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Abstract. We present a tool for analysing resource sharing conflicts in
multithreaded Java programs. Java programs are translated to timed au-
tomata models verified afterwards by the Uppaal model checker. Anal-
ysed programs are annotated with timing information indicating the ex-
ecution duration of a particular statement. Based on the timing informa-
tion, the analysis of execution paths is performed, which gives an answer
whether resource sharing conflicts are possible in a multithreaded Java
program. If the analysis succeeds, time-consuming resource locks may be
eliminated from the Java program.
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1 Introduction

Parallel computations quickly develop nowadays, and the problem of debugging
multithreaded programs arises. It is known to be a very difficult problem for a
software developer, and thorough testing cannot discover all the fatal errors in
a program due to unpredictability of execution. One type of errors are resource
sharing conflicts. In order to avoid these errors one may want to guarantee that
the same resource is not accessed by different threads at the same moment. If
one concentrates on this aspect, the behavior of a program may naturally be
modelled by timed automata and then one may find error-prone places in the
program using a timed automata model checker.

In order to achieve this goal, we need to enrich the Java language with an-
notations indicating time information. The annotations show how much time is
required for executing a statement and, consequently, how much time is required
for a thread to have an exclusive access to a resource. It allows to avoid usage of
synchronized statements in programs after verifying that no resource is used
simultaneously by two or more threads. Based on an annotated Java program,
a timed automaton is generated taking into account time required for execution
of statements. Finally, we check the generated automaton for possible resource
sharing conflicts using Uppaal model checker in the generated automaton. The
transformation sequence is shown in the diagram 1 below.
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Fig. 1: Java program verification process

The overall aim is to replace a lock-driven protocol for resource conflict avoid-
ance by a time-driven approach. If a check on the abstract level of timed au-
tomata indicates no resource access conflict, then also the underlying Java pro-
gram can be expected to run without conflicting access to resources. In this case,
locking even becomes superfluous. If, however, the check fails, nothing can be
said about the behaviour of the Java program when executed, just like for an
ill-typed program.

The purpose of the present paper is to sketch the overall approach and define
the correspondence between Java and timed automata, without giving a proof
of the soundness of the abstraction, which remains for future work.

Related work

There are several tools for scheduling analysis of real-time tasks. Verification
of scheduling strategies with timed automata is considered in [6]. However, it
operates with a high level notion of abstract tasks and does not look inside the
source code. The authors perform schedulability analysis with the fixed-priority
scheduling strategy by translating a system to be verified to a timed automaton
and verifying it afterwards with Times tool.

Another approach is used in [3,4]. Here Java source code analysis is performed
using timed automata. An automaton is generated from the source code, and
every statement is mapped to a certain part of the automaton. The translation
procedure described in [3] contains an inconsistency between Java semantics and
model semantics of the generated system. Locking mechanism is implemented in
Uppaal model as monitors which are incremented when a lock is acquired and
decreased when a lock is released. However, there are no checks before acquiring
the lock in the model. It makes the situation when two threads have locked the
same resource at the same time possible, but it does not correspond to the JVM
behavior.

A translation from SystemC to Uppaal is presented in [7]. One of the pur-
poses of this work is to give a formal semantics to the (only informally defined)
SystemC language. The differences between SystemC and Java, as far as the
translation to Uppaal is concerned, still has to be explored.

In [5] schedulability analysis of a set of tasks is performed by exhaustive
search combined with Uppaal for determining when the search is complete.
Again, the internal structure of tasks is not taken into account which makes
impossible to do conclusions about thread interactions. Brute force is not the
suitable tactics for verifying large systems. The authors listed the limitations
they had encountered: lack of memory and lack of Uppaal integer range. For



small system this approach works well but large system verification may require
optimized algorithms.

The paper [8] contains schedulability analysis of multithreaded SCJ (Safety
Critical Java) programs and takes resource sharing into account. Resources are
considered to be locked during the whole execution of a task. Analysis is per-
formed by Uppaal modeling taking into account the resource locks. However,
this analysis does not model the exact behavior of a program since developers
usually try to minimize the length of critical sections thus critical sections can
be treated more efficiently.

2 Sample usage

Before describing our approach more in detail, we illustrate it here with a small
example. The outermost class containing the main method is called Threads.
Two threads t1, t2 are declared in the main method. Run1 and Run2 are nested
classes inside the Threads class implementing the Runnable interface.

Threads ts;

Run1 r1;

Run2 r2;

Thread t1,t2;

ts=new Threads ();

r1=ts.new Run1 ();

r2=ts.new Run2 ();

ts.res=new Res ();

t1=new Thread(null ,r1,"t1");

t2=new Thread(null ,r2,"t2");

Methods called on the thread start are the following:

private class Run1 implements Runnable{

public void run (){

int value ,i;

//@0@//

i=0;

while(true){

synchronized(res){

//@1@//

// acts like a random generator

// producing an arbitrary natural number

value=Calendar.getInstance ().get(Calendar.MILLISECOND );

//@ 5 @//

res.set(value);

}

try{

//@10@//

Thread.sleep (10);

}

catch(InterruptedException e){



System.out.println(e.getMessage ());

}

//@0@//

i++;

}

}

}

private class Run2 implements Runnable{

public void run (){

int value ,i;

//@0@//

i=0;

try{

//@9@//

Thread.sleep (9);

}

catch(InterruptedException e){

System.out.println(e.getMessage ());

}

while(true){

synchronized(res){

//@ 4 @//

value=res.get();

}

try{

//@10@//

Thread.sleep (10);

}

catch(InterruptedException e){

System.out.println(e.getMessage ());

}

//@0@//

i++;

}

}

}

Here res is a resource declared in the main class. Calls of the res.get() and
res.set() methods are “actions” using the locked resources which are preceded
by timing annotations showing the amount of time the “action” requires. During
the translation they are considered to be abstract statements inside the locked
region taking n time units for execution.

Both threads do some “actions” requiring exlusive lock with the resource and
then sleep for some time. The synchronized statements are a potential source
of resource sharing conflict if both threads wake up simultaneously. One can see
the resource access conflict in the execution timeline 2 showing times when the
threads demand an exclusive lock for the resource.

res has type Res which is a simple class allowing to read and write to one
field.



Fig. 2: Execution timeline. t1 is blue, t2 is green. Conflict between 37 and 38 is
shown in yellow.

class Res{

private int i;

public void set(int j){

i=j;

}

public int get (){

return i;

}

}

The generated timed automata are shown in Figure 3.
The generated formula for model checking is

A[]check Threads(Threads monitor).

When performing verification, this formula is evaluated to false, and the
generated trace for counterexample stops in states aut Run1 t1.annotated6 and
aut Run2 t2.annotated6 during the third loop iteration at the time moment 38.

3 Translation from Java to Abstract Syntax Tree

Considering the idea of “extended Java” a possibility to write annotations for
every Java statement is added to Java syntax. These annotations contain time
required for executing the whole block or statement next of the annotation. The
time in the samples is in abstract time units but one can annotate program with
real values in microseconds based on computer architecture, compiler version,
running software etc.

Assumptions

The first thing is to generate abstract syntax tree (AST) of a program written in
“extended Java”. Unfortunately, standard Java annotations cannot be added to
arbitrary statements. Even the latest extension of Java annotations implemented
in JDK 7 [1] does not allow to annotate executable statements (assignments,
loops, conditions etc.) which are of the most interest for us. For this reason we
used self-written parser of the “extended Java” language. The parser is written
with OcamlYACC and recognizes Java with several restrictions.



Fig. 3: Generated automata for threads a, b (two times) and c.

Method calls except initializing constructors are not translated therefore
each method call used in a translated program is assumed to have a timing
annotation. Cast operators are not supported for now. Since we perform static
analysis, dynamic features are excluded, namely, arrays or references to this

instead of specifying an object name explicitly. try...catch constructions can
be parsed, however, code in the catch block is not translated, i.e. try block1

catch block2 is considered to be equivalent to block1.

In order to make the AST generator simpler all used packages are supposed
to be imported in the header of a program. Local variables must be declared
in the beginning of methods before statements, and declaration statements can-
not be combined with assignments. This assumption helps to avoid problems
with scope of the variables declared in the middle of a method. Argument of
the synchronized statement is assumed to be an explicit object name, not an
expression. Moreover, reentrant locks are not allowed, i.e. when the same thread
acquires lock of the same object several times. It is the developer’s responsibility
to avoid reentrant locks in the processed programs.

Threads are supposed to be declared in the main method which is an entry
point of the program and must be declared in the first class of a program. The



main method cannot contain any code except thread declarations, initializations
and calls for starting the threads. Threads are assumed to be created with the
constructor

Thread(ThreadGroup group , Runnable target , String name)

because it is the most general one, and Runnable object should implement
Runnable interface, not be a subclass of Thread.

The parser produces AST from Java code as a set of OCaml objects.

4 Translation from Abstract Syntax Tree to Timed
Automaton

Since the output of the parser is a structure of OCaml objects, the generator of
timed automata from AST is written in OCaml. At the beginning it generates a
set of OCaml objects representing a timed automaton, and after that the timed
automaton is printed in format recognizable by Uppaal which is used for model
checking. The abstract representation of a timed automaton as OCaml objects
is based on the abstract definition of timed automaton and does not depend on
a particular implementation of a model checker.

The Ocaml type for an automaton looks like

type ta = Empty

|TA of (node list) * (urgent list) *

(committed list) * (edge list) * start *

final

Here start and final are start and final states of the timed automaton. Fi-
nal state is required because a timed automaton is generated recursively, and it
is necessary to determine where the previously generated parts of an automaton
finish, although there is no such a notion in the definition of timed automata.
Committed and urgent are state characteristics specific for Uppaal, however,
they can be modeled by a standard timed automaton, i.e. they do not add any-
thing new to the initial definition. Final states of the generated timed automata
are always urgent, that means, they are not allowed to rest in these states for
any time. One may find definitions related to timed automata in [2].

As method calls are not translated, only run methods of Runnable objects
are translated to timed automata because they are the only methods which can
contain executable code. Each thread declared and initialized in the main method
is mapped to a separate automaton (template in the Uppaal terminology). The
system has one global clock and a global array of object monitors.

An object monitor is an integer variable which is incremented when this
object is locked and decremented when the lock is released. In Uppaal model
monitors are implemented as an array of integers, each object is encoded as an
array item; consistency of indices is watched by the automata generator.

All statements except the annotated ones are assumed not to take any time
for execution; for this reason all the states without timing information are made



urgent in Uppaal model. Time is not allowed to pass when an automaton is in
urgent state.

Statements annotated with timing information are treated as a “black box”
and are supposed not to produce side effects. With side effects a possible situa-
tion is when a thread tries to access an object field which is locked by another
thread. In this situation JVM makes the thread waiting until the lock is released,
however, our translation does not notice this delay and produces an incorrect
automaton. Annotation is considered as execution time of the block next to
the annotation. If some resources are locked inside the annotated block, they
must be released in the same block, i.e. sets of locked resources before annotated
statement and after must coincide.

Each template has a local integer variable curTime representing the time
when an automaton entered the state corresponding to an annotation statement.
Annotations in Java programs contain relative time but timed automata use
global time, therefore we need to keep track how much time has passed since
a program has been started. The only statements allowing time to increase are
annotated statements. Suppose t was the global time when an automaton entered
a state corresponding to an annotated statement. When it leaves this state,
model time and curTime variable are increased by n where n is the timing
annotation of the statement. curTime may be different in different automata
but it always concurs with the global time when its corresponding automaton is
executing.

Basic items for building timed automata are statements: each statement is
translated into a part of timed automaton. The AST can contain the following
statements:

type stmt =

Skip

(* empty statement *)

| Assign of var * expr

(* assignment statement: a=5+4; *)

| Seq of stmt * stmt

(* seqence of two statements: a=4; b=5; *)

| Cond of expr * stmt * stmt

(* conditional statement: if(a=1) {...} else

{...} *)

| While of expr * stmt

(* loop statement: while(a<5) {...} *)

| CallC of callExp

(* method call: a.toString (); *)

| Return of expr

(* value return: return a; *)

| AnnotStmt of annot * stmt

(* annotated statement: //@ 4 @// a=3; *)

| SyncStmt of expr * stmt



(* synchronized statement: synchronized(a){...}

*)

Translation from AST to timed automata skips field and variable declarations
because they do not change the state of a program. At the same time, all the
objects declared in the main program class get a monitor.

Boolean conditions inside while and if statements are not translated. It is
assumed that any of the two possible ways can be taken during runtime.

Skip and Return statements are mapped to an empty automaton because
they do not influence the state of a program.

(a) Assignment (b) Sequention (c) Condition

(d) Loop (e) Annotation (f) Locking

Fig. 4: Automata generated from basic statements. Red elements are newly added
by the translation of the corresponding Java statement into TA.

The rules for mapping other AST statements to the parts of a timed automa-
ton are the following (see Figure 4):

– Assign(v,e): add an urgent ASSIGNMENT state which is start and final
for this automaton.

– Seq(c1,c2): suppose a1 and a2 are the automata for c1 and c2 respectively,
add an edge from final1 to start2, start1 is the start state, final2 is the
final state.

– Cond(e,c1,c2): suppose a1 and a2 are the automata for c1 and c2 respec-
tively, add two urgent states START and FINAL, which are the start and



final states of the new automaton, and edges from START to start1 and
start2, from final1 and final2 to FINAL.

– Loop(e,c1): suppose a1 is the automaton for c1, add two urgent states
START and FINAL, which are the start and final states of the new au-
tomaton, and edges from START to start1, from final1 to FINAL and
from START to FINAL.

– CallC(ce): currentrly not translated
– AnnotStmt(d,c1): add two states START and FINAL, and an edge from

START to FINAL, which are the start and final states of the new au-
tomaton. FINAL is urgent. x is the global clock, curT ime is the local
variable. START has an invariant x <= curT ime+ d, the edge has a guard
x >= curT ime + d and an update action curT ime+ = d. This combination
of guard and invariant ensures that timed automaton will be in this state
exactly d time units. In our model it means that the annotated statement
requires d time units for execution.

– SyncStmt(e,c1): suppose a1 is the automaton for c1, add two urgent states
START and FINAL, which are the start and final states of the new automa-
ton, and edges from START to start1, from final1 to FINAL. We assume
that expression e is a field declared in the outermost class. Its monitor is in-
cremented when the edge from START to start1 is taken and decremented
when the edge from final1 to FINAL is taken.

Model checking

Our initial goal was to check whether there are possible resource sharing con-
flicts during program execution. Uppaal provides an ability to check properties
of timed automata expressed with CTL formulas. The interesting property is
whether for all paths through timed automaton for any state in this path any of
the object monitors do not have more than one lock or, with Uppaal syntax,
A[]check(obj monitors) where obj monitors is an array with object monitors
of the main program class, and check is a function assuring that all the mon-
itors are less than 1. Thus, if check is evaluated to true, no resource is locked
by two or more threads simultaneously. That means threads do not wait for a
resource unlock during program execution in JVM. If the property is satisfied,
no resource sharing conflicts or deadlocks may occur.

5 Conclusions

We presented the very first steps of an approach for generating timed automata
from Java programs. The Java language is extended with timing annotations,
which makes possible to check resource sharing conflicts and deadlocks in a gen-
erated system. We expect that replacing a lock-controlled resource access policy
by a time-driven approach allows for better temporal and functional predictabil-
ity, while allowing for greater flexibility than, say, synchronous languages.

The approach has been implemented in a prototype tool, and first tests seem
to suggest that this approach works. However, the number of states increases



rapidly with the growth of program size. That makes this approach difficult to
apply for large systems, and more powerful abstractions will have to be devel-
oped.

Further work may be performed in two directions: Firstly, more Java source
code statements and thread-specific methods should be translated to timed au-
tomata. Secondly, the adequacy of the translation algorithm is expected to be
verified with a proof assistant, based on a formal semantics of Real-Time Java.
The final aim of the future work is to support the constructions of Real-Time
Java and have a formally verified translation procedure.
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