
Model-Driven Engineering Approach For SysML Activity Diagram Simulation
Damien Foures, Vincent Albert, Jean-Claude Pascal, Alexandre Nketsa
CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France

University of Toulouse ; UPS; F-31077 Toulouse, France
{dfoures, valbert, jcp, alex}@laas.fr

Keywords: MDE, transformation, verification, SysML,
OMG, ATL, Ecore, VHDL-AMS, TINA, Petri Nets

Abstract
This study aims to automate the simulation of activity di-
agram (AD) in accordance with the OMG SysML specifi-
cations. We use the concept of model-driven engineering to
transform AD into VHDL-AMS. This transformation is de-
picted in two transformations based on specifications given
by the Object Management Group (OMG): Activity Dia-
gram (AD) to Petri net (PN) and PN to VHDL-AMS. We
have established transformation rules in ATLAS Transfor-
mation Language (ATL). The semantic of Activity Diagram
was expressed by LTL property and verified with the ”model-
checker” TIme petri Net Analyzer (TINA). The first transfor-
mation is used for formal verification. The second step allows
to execute and simulate a system behaviour modelled by an
AD. All simulations were implemented with SystemVision.

1. INTRODUCTION
1.1. Context

The present work is based on the general context of sys-
tems engineering, and integration of heterogeneous systems.
These systems are embedded systems (software and hard-
ware components), generally high real-time constraints and
disciplines (electrical, mechanical, information, hydraulic...).
We seek to propose methods and tools to assist the develop-
ment cycle of such systems. The use of models and simu-
lation is becoming dominant component in the development
cycle, and we seek to improve (and eventually to automate)
their use. The use of meta-modeling moves in this direction,
as it aims to ensure cohesion between all products of the de-
velopment cycle, considering that all is model. Based on the
instantiation of a meta-model, the model description is clearer
and less ambiguous.

1.2. Approach
This paper is based on concepts preconized by the OMG

called Model Driven Architecture (MDA), itself based on
modeling and automatic transformation of models into oth-
ers models for simulation.

To develop a complete chain of transformation from ac-
tivity diagram to simulation, we use TINA formalism [LAAS

2011], TINA toolbox [LAAS 2011], and a first transformation
procedure from AD to PN [Foures et al. 2011]. TINA formal-
ism allows us to verify formally that Activity Diagram prop-
erties are preserved by our equivalent PN, using its model-
checking tool (selt).

A second transformation: PN to VHDL-AMS [Albert et al.
2005] allows us to propose a simulation phase, commonly
called virtual prototyping. The addition of these two ap-
proaches allows us to validate the discrete and continuous part
of the activity diagrams, and hence predict functional charac-
teristics of the system.

Section 2 presents related works. In section 3 gives an
introduce MDE (Model-Driven Engineering), in subsections
we present briefly Activity Diagram, Petri Net and its meta-
models. The fourth section show all transformation required
to simulate AD. Section five present transformation verifica-
tion. At the end of this paper, we presents one example, close
to industrial environment, it is an abstract of complete study
of fuel injection calculator. During this paper one running ex-
ample:”the butterfly”, illustrates each paragraph and equally
show possibility of data management created by our solution.

2. RELATED WORKS
Several transformations from ADs have been developed.

For example, in [Bonhomme et al. 2008], authors do not take
into account many properties of ADs. For instance, the OMG
specification say that tokens accumulated in a ControlFlow
must be consumed when the action starts. This transforma-
tion does not handle such property then the PN behavior
is not equivalent to the AD behavior. Using HiLeS may
however be useful to keep the hierarchy of ADs. Neverless
our approach aims to hide PNs implementation of model. We
argue that our transformation is a strict interpretation of the
OMG’s SysML Activity Diagram operational semantic. As
far as we know, this has not been done yet.

Stereotyping is common during transformations, it simpli-
fies UML diagrams and outcome transformations. It’s a good
thing when you target a particular technical area. In our work,
we use the initial SysML metamodel to establish transforma-
tion rules which gives a more general transformation than the
one given by [Pllana et al. 2008]. Moreover, this latter work
deal with UML 1.0 Activity Diagram which have been ex-
tended considerably by UML 2.0 or SysML. For instance, in

our work we deal with Continuous DataFlow and Pins.

3. MODEL-DRIVEN ENGINEERING
Model-driven engineering (MDE), is one of few domains

of computer science and system engineering, it provides
tools, concepts and language to create and transform mod-
els. The increasing complexity of systems has led to model
developers to handle higher-level concepts. The Object Man-
agement Group shown its interests in Model Driven Engineer-
ing and proposed in 1997, the standard MOF (Meta-Object
Facility). This work uses the SysML Activity Diagram meta-
model (MMAD) defined by OMG through the MOF. A meta-
model is a definition of a given point of view of a modeling
language. It is the model of the model. First, a model unlike
any other model, depends on the system to model. It equally
depends on the designer’s system vision. According to de-
signer’s mastery of modeling language, the resulting model
can be different. Yet, all these models are grouped under the
same syntax and semantics. There is a language, a formalism
which can be modeled itself. It is the basic principle of the
meta-modeling.

3.1. Understanding the SysML MMAD
The activity diagram is one of the four behavioral diagrams

included in SysML. They are useful to describe a hierarchical
behavior, delayed, or a mixed systems.

The OMG specification says (Figure 1) An Activity is com-
posed of ActivityNode and ActivityEdge. ActivityNode can
be: a ControlNode, an ObjectNode or an Action. Each nodes
is specialized because of associated arguments. Nodes may
have really different behavior, so we will not present in detail
each of the possibilities offered by SysML and prefer to refer
to the OMG specification [OMG 2010b] .

More precised semantics is also given by the specification.
For instance:

• For ControlFlow (page 401): Tokens offered by the source node are all
offered to the target node.

• For ActivityFinalNode (page 339): An activity may have more than one
activity final node. The first one reached stops all flows in the activity.

In this work, we attached specific attention to transcribe
this precise semantic on PN structure. To illustrate it and all
other steps on this paper, we will present now the ”butterfly”
example.

3.1.1. The Butterfly:
This simple example shows how to solve a differential

equation of second order with two entities, each solving a dif-
ferential equation of first order, and exchanging results with
each others, after any iterations round of resolution.

Differential equations are:

q̇1 +200.103q1 +30.106q2 = 5.103 (1)

Figure 1. ActivityFinalNode meta-class

q̇2�q1 = 0 (2)

Equation (1) (resp. (2)) is associated with the action I1
(resp. I2) of the activity diagram of Figure 2. When activity
starts, two actions are ready to run, I1 is initialized and starts
solving the associated equation. At each cycle of a given res-
olution data is provided through OF1 (ObjectFlow1) to I2. I2
can begin to make a resolution, and carry out resolution of the
equation before giving a new value for I1.q2 through OF2.
Through this cycle of two first order differential equations,
we obtain an equivalent to second order differential equation.
Between each cycle, the resolution is stopped and the value
is stock in memory, it is a design choice. It is quite possible
to solve the two equations together and update the variables
q1 and q2 in the resolutions when they are available. Here, it
is solving alternately to show the consideration of token pres-
ence to start the action.

Figure 2. The butterfly activity diagram

At this step, the butterfly is not simulative, it must be trans-
formed on PetriNet.

3.2. PETRINET PRESENTATION
A PetriNet is a mathematical modeling language. There are

currently a lot of Petri nets classes. Gradually basic, hierar-
chical and differential predicate transition Petri nets, will be
transformed to, the control part, the hierarchy, and finally the
continuous part of the activity diagram. A Petri net is com-
posed of places, transitions, and arcs. Arcs connect a place
to a transition or a transition to place, others possibilities are
forbidden. This kind of constraint must appear in the meta-
model of PN.

3.2.1. PetriNet Meta-model
The PN meta-model established in [Albert et al. 2005] was

adapted to this new work. Macro-place and macro-transition
were removed because they are restrictive. For example, if
an ActionNode of AD is transformed into macro-place it is
impossible to put new value in this macroplace during execu-
tion. During execution macro-node becomes totally indepen-
dant, so we decided to work flat. Flat PN, without hierarchy,
are more easy to master communication links. TINA works
also on only one abstraction level.

Figure 3 shows a simplified version of PN meta-model. We
can read on it: PetriNet is composed of Node and ArcClassic.
A node can be a Transition or a Place and they are linked with
ArcClassic. A node can have multiple incoming or outgoing
ArcClassics. An ArcClassic can only have one Source Node
and one Target Node. This interpretation includes a descrip-
tion of the previous paragraph. However, constraints do not
appear, they must be expressed, for example in Object COn-
straint Language (OCL) [OMG 2010a].

Figure 3. Petri Net model conforms to simple Petri Net
meta-model.

4. TRANSFORMATION WITH ATL AND
ECLIPSE MODELLING FRAMEWORK
(EMF)

This work is based on transformation of activity diagram
for simulation. Indeed, at what it seen to be a single transfor-
mation, its uses two transformations. There are two reasons,
the first is historical, indeed transformation from Petri Net to
VHDL-AMS [VHDL-AMS 1999] was already existing, the
second is due to the part of Petri Net on V&V (Validation
and Verification). In our approach, simulation for validation
is regularly coupled to model-checking for verification. How-
ever it may be possible to deplay the same work with a unique
transformation from activity diagram to VHDL-AMS.

4.1. Activity Diagram to Petri Net
Initially, our work was to be, totally in accordance with

OMG. Tools for model transformation suggested by the OMG
are still evolving, and to date we prefer to use EMF with
Ecore meta meta-model and ATL language which seems to
be the best choice, with a framework that has been already
tried and tested. Our transformation choices are pointed out
in figure 4.

Figure 4. Meta-modelling Transformation.

4.1.1. Mapping of Concepts
The original contribution of our transformation is to match

an activity diagram artefact to a PN block which will preserve
the AD semantic, related to this artefact as defined by OMG.
Such a PN block must also handle alternatives in AD model-
ing, e.g. an input pin may be stereotyped ”optional” and be-
comes useless to start the activity. Table 5 illustrates the main
mapping.

Figure 5. Basic Concepts Mapping: from AD to PN

These design choices, reflects the analysis based on the
generality of blocks (SendSignalAction or CallBehaviorAc-
tion inherited from Action),on block interconnection facility
but also on properties defined by [OMG 2010c] and [OMG
2010b]. For example, a ControlFlow can be modelised as a
single transition [Thierry-Mieg and LHillah 2008], it can be
also included on nodes like in [Bonhomme et al. 2008]. In
figure 5 the ultimate PN block acts as a buffer to respect Con-
trolFlow properties written in OMG specification. They de-
fine ControlFlow like an edge that starts an activity node af-
ter the previous one is finished, with this simple definition an
PetriNet arc is a correct model, but OMG add many specifi-
cation on ControlFlow or which influences behavior. Finally,
PetriNet arc is inadequate to meet all properties. Let’s look at
an excerpt of the properties and define possible solutions to
respect them:
Property 1 (from ControlFlow): Tokens offered by the source
node are all offered to the target node.
Property 2 (from ActionNode): When an action accepts the
offer for control and object tokens, the tokens are removed
from the original sources that offered them. If multiple con-
trol tokens are available on a single incoming control flow,
they are all consumed.
Solutions: We can do with the property 1 that the first intu-
ition is good, PetriNet arc carry tokens too. Property 2 and
many others shows that the ControlFlow has behavior of to-
ken storage like a PetriNet place. The inability to know dy-
namically the number of token in a place to empty correctly
ControlFlow brings us to the model as a buffer. Indeed, the
presence of token is important but not the token multiplicity.
The same work was done with almost every ActivityDiagram

node. Many stereotypes can be applied to nodes and was not
considered to date.

The transition from one column to another in figure 5 is
possible at M2 level (see figure 4) with ATL rules and Eclipse
Modeling Framework. We can see figure 6, the resulting petri
net after AD2PN transformation. It is more complex in ap-
pearance, it takes the behavior of Activity Diagram, that part
is not really readable but does not provide specific informa-
tion aditional. To make this transformation, we must estab-
lish rules for each meta-class present through these instances
in the model. For example: The ATL transformation rule for
InitialNode meta-class.

rule initialnode_place{
from a:MMAD!InitialNode
to b:MMH!Place (

Name<-’p_Initial_’+a.name+’_’+a.activity.name,
OutputLink<-c,
...
),
c:MMH!ArcClassic(

Name<-’a2_Initial_’+...
),
d:MMH!Transition(

OutputLink<-a.outgoing,
Name<-...
)

}

For each instance of InitialNode present in butterfly example
(figure 2), a marked place is created, arc connects the latter
to a transition (see figure 6). This transition is associated with
meta-class instance after transformation, present in outgoing
InitialNode argument (Outputlink a.outgoing).

4.1.2. Complex Petri Net
It was already seen how to build an atomic block. Build-

ing complex PN is relatively simple, in an activity diagram
every or almost every node are connected to another by
”ControlFlow” or ”ObjectFlow”. They will just have to con-
nect each atomic block (can be viewed as:Transition-Place-
Transition) to controlflow or objectflow block (can be viewed
as:Arc-Place-Arc). We remind the reader that, analysis at
model level should be higher than meta-model level to es-
tablish the rules in MDE context. Using the hierarchy can
significantly reduce the amount of transformation rules. With
AD2PN transformation, we could see that ATL cannot use
easily the advantages of hierarchy. The language must be well
controlled to limit significantly the coding rules.

As an illustration, Figure 6 give the first generated PN by
automatical transformation for butterfly example.

This graphical representation come from TINA toolbox.
This graphical version under TINA is possible with a second
transformation, from Petri Net to Tina (model2text).

Figure 6. The butterfly Petri Net

The head of butterfly represents the initial node, CF1 and
forkNode. Wing tips corresponds to continuous input and out-
put pins. Wings represents CF2, CF3 and actions I1 and I2.
The heart represents data exchange between OF1 and OF2.
The tail represents CF4,CF5 and the final node.
As we can see a control flow is a relative complex PN struc-
ture allowing tokens accumulation and consumption

To make this transformation we have used ”Query”[LINA-
INRIA 2006] from ATL :

helper context Hiles!Transition def:genTransition():
String = ’tr ’ + self.Name + ’ [0,w[’

+ self.InputLink->iterate(arc;accPlAm:String=’’|
accPlAm+arc.Source.Name +’ ’) + ’ -> ’

+ self.OutputLink->iterate(arc;accPlAv:String=’’|
accPlAv+arc.Target.Name +’ ’) + ’\n’ ;

On this part of ”Query”, it is automatically generated the
”arc part” of tina text. Once adapted to an industrial scale
this aspect of Petri Nets is meaningless, it is what brings us
to perform automated formal verification. Petri Net formal-
ism permits to verify automatically with LTL (Linear Tem-
poral Logic) properties the good progress of transformation,
but also user defined properties to verify part of the design
which may be captured throught OCL contraints on the activ-
ity diagram. As we will see in part verification of this paper,
all discrete behaviors of activity diagrams are taken into ac-
count. Currently, analog part was not present on Petri-Nets
and it is directly implemented on VHDL-AMS files, futher-
more TINA does not take into account hybrid PN. One file
describe the discrete part of AD, the other describe the con-
tinuous part of AD.
The second transformation called ”PetriNet2VhdlAMS” also
uses a MDE approach with ATL (ATLAS Transformation
Language) a model2text transformation.

4.2. PetriNet to VHDL-AMS
We remind us, a Petri Net is a graph consisting of two types

of nodes, places and transitions. Oriented arcs connect the
places to the transitions. A marked Petri net contains marks
or tokens distributed through the places. A place is therefore
empty or marked. This distribution describes the discrete state
of the model. We will focus here on two essential concepts of
a Petri Net: the place artifact and the dynamic aspect of a Petri
net.

Place component: The aim of the place component is to
update the marking of the Petri net. This component imple-
ments a functioning which is either synchronous or asyn-
chronous. Figure 7 below shows the interface (entity) and the
body (architecture) of the synchronous place component.

desactive
active

marque clk
araz

marque_init

place

entity place is
port (CLK : in std_logic;
 araz : in std_logic;
 marque_init : in std_logic;
 active : in std_logic;
 desactive : in std_logic;
 marque : out std_logic);
end place;

architecture behavior of place is
begin

P_PLACE: process(CLK,araz)
begin

 if araz = '1' then marque <= marque_init;
 elsif CLK'event and CLK = '1' then
 if active = '1' then marque <= '1';
 elsif desactive = '1' then marque <= '0';
 end if;
 end if;
 end process P_PLACE;
end behavior;

Figure 7. Synchronous place component

Calcul component: The aim of the component calcul is to
implement the dynamic aspect of a Petri net. It determines
the evolution of the marking of the model active or desactive
according to the sensitization e (conditions associated with
the firing of the transition) and the current marking (marque
of the net. In other terms, it determines the input/output flow
of each place of the net.

The interface and the architecture of the component calcul
is shown on Figure 8 below.

Figure 8. Calcul component

The dimensions of the input and output vectors are fixed
dynamically according to the net structure. For this, we will

use generic parameters NBRE PLACE and NBRE TRANSI-
TION which correspond to the number of places and num-
ber of transitions of the net respectively.
To create this component we use Query from ATL (At-
las Transformation Language) [LINA-INRIA 2006], this is
model2text transformation.

helper context MMPN!Nbr def:genCalcul():
String = ’entity calcul_rezo is
generic (NBRE_PLACE : natural:=’+self.nbr_Place.Name+’;\n
NBRE_TRANSITION : natural:=’+self.nbrTransition.Name+’);\n
port (
e : in std_logic_vector (NBRE_TRANSITION-1 downto 0);\n
marque : in std_logic_vector (NBRE_PLACE-1 downto 0);\n
active : out std_logic_vector (NBRE_PLACE-1 downto 0);\n
desactive : out std_logic_vector ...) ;\n
end calcul_rezo;’\n

On this part of Query, it is automatically generated ”Calcul
component”. The same type of Query is used to generate
all ”Place component” and all needed components. This
component and some others like ”allplaces” who connect
each place to ”calcul component”, translate the discrete
behavior of Petrinet, indirectly that of AD. This part can be
created with classical VHDL files. VHDL does not include
the management of the analog part, is the reason why we use
VHDL-AMS (AMS for Analog and Mixed-Signal).
The principle of hybrid systems is to interact discrete aspects
with continuous aspects of the system. The integration of
the two views of this model is as follows: put a token in a
place triggers the activation to the resolution of correspond-
ing differential equations. Meanwhile, some numbers of
thresholds are monitored. Each threshold being associated
with a transition to a downstream marked site. When the
threshold is crossed, the transition is crossed, a new marking
is calculated (token value) and a new system of equations is
activated.
This principle is directly inspired from management prac-
tices of Predicate/Transition Nets [Genrich 1987]. It is now
possible to integrate equations (1) and (2) of the butterfly
example in the simulation files, and launch their resolution
when the marking of the PN is correct.

5. VERIFICATION
After establishing the rules for AD to PN, it is important

to verify formally the transformation and, thus, verify that the
PN had the same behavior as the activity diagram. In other
words, it must check, through PN, to find the operational se-
mantics of an AD. Subsequently, it is possible to imagine that
users adds constraints (OCL) to the model, their validity in
the PN can be proved with verification.

5.1. ResolveTemp Meta-model
Each PN block can be reduced to a sequence, Transition-

Place-Transition. This meta-model defines each type of block

to give essential features, but no behavior. It performs double
transformation AD2PN and synchronized AD2ResolveTemp.
This is to retrieve the name of input transitions (isStarted),
output transitions (isFinished), running place (isRunning) and
this incoming/outgoing (incomming/outgoing) (see figure 9).

Figure 9. PN block definition

Sometimes attributes are added to define better LTL property
(isNotRunning, optionnalIncoming,...)

5.2. LTL Properties and selt
Owing to lack of space, we will not present LTL language.

Our approach has been to develop, properties in blocks with
properties with inputs and outputs. In accordance with tran-
sitivity relationship A) B and B) C then A) C. If
block satisfies this properties, and if properties with con-
nected blocks are satisfied then entire PN is verified. This
verifies formally correct construction of the Petri net. This
technique shows limitations indeed to have the expected Petri
net (no problem in the construction). But it does not involve
checking of correct behavior of the Petri net. If the building
blocks have a limited or incorrect behavior, the model will be
wrong and yet the verification will be positive. The user must
know the limits of model transformation used. To generate
automatically properties in LTL language, we use an other
transformation: from ResolveTemp to LTL (model2text) and
other ”Query”[LINA-INRIA 2006]:

helper context ResolveTemp!RTCF def:getPCF():String =
’[](’+self.isRunning+’+’+self.isNotRunning+’=1);\n’+...

The automated property created after this query is about
ControlFlow and verifies invariant under block,the label ’[]’
means that this invariant must always be true to validate this
property.

[](p2_CFlow_CF1_Activity1+p3_CFlow_CF1_Activity1= 1);

The OMG specification says:”If multiple control tokens are
available on a single incoming control flow, they are all con-
sumed.”[OMG 2010c]. To respect this semantic, controlflow
is modelised as seen in concepts of mapping subsection (pres-
ence or exclusively absence of tokken in ControlFlow).

6. SIMULATION
The butterfly example is ready for simulation. We use Sys-

tem Vision of Mentor Graphics [SystemVision 2011] to sim-
ulate our VHDL-AMS files.

Figure 10. Simulation of butterfly example with System Vi-
sion

Finally, we obtain the simulation results in Figure 10. The
discretisation effect comes from the structure example, newer
values arrive synchronously to action I1 and I2. We observe
oscillations of typical second-order equation with its pass-
ing before stabilization. This example shows that it is pos-
sible from an activity diagram, to automatically obtain an
exploitable simulation thanks to formalism of PNs VHDL-
AMS and even complex systems with a continuous exchange
of data.

7. EXAMPLE
The previous example has shown a simple management of

the data flow exchanges between action nodes. The applica-
tion presented in this part is meant closer to industrial reali-
ties and was developed with an approach similar to that which
can be found in research department. Its more complex struc-
ture brings up the concept of hierarchy and exchange data be-
tween hierarchical activities (CallBehavior concept in UML
provides a way to interlock (imbricate) activities by activity
invocation).

7.1. Specifications
The system is in charge of controlling the dosage of the

gas mixture (air + fuel + gas exhaust) to provide for a 4-stoke
engine (see figure 11).

The real-time system generates two types of information:

• A first discrete output calibrated on time (activation in-
stant and width of activation) which controls the injec-
tion time (variable depending on the mode of the engine)

• A second type of continuous output controls the posi-
tion of the recycling valve circulation for portion of the
exhaust gases (to reduce pollution).

These two outputs are continuously generated from two
sources of information:

Figure 11. Schematic diagram of a fuel injection

• A set of measurements in real time using various sensors
embedded dispersed in different parts of the engine.

• A set of parameters specific to each type of engine and
car, determined through laboratory tests. They come in
the form of tables and are provided as well to meet an
economic goal (reducing the number and complexity of
the sensors) and to reduce the technical complexity of
the calculations in real time.

The Injection Control System three key factors:

• The quantity of the gas mixture air-fuel sent from the
carburetor through the admission collector.

• The richness of the gas mixture ratio determined by
air/fuel rate.

• The amount of exhaust gas recirculated into the collector
admission.

The behavior of engine will be separated into three phases:

• Starting the engine.

• The increase in temperature of the engine.

• The operation at normal temperature, split itself into
three phases: the engine is driven at constant speed, the
engine is accelerating and the engine is decelerating.

7.2. From conception to simulation
According to each of these phases defined by sensors, the

engine will receive a quantity of gasoline during a defined
time. A detailed study of the system allows to obtain the con-
text diagram, the diagram use case and sequence diagrams.
We can then model the data exchange in Figure 12 of activity
diagram with the complete Injection Control System.

Detail analysis: To show in detail all possibilities given by
this transformation, observe part of the activity diagram and
the associated simulation results. To do this, we will study the
Admission part of activity diagram (Figure 13) and associated
calculation phases.

Figure 13. Admission activity of injection control system

The sensors send data to the engine part of the activity
diagram, who chooses based on the number of revolution per
minute of the engine and engine temperature one of three
control modes: start control (cal AFR start) (AFR: Air/Fuel
rate), feed-forward control (cal AFR f f), feedback control
(cal AFR f b).

The scenario is such that, initially the engine starts-up
(Step 1), when the number of revolutions per minute is less
than 1000, then feed-forward control (Step 2), before reach-
ing a sufficient engine speed arrive to feedback control (Step
3):

• Step 1: Sending a signal RegStar from Engine activity,
received by the AcceptEventRegStart which launches
start control (cal AFR start).

• Step 2: Sending a signal RegFF from Engine activity, re-
ceived by the AcceptEventRegFF which launches feed-

forward control (cal AFR f f).

• Step 3: Sending a signal RegFB from Engine activity, re-
ceived by the AcceptEventRegFB which launches feed-
back control (cal AFR f b).

Figure 14. Simulation of Air/Fuel rate control

We find three phases in the simulation (Figure 14) with all
three types of regulations and therefore different air/fuel rate
depending on the speed (rev / min) of the engine. These rates
are calculated by differential equations whose resolution
begins the launch activities cal AFR.

This example has shown that it is possible to transform Ac-
tivity Diagrams into a formal language such as Petri Nets and
be simulated. The combinatorial part of Petri nets is transpar-
ent for the user, it does not have to supervise the management
of transitions from PN. The testbench is a way to control the
progress of the simulation, but can remain transparent if no
debugging is required, and of course it have not interaction
with external stimulus.

8. CONCLUSION
The objective of this work was to propose a transforma-

tion of activity diagrams to VHDL-AMS in a MDE con-
text according to the OMG specifications. The complexity of
the OMG specification, the lack of maturity of tools imple-
menting this specification is a significant barrier to the de-
velopment of a solution in line with the OMG. Our objective
to make this transformation as generic as possible to trans-
form the majority of activity diagrams into VHDL-AMS files,
which sometimes leads to serious solutions but transparent to
the user. The simulation provides a vision of the signals car-
ried in the activity diagram. The PN description of the AD is
transparent to the user. The model can be self-governing (e.g.

without control of the environment). PN provides a mathe-
matical formalism which is, at this step of the project not re-
ally exploited.

This study is functional and allows to develop transfor-
mation of a large part of activity diagrams but does not yet
provide all the concepts present in the activity diagrams. A
major work may establish rules respecting all OMG specifi-
cations. Full automation of the transformation, making Petri
nets transparent to the user, and moving from the AD model
to the simulation was the first step. We express concern about
management of many changes which allows users (stereo-
type, optional attribute,...), to manage all of these cases seems
to overload rules of transformation. ATL language has some-
times seemed a bit complex, it will be interesting to see the
contribution of Query / View / Transformation (QVT) lan-
guage. The VHDL code (for the discrete part) can be synthe-
sized and embedded on a FPGA. Then, a further work would
focus on an extension to co-design and hardware/software
partitioning. While hardware part is transformed into VHDL,
we wish to build another transformation to generate C-code
for software part. Hardware/software partitioning should be
identified in the earlier phases of the development cycle and
may be capture with SysML using the concept of allocation.

REFERENCES
Albert V.; Nketsa A.; and Pascal J.C., 2005. Towards a metal-

model based approach for hierarchical Petri net transfor-
mations to VHDL. European Simulation and Modelling
Conference, Porto.

Bonhomme S.; Campo E.; Estève D.; and Guennec J., 2008.
Methodology and Tools for the Design and Verification of
a Smart Management System for Home Comfort. 4th Inter-
national IEEE Conference ”Intelligent Systems”.

Foures D.; Albert V.; and Pascal J.C., 2011. ActivityDi-
agram2PetriNet: Transformation-based Model in accor-
dance with the omg sysml specification. 25th European
Simulation and Modelling Conference- ESM’2011, Octo-
ber 24-26, 2011, Guimaraes, Portugal, , no. 1.0, 1–5.

Genrich H.J., 1987. Predicate/Transition Nets. In Lecture
Notes in Computer Science.

LAAS, 2011. http://homepages.laas.fr/bernard/tina/.

LINA-INRIA A., 2006. ATL:Atlas Transformation Language
ATL User Manual. OMG specification, , no. version 0.7.

OMG, 2010a. OMG Object Constraint Language (OCL), Su-
perstructure. OMG specification, , no. 2.3, 1–256.

OMG, 2010b. OMG Systems Modeling Language (OMG
SysML). OMG specification, , no. 1.2, 1–246.

OMG, 2010c. OMG Unified Modeling Language(OMG
UML), Superstructure. OMG specification, , no. 2.3, 1–
742.

Pllana S.; Benkner S.; Xhafa F.; and Barolli L., 2008. Au-
tomatic Performance Model Transformation from UML to
C++. In Parallel Processing. 228 –235.

SystemVision M.G., 2011. http://www.mentor.com/.

Thierry-Mieg Y. and LHillah o.M., 2008. UML behavioral
consistency checking using instantiable Petri nets. ISSE, 4,
no. 3, 293–300.

VHDL-AMS, 1999. Institute of Electrical and Electronics
Engineers Standard VHDL Analog and Mixed-Signal Ex-
tensions. , no. IEEE Std 1076.1-1999.

Figure 12. Activity diagram of Injection Control System

