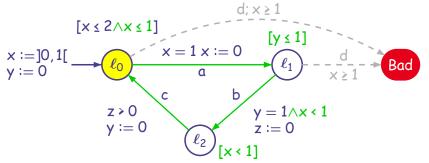
- The controller is Non-Zeno; One untimed behavior: $(\ell_0 \ell_1 \ell_2)^{\omega}$
- ► Let $\Delta_k > 0$ be the time spent in ℓ_2 in the k-th loop from ℓ_0 to ℓ_0 ► It implies: $\forall k, \sum_{i=1}^{k} \Delta_i < 1 - x_0$, with $\forall i, \Delta_i > 0$



- ► The controller is Non-Zeno; One untimed behavior: $(\ell_0 \ell_1 \ell_2)^{\omega}$
- ► Let $\Delta_k > 0$ be the time spent in ℓ_2 in the k-th loop from ℓ_0 to ℓ_0 ► It implies: $\forall k, \sum_{i=1}^{k} \Delta_i < 1 - x_0$, with $\forall i, \Delta_i > 0$

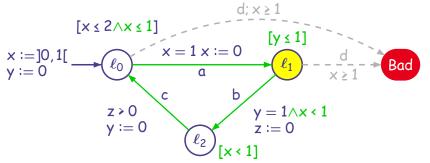


- ► The controller is Non-Zeno; One untimed behavior: $(\ell_0 \ell_1 \ell_2)^{\omega}$
- Let $\Delta_k > 0$ be the time spent in ℓ_2 in the k-th loop from ℓ_0 to ℓ_0
- ► It implies: $\forall k, \sum_{i=1}^{k} \Delta_i < 1 x_0$, with $\forall i, \Delta_i > 0$



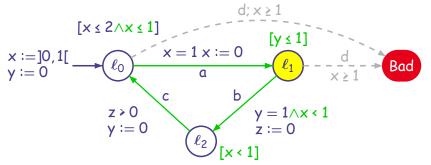
- ► The controller is Non-Zeno; One untimed behavior: $(\ell_0 \ell_1 \ell_2)^{\omega}$
- Let $\Delta_k > 0$ be the time spent in ℓ_2 in the k-th loop from ℓ_0 to ℓ_0
- ► It implies: $\forall k, \sum_{i=1}^{k} \Delta_i < 1 x_0$, with $\forall i, \Delta_i > 0$

$$\begin{array}{ccc} \ell_0 \\ x: & x_0 & \rightsquigarrow & 1 \\ y: & 0 & 1 - x_0 \end{array}$$



- ► The controller is Non-Zeno; One untimed behavior: $(\ell_0 \ell_1 \ell_2)^{\omega}$
- Let $\Delta_k > 0$ be the time spent in ℓ_2 in the k-th loop from ℓ_0 to ℓ_0
- ► It implies: $\forall k, \sum_{i=1}^{k} \Delta_i < 1 x_0$, with $\forall i, \Delta_i > 0$

$$\begin{array}{ccc} & \ell_0 & & \ell_1 \\ \mathsf{x}: & \mathsf{x}_0 & \rightsquigarrow & 1 & \stackrel{\mathfrak{a}}{\to} & 0 \\ \mathsf{y}: & 0 & 1 - \mathsf{x}_0 & 1 - \mathsf{x}_0 \end{array}$$

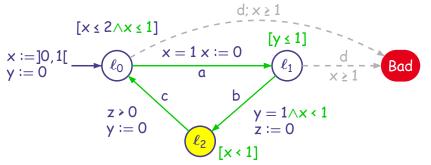


- ► The controller is Non-Zeno; One untimed behavior: $(\ell_0 \ell_1 \ell_2)^{\omega}$
- Let $\Delta_k > 0$ be the time spent in ℓ_2 in the k-th loop from ℓ_0 to ℓ_0
- ► It implies: $\forall k, \sum_{i=1}^{k} \Delta_i < 1 x_0$, with $\forall i, \Delta_i > 0$

$$\begin{array}{cccc} & \ell_0 & & \ell_1 \\ \mathsf{x}: & \mathsf{x}_0 & \rightsquigarrow & 1 & \stackrel{\mathfrak{a}}{\to} & 0 & \rightsquigarrow & \mathsf{x}_0 \\ \mathsf{y}: & 0 & 1 - \mathsf{x}_0 & 1 - \mathsf{x}_0 & 1 \end{array}$$

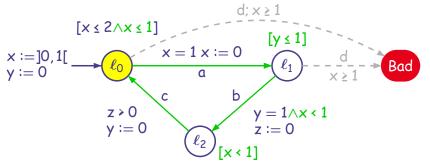


- ► The controller is Non-Zeno; One untimed behavior: $(\ell_0 \ell_1 \ell_2)^{\omega}$
- Let $\Delta_k > 0$ be the time spent in ℓ_2 in the k-th loop from ℓ_0 to ℓ_0
- ► It implies: $\forall k, \sum_{i=1}^{k} \Delta_i < 1 x_0$, with $\forall i, \Delta_i > 0$



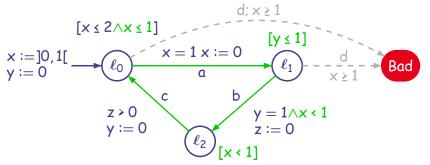
► The controller is Non-Zeno; One untimed behavior: $(\ell_0 \ell_1 \ell_2)^{\omega}$

- Let $\Delta_k > 0$ be the time spent in ℓ_2 in the k-th loop from ℓ_0 to ℓ_0
- ► It implies: $\forall k, \sum_{i=1}^{k} \Delta_i < 1 x_0$, with $\forall i, \Delta_i > 0$



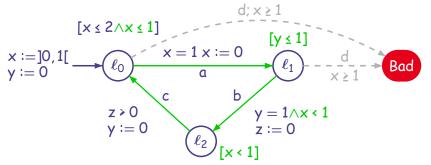
► The controller is Non-Zeno; One untimed behavior: $(\ell_0 \ell_1 \ell_2)^{\omega}$

- Let $\Delta_k > 0$ be the time spent in ℓ_2 in the k-th loop from ℓ_0 to ℓ_0
- ► It implies: $\forall k, \sum_{i=1}^{k} \Delta_i < 1 x_0$, with $\forall i, \Delta_i > 0$

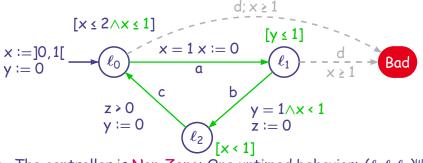


• The controller is Non-Zeno; One untimed behavior: $(\ell_0 \ell_1 \ell_2)^{\omega}$

- Let $\Delta_k > 0$ be the time spent in ℓ_2 in the k-th loop from ℓ_0 to ℓ_0
- It implies: $\forall k, \sum_{i=1}^{k} \Delta_i < 1 x_0$, with $\forall i, \Delta_i > 0$



- ► The controller is Non-Zeno; One untimed behavior: $(\ell_0 \ell_1 \ell_2)^{\omega}$
- Let $\Delta_k > 0$ be the time spent in ℓ_2 in the k-th loop from ℓ_0 to ℓ_0
- ► It implies: $\forall k, \sum_{i=1}^{k} \Delta_i < 1 x_0$, with $\forall i, \Delta_i > 0$
- Must hold for ever: $\sum_{k=1}^{k=+\infty} \Delta_k < 1 x_0$ with $\forall k, \Delta_k > 0$



- The controller is Non-Zeno; One untimed behavior: $(\ell_0 \ell_1 \ell_2)^{\omega}$
- Let $\Delta_k > 0$ be the time spent in ℓ_2 in the k-th loop from ℓ_0 to ℓ_0
- ► It implies: $\forall k, \sum_{i=1}^{k} \Delta_i < 1 x_0$, with $\forall i, \Delta_i > 0$
- Must hold for ever: $\sum_{k=1}^{k=+\infty} \Delta_k < 1 x_0$ with $\forall k, \Delta_k > 0$

The Controller is Non-Zeno but not Implementable !!!

Journées FAC (April 2008)

< □ ▶

P

- \blacktriangleright Let $a \in \mathbb{Q}^*$ be a sampling rate
- ▶ An a-controller is a controller that can do actions only at $k \cdot a, k \ge 1$ and $k \in \mathbb{N}$

- \blacktriangleright Let $a \in \mathbb{Q}^*$ be a sampling rate
- ▶ An a-controller is a controller that can do actions only at $k \cdot a, k \ge 1$ and $k \in \mathbb{N}$

Known Sampling Rate Control Problem (KSR)

Input: $a \in \mathbb{Q}^*$, Bad (states), G a TGA **Problem:** Is there a a-controller for G that avoids Bad ?

- \blacktriangleright Let $a \in \mathbb{Q}^*$ be a sampling rate
- ▶ An a-controller is a controller that can do actions only at $k \cdot a, k \ge 1$ and $k \in \mathbb{N}$

Known Sampling Rate Control Problem (KSR)

Input: $a \in \mathbb{Q}^*$, Bad (states), G a TGA **Problem:** Is there a a-controller for G that avoids Bad ?

Theorem ([Henzinger & Kopke'99])

The Known Sampling Rate Control Problem is decidable.

- \blacktriangleright Let $a \in \mathbb{Q}^*$ be a sampling rate
- ▶ An a-controller is a controller that can do actions only at $k \cdot a, k \ge 1$ and $k \in \mathbb{N}$

Unknown Sampling Rate Control Problem (USR)

Input: Bad (states), G a TGA **Problem:** Is there a sampling rate $a \in \mathbb{Q}^*$ such that there is a a-controller for G that avoids Bad ?

- \blacktriangleright Let $a \in \mathbb{Q}^*$ be a sampling rate
- ▶ An a-controller is a controller that can do actions only at $k \cdot a, k \ge 1$ and $k \in \mathbb{N}$

Unknown Sampling Rate Control Problem (USR)

Input: Bad (states), G a TGA **Problem:** Is there a sampling rate $a \in \mathbb{Q}^*$ such that there is a a-controller for G that avoids Bad ?

Theorem ([C. et al.'02])

The Unknown Sampling Rate Control Problem is undecidable.

Summary of the Results

Decidability results for the safety control problem on LHA:

	Known Switch Cond.	Unknown Switch Cond.
Timed Auto.	[Maler et al.'95]	$\sqrt{[Maler et al.'95]}$
Init. Rect. Auto	√[Henzinger et al.'99]	×[Henzinger et al.'95]
Rect. Auto.	× [Henzinger et al.'99]	×[Henzinger et al.'99]

	Known Sampling Rate	Unknown SR
Timed Auto.	√[Hoffmann & Wong-Toi'92]	× [C. et al.'02]
Init. Rect. Auto.	[Henzinger & Kopke'97]	× [C. et al.'02]
Rect. Auto.	√[Henzinger & Kopke'97]	× [C. et al.'02]

 $\sqrt{:}$ Decidable \times : Undecidable

Recent result [Bouyer et al.'06] The reachability USR-CP is decidable for o-minimal automata. Results on implementation of Timed Automata [De Wulf et al.'04b, De Wulf et al.'04a, De Wulf et al.'05b]

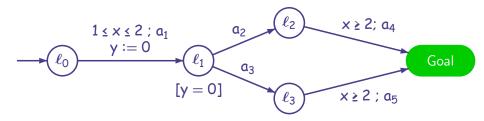
Optimal Controllers

< □ ▶

D

< E >

≡ ►

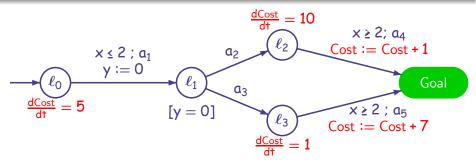


Reachability for Timed Automata

[Alur & Dill'94]

< 🗆 🕨

P

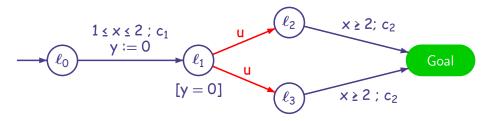


Reachability for Timed Automata [Alur & Dill'94]
 Optimal Reachability for Priced (or Weighted) Timed Automata [Larsen et al.'01, Alur et al.'01]

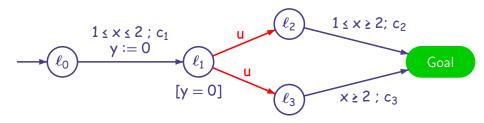
$$(\ell_0, 0, 0) \xrightarrow{1} (\ell_0, 1, 1) \xrightarrow{a_1 a_2} (\ell_2, 1, 0) \xrightarrow{3} (\ell_2, 4, 3) \xrightarrow{a_4} (\text{Goal}, 4, 3)$$

Cost = 1 · 5 + 3 · 10 + 1 = 36

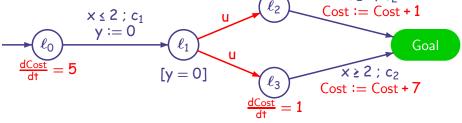
P



Reachability for Timed Automata [Alur & Dill'94]
 Optimal Reachability for Priced (or Weighted) Timed Automata [Larsen et al.'01, Alur et al.'01]
 Control for Timed Game Automata [Maler et al.'95]



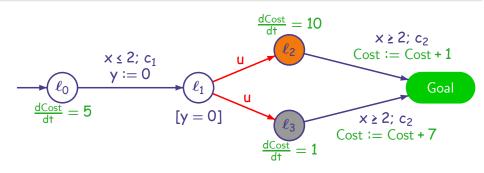
Reachability for Timed Automata [Alur & Dill'94]
 Optimal Reachability for Priced (or Weighted) Timed Automata [Larsen et al.'01, Alur et al.'01]
 Control for Timed Game Automata [Maler et al.'95]
 Time Optimal Control (Reachability) [Asarin & Maler'99]



Reachability for Timed Automata [Alur & Dill'94]
 Optimal Reachability for Priced (or Weighted) Timed Automata [Larsen et al.'01, Alur et al.'01]
 Control for Timed Game Automata [Maler et al.'95]
 Time Optimal Control (Reachability) [Asarin & Maler'99]

Optimal Control for Priced Timed Game Automata?

Journées FAC (April 2008)



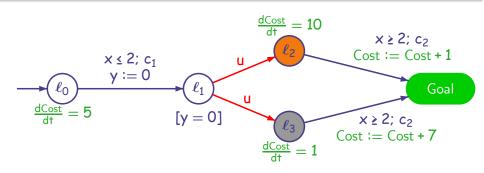
What is the best cost whatever the environment does ?

Journées FAC (April 2008)

Control of Timed Systems

< 🗆 🕨

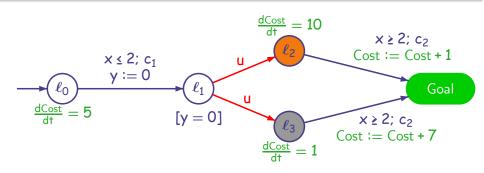
P



What is the best cost whatever the environment does ?

< 🗆 🕨

P

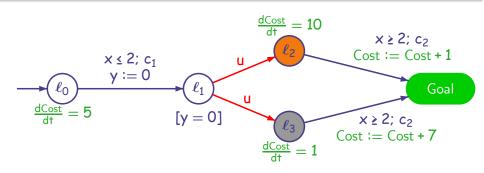


What is the best cost whatever the environment does ?

inf max{5t + 10(2 − t) + 1,5t + (2 − t) + 7} = 14 +
$$\frac{1}{3}$$

< 🗆 🕨

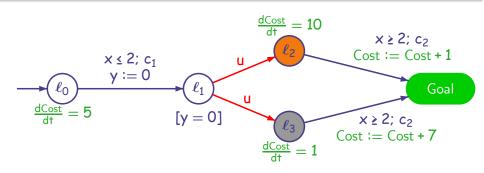
P



What is the best cost whatever the environment does ?

$$\inf_{0 \le t \le 2} \max\{5t + 10(2 - t) + 1, 5t + (2 - t) + 7\} = 14 + \frac{1}{3}$$

< ロ ト < 向

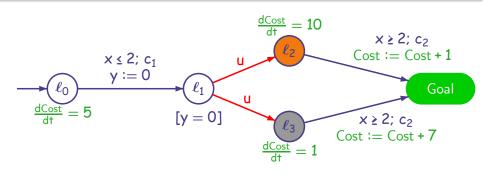


What is the best cost whatever the environment does ?

$$\inf_{0 \le t \le 2} \max\{5t + 10(2 - t) + 1, 5t + (2 - t) + 7\} = 14 + \frac{1}{3}$$

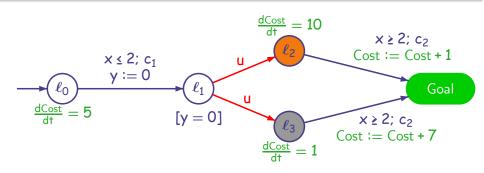
< 🗆 🕨

P

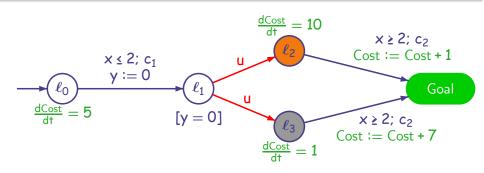


What is the best cost whatever the environment does ?
Is there a strategy to achieve this optimal cost ?

P



What is the best cost whatever the environment does ?
 Is there a strategy to achieve this optimal cost ?
 Yes: wait in ℓ₀ until t = ⁴/₃ and then fire c₁

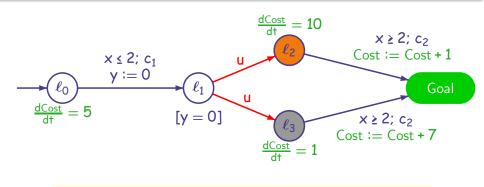


- What is the best cost whatever the environment does ?
- ► Is there a strategy to achieve this optimal cost ? Yes: wait in ℓ_0 until $t = \frac{4}{3}$ and then fire c_1
- Can we compute such a strategy ?
 Yes: but need memory sometimes

P

Advanced Subjects Optimal Controllers

Optimal Control Problems

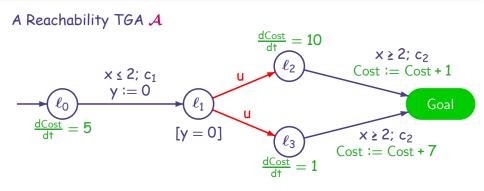


Can we find algorithms for these problems on PTGA ?

Compute the optimal cost

- Obcide if there is an optimal strategy
- Ompute an optimal strategy (if one exists)

Advanced Subjects Optimal Controllers From Optimal Control to Control



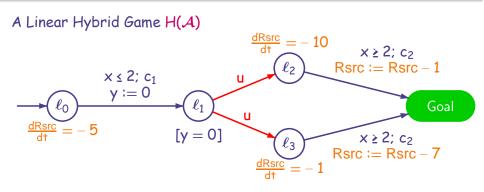
• Transform \mathcal{A} in Linear Hybrid Game Automaton H(\mathcal{A})

• Define the reachability game for $H(\mathcal{A})$ with goal: Goal \land Rsrc ≥ 0

Optimal Control for $\mathcal{A} \iff$ Reachability Control for $H(\mathcal{A})$

< ロ > < 何 >

Advanced Subjects Optimal Control From Optimal Control to Control



Transform A in Linear Hybrid Game Automaton H(A)
 Define the reachability game for H(A) with goal: Goal ∧ Rsrc ≥ 0

Optimal Control for $\mathcal{A} \iff$ Reachability Control for $H(\mathcal{A})$

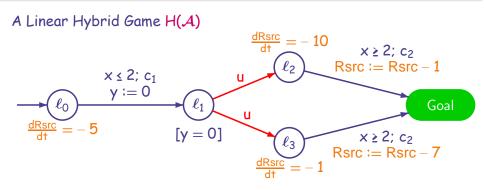
Journées FAC (April 2008)

Control of Timed Systems

< ロ > < 何 >

글 제 제 글 제

Advanced Subjects Optimal Control ro Control



• Transform \mathcal{A} in Linear Hybrid Game Automaton $H(\mathcal{A})$

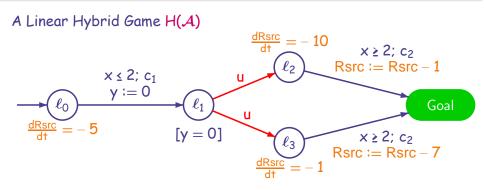
• Define the reachability game for H(A) with goal: Goal \land Rsrc ≥ 0

< □ > < 🗗 >

글 > < 글 >

∍

Advanced Subjects Optimal Control ro Control



• Transform \mathcal{A} in Linear Hybrid Game Automaton $H(\mathcal{A})$

• Define the reachability game for H(A) with goal: Goal \land Rsrc ≥ 0

Optimal Control for $\mathcal{A} \iff$ Reachability Control for $H(\mathcal{A})$

< ロ > < 何 >

글 🖌 🖌 글 🕨

3 2

	Advanced Subjects	Optimal Cont	trollers		
Results	[8	Bouyer e	t al.'04a,	Bouyer et	al.'04b]

Theorem (Reachability Control for LHA)

There is a semi-algorithm CompWin that computes the set of winning states for LHA. Uses polyhedra instead of zones.

	Advanced Subjects	Optimal C	ontro	ollers				
Results	[Bouyer	et	al.'04a,	Bouyer	et	al.	'04b]

- ► A is cost non-zeno *i.e.* $\exists \kappa$ s.t. every cycle in the region automaton of A has cost at least κ
- A is bounded i.e. all clocks in A are bounded

	Advanced Subjects	Optimal C	ontro	ollers				
Results	[]	Bouyer	et	al.'04a,	Bouyer	et	al.	'04b]

- ► A is cost non-zeno *i.e.* $\exists \kappa$ s.t. every cycle in the region automaton of A has cost at least κ
- A is bounded i.e. all clocks in A are bounded

Theorem (Non-Zeno Cost [Bouyer et al.'04a])

The algorithm CompWin terminates for H(A).

Results [Rouver et al '04a, Rouver et al '04		Advanced Subjects Optimal Controllers
	Results	[Bouyer et al.'04a, Bouyer et al.'04b]

- ► A is cost non-zeno *i.e.* $\exists \kappa$ s.t. every cycle in the region automaton of A has cost at least κ
- A is bounded i.e. all clocks in A are bounded

Theorem (Non-Zeno Cost [Bouyer et al.'04a])

The algorithm CompWin terminates for H(A).

Theorem (Optimal Cost Computation [Bouyer et al.'04a])

- Optimal Cost is computable.
- Optimal Strategy Existence Problem is decidable.

	Advanced Subjects	Optimal Cont	rollers			
Results	נו	Bouyer e	t al.'04a,	Bouyer	et a	. '04 b]

- A is cost non-zeno i.e. ∃κ s.t. every cycle in the region automaton of A has cost at least κ
- A is bounded i.e. all clocks in A are bounded

Theorem (Non-Zeno Cost [Bouyer et al.'04a])

The algorithm CompWin terminates for H(A).

Theorem (Optimal Cost Computation [Bouyer et al.'04a])

- Optimal Cost is computable.
- Optimal Strategy Existence Problem is decidable.

Theorem ([Brihaye et al.'05])

Non-Zeno Cost is a necessary assumption.

What's decidable about optimal reachability control?

- Non-Zeno Cost
- O-minimal automata
- 1-clock PTGA (3EXPTIME)

[Bouyer et al.'04a] [Bouyer et al.'07] [Bouyer et al.'06a]

What's UNdecidable about optimal control?

- 5-clock Zeno PTGA
- 3-clock Zeno PTGA

[Brihaye et al.'05] [Bouyer et al.'06b]

What's decidable for infinite schedules (safety)? Mean Cost decidable for 1-player PTA [Bouyer]

What's open?

Optimal Mean Cost for PTGA

What's decidable about optimal reachability control?

- Non-Zeno Cost
- O-minimal automata
- 1-clock PTGA (3EXPTIME)

What's UNdecidable about optimal control?

- 5-clock Zeno PTGA
- 3-clock Zeno PTGA

[Bouyer et al.'04a] [Bouyer et al.'07] [Bouyer et al.'06a]

[Brihaye et al.'05] [Bouyer et al.'06b]

What's decidable for infinite schedules (safety) ? ► Mean Cost decidable for 1-player PTA [Bouyer et al

What's open?

Optimal Mean Cost for PTGA

- What's decidable about optimal reachability control?
 - Non-Zeno Cost
 - O-minimal automata
 - 1-clock PTGA (3EXPTIME)
- What's UNdecidable about optimal control?
 - 5-clock Zeno PTGA
 - 3-clock Zeno PTGA

What's decidable for infinite schedules (safety)?

Mean Cost decidable for 1-player PTA

What's open?

Optimal Mean Cost for PTGA

Journées FAC (April 2008)

[Bouyer et al.'04a] [Bouyer et al.'07] [Bouyer et al.'06a]

[Brihaye et al.'05] [Bouyer et al.'06b]

[Bouyer et al.'04c]

- What's decidable about optimal reachability control?
 - Non-Zeno Cost
 - O-minimal automata
 - 1-clock PTGA (3EXPTIME)
- What's UNdecidable about optimal control?
 - 5-clock Zeno PTGA
 - 3-clock Zeno PTGA
- What's decidable for infinite schedules (safety)?
 - Mean Cost decidable for 1-player PTA

What's open?

Optimal Mean Cost for PTGA

Journées FAC (April 2008)

< 🗆

[Bouyer et al.'04a] [Bouyer et al.'07] [Bouyer et al.'06a]

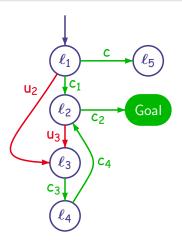
[Brihaye et al.'05] [Bouyer et al.'06b]

[Bouyer et al.'04c]

Efficient Controller Synthesis

< □ >

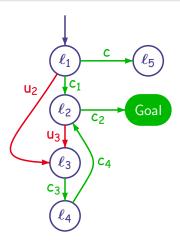
P



 $\rightarrow \text{Uncontrollable} \\ \rightarrow \text{Controllable}$

Aim: enforce Goal

- Semantics: no priority Cont. must take a controllable action
- ► Winning run = a run containing Goal
- Strategy: based on the full history tells which controllable action to fire It restricts the set of behaviors of the open system
- Winning strategy: all the runs in the controlled system are winning
- Winning state = a state from which there is winning strategy

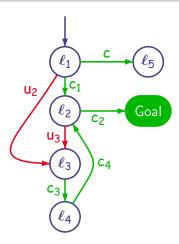


 $\rightarrow \mbox{Uncontrollable} \\ \rightarrow \mbox{Controllable} \\$

Aim: enforce Goal

- Semantics: no priority Cont. must take a controllable action
- Winning run = a run containing Goal
- Strategy: based on the full history tells which controllable action to fire It restricts the set of behaviors of the open system
- Winning strategy: all the runs in the controlled system are winning
- Winning state = a state from which there is winning strategy

< □ ▶

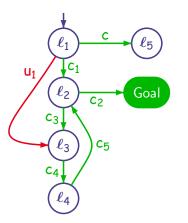


 $\rightarrow \frac{\text{Uncontrollable}}{\text{Controllable}}$

Aim: enforce Goal

- Semantics: no priority Cont. must take a controllable action
- Winning run = a run containing Goal
- Strategy: based on the full history tells which controllable action to fire It restricts the set of behaviors of the open system
- Winning strategy: all the runs in the controlled system are winning
- Winning state = a state from which there is winning strategy

How to Solve Reachability Games?

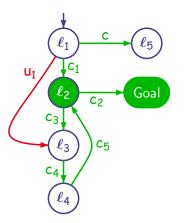


 \overline{X} = complement of X

Controllable Predecessors:

 $\pi(X) = (cPred(X) \setminus uPred(\overline{X}))$

Iterate $\pi: X_{i+1} = X_i \cup \pi(X_i)$ (a) $X_0 = \{Goal\}$ (c) $X_1 = \{Goal, \ell_2\}$ (c) $X_2 = \{Goal, \ell_2, \ell_4\}$ (c) $X_3 = \{Goal, \ell_2, \ell_4, \ell_3\}$ (c) $X_4 = \{Goal, \ell_2, \ell_4, \ell_3, \ell_1\}$

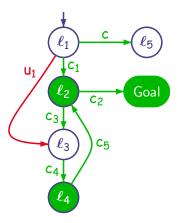


 \overline{X} = complement of X

Controllable Predecessors:

 $\pi(X) = (cPred(X) \setminus uPred(\overline{X}))$

Iterate π : $X_{i+1} = X_i \cup \pi(X_i)$ (1) $X_0 = \{Goal\}$ (2) $X_1 = \{Goal, \ell_2\}$ (3) $X_2 = \{Goal, \ell_2, \ell_4\}$ (4) $X_3 = \{Goal, \ell_2, \ell_4, \ell_3\}$ (5) $X_4 = \{Goal, \ell_2, \ell_4, \ell_3, \ell_1\}$

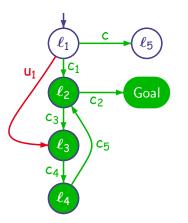


 \overline{X} = complement of X

Controllable Predecessors:

 $\pi(\mathsf{X}) = (\mathsf{cPred}(\mathsf{X}) \setminus \mathsf{uPred}(\overline{\mathsf{X}}))$

Iterate $\pi: X_{i+1} = X_i \cup \pi(X_i)$ (1) $X_0 = \{Goal\}$ (2) $X_1 = \{Goal, \ell_2\}$ (3) $X_2 = \{Goal, \ell_2, \ell_4\}$ (4) $X_3 = \{Goal, \ell_2, \ell_4, \ell_3\}$ (5) $X_4 = \{Goal, \ell_2, \ell_4, \ell_3, \ell_1\}$

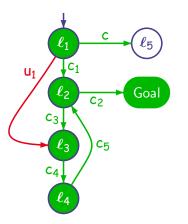


 \overline{X} = complement of X

Controllable Predecessors:

 $\pi(\mathsf{X}) = (\mathsf{cPred}(\mathsf{X}) \setminus \mathsf{uPred}(\overline{\mathsf{X}}))$

Iterate $\pi: X_{i+1} = X_i \cup \pi(X_i)$ (1) $X_0 = \{Goal\}$ (2) $X_1 = \{Goal, \ell_2\}$ (3) $X_2 = \{Goal, \ell_2, \ell_4\}$ (4) $X_3 = \{Goal, \ell_2, \ell_4, \ell_3\}$ (5) $X_4 = \{Goal, \ell_2, \ell_4, \ell_3, \ell_1\}$

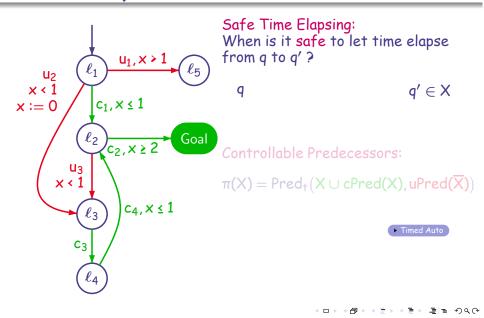


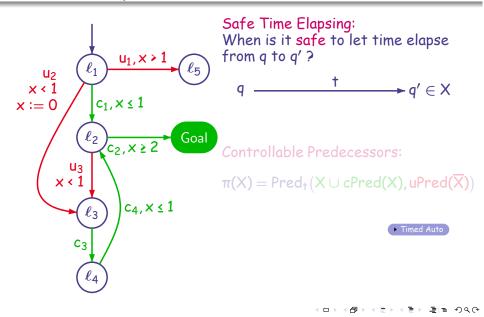
 \overline{X} = complement of X

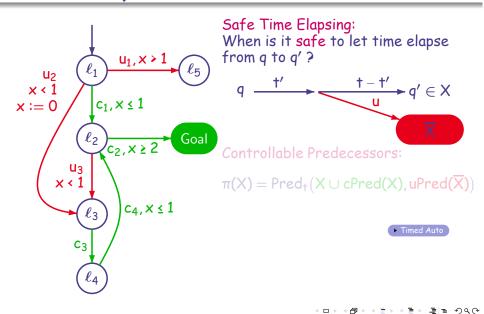
Controllable Predecessors:

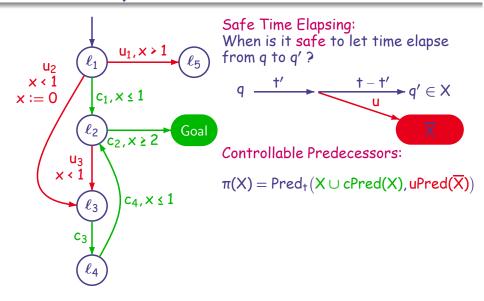
 $\pi(X) = (cPred(X) \setminus uPred(\overline{X}))$

Iterate π : $X_{i+1} = X_i \cup \pi(X_i)$ **1** $X_0 = \{Goal\}$ **2** $X_1 = \{Goal, \ell_2\}$ **3** $X_2 = \{Goal, \ell_2, \ell_4\}$ **4** $X_3 = \{Goal, \ell_2, \ell_4, \ell_3\}$ **5** $X_4 = \{Goal, \ell_2, \ell_4, \ell_3, \ell_1\}$





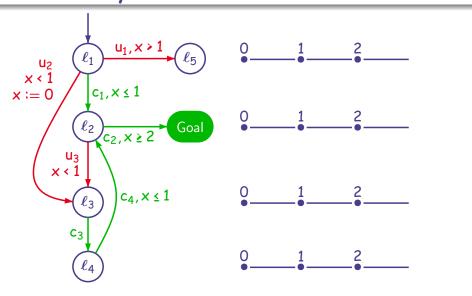




Journées FAC (April 2008)

< □

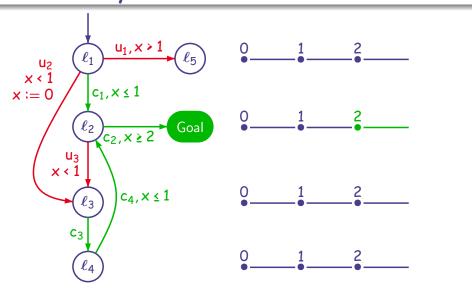
Advanced Subjects Efficient Algorithms for Controller Synthesis Reachability Control for Timed Games



Control of Timed Systems

< o > < 🗗

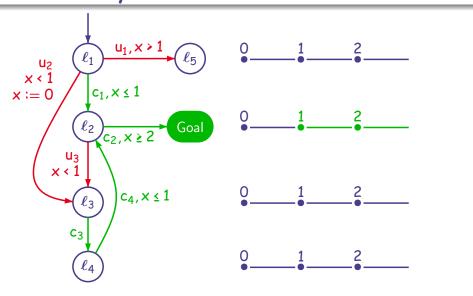
Advanced Subjects Efficient Algorithms for Controller Synthesis Reachability Control for Timed Games



Control of Timed Systems

< o > < 🗗

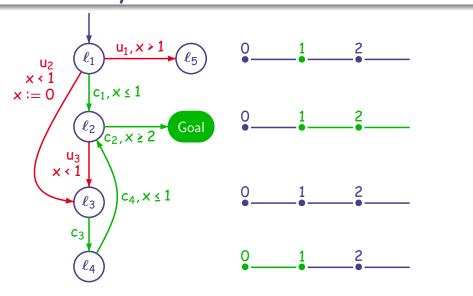
Advanced Subjects Efficient Algorithms for Controller Synthesis Reachability Control for Timed Games



Control of Timed Systems

< o > < 🗗

Advanced Subjects Efficient Algorithms for Controller Synthesis Reachability Control for Timed Games

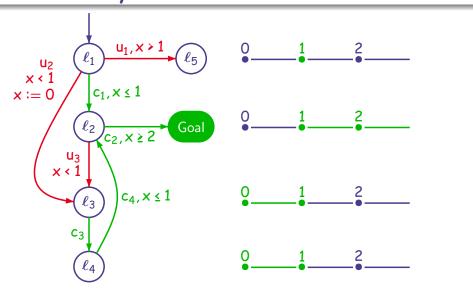


Control of Timed Systems

< □ >

Ð

Advanced Subjects Efficient Algorithms for Controller Synthesis Reachability Control for Timed Games

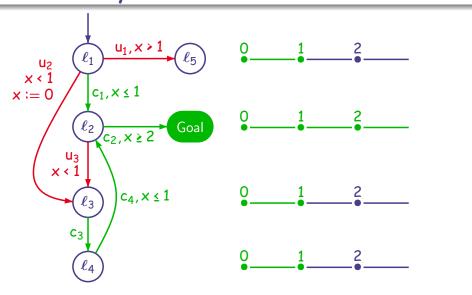


Control of Timed Systems

< □ >

Ð

Advanced Subjects Efficient Algorithms for Controller Synthesis Reachability Control for Timed Games



Control of Timed Systems

< o > < 🗗

★ Ξ → < Ξ</p>

Advanced Subjects Efficient Algorithms for Controller Synthesis Summary of the Results for Reachability Control

Known Results for Timed (Game) Automata:

- Reachability in Timed Automata
- Büchi Control for Timed Game Automata
- Time Optimal Control

- [Maler et al.'95] [Asarin & Maler'99]
- Optimal Control for Priced Timed Game Automata

[Bouyer et al.'04a]

[Alur & Dill'94]

Half on-the-fly algorithm

[Altisen & Tripakis'99, Altisen & Tripakis'02]

New Results: True On-the-fly algorithm for reachability games

Advantages:

- avoid constructing all backward & forward reachable states allows for use of diagraphs variables (a.e. i.i. i.e. 1)
- ► allows for use of discrete variables (e.g. 1 =
- Extends to Time-Optimal Control
- Extends to Partially Observable Games

Efficient implementation in the tool UPPAAL-TIGA [UPPAAL-TIGA'07]

Advanced Subjects Efficient Algorithms for Controller Synthesis Summary of the Results for Reachability Control

Known Results for Timed (Game) Automata:

- Reachability in Timed Automata
- Büchi Control for Timed Game Automata
- Time Optimal Control
- Optimal Control for Priced Timed Game Automata

[Bouyer et al.'04a]

[Asarin & Maler'99]

[Alur & Dill'94]

[Maler et al.'95]

Half on-the-fly algorithm

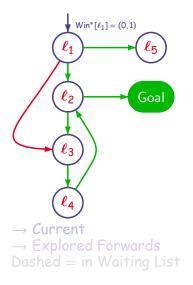
[Altisen & Tripakis'99, Altisen & Tripakis'02]

New Results: True On-the-fly algorithm for reachability games

- ► Advantages: [Concur'05]
 - avoid constructing all backward & forward reachable states
 - ► allows for use of discrete variables (e.g. i := i + 1)
 - Extends to Time-Optimal Control
 - Extends to Partially Observable Games

[ATVA'07]

 Efficient implementation in the tool UPPAAL-TiGA [UPPAAL-TiGA'07]



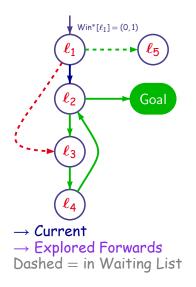
Initialization:

```
\begin{array}{l} \mbox{Passed} \leftarrow \{q_0\}; \\ \mbox{Waiting} \leftarrow \{(q_0, a, q') \mid a \in Act \; q \xrightarrow{a} q'\}; \\ \mbox{Win}[q_0] \leftarrow (q_0 \in Goal ? 1: 0); \\ \mbox{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

<u>Main:</u>

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {q'};
         Depend[q'] \leftarrow \{(q, a, q')\};
         Win[q'] \leftarrow (q' \in Goal ? 1 : 0):
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \rightarrow});
         if Win[q'] then Waiting \leftarrow Waiting \cup \{e\};
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< ロ > < 同 > < 三 > < 三 > .



$$\mathbf{e} = (\ell_1, c_1, \ell_2)$$

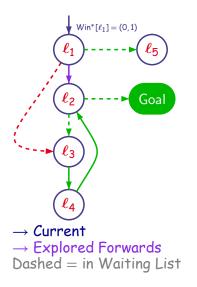
Initialization: Passed ← {q_0};

```
 \begin{array}{l} \text{Waiting} \leftarrow \{(q_0, a, q') \mid a \in Act \ q \xrightarrow{a} q'\};\\ \text{Win}[q_0] \leftarrow (q_0 \in Goal \ ? \ 1: 0);\\ \text{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

Main:

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow \{(q, a, q')\};
         Win[q'] \leftarrow (q' \in Goal ? 1 : 0):
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \rightarrow});
         if Win[a'] then Waiting \leftarrow Waiting \cup {e}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< □ > < 🗗 >



$$\mathbf{e} = (\ell_1, c_1, \ell_2)$$

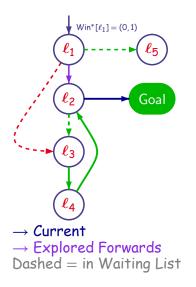
Initialization: Passed ← {ao};

```
\begin{array}{l} \text{Vased} \leftarrow \{q_0\};\\ \text{Waiting} \leftarrow \{(q_0, a, q') \mid a \in \mathsf{Act} q \xrightarrow{a} q'\};\\ \text{Win}[q_0] \leftarrow (q_0 \in \mathsf{Goal} ? 1: 0);\\ \text{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

Main:

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow \{(q, a, q')\};
         Win[q'] \leftarrow (q' \in Goal ? 1 : 0);
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \rightarrow});
         if Win[a'] then Waiting \leftarrow Waiting \cup {e}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< □ > < 🗗 >



$$\mathbf{e} = (\ell_2, \mathbf{c}_2, \mathsf{Goal})$$

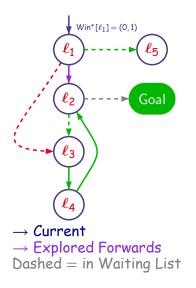
Initialization:

```
\begin{array}{l} \mbox{Passed} \leftarrow \{q_0\}; \\ \mbox{Waiting} \leftarrow \{(q_0, a, q') \mid a \in Act \; q \xrightarrow{a} q'\}; \\ \mbox{Win}[q_0] \leftarrow (q_0 \in Goal ? 1: 0); \\ \mbox{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

<u>Main:</u>

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow \{(q, a, q')\};
         Win[q'] \leftarrow (q' \in Goal ? 1 : 0);
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \rightarrow});
         if Win[a'] then Waiting \leftarrow Waiting \cup {e}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< □ > < 🗗 >



 $\mathbf{e} = (\ell_2, \mathbf{c}_2, \text{Goal})$

Initialization:

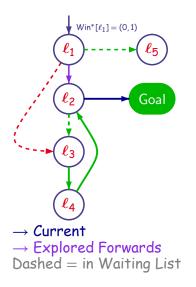
```
\begin{array}{l} \mbox{Passed} \leftarrow \{q_0\}; \\ \mbox{Waiting} \leftarrow \{(q_0, a, q') \mid a \in Act \; q \xrightarrow{a} q'\}; \\ \mbox{Win}[q_0] \leftarrow (q_0 \in Goal ? 1: 0); \\ \mbox{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

<u>Main:</u>

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow \{(q, a, q')\};
         Win[q'] \leftarrow (q' \in Goal ? 1:0);
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \rightarrow});
         if Win[a'] then Waitina \leftarrow Waitina \cup \{e\}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< A >

< □ ▶



$$\mathbf{e} = (\ell_2, \mathbf{c}_2, \mathsf{Goal})$$

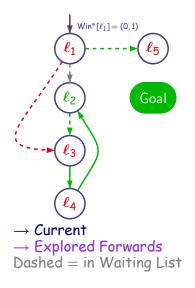
Initialization:

```
\begin{array}{l} \mbox{Passed} \leftarrow \{q_0\}; \\ \mbox{Waiting} \leftarrow \{(q_0, a, q') \mid a \in Act \; q \xrightarrow{a} q'\}; \\ \mbox{Win}[q_0] \leftarrow (q_0 \in Goal ? 1: 0); \\ \mbox{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

<u>Main:</u>

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow \{(q, a, q')\};
         Win[q'] \leftarrow (q' \in Goal ? 1 : 0);
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \rightarrow});
         if Win[a'] then Waiting \leftarrow Waiting \cup {e}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< □ > < 🗗 >



$$\mathbf{e} = (\ell_2, \mathbf{c}_2, \mathsf{Goal})$$

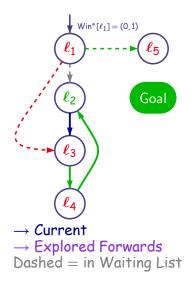
Initialization:

```
\begin{array}{l} \mbox{Passed} \leftarrow \{q_0\}; \\ \mbox{Waiting} \leftarrow \{(q_0, a, q') \mid a \in Act \; q \xrightarrow{a} q'\}; \\ \mbox{Win}[q_0] \leftarrow (q_0 \in Goal ? 1: 0); \\ \mbox{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

<u>Main:</u>

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow \{(q, a, q')\};
         Win[q'] \leftarrow (q' \in Goal ? 1 : 0);
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \rightarrow});
         if Win[a'] then Waiting \leftarrow Waiting \cup {e}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< □ > < 🗗 >



$$\mathbf{e} = (\ell_2, \mathbf{c}_3, \ell_3)$$

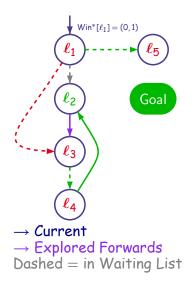
Initialization: Passed ← {ao};

```
\begin{array}{l} \text{Passed} \leftarrow \{q_0\};\\ \text{Waiting} \leftarrow \{(q_0, a, q') \mid a \in \mathsf{Act} q \xrightarrow{a} q'\};\\ \text{Win}[q_0] \leftarrow (q_0 \in \mathsf{Goal} ? 1: 0);\\ \text{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

Main:

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow \{(q, a, q')\};
         Win[q'] \leftarrow (q' \in Goal ? 1 : 0);
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \rightarrow});
         if Win[a'] then Waitina \leftarrow Waitina \cup \{e\}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< □ > < 🗗 >



$$\mathbf{e} = (\ell_2, \mathbf{c}_3, \ell_3)$$

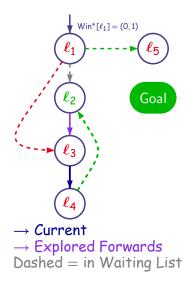
Initialization:

```
\begin{array}{l} \hline \text{Passed} \leftarrow \{q_0\};\\ \text{Waiting} \leftarrow \{(q_0, a, q') \mid a \in \mathsf{Act} q \xrightarrow{a} q'\};\\ \text{Win}[q_0] \leftarrow (q_0 \in \mathsf{Goal} ? 1: 0);\\ \text{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

Main:

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow \{(q, a, q')\};
         Win[q'] \leftarrow (q' \in Goal ? 1 : 0);
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \rightarrow});
         if Win[a'] then Waitina \leftarrow Waitina \cup \{e\}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< ロ > < 同 >



$$\mathbf{e} = (\ell_2, \mathbf{c}_3, \ell_3)$$

Initialization:

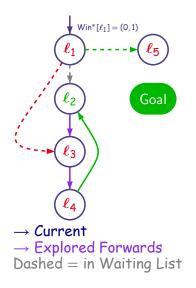
```
\begin{array}{l} \mbox{Passed} \leftarrow \{q_0\}; \\ \mbox{Waiting} \leftarrow \{(q_0, a, q') \mid a \in Act \; q \xrightarrow{a} q'\}; \\ \mbox{Win}[q_0] \leftarrow (q_0 \in Goal ? 1: 0); \\ \mbox{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

<u>Main:</u>

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow \{(q, a, q')\};
         Win[q'] \leftarrow (q' \in Goal ? 1 : 0):
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \rightarrow});
         if Win[a'] then Waitina \leftarrow Waitina \cup \{e\}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< A >

< □ ▶



$$\mathbf{e} = (\ell_2, \mathbf{c}_3, \ell_3)$$

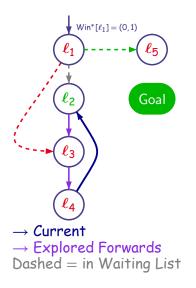
Initialization:

```
\begin{array}{l} \hline \text{Passed} \leftarrow \{q_0\};\\ \text{Waiting} \leftarrow \{(q_0, a, q') \mid a \in \text{Act } q \xrightarrow{a} q'\};\\ \text{Win}[q_0] \leftarrow (q_0 \in \text{Goal ? } 1:0);\\ \text{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

<u>Main:</u>

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow \{(q, a, q')\};
         Win[q'] \leftarrow (q' \in Goal ? 1 : 0);
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \rightarrow});
         if Win[a'] then Waitina \leftarrow Waitina \cup \{e\}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< □ > < 🗗 >



$$\mathbf{e}=(\ell_4,c_5,\ell_2)$$

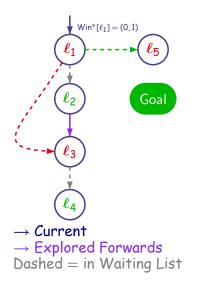
Initialization:

```
\begin{array}{l} \hline \text{Passed} \leftarrow \{q_0\};\\ \text{Waiting} \leftarrow \{(q_0, a, q') \mid a \in \mathsf{Act} q \xrightarrow{a} q'\};\\ \text{Win}[q_0] \leftarrow (q_0 \in \mathsf{Goal} ? 1: 0);\\ \text{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

Main:

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow \{(q, a, q')\};
         Win[q'] \leftarrow (q' \in Goal ? 1 : 0);
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \rightarrow});
         if Win[a'] then Waitina \leftarrow Waitina \cup \{e\}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< □ > < 🗗 >



$$\mathbf{e}=(\ell_4,c_5,\ell_2)$$

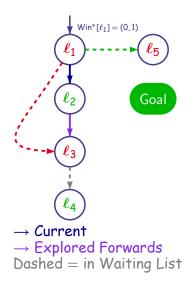
Initialization:

```
\begin{array}{l} \mbox{Passed} \leftarrow \{q_0\}; \\ \mbox{Waiting} \leftarrow \{(q_0, a, q') \mid a \in Act \; q \xrightarrow{a} q'\}; \\ \mbox{Win}[q_0] \leftarrow (q_0 \in Goal ? 1: 0); \\ \mbox{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

Main:

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow {(q, a, q')};
         Win[q'] \leftarrow (q' \in Goal ? 1:0);
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \xrightarrow{u}});
         if Win[a'] then Waitina \leftarrow Waitina \cup \{e\}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< ロ > < 何 >



$$\mathbf{e} = (\ell_1, c_1, \ell_2)$$

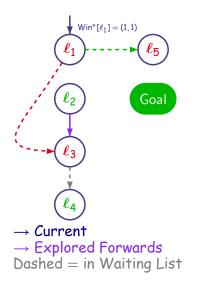
Initialization: Passed ← {ao};

```
\begin{array}{l} \text{Variance} \leftarrow \{q_0\}, \\ \text{Waiting} \leftarrow \{(q_0, a, q') \mid a \in \text{Act } q \xrightarrow{a} q'\}; \\ \text{Win}[q_0] \leftarrow (q_0 \in \text{Goal } ? 1: 0); \\ \text{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

Main:

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow \{(q, a, q')\};
         Win[q'] \leftarrow (q' \in Goal ? 1 : 0):
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \xrightarrow{u}});
         if Win[a'] then Waitina \leftarrow Waitina \cup \{e\}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< □ > < 🗗 >



$$\mathbf{e} = (\ell_1, c_1, \ell_2)$$

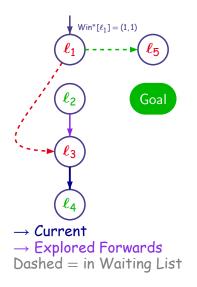
Initialization: Passed ← {ao};

```
Waiting \leftarrow \{(q), a, q') \mid a \in Act q \xrightarrow{a} q'\};
Win[q_0] \leftarrow (q_0 \in Goal ? 1: 0);
Depend[q_0] \leftarrow \emptyset;
```

Main:

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow {(q, a, q')};
         Win[q'] \leftarrow (q' \in Goal ? 1:0);
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \xrightarrow{u}});
         if Win[a'] then Waitina \leftarrow Waitina \cup \{e\}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< ロ > < 何 >



$$\mathbf{e} = (\ell_3, \mathbf{c}_4, \ell_4)$$

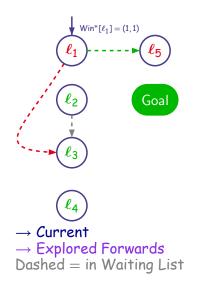
Initialization:

```
\begin{array}{l} \hline \text{Passed} \leftarrow \{q_0\};\\ \text{Waiting} \leftarrow \{(q_0, a, q') \mid a \in \text{Act } q \xrightarrow{a} q'\};\\ \text{Win}[q_0] \leftarrow (q_0 \in \text{Goal ? } 1:0);\\ \text{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

Main:

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow {(q, a, q')};
         Win[q'] \leftarrow (q' \in Goal ? 1:0);
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \xrightarrow{u}});
         if Win[a'] then Waitina \leftarrow Waitina \cup \{e\}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< ロ > < 何 >



$$\mathbf{e} = (\ell_3, \mathbf{c}_4, \ell_4)$$

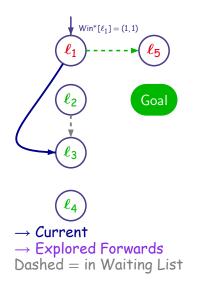
Initialization:

```
\begin{array}{l} \hline \text{Passed} \leftarrow \{q_0\};\\ \text{Waiting} \leftarrow \{(q_0, a, q') \mid a \in \text{Act } q \xrightarrow{a} q'\};\\ \text{Win}[q_0] \leftarrow (q_0 \in \text{Goal ? } 1:0);\\ \text{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

<u>Main:</u>

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow {(q, a, q')};
         Win[q'] \leftarrow (q' \in Goal ? 1:0);
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \rightarrow});
         if Win[a'] then Waitina \leftarrow Waitina \cup \{e\}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< ロ > < 何 >



$$\mathbf{e} = (\ell_3, \mathbf{c}_4, \ell_4)$$

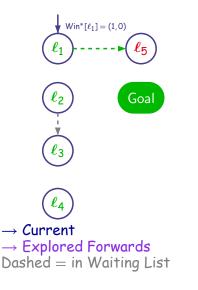
Initialization:

```
\begin{array}{l} \mbox{Passed} \leftarrow \{q_0\}; \\ \mbox{Waiting} \leftarrow \{(q_0, a, q') \mid a \in Act \; q \xrightarrow{a} q'\}; \\ \mbox{Win}[q_0] \leftarrow (q_0 \in Goal ? 1: 0); \\ \mbox{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

<u>Main:</u>

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow {(q, a, q')};
         Win[q'] \leftarrow (q' \in Goal ? 1:0);
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \rightarrow});
         if Win[a'] then Waitina \leftarrow Waitina \cup \{e\}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< ロ > < 同 > < 三 > < 三 > :



$$\mathbf{e} = (\ell_3, \mathbf{c}_4, \ell_4)$$

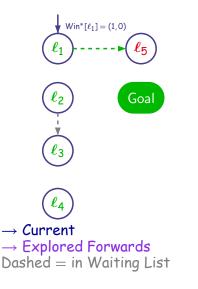
Initialization:

```
\begin{array}{l} \hline \text{Passed} \leftarrow \{q_0\};\\ \text{Waiting} \leftarrow \{(q_0, a, q') \mid a \in \mathsf{Act} q \xrightarrow{a} q'\};\\ \text{Win}[q_0] \leftarrow (q_0 \in \mathsf{Goal} ? 1: 0);\\ \text{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

Main:

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow {(q, a, q')};
         Win[q'] \leftarrow (q' \in Goal ? 1:0);
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \rightarrow});
         if Win[a'] then Waitina \leftarrow Waitina \cup \{e\}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< □ > < 🗗 >



$$\mathbf{e} = (\ell_3, \mathbf{c}_4, \ell_4)$$

Initialization:

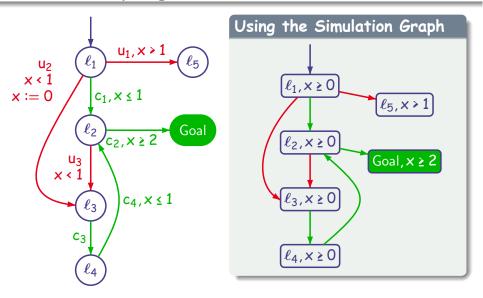
```
\begin{array}{l} \hline \text{Passed} \leftarrow \{q_0\};\\ \text{Waiting} \leftarrow \{(q_0, a, q') \mid a \in \text{Act } q \xrightarrow{a} q'\};\\ \text{Win}[q_0] \leftarrow (q_0 \in \text{Goal ? } 1:0);\\ \text{Depend}[q_0] \leftarrow \emptyset; \end{array}
```

<u>Main:</u>

```
while ((Waiting \neq \emptyset) \land Win[q_0] \neq 1)) do
      e = (q, a, q') \leftarrow pop(Waiting);
      if a' ∉ Passed then {
         Passed \leftarrow Passed \cup {a'}:
         Depend[q'] \leftarrow {(q, a, q')};
         Win[q'] \leftarrow (q' \in Goal ? 1:0);
         Waiting \leftarrow Waiting \cup \{(q', a, q'') \mid q' \xrightarrow{a} q''\};
         Win*[q] \leftarrow (0, #{q \rightarrow});
         if Win[a'] then Waitina \leftarrow Waitina \cup \{e\}:
      else (* reevaluate *)
         Win*[q] \leftarrow Update(Win*[q]);
         if (Win^*[q] = (k, 0) \land k \ge 1) then {
            Waiting \leftarrow Waiting \cup Depend[q];
            Win[q] \leftarrow 1;
         if Win[q'] = 0 then Depend[q'] \leftarrow Depend[q'] \cup \{e\};
      endif
endwhile
```

< ロ > < 何 >

Advanced Subjects Efficient Algorithms for Controller Synthesis On-The-Fly Algorithm for Timed Games (1)



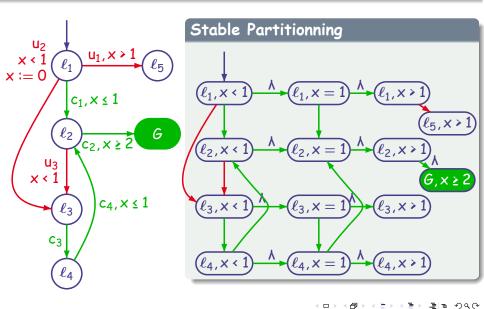
Journées FAC (April 2008)

∍

-

<ロ> < 四> < 四> < 回> < 三> < 三> < 三>

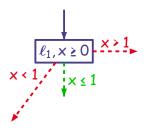
Advanced Subjects Efficient Algorithms for Controller Synthesis Second Try (2) [Altisen & Tripakis'99, Altisen & Tripakis'02]



Towards a True On-The-Fly Algorithm

To Do:

- Write a Symbolic version of Liu & Smolka
- Use Symbolic states and Transitions
- Apply this to Timed Games
- Key issues to be adressed:
 - Symbolic States can be partially winning compared to finite state games where 0 or 1
 - When to propagate backwards ?
 - Termination, Complexity ?



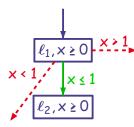
Initialization:

 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, \alpha, S') \mid S' = \textit{Post}_a(S_0)^{\curvearrowleft}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}^{X}_{20});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

Main:

while ((Waiting $\neq \emptyset) \land ((\ell_0, 0) \notin Win[S_0]))$ do $e = (S, a, S') \leftarrow pop(Waiting);$ if S' ∉ Passed then Passed \leftarrow Passed \cup {S'}; Depend[S'] \leftarrow {(S,a,S')}; Win[S'] \leftarrow S' \cap ({Goal} × \mathbb{R}_{30}^{\times}); Waiting \leftarrow Waiting $\cup \{(S', a, S'') \mid S'' = Post_a(S')^{\nearrow}\};$ if $Win[S'] \neq \emptyset$ then $Waiting \leftarrow Waiting \cup \{e\};$ else (* reevaluate *) $\mathsf{Win}^* \leftarrow \mathsf{Pred}_{\mathsf{t}}(\mathsf{Win}[\mathsf{S}] \cup \bigcup_{\varsigma \stackrel{c}{\hookrightarrow} \mathsf{T}} \mathsf{cPred}(\mathsf{Win}[\mathsf{T}]),$ $\bigcup_{u} uPred(T \setminus Win[T])) \cap S;$ if $(Win[S] \subseteq Win^*)$ then Waiting \leftarrow Waiting \cup Depend[S]; Win[S] \leftarrow Win*; Depend[S'] \leftarrow Depend[S'] \cup {e}: endif endwhile

< ロ > < 同 > < 三 > < 三 >



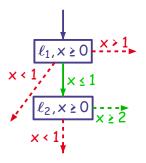
Initialization:

 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, \alpha, S') \mid S' = \textit{Post}_a(S_0)^{\swarrow}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}^{X}_{20});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

Main:

while ((Waiting $\neq \emptyset) \land ((\ell_0, 0) \notin Win[S_0]))$ do $e = (S, a, S') \leftarrow pop(Waiting);$ if $S' \notin Passed$ then Passed \leftarrow Passed \cup {S'}; Depend[S'] \leftarrow {(S,a,S')}; Win[S'] \leftarrow S' \cap ({Goal} × \mathbb{R}_{30}^{\times}); Waiting \leftarrow Waiting $\cup \{(S', a, S'') \mid S'' = Post_a(S')^{\nearrow}\};$ if $Win[S'] \neq \emptyset$ then $Waiting \leftarrow Waiting \cup \{e\}$; else (* reevaluate *) $Win^* \leftarrow Pred_t(Win[S] \cup \bigcup_{c \in T} cPred(Win[T]),$ $\bigcup_{u \in T} uPred(T \setminus Win[T])) \cap S;$ if $(Win[S] \subseteq Win^*)$ then Waiting \leftarrow Waiting \cup Depend[S]; Win[S] \leftarrow Win*; Depend[S'] \leftarrow Depend[S'] \cup {e}: endif endwhile

< ロ > < 同 > < 三 > < 三



➡ Skip algorithm

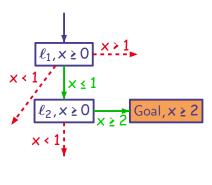
Initialization:

Passed ← {S₀} where S₀ = {($\ell_0, 0$)}⁷; Waiting ← {(S₀, a, S') | S' = Post_a(S₀)⁷}; Win[S₀] ← S₀ ∩ {{Goal} × \mathbb{X}_{20}^{x} ; Depend{S₀] ← 0;

Main:

while ((Waiting $\neq \emptyset) \land ((\ell_0, 0) \notin Win[S_0]))$ do $e = (S, a, S') \leftarrow pop(Waiting);$ if S' ∉ Passed then Passed \leftarrow Passed \cup {S'}; Depend[S'] \leftarrow {(S,a,S')}; Win[S'] \leftarrow S' \cap ({Goal} × \mathbb{R}_{30}^{\times}); Waiting \leftarrow Waiting $\cup \{(S', a, S'') \mid S'' = Post_a(S')^{\nearrow}\};$ if $Win[S'] \neq \emptyset$ then $Waiting \leftarrow Waiting \cup \{e\}$; else (* reevaluate *) $Win^* \leftarrow Pred_t(Win[S] \cup \bigcup_{c \in T} cPred(Win[T]),$ $\bigcup_{u \in T} uPred(T \setminus Win[T])) \cap S;$ if $(Win[S] \subseteq Win^*)$ then Waiting \leftarrow Waiting \cup Depend[S]; Win[S] \leftarrow Win*; Depend[S'] \leftarrow Depend[S'] \cup {e}: endif endwhile

< ロ > < 同 > < 三 > < 三



Initialization:

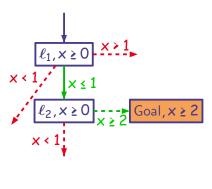
 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \textit{Post}_a(S_0)^{\curvearrowleft}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}^{X}_{20});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

<u>Main:</u>

while ((Waiting $\neq \emptyset) \land ((\ell_0, 0) \notin Win[S_0]))$ do $e = (S, a, S') \leftarrow pop(Waiting);$ if $S' \notin Passed$ then Passed \leftarrow Passed \cup {S'}; Depend[S'] \leftarrow {(S,a,S')}; Win[S'] \leftarrow S' \cap ({Goal} × \mathbb{R}^{X}_{A}); Waiting \leftarrow Waiting $\cup \{(S', a, S'') \mid S'' = Post_a(S')^{\nearrow}\};$ if $Win[S'] \neq \emptyset$ then $Waiting \leftarrow Waiting \cup \{e\}$; else (* reevaluate *) $Win^* \leftarrow Pred_t(Win[S] \cup \bigcup_{c \in T} cPred(Win[T]),$ $\bigcup_{u \in T} uPred(T \setminus Win[T])) \cap S;$ if $(Win[S] \subseteq Win^*)$ then Waiting \leftarrow Waiting \cup Depend[S]; Win[S] \leftarrow Win*; Depend[S'] \leftarrow Depend[S'] \cup {e}: endif endwhile

< 🗇 🕨

< □ ▶



Initialization:

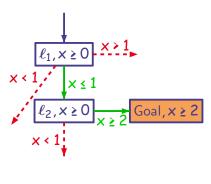
 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \textit{Post}_a(S_0)^{\nearrow}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}_{20}^{X});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

<u>Main:</u>

while ((Waiting $\neq \emptyset) \land ((\ell_0, 0) \notin Win[S_0]))$ do $e = (S, a, S') \leftarrow pop(Waiting);$ if S' ∉ Passed then Passed \leftarrow Passed \cup {S'}; Depend[S'] \leftarrow {(S,a,S')}; Win[S'] \leftarrow S' \cap ({Goal} × \mathbb{R}^{X}_{A}); Waiting \leftarrow Waiting $\cup \{(S', a, S'') \mid S'' = Post_a(S')^{\nearrow}\};$ if $Win[S'] \neq \emptyset$ then $Waiting \leftarrow Waiting \cup \{e\}$; else (* reevaluate *) $Win^* \leftarrow Pred_t(Win[S] \cup \bigcup_{c \in T} cPred(Win[T]),$ $\bigcup_{u \in T} uPred(T \setminus Win[T])) \cap S;$ if $(Win[S] \subseteq Win^*)$ then Waiting \leftarrow Waiting \cup Depend[S]; Win[S] \leftarrow Win*; Depend[S'] \leftarrow Depend[S'] \cup {e}: endif endwhile

< □ ▶

・ 同 ト ・ 三 ト ・ 三



Initialization:

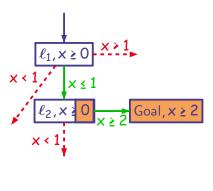
 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \textit{Post}_a(S_0)^{\nearrow}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}_{20}^{X});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

<u>Main:</u>

while ((Waiting $\neq \emptyset) \land ((\ell_0, 0) \notin Win[S_0]))$ do $e = (S, a, S') \leftarrow pop(Waiting);$ if S' ∉ Passed then Passed \leftarrow Passed \cup {S'}; Depend[S'] \leftarrow {(S,a,S')}; Win[S'] \leftarrow S' \cap ({Goal} × \mathbb{R}^{X}_{A}); Waiting \leftarrow Waiting $\cup \{(S', a, S'') \mid S'' = Post_a(S')^{\nearrow}\};$ if $Win[S'] \neq \emptyset$ then $Waiting \leftarrow Waiting \cup \{e\}$; else (* reevaluate *) $Win^* \leftarrow Pred_t(Win[S] \cup \bigcup_{c \in T} cPred(Win[T]),$ $\bigcup_{u \in T} uPred(T \setminus Win[T])) \cap S;$ if $(Win[S] \subseteq Win^*)$ then Waiting \leftarrow Waiting \cup Depend[S]; Win[S] \leftarrow Win*; Depend[S'] \leftarrow Depend[S'] \cup {e}: endif endwhile

< 🗇 🕨

< □ ▶



Initialization:

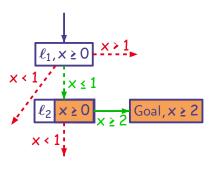
 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \textit{Post}_a(S_0)^{\nearrow}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}_{20}^{X});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

Main:

while ((Waiting $\neq \emptyset) \land ((\ell_0, 0) \notin Win[S_0]))$ do $e = (S, a, S') \leftarrow pop(Waiting);$ if S' ∉ Passed then Passed \leftarrow Passed \cup {S'}; Depend[S'] \leftarrow {(S,a,S')}; Win[S'] \leftarrow S' \cap ({Goal} × \mathbb{R}^{X}_{A}); Waiting \leftarrow Waiting $\cup \{(S', a, S'') \mid S'' = Post_a(S')^{\nearrow}\};$ if $Win[S'] \neq \emptyset$ then $Waiting \leftarrow Waiting \cup \{e\}$; else (* reevaluate *) $Win^* \leftarrow Pred_t(Win[S] \cup \bigcup_{c \in T} cPred(Win[T]),$ $\bigcup_{u \in T} uPred(T \setminus Win[T])) \cap S;$ if $(Win[S] \subseteq Win^*)$ then Waiting \leftarrow Waiting \cup Depend[S]; Win[S] \leftarrow Win*; Depend[S'] \leftarrow Depend[S'] \cup {e}: endif endwhile

< 🗇 🕨

< □ ▶



Initialization:

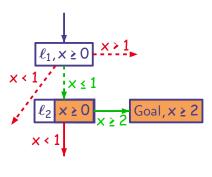
 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \textit{Post}_a(S_0)^{\nearrow}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}_{20}^{X});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

Main:

while ((Waiting $\neq \emptyset) \land ((\ell_0, 0) \notin Win[S_0]))$ do $e = (S, a, S') \leftarrow pop(Waiting);$ if S' ∉ Passed then Passed \leftarrow Passed \cup {S'}; Depend[S'] \leftarrow {(S,a,S')}; Win[S'] \leftarrow S' \cap ({Goal} × \mathbb{R}_{30}^{\times}); Waiting \leftarrow Waiting $\cup \{(S', a, S'') \mid S'' = Post_a(S')^{\nearrow}\};$ if $Win[S'] \neq \emptyset$ then $Waiting \leftarrow Waiting \cup \{e\}$; else (* reevaluate *) $\mathsf{Win}^* \leftarrow \mathsf{Pred}_{\mathsf{t}}(\mathsf{Win}[\mathsf{S}] \cup \bigcup_{\varsigma \leftarrow \mathsf{T}} \mathsf{cPred}(\mathsf{Win}[\mathsf{T}]),$ $\bigcup_{u \in T} uPred(T \setminus Win[T])) \cap S;$ if $(Win[S] \subseteq Win^*)$ then Waiting \leftarrow Waiting \cup Depend[S]; Win[S] \leftarrow Win*; Depend[S'] \leftarrow Depend[S'] \cup {e}: endif endwhile

< 🗇 🕨

< □ ▶



Initialization:

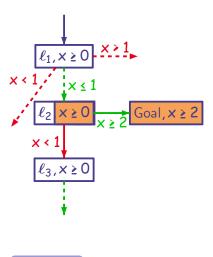
 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \textit{Post}_a(S_0)^{\curvearrowleft}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}^{X}_{20});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

<u>Main:</u>

while ((Waiting $\neq \emptyset) \land ((\ell_0, 0) \notin Win[S_0]))$ do $e = (S, a, S') \leftarrow pop(Waiting);$ if $S' \notin Passed$ then Passed \leftarrow Passed \cup {S'}; Depend[S'] \leftarrow {(S,a,S')}; Win[S'] \leftarrow S' \cap ({Goal} × \mathbb{R}_{30}^{\times}); Waiting \leftarrow Waiting $\cup \{(S', a, S'') \mid S'' = Post_a(S')^{\nearrow}\};$ if $Win[S'] \neq \emptyset$ then $Waiting \leftarrow Waiting \cup \{e\}$; else (* reevaluate *) $Win^* \leftarrow Pred_t(Win[S] \cup \bigcup_{c \in T} cPred(Win[T]),$ $\bigcup_{u \in T} uPred(T \setminus Win[T])) \cap S;$ if $(Win[S] \subseteq Win^*)$ then Waiting \leftarrow Waiting \cup Depend[S]; Win[S] \leftarrow Win*; Depend[S'] \leftarrow Depend[S'] \cup {e}: endif endwhile

< 🗇 🕨

< □ ▶



Initialization:

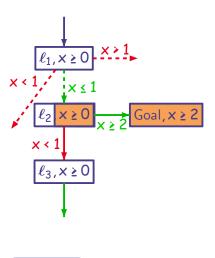
 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \textit{Post}_a(S_0)^{\nearrow}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}_{20}^{X});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

Main:

while ((Waiting $\neq \emptyset) \land ((\ell_0, 0) \notin Win[S_0]))$ do $e = (S, a, S') \leftarrow pop(Waiting);$ if S' ∉ Passed then Passed \leftarrow Passed \cup {S'}; Depend[S'] \leftarrow {(S,a,S')}; Win[S'] \leftarrow S' \cap ({Goal} × \mathbb{R}_{30}^{\times}); Waiting \leftarrow Waiting $\cup \{(S', a, S'') \mid S'' = Post_a(S')^{\nearrow}\};$ if $Win[S'] \neq \emptyset$ then $Waiting \leftarrow Waiting \cup \{e\}$; else (* reevaluate *) $Win^* \leftarrow Pred_t(Win[S] \cup \bigcup_{c \in T} cPred(Win[T]),$ $\bigcup_{u \in T} uPred(T \setminus Win[T])) \cap S;$ if $(Win[S] \subseteq Win^*)$ then Waiting \leftarrow Waiting \cup Depend[S]; Win[S] \leftarrow Win*; Depend[S'] \leftarrow Depend[S'] \cup {e}: endif endwhile

< □ ▶

・ 同 ト ・ 三 ト ・ 三



Initialization:

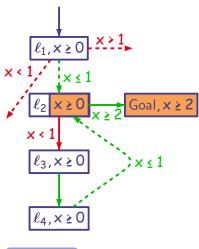
 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \textit{Post}_a(S_0)^{\nearrow}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}_{20}^{X});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

Main:

while ((Waiting $\neq \emptyset) \land ((\ell_0, 0) \notin Win[S_0]))$ do $e = (S, a, S') \leftarrow pop(Waiting);$ if $S' \notin Passed$ then Passed \leftarrow Passed \cup {S'}; Depend[S'] \leftarrow {(S,a,S')}; Win[S'] \leftarrow S' \cap ({Goal} × \mathbb{R}_{30}^{\times}); Waiting \leftarrow Waiting $\cup \{(S', a, S'') \mid S'' = Post_a(S')^{\nearrow}\};$ if $Win[S'] \neq \emptyset$ then $Waiting \leftarrow Waiting \cup \{e\}$; else (* reevaluate *) $Win^* \leftarrow Pred_t(Win[S] \cup \bigcup_{c \in T} cPred(Win[T]),$ $\bigcup_{u \in T} uPred(T \setminus Win[T])) \cap S;$ if $(Win[S] \subseteq Win^*)$ then Waiting \leftarrow Waiting \cup Depend[S]; Win[S] \leftarrow Win*; Depend[S'] \leftarrow Depend[S'] \cup {e}: endif endwhile

< □ ▶

・ 同 ト ・ 三 ト ・ 三



▶ Skip algorithm

Initialization:

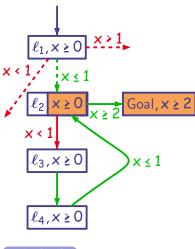
 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \textit{Post}_a(S_0)^{\curvearrowleft}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}^{X}_{20});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

Main:

while ((Waiting $\neq \emptyset) \land ((\ell_0, 0) \notin Win[S_0]))$ do $e = (S, a, S') \leftarrow pop(Waiting);$ if S' ∉ Passed then Passed \leftarrow Passed \cup {S'}; Depend[S'] \leftarrow {(S,a,S')}; Win[S'] \leftarrow S' \cap ({Goal} × \mathbb{R}^{X}_{A}); Waiting \leftarrow Waiting $\cup \{(S', a, S'') \mid S'' = Post_a(S')^{\nearrow}\};$ if $Win[S'] \neq \emptyset$ then $Waiting \leftarrow Waiting \cup \{e\}$; else (* reevaluate *) $Win^* \leftarrow Pred_t(Win[S] \cup \bigcup_{c \leq T} cPred(Win[T]),$ $\bigcup_{u \in T} uPred(T \setminus Win[T])) \cap S;$ if $(Win[S] \subseteq Win^*)$ then Waiting \leftarrow Waiting \cup Depend[S]; Win[S] \leftarrow Win*; Depend[S'] \leftarrow Depend[S'] \cup {e}: endif endwhile

< □ ▶

・ 同 ト ・ 三 ト ・ 三



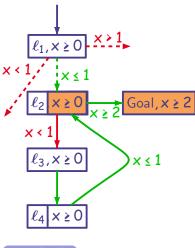
➡ Skip algorithm

Initialization:

 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \textit{Post}_a(S_0)^{\curvearrowleft}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}^{X}_{20});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

Main:

< ロ > < 同 > < 三 > < 三 >



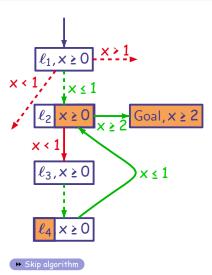
▶ Skip algorithm

Initialization:

 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \textit{Post}_a(S_0)^{\curvearrowleft}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}^{X}_{20});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

Main:

< ロ > < 同 > < 三 > < 三 >

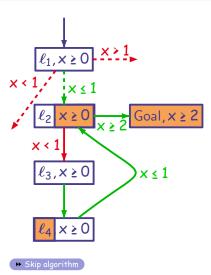


Initialization:

Passed ← {S₀} where S₀ = {($\ell_0, 0$)}⁷; Waiting ← {(S₀, a, S') | S' = Post_a(S₀)⁷}; Win[S₀] ← S₀ ∩ {{Goal} × \mathbb{X}_{20}^{x} ; Depend{S₀] ← 0;

Main:

< ロ > < 同 > < 三 > < 三 >



Initialization:

 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \textit{Post}_a(S_0)^{\nearrow}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}_{20}^{X});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

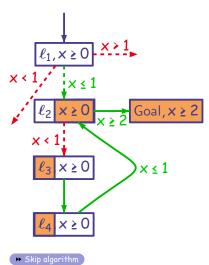
Main:

while ((Waiting $\neq \emptyset) \land ((\ell_0, 0) \notin Win[S_0]))$ do $e = (S, a, S') \leftarrow pop(Waiting);$ if S' ∉ Passed then Passed \leftarrow Passed \cup {S'}; Depend[S'] \leftarrow {(S,a,S')}; Win[S'] \leftarrow S' \cap ({Goal} × \mathbb{R}_{30}^{\times}); Waiting \leftarrow Waiting $\cup \{(S', a, S'') \mid S'' = Post_a(S')^{\nearrow}\};$ if $Win[S'] \neq \emptyset$ then $Waiting \leftarrow Waiting \cup \{e\}$; else (* reevaluate *) Win* \leftarrow Pred_t(Win[S] $\cup \bigcup_{c \leq T}$ cPred(Win[T]), $\bigcup_{u \in T} uPred(T \setminus Win[T])) \cap S;$ if $(Win[S] \subseteq Win^*)$ then Waiting \leftarrow Waiting \cup Depend[S]; Win[S] \leftarrow Win*; Depend[S'] \leftarrow Depend[S'] \cup {e}: endif endwhile

< ロ > < 同 > < 三 > < 三 >

Journées FAC (April 2008)

-



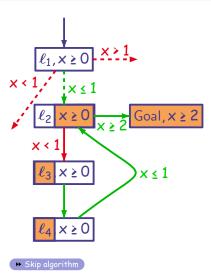
Initialization:

 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \text{Post}_a(S_0)^{\nearrow}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\text{Goal}\} \times \mathbb{R}^{X}_{20});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

Main:

while ((Waiting $\neq \emptyset) \land ((\ell_0, 0) \notin Win[S_0]))$ do $e = (S, a, S') \leftarrow pop(Waiting);$ if S' ∉ Passed then Passed \leftarrow Passed \cup {S'}; Depend[S'] \leftarrow {(S,a,S')}; Win[S'] \leftarrow S' \cap ({Goal} × \mathbb{R}_{30}^{\times}); Waiting \leftarrow Waiting $\cup \{(S', a, S'') \mid S'' = Post_a(S')^{\nearrow}\};$ if $Win[S'] \neq \emptyset$ then $Waiting \leftarrow Waiting \cup \{e\}$; else (* reevaluate *) $Win^* \leftarrow Pred_t(Win[S] \cup \bigcup_{c \leq T} cPred(Win[T]),$ $\bigcup_{u \in T} uPred(T \setminus Win[T])) \cap S;$ if $(Win[S] \subseteq Win^*)$ then Waiting \leftarrow Waiting \cup Depend[S]; Win[S] \leftarrow Win*; Depend[S'] \leftarrow Depend[S'] \cup {e}: endif endwhile

< ロ > < 同 > < 三 > < 三 >



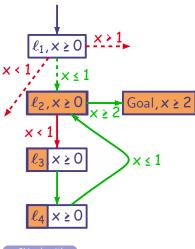
Initialization:

 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \textit{Post}_a(S_0)^{\nearrow}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}_{20}^{X});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

Main:

while ((Waiting $\neq \emptyset) \land ((\ell_0, 0) \notin Win[S_0]))$ do $e = (S, a, S') \leftarrow pop(Waiting);$ if S' ∉ Passed then Passed \leftarrow Passed \cup {S'}; Depend[S'] \leftarrow {(S,a,S')}; Win[S'] \leftarrow S' \cap ({Goal} × \mathbb{R}_{30}^{\times}); Waiting \leftarrow Waiting $\cup \{(S', a, S'') \mid S'' = Post_a(S')^{\nearrow}\};$ if $Win[S'] \neq \emptyset$ then $Waiting \leftarrow Waiting \cup \{e\}$; else (* reevaluate *) Win* \leftarrow Pred_t(Win[S] $\cup \bigcup_{c \leq T}$ cPred(Win[T]), $\bigcup_{u \in T} uPred(T \setminus Win[T])) \cap S;$ if $(Win[S] \subseteq Win^*)$ then Waiting ← Waiting ∪ Depend[S]; Win[S] ← Win*; Depend[S'] \leftarrow Depend[S'] \cup {e}: endif endwhile

< ロ > < 同 > < 三 > < 三 >



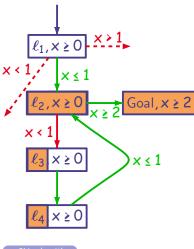
Initialization:

 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \textit{Post}_a(S_0)^{\nearrow}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}_{20}^{X});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

Main:

while ((Waiting $\neq \emptyset) \land ((\ell_0, 0) \notin Win[S_0]))$ do $e = (S, a, S') \leftarrow pop(Waiting);$ if S' ∉ Passed then Passed \leftarrow Passed \cup {S'}; Depend[S'] \leftarrow {(S,a,S')}; Win[S'] \leftarrow S' \cap ({Goal} × \mathbb{R}_{30}^{\times}); Waiting \leftarrow Waiting $\cup \{(S', a, S'') \mid S'' = Post_a(S')^{\nearrow}\};$ if $Win[S'] \neq \emptyset$ then $Waiting \leftarrow Waiting \cup \{e\}$; else (* reevaluate *) $Win^* \leftarrow Pred_t(Win[S] \cup \bigcup_{c \leq T} cPred(Win[T]),$ $\bigcup_{u \in T} uPred(T \setminus Win[T])) \cap S;$ if $(Win[S] \subseteq Win^*)$ then Waiting \leftarrow Waiting \cup Depend[S]; Win[S] \leftarrow Win*; Depend[S'] \leftarrow Depend[S'] \cup {e}: endif endwhile

< ロ > < 同 > < 三 > < 三 >



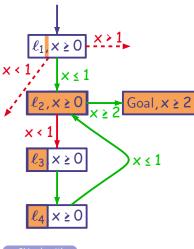
▶ Skip algorithm

Initialization:

 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \textit{Post}_a(S_0)^{\nearrow}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}_{20}^{X});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

Main:

< ロ > < 同 > < 三 > < 三 >



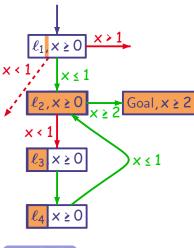
▶ Skip algorithm

Initialization:

 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \textit{Post}_a(S_0)^{\curvearrowleft}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}^{X}_{20});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

Main:

< ロ > < 同 > < 三 > < 三 >



▶ Skip algorithm

Initialization:

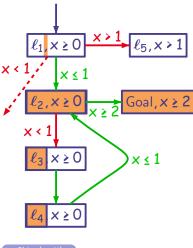
 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \textit{Post}_a(S_0)^{\curvearrowleft}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}^{X}_{20});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

Main:

< ロ > < 同 > < 三 > < 三 >

endwhile

-



» Skip algorithm

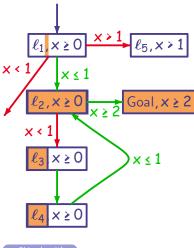
Initialization:

 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\prime}; \\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \text{Post}_a(S_0)^{\prime}\}; \\ \text{Win}[S_0] \leftarrow S_0 \cap \{\{\text{Goal}\} \times \mathbb{X}_{\chi 0}^{\prime}\}; \\ \text{Depend}[S_0] \leftarrow 0; \end{array}$

Main:

< □ ▶

・ 同 ト ・ 三 ト ・ 三



» Skip algorithm

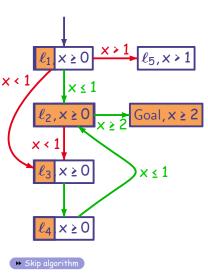
Initialization:

 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\nearrow};\\ \text{Waiting} \leftarrow \{(S_0, \alpha, S') \mid S' = \textit{Post}_a(S_0)^{\nearrow}\};\\ \text{Win}[S_0] \leftarrow S_0 \cap (\{\textit{Goal}\} \times \mathbb{R}^{X}_{20});\\ \text{Depend}[S_0] \leftarrow \emptyset; \end{array}$

Main:

< ロ > < 同 > < 三 > < 三 >

Liu & Smolka for Timed Games



Initialization:

 $\begin{array}{l} \text{Passed} \leftarrow \{S_0\} \text{ where } S_0 = \{(\ell_0, 0)\}^{\prime}; \\ \text{Waiting} \leftarrow \{(S_0, a, S') \mid S' = \text{Post}_a(S_0)^{\prime}\}; \\ \text{Win}[S_0] \leftarrow S_0 \cap \{\{\text{Goal}\} \times \mathbb{X}_{20}^{\prime}\}; \\ \text{Depend}[S_0] \leftarrow 0; \end{array}$

Main:

< ロ > < 同 > < 三 > < 三 >

endwhile

Summary of the Results

- ► A True on-the-fly algorithm for reachability control
- Winning Strategies can be computed
- Termination A symbolic edge (S,a,T) will be at most (1+ # regions(T)) times in Waiting list

Complexity

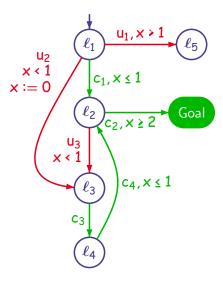
A region may be in many symbolic states Our algorithm: Not linear in the size of the region graph hence not theoretically optimal

► However ... seems good in practice with UPPAAL-TIGA

Download at http://www.cs.aau.dk/~adavid/tiga/

[Concur'05]

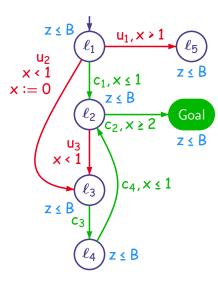
Time Optimality for Free



→ 문 → ★ 문

1

Time Optimality for Free

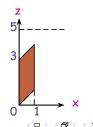


Assume:

- ► The initial state is winning
- We know an upper bound B of the (optimal) time needed to reach Goal

To compute the optimal time:

- Add a clock z (unconstrained at the beginning)
- Add a global invariant $z \leq B$



- ► Control of Timed Systems: Basics
- ► Control of Discrete Event Systems
- Control of Timed Systems
- Advanced Subjects
- Conclusion

< □ ▶

Conclusion

Conclusion

Recent Research Results:

- Implementability of controllers
- Optimality of controllers
- Efficient algorithms for solving Timed Games
- Control under Partial-Observation

Ongoing work:

- Efficient Algorithms for Safety, Büchi games
- Data Structures for optimal control
- Optimal control for infinite schedules
- Synthesis of robust controllers
- Abstraction/Refinement for synthesis of controllers

Conclusion

Conclusion

- Recent Research Results:
 - Implementability of controllers
 - Optimality of controllers
 - Efficient algorithms for solving Timed Games
 - Control under Partial-Observation
- Ongoing work:
 - Efficient Algorithms for Safety, Büchi games
 - Data Structures for optimal control
 - Optimal control for infinite schedules
 - Synthesis of robust controllers
 - Abstraction/Refinement for synthesis of controllers

Merci!

Conclusion

Conclusion

- Recent Research Results:
 - Implementability of controllers
 - Optimality of controllers
 - Efficient algorithms for solving Timed Games
 - Control under Partial-Observation
- Ongoing work:
 - Efficient Algorithms for Safety, Büchi games
 - Data Structures for optimal control
 - Optimal control for infinite schedules
 - Synthesis of robust controllers
 - Abstraction/Refinement for synthesis of controllers

Journées FAC (April 2008)

References

[Altisen & Tripakis'99]	Karine Altisen and Starros Tripakis. On-the-fly controller synthesis for discrete and dense-time systems. In World Congress on Formal Methods (FM 99), volume 1708 of Lecture Notes in Computer Science, pages 233-252. Springer, 1999.
[Altisen & Tripakis'02]	Karine Altisen and Stavros Tripakis. Tools for controller synthesis of timed systems. In Proc. 2nd Workshop on Real-Time Tools (RT-TOOLS'02), 2002. Proc. published as Technical Report 2002-025, Uppsala University, Sweden.
[Alur et al.'01]	R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata. In Proc. 4th Int. Work. Hybrid Systems: Computation and Control (HSCC'01), volume 2034 of LNCS, pages 49–62. Springer, 2001.
[Alur et al.'04]	R. Alur, M, Bernadsky, and P. Madhusudan. Optimal reachability in weighted timed games. In Proc. 31st International Colloquium on Automata, Languages and Programming (ICALP'04), Lecture Notes in Computer Science. Springer, 2004.
[Asarin & Maler'99]	E. Asarin and O. Maler. As soon as possible: Time optimal control for timed automata. In Proc. 2nd Int. Work. Hybrid Systems: Computation and Control (HSCC'99), volume 1569 of LNCS, pages 19–30. Springer, 1999.
[Alur & Dill'94]	R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science B, 126:183-235, 1994.

イロト イプト イミト イミト

References (cont.)

[De Alfaro et al.'01]	Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Symbolic algorithms for infinite-state games. In Proc. 12th International Conference on Concurrency Theory (CONCUR'01), volume 2154 of LNCS, pages 536–550. Springer, 2001.
[Asarin et al.'98]	Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis for timed automata. In Proc. IFAC Symposium on System Structure and Control, pages 469–474. Elsevier Science, 1998.
[Arnold et al.'03]	André Arnold, Aymeric Vincent, and Igor Walukiewicz. Games for synthesis of controllers with partial observation. Theoretical Computer Science, 303(1):7-34,2003.
[Larsen et al.'01]	 Kim G. Larsen, Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Paul Pettersson, Judi Romijn, and Frits Vaandrager. Minimum-cost reachability for priced timed automata. In Proc. 4th International Workshop on Hybrid Systems: Computation and Control (HSCC01), volume 2034 of Lecture Notes in Computer Science, pages 147–161. Springer, 2001.
[Bouyer et al.'06]	Patricia Bouyer, Thomas Brihaye, and Fabrice Chevalier. Control in o-minimal hybrid systems. In Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science (LICS506), pages 367–378, Seattle, Washington, USA, August 2006. IEEE Computer Society Press.
[Büchi & Landweber'69]	J.R. Büchi and L.H. Landweber. Solving sequential conditions by finite-state operators. Trans. of the AMS; 138:295-311.

Journées FAC (April 2008)

References (cont.)

[Bouyer et al.'04a]	Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal strategies in priced timed game automata. In Proc. of the 24th Int. Conf. on Foundations of Software Technology and Theoretical Computer Science (FSTTCS'04), volume 3328 of LNCS, pages 148–160. Springer, 2004.
[Bouyer et al.'04b]	Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Synthesis of optimal strategies using HyTech. In Proc. of the Workshop on Games in Design and Veri cation (GDV'04), volume 119 of Elec. Notes in Theo. Comp. Science, pages 11–31. Elsevier, 2005.
[Bouyer et al.'07]	Patricia Bouyer, Thomas Brihaye, and Fabrice Chevalier. Weighted o-minimal hybrid systems are more decidable than weighted timed automatal In Sergei N. Artemov, editor, Proceedings of the Symposium on Logical Foundations of Computer Science (LFCS'07), Lecture Notes in Computer Science, New-York, NY, USA, June 2007. Springer. To appear.
[Bouyer et al.'O6a]	Patricia Bouyer, Kim G. Larsen, Nicolas Markey, and Jacob Illum Rasmussen. Almost optimal strategies in one-clock priced timed automata. In Naveen Garg and S. Arun-Kumar, editors, Proceedings of the 26th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS'06), volume 4337 of Lecture Notes in Computer Science, pages 345-356, Kolkata, India, December 2006. Springer.
[Bouyer et al.'06b]	Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved undecidability results on weighted timed automata. Information Processing Letters, 98(5):188–194, June 2006.

References (cont.)

[Bouyer et al.'04c]	Patricia Bouyer, Ed Brinksma, and Kim G. Larsen. Staying alive as cheaply as possible. In Rajeev Alur and George J. Pappas, editors, Proceedings of the 7th International Conference on Hybrid Systems: Computation and Control (HSCC'04), volume 2993 of Lecture Notes in Computer Science, pages 203–218, Philadelphia, Pennsylvania, USA, March 2004. Springer.
[Concur'05]	F. Cassez, A. David, E. Fleury, K. Larsen, and D. Lime. Efficient on-the-fly algorithms for the analysis of timed games. In M. Abadi and L. de Alfaro, editors, Proceedings of the 16th International Conference on Concurrency Theory (CONCUR'05), volume 3653 of LNCS, pages 66–80, San Francisco, CA, USA, Aug. 2005. Springer.
[ATVA'07]	F. Cassez, A. David, K. Larsen, D. Lime, and JF. Raskin. Timed Control with Observation Based and Stuttering Invariant Strategies. In Proc. of the 5th Int. Symp. on Automated Technology for Verif ication and Analysis (ATVA'2007), LNCS, Tokyo, Oct. 2007. Springer-Verlag.
[De Wulf et al.'04a]	Martin De Wulf, Laurent Doyen, Nicoals Markey, and Jean-François Raskin. Robustness and implementability of timed automata. In Proceedings of FORMATS-FTRTFT 2004: Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, Lecture Notes in Computer Science 3253, pages 118–133. Springer-Verlag, 2004.
[De Wulf et al.'04b]	Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Almost ASAP semantics: From timed models to timed implementations. In Proceedings of HSCC 2004: Hybrid Systems5 Computation and Control, Lecture Notes in Computer Science 2993, pages 296–310. Springer-Verlag, 2004.

References (cont.)

[De Wulf et al.'05a]	Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Almost ASAP semantics: From timed models to timed implementations. Formal Aspects of Computing, 17(3):319–341, 2005.
[De Wulf et al.'05b]	Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Systematic implementation of real-time models. In Proceedings of FM 2005: Formal Methods, Lecture Notes in Computer Science 3582, pages 139–156. Springer-Verlag, 2005.
[C. et al.'02]	Franck Cassez, Thomas A. Henzinger, and Jean-François Raskin. A comparison of control problems for timed and hybrid systems. In Proc. 5th Int. Workshop on Hybrid Systems: Computation and Control (HSCC'02), volume 2289 of LNCS, pages 134–148. Springer, 2002.
[Henzinger & Kopke'99]	T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular hybrid automata. Theoretical Computer Science, 221:369-392, 1999.
[Henzinger et al.'99]	Thomas A. Henzinger, Benjamin Horowitz, and Rupak Majumdar. Rectangular hybrid games. In Proc. 10th International Conference on Concurrency Theory (CONCUR'99), volume 1664 of Lecture Notes in Computer Science, pages 320–335. Springer, 1999.
[Henzinger et al.'95]	Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What's decidable about hybrid automata? Journal of Computer and System Sciences, 57:94–124 , 1998 .
[Henzinger & Kopke'97]	Thomas A. Henzinger and Peter W. Kopke. Discrete-time control for rectangular hybrid automata. Theoretical Computer Science, 221:369-392, 1999.

References (cont.)

[Hoffmann & Wong-Toi'92]	 G. Hoffmann and Howard Wong-Toi. The input-output control of real-time discrete-event systems. In Proceedings of the 13th Annual Real-time Systems Symposium, pages 256-265. IEEE Computer Society Press, 1992.
[La Torre et al.'02]	Salvatore La Torre, Supratik Mukhopadhyay, and Aniello Murano. Optimal-reachability and control for acyclic weighted timed automata. In Proc. 2nd IFIP International Conference on Theoretical Computer Science (TCS 2002), volume 223 of IFIP Conference Proceedings, pages 485–497. Kluwer, 2002.
[Liu & Smolka'98]	X. Liu and S. A. Smolka. Simple Linear-Time Algorithm for Minimal Fixed Points. In Proc. 26th Int. Conf. on Automata, Languages and Programming (ICALP'98), volume 1443 of LNCS, pages 53-66, Aalborg, Denmark, 1998. Springer.
[Maler et al.'95]	Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers for timed systems. In Proc. 12th Annual Symposium on Theoretical Aspects of Computer Science (STACS'95), volume 900, pages 229-242. Springer, 1995.
[Ramadge & Wonham'87]	P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event processes. SIAM J. of Control and Optimization, 25:206-230, 1987
[Ramadge & Wonham'89]	P.J. Ramadge and W.M. Wonham. The control of discrete event processes. Proc. of IEEE, 77:81-98, 1989
[Brihaye et al.'05]	Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On optimal timed strategies. In FORMATS, pages 49–64, 2005.

제 문어 제 문어

References (cont.)

 [Thistle & Wonham'94]
 J.G. Thistle and W.M. Wonham. Control of infinite behavior of finite automata. SIAM J. of Control and Optimization, 32:1075-1097, 1994

 [UPPAAL-TiGA'07]
 G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, and D. Lime. Uppaal-tiga: Time for playing games! In Proceedings of 19th International Conference on Computer Aided Veri cation (CAV 07), volume 4590 of LNCS, pages 121-125, Berlin, Germany, 2007. Springer.

Journées FAC (April 2008)

Control of Timed Systems

< < >> < <</>

Timed Automata

A Timed Automaton \mathcal{A} is a tuple (L, ℓ_0 , Act, X, inv, \rightarrow) where:

- L is a finite set of locations
- ℓ_0 is the initial location
- X is a finite set of clocks
- Act is a finite set of actions
- \rightarrow is a set of transitions of the form $\ell \xrightarrow{g,a,R} \ell'$ with:
 - ▶ $\ell, \ell' \in L$,
 - ► a ∈ Act
 - a guard g which is a clock constraint over X
 - a reset set R which is the set of clocks to be reset to 0

Clock constraints are boolean combinations of $x \sim k$ with $x \in C$ and $k \in \mathbb{Z}$ and $\sim \in \{\le, <\}$.

Semantics of Timed Automata

Let $\mathcal{A} = (L, \ell_0, Act, X, inv, \rightarrow)$ be a Timed Automaton.

A state (ℓ, v) of \mathcal{A} is in $L \times \mathbb{R}^{X}_{\geq 0}$

The semantics of \mathcal{A} is a Timed Transition System $S_{\mathcal{A}} = (Q, q_0, Act \cup \mathbb{R}_{\geq 0}, \longrightarrow)$ with:

- $\blacktriangleright Q = L \times \mathbb{R}^{X}_{\geq 0}$
- ► $q_0 = (\ell_0, \overline{0})$
- \blacktriangleright \longrightarrow consists in:

discrete transition: $(\ell, v) \xrightarrow{a} (\ell', v') \iff$

$$\begin{cases} \exists \ell \xrightarrow{g} \ell' \in \mathcal{I} \\ \mathsf{v} \models \mathsf{g} \\ \mathsf{v}' = \mathsf{v}[\mathsf{r} \leftarrow \mathsf{0}] \\ \mathsf{v}' \models \mathsf{inv}(\ell') \end{cases}$$

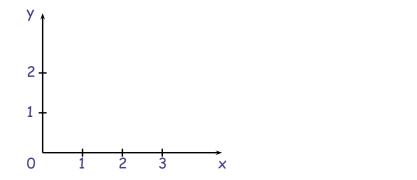
< 市.

aar

delay transition: $(\ell, v) \stackrel{d}{\rightarrow} (\ell, v + d) \iff d \in \mathbb{R}_{\geq 0} \land v + d \models inv(\ell)$

글 🕨 🖌 글 🕨 그 글 날

[Alur & Dill'94]

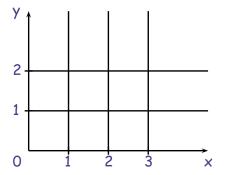


Journées FAC (April 2008)

Control of Timed Systems

▲ 문 → ▲ 문 →

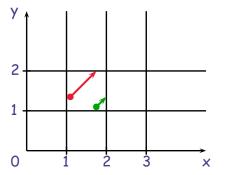
큰 ㅋ



Build an equivalence relation which is of finite index and is: • "compatible" with clock constraints $(g ::= x \sim c \quad g \land g)$ $r, r' \in R \implies \forall$ constraints $g, r \models g \iff r' \models g$

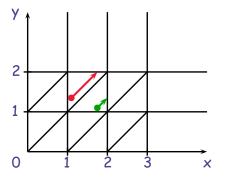
< □ ▶

P



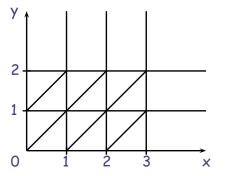
Build an equivalence relation which is of finite index and is:
"compatible" with clock constraints (g ::= x ~ c g ∧ g) r,r' ∈ R ⇒ ∀ constraints g, r ⊨ g ⇔ r' ⊨ g
"compatible" with time elapsing r,r' ∈ R ⇒ same delay successor regions

[Alur & Dill'94]



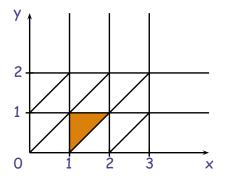
Build an equivalence relation which is of finite index and is:
"compatible" with clock constraints (g ::= x ~ c g ∧ g) r,r' ∈ R ⇒ ∀ constraints g, r ⊨ g ⇔ r' ⊨ g
"compatible" with time elapsing r,r' ∈ R ⇒ same delay successor regions

[Alur & Dill'94]



Build an equivalence relation which is of finite index and is:
"compatible" with clock constraints (g ::= x ~ c g ∧ g) r,r' ∈ R ⇒ ∀ constraints g, r ⊨ g ⇔ r' ⊨ g
"compatible" with time elapsing r,r' ∈ R ⇒ same delay successor regions

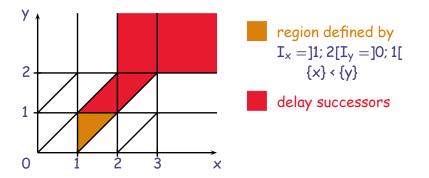
[Alur & Dill'94]



region defined by I_x =]1; 2[I_y =]0; 1[{x} < {y}

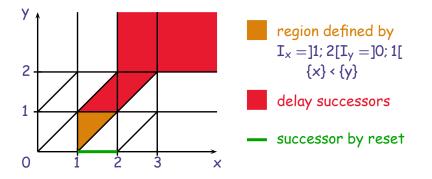
Build an equivalence relation which is of finite index and is:
"compatible" with clock constraints (g ::= x ~ c g ∧ g) r,r' ∈ R ⇒ ∀ constraints g, r ⊨ g ⇔ r' ⊨ g
"compatible" with time elapsing r,r' ∈ R ⇒ same delay successor regions

[Alur & Dill'94]



Build an equivalence relation which is of finite index and is:
"compatible" with clock constraints (g ::= x ~ c g ∧ g) r,r' ∈ R ⇒ ∀ constraints g, r ⊨ g ⇔ r' ⊨ g
"compatible" with time elapsing r,r' ∈ R ⇒ same delay successor regions

[Alur & Dill'94]



Build an equivalence relation which is of finite index and is:
"compatible" with clock constraints (g ::= x ~ c g ∧ g) r,r' ∈ R ⇒ ∀ constraints g, r ⊨ g ⇔ r' ⊨ g
"compatible" with time elapsing r,r' ∈ R ⇒ same delay successor regions

- ▶ For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA
- ▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:
 - there exists R" a delay successor of R s.t.
 - R" satisfies the guard g (R" ⊆ [[g]])
 - ► R"[C ← 0] is included in R'

a TA and its region automaton RA are time-abstract bisimilar

▶ The region automaton is finite

Language accepted by the RA = untimed language accepted by the TA a timed word w = (a, 1.2)(b, 3.4)(a, 6.256); untimed(w) = aba

- ▶ For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA
- ▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:
 - there exists R" a delay successor of R s.t.
 - R" satisfies the guard g (R" \subseteq [g])
 - ► R"[C ← 0] is included in R'

a TA and its region automaton RA are time-abstract bisimilar

▶ The region automaton is finite

Language accepted by the RA = untimed language accepted by the TA a timed word w = (a, 1,2)(b, 3,4)(a, 6,256); untimed(w) = aba

- ► For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA
- ▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:
 - there exists R" a delay successor of R s.t.
 - ▶ R" satisfies the guard g (R" \subseteq [g])
 - ▶ $R''[C \leftarrow 0]$ is included in R'

a TA and its region automaton RA are time-abstract bisimilar

▶ The region automaton is finite

Language accepted by the RA = untimed language accepted by the TA a timed word w = (a, 1.2)(b, 3.4)(a, 6.256); untimed(w) = aba

- ▶ For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA
- ▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:
 - ► there exists R" a delay successor of R s.t.
 - ▶ R" satisfies the guard g (R" \subseteq [g])
 - ▶ $R''[C \leftarrow 0]$ is included in R'

a TA and its region automaton RA are time-abstract bisimilar

The region automaton is finite

Language accepted by the RA = untimed language accepted by the TA a timed word w = (a, 1.2)(b, 3.4)(a, 6.256); untimed(w) = aba

- ▶ For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA
- ▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:
 - ► there exists R" a delay successor of R s.t.
 - ▶ R" satisfies the guard g (R" \subseteq [[g]])
 - ▶ $R''[C \leftarrow 0]$ is included in R'

a TA and its region automaton RA are time-abstract bisimilar

▶ The region automaton is finite

Language accepted by the RA = untimed language accepted by the TA a timed word w = (a, 1.2)(b, 3.4)(a, 6.256); untimed(w) = aba

- ▶ For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA
- ▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:
 - there exists R" a delay successor of R s.t.
 - R" satisfies the guard g (R" ⊆ [[g]])
 R"[C ← 0] is included in R'

a TA and its region automaton RA are time-abstract bisimilar

The region automaton is finite

Language accepted by the RA = untimed language accepted by the TA

- For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA
- ▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:
 - there exists R" a delay successor of R s.t.
 - R" satisfies the guard g (R" ⊆ [[g]])
 R"[C ← 0] is included in R'

a TA and its region automaton RA are time-abstract bisimilar

The region automaton is finite

Language accepted by the RA = untimed language accepted by the TA

- ▶ For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA
- ▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:
 - there exists R" a delay successor of R s.t.
 - R" satisfies the guard g (R" ⊆ [[g]])
 R"[C ← 0] is included in R'

a TA and its region automaton RA are time-abstract bisimilar

The region automaton is finite

Language accepted by the RA = untimed language accepted by the TA

- ▶ For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA
- ▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:
 - there exists R" a delay successor of R s.t.
 - R" satisfies the guard g (R" ⊆ [[g]])
 R"[C ← 0] is included in R'

a TA and its region automaton RA are time-abstract bisimilar

The region automaton is finite

Language accepted by the RA = untimed language accepted by the TA a timed word w = (a, 1.2)(b, 3.4)(a, 6.256); untimed(w) = aba

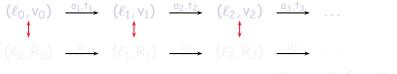
- For each transition $\ell \xrightarrow{g,a,C:=0} \ell'$ of the TA
- ▶ Build transitions in the region automaton RA: $(\ell, R) \xrightarrow{a} (\ell', R')$ if:
 - there exists R" a delay successor of R s.t.
 - R" satisfies the guard g (R" ⊆ [[g]])
 R"[C ← 0] is included in R'

a TA and its region automaton RA are time-abstract bisimilar

The region automaton is finite

Language accepted by the RA = untimed language accepted by the TA a timed word w = (a, 1.2)(b, 3.4)(a, 6.256); untimed(w) = aba

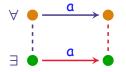
Time-abstract bisimulation

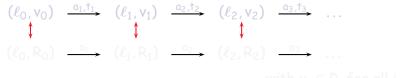


with $v_i \in R_i$ for all i.

< 同 > < 三 > < 三 > .

< □ ▶

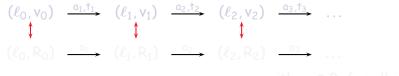




with $v_i \in R_i$ for all i.

∢∄▶ ∢ 늘▶ ∢ 늘▶

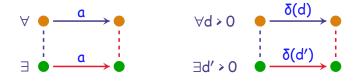
< □ ▶

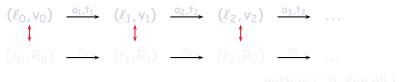


with $v_i \in R_i$ for all i.

・日・・ モ・・ モー・

< □ ▶

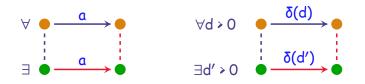


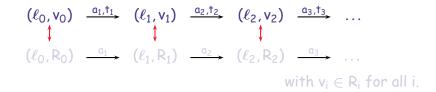


with $v_i \in R_i$ for all i.

<∄▶ < 글▶ < 글▶

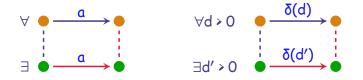
< □ ▶





・日・・ モ・・ モー・

Image: 1



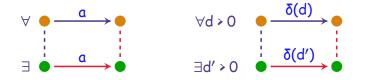
< D >

P

Journées FAC (April 2008)

Control of Timed Systems

1



< D >

P

1

Definition (Outcome in Timed Games)

Let $G = (L, \ell_0, Act, X, E, inv)$ be a TGA and f a strategy over G. The outcome $Outcome((\ell, v), f)$ of f from configuration (ℓ, v) in G is the subset of $Runs((\ell, v), G)$ defined inductively by:

- $(\ell, v) \in Outcome((\ell, v), f)$,
- ▶ if $\rho \in \text{Outcome}((\ell, v), f)$ then $\rho' = \rho \xrightarrow{e} (\ell', v') \in \text{Outcome}((\ell, v), f)$ if $\rho' \in \text{Runs}((\ell, v), G)$ and one of the following three conditions hold:
 - $\mathbf{Q} e \in Act_u$,
 - (2) $e \in Act_c$ and $e = f(\rho)$,
 - $e \in \mathbb{R}_{\geq 0}$ and $\forall 0 \leq e' < e, \exists (\ell'', v'') \in (L \times \mathbb{R}_{\geq 0}^{X}) \text{ s.t. } last(\rho) \xrightarrow{e'} (\ell'', v'') \land f(\rho \xrightarrow{e'} (\ell'', v'')) = \lambda.$

▶ an infinite run ρ is in \in Outcome((ℓ , v), f) if all the finite prefixes of ρ are in Outcome((ℓ , v), f).

< □ > < 🗗 >

A = > < = >

- ▶ $Q = L \times \mathbb{R}_{\geq 0}^{Clock}$ is the set of states of the TGA $q = (\ell, v) \in Q$
- Discrete predecessors of X ⊆ Q by an action a: Pred^a(X) = {q ∈ Q | q → q' and q' ∈ X}

 Time predecessors of X ⊆ Q: Pred^δ(X) = {q ∈ Q | ∃t ≥ 0 | q → q' and q' ∈ X}
- Zone = conjunction of triangular constraints x-y<3, x ≥ 2 ∧ 1 < y - x < 2</p>
- Symbolic State is defined by a State predicate (SP) $P = \bigcup_{i \in [1..n]} (\ell_{j_i}, Z_i), \ell_{j_i} \in L, Z_i \text{ is a zone}$ $(\ell_1, 2 \le x < 4) \text{ or } (\ell_0, x < 1 \land y - x \ge 2) \text{ or } (\ell_0, x \le 2) \cup (\ell_2, x < 4)$

Effectiveness of Pred^a and Pred^a

If P is a SP then $Pred^{a}(P)$, $Pred^{\delta}(P)$ are SP and can be computed effectively. (There is a symbolic version for $Pred^{a}$ and $Pred^{\delta}$.)

- ► $Q = L \times \mathbb{R}_{\geq 0}^{Clock}$ is the set of states of the TGA $q = (\ell, v) \in Q$
- ► Discrete predecessors of X ⊆ Q by an action a: $Pred^{a}(X) = \{q \in Q \mid q \xrightarrow{a} q' \text{ and } q' \in X\}$
- ► Time predecessors of X ⊆ Q: $Pred^{\delta}(X) = \{q \in Q \mid \exists t \ge 0 \mid q \stackrel{t}{\longrightarrow} q' \text{ and } q' \in X\}$
- Zone = conjunction of triangular constraints x-y<3, x≥2 ∧1<y-x<2</p>
- Symbolic State is defined by a State predicate (SP) $P = \bigcup_{i \in [1..n]} (\ell_{j_i}, Z_i), \ \ell_{j_i} \in L, \ Z_i \text{ is a zone}$ $(\ell_1, 2 \le x < 4) \text{ or } (\ell_0, x < 1 \land y - x \ge 2) \text{ or } (\ell_0, x \le 2) \cup (\ell_2, x > 1)$

Effectiveness of Pred^a and Pred^b

If P is a SP then $Pred^{a}(P)$, $Pred^{\delta}(P)$ are SP and can be computed effectively. (There is a symbolic version for $Pred^{a}$ and $Pred^{\delta}$.)

- ► $Q = L \times \mathbb{R}_{\geq 0}^{Clock}$ is the set of states of the TGA $q = (\ell, v) \in Q$
- ► Discrete predecessors of X ⊆ Q by an action a: $Pred^{a}(X) = \{q \in Q \mid q \xrightarrow{a} q' \text{ and } q' \in X\}$
- ► Time predecessors of X ⊆ Q: $Pred^{\delta}(X) = \{q \in Q \mid \exists t \ge 0 \mid q \xrightarrow{t} q' \text{ and } q' \in X\}$

Zone = conjunction of triangular constraints x-y<3, x≥2 ∧1<y-x<2</p>

▶ Symbolic State is defined by a State predicate (SP) $P = \bigcup_{i \in [1..n]} (\ell_{j_i}, Z_i), \ell_{j_i} \in L, Z_i \text{ is a zone}$ $(\ell_1, 2 \le x \le 4) \text{ or } (\ell_0, x \le 1 \land y - x \ge 2) \text{ or } (\ell_0, x \le 2) \cup (\ell_2, x \ge 0)$

Effectiveness of Pred^a and Pred^a

If P is a SP then $Pred^{a}(P)$, $Pred^{\delta}(P)$ are SP and can be computed effectively. (There is a symbolic version for $Pred^{a}$ and $Pred^{\delta}$.)

- ► $Q = L \times \mathbb{R}_{\geq 0}^{Clock}$ is the set of states of the TGA $q = (\ell, v) \in Q$
- ► Discrete predecessors of $X \subseteq Q$ by an action a: $Pred^{a}(X) = \{q \in Q \mid q \xrightarrow{a} q' \text{ and } q' \in X\}$
- ► Time predecessors of X ⊆ Q: Pred^δ(X) = {q ∈ Q | ∃t ≥ 0 | q \xrightarrow{t} q' and q' ∈ X}
- Zone = conjunction of triangular constraints x-y<3, x ≥ 2 ∧ 1 < y-x < 2</p>
- Symbolic State is defined by a State predicate (SP) $P = \bigcup_{i \in [1..n]} (\ell_{j_i}, Z_i), \ell_{j_i} \in L, Z_i \text{ is a zone}$

Effectiveness of Pred^a and Pred^b

If P is a SP then $Pred^{a}(P)$, $Pred^{\delta}(P)$ are SP and can be computed effectively. (There is a symbolic version for $Pred^{a}$ and $Pred^{\delta}$.)

- ► $Q = L \times \mathbb{R}_{\geq 0}^{Clock}$ is the set of states of the TGA $q = (\ell, v) \in Q$
- Discrete predecessors of $X \subseteq Q$ by an action a:
- Pred^a(X) = {q ∈ Q | q \xrightarrow{a} q' and q' ∈ X} ► Time predecessors of X ⊆ Q: Pred^δ(X) = {q ∈ Q | ∃t ≥ 0 | q \xrightarrow{t} q' and q' ∈ X}
- ► Zone = conjunction of triangular constraints $x - y < 3, x \ge 2 \land 1 < y - x < 2$
- Symbolic State is defined by a State predicate (SP) $P = \bigcup_{i \in [1..n]} (\ell_{j_i}, Z_i), \ell_{j_i} \in L, Z_i \text{ is a zone}$

Effectiveness of Pred^a and Pred^b

If P is a SP then $Pred^{a}(P)$, $Pred^{\delta}(P)$ are SP and can be computed effectively. (There is a symbolic version for $Pred^{a}$ and $Pred^{\delta}$.)

- ► $Q = L \times \mathbb{R}_{\geq 0}^{Clock}$ is the set of states of the TGA $q = (\ell, v) \in Q$
- Discrete predecessors of $X \subseteq Q$ by an action a:
- Pred^a(X) = { $q \in Q \mid q \xrightarrow{a} q'$ and $q' \in X$ } Time predecessors of X $\subset Q$:
 - $\mathsf{Pred}^{\delta}(\mathsf{X}) = \{q \in \mathsf{Q} \mid \exists t \ge 0 \mid q \xrightarrow{t} q' \text{ and } q' \in \mathsf{X}\}$
- ► Zone = conjunction of triangular constraints $x - y < 3, x \ge 2 \land 1 < y - x < 2$
- ▶ Symbolic State is defined by a State predicate (SP) $P = \bigcup_{i \in [1..n]} (\ell_{j_i}, Z_i), \ell_{j_i} \in L, Z_i \text{ is a zone}$ $(\ell_1, 2 \le x \le 4) \text{ or } (\ell_0, x \le 1 \land y - x \ge 2) \text{ or } (\ell_0, x \le 2) \cup (\ell_2, x \ge 0)$

Effectiveness of Pred^a and Pred^b

If P is a SP then $Pred^{a}(P)$, $Pred^{\delta}(P)$ are SP and can be computed effectively. (There is a symbolic version for $Pred^{a}$ and $Pred^{\delta}$.)

- ► $Q = L \times \mathbb{R}_{\geq 0}^{Clock}$ is the set of states of the TGA $q = (\ell, v) \in Q$
- Discrete predecessors of $X \subseteq Q$ by an action a:
- Pred^a(X) = { $q \in Q \mid q \xrightarrow{a} q'$ and $q' \in X$ } Time predecessors of X $\subset Q$:

 $\mathsf{Pred}^{\delta}(\mathsf{X}) = \{q \in \mathsf{Q} \mid \exists t \ge 0 \mid q \xrightarrow{t} q' \text{ and } q' \in \mathsf{X}\}$

- ► Zone = conjunction of triangular constraints $x - y < 3, x \ge 2 \land 1 < y - x < 2$
- ▶ Symbolic State is defined by a State predicate (SP) $P = \bigcup_{i \in [1..n]} (\ell_{j_i}, Z_i), \ell_{j_i} \in L, Z_i \text{ is a zone}$ $(\ell_1, 2 \le x \le 4) \text{ or } (\ell_0, x \le 1 \land y - x \ge 2) \text{ or } (\ell_0, x \le 2) \cup (\ell_2, x \ge 0)$

Effectiveness of Pred^a and Pred^o

If P is a SP then $Pred^{a}(P)$, $Pred^{\delta}(P)$ are SP and can be computed effectively. (There is a symbolic version for $Pred^{a}$ and $Pred^{\delta}$.)

- ► $Q = L \times \mathbb{R}_{\geq 0}^{Clock}$ is the set of states of the TGA $q = (\ell, v) \in Q$
- Discrete predecessors of $X \subseteq Q$ by an action a:
 - $\operatorname{Pred}^{\mathfrak{a}}(\mathsf{X}) = \{ q \in \mathsf{Q} \mid q \xrightarrow{\mathfrak{a}} q' \text{ and } q' \in \mathsf{X} \}$
- ► Time predecessors of X ⊆ Q: $Pred^{\delta}(X) = \{q \in Q \mid \exists t \ge 0 \mid q \stackrel{t}{\longrightarrow} q' \text{ and } q' \in X\}$
- ► Zone = conjunction of triangular constraints $x - y < 3, x \ge 2 \land 1 < y - x < 2$
- ▶ Symbolic State is defined by a State predicate (SP) $P = \bigcup_{i \in [1..n]} (\ell_{j_i}, Z_i), \ell_{j_i} \in L, Z_i \text{ is a zone}$ $(\ell_1, 2 \le x \le 4) \text{ or } (\ell_0, x \le 1 \land y - x \ge 2) \text{ or } (\ell_0, x \le 2) \cup (\ell_2, x \ge 0)$

Effectiveness of Pred^a and Pred^b

If P is a SP then $Pred^{a}(P)$, $Pred^{\delta}(P)$ are SP and can be computed effectively. (There is a symbolic version for $Pred^{a}$ and $Pred^{\delta}$.)

X is a state predicate

- ► cPred(X) = $\bigcup_{c \in Act_c} Pred^c(X)$ uPred(X) = $\bigcup_{u \in Act_u} Pred^u(X)$ cPred and uPred are effectively computable
- ▶ Pred_o(X, Y): Time controllable predecessors of X avoiding Y:

q
$$q' \in X$$

$Pred_{\delta}(X, Y)$ is effectively computable for state predicates X, Y

► Controllable Predecessors Operator for Timed Games $\pi_{\delta}(X) = \operatorname{Pred}_{\delta}\left(\operatorname{cPred}(X), \operatorname{uPred}(\overline{X})\right)$

X is a state predicate

► cPred(X) = $\bigcup_{c \in Act_c} Pred^c(X)$ uPred(X) = $\bigcup_{u \in Act_u} Pred^u(X)$ cPred and uPred are effectively computable

 $q' \in X$

▶ Pred_δ(X, Y): Time controllable predecessors of X avoiding Y:

Pred_{δ}(X,Y) is effectively computable for state predicates X,Y

► Controllable Predecessors Operator for Timed Games $\pi_{\delta}(X) = \operatorname{Pred}_{\delta}\left(\operatorname{cPred}(X), \operatorname{uPred}(\overline{X})\right)$

X is a state predicate

- ► $cPred(X) = \bigcup_{c \in Act_c} Pred^c(X)$ $uPred(X) = \bigcup_{u \in Act_u} Pred^u(X)$ cPred and uPred are effectively computable
- ▶ Pred₀(X, Y): Time controllable predecessors of X avoiding Y:

q
$$q' \in X$$

$\mathsf{Pred}_{\delta}(\mathsf{X},\mathsf{Y})$ is effectively computable for state predicates X,Y

► Controllable Predecessors Operator for Timed Games $\pi_{\delta}(X) = \operatorname{Pred}_{\delta}\left(\operatorname{cPred}(X), \operatorname{uPred}(\overline{X})\right)$

X is a state predicate

- ► $cPred(X) = \bigcup_{c \in Act_c} Pred^c(X)$ $uPred(X) = \bigcup_{u \in Act_u} Pred^u(X)$ cPred and uPred are effectively computable
- ▶ Pred_d(X, Y): Time controllable predecessors of X avoiding Y:

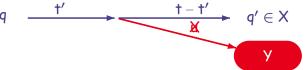
$$q \xrightarrow{t} q' \in X$$

$\mathsf{Pred}_{\delta}(\mathsf{X},\mathsf{Y})$ is effectively computable for state predicates X,Y

► Controllable Predecessors Operator for Timed Games $\pi_{\delta}(X) = \operatorname{Pred}_{\delta}\left(\operatorname{cPred}(X), \operatorname{uPred}(\overline{X})\right)$

X is a state predicate

- ► cPred(X) = $\bigcup_{c \in Act_c} Pred^c(X)$ uPred(X) = $\bigcup_{u \in Act_u} Pred^u(X)$ cPred and uPred are effectively computable
- ▶ Pred_δ(X, Y): Time controllable predecessors of X avoiding Y:

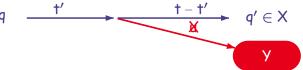


 $Pred_{\delta}(X, Y)$ is effectively computable for state predicates X, Y

► Controllable Predecessors Operator for Timed Games $\pi_{\delta}(X) = \operatorname{Pred}_{\delta}\left(\operatorname{cPred}(X), \operatorname{uPred}(\overline{X})\right)$

X is a state predicate

- ► cPred(X) = $\bigcup_{c \in Act_c} Pred^c(X)$ uPred(X) = $\bigcup_{u \in Act_u} Pred^u(X)$ cPred and uPred are effectively computable
- ▶ Pred_δ(X, Y): Time controllable predecessors of X avoiding Y:

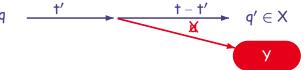


 $Pred_{\delta}(X, Y)$ is effectively computable for state predicates X, Y

► Controllable Predecessors Operator for Timed Games $\pi_{\delta}(X) = \operatorname{Pred}_{\delta}\left(\operatorname{cPred}(X), \operatorname{uPred}(\overline{X})\right)$

X is a state predicate

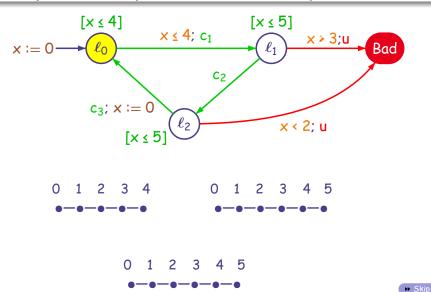
- ► cPred(X) = $\bigcup_{c \in Act_c} Pred^c(X)$ uPred(X) = $\bigcup_{u \in Act_u} Pred^u(X)$ cPred and uPred are effectively computable
- ▶ $Pred_{\delta}(X, Y)$: Time controllable predecessors of X avoiding Y:



 $Pred_{\delta}(X, Y)$ is effectively computable for state predicates X, Y

Controllable Predecessors Operator for Timed Games

 $\pi_{\delta}(X) = \text{Pred}_{\delta}\left(\text{cPred}(X), \text{uPred}(\overline{X})\right)$



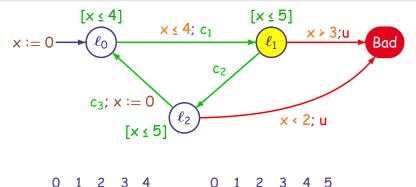
Journées FAC (April 2008)

Control of Timed Systems

P

< □ ▶

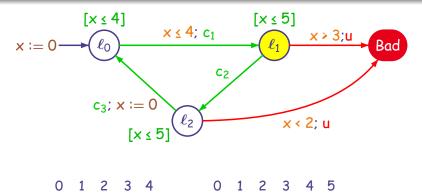
글 🕨 🖌 🖻



< A >

< □ ▶

(4) 三(1) (4) 三(1)

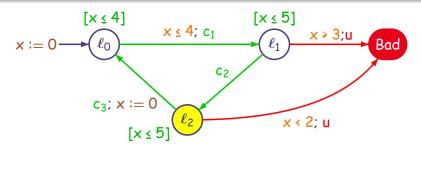


Journées FAC (April 2008)

Control of Timed Systems

f¶ ▶

< □ ▶



0 1 2 3 4 0 1 2 3 4 5

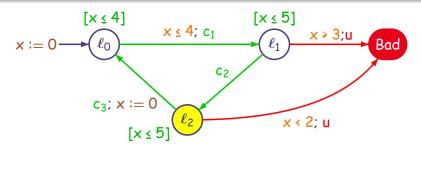
Journées FAC (April 2008)

Control of Timed Systems

P.

< □ ▶

★ 문 ► ★ 문 ►



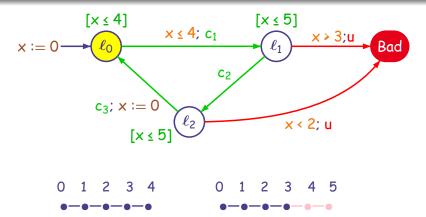
Journées FAC (April 2008)

Control of Timed Systems

F >

< □ ▶

★ 문 ► ★ 문 ►



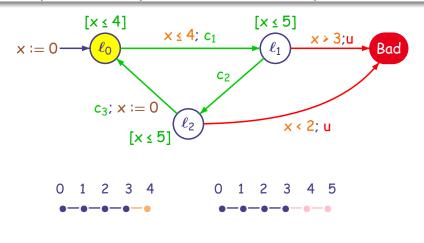
•--•-

Journées FAC (April 2008)

Control of Timed Systems

< A >

< □ ▶



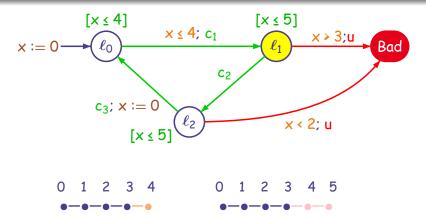
•--•-

Journées FAC (April 2008)

Control of Timed Systems

< A >

< □ ▶



0 1 2 3 4 5

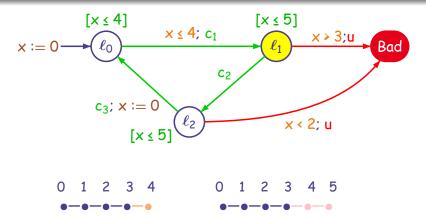
•--•-

Journées FAC (April 2008)

Control of Timed Systems

< A >

< □ ▶



0 1 2 3 4 5

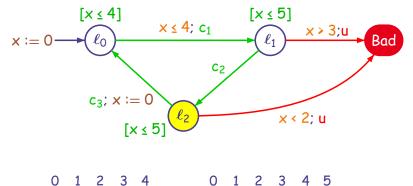
•--•-

Journées FAC (April 2008)

Control of Timed Systems

< A >

< □ ▶



0 1 2 3 4 5

•--•-

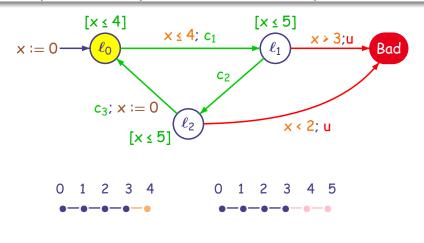
Journées FAC (April 2008)

Control of Timed Systems

F >

< □ ▶

★ 문 ► ★ 문 ►



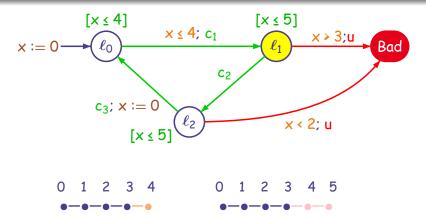
•--•-

Journées FAC (April 2008)

Control of Timed Systems

< A >

< □ ▶



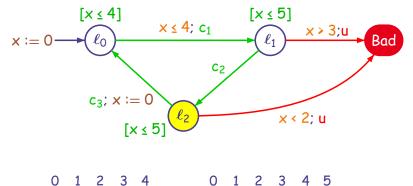
0 1 2 3 4 5

Journées FAC (April 2008)

Control of Timed Systems

< A >

< □ ▶



0 1 2 3 4 5

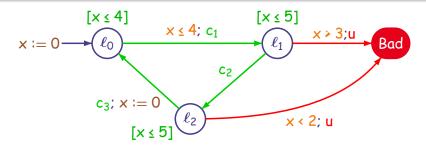
Journées FAC (April 2008)

Control of Timed Systems

F >

< □ ▶

★ 문 ► ★ 문 ►



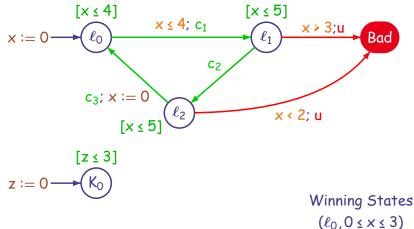
Winning States $(\ell_0, 0 \le x \le 3)$ $(\ell_1, 0 \le x \le 3)$ $(\ell_2, 2 \le x \le 5)$

김 글 대 김 글

< ロ > < 何 >

Journées FAC (April 2008)

Control of Timed Systems



 $(\ell_0, 0 \le x \le 3)$ $(\ell_1, 0 \le x \le 3)$ $(\ell_2, 2 \le x \le 5)$

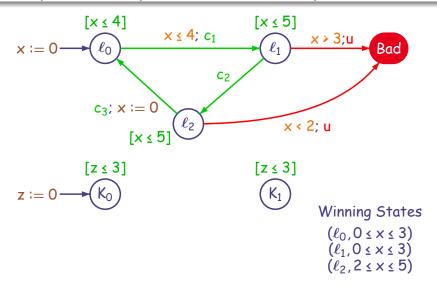
글 🕨 🖌 🖻

< 市

< □ ▶

Journées FAC (April 2008)

Control of Timed Systems

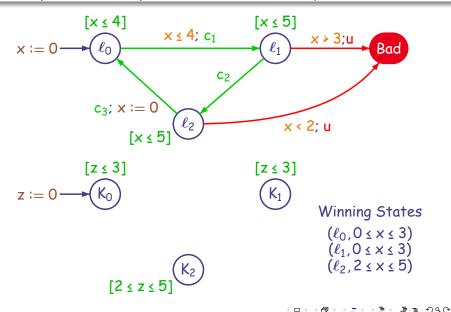


Journées FAC (April 2008)

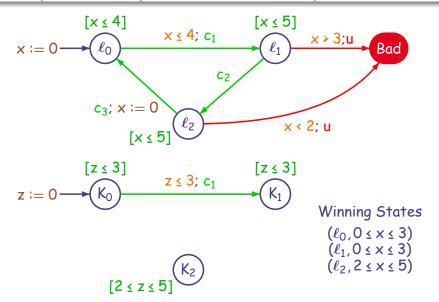
Control of Timed Systems

< ロ > < 同 >

김 글 대 김 글



Journées FAC (April 2008)

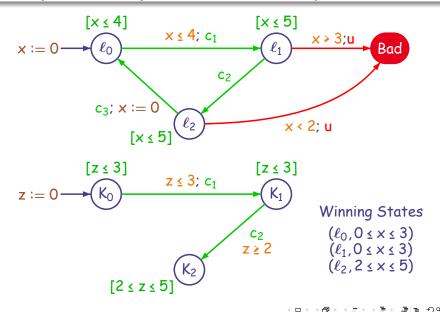


Journées FAC (April 2008)

P

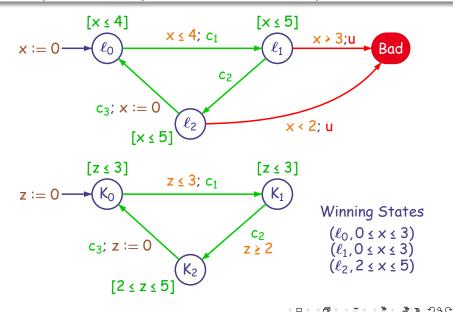
< □ ▶

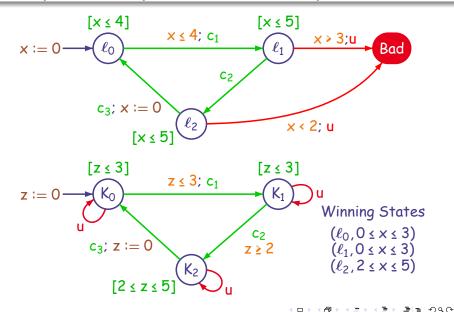
글 🖂 🗧 🖻

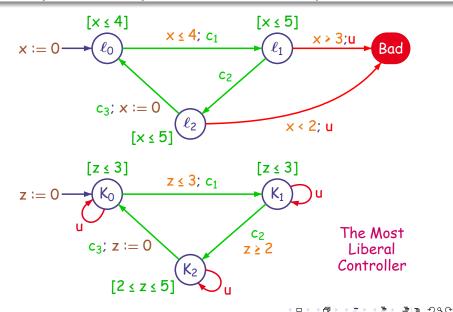


< □ ▶

★ Ξ → < Ξ</p>







Let A be a RPTGA such that:

- guards of u actions are strict
- guards on c actions are large

There is an optimal cost independent strategy

Is it necessary ?

Let A be a RPTGA such that:

- guards of u actions are strict
- guards on c actions are large

There is an optimal cost independent strategy

Is it necessary ?

Let A be a RPTGA such that:

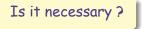
- guards of u actions are strict
- guards on c actions are large

There is an optimal cost independent strategy

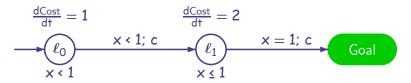
Let A be a RPTGA such that:

- guards of u actions are strict
- guards on c actions are large

There is an optimal cost independent strategy



No Optimal Strategy

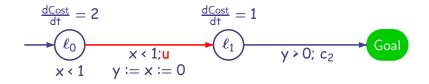


- ► define f_{ϵ} with $0 < \epsilon < 1$ by: in ℓ_0 : $f(\ell_0, x < 1 - \epsilon) = \lambda$, $f(\ell_0, 1 - \epsilon \le x < 1) = c$ in ℓ_1 : $f(\ell_1, x < 1) = \lambda$, $f(\ell_1, x = 1) = c$ $Cost(f_{\epsilon}) = (1 - \epsilon) + 2.\epsilon = 1 + \epsilon$ and OptCost = 1.
- given $\varepsilon > 0$, there is a sub-optimal strategy f_{ε} such that

 $|Cost((\ell_0, \vec{0}), f_{\epsilon}) - OptCost((\ell_0, \vec{0}), G)| < \epsilon$

• New problem: given ε , compute such an f_{ε} strategy.

No Optimal Cost-Independent Strategy



Optimal cost is 2

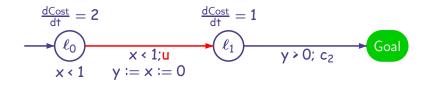
Journées FAC (April 2008)

Control of Timed Systems

< ロ > < 向

글 🕨 🖌 🖻

No Optimal Cost-Independent Strategy



Optimal cost is 2

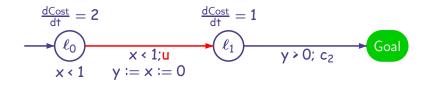
An optimal winning cost-dependent strategy f: f(ℓ₁,-, cost < 2) = λ and f(ℓ₁,-, cost = 2) = c₂ assume u taken at time (1 - δ₀):

$$Cost(f, (\ell_0, 0)) = 2 \cdot (1 - \delta_0) + \delta_1 = 2$$

< <p>Image: Image: Imag

because according to f we have $\delta_1=2\cdot\delta_0$

No Optimal Cost-Independent Strategy



- Optimal cost is 2
- ► assume \exists f* cost-independent: f* must wait in ℓ_1 at least ϵ assume u taken at time (1δ) :

$$\operatorname{Cost}(f^*, (\ell_0, 0)) = 2 \cdot (1 - \delta) + \varepsilon$$

< <p>Image: Image: Imag

Take $\delta = \frac{\varepsilon}{4}$: Cost(f*, (ℓ_0 , 0)) = 2 + $\frac{\varepsilon}{2}$ and OptCost(f*) = 2 + ε

▶ [La Torre et al.'02]

- Acyclic Priced Timed Game Automata
- Recursive definition of optimal cost
- Computation of the infimum of the optimal cost i.e. OptCost = 2 could mean that it is 2 or 2 + ε
- No strategy synthesis

[Alur et al.'04] (ICALP'04)

- Bounded optimality: optimal cost within k steps
- Complexity bound: exponential in k and #states of the PTGA
- No bound for the more general optimal problem
- Computation of the infimum of the optimal cost
- No strategy synthesis

Our work [Bouyer et al.'04a]:

- Run-based definition of optimal cost
- We can decide whether i an optimal strategy
- We can effectively synthesize an optimal strategy (if one exists)
- We can prove structural properties of optimal strategies
- Applies to Linear Hybrid Game (Automata)

- [La Torre et al.'02] Acyclic Games, infimum, no strategy synthesis
- ▶ [Alur et al.'04] (ICALP'04)
 - Bounded optimality: optimal cost within k steps
 - Complexity bound: exponential in k and #states of the PTGA
 - No bound for the more general optimal problem
 - Computation of the infimum of the optimal cost
 - No strategy synthesis

Our work [Bouyer et al.'04a]:

- Run-based definition of optimal cost
- We can decide whether ∃ an optimal strategy
- We can effectively synthesize an optimal strategy (if one exists)
- We can prove structural properties of optimal strategies
- Applies to Linear Hybrid Game (Automata)

- [La Torre et al.'02] Acyclic Games, infimum, no strategy synthesis
- ► [Alur et al.'04] (ICALP'04)
 - Bounded optimality: optimal cost within k steps
 - Complexity bound: exponential in k and #states of the PTGA
 - No bound for the more general optimal problem
 - Computation of the infimum of the optimal cost
 - No strategy synthesis

Bounded optimality, complexity bound, infimum, no strategy synthesis

- Our work [Bouyer et al.'04a]:
 - Run-based definition of optimal cost
 - We can decide whether d an optimal strategy
 - We can effectively synthesize an optimal strategy (if one exists)
 - We can prove structural properties of optimal strategies
 - Applies to Linear Hybrid Game (Automata)

- [La Torre et al.'02] Acyclic Games, infimum, no strategy synthesis
- [Alur et al.'04] (ICALP'04)
 - Bounded optimality: optimal cost within k steps
 - Complexity bound: exponential in k and #states of the PTGA
 - No bound for the more general optimal problem
 - Computation of the infimum of the optimal cost
 - No strategy synthesis

Bounded optimality, complexity bound, infimum, no strategy synthesis

- Our work [Bouyer et al.'04a]:
 - Run-based definition of optimal cost
 - ► We can decide whether ∃ an optimal strategy
 - We can effectively synthesize an optimal strategy (if one exists)
 - We can prove structural properties of optimal strategies
 - Applies to Linear Hybrid Game (Automata)