
Formally verified optimizing compilation in ACG-based flight control software

Ricardo Bedin França∗†, Sandrine Blazy‡, Denis Favre-Felix∗, Xavier Leroy§, Marc Pantel† and Jean Souyris∗
∗AIRBUS Operations SAS

316 Route de Bayonne, Toulouse, France
{ricardo.bedin-franca,denis.favre-felix,jean.souyris}@airbus.com

†Institut de Recherche en Informatique de Toulouse
2 Rue Charles Camichel, Toulouse, France

{ricardo.bedinfranca,marc.pantel}@enseeiht.fr
‡IRISA - Université de Rennes 1

Campus de Beaulieu, Rennes, France
sandrine.blazy@irisa.fr

§ INRIA Rocquencourt
Domaine de Voluceau, Le Chesnay, France

xavier.leroy@inria.fr

Abstract—This work presents an evaluation of the CompCert
formally specified and verified optimizing compiler for the
development of DO-178 level A flight control software. First,
some fundamental characteristics of flight control software
are presented and the case study program is described.
Then, the use of CompCert is justified: its main point is to
allow optimized code generation by relying on the formal
proof of correctness and additional compilation information
instead of the current un-optimized generation required to
produce predictable assembly code patterns. The evaluation
of its performance (measured using WCET and code size) is
presented and the results are compared to those obtained with
the currently used compiler.

Keywords-Safety critical systems, Optimized code generation,
Toolset performance evaluation

I. INTRODUCTION

Flight Control Software (FCS) development is a very
challenging task: not only it has the typical constraints of
other software projects, such as budget, delivery schedule
and available hardware, but also those that apply to hard real-
time, safety-critical software. There are specific regulations
for the avionics domain - in particular, the DO-178/ED12 [1]
that enforce rigorous development of embedded software in
avionics systems.

In this context, it is not trivial to develop software that can
perform optimally while complying with all requirements.
This paper focuses on the compilation, which is a very
important step in the generation of good performance critical
software: compilers are very complex tools that carry out
the delicate task of generating low-level code that behaves
exactly as expected from the high-level source code. Thus,
the compiler has clear influence over software performance
and safety, but it is commonly developed by third parties
(Commercial Off-The-Shelf “COTS” software) and are not
necessarily oriented towards the needs of avionics software.

We present experiments carried out by Airbus with the use
of a formally-verified compiler, CompCert, in flight control
software development. The goal of these experiments is to
evaluate its performance in a realistic environment, with
software modules similar to actual FCS ones and the same
development and verification tools as real FCS. This paper
extends the performance evaluation presented in [2], using
a new version of CompCert that includes an annotation
mechanism (for traceability and timing analysis purposes)
and using more criteria to compare a CompCert-based
development with the currently used approach. This paper
compares Worst-Case Execution Times (WCET) taking into
account the size and function of the modules.

The paper is structured as follows: Section II presents the
fundamentals of flight control software development and the
method we use to assess software performance. Section III
presents the CompCert compiler and its features that led to
its choice for this work. Section IV presents the results of
its performance evaluation and Section V draws conclusions
and research perspectives.

II. FLIGHT CONTROL SOFTWARE, COMPILERS AND
PERFORMANCE

A. An Overview of Flight Control Software

While older airplanes had only mechanical, direct links
between the pilots’ inputs and their actuators, modern air-
craft rely on computers and electric connections to transmit
these inputs. As Traverse and Brière [3] describe, digital,
electrical flight control systems are used on all aircraft
control surfaces since the development of the Airbus A320.

Hardware and software used in flight control systems
are subject to very strict requirements, just as any other
component. Every kind of avionics software is subject to
the DO-178 (currently, version B) regulations, and the DO-
178B guidelines become more numerous and more stringent

according to the criticality of a given software program. The
correct operation of flight control software is essential to a
safe flight, hence they belong to “software level A” and their
planning, development, verification and project management
must comply with very strict regulations.

In addition, aircraft manufacturers usually have their own
internal development constraints, ranging from additional
safety considerations (e.g. dissymetry and redundancy) to
industrial ones, such as delivery delays.

B. The Case Study

In order to carry out a realistic study, we have chosen
to use a case study that closely resembles actual flight
control software: not only the source code is representative
(in functionalities and size) of flight control laws, but the
target computer is also representative of true flight control
hardware, so as to illustrate typical constraints on hardware
usage. The hardware and software used in this work are
similar to those described in [4]: the relevant hardware in the
scope of this work comprises the MPC755 microprocessor,
and an external RAM memory. The MPC755 is a single-core
microprocessor, which is much less complex than modern
multi-core ones but does have pipelines, an internal cache
and superscalar architecture, three elements that make its
behavior less predictable. Naive timing analysis of this mi-
croprocessor could lead to the “timing anomalies” described
by Lundqvist and Stenström [5].

It must be noted that the choices of hardware and software
are led by a combination of factors – besides performance
needs, there are other constraints, such as weight, size, power
dissipation, cost and – most importantly in the scope of this
paper – verifiability. Thus, choosing the MPC755 for this
case study is consistent with flight control systems of mod-
ern aircraft. The development process described below also
reflects the intent of developing deterministic and verifiable
software.

The development described in the next paragraphs follows
the basic steps that are recommended by the DO-178B: spec-
ification, design, coding/integration and verification. One
must take into account, though, that specification and design
are treated together, due to the highly detailed software
specification.

1) Specification and Design: The largest part of the
software program – the “application” subset, which contains
the implementation of the flight control laws – is specified
as a set of sheets with the graphical formalism SCADE,
each sheet being composed of interconnected basic operators
(addition, filter, etc). There is no “main sheet”: they all
belong to the same hierarchical level and they communicate
via their input and output parameters. In order to simplify the
specification and the code generation, all the symbols used
in the sheets are custom-made by the developers. SCADE
(V6) state machines are not used, mainly for determinism

purposes – conditional statements are kept inside some
library symbols.

Figure 1 depicts instances of the custom-made symbols
ABS, HWACQDSI, BPO and AFDX FSOUT. Each symbol
has inputs and outputs, which are connected to their left and
right sides, respectively. At the bottom of the HWACQDSI
and AFDX FSOUT symbols, there are some “hidden in-
puts”, which have the same semantics as a normal input but
are used to underline symbol parameters (in our example,
integer constants) that are not related to the data flow.

Figure 1. SCADE custom-made operators

The program also contains a manually-coded part that
goes through distinct specification and design phases, but
further details about this part are beyond the scope of this
paper, as it makes no use of automatic code generation.

2) Coding: The specification is translated to source code
by an automatic code generator (ACG). Automatic code
generation, when applicable, has the advantages of being
less error-prone and offering much smaller coding times than
manual code generation. In order to lighten the burden of
source code verification activities, the ACG is qualified as a
development tool, according to the DO-178B standards for
level A software.

In this study, we use C as a source code language, as it
is widely used in critical systems and there are many devel-
opment and verification tools for C-coded critical systems.
Each symbol is represented in C as a macro: a “symbol
library” (a set of macros) is manually coded in order to
implement each SCADE operator, and the ACG-generated
code consists in a sequence of macro instantiations that
respect the data flow specified in SCADE. A SCADE sheet
is represented by a C function that contains a sequence of
macro instantiations – all the data-flow constraints are taken
into account by the ACG in order to make sequential C
programs that are consistent with the parallel SCADE ones.
It must be noted that all the sheets are activated periodically,

but their activation period may vary. Thus, the execution
cycle is divided into several sequential “tasks” and each
sheet may be activated in one or more tasks during a cycle.

The C code is finally compiled with a COTS compiler1

and linked to produce an executable file. It must be noted
that the compiler – like the vast majority of compilers
industrially used – is seen as a “black box” by the de-
velopment and verification teams. In this case, the object
code must be verified thoroughly, and the safest solution
to carry out a complete verification taking into account the
use of a COTS compiler and the high reactivity of the
ACG process is to forbid compiler optimizations in order
to force the generation of constant code patterns for each
symbol. As our ACG-generated code is a (potentially long)
sequence of a limited number of symbols and the symbol
library code changes much less often than the application
in actual flight control programs, it is less onerous to carry
out thorough verification activities over each possible code
pattern for this symbols than verifying all code “sheets” in
each compilation.

3) Verification: Every development phase must be veri-
fied and this verification must meet the DO-178B require-
ments. As this paper focuses on the compilation, we shall
describe the main activities that verify software coding and
integration:

• Source Code Verification: The source code must be
traceable and compliant to the design (in our case,
the SCADE specification). Also, it must respect the
software resource and time constraints.

• Object Code Verification: Object code also must be
traceable and compliant to the SCADE specification
and the integration of software modules, as well as their
integration with the target computer, must be verified.

The DO-178B demands requirement-based verification: a
program must be verified with respect to its high-level and
low-level requirements. In this paper, we suppose that low-
level verification is carried out at symbol level (e.g. tests
and/or formal proofs of symbol outputs), hence the compiler
must not optimize away the symbol outputs, even if they are,
indeed, intermediate results of a function.

Usually, these verification activities (especially object
code verification) involve testing. For level A software, the
whole code must be tested with Multiple Condition/Decision
Coverage (MC/DC) and traceability between source code
and object code is necessary to validate code coverage:

• If coverage is measured over the source code, trace-
ability is necessary to ensure that there is no added,
unverified functionality in the object code. Typical
cases of “added, unverified” functionalities could be
found in compilers that add array bound checks or that
have a complex management for switch statements.

1For confidentiality reasons, the currently used compiler, linker and
loader names are omitted.

• The DO-178B report for clarification [6] states that if
coverage is measured over the object code, traceability
is necessary to ensure that the measured coverage
is equivalent to MC/DC, as the object code (such
as Assembly language) may not contain the multiple
conditions found in the source code.

Traceability analysis is much less complicated if the
object code presents no optimization and no untraceable
code added by the compiler. Once again, it is useful to hinder
compiler optimizations in order to simplify the verification
activities.

C. Estimating Software Performance

Besides being a DO-178B requirement, Worst-Case Exe-
cution Time (WCET) analysis is a safe and reliable timing
verification in the avionics software context. Hardware and
software complexity make the search for an exact WCET
nearly impossible; usually one computes time values which
are as close as possible to the actual WCET, but always
higher than it. In our case study, the main purpose of WCET
analysis is to make sure that no application task oversteps
its allowed execution time.

As mentioned by Souyris et al [4], it was once possible
to compute the WCET of avionics software by measurement
and analysis, but such method is not feasible in state-of-
the-art programs. The current approach at Airbus relies on
AbsInt2’s automated tool a3 [7] to compute the WCET
via static code analysis of the executable file. In order to
obtain accurate results, the tool requires a precise model
of the microprocessor and other relevant components; this
model was designed in close cooperation between Airbus
and AbsInt.

Sometimes it is important or even essential to give a3

extra information about loop counts or register value bounds
to refine its analysis. As described in [4], annotations are
necessary when memory access address ranges cannot be
computed precisely because of limitations in a3 value anal-
ysis (e.g. floating-point). The imprecisions that arise from
such limitations degrade WCET analysis and can go as far
as stopping a3 from completing WCET computation. Such
a situation is depicted in Algorithm 1: as a3 is not yet
able to carry out the floating-point comparison, it cannot
evaluate the range of addresses that may be accessed in line
6. In this case, a3 has to continue its computation assuming
that the access might occur in any memory address, and
the great deal of complexity that is added incurs a strongly
overestimated – if not unbounded – WCET. For instance, if
it is known that variable i is always within the bounds of
the array, this information should be provided to a3 as an
annotation.

In our case, annotations are needed only in a few symbols,
so as to compute some addresses more precisely – with a3,

2www.absint.com

Algorithm 1 Example of a code that needs annotations
1: register double x; // Assume that x fits
2: // inside the array bounds
3: register int i;
4: extern double lookup table[];
5: i = (int)x;
6: register double y = lookup table[i];

this kind of annotation can be assigned only to micropro-
cessor registers, which are depicted in the Assembly code.

Let us assume that Algorithm 1 is part of the C macro
of a symbol and that its corresponding (non-optimized)
Assembly code is depicted by Algorithm 2. One can notice
that the C variable i is stored in r31, since it is loaded with
the resulting value of the floating-point to integer conversion.
Thus, if we know that i is always between, say, 0 and 9, the
annotation should be:

instruction "Checkpoint" + 0x14 bytes
is entered with r31 = from 0 to 9;

In order to keep the fast pace of the ACG-based approach
(and avoid potential human mistakes), an automatic anno-
tation generator was devised to avoid manual activities and
keep the efficiency of the development process. Each symbol
that needs annotations will need them repeatedly for all of
its instances, but it is not difficult to annotate automatically
the correct Assembly lines with a non-optimized compilation
that always generates similar code patterns for all instances
of the symbol. Whenever the macro containing Algorithm
1 is instantiated, an annotation would be needed at the
same offset 0x14 from the tag Checkpoint. Thus, one has to
track the possible code patterns for the symbols that need
annotations (to make sure that subtle variations in the code
patterns do not change the offset of the instruction that needs
an annotation) and find the right offsets to assign those value
ranges. This annotation strategy is simple and effective, but
would not work if the compiler could optimize the code.

Algorithm 2 Example of a loop that needs annotations
Checkpoint:

00 fctiwz f0,f31
04 stfd f0,8(r1)
08 lwz r31,12(r1) . a3 cannot infer this value
0c addis r11,r0,lookup table@ha
10 addi r11,r11,lookup table@l
14 rlwinm r10,r31,3,0,28 . we should help a3 here
18 lfdx f30,r11,r10

Annotations are also used in the manually-coded subsets
in order to specify – for instance – the behavior of other
hardware components, but those are created manually and
are not in the scope of this paper.

III. COMPCERT: TOWARDS A TRUSTED COMPILER

One can figure out that, in extremely critical systems,
traditional COTS compilers must be used with great caution
with respect to code optimization. However, there are recent
advances in the compilation field: in the scope of this work,
a most promising development is the CompCert3 compiler.
Besides working in a more realistic environment (a large C
subset as input language, MPC755 as one of the possible
target processors) than other experimental compilers, its
development is taking into account the needs of critical
systems and its own code is available for study if its end
users need to know its internal details in order to devise
verification strategies for their software.

As described in [8], CompCert is a multiple-pass,
moderately-optimizing compiler that is mostly programmed
and proved correct using the Coq proof assistant. Its op-
timizations are not very aggressive, though: as the com-
piler’s main purpose is to be “trustworthy”, it carries out
basic optimizations such as constant propagation, common
subexpression elimination and register allocation by graph
coloring, but no loop optimizations, for instance. As no code
optimizations are enabled in the currently used compiler,
using a few essential optimization options could already give
good performance benefits.

The semantic preservation proof of CompCert guaran-
tees that the generated code behaves as prescribed by the
semantics of the source program. The observed behaviors
in CompCert include termination, divergence and “going
wrong”. To strengthen the preservation theorem, behaviors
also include a trace of the input-output operations performed
during the execution of the program. Input-output operations
include system calls (if an operating system is used) as well
as memory accesses to global variables declared “volatile”
(corresponding in particular to memory-mapped hardware
devices). The formal verification of CompCert proves, in
effect, that the source program and the generated machine
code perform the same input-output operations, in the same
order, and with the same arguments and results.

A. CompCert annotation mechanism

To strengthen the guarantees implied by CompCert’s
formal verification, we have introduced a generic program
annotation mechanism enabling programmers to mark source
program points and keep track of the values of local vari-
ables at these points. Syntactically, annotations are presented
as calls to a compiler built-in function, taking a string literal
and zero, one or several program variables as arguments:

__builtin_annot("x is %1 and y is %2", x, y);

The formal semantics of this statement is that of a pro
forma “print” statement: when executed, an observable event
is added to the trace of I/O operations; this event records

3http://compcert.inria.fr

the text of the annotation and the values of the argument
variables (here, x and y). In the generated machine code,
however, annotations produce no instructions, just an assem-
bler comment or debugging information consisting of the
text of the annotation where the escapes %1, %2 are replaced
by the actual locations (in registers or memory) where the
argument variables x, y were placed by the compiler. For
example, we obtain

annotation: x is r7 and y is mem(word,r1+16)

if x was allocated to register r7 and y was allocated to
a stack location at offset 16 from the stack pointer r1.

Despite executing no instructions, this special comment
is still treated, from the standpoint of formal semantics,
as a pro forma “print”, generating an observable event.
The semantic preservation proof of CompCert therefore
guarantees that annotations are executed in the same order
and with the same argument values both in the source C
program and in the generated assembly code.

A typical use of annotations is to track pieces of code
such as library symbols. We can put annotations at the
beginning and the end of every symbol, recording the
values of the arguments and result variables of the symbol.
The semantic preservation proof therefore guarantees that
symbols are entered and finished in the same order and
with the same arguments and results, both in the source and
generated codes. This ensures in particular that the compiler
did not reorder or otherwise alter the sequence of symbol
invocations present in the source program – a guarantee that
cannot be obtained by observing systems calls and volatile
memory accesses only.

This possibility of finer-grained semantic preservation is
most welcome, since some of our verification activities may
be carried out at symbol level and semantic preservation
needs to be ensured at this level to be useful in our context.
In particular, we consider using per-symbol annotations in
order to generalize the results of symbol-based tests: the
test results for a given symbol remain valid for all possible
code patterns generated when instantiating this symbol. This
approach is currently under discussion and such discussions
are not in the scope of this paper.

Another use of annotations is to communicate additional
information to verification tools that operate at the machine
code level, such as the WCET analyzer of the a3 tool suite.
Continuing the example of section II-C, we insert a source-
level annotation as shown below.

During compilation, this source-level annotation is turned
into a special comment in the generated assembly file, where
the placeholder %1 is replaced by the machine register
containing variable i. Algorithm 4 below shows the assembly
code generated by CompCert for two successive instantia-
tions of the symbol containing Algorithm 3.

The two instantiations generate significantly different as-
sembly code fragments, since the second instantiation reuses

Algorithm 3 Adding a source-level annotation to Algo-
rithm 1

register double x;
register int i;
extern double lookup table[];
i = (int)x;

builtin annot(”a3: entered with %1 = from 0 to 9”, i);
register double y = lookup table[i];

Algorithm 4 Generated assembly code for two instantiations
10 fctiwz f13, f1
14 stfdu f13, -8(r1)
18 lwz r3, 4(r1)
1c addi r1, r1, r8
20 # annotation: a3: entered with r3 = from 0 to 9
20 rlwinm r4, r3, 3, 0, 28
24 addis r12, r4, (lookup table)@ha
28 lfd f1, (lookup table)@l(r12)
. . .
40 # annotation: a3: entered with r3 = from 0 to 9
20 rlwinm r6, r3, 3, 0, 28
44 addis r12, r6, (lookup table)@ha
48 lfd f2, (lookup table)@l(r12)

some of the intermediate results computed by the first instan-
tiation (common subexpression elimination). Nonetheless,
the two special comments corresponding to the source-
level annotation are correctly placed and correctly reveal the
location of variable i, namely registre r3.

From these special comments and their locations in the
assembly listing, an automatic tool can easily extract the
information that at points 20 and 40 from the beginning of
the current function, register r3 (holding the array index) is
in the range [0, 9], and communicate this information to the
WCET analyzer.

Some aspects of this annotation mechanism are still under
discussion with the CompCert and a3 developers, but an
experimental annotation generator has already been devel-
oped and the ease of its development is a testimony to the
usefulness of the CompCert annotation mechanism: readily-
available, formally-verified variable information simplify the
task of automating annotation generation for a3. One should
remember that, in comparison, the annotation generator for
the “default” compiler code must be reconfigured for each
symbol library change: a new analysis must be carried out in
order to verify which are the possible Assembly patterns for
all symbols that need annotations, and which are the offsets
that need these annotations.

IV. PERFORMANCE EVALUATION OF COMPCERT

The evaluation environment is essentially the same as in
our previous work [2] and is depicted in Figure 2. CompCert

is used only to generate Assembly code from the ACG-coded
files, as these files are by far the most voluminous part of the
program. Compilation of other software subsets, assembling
and linking were done with the compiler, assembler and
linker that are used in actual FCS.

Figure 2. The development chain of the analyzed program

In order to ensure greater realism in the experiments,
about 3600 files that are functionally equivalent to a whole
flight control program were compiled with CompCert 1.9.
These files represent about 3600 SCADE sheets – when
compiled with the default compiler, they correspond to 3.96
MB of Assembly code. The symbol library that was used
comprises 145 symbols whose sizes vary from less than 10
to more than 100 lines of code. CompCert’s source-level
annotation mechanism was used to track symbols’ inputs
and outputs, and also to generate additional information for
some variables that need range annotations. As explained in
section III-A, this information is available in the generated
assembly files, which are examined by the annotation gen-
erator to produce an annotation file in the suitable format
for a3.

a3 was used to compute WCET at two different levels:
the most important benchmark is at task level, as it is
the measure used for timing analysis in actual programs.
While a traditional WCET analysis consists in verifying
that each task is performed within its allocated time, we
opted to compare the average WCET of all tasks in order
to have a synthesis of the results for every task. In addition,

we analyze individually the WCET of all SCADE sheets:
we do not seek interprocedural optimizations or a register
allocation that goes beyond one single module, hence indi-
vidual WCET computations are meaningful in this context
and are useful to find out which kind of algorithms get
the most of CompCert’s optimizations. The baseline for the
benchmark is the WCET of an executable file generated with
the default compiler and the compilation options used in a
real flight control program. Some analyzed sheets instantiate
symbols that need range annotations; CompCert’s annotation
mechanism was used together with a simple annotation
generation script to assign variable ranges for a3 when
needed. Figure 3 depicts the flow of annotation data, from
the C macros (where the necessary extra information is
specified by the user) to the execution of a3.

Figure 3. Automatic annotation generation for a3

In addition to WCET computations, code size measures
were carried out as an auxiliary performance indicator –
smaller code size often means better-performing code.

The results of the WCET analysis are quite encouraging,
as the average WCET improvement per task was 10.6%,
which is a significant improvement by flight control software
standards. As already pointed out in [2], this is mainly due
a better register allocation that saves many loads and stores
that had to be performed to keep symbol inputs and outputs
on stack.

Figure 4 depicts the WCET computed for all sheets,
ordering them according to the WCET obtained when they
were compiled with the default compiler. The WCET im-
provement may change from one region of the graph to
another (modules with a very low or very high WCET do
not always have a visible improvement, whereas CompCert
clearly improved the WCET of those in the middle part of
the curves) and even inside a region – the WCET curve for
CompCert-compiled modules is not smooth.

Figure 4. Overall result of WCET comparison

In order to refine the general results obtained by the
analysis of this large number of files, special attention was
dedicated to files that had extreme values of WCET and
code size. The 10% longest and shortest files (in WCET
or code size) had results that differed from the average and
had specific statistics in order to underline those differences.
In addition, some “unexpected” results (e.g. the default
compiler performing better than CompCert) were analyzed
individually.

The WCET of all analyzed modules was computed for
the executable files generated by both compilers, in order to
compare them when compiling modules of various WCET
and code size value ranges – using the benchmark WCETs
and code sizes to classify the modules into categories. The
main conclusions from these experiments are:

• In the analyzed program, even if a module is small,
there is usually some possibility of optimization but
results may vary according to the symbols that are
instantiated in a given module. Some symbols have
their code vastly improved by CompCert, whereas – in
some very exceptional cases – the WCET of a module
rises due to the overhead caused by longer function
prologues and epilogues. In fact, modules that present
very small code size are not quite a reliable source of
WCET analysis because even their address in memory
becomes a significant factor in WCET analysis.

• Sheets that are not among the fastest or slowest have
a slightly better WCET improvement than the overall
results. This shows that the optimizations work best
when there is enough code to enable their full use,
but the code is still compact enough to avoid register
spilling.

• A sheet can have a large WCET for two main reasons:
either it may have many instructions to execute or it
may contain interactions with hardware devices that are
time-consuming. In the former case, CompCert usu-
ally performs better, except when dealing with spilled
variables – the gains become less significant because
spilled variables resemble variables compiled with the
default compiler. CompCert optimizations can do little
or nothing to improve the WCET of a sheet if its

symbols spend most of their computation time doing
hardware acquisitions and emissions. In our case study,
it is more common to have interactions with hardware
than register spilling, hence the WCET gain over “long”
sheets (larger code size) is more pronounced than the
gain over “slow” ones (higher WCET).

• Even with its optimizations turned off, the default com-
piler sometimes succeeds in selecting more efficient
combinations of PowerPC instructions than CompCert.
An example is address computations for volatile mem-
ory accesses, which CompCert compiles rather naively.
We plan to improve the instruction selection phase of
CompCert to reduce these inefficiencies.

Table I summarizes the WCET analysis results.

WCET (CompCert) Size (CompCert)
All application tasks -10.6% -13.8%

Small code size sheets -2.0% -14.6%
Small WCET -10.6% -12.9%

Average WCET -12.6% -14.3%
Average code size -10.7% -13.6%
Large code size -7.7% -14.2%
Large WCET -3.8% -12.4%

Table I
CODE SIZE AND WCET COMPARISON

A. Verification considerations

Since the main reason to avoid most optimizing compilers
is the ensuing difficulty to verify traceability and compliance
of the object code, the performance evaluation was followed
by a study of possible verification strategies that could use
CompCert’s semantic preservation in order to meet the DO-
178B requirements without losing the performance gains
obtained with its optimizations. This study is currently under
way but it is already clear that the “traditional” analysis
mentioned in [6] to verify traceability between source code
and object code is still feasible with CompCert, as its
optimizations remove computational instructions but do not
change significantly the code structure (branches, etc). Also,
its semantic preservation theorem could be used as a strong
argument for traceability and compliance between source
code and object code.

V. CONCLUSIONS AND FUTURE WORK

This paper presented an evaluation of the CompCert
compiler, based on the characteristics of Airbus flight control
software: ACG-based code, modules with different charac-
teristics. Even if we focused on its WCET analysis to assess
its performance, CompCert’s formal proofs are already seen
as a key to bring more confidence in the compilation process,
helping to make safe use of code optimizations. Moreover,

CompCert’s optimizations apply to the vast majority of the
modules that are representative of FCS.

The main ongoing work in our CompCert study is the
development of a new verification strategy that must be at
least as safe as the current one. It is a complex subject
on its own but some conclusions drawn from it (e.g. the
need for semantic preservation at symbol level) are already
being taken into account – as it is likely that we will need
semantic preservation at symbol input level, the performance
measures were taken using library symbols endowed with
CompCert’s annotations to preserve the semantics of their
inputs and outputs. An important discussion point is the DO-
178 interpretation of a tool like CompCert.

The performance evaluation shall not stop at the current
state. As the symbol library was coded bearing in mind
the current compilation strategy, an interesting work will be
recoding it in order to favor optimizing compilation, with
fewer intermediate variables and use of Small Data Areas.
It is likely that the obtained WCET will be lower and every
percent counts if one intends to improve performance.

Another direction for future work is to further improve
WCET by deploying additional optimizations in CompCert
and proving that they preserve semantics. The WCC project
of Falk et al [9] provides many examples of profitable
WCET-aware optimizations, often guided by the results of
WCET analysis. Proving directly the correctness of these
optimizations appears difficult. However, equivalent seman-
tic preservation guarantees can be achieved at lower proof
costs by verified translation validation, whereas each run
of a non-verified optimization is verified a posteriori by
a validator that is proved correct once and for all. For
example, Tristan and Leroy [10] show a verified validator
for trace scheduling (instruction scheduling over extended
basic blocks) that could probably be adapted to handle
WCC’s superblock optimizations. Rival has experimented
the translation validation approach on a wider scope in [11]
but, currently, the qualification and industrialization of such
a tool seems more complex.

REFERENCES

[1] DO-178B: Software Considerations in Airborne Systems and
Equipment Certification, Radio Technical Commission for
Aeronautics (RTCA) Std., 1982.

[2] R. B. França, D. Favre-Felix, X. Leroy, M. Pantel, and
J. Souyris, “Towards Formally Verified Optimizing Compi-
lation in Flight Control Software,” in PPES, ser. OASIcs,
vol. 18. Grenoble, France: Schloss Dagstuhl, 2011, pp. 59–
68.

[3] D. Brière and P. Traverse, “AIRBUS A320/A330/A340 Elec-
trical Flight Controls: A Family of Fault-Tolerant Systems,”
in FTCS, 1993, pp. 616–623.

[4] J. Souyris, E. L. Pavec, G. Himbert, V. Jégu, and G. Borios,
“Computing the Worst Case Execution Time of an Avionics
Program by Abstract Interpretation,” in Proceedings of the

5th Intl Workshop on Worst-Case Execution Time (WCET)
Analysis, 2005, pp. 21–24.

[5] T. Lundqvist and P. Stenström, “Timing anomalies in dynam-
ically scheduled microprocessors,” in RTSS ’99: Proceedings
of the 20th IEEE Real-Time Systems Symposium. Washing-
ton, DC, USA: IEEE Computer Society, 1999, p. 12.

[6] Final Report for Clarification of DO-178B “Software Consid-
erations in Airborne Systems and Equipment Certification”,
Radio Technical Commission for Aeronautics (RTCA) Std.,
2001.

[7] R. Heckmann and C. Ferdinand, “Worst-case Execution Time
Prediction by Static Program Analysis,” in IPDPS 2004.
IEEE Computer Society, 2004, pp. 26–30.

[8] X. Leroy, “Formal verification of a realistic compiler,” Com-
munications of the ACM, vol. 52, no. 7, pp. 107–115, 2009.

[9] H. Falk and P. Lokuciejewski, “A compiler framework for the
reduction of worst-case execution times,” The International
Journal of Time-Critical Computing Systems (Real-Time Sys-
tems), vol. 46, no. 2, pp. 251–300, 2010.

[10] J.-B. Tristan and X. Leroy, “Formal verification of trans-
lation validators: A case study on instruction scheduling
optimizations,” in 35th symposium Principles of Programming
Languages. ACM Press, 2008, pp. 17–27.

[11] X. Rival, “Symbolic transfer functions-based approaches to
certified compilation,” in 31st Symposium Principles of Pro-
gramming Languages. ACM Press, 2004, pp. 1–13.

