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Abstract. We present the implementation in Isabelle/HOL of a trans-
lation of LTL formulae into Büchi automata. In automaton-based model
checking, systems are modelled as transition systems, and correctness
properties stated as formulae of temporal logic are translated into cor-
responding automata. An LTL formula is represented by a (generalised)
Büchi automaton that accepts precisely those behaviours allowed by the
formula. The model checking problem is then reduced to checking lan-
guage inclusion between the two automata. The automaton construction
is thus an essential component of an LTL model checking algorithm.
We implemented a standard translation algorithm due to Gerth et al.
The correctness and termination of our implementation are proven in
Isabelle/HOL, and executable code is generated using the Isabelle/HOL
code generator.

1 Introduction

The term model checking [2] subsumes several algorithmic techniques for the ver-
ification of reactive and concurrent systems, in particular with respect to proper-
ties expressed as formulae of temporal logics. More specifically, the context of our
work are LTL model checking algorithms based on Büchi automata [20]. In this
approach, the system to be verified is modelled as a finite transition system and
the property is expressed as a formula ϕ of linear temporal logic (LTL). The for-
mula ϕ constrains executions, and the transition system is deemed correct (with
respect to the property) is all its executions satisfy ϕ. After translating the for-
mula into a Büchi automaton [1], the model checking problem can be rephrased
in terms of language inclusion between the transition system (interpreted as a
Büchi automaton) and the automaton representing ϕ or, technically more con-
venient, as an emptiness problem for the product of the transition system and
the automaton representing ¬ϕ.

In this paper, we present a verified implementation in Isabelle/HOL of the
classical translation algorithm due to Gerth et al. [7] of LTL formulae into Büchi
automata.3 The automaton translation is at the heart of automaton-based model
? This paper was previously published in TPHOLs 2009 [15].
3 The Isabelle sources on which our paper is based are available at http://www.

informatik.uni-freiburg.de/~ki/papers/diplomarbeiten/LTL2LGBA.zip.
Extensive documentation on Isabelle can be found at http://isabelle.in.tum.de.
Throughout this paper Isabelle refers to Isabelle/HOL.



checking algorithms, and an error in the design or the implementation of the
translation algorithm compromises the soundness of the verdict returned by the
model checker. Indeed, the original implementation of the translation proposed
by Gastin and Oddoux [6] contained a flaw that went unnoticed for several
years, despite wide-spread use within the Spin model checker. The purpose of
our work is to demonstrate that it is feasible to obtain an executable program
implementing such a translation from a formalisation in a modern interactive
proof assistant. Assuming that the kernel of the proof assistant and the code
generator are correct, we thus obtain a highly trustworthy implementation.

We chose the algorithm of Gerth et al. because it is well-known and rep-
resentative of the problems that such algorithms pose. More recent algorithms
such as [6] are known to behave better for larger LTL formulae, but they require
additional automata-theoretic concepts, and we leave their formalisation as a
worthwhile and challenging topic for future work.

The algorithm of Gerth et al. is based on the construction of a graph of
nodes labelled with subformulae of the original formula, similar to a tableau
construction [4]. Acceptance conditions on infinite runs complement the tableau
and enforce “eventuality” (liveness) properties. The main theorem states that the
generated automaton should accept precisely those words (system executions)
that are models of the temporal formula. The correctness of the translation is
by no means obvious; in fact, we already found proving the termination of the
method to be quite challenging. In our formalisation, we limit ourselves to data
structures and operations that are supported by the Isabelle code generator.
In this way, extraction of executable code becomes straightforward, but we are
limited to relatively low-level constructions.

The paper is organised as follows: In the next section, we provide some prelim-
inaries on LTL and Büchi automata. In Sect. 3, we recall the algorithm proposed
by Gerth et al. [7]. Section 4 presents our implementation of the algorithm. In
Sect. 5, we discuss the proof of termination and correctness of this implemen-
tation. Section 6 concludes. The results presented in this paper were obtained
within the Diploma Thesis of the first author [14].

2 Preliminaries

2.1 Linear Temporal Logic

Linear-time temporal logic LTL [13] is a popular formalism for expressing cor-
rectness properties about (runs of) reactive systems. It extends propositional
logic by modal operators that refer to future points of time.

Definition 1. Let Prop be a finite, non-empty set of propositions. The set Φ of
LTL formulae is inductively defined as follows:

– Prop ⊆ Φ;
– if ϕ ∈ Φ and ψ ∈ Φ, then ¬ϕ ∈ Φ, ϕ ∨ ψ ∈ Φ, Xϕ ∈ Φ (“next ϕ”), and
ϕ U ψ ∈ Φ (“ϕ until ψ”).



Further logical connectives can be defined as abbreviations. In particular,
we will use the propositional constants > (true) and ⊥ (false), as well as the
operators ∧ and V (“release”), which are the duals of ∨ and U.

The semantics of an LTL formula is defined with respect to a (temporal)
interpretation ξ = a0a1 . . ., which is an ω-word4 over 2Prop, consisting of propo-
sitional interpretations ai ∈ 2Prop. The set a0 contains exactly those propositions
that are true in the initial state of the temporal interpretation ξ, a1 gives the
propositions true in the second state, and so on. When ξ = a0a1 . . ., we write ξi
for ai and ξ|i for the suffix aiai+1 . . ., which is itself a temporal interpretation.

Definition 2. The relation ξ � ϕ (“ξ is a model of ϕ” or “ϕ holds of ξ”) is
inductively defined as follows:

ξ � p iff p ∈ ξ0 (p ∈ Prop)
ξ � ¬ϕ iff ξ 6� ϕ
ξ � ϕ ∨ ψ iff ξ � ϕ or ξ � ψ
ξ � Xϕ iff ξ|1 � ϕ
ξ � ϕ U ψ iff there exists i ∈ N such that ξ|i � ψ and ξ|j � ϕ for all 0 ≤ j < i.

2.2 Generalised Büchi Automata

The automata-theoretic approach to LTL model checking [20] relies on translat-
ing LTL formulae ϕ to Büchi automata Aϕ such that a word ξ is accepted by
Aϕ if and only if ξ � ϕ. The following variant of Büchi automata underlies the
algorithm by Gerth et al. [7].

Definition 3. A generalised Büchi automaton (GBA) A is tuple (Q, I, δ, F )
where:

– Q is a finite set of states;
– I ⊆ Q is the set of initial states;
– δ ⊆ Q×Q is the transition relation;
– F ⊆ 2Q is the set of acceptance sets (the acceptance family).

An ω-word σ over Q is called path of A if σ0 ∈ I and (σi, σi+1) ∈ δ for all i ∈ N.
The limit of ω-word σ is given as limit(σ) := {q | ∃∞n. σn = q}5. The GBA A
accepts a path σ of A if limit(σ) ∩M 6= ∅ holds for all M ∈ F .

Observe that Def. 3 does not mention an alphabet. Instead, it is conventional
to label automaton states by sets of propositional interpretations and use these
labels to define the acceptance of a temporal interpretation by a GBA. Formally,
this is achieved by the following definition, where D is chosen as 2Prop.

Definition 4. A labelled generalised Büchi automaton (LGBA) is given by a
triple (A,D,L) where:

4 An ω-word over alphabet Σ is a sequence s0s1 . . . where si ∈ Σ for all i ∈ N.
5 The symbol ∃∞ means “there are infinitely many”.



– A = (Q, I, δ, F ) is a GBA;
– D is a finite set of labels;
– L : Q→ 2D is the label function.

A path σ of A is consistent with an ω-word ξ over D if ξi ∈ L(σi) for all i ∈ N.
An LGBA accepts an ω-word ξ over D iff it (more precisely, its underlying GBA)
accepts some path of A that is consistent with ξ.

In model checking, systems are modelled as Kripke structures, that is, finite
transition systems whose states are labelled with propositional interpretations.
A Kripke structure K is an LGBA whose underlying GBA has a trivial (empty)
acceptance family, and whose label function assigns a single propositional inter-
pretation to every state. Assuming that the LGBA A represents the complement
of the LTL formula ϕ (A accepts precisely those executions of which ϕ does not
hold), K is a model of ϕ if no execution is accepted by both K and A, i.e. if the
intersection of the languages accepted by the two automata is empty.

3 Generating an LGBA for an LTL formula

We recall the algorithm proposed by Gerth et al. [7] for computing an LGBA Aϕ
(with set of labels 2Prop) for an LTL formula ϕ such that Aϕ accepts a temporal
interpretation ξ iff ξ � ϕ.

The construction of Aϕ proceeds in three stages. First, one builds the graph
of the underlying GBA, using a procedure similar to a tableau construction [4].
Second, the function for labelling states of the LGBA is defined. Finally, the
acceptance family is determined based on the set of “until” subformulae of ϕ.
We now describe each stage in more detail.

The first step builds a graph of nodes (which will become the automaton
states) that contain subformulae of ϕ. Intuitively, a node “promises” that the
formulae it contains hold of any temporal interpretation that has an accepting
run starting at that node. The construction is essentially based on “recursion
laws” of LTL such as

µ U ψ ↔ ψ ∨ (µ ∧ X(µ U ψ)) (1)

that are used to split a promised formula into promises for the current state
and for the successor state. The initial states of the automaton will be precisely
those nodes that promise ϕ.

Without loss of generality, we assume that ϕ is given in negation normal form
(NNF), i.e. the negation symbol is only applied to propositions. Transformation
to NNF is straightforward once we include the dual operators ∧ and V among
the set of logical connectives, using laws such as ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ.

Gerth et al. [7] represent each node of the graph by a record with the following
fields:

– Name: a unique identifier of the node.



– Incoming : the set of names of all nodes that have an edge pointing to the
current node. Using this field, the entire graph is represented as the set of
its nodes.

– New : A set of LTL formulae promised by this node but that have not yet
been processed. This set is used during the construction and is empty for all
nodes of the final graph.

– Old : A set of LTL formulae promised by this node and that have already
been processed.

– Next : A set of LTL formulae that all successor nodes must promise.
– Father : During the construction, nodes will be split. This field contains the

name of the node from which the current one has been split. It is used by
Gerth et al. solely for reasoning about the algorithm, and we will not mention
it any further.

The algorithm successively moves formulae from New to Old, decomposing
them, and inserting subformulae into New and Next as appropriate. When the
New field is empty, a successor node is generated whose New field equals the Next
field of the current node. The algorithm maintains a list of all nodes generated so
far to avoid generating duplicate nodes; this is essential for ensuring termination
of the algorithm. More formally, the algorithm is realised by the function expand
whose pseudo-code is reproduced in Fig. 1. For reasons of space and clarity,
we omit some parts of the code in this presentation, in particular, some of the
cases for the currently considered formula η, while preserving the original line
numbering.

The automaton graph is constructed by the following function call:

expand([Name⇐ new name(), Incoming⇐ {init},
New⇐ {ϕ},Old⇐ ∅,⇐ Next⇐ ∅ ], ∅)

(2)

where ϕ is the input LTL formula and init is a reserved identifier: all nodes whose
Incoming field contains init will be initial states of the automaton.

In the second step of the construction, we define the function labelling the
nodes with sets of propositional interpretations, each represented as the set of
propositions that evaluate to true. The label of a node q is defined as the set of
interpretations that are compatible with Old(q). Formally, let

Pos(q) = Old(q) ∩ Prop and Neg(q) = {η ∈ Prop | ¬η ∈ Old(q)}.

A propositional interpretation X is compatible with q iff it satisfies all atomic
propositions in Pos(q) but none in Neg(q). This motivates the definition

L(q) = {X ⊆ Prop | X ⊇ Pos(q), X ∩Neg(q) = ∅}. (3)

It remains to define the acceptance family of the LGBA. Reconsider the
“recursion law” (1) for the U operator, which is implemented by lines 20–27 of
the code of Fig. 1. Every node “promising” a formula µ U ψ has one successor
promising ψ and a second successor promising µ and X(µUψ). Thus, the graph



3: function expand(Node, Nodes Set)
4: if New(Node)=∅ then
5: if ∃ND∈Nodes Set with Old(ND)=Old(Node) and Next(ND)=Next(Node) then
6: Incoming(ND):=Incoming(ND)∪Incoming(Node);
7: return(Nodes Set)
8: else return(expand([Name⇐new name(), Incoming⇐{Name(Node)},
10: New⇐Next(Node), Old⇐ ∅, Next⇐ ∅], {Node}∪Nodes Set))
11: else
12: let η ∈New(Node);
13: New(Node):=New(Node)\{η};
14: case η of
15: ¬P ⇒
18: Old(Node):=Old(Node)∪{η};
19: return(expand(Node, Nodes Set));
20: η = µ U ψ ⇒
21: Node1:=[Name⇐new name(), Incoming⇐Incoming(Node),
22: New⇐New(Node)∪({µ}\Old(Node))
23: Old⇐Old(Node)∪{η}, Next⇐Next(Node)∪{η}];
24: Node2:=[Name⇐new name(), Incoming⇐Incoming(Node),
25: New⇐New(Node)∪({ψ}\Old(Node))
26: Old⇐Old(Node)∪{η}, Next⇐Next(Node)];
27: return(expand(Node2, expand(Node1, Nodes Set)));
32: end expand

Fig. 1. The algorithm by Gerth et al. [7] (incomplete).

of the LGBA may contain paths such that all nodes along the path promise µ
but no node promises ψ. Such paths are not models of µ U ψ, which requires ψ
to be true eventually, and the acceptance family is defined in order to exclude
them. Formally, we define for each formula µ U ψ the set of nodes

FµUψ = {q ∈ Q | µ U ψ /∈ Old(q) or ψ ∈ Old(q)}, (4)

and define the acceptance family F as

F = {FµUψ | µ U ψ is a subformula of ϕ}. (5)

4 Implementation in Isabelle

4.1 LTL Formulae

We represent LTL formulae in Isabelle as an inductive data type. For the pur-
poses of this presentation, we restrict to NNF formulae, although our full devel-
opment also includes unrestricted LTL formulae and NNF transformation. For
simplicity, we represent atomic propositions as strings; alternatively, the type of
propositions could be made a parameter of the data type definition.



datatype
frml = LTLTrue ("true")

| LTLFalse ("false")

| LTLProp string ("prop’(_’)")

| LTLNProp string ("nprop’(_’)")

| LTLAnd frml frml ("_ and _")

| LTLOr frml frml ("_ or _")

| LTLNext frml ("X _")

| LTLUntil frml frml ("_ U _")

| LTLUDual frml frml ("_ V _")

The above definition includes the concrete syntax for each clause of the data
type. For example, (X prop(’’p’’)) and prop(’’q’’) would be the Isabelle
representation of (Xp) ∧ q.

We next introduce types for representing ω-words and temporal interpreta-
tions, and define the semantics of LTL formulae by a straightforward primitive
recursive function definition.

types
’a word = nat ⇒ ’a

interprt = "(string set) word"

fun semantics :: "[interprt, frml] ⇒ bool" ("_ |= _" [80,80] 80)

where
"ξ |= true = True"

| "ξ |= false = False"

| "ξ |= prop(q) = (q∈ξ(0))"
| "ξ |= nprop(q) = (q/∈ξ(0))"
| "ξ |= ϕ and ψ = (ξ |= ϕ ∧ ξ |= ψ)"
| "ξ |= ϕ or ψ = (ξ |= ϕ ∨ ξ |= ψ)"
| "ξ |= X ϕ = (suffix 1 ξ |= ϕ)"
| "ξ |= ϕ U ψ = (∃ i. suffix i ξ |= ψ ∧ (∀ j<i. suffix j ξ |= ϕ))"
| "ξ |= ϕ V ψ = (∀ i. suffix i ξ |= ψ ∨ (∃ j<i. suffix j ξ |= ϕ))"

4.2 Büchi Automata

We now encode GBAs and LGBAs in Isabelle, following Defs. 3 and 4. In this
encoding we approximate the set Q of states by a type parameter ’q, which will
later be instantiated by the type representing the nodes of the graph. Although
not enforced by the definition, finiteness of the actual set of nodes will be ensured
by the termination of the algorithm, which produces states one by one.

GBAs and LGBAs are naturally modelled as records in Isabelle. Since we
aim at producing executable code, all sets that appear in the original definition
are represented as lists.

record ’q gba =

initial :: "’q list"



trans :: "(’q × ’q) list"

accept :: "’q list list"

record ’q lgba =

gbauto :: "’q gba"

label :: "’q ⇀ string list list"

The node labelling function is represented by a partial function (denoted by the
⇀ symbol) because it needs only be defined over actual states of the LGBA,
whereas the type ’q may contain extra elements.

It remains to define the runs and the acceptance family of (L)GBAs. The
following definitions are a straightforward transcription of Def. 3: the utility
function set from the Isabelle library computes the set of list elements, the
limit function is defined as indicated in Def. 3.

definition gba_path :: "[’q gba, ’q word] ⇒ bool" where
"gba_path A σ
≡ σ 0 ∈ set (initial A) ∧
(∀ n. ((σ n), σ (Suc n)) ∈ set (trans A))"

definition gba_accept :: "[’q gba, ’q word] ⇒ bool" where
"gba_accept A σ
≡ gba_path A σ ∧
(∀ i<length (accept A). limit σ ∩ set (accept A!i) 6= {})"

The acceptance condition for an LGBA is defined in a similar fashion. Finally,
the predicate lgba accept characterises the language of an LGBA: a temporal
interpretation ξ is accepted by the LGBA A if there exists some path σ that is
accepted by the GBA underlying A and that is consistent with ξ (cf. Def. 4).

definition lgba_accept :: "[’q lgba, interprt] ⇒ bool"

where
"lgba_accept A ξ
≡ ∃σ. (∀ i. ξ i ∈ set (map set (the (label A (σ i)))))

∧ gba_accept (gbauto A) σ"

The use of the function “the” in the above code is a technicality related to the
fact that the node labelling function is, in principle, partial. What matters is
that “the (label A (σ i))” is of type string list list.

4.3 Translation from LTL to LGBA

We now formalise in Isabelle the algorithm due to Gerth et al. that we have
presented informally in Sect. 3. As discussed there, three elementary steps have
to be addressed:

– construct the graph of the underlying GBA using the expand function;
– define the acceptance family of the GBA;



function (sequential) expand :: "[cnode, node list] ⇒ node list"

where
"expand ([], n) ns

= (if (∃ nd∈set ns. set (old nd) = set (old n) ∧
set (next nd) = set (next n))

then upd_nds (λn nd. set (old nd) = set (old n) ∧
set (next nd) = set (next n)) ns n

else expand (next n,

(|name = Suc(name n),

incoming = [name n],

old = [],

next = []|)) (n#ns))"

| "expand ((nprop(q))#fs, n) ns

= expand (fs, n(| old := (nprop(q))#(old n) |)) ns"

| "expand ((µ U ψ) #fs, n) ns

= (let nds = expand (µ#fs,
n(| old := (µ U ψ)#(old n),

next := (µ U ψ)#(next n) |)) ns

in expand (ψ#fs,
n(| name := . . .,

old := (µ U ψ)#(old n) |)) nds)"

Fig. 2. The Isabelle implementation of expand, simplified.

– compute the labelling of the states of the LGBA with sets of propositional
interpretations.

The algorithm expand constructs a graph, represented as a set of nodes.
In Isabelle, we again use lists instead of finite sets in order to simplify code
generation. We represent node names as integers, and model a node as a record
containing the fields introduced in Sect. 3. We omit the Father field, which is
unnecessary for the construction of the graph. We also replace the field New,
which is used only during the construction, by an extra argument to the expand
function. More precisely, the first argument of the function is of type cnode,
defined as a pair of a formula list and a node.

record node =

name :: nat

incoming :: "nat list"

old :: "frml list"

next :: "frml list"

types cnode = "frml list * node"

Figure 2 contains the fragment of the definition of function expand in Isabelle that
corresponds to the pseudo-code shown in Fig. 1. The function upd nds merges



the incoming fields of the current node with those of the already constructed
nodes whose old and next fields agree with those of the current node.

For the sake of presentation, the code shown in Fig. 2 is somewhat simpli-
fied with respect to our Isabelle theories: the actual definition produces a pair
consisting of a list of nodes and the highest used node name, which is used in
the (omitted) definition of the name of the node created in the second call to
expand in the clause for “until” formulae. Moreover, the actual definition checks
for duplicates whenever a formula is added to the old or next components of a
node.

The graph for an LTL formula is computed by the function create graph,
which in analogy to (2) is defined as

definition create_graph :: "frml ⇒ node list"

where
"create_graph ϕ
≡ expand ([ϕ], (| name = 1, incoming = [0],

old = [], next = [] |)) []"

We now address the second problem, i.e. the computation of the acceptance
family for an LTL formula and a graph represented as a list of nodes. The
following function accept family is a quite direct transcription of the definition
of the acceptance family in (5):

definition accept_family :: "[frml, node list] ⇒ node list list"

where
"accept_cond ϕ ns

≡ map (λη. case η of

_ U ψ ⇒ [q←ns. η∈set(old q) −→ ψ∈set(old q)])

(all_until_frmls ϕ)"

where all until frmls computes the list of “until” subformulae of the argu-
ment formula, without duplicates. It is now straightforward to define a function
create gba that constructs a GBA (of type node gba) from a node list repre-
senting the graph.

It remains to compute the function labelling the nodes with sets of propo-
sitional interpretations, in order to obtain an LGBA. The following definitions
implement the labelling defined by (3) in a straightforward way.

definition
gen_label :: "[string list list, node] ⇒ string list list"

where
"gen_label lbls n

≡ [xs←lbls. set (pos_props (old n)) ⊆ set xs

∧ list_inter xs (neg_props (old n)) = []]"

definition
create_lgba :: "frml ⇒ node lgba"

where



"create_lgba ϕ
≡ (let ns = create_graph ϕ in

(| gbauto = create_gba ϕ ns,

label = [ns[7→]map (gen_label (list_Pow (get_props ϕ)))
ns] |))"

The auxiliary functions pos props and neg props compute the lists of positive
and negative literals contained in a list of formulae; get props computes the list
of atomic propositions contained in a temporal formula.

4.4 Code generation

We have set up our theories in such a way that they use only data types and
operations supported by the code generator, except for certain tests that convert
lists to sets. In order to make these tests executable, we derive some auxiliary
lemmas such as

lemma [code inline]:

"set xs ⊆ set ys ←→ list_all (λx. x mem ys) xs"

lemma [code inline]:

"set xs = set ys ←→ set xs ⊆ set ys ∧ set ys ⊆ set xs"

After these preliminaries, executable code can be extracted by simply issuing
the command

export code create_lgba in OCaml file "ltl2lgba.ml"

from the Isabelle theory file. This command produces an OCaml module con-
taining the function create lgba and all definitions and functions on which that
function depends.

In order to use this code we have manually written a parser and driver pro-
gram that parses an LTL formula, calls the function create lgba, and outputs
the result. We have used this program to generate automata corresponding to
formulae ϕn that are representative of the verification of liveness properties un-
der fairness constraints6

ϕn ≡ ¬ ((GFp1 ∧ . . . ∧ GFpn) =⇒ G(q =⇒ Fr))

for atomic propositions pi, q, and r.
We have compared our code with implementations of the algorithm of

Gerth et al. that are available in the tools Spin (http://spinroot.com) and
Wring (http://vlsi.colorado.edu). The run-
ning times (in seconds, on a dual-core note-
book computer with a 2.4GHz CPU and 2GB
of RAM) for translating ϕn are shown in the
table on the right. However, this comparison is

Our code Spin Wring
n = 5 30 > 1200 90
n = 6 540 > 1200 900

Table 1: Runtimes.

6 Fψ (“finally ψ”) is an abbreviation for > U ψ; Gψ (“globally ψ”) denotes ¬F¬ψ.



not quite fair, because the other tools go on to translate the LGBA to ordinary
Büchi automata. We plan to formalise this additional (polynomial) translation
in the future, but take the present results as an indication that the execution
times of the implementation generated from Isabelle are not prohibitive.

We have used the LTL-to-Büchi translator testbench [18] for gaining addi-
tional confidence in our program, including the hand-written driver. As expected,
our code passes all the tests.

5 Verifying the Automaton Construction

Our main motivation for implementing the algorithm in Isabelle is of course
the possibility to verify the correctness of our definitions. Assuming we trust
Isabelle’s proof kernel and its code generator, we obtain a verified program for
translating LTL formulae into LGBA. We outline the correctness proof in this
section. In fact, we must address two subproblems: we prove that the function
expand terminates on all arguments, and we show that a temporal interpretation
is accepted by the resulting LGBA iff it is a model of the input formula.

5.1 Termination

HOL is a logic of total functions, and it is essential for consistency to prove that
every function that we define terminates. Indeed, Isabelle inserts a termination
predicate in all theorems that involve a function whose termination has not been
proven. Termination of the expand function (cf. Fig. 2) is not obvious on first
sight but, remarkably, is not discussed at all in the original paper [7].

Consider Fig. 2. A call to expand is of the form expand (fs,n) ns. Now in
all cases of the definition, except the first one, some formula is removed from
fs, suggesting a well-founded ordering based on the size of the list fs. (This
observation is also true of the cases of the definition omitted in Fig. 2.)

However, that simple definition breaks down for the first case where argument
fs equals []. Indeed, the recursive call constructs a new node based on the
contents of the next field of the node n. In this case, the termination argument
must be based on the argument ns of the function call. The apparent difficulty
here is that this list does not become shorter on recursive calls, but (potentially)
longer, so it is not completely obvious how to define a well-founded order. The
solution here is to find a suitable upper bound for the argument ns. This can
be done using the fact that all the nodes that are ever constructed contain
subformulae of the input formula ϕ in their fields old and next, the same holds
for the argument fs of formulae to process, and no two different nodes containing
the same formulae in their old and next fields are ever constructed. It follows
that there are only finitely many possible nodes since there exist only finitely
many distinct sets of subformulae of ϕ. Very roughly speaking, the well-founded
order by which argument ns decreases is given by (LIM ϕ - ns) where LIM is
a function that calculates the appropriate upper bound given an LTL formula
ϕ. The actual definition of the upper bound, which appears in the definition



of the ordering below, depends on the arguments of function expand, not the
formula ϕ.

The two orderings are combined lexicographically, that is to say, either the
argument ns decreases w.r.t. the ordering discussed above, or the ns argument
stays the same and there is a decrease on the fs argument.

The termination proof is complicated further by the fact that we have a
nested recursive call in the last case. This is obvious in line 27 in Fig. 1, but
the let expression in Fig. 2 amounts to the same. We therefore start off by
showing a partial termination property, which states that if expand terminates,
then nds ⊇ ns, where nds is the result computed by the inner call (see Fig. 2).
This partial result is then used to show that the arguments of the outer recursive
call are smaller according to the well-founded ordering explained above.

The termination order is formally defined in Isabelle as follows:

abbreviation
"expand_term_ord ≡

inv_image (finite_psubset <*lex*> less_than)

(λ(n, ns). (nds_limit n ns - (old_next_pair ‘ set ns),

size_frml_list (fst n)))"

We explain this definition. The termination order compares pairs of the form
(n, ns) where n is a cnode and ns is a node list. This corresponds exactly to
the argument types of expand. The function λ(n, ns). . . . in the above definition
turns (n, ns) into another pair, say (st, sz), where st is given by the old and
next fields of all nodes in ns and subtracting those from the set of all possible
old and next fields—i.e., st states “how far ns is from the limit”. The second
argument sz is simply the length of the list appearing as the first component of
the pair n. To compare two pairs (n, ns) and (n′, ns′), the function is used to
compute the corresponding (st, sz) and (st′, sz′), and those pairs are compared
using a lexicographical combination of ⊆ and ≤.

The formal termination proof takes about 500 lines of Isar proof script.

5.2 Correctness

We now address the proper correctness proof of the algorithm, whose idea is
presented in the original paper [7]. We have to prove that the LGBA computed
by function create_lgba ϕ accepts precisely those temporal structures that are
a model of ϕ. Formally, this is expressed as the Isabelle theorem

theorem lgba_correct:

assumes "∀ i. ξ i ∈ Pow (set (get_props ϕ))"
shows "lgba_accept (create_lgba ϕ) ξ ←→ ξ |= ϕ".

The hypothesis of the theorem states that ξ is a temporal interpretation over
2Prop where Prop is the set of atomic propositions that occur in ϕ (cf. Sect. 2.2).

As explained in Sect. 3, the idea of the construction is to construct nodes that
“promise” certain formulae and to make sure that these promises are enforced



along any path starting at that node. However, the graph construction by itself
can ensure this only partly. For example, we can prove the following lemma
about “until” formulae promised by a node:

lemma L4_2a:

assumes "gba_path (gbauto (create_lgba ϕ)) σ"
and "f U g ∈ set (old (σ 0))"

shows "(∀ i. {f, f U g} ⊆ set (old (σ i))

∧ g /∈ set (old (σ i)))

∨ (∃ j. (∀ i<j. {f, f U g} ⊆ set (old (σ i)))

∧ g ∈ set (old (σ j)))".

In other words, we know for any path that starts at a node promising formula
f U g that f and f U g are promised as long as g is not promised. However, we
cannot be sure that g will indeed be promised by some node along the path. We
defined the acceptance family precisely in a way to make sure that such paths
are non-accepting, and indeed we can prove the following stronger lemma about
the accepting paths starting at a node promising some formula f U g:

lemma L4_2b:

assumes "gba_path (gbauto (create_lgba ϕ)) σ"
and "f U g ∈ set (old (σ 0))"

and "gba_accept (gbauto (create_lgba ϕ)) σ"
shows "∃ j. (∀ i<j. {f, f U g} ⊆ set (old (σ i)))

∧ g ∈ set (old (σ j))"

The proof of theorem lgba_correct above relies on similar lemmas for each
temporal operator, and then proves by induction on the structure of LTL for-
mulae that all formulae promised along an accepting path indeed hold of the
corresponding suffix of the temporal interpretation. For the proof of the “if”
direction of theorem lgba_correct we inductively construct an accepting path
for any temporal interpretation satisfying a formula. The length of the overall
correctness proof is about 4500 lines of Isar proof script. The effort of working
out the Isabelle proofs was around four person months.

6 Conclusion

In this paper we have presented a formally verified definition of labelled gener-
alised Büchi automata in the interactive proof assistant Isabelle. Our formali-
sation is based on the classical algorithm by Gerth et al. [7], and Isabelle can
generate executable code from our definitions. In this way, we obtain a highly
trustworthy program for a critical component of a model checking engine for
LTL.

Few formalisations of similar translations have been studied in the literature.
Schneider [16] presents a HOL conversion for LTL that produces a symbolic en-
coding of an LGBA, which can be used in connection with a symbolic (in par-
ticular BDD-based) model checker. In contrast, our implementation produces



a full LGBA that can be used with explicit-state LTL model checkers. More-
over, it generates a stand-alone program that can be used independently of any
particular proof assistant. The second author [11] previously presented a formali-
sation of weak alternating automata (WAA [12]), including a translation of LTL
formulae into WAA. Due to their much richer combinatorial structure, WAA
afford a rather straightforward LTL translation of linear complexity, whereas
the translation into (generalised) Büchi automata is exponential. Indeed, the
main contribution of [11] was the formalisation of a game-theoretic argument
due to [10, 19] that underlies a complementation procedure for WAA.

Since the translation of LTL formulae to Büchi automata is of exponential
complexity, one cannot expect to translate large formulae. Fortunately, the for-
mulae that express typical correctness properties of concurrent systems are quite
small. Although efficiency was not of much concern to us during the development
of our theories, our experiments so far indicate that the extracted program does
not behave significantly worse than existing implementations of the algorithm
of Gerth et al. Of course, several improvements to the code are possible. For
example, we could represent the sets of propositional interpretations labelling
the automaton states symbolically instead of through an explicit enumeration,
for example using a Boolean function that checks whether an interpretation is
consistent with the label. Optimisations at a lower level could be obtained by
replacing the list representation of finite sets with a more efficient data structure.

More significant optimisations could be achieved by basing the construction
on a different algorithm altogether. Although the construction of Gerth et al.
is well known and widely implemented, several alternative constructions have
been studied in the literature [3, 17, 6, 5, 8], and the algorithm presented in [6] is
widely considered to behave best in practice. This algorithm makes use of more
advanced automata-theoretic notions, including WAA and various simulation
relations on WAA and Büchi automata. These concepts have wider applications
than just the automata constructions used in model checkers, including the com-
plementation of ω-automata [9] and the synthesis of concurrent systems.

Encouraged by the success we have had so far, we would indeed like to for-
malise the construction of [6] in future work. Our current formalisation will
continue to serve as an important building block that contains essential, funda-
mental concepts.
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