A Generic Ellipsoid Abstract Domain
for Linear Time Invariant Systems’

Pierre Roux Romain Jobredeaux Pierre-Loic Garoche
ONERA Georgia Tech ONERA
_Toulouse, FRANCE Atlanta, Georgia, USA Toulouse, FRANCE

plerre.roux@onera.fr rjobredeaux3@gatech_edu pierre-

loic.garoche@onera.fr

Eric Féron
Georgia Tech
Atlanta, Georgia, USA

feron@gatech.edu

ABSTRACT

Embedded system control often relies on linear systems,
which admit quadratic invariants. The parts of the code that
host linear system implementations need dedicated analysis
tools, since intervals or linear abstract domains will give im-
precise results, if any at all, on these systems. Previous work
by FERET proposes a specific abstraction for digital filters
that addresses this issue on a specific class of controllers.

This paper aims at generalizing the idea. It works directly
on system representation, relying on existing methods from
control theory to automatically generate quadratic invari-
ants for linear time invariant systems, whose stability is
provable. This class encompasses n-th order digital filters
and, in general, controllers embedded in critical systems.

While control theorists only focus on the existence of such
invariants, this paper proposes a method to effectively com-
pute tight ones. The method has been implemented and
applied to some benchmark systems, giving good results. It
also considers floating points issues and validates the sound-
ness of the computed invariants.

Keywords

stable linear systems, ellipsoids, quadratic invariants, Lya-
punov functions, semi-definite programming, floating point
errors, abstract interpretation.

*This work has been partially supported by the FNRAE
Project CAVALE.

1. CONTROL-COMMAND BASED
CRITICAL SYSTEMS

A wide range of today’s real-time embedded systems, espe-
cially their most critical parts, rely on a control-command
computation core. The control-command of an aircraft, a
satellite or a car engine, is processed into a global loop re-
peated indefinitely during the activity of the controlled de-
vice. This loop models the acquisition of new input values
via sensors, the update of internal state variables and the
generation of new outputs. The acquisition is made either
from environmental measurements (like wind speed, accel-
eration or engine RPM for instance) or from human input
via the brakes, the accelerator, the stick or wheel control.

Control theorists are used to model both the environment
and the system behavior. Then using their own set of tools,
they add the necessary elements to obtain the target con-
trolled system. After discretizing the system, they mathe-
matically prove its stability and its performance by exhibit-
ing a quadratic form, i.e. an ellipsoid, that over-approximates
the system behavior with respect to a given input. All these
steps are well known by control theory specialists. Refer-
ence [15] is a good introduction to these approaches. In this
paper, we focus on a class of such systems where control is
computed using stable linear systems, i.e. the controller is
open-loop stable.

The system control law is then compiled from its description
to executable code, like embedded C. This description is
usually specified in Matlab Simulink, Scilab Scicos or in a
dedicated synchronous language such as Lustre or Scade.

Fig. 1 sketches the loop body of a coupled mass controller, as
generated by Matlab. It corresponds to a one step evaluation
of the following linear system zpy1 = Az + Buy, where
[|uklloo < 1. Vector zj represents the state of the system at
a given time. Matrix A models the system update according
to its previous state, while matrix B expresses the effect of
the input values uy.

Once such controller source code is generated, it is embed-
ded in the controlled device, eg. an aircraft. Critical em-
bedded systems are then a major target for static analysis

system definition
(A and B matrices)

// DiscreteStateSpace A : A
real T A[16] =
{ 0.6227, 0.3871, —0.113, 0.0102,

—0.3407, 0.9103, —0.3388, 0.0649, e
0.0918, —0.0265, —0.7319, 0.2669,
0.2643, —0.1298, —0.9903, 0.3331 };

loop body update

// DiscreteStateSpace_A: B
real_T B[8] =

i e .
~0.0494, 1.6138, AXzr+BxXug

—0.0531, 0.4012 };

static void MIMO_ update(int T tid) {

static real_ T xnew[4];

xnew [0] = (A[0])*St[0] + (A[1])=St[1] + (A[2])=St[2]
+ (A[3)) 86 (3];

xnew [0] += (B[0])*INPUT[0] + (B[1])*INPUT[1];

xnew [1] = (A[4])*St[0] + (A[5])*St[1] + (A[6])=St[2]
+ (A[71) 86 (3];

xnew [1] += (B[2])«INPUT[0] + (B[3])+«INPUT[1];

xnew [2] = (A[8])*St[0] + (A[9])*St[1] + (A[10])=St[2]
+ (A[11]) %St [3];

xnew [2] += (B[4])*INPUT[0] + (B[5])+«INPUT[1]

xnew [3] = (A[12])=* St[0] 4+ (A[13])*St[1] +
(Al14])%8¢[2] + (A[15])=St[8];

xnew [3] 4= (B[6])*INPUT[0] + (B[7])=«INPUT[1];

(void) memcpy(St, xnew, sizeof(real_T)=x4);

Figure 1: System update for a coupled mass system
controller generated by Matlab.

in order to ensure their good behavior. The success story
of Astrée [7] illustrates such needs: it targets the analysis
of the control command of the Airbus A380, and was used
to formally prove the absence of any runtime error on the
700kloc of the controller source code. It relies on the theory
of abstract interpretation [5, 6] to compute a sound overap-
proximation of all possible values of the program variables
in any reachable states. Then it is able to ensure that this
over-approximation does not reach any possible bad state
like overflows, division by zero, or invalid pointer derefer-
encing. In [7], the authors enumerate the different abstrac-
tions used to compute this over-approximation like intervals
or octagons. Among them, we focus here on digital filters
abstractions represented by ellipsoid abstract domains.

In [8], FERET proposes an analysis dedicated to stable linear
filters in control command programs. These short pieces of
code correspond to the kind of systems illustrated in Fig. 1,
restricted to only one input argument and its past history,
i.e. the matrix B is a column vector, and specific types of
matrices A, i.e. companion matrices.

Most of the abstract domains available in actual tools only
represent linear properties, leading on our target systems at
best to rather costly analysis [11] or at worst to no result
at all. For example, no interval invariant exists for the ex-
ample of Fig. 1. Thus analyzing it with intervals will give
the (—o0;+00) over-approximation, whereas quadratic in-
variants will bound all parameters in [—5; 5].

In this paper, we propose to generalize the approach of [§]
by considering any inherently stable linear system. In par-
ticular, we

e characterize quadratic forms, invariants of the linear
system analyzed, with techniques inspired by the con-
trol theory community;

e propose an open implementation of the analysis that
handles floating point rounding errors;

e validate the result using a sound external solver.

Unlike in [8], current work is supposed to take place during
the development process and matrices A and B are assumed
to be given.

The paper is structured as follow: Section 2 introduces the
reader to the notion of stability based on Lyapunov invari-
ants. Section 3 presents our global approach and the steps
of our algorithm. Sections 4, 5 and 6 detail the main steps
while Section 7 covers floating point issues and soundness.
Finally concrete results and related work are presented in
Sections 8 and 9.

2. INTRODUCTION TO LYAPUNOV
STABILITY THEORY

One common way to establish stability of a discrete, time-
invariant closed (i.e. with no inputs) system described in
state space form, (i.e x4+1 = f(xx)) is to use what is called
a Lyapunov function. It is a function V : R®™ — R which
must satisfy the following properties

V(0)=0AVz e R"\{0},V(z) >0A lim V(z)=o0

[lz|| =00
(1)
vz € R",V(f(z)) — V(z) <O0. (2)

It is shown for example in [13] that exhibiting such a function
proves the so-called Lyapunov stability of the system, mean-
ing that its state variables will remain bounded through
time. Equation (2) expresses the fact that the function
k +— V(zi) decreases, which, combined with (1), shows
that the state variables remain in the bounded sublevel-set
{z e R"|V(z) < V(x0)} at all instants k € N.

In the case of Linear Time Invariant systems (of the form
ZTp+1 = Az, with A € R™*"™), one can always look for
V as a quadratic form in the state variables of the system:
V(z) = 27 Pz with P € R"*"™ a symmetric matrix such that

P>0 (3)
ATPA-P =<0 (4)

where “P > 0” means that the matrix P is positive definite,
i.e. for all non-zero vector z,zT Pz > 0.

Now, to account for the presence of an external input to the
system (which is usually the case with controllers: they use
data collected from sensors to generate their output), the
model is usually extended into the form

Tot1 = Az + Bug, |Juk||eo < 1. (5)

To study this equation as precisely as possible, another model,
expressing the behavior of the controlled system (the plant),
is usually introduced. The two systems taken together form
a closed system with no inputs which can be analyzed by
looking for a P matrix matching the criteria mentioned be-
fore. Such an analysis is refered to as ’closed loop stability
analysis’. Here we seek not to model the plant, instead we
only require for ||u||cc to remain bounded'. Then, through

'While we could consider different bounds for each compo-

{Azk + Bu | [|ulloc <1}

Tk

A:Ck

{Aac ’ 2T Pr < 1}

{ac | 2T Pz < 1}

Figure 2: Illustration of the stability concepts: if xj
is in the light gray ellipse, then, after a time step,
Azy is in the dark gray ellipse, which is exactly what
is expressed by Equation (4). The white box repre-
sents the potential values of x4, after adding the
effect of the bounded input u;r.We see here the ne-
cessity that the dark gray ellipse be strictly included
in the light gray one, which is the stronger condition
expressed by Equation (6).

a slight reinforcement of Equation (4) into
ATPA-P <0 (6)

we can still guarantee that the state variables of (5) will
remain in a sublevel set {x e€R" | 2T Pz <)\} (for some A >
0), which is an ellipsoid in this case. This approach only
enables us to study control laws that are inherently stable,
i.e stable when taken separately from the plant they control.
Nevertheless a wide range of controllers remain that can
be analyzed, and this encompasses in particular all those
handled by Astrée. In addition, inherent stability is required
in a context of critical applications.

These stability proofs have the very nice side effect that they
provide a quadratic invariant on the state variables, which
can be used at the code level to find bounds on the pro-
gram variables. Furthermore, there are many P matrices
that fulfill the equations described above. This gives some
flexibility as to the choice of such a matrix: by adding rel-
evant constraints on P, one can obtain increasingly better
bounds.

3. OVERALL METHOD
3.1 Separate Shape and Ratio

We keep the same overall representation as FERET [8, 9],
representing an ellipsoid by a pair (P,\) where P € R"*"

nent of the input u, we will only deal with [|u|lc < 1 for
simplicity of the exposition.

is a symmetric positive definite matrix giving the shape of
the ellipsoid and A € R a scalar giving its ratio. The rep-
resented ellipsoid is then the set of all x € R™ such that
zT Pz <), ie. the concretization function ~ is given by
v (PA) — {zeR" | 2" Pz < \}. To avoid having multi-
ple representations for the same ellipsoid? we can normalize
P for instance by requiring its largest coefficient to be 1.
The underlying lattice also remains the same. In partic-
ular the join of two abstract values (P,\) and (P’,)) is
(P,max(\,\")) if P = P" and T otherwise.

This seemingly strange choice at first sight allows us to de-
compose the computation in two successive steps

1. first determine the shape of the ellipsoid by choosing
a well suited matrix P;

2. then find the smallest possible ratio A such that = €
~(P, A) is an invariant.

Various methods for both steps are detailed and compared
in Sections 4 and 5.

3.2 Instrumentation:

Use of Semidefinite Programming
To perform the aforementioned computations we rely heav-
ily on semidefinite programming [4, 10]. These tools allow
us to compute in polynomial time a solution to a linear ma-
trix inequality (LMI) while minimizing a linear objective
function. A LMI is an inequality of the form

k
Ao+ yidi = 0
i=1
where the A; are known matrices, the y; are the unknowns
and “P > 0” means that the matrix P is positive semidef-
inite, i.e. TPz > 0 for all vector z. Indeed we can eas-
ily have unknown matrices since a matrix A € R"*™ can
be expressed as > 1" ., A; jE% | where E™ is the matrix
with zeros everywhere except a one at line i and column
j. Likewise multiple LMIs can be grouped into one since

A > 0A B > 0 is equivalent to (40

0 B = 0.

We will also have to deal with some implications which will
be achieved by transforming them into a LMI thanks to the
following theorem.

THEOREM 1 (S-PROCEDURE). For any P,P’ € R™*",
a,a’ € R™ and b,b" € R, following conditions are equivalent

1. Vz € R",
TPz 42T +b>0 = 2TP z+2dTz+b >0

P d P a
2.dreR, 7>0 A (a/T b')iT(aT b)io

PROOF. Soundness (2 = 1) is obvious. A proof of com-
pleteness (1 = 2) can be found in [15]. [

2For instance (P,2)) and (g, /\) represent exactly the same
ellipsoid.

4. SHAPE OF THE ELLIPSOID

As was presented in Section 2, any positive definite matrix
P satisfying the Lyapunov equation

A"PA-P <0 (7)

will yield a proof of stability and provide some bound on
the variables. However, additional constraints on P can be
introduced that make it possible to obtain better results
than others.

While in Control Theory the existence of such ellipsoids is
sufficient to prove stability of the system, we are here inter-
ested in characterizing it concretely. Investigating heuristi-
cally multiple possible shapes allows us to find one which is
more adequate, i.e. more precise, with respect to the ana-
lyzed system.

The following subsections describe three different types of
additional constraints on P and their respective advantages.

4.1 Minimizing Condition Number

Graphically, the condition number of a positive definite ma-
trix expresses a notion similar to that addressed by excen-
tricity for ellipses in dimension 2. It measures how ’close’
to a circle (or its higher dimension equivalent) the resulting
ellipsoid will be. Multiples of the identity matrix, which all
represent a circle, have a condition number of 1. Thus one
idea of constraint we can impose on P is to have its condi-
tion number as close to 1 as possible. One reason is that
flat’ ellipsoids can yield a very bad bound on one of the
variables. This is done [3] by minimizing a new variable, r,
in the following matrix inequality

I<P=rl

This constraint, along with the others (Lyapunov equation,
positive definiteness, ...), can be expressed as an LMI, which
is solved using the semi definite programming techniques
mentioned in Section 2.

4.2 Preserving the Shape
Another approach [25] is to minimize r € (0,1) in the fol-
lowing inequality

ATPA—rP=<0.

Intuitively, this corresponds to finding the shape of ellipsoid
that gets 'preserved’ the best when the update zr+1 = Axg
is applied. This is the choice implicitly made in [8] for a
particular case of 2 x 2 matrices A. With this technique
however, the presence of a quadratic term rP in the equa-
tion prevents the use of usual LMI solving tools ’as is’. To
overcome this we chose an approach where we try a value for
r and refine it by dichotomy. Only a few steps are required
to obtain a good approximation of the optimal value.

4.3 Allin One

The two previous methods were based only on A, completely
abstracting B away, which could lead to rather coarse ab-
stractions. We try here to take both A and B into account
by finding the smallest possible P such that

Vo, Vu, ||u)leo <1 = 2T Pz <1 =
(Aa:—l—Bu)TP(Ax + Bu) <1

which, using the S procedure, amounts to the existence of
7; > 0 such that

—ATPA — A" PBe; (P 0N,
—eI'BTPA 1—eIBTPBe; ‘Lo 1)=

for all the vertices e; of the hypercube of dimension p, the
number of inputs. The rationale behind this formula is ex-
plained in Section 5.2. This is not an LMI since 7 and P are
both variables but a reasonably good solution can be found
by trying various values of 7 between some Tmin € (0,1),
which can be found by dichotomy, and 1.

4.4 Comparison and Combination

There is no proof that one method always performs better
than the others, and, for each method, there exists examples
where it performs better than the other two, see Section 8.
It appears, however, that the third method, albeit a little
more costly, yields the best bounds in general. In fact the
cost is also debatable since, despite being costlier, it does
not require the search for the ratio, a necessary step for the
first two methods described in Sections 4.1 and 4.2.

In any case, the methods are not exclusive of each other and
can be combined: the resulting (sound) value will be the in-
tersection of the projection of each obtained ellipsoids. Hav-
ing multiple, not-always-comparable values will only yield
more precise results.

S. FINDING A STABLE RATIO

Now that we have chosen a matrix P, we need to find a ratio
X such that 7 Pz < X is an invariant for the whole system
Tr+1 = Axr + Buyp with a bounded input u that satisfies
||u||]o < 1. The existence of such a A is guaranteed by the
choice of P as a solution of the Lyapunov inequality (7).
Those A are exactly the fixpoints of the function mapping
Ak to the maximum of Ax and the least A\i4+1 such that

Vxp € R",uk c Rp, ||uk||oo <1l= mfP:vk <A =
${+1P$k+1 < Akt1

where xx4+1 = Axr + Buy. We are of course interested in
the least fixpoint.

5.1 Initial Ratio)\,

Since the system starts in state o, we initialize Ao as z3 Pxo.
If instead of a simple point the initial conditions are only
known to lie in a polyhedron, we just have to take the max-
imum of 2T Pz among all vertices x of the polyhedron.

5.2 One Iteration

Given some A, we want to compute the least Apy1 satisfy-
ing Equation (8). By a convexity argument?®, it is enough
to have the following for every vertex e;,i € [1,2F] of the
hypercube® {uy, | ||ux||oc < 1} of dimension p

Vo € R, zf Pap < A\, =
(Aack + Bei)T P (Amk =+ Bei) < Akt

3See Figure 2 for a graphical illustration of this.

4A major drawback of the approach is that the number of
vertices is exponential in the number of inputs p. We could
design a cheaper abstraction but it would be coarser, in ad-
dition the number of inputs p often remains reasonable.

X x / Tk
A:L‘k
71
/
/ :_Awk
L
/
;o oxox
v

Figure 3: We can forget half of the vertices of the
white box as they will be taken into account on the
opposite side.

Using the S-procedure® we get the equivalent formulation

Vi € [1,217]],37'1',7‘7; > 0A
—ATpPA —ATPBe;
—eI'BTPA MAuy1—eFBTPBe;

—-P 0
i (0 A) =0
which is an LMI in Ax4+1 and the 7; which is solved by min-
imizing Ag41.

We can notice that, by a symmetry argument, we can forget
about half of the e; as depicted on Figure 3.

5.3 Iterating to Fixpoint and Widening

Now we can compute Kleene iterates but it will be slow to
converge to a fixpoint. To accelerate, we can use a widening
with thresholds, which allows us to find a value for A up to
some factor g of the least one by using a sequence of powers
of ¢ as thresholds.

5.4 An alternative to Classical Widening
When looking for a good postfixpoint we are indeed looking
for a small X\ satisfying the following equation

Vi € [1,2P], 7 > OA
—ATpPA —ATPBe;
—eIBTPA X —eI'BTPBe;

—-P 0
—Ti (0 A) t 0.
This is not an LMI because of the 7; but if we used the

method described in Section 4.2 for choosing the shape of P,
we have obtained® a parameter r € (0, 1) such that 7; € [r, 1].

®See Theorem 1.
5Otherwise we can still recompute such a parameter 7.

9)

Computing the smallest A satisfying the following LMI then
directly gives a postfixpoint

. —ATPA —ATPBe;
Vi€ 127, (—eTBTPA - eTBTPBe;

-P 0
_r41
: (/ A)zo.

5.5 Refining a Postfixpoint by Dichotomy
Once we have found a postfixpoint A\j,qz using widening with
thresholds, we can refine it through decreasing iterations
with narrowing but this usually does not lead quickly to
anything close to the least fixpoint. However, an interesting
property of this least fixpoint \,ir is that Apy+1 < Ag exactly
when Ax > Amin, then enabling to efficiently and tightly
overapproximate it by a dichotomy testing satisfiability of
the LMI (9) for values of A between zero” and Amaz.

6. BACK TO INTERVALS

While quadratic forms precisely over-approximate the set of
reachable states of linear systems subject to bounded inputs,
they are hardly usable as such in conjunction with other
abstractions. We can solve LMIs to project the obtained
ellipsoid and get bounds on the variables, z; € [—a,a] with
a the least value such that

0o -4 -P 0)
oT -7 =0
(-5 a) (0 AJ"
where e; is the ith vector of the canonical base.

This is not limited to intervals, the same thing can be done
for octagons [16] or more generally linear [23] or even quadratic [1,
10] templates.

7. FLOATING POINT ISSUES

Two fundamentally different issues with floating point num-
bers must be considered

the analyzed system contains floating point computations
with rounding errors making it behave differently from
the way it would if the same computations were done
with real numbers, this is discussed in Section 7.1;

the implementation of the abstract domain is also car-
ried out with floating point computations for the sake
of efficiency, this usually works well in practice but can
give erroneous results, hence the need for some a pos-
teriori validation, see Section 7.2 for further details.

7.1 Taking Rounding Errors Into Account
The sum of two floating point values is, in all generality,
not representable as a floating point value and must conse-
quently be rounded. The accumulation of rounding errors
can potentially lead to far different results from the ones ex-
pected with real numbers, thus floating point computations
must be taken into account in our analysis [19].

The rounding errors can be of two different types :

"Or, better, the last prefixpoint encountered during the
widening iterations.

e for normalized numbers represented with a fixed num-
ber of bits, we get a relative error: round(a + b) €
[(1=€e)(a+b), (L+e)(a+Db);

e for denormalized numbers (i.e ones very close to 0), we
get an absolute error: round(a+b) € [a+b—w, a+b+w].

A common and easy solution to take both possible errors
into account is to sum them which in practice leads only
to a very slight overapproximation: round(a + b) € [(1 —
€)(a+b) —w,(1+¢€)(a+b) +w]. Although only addition
is illustrated here, the method works exactly the same way
for any other floating point operation. The actual values
of € and w depend on the characteristics of the considered
floating point system. For instance we will take e = 2723

and w = 271 for single precision®.

Combining these elementary errors we get a simple postpro-

cessing for each iteration of Section 5.2 to soundly overap-
proximate rounding errors.

Definition 1. fl(e) represents floating point evaluation of
expression e with any rounding mode and any order of eval-
uation® [22].

LEMMA 1. Assuming e < 2723, w <2719 gndn < 2! =
2048, we have'®

fl (i aixi> < (1+(n+ 1) (i aixi> +n(n+ w.

i=1

PROOF. By induction on n. [

LEMMA 2. For any a € R, z,y € R", P € R™*" a sym-
metric positive definite matriz and A\,p € R, if we have
llyll2 < and 2T P & < X then

(az +y)" P (az +y) < a®X + 2abV A + b°

with b = /T with r the least scalar such that there exists
7 € R satisfying

-P 0 -I 0
TZO/\(0 T)*T(0 M)EO.

Proor. Using Theorem 1 we have yT P y < r hence the
result by expansion and Cauchy-Schwartz inequality. [

THEOREM 2. For any x € R*, u € R?, A € R"™*", B €
R™ P P ¢ R™™"™ a symmetric positive definite matriz and
A€eR if n+p <2048 then

(Az + Bu)"P (Az 4 Bu) < A =
(fi(Az 4+ Bu))* P i(Az + Bu) < a®X + 2abv/\ + b?

with a =1+ (n+p+ 1)e and b defined as in Lemma 2 for
p=+n(n+p)(n+p+w.

8Type float in C.

9Order of evaluation matters since floating point addition is
not associative.

10Those are the values for single precision but it would work
just the same for any other precision with adequate values .

PROOF. By successive applications of Lemmas 1 and 2. []

Thus, provided that the number of variables of the system
plus its number of inputs is less than 2048, which is a reason-
able assumption, we just have to compute a and b once as
defined in Theorem 2 then apply to each step of Section 5.2
the postprocessing A — a?X + 2abv/A + b? to take into ac-
count computation with floats, whatever the rounding mode
and the order of evaluation.

Such use of abstract domains in the real field to soundly
analyze floating point computations is not new [17] and some
techniques even allow to finely track rounding errors and
their origin in the analyzed program [12].

7.2 Checking Soundness of the Result

Because the LMI solver is implemented with floating point
computations, we have no guarantee on the results it pro-
vides'!. Hence the need to check them. This amounts to
checking that a given matrix is actually positive definite.

This is done by carefully bounding the rounding error on
a floating point Cholesky decomposition [22]*2. Proof of
positive definiteness of an n X n matrix can then be achieved
in time O(ns) which in practice induces only a very small
overhead to the whole analysis.

8. EXPERIMENTAL RESULTS

All the elements presented in this paper have been imple-
mented as an autonomous linear system analysis engine.
The tool is composed of three parts:

e The core mathematical computations are done with
Scilab [24], mainly with the LMI solver [20] from an
OCaml front-end. This part is a set of functions that
implement the algorithms presented in Sections 4, 5,
6 and 7.1, as well as projections of ellipsoids over in-
tervals. Computation in Scilab are done using double
precision floats.

e The front-end is an OCaml code using rational num-
bers (Num library). It loads the A and B matrices and
interacts with Scilab to compute the different sequence
of calls to Scilab functions.

e A last part, also in OCaml, interfaces the obtained
quadratic form with a particular C implementation of
a Cholesky decomposition [22] to ensure its stability
as explained in Section 7.2.

The code is released under a GPLv2 license and is available
at http://cavale.enseeiht.fr/.

Experiments were conducted on a set of stable linear sys-
tems. These systems were extracted from [9], [1] or from

"There also exists guaranteed SDP solvers now [14] over
and underapproximating the primal and the dual problem
to guarantee an error bound on the result. However we only
need to check the final result. Thanks to Eric GOUBAULT
for pointing that to us.

12Thanks to Timothy WANG for pointing this to us.

http://cavale.enseeiht.fr/

Method #; A Av Bounds to lesld'
fp 131072] 0.48 0.01
E;;n} 9, slides] I 0.07 105351 105341 [140.4;189.9] 0.40 0.01
_ N fp 128.0] 0.35 0.01
n=2, 1 input P 0.16 - 96.8 96.0 [22.2;26.5] 0.28 0.01
U 0.23 1+¢€ [16.2;17.6] 0.20 0.01
Ex. 2 I 0.09 ff ?gig 1371 [18.1;25.2;24.3; 33.7] 832 88?
From [9, slides] fp 30 0'35 0'01
n=4, 1 input P 0.27 - 6.4 4.2 [6.3;7.7;2.2; 3.4] 0.27 0.02
U 0.40 1+¢€ [1.7;2.0;2.2;2.5] 0.21 0.01
Ex. 3 fp 262144) 0.54 0.01
Discretized I 0.07 . I 204241 [391.4;21.6] 1 N
lead-lag fp 2048 . 0.44 0.02
controller P 0.17 T 1632 1281 [36.2; 36.1] 0.33 0.01
n=2, 1 input U 0.20 1+¢€ [38.8;20.3] 0.20 0.01
Ex. 4 Linear fp 16.0 na. 0.38 0.02
quadratic I 0.09 T 10.9 10.3 [1.2;0.9;0.5] 0.32 0.02
gaussian fp 1.0 N, 0.31 0.02
regulator P 0-19 T 1.1 0.7 [0.9;0.9;0.9] 0.26 0.01
n=3, 1 input U 0.24 1+¢€ [0.7;0.4;0.3] 0.22 0.02
Ex. 5 Observer fp 512.0 oo . 0.48 0.03
based controller I 0-09 T 323.0 304.6 [9-8;8.9;11.0;16.8] 0.43 0.03
for a coupled fp 320 kg 0.42 0.03
mass system P 0.24 - 28.6 24.3 [5.7;5.6;6.4;10.1] 0.33 0.03
n=4, 2 inputs U 0.48 1+e¢ [5.0;4.9;4.8;4.7] 0.22 0.03
Ex. 6 fp 128.0 . 0.44 0.02
Butterworth I 0.10 - 1131 102.4 [7.5;8.7;6.1;7.0;6.5] 0.38 0.03
low-pass filter fp 8.0 Ao, 0.37 0.02
n=5. 1 input P 0.32 - 77 7.1 [3.6;5.0;4.7;8.1; 8.9] 0.29 0.02
U 0.78 1+e€ [2.3;1.1;1.9;2.0;2.9] 0.24 0.03
Ex. 7 fp 353.6) 0.22 0.01
Dampened I 0.07 T 353.6 353.6 [1.7:2.1] 0.23 0.01
oscillator fp 3.0] 0.22 [0.01 (1)
from [1] P 0-15 T 3.0 3.0 [2.0;2.0] 0.20 | 0.01 (L)
n=2, no input U 0.27 1+e¢€ [1.5;1.5] 0.16 0.01
Ex. 8 fp 22.9] 0.22 0.01
Harmonic I 0.08 T 22.9 22.9 [1.5;1.5] 0.23 0.01
oscillator fp 2.0] 0.24 [0.01 (1)
from [1] e T [1.5;1.5] 0.20 | 0.01 (1)
n=2, no input U 0.15 1+¢€ [1.5;1.5] 0.16 0.01

Table 1: Result of the experiments: quadratic invariants computation. Times are expressed in seconds, t; is
the time spent to compute the shape of the ellipsoid, ¢ is the time spend to find the appropriate ratio A and
project the resulting invariant on intervals and t3 is the time needed to validate the stability of the resulting
ellipsoid, as explained in Section 7.2. I, P and U are respectively the methods of Sections 4.1, 4.2 and 4.3.
Av denotes the refined value of A by dichotomy.

V4
(a) Ex. 1 (b) Ex. 2
(c) Ex. 3 (d) Ex. 4

(e) Ex. 5 (f) Ex. 6

\}) |
{

(g) Ex. 7 (h) Ex. 8

Figure 4: Comparison of obtained ellipsoids by
methods of Sections 4.1, 4.2 and 4.3 from lighter
to darker, plus a random simulation trace ((b), (d),
(e) and (f), being of dimension greater than 2, are
cuts along planes containing the origin and two vec-
tors of the canonical base, to show how the three
different templates compare together).

basic controllers found in the literature. Table 1 illustrates
the value computed using the different techniques as well as
the time spent at each step. Figure 4 compares some plots
of the obtained quadratic forms depending on the approach
used to find the ellipsoid.

9. RELATED WORK

Many work in abstract interpretation, and its use to analyze
programs, focus on linear patterns to abstract properties.
However few work address non linear invariant synthesis.

FERET’s work [8, 9] on the one hand is a practical approach
to the problem. Its goal is to address the need by Astrée to
handle the linear filters present in Airbus’ real time software.
Previous work [18] by MONNIAUX also addressed the same
class of systems at the same level as in this paper rather than
on actual code. As mentioned earlier, this effort addresses
a strict subset of the systems we consider. However, it is
hard to compare both works in terms of precision on the
set of systems they both handle due to the lack of publicly
available implementation or figures. Although FERET’s work
is probably a bit more precise thanks to the way it takes into
account a limited number of previous inputs, performing a
kind of unrolling, we use better ellipsoids of higher dimension
and Figure 4 indicates that the resulting precision is often
far from disastrous.

On the other hand, there are work that target similar prop-
erties but are more theory oriented and motivated. One can
cite the Lagrangian Relaxation approach applied to program
termination analysis as introduced by CousoT in [4] and
RO0ZBEHANI, FERON and MEGRETSKI in [21], or the works
of ADJE, GAUBERT and GOUBAULT [1] and GAWLITZA and
SEIDL [10] on policy iterations and non linear forms. The
latter two aim at replacing a Kleene based fixpoint compu-
tation by a symbolic reasoning based on semi-definite pro-
gramming. They are more inspired by theoretical results
leading to the analysis. [1, 2] even cites the existence of
Lyapunov based invariant as a prerequisite for the method.
These works are more general than ours: they address the
analysis of non linear systems, even with non convex prop-
erties. However none of them automatically finds the appro-
priate shape: templates need to be given, e.g by providing a
Lyapunov function, whereas we automatically compute an,
in some sense “optimal”, template’®. They also do not ad-
dress the floating point issues.

Our work should be considered as an in-between solution. It
takes ideas from control theory results but targets the anal-
ysis of specific realistic systems. Furthermore it addresses
floating point errors as well as the validity analysis of the
obtained invariants.

10. CONCLUSION AND PERSPECTIVES

We have presented a set of analysis allowing us to charac-
terize quadratic invariants, i.e. ellipsoids, for a subset of
linear systems: inherently stable linear systems subject to
bounded inputs.

131t can be interesting to notice that in case of Ex. 7 of Ta-
ble 1, such an automatically computed template allows to
find more precise bounds than in [1, 10] with a manually
chosen template.

Most of the critical embedded control command systems rely
on such linear systems. But intervals and linear invariants in
general will not allow to precisely describe their state space.

This analysis is based on ideas from control theory. They
are used to prove the stability of the system by exhibiting a
proof of existence of a so-called Lyapunov quadratic form.

This work addresses the explicit computation of such a form
by exploring the instantiation of multiple generic templates
to find the most appropriate ellipsoids to bound the analyzed
system.

Our effort also considers floating point errors and addresses
the validity of the computed solution. It has been imple-
mented and applied on several examples. The reduced prod-
uct between the different templates instantiated gives ex-
tremely precise results as illustrated by the experimenta-
tions.

The approach of this paper presents the major drawback of
being unable to directly analyze actual systems at code level,
in particular because such systems are usually equipped with
saturations or resets. We believe this can be addressed by
using policy iteration methods [1, 10]. The computation of
templates does not play any role in soundness of the anal-
ysis and may be able to accommodate heuristics extracting
potential A and B matrices from the code'*. Methods used
to address floating point issues should also be adaptable to
policy iteration.

Acknowledgments.

We deeply thanks Eric GOUBAULT and Jéréme FERET for
useful comments on this paper.

11. REFERENCES

[1] A. Adjé, S. Gaubert, and E. Goubault. Coupling
policy iteration with semi-definite relaxation to
compute accurate numerical invariants in static
analysis. In ESOP, volume 6012 of LNCS. Springer,
2010.

[2] F. Alegre, E. Féron, and S. Pande. Using ellipsoidal
domains to analyze control systems software. 2009.
http://arxiv.org/abs/0909.1977.

[3] S. Boyd, L. El Ghaoui, E. Féron, and
V. Balakrishnan. Linear Matriz Inequalities in System
and Control Theory, volume 15 of Studies in Applied
Mathematics. STAM, Philadelphia, PA, June 1994.

[4] P. Cousot. Proving program invariance and
termination by parametric abstraction, lagrangian
relaxation and semidefinite programming. In VMCAI,
volume 3385 of Lecture Notes in Computer Science.
Springer, 2005.

[5] P. Cousot and R. Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In POPL,
1977.

[6] P. Cousot and R. Cousot. Systematic design of
program analysis frameworks. In POPL, 1979.

!4The only limitation being to avoid generating too much
spurious templates which would lead to a too costly analysis.

[7] P. Cousot, R. Cousot, J. Feret, L. Mauborgne,

A. Miné, D. Monniaux, and X. Rival. Combination of
abstractions in the ASTREE static analyzer. In ASIAN,
Tokyo, Japan, LNCS 4435, 2006. Springer.

[8] J. Feret. Static analysis of digital filters. In ESOP,
number 2986 in LNCS. Springer, 2004.

[9] J. Feret. Numerical abstract domains for digital filters.
In International workshop on Numerical and Symbolic
Abstract Domains (NSAD), 2005.

[10] T. M. Gawlitza and H. Seidl. Computing relaxed
abstract semantics w.r.t. quadratic zones precisely. In
SAS, volume 6337 of LNCS. Springer, 2010.

[11] K. Ghorbal, E. Goubault, and S. Putot. The zonotope
abstract domain taylorl+4. In CAV, volume 5643 of
LNCS. Springer, 2009.

[12] E. Goubault and S. Putot. Static analysis of finite
precision computations. In VMCAI, volume 6538 of
LNCS. Springer, 2011.

[13] W. M. Haddad and V. S. Chellaboina. Nonlinear
Dynamical Systems and Control: A Lyapunov-Based
Approach. Princeton University Press, 2008.

[14] C. Jansson, D. Chaykin, and C. Keil. Rigorous error
bounds for the optimal value in semidefinite
programming. SIAM J. Numerical Analysis, 46(1),
2007.

[15] U. T. Jonsson. A lecture on the S-Procedure, 2001.

[16] A. Miné. The octagon abstract domain. In AST 2001
in WCRE 2001, IEEE. IEEE CS Press, October 2001.

[17] A. Miné. Relational abstract domains for the detection
of floating-point run-time errors. In ESOP, volume
2986 of LNCS. Springer, 2004.

[18] D. Monniaux. Compositional analysis of floating-point
linear numerical filters. In CAV, volume 3576 of
LNCS. Springer, 2005.

[19] D. Monniaux. The pitfalls of verifying floating-point
computations. ACM Trans. Program. Lang. Syst.,
30(3), 2008.

[20] R. Nikoukhah, F. Delebecque, and L. El Ghaoui.
LMITOOL: a Package for LMI Optimization in Scilab
User’s Guide. Research Report RT-0170, INRIA, Feb.
1995.

[21] M. Roozbehani, E. Féron, and A. Megretski.
Modeling, optimization and computation for software
verification. In HSCC, volume 3414 of LNCS.
Springer, 2005.

[22] S. M. Rump. Verification of positive definiteness. BIT
Numerical Mathematics, 46, 2006.

[23] S. Sankaranarayanan, M. Colén, H. B. Sipma, and
7. Manna. Efficient strongly relational polyhedral
analysis. In VM CAI, volume 3855 of LNCS. Springer,
2006.

[24] Scilab Team. Scilab. http://www.scilab.org.

[25] Q. Yang. Minimum Decay Rate of a Family of
Dynamical Systems. PhD thesis, Stanford, 1992.

	Control-Command BasedCritical Systems
	Introduction to LyapunovStability Theory
	Overall Method
	Separate Shape and Ratio
	Instrumentation:Use of Semidefinite Programming

	Shape of the Ellipsoid
	Minimizing Condition Number
	Preserving the Shape
	All in One
	Comparison and Combination

	Finding a Stable Ratio
	Initial Ratio 0
	One Iteration
	Iterating to Fixpoint and Widening
	An alternative to Classical Widening
	Refining a Postfixpoint by Dichotomy

	Back to Intervals
	Floating Point Issues
	Taking Rounding Errors Into Account
	Checking Soundness of the Result

	Experimental Results
	Related Work
	Conclusion and Perspectives
	References

