
FORMAL COMPATIBILITY OF EXPERIMENTAL FRAME

CONCEPT AND FINITE AND DETERMINISTIC DEVS MODEL

D. FOURES, V. ALBERT, A. NKESTA

CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
University of Toulouse ; UPS ; F-31077 Toulousee

dfoures@laas.fr, valbert@laas.fr, alex@laas.fr

ABSTRACT: This paper shows how an FD-DEVS model can be integrated within the concept of experimental
frame. Experimental frame (EF) is used to define the environment that will be able to achieve desired states.
These states are extracted from the specifications of the studied system and included on specific part of the
EF (the acceptor). This EF is defined on FD-DEVS like the model. FD-DEVS network permits to couple
together the EF and the model. Applying model to an EF implies in some case a non commandability of part
of the model. This leads us to a second contribution where we formalise FD-DEVS model restriction. This
restriction permits to apply less capable EF than the model itself. EF concept is illustrated with two examples,
a running example of a toaster and a case study of an intelligent cruise controller implemented in UPPAAL tools.

KEYWORDS: Experimental Frame, Restriction, FD-DEVS, Compatibility

1 INTRODUCTION

This paper describes a formal approach to verify that
the system behaviour which is guaranteed by a model
of that system combined with the hypothesis chosen
by a simulation environment allows reaching a given
simulation intended purpose. We focus in this pa-
per in simulation used for the validation of functional
system’s requirements. We use the concept of exper-
imental frame initially introduced by (Zeigler, Prae-
hofer & Kim 2000) in its framework for Modelling
and Simulation. In this framework the concept of ex-
perimental frame is added to the traditional system-
model-simulator view in order to take into account
the specification of the conditions in which a system
is observed or experimented on. Then, an experimen-
tal frame can be seen as a system that interacts with
the system to obtain the data of interest in given con-
ditions. Or it can be seen as a system which interact
with the model, which is an abstract representation
of the system, to answers a set of question about the
system of interest.

An experimental frame has three components as il-
lustrated in figure 1: a generator which generates a
set of output segments ! onto the inputs of the sys-
tem or the model; an acceptor which selects the data
of interest of the system or the model while monitor-
ing whether the desired experimental conditions are
complied with and a transducer which observes and
analyses the output segments ⇢ of the system or the
model. SU is a set of conditions, also called summary
mappings (Traoré 2006), which establish relation-
ships between inputs and outputs within the frame.
A summary mapping can be seen as a set of pre- and
post-conditions mapping the stimulation variables to

the observation variables and so on monitoring the
experimentation. For example let us consider the
Boolean observation point alarm in the experimen-
tal frame: ”If the value of alarm is true in one state
of the execution, then there is a previous state in the
execution where altitude 10” is a summary map-
ping.

System

Model

or

Generator

Transducer

Experimental Frame

Acceptor

Oports
EF

Iports
EF

!
<t0,tn>

t0 t
n

⇢
<t0,tn>

t0 t
n

Results

SU

Figure 1: The experimental frame and its components

In such a framework, the validity of a model is defined
as the degree to which a model faithfully represents a
system within an experimental frame of interest. In-
deed, we can consider a set of models of a same system
hierarchized by a morphism relation. The concrete
model is a model with more capabilities, meaning that
it can be used for a greater number of experimen-
tal frames. However, for a given experimental frame,
the abstract model can be as capable as the concrete
model. Only few models can implement experimenta-
tion conditions required by an experimental frame to
reach objectives and possibly supply valid simulation
results.

The validity of a model is assessed within a given
experimental frame. Within this structure, we sug-
gest a formal specification of the model to represent

its domain of use, i.e. the set of acceptable input
sequences and the set of provided output sequences.
We suggest a formal specification of the experimental
frame to represent the assumptions about the envi-
ronment: the set of stimuli sequences injected into
the model’s inputs (generator), the set of observation
sequences expected onto the model’s outputs (trans-
ducer). The interaction of the model’s guarantees and
the assumptions about the environment must satisfy
the conditions of acceptation of the simulation (accep-
tor). Our approach relies on the fact that the model,
the generator and the transducer are formalized as
FD-DEVS components (Hwang & Zeigler 2009). Fi-
nite and Deterministic DEVS (FD-DEVS) is a class of
DEVS which resolves the problem of obtaining a finite
reachability graph of DEVS network. It enables state-
space exploration and decidability of qualitative anal-
ysis. Then, we can capture the timed I/O behavior
of these components and define a set of conditions to
detect incompatibilities between them. The concept
of synchronous product in the automata theory insti-
gates these conditions. This paper is an extension of a
previous work (Albert, Nketsa & Seguin 2010) where
time was not included in the study as a first-class vari-
able. The acceptor is formalized with temporal logic.
Temporal logic defines a set of acceptable behaviour
on a given reachability graph. There are logics which
refer to clock variables. If altitude 10 was true for
at least ten units of time then alarm = true” is an
example of a timed property.

Section 2 of this paper introduces FD-DEVS atomic
and coupled components. It also gives fundamental
definitions of behaviour or language of a FD-DEVS
component. It introduces the two-slot toaster run-
ning example taken from (Hwang & Zeigler 2009).
Section 3 gives a preview of our metric-based method
which aims guiding experimental frame and/or model
definition such that simulation usage can be improved
by finding the right model and the right experimen-
tal frame for a given intended purpose. It also gives
a state space metric based on trace inclusion between
the model and the experimental frame which can be
qualified from the conditions of compatibility which
are introduced in section 4. We show in section 5 that
compatibility verification can be solved using the tool
Uppaal (Behrmann, David & Larsen 2004). We il-
lustrate this with a simple example.

2 PRELIMINARIES

2.1 FD-DEVS

Here, we remind the FD-DEVS formalism as defined
in (Hwang & Zeigler 2009)

2.1.1 Atomic FD-DEVS

An atomic FD-DEVS is à 7-tuple:

A = hX,Y, S, s0, ⌧, �x

, �
y

i where:

• X is a finite set of input events. X can be split
into two variables: X = {(p, v)| p 2 Iports, v 2
X

p

};

• Y is a finite set of output events, Y can be split
into two variables: Y = {(p, v)| p 2 Oports, v 2
Y

p

};

• S is a finite set of states, s0 2 S is the initial
state;

• ⌧ : S ! Q[0,1] is the time advance function,
where Q[0,1] is the set of nonnegative rational
numbers plus infinity. This function is used to
determine the lifespan of a state;

• �
x

: Q⇥X ! S⇥{0, 1} is the external state tran-
sition function that defines how an input event
changes a state, and whether the internal sched-
ule will be updated or not;

• �
y

: S ! Y � ⇥ S is the output or internal state
transition function, where Y � = Y [{�} and
� /2 Y denotes the silent event ;1

FD-DEVS model has an explicit time base, in con-
trast to DEVS. The time base, denoted by T, is the
set of nonnegative real numbers, i.e. T = [0,1).
t
e

2 T is the elapsed time. It is continuously in-
creasing and its value denotes the time passage since
t
e

= 0. t
s

2 Q[0,1] is an other internal state variable,
called lifespan or schedule time span. t 2 T [{1} is
considered as a upper limit of t

e

. The existing range
of t

e

is defined by function tr : T [{1} ! 2T s.t.
tr(t) = [0, t] if t < 1; tr(t) = [0,1) if t = 1. Q

p

=
{(s, t

s

, t
e

)| s 2 S, t
s

2 Q[0,1], t
e

2 tr(t
s

)} is the set of
legal states. Q

imp

= {(imp,1, t
e

)| imp /2 S, t
e

2 T}
is the set of illegal states s.t. Q

p

\ Q
imp

= ?.
Then, total state set Q is defined as Q = Q

p

[Q
imp

.
Z = X [Y � is the total event set of M .

2.2 FD-DEVS Network

A FD-DEVS network (also called coupled FD-DEVS
model) is 6-tuple:

C = hX,Y,D, {M1}, Cx

, C
y

i where:

• X (res. Y) is finite set of input (res. output)
events, such that X \ Y = ? .

• D is a finite set of names of subcomponents.
1�

y

can be split into two functions: the output function

� : S ! Y and the internal transition function �
int

: S ! S

• {M1} is an index set of FD-DEVS models, where
i 2 D. M

i

can be either an atomic or coupled
FD-DEVS model.

• C
x

✓ X ⇥
S

i2D

X
i

is a set of input couplings
where X

i

is the set of inputs events of subcom-
ponent i 2 D.

• C
y

✓ X⇥
S

i2D

Y
i

⇥ (
S

j2D

X
j

[Y), where i 6= j
is an set of output couplings, where Y

i

is the set
of output events of subcomponent i 2 D.

2.3 Timed event and Behaviour

To define a sequence of state changes associated with
events, we need to introduce a timed event and its
sequence.
I A timed event is a pair of an event z 2 Z and its
occurence time t 2 T thus it is denoted as (z, t).
I Concatenation of two events (z1, t1) and (z2, t2)
is denoted by (z1, t1)(z2, t2), which can be defined if
t1 t2.
I The identity of concatenation operation is the null-
event, denoted by ✏. The null-event sequence over a
time interval [t

l

, t
u

] ✓ T is denoted by ✏[tl,tu].
I Given an even set Z and a time interval [t

l

, t
u

] ✓ T,
the set of total event sequences is denoted by ⌦[tl,tu],
and is defined by ⌦[tl,tu] = {(z, t)⇤|z 2 z [{✏}, t 2
[t

l

, t
u

]} which is the set of concatenations of finite or
infinite timed events (plus ✏[tl,tu]) over Z and [t

l

, t
u

].
I Given ⌦[tl,tu], ! = (z1, t1)(z2, t2) 2 ⌦[tl,tu] where
t
l

 t1 t2 t
u

is equivalent to ! =
✏[tl,t1](z1, t1)✏[t1,t2](z2, t2)✏[t2,tu].

The authors also define the state trajectory function
of C by using a function � : Q ⇥ ⌦[tl,tu] ! Q. Let
q = (..., (s

i

, t
si

, t
ei

), ...) 2 Q be a total state at time
t
l

. The state trajectory associated with a sequence
of multiple events can be computed by applying a
sequence of ”null-or-one-event sequences”, repeatedly.
Based on this state trajectory function, the behavior
of C is defined as the all possible eve,t sequences with
which the state of C does not enter to the illegal state
imp. Formally, the behavior or language of C over a
finite observation length t 2 T, denoted by L(C, t), is

L(C, t) = {! 2 ⌦[0,t]|�(q0, !) 2 Q
p

}. (1)

The infinite-observation length behavior or language
of A, denoted by L(C), is

L(C) = {! 2 ⌦[0,1)|�(q0, !) 2 Q
p

}. (2)

2.4 Two-slot Toaster

A two-slot toaster coupled FD-DEVS model
is given in (Hwang & Zeigler 2009).
C

T12 = hX,Y,D, {M
i

}, C
x

, C
y

i, where X =
{?push1, ?push2}, Y = {!pop1, !pop2}, D = T1, T2,

C
x

= {(?push1, ?T1.push), (?push2, ?T2.push)},
C

y

= {(T1.!pop, !pop1), (T2.!pop, !pop2)}. T1
and T2 are two atomic components such that
X = {?push}, Y = {!pop}, S = {I, T}, where I
and T stand for ”idle” and ”toast”, respectively,
s0 = I, �

x

(I, ?push) = (T, 1), �
x

(T, ?push) = (T, 0),
�
y

(T) = (!pop, I). ⌧(I) = 1 and ⌧(T) = 20 for T1.
⌧(I) = 1 and ⌧(T) = 40 for T2.

I Given a timed event sequence ![0,70] =
(?push1, 5)(?push2, 20)(!pop1, 25)(!pop2, 60)
![0,70] 2 L(T12, 70) because �((((I,1, 0), (I,1, 0),
1, 0), ![0,70]) = (((I,1, 45), (I,1, 10)),1, 10) 2
Q

p

.

I Given a timed event sequence !0[0,70] =
(?push1, 5)(?push2, 20)(!pop1, 30)(!pop2, 60)
!0[0,70] /2 L(T12, 70) because �((((I,1, 0), (I,1, 0),
1, 0), !0[0,70]) = (((imp,1, 65), (imp,1, 50)),1, 40) 2
Q

imp

.

We give in the figure 2 the reachability graph for the
two-slot toaster. It exhibits all possible events that
can occur at each state. The initial state is I1I2 for
toaster 1 and toaster 2 in ”idle” state until a ?push1
or a ?push2 event occurs.

I1I2

1

T1I2

20

I1T2

40

?push1,1

!pop2

?push2,1

!pop1

T1T2

min{40� te
T2, 20}

?push2,0

?push1,0

?push1,1

T1T2

20� t
e

?push2,1

I1T2

40� te
T2

T1I2

20� te
T1

!pop1

!pop2

!pop1

!pop2

!pop1

?push1,1

?push1,0

?push2,0

?push2,0

?push1,0

?push2,0

?push1,0

Figure 2: Reachability graph of two-slot toaster

3 A PREVIEW OF METRIC-BASED SIM-
ULATION ASSESSMENT

3.1 Our method

Our approach is based on a formal description of
the model capabilities, called the Simulation Domain
of Use (SDU) and experimental frame assumptions
called the Simulation Objectives of Use (SOU). We
assume that the model designer and the simulation
experimenter are di↵erent persons which is often the
case in practice. The SDU describes the guarantees
provided by the model and the SOU describes the hy-
potheses about the simulation environment and the
expected results to reach a given simulation intended
purpose (i.e. a functional validation of a system of in-
terest). The challenge is to define metrics to measure
at which degree the interactions between the model

and the experimental frame applied to this model sat-
isfy the simulation intended purpose.

The method consists in step by step assessment of
metrics where coverage analysis guides experimen-
tal frame and/or model definition. We consider dif-
ferent types of metrics: scope, precision and state
space metrics. Scope metric identifies provided and
required input/output ports of the model and the EF
respectively and their range of values. Precision met-
ric focused on the distance between two successive
values of a datum. State space metric is made by
trace inclusion to measure the extent of design verifi-
cation provided by a set of test vectors.

Generally, the full compatibilty is not required, a
model must be necessary to satisfy a given intended
purpose but it can be more capable. Ideally it may be
necessary and su�cient which means that it is simple
enought for a given intended purpose.

3.2 State space metric

Consider a model given by M =
hX

M

, Y
M

, S
M

, s0M , ⌧
M

, �
xM , �

yM i and an
experimental frame given by EF =
hX

EF

, Y
EF

, S
EF

, s0EF , ⌧
EF

, �
xEF , �

yEF i.

Compatibility of input/output ports is a prerequisite
for using simulation with respect to an experimental
frame. M and EF can be connected if they have com-
patible input/output ports: (1) Iports

EF

✓ Oports
M

and (2) Oports
EF

= Iports
M

.

The first condition ensures that all the events of in-
terest required by the experimental frame are sup-
plied by the model and the model may supply more
events than necessary. The second condition ensures
that all the events planned by the experimental frame
can be performed and all the inputs necessary to per-
form the simulation are defined by the experimental
frame. A particular attention must be paid to the case
Oports

EF

⇢ Iports
M

. We assume that EF and M
can be connected in that case however, it is necessary
to make sure that there is no dependency between a
non-assigned input of the model and an observed out-
put in which case the simulation results could be bi-
ased. Dependency between inputs/outputs of a com-
ponent may be a specific condition which is beyond
the scope of this paper. For reasons of simplicity we
assume that the names used to designate EF and M
input/output ports are identical.

If the event sets are compatible we can compare the
set of executions of the model, which satisfy the prop-
erties given by the acceptor, with the set of execution
expected by the generator and the transducer.

The behaviour of the model over a finite observation
length t 2 T, is given by L(M, t) = {! 2 ⌦M

[0,t] |

�
M

(q0, !) 2 Q
p

}. The behaviour of the experimental
frame over a finite observation length t 2 T, is given
by L(EF, t) = {! 2 ⌦EF

[0,t] | �
EF

(q0, !) 2 Q
p

}. Let
Z

M/EF

be the total event set of M restricted to the
total event set of EF. Let ' be a property expressed on
Z

M/EF

, we note kL(M, t)k
ZM/EF

the set of executions
of M which satisfies ' such that kL(M, t)k

ZM/EF
=

{! 2 ⌦M

[0,t] | �
M

(q0, !) 2 Q
p

,�
M

(q0, !) |= '}.

EF and M are fully compatible i↵ all executions of M
satisfying ' restricted to the total event set of EF are
executions of EF: kL(M, t)k

ZM/EF
= L(EF, t) (case

1 in figure 3).

The exact matching being not required, intuitively,
this means that:

• kL(M, t)k
ZM/EF

✓ L(EF, t):the behaviour of the
model is in the envelope of significant behaviour
with respect to the EF (case 2 in figure 3).

• L(EF, t) ✓ kL(M, t)k
ZM/EF

:all the experimenta-
tions planned by the EF can be performed on the
model (case 3 in figure 3).

When kL(M, t)k
ZM/EF

✓ L(EF, t) is false, there are
model executions which are not EF executions. We
identify two cases (figure 3):

I 2.1. There is a test coverage risk. This may be the
case if the model considers di↵erent input event se-
quences than those planned by the EF. The EF does
not therefore explore all executions of the model. This
means that either the unexplored executions are not
relevant for the experimentation, or that the EF is
not comprehensive enough.
I 2.2. There is a bias in the model or in the refer-
ence definition. This may be the case as the model
considers di↵erent output event sequences than those
expected by the EF. This means either that the sim-
ulation results are incorrect or that the EF assump-
tions are false.

When L(EF, t) ✓ kL(M, t)k
ZM/EF

is false, there are
executions envisaged by the EF which are not model
executions. Here again, we identify two cases (figure
3):

I 3.1 Some experiments are outside the usage do-
main of the simulation model. This may be the case
if the EF considers di↵erent output event sequences
than those accepted by the model. The EF there-
fore plans to explore simulation executions outside
the scope recommended by the model and the simu-
lation results can no longer be guaranteed. The model
or EF must be modified.
I 3.2 There is a risk concerning the completeness of
the model. This may be the case if the EF considers
di↵erent input event sequences than those supplied

by the model. This means that either there is some-
thing to be learnt from the simulation if we reduce
the uncertainties of the EF, or that the simulation
overlooks the implementation of some cases.

1. kL(M, t)k
ZM/EF

=
L(EF, t)

2. kL(M, t)kZ
M/EF

✓ L(EF, t)

3. L(EF, t) ✓ kL(M, t)kZ
M/EF

2.1 ⌦
YEF ⇢ ⌦

XM

2.2 ⌦
XEF ⇢ ⌦

YM

3.1 ⌦
XM ⇢ ⌦

YEF

3.2 ⌦
YM ⇢ ⌦

XEF

Figure 3: Level of EF/Model behavioural compatibil-
ity

Consider the following property on the two-slot
toaster example: a ?push1 event is always followed
by a !pop1 event twenty seconds later. This in-
formal property is captured by the LTL

/

(Di Gi-
ampaolo, Geeraerts, Raskin & Sznajder 2010) for-
mula ' ⌘ ⇤(!pop1 ! C20?push1).

The executions below are executions on a time base
[0, 50] which satisfy ' :

I (?push1, 0), (!pop1, 20)
I (?push1, 10), (!pop1, 30)
I (?push1, 0), (?push1, 10), (?push1, 12), (!pop1, 20)
I (?push1, 10), (?push2, 20), (?push1, 22), (!pop1, 30)
I · · ·
Even with this simple example the set of executions
which satisfy a given property on a given time base
may explose rapidly. The experimental frame re-
strains the set of executions of a model to a subset of
executions. The experimental frame which is the less
rectrictive is the one which provides all input events
required by the model in all states and accepts all
output events provided by the model in all states.

We give hereafter an example for each case in figure
3:

I Given the two-slot toaster section 2.4 and
L(EF, [0, 50]) = (!push1, 0)(?pop1, 20) the condition
2 is not satisfied (condition 3 is satisfied). The EF
expects a !pop1 event from the model 20 seconds
after it sends a ?push1 event. This execution can
be applied to the model, however, there is a set
of execution which has not been explored by the
experimental frame. For example the event sequence
(?push1, 10), (!pop1, 30) has not been explored by the
EF. This is case 2.1.

I Given the two-slot toaster section 2.4 and
L(EF, T) = (!push1, 0)(!push1, 10)(?pop1, 30) the
condition 2 is not satisfied. The EF expects a !pop1
event from the model 20 seconds after it sends a
second ?push1 event while the model ignore the

e↵ect of further ?push1. EF assumptions are false.
This is case 2.2.

I Consider now a model without
�
x

(T, ?push) = (T, 0) and L(EF, T) =
(!push1, 0)(!push1, 10)(?pop1, 20), the condition
3 is not satisfied. The EF considers a second ?push1
event before next !pop1 event which is not accepted
by the model. This is case 3.1.

I Given the two-slot toaster sec-
tion 2.4 and L(EF, T) =
(!push1, 0)(!push1, 10)(?pop1, 20)(?pop1, 30), the
condition 3 is not satisfied since the EF considers a
sequence of input event which is not supllied by the
model, i.e. the second !pop1 event will never occur.
This execution can be applied to the model and the
property is satisfied, however either there is a set
of executions which are overlooked by the model or
there is an uncertainty in the EF. This is case 3.2.

4 SOLVING TRACE INCLUSION

State space metric can be qualified by synchronous
product between EF and model to identify the com-
patibility of event sequences between EF and model
and verify the reachability of searched states given by
the acceptor. It consists in restricting the model to
the total event set of the experimental frame. In gen-
eral a temporal property consists in driving the model
in a given state and observing a state or an event onto
the model output. We verify that the generator can
exercised a given portion of the model according to
a given property and that the model can propagate
the information to the transducer, which in turn does
not limits the model not accepting one of its output
events.

4.1 Restrictions of FD-DEVS model

The restriction of an FD-DEVS component A =
hX,Y, S, s0, ⌧, �x

, �
int

, �i to a subset of its total event
set Z 0 = X 0[Y 0 such that X 0 ✓ X,Y 0 ✓ Y,Oports0 ✓
Oports, Iports0 ✓ Iports is a FD-DEVS component
A0 = hX 0, Y 0, S, s0, ⌧, �

x/x

0 , �
int

, �
/y

0i such that:

• �
int

: S ! S is the internal state transition func-
tion such that all �

int

defined in A are also de-
fined in A0;

• �
x/x

0 : Q⇥X 0[{"}! S, where " is the set of non-
observable events, is the external state transition
function such that

– for all x 2 X 0, for all q 2 Q, s 2 S, if
(q, x, s) 2 �

x

then (q, x, s) 2 �
x/x

0

– for all x 2 X 0 \ X, for all q 2 Q, s 2 S, if
(q, x, s) 2 �

x

then (q, ", s) 2 �
x/x

0

The restriction of an external state transition
function masks the events which are not in X’
with non-observable events ".

• �
/y

0 : S ! Y 0 is the output function such that
�

/y

0(s) = �(s) for all y 2 Y 0.

The restriction of an output function keeps the
output function for a subset of event and puts
aside the output function of all others events.

The figure 4 illustrates a restricted version of the
two-slot toaster FD-DEVS. In this reachability graph
events which are not in the total event set of the ex-
perimental frame are either masked if there are input
events or put aside if there are output events.

I1I2

1

T1I2

20

I1T2

40

?push1,1

"

!pop1

T1T2

min{40� te
T2, 20}

" ?push1,0

?push1,1

T1T2

20� t
e

"

I1T2

40� te
T2

T1I2

20� te
T1

!pop1

!pop1

!pop1

?push1,1

?push1,0

"

"?push1,0

"

?push1,0

Figure 4: Reachability graph of the two-slot toaster
FD-DEVS restricted to Z

EF

= (!push1, ?pop1)

4.2 Synchronous product of two FD-DEVS
atomic components

We verify the compatibility conditions between an EF
and a model described by two FD-DEVS components
only if there event sets are compatible. The two com-
ponents will synchronize on shared events, and keeps
all other events.

Two FD-DEVS components A and B can be com-
patible if all the events of interest of A can be syn-
chronized with an event of B. The set of synchro-
nizable events between component A and B is called
synch(A, B). The function �

A

: S
A

! 2ZA is a
function that assigns to each sequential state of A
a subset of events that are available in that state.
The function �

B

: Q
B

! 2ZB is a function that as-
signs to each sequential state of B a subset of events
that are available in that state. Given the compo-
nent A in a state q

i

= (s
i

, ts
i

, te
i

) and the compo-
nent B in a state q

j

= (s
j

, ts
j

, te
j

), we say that an
event z 2 Y

A

\ X
B

can be synchronized, i.e. z 2
synch(A, B), if (1) 9(q

i

, z) 2 �
A

, (2) 9(q
j

, z) 2 �
B

and (3) min{ts
i

� te
i

, ts
j

� te
j

} = ts
i

� te
i

. Given
the component B in a state q

i

= (s
i

, ts
i

, te
i

) and the
component A in a state q

j

= (s
j

, ts
j

, te
j

), we say that
an event z 2 Y

B

\X
A

can be synchronized, i.e. z 2

synch(A, B), if (1) 9(q
i

, z) 2 �
B

, (2) 9(q
j

, z) 2 �
A

and (3) min{ts
i

� te
i

, ts
j

� te
j

} = ts
i

� te
i

.

The composition of two FD-DEVS components A and
B is a FD-DEVS component N = h�, S, ⌧, s0i where:
s0 = s0A ⇥s0B is the initial state, S = S

A

⇥S
B

is the
set of states, ⌧ : S ! min{⌧

A

(s
i

), ⌧
B

(s
j

)} such that
(s

i

, s
j

) 2 S. � : Q ⇥ Z ! S is the state transition
function such that:

� = {((s
i

, s
j

), z, (s0
i

, s0
j

))|(q
i

, z) 2 �
A

^ (q
j

, z) 2 �
B

^
z 2 synch(A, B)}
[{((s

i

, s
j

), z, (s0
i

, s0
j

))|(q
i

, z) 2 �
B

^ (q
j

, z) 2 �
A

^ z 2
synch(A, B)}
[{((s

i

, s
j

), z, (s
i

, s0
j

))|q
i

2 S
A

^ (q
j

, z, q0
j

) 2 �
yB ^ z /2

synch(A, B)}

I1I2

1

T1X

?push1,1

I1X

40

!pop1

?push1,1

"

Figure 5: Reachability graph of the two-slot toaster
FD-DEVS restricted to Z

EF

= (!push1, ?pop1) after
state aggregation

Consider an EF that would gener-
ate a time event sequence w[0,50] =
(!push1, 5)(?pop1, 25)(!push1, 35)(?pop1, 45). This
EF means to validate the behavior of a one slot
toaster but he has access only to the coupled model
(two slot toaster). It is necessary to restrict the
model. We have seen in figure 4 the restrictive
model. The same model after state aggregation
is given in figure 5. To obtain the aggregated
model it is necessary to see if we can di↵erentiate
two states. For example here, we have restrict the
model. !pop2 becomes non-observable and ?push2
becomes non-controlable. Now, from the inital state
(I1I2), when a push1 occur the EF cannot know
if the model is on state T1I2 or in state T1T2.
Then, we aggregate both states on one state called
T1X. After the restriction, it is possible to make
the synchronous product between the model and
the EF, �((((I1,1, 0), (I2,1, 0)),1, 0), ![0,50]) =
(((imp,1, 15)(I2,1, 50)),1, 15) 2 Q

imp

. At t = 45
the relation given previously min{t

si�t
ei , tsj�t

ej} =
t
si�t

ei (min{20�0, 45�35} 6= 20�0 is not respected
(condition (3)), and the synchronous product is not
possible.

5 APPLICATION

5.1 Cruise controller model

In this section we introduce the dynamic cruise con-
troller model. This model uses two quantized inte-
grators (Nutaro 2005). The principle of a quantized
integrator is to discretize the space of state variables
using a fixed value called the quantum size D. Ac-
cording to this quantum, a variable q can only take
values among q±kD where k is an integer. The solu-
tion q(t) of a system described by a di↵erential equa-
tion is approximated on a grid in the phase space of
the system. The resolution of the phase space grid
is D. The time h required to move from one phase
space grid point to another to occur on q(t) is ap-
proximated and a state change will be informed only
at this time.

The adaptive cruise controller uses a proportional-
integral feedback control to maintain a given speed.
The equation of the feedback control block is

q̇1(t) = k
P

(v⇤ � q1(t)) + k
I

Z
t2

t1

(v⇤ � q1(t)) dt (3)

where q̇1(t) is the controlled acceleration to achieve
the required speed, k

P

and k
I

are tuning parameters
for proportional gain and integral gain respectively,
v⇤ is the desired speed and q1(t) is the speed at time
t.

Equation 3 can be written as a second-order ode

q̈1 + k
P

q̇1 + k
I

q1 = k
I

v⇤ (4)

which is converted into two first-order odes

q̇1 = q2 (5)

q̇2 = k
I

v⇤ � k
P

q2 � k
I

q1 (6)

Equations 5 and 6 are described by two FD-DEVS
components I1 and I2 respectively. They have five
state variables: ql 2 R, the last output value of the in-
tegral, q 2 R, the current value of the integral, q̇ 2 R,
the last known value of the derivative, � 2 R the time
until the next output event and phase 2 {ON, OFF}
indicates that the cruise controller is either ON or
OFF.

The component I1 is such that X =
{?turn on, ?brake, q2}, Y = {q1}, S =
R⇥R⇥R⇥R⇥{ON, OFF}, ⌧(ql, q, q̇,�, OFF) = 1,
⌧(ql, q, q̇,�, ON) = �, s0 = (0, 0, 0,1, OFF).
�

x

((ql, q, q̇, �, OFF), ?turn on) = ((ql, q, q̇, �, ON), 1)

�
x

((ql, q, q̇, �, ON), ?brake) = ((ql, q, q̇, �, OFF), 1)

�
x

((ql, q, q̇, �, ON), ?turn on) = ((ql, q, q̇, �, ON), 0)

�
x

((ql, q, q̇, �, OFF), ?brake) = ((ql, q, q̇, �, OFF), 0)

�
x

((ql, q, q̇, �, ON), q2) =

((ql, q + q̇ ⇤ te, q2,
D�|q+q̇⇤te�ql|

|q2| , ON), 1)

�
y

(ql, q, q̇, �, ON) = ((qn, qn, q2,
D

|q2|), qn)

with qn = ql+d⇤sgn(q̇) the next value of the integral.

The function sgn(v) return �1 if v < 0, 0 if v = 0 or
1 if v > 0.

The component I2 is such that X =
{?turn on, ?brake, q1, v

⇤}, Y = {q2}, S =
R⇥R⇥R⇥R⇥{ON, OFF}, ⌧(ql, q, q̇,�, OFF) = 1,
⌧(ql, q, q̇,�, ON) = �, s0 = (0, 0, 0,1, OFF).

�
x

((ql, q, q̇, �, OFF), ?turn on) = ((ql, q, q̇, �, ON), 1)

�
x

((ql, q, q̇, �, ON), ?brake) = ((ql, q, q̇, �, OFF), 1)

�
x

((ql, q, q̇, �, ON), ?turn on) = ((ql, q, q̇, �, ON), 0)

�
x

((ql, q, q̇, �, OFF), ?brake) = ((ql, q, q̇, �, OFF), 0)

�
x

((ql, q, q̇, �, ON), q1) =

((ql, q+q̇⇤te, k
I

v⇤�k
P

q2�k
I

q1,
D�|q+q̇⇤te�ql|

|kIv

⇤�kP q2�kIq1| , ON), 1)

�
x

((ql, q, q̇, �, ON), v⇤) =

((ql, q+q̇⇤te, k
I

v⇤�k
P

q2�k
I

q1,
D�|q+q̇⇤te�ql|

|kIv

⇤�kP q2�kIq1| , ON), 1)

�
y

(ql, q, q̇, �, ON) =

((qn, qn, k
I

v⇤ � k
P

q2 � k
I

q1,
D

|kIv

⇤�kP q2�kIq1|), qn)

At each iteration, the time � required to move from
one phase space grid point to another to occur on q of
each ode is approximated by d�|q+q̇⇤e�ql|

|f(q,x)| . The time
t is advanced to the next change to occur, i.e. the
slower � of both ode. A blank cell means that no
changes occured on the variable. This is the case
when an external event has occured on the corre-
sponding component.

5.2 Experiments with Uppaal

This part implements cruise controller on a verifica-
tion platform. Uppaal (Behrmann et al. 2004) is an
environment for modeling, simulation and verification
of real time embedded systems. Uppaal is composed
of three parts: an editor to describe system behavior,
a simulator used to generate some simulation traces
of the system and the model-checker who can check
invariant and reachability properties by exploring the
state-space of the system.

Cruise control, already presented previously been the
subject of a study where the following requirements
have been extracted.

Requirements:
I 1. After each speed change, the vehicle must be
stabilized in less than 7 seconds.
I 2. Braking disables the cruise control immediatly.
I 3. The acceleration must be less than 2 m.s�2

I 4. The speed of 25 km.h�1 (safe speed) should
never be exceeded for a set from 0 to 20 km.h�1.
I 5. The cruise control can take every speed from 0
to 20 km.h�1

This study has show that the di↵erential equation (3)
can respect all these requirements.

Figure 6 illustrates the requirements for an expected
speed of 20 km.h�1.

Figure 6: Illustration of stakeholders requirements for
20 km.h�1

5.3 Model

The solution adopted for the cruise control architec-
ture has led a discrete event solution of equation (3).
Currently a model is defined by a modeling language
accepted by UPPAAL.

5.3.1 Model

As mentioned before, the cruise controller calculation
module has two components. I1 and I2 are two quan-
tized integrators, they compute the speed of the ve-
hicle to maintain according to the expected speed.
We present in figure 7, one of both integrators, be-
ing similar, the reader has only to reverse lambda1
and lambda2 to obtain the second integrator. Ini-
tial state of model is A1, the speed of the vehicle is
null and signal turn on is waited. turn on causes the
transition (A1A2) and initializes (initialize()) each
variable according to expected speed. Synchronisation
channels lambda1 and lambda2 permit to synchronize
both integrators. If internal clock (x) belonging to
I1 (res.I2) is equal to the variable quantum size (h)
then it synchronise with I2 (res.I1) to exange values
from precedent integration step. After synchronisa-
tion both integrator calculates in the same time new
part of di↵erential equation (deltint() and deltext()).
The reader unfamiliar with UPPAAL is questionable
about transition from A2 to A3. Lambda2? permits
to synchonise I2 to I1. The part below lambda2?
permits to catch the time and record it on integer
variable (e).

Figure 7: UPPAAL model of cruise controller

Design choices have led to add restrictions to the spec-
ifications previously established. Is emerging a new
requirement (quantification of first requirement):
I 5.1 Quantification ! Speed is called stable when it
reaches more or less than 2 km.h�1 speed requested
(accept margin).

5.4 Experimental Frame (EF)

The experimental frame should permit to validate the
model. Is it consistent with requirements? Does it
allows to verify some properties ? It embraces the
model, more or less capable,it allows exploring some
or all part of the model which we want to check the
behavior. The simulation experimenter must develop
the shorter solution to validate the model. Indeed,
it is common to wait few minutes to verify property
with model-checking solution. This is the reason why
we advocate to create a shorter solution to validate
property. Sometime, we do not have choice, and sim-
ulation experimenter wants to create concequent sce-
narios to explore some part of model.
It is compose on three parts, the generator who gener-
ate signal for the model, the transducer that recovers
signals from model and the acceptor who permits to
validate model property. The acceptor uses informa-
tion delivered by generator and transducer. We now
discuss each of the three parts of the experimental
frame in the context of cruise control.

5.4.1 Generator

The generator permits to create one scenario execu-
tion more or less capable. In other words, the EF
permits to explore more or less the model. Figure 8,
shows generator, who generate one speed instruction
for the model (expected speed := wanted speed) and
10000 time unit after, it generate brake signal.

Figure 8: Simple generator (less capable)

Now, we focus on the second generator in figure 9,
which is more capable. This generator permits to
send deferent speed instruction to the model, after
that, it wait 15000 time unit, and generate new speed
instruction and this during 100000 time unit .

The scenario described previously is partially in-
cluded in this one. Both scenarios permit to explore
part of the model to detect if this model satisfy re-
quirement property. If we take the requirement de-
fined previously, we know already it is impossible to
verify requirement number 2. Indeed, none of this
scenarios established a brake signal for all states of

Figure 9: Complex generator (more capable)

the model. The simulation experimenter who has de-
veloped this solution adds a new restriction, indeed
the verification of properties with all possible speed
instructions is to long. I New requirement:1.1 Quan-
tification ! Expected-speed can take only 3 values 0,
10 and 20 km.h�1 .

5.4.2 Transducer

The model of the generator is established. Depend-
ing on the considered scenario, and properties that we
want to verify, we must now come to capture avail-
able output signals. Sometimes, it is the case here,
an internal signal of the model would be useful but
is not observable (the derivative of the speed). It
is therefore necessary to rebuild it. One of require-
ments says that the accelaration must be less than 2
m.s�2 (requirement number 3), to solve di↵erential
equation the cruise controler calculates the derivative
speed (acceleration). This information is an internal
variable and the transducer can not observe it. We
can see in figure 10 reconstruction of acceleration sig-
nal (acc) . Each 200 time unit, there is derivation of
the velocity.

Figure 10: Transducer 1

The second transducer (figure 11) gives us informa-
tion about states visited by the generator, to know if
we are on choose speed phases or not.

Figure 11: Transducer for complex scenario

5.4.3 Acceptor

The acceptor is defined ultimately. Indeed, from spec-
ification to the model validation, some requirements
appeared and they conduce simulation experimenter
to design specific equations to validate the model.
Take the example of the acceleration to validate the
requirement 2. The requirement implies that the ac-
celeration must always be less than 2 m.s�2. We
need a scenario showing a significant speed change.
It will also collect relative information has the speed.
The simple scenario (figure 8), with the transducer
who capture the acceleration (figure 10) from the
only given information (speed) permit to validate this
requirement. Requirement 2 translates in UPPAAL
logical equation as following:

A[] Generator.y >= 0 imply Transducer.acc <= 2 (7)

Figure 12: Acceptor 1

The model-checker UPPAAL indicate that the prop-
erty is satisfied, are there results credible? Indeed,
how to determine whether an error is not incorpo-
rated into our model, our property or our experimen-
tal frame. Who can create a false positive? We are
not trying here to provide an exhaustive list of pos-
sible problems, but simply to provide one case for
each type of result. Figure 13 shows each validity
of result. Each trace was created with di↵erent pair
model-experimental frame, errors included in couples
are specified later. The specification defines the obli-
gation of appearance of the property P1 in a specific
state (bottom right of each trace).

I 1 (True-Positive): It is the nominal case, the spec-
ification is correct, the model and the experimental
frame also correct. In this example, the accelera-
tion does not exceed 2 m.s�2. The simulation ex-
perimenter can use the result and validate the model.

I 2 (True Negative): In this case the model is not
correct. The experimental frame can generate all the
trace but the property is not present. The model
is not consistent with the specification. The simula-
tion experimenter can use the result and modify the
model. We can imagine one case in our model does
not respect the maximum acceleration.

I 3 (False Positive): A critical case which may lead to
validate a model that is inconsistent with the spec-
ification. The simulation experimenter misread the

specification and does not check the right property.
The simulation experimenter will use the results and
validate a non-compliant model. Always to stay with
our example, the simulation experimenter does not
use the same system unit as the editor of the speci-
fication (feet / meters), he does not check the same
property.

I 4 (False Negative): Here the experimental frame
does not allows access to the full model. The prop-
erty is good but can not be explored. The simulation
experimenter will announces. Non-compliant model
or non-compliant experimental frame without being
able to give more detail. This example shows the

Figure 13: Types of result

utility of an experimental frame in order to validate
the model. This helps to limit the exploration of the
model to properties that we want, without using some
parts of the model useless for verification. We have
seen through this example the emergence of new re-
quirements after all di↵erent phases, during modeling,
experimental frame design or validation.

6 CONCLUSION

In this paper, a state space metric is qualified by trace
inclusion to measure the extent of design verification
provided by a set of simulation procedures. We com-
pare the set of traces of the model, which satisfy the
properties given by the acceptor, with the set of traces
given by the generator and the transducer. The cover-
age metric can be defined with five quantities (figure
8): exact matching (case 1), test coverage risk (case
2.1), bias in the simulation (case 2.2), wrong usage
of the model (case 3.1), model completness risk (case
3.2). Further work would refine this quantities and
explore others gauges for this metric. These metrics
are ordered, i.e. measuring trace inclusion imply that
ports and event sequences are compatibles.

With inclusion trace approach, we can identify a pri-
ori (before simulation execution) whether a simula-
tion may or may not be executed (indicating to the

simulationist whether the guarantees given by the
model would satisfy its simulation objectives of use).
Furthermore, this approach can be performed either
on the development from scratch of a simulation nec-
essary and su�cient to satisfy an intended purpose, or
on the reuse of an already existing simulation model
to satisfy an intended purpose. Developers are free to
associate a model with di↵erent experimental frames,
each corresponding to a particular simulation objec-
tive of use. If we consider that morphisms between
models of a same system are well documented, jug-
gling between abstractions and previous simulation
results allows verifying the applicability of a ”new”
simulation without executing the simulation. In the
same way, one can put another model of the system
of interest in the experimental frame and verify by
matching if this model can accommodate the experi-
mental frame.

References

Albert, V., Nketsa, A. & Seguin, C. (2010). Ver-
ifying trace inclusion between an experimental
frame and a model, DEVS Integrative Modeling
and Simulation Symposium .

Behrmann, G., David, A. & Larsen, K. G. (2004).
A tutorial on uppaal, 4th International School
on Formal Methods for the Design of Computer,
Communication, and Software Systems, number
3185 in LNCS, Springer–Verlag, pp. 200–236.

Di Giampaolo, B., Geeraerts, G., Raskin, J. & Sz-
najder, N. (2010). Safraless procedures for
timed specifications, in Springer (ed.), 8th In-
ternational Conference on Formal Modelling and
Analysis of Timed Systems, Vol. 6246, pp. 2–22.

Hwang, M. H. & Zeigler, B. (2009). Reachability
graph of finite and deterministic devs networks,
IEEE Transactions on Automation Science and
Engineering, 6(3): 468 –478.

Nutaro, J. (2005). Discrete event simulation of con-
tinuous systems, Handbook of Dynamic Systems
Modeling.

Traoré, M.K.and Muzzy, A. (2006). Capturing the
dual relationship between simulation models and
their context, Simulation Modelling Practice and
Theory 14(2): 126–142.

Zeigler, B. P., Praehofer, H. & Kim, T. G. (2000).
Theory of Modelling and Simulation, Academic
Press, San Diego, California, USA.

