
A Lemma Generator Powered by Quanti�er

Elimination and Hull Computation.

Adrien Champion†‡, Rémi Delmas†, Michael Dierkes‡

† ONERA - The French Aerospace Lab - Toulouse - France
{adrien.champion,remi.delmas}@onera.fr
‡ Rockwell Collins France
mdierkes@rockwellcollins.com

Abstract. This paper presents hullQe, a backward, property directed
lemma generation algorithm for safety proof objectives on transition sys-
tems. It uses an SMT-based quanti�er elimination algorithm to repeat-
edly compute the pre-image of a set of states violating a given proof
objective through the transition relation. The algorithm can terminate
if the pre-image intersects the initial states or if a �xed point is reached.
Termination however is not our main concern. Rather, hullQe is designed
as an invariant strengthening method to help other formal methods an-
alyze problematic systems and proof objectives. Indeed, a key feature
of the proposed approach is the simpli�cation of the intermediate pre-
image expressions through exact and inexact convex hull computation.
This simpli�cation allows to discover relational invariants over state vari-
ables of the system automatically, when other lemmata discovery meth-
ods such as abstract interpretation or template based methods require
manual intervention. These lemmata can be communicated to other, co-
operating formal methods in order to help them reach a conclusion faster,
or at all; for instance by �nding lemmata making the proof objectives
1-inductive instead of non-inductive or k-inductive, thus making the ver-
i�cation more scalable. The approach is illustrated through a simple
example and through a piece of industrial code by Rockwell Collins. An
implementation of the algorithm in a collaborative veri�cation frame-
work including k-induction and abstract interpretation is discussed.

1 Introduction

Quanti�er Elimination (QE) procedures are very attractive for veri�cation
applications [8,21,19], but are also known for being very costly (double expo-
nential in the number of variables in the worst case for linear real arithmetic
for instance). However, in [16], Monniaux introduces a QE procedure based on
lazy model enumeration using SMT-solvers [2] and polyhedral projection [15].
The practical e�ciency of this QE technique makes it, in our experience, usable
as a building block for symbolic reachability and lemma generation algorithms.
In this paper, we propose one such algorithm, in which QE and additional pro-
cessing are used to compute, given a transition system and a safety property
to analyze, potential lemmata about the sate space of a transition system in a
property directed way. As the algorithm progresses, it produces richer and richer

formulations of the original proof objective. The strength of the proposed algo-
rithm is that it is able to infer relational invariants over the state variables of
the system which have proved very valuable when used in cooperation with a
k-induction engine [20] and an abstract interpretation engine [7], making some
properties become 1-inductive instead of k-inductive originally � where k depends
on the system's parameters � or even not k-inductive at all for any k.

The proposed approach is particularly relevant in our context, critical em-
bedded software veri�cation for aerospace systems. Before being embedded, such
pieces of code have to be speci�ed, implemented and veri�ed in accordance with
relevant standards (e.g. the DO-178C1). Certi�cation being a very expensive
process, in order to set up a proof based approach to software certi�cation (as
opposed to a test based approach) one could imagine using a mature and trust-
worthy technique as central and quali�ed proof framework, such as k-induction2,
and using lemma generation techniques which are not certi�ed, but whose results
can be easily proved together with the original proof objective using the simpler
and certi�ed framework.

The paper is structured as follows: Section 2 presents the transition system
formalism accepted by the algorithm, Monniaux's original QE algorithm, along
with adaptations to linear integer logic and booleans. Section 3 introduces the
core of the lemma generation algorithm, an iterated property directed pre-image
computation using quanti�er elimination. Sections 4 and 5 introduce the novelty
of the proposed algorithm, exact and inexact hulli�cation. Combining pre-image
computation and hulli�cation, we obtain the lemma generation algorithm hul-
lQe (for hulli�cation andQE). hullQe's implementation is discussed in Section 7
along with its integration in our collaborative formal framework [6], while Sec-
tion 6 discusses related work. Last, Section 8 concludes the paper and presents
perspectives to our work.

2 Preliminaries

2.1 Transition Systems

Our work targets the formal veri�cation of safety critical embedded software
in the aerospace domain. These systems are usually speci�ed using data-�ow lan-
guages such as Lustre [12], SCADE3 or Matlab Simulink4. We hence adopt
a notion of transition system suitable to capture the semantics of these spec-
i�cation languages, and simple enough to ease the design and implementation
of veri�cation algorithms. So, we consider transition systems Σ = {v,D, I, T}
where5:

1 http://www.rtca.org/onlinecart/product.cfm?id=501
2 c.f. Prover Certi�er in railway applications:
http://www.prover.com/products/prover_certi�er/

3 http://www.esterel-technologies.com/products/scade-suite/
4 http://www.mathworks.com/products/simulink/
5 Please note that we will distinguish between = and ≡; = will be used for de�nitions
(see Equation 2 for instance), and ≡ for logical equivalence (e.g. p ∧ ¬p ≡ false).

http://www.rtca.org/onlinecart/product.cfm?id=501
http://www.prover.com/products/prover_certifier/
http://www.esterel-technologies.com/products/scade-suite/
http://www.mathworks.com/products/simulink/

� v = (v1, . . . , vn) is a vector of state variables ranging over the domain D =
Bi×Zj×Qk. A valuation s of the state vector is called a state of the system;

� I(v) : D → B is the initial state predicate, such that ∀s ∈ D, I(s) ≡ true if
and only if s is an initial state, I(s) ≡ false otherwise;

� T (v, v′) : D2 → B is the transition relation of the system, in which v rep-
resents the current state, and v′ represents the next state, and such that
∀(s, s′) ∈ D2, T (s, s′) ≡ true if and only if s′ is a successor of s.

I and T are expressed in a quanti�er-free logic combining propositional logic
(Prop), linear real arithmetic (LRA) and linear integer arithmetic (LIA) (without
coercions from integer to real or conversely).

A sequence of states (s0, . . . , sn) is called a trace of the system if T (si, si+1)
evaluates to true for each i ∈ [0, n − 1]. It is called an initialized trace if I(s0)
evaluates to true. A state is called reachable if there exists an initialized trace
containing the state. We call R ⊆ D the set of reachable states of the system.

A proof objective over Σ is speci�ed by a predicate P expressed over v. The
veri�cation problem consists in determining whether or not there exist reachable
states of Σ such that P evaluates to false.

In the rest of the paper we will consider states which do not violate P , but
from which a state violating P can be reached in a �nite number of transitions.
We will refer to these states as gray states, and to their set as the gray state
space G, which is of course a subset of the state space D. If the proof objective
P holds, then obviously the gray state space is not reachable from I.

2.2 Quanti�er Elimination

The algorithm proposed in this paper relies heavily on Quanti�er Elimination
(QE). QE yields, for a quanti�er-free formula F and some vector of variables
v ⊆ FV (F) (where FV (F) is the set of variables appearing in F), a formula G
such that G is quanti�er-free and logically equivalent to the original quanti�ed
formula, (∃v, F) ≡ G, and v ∩ FV (G) = ∅. We will write QE(v)(F) = G.

Even if various approaches to QE exist, such as LDD:s [5] or LinAIG:s [19],
we chose to use Monniaux's algorithm [16], based on SMT and polyhedral pro-
jection. This choice was motivated by our familiarity with SMT solvers and the
simplicity of the algorithm. It can be adapted to handle not only reals but also
integers and booleans as described in Section 7.1, and is easy to tailor to �t our
needs. Another convenient aspect is that its results are produced as formulae
in DNF, easing the hulli�cation process (see 4). Yet, the hullQe technique itself
does not depend on any quanti�er elimination method in particular.

3 Extracting Property Directed Information From A
Transition System

3.1 Backward Reachability by Quanti�er Elimination

In this section we describe the core of the hullQe algorithm, i.e. an iterated
property-directed pre-image computation on transition systems, and illustrate
it on a small example.

Algorithm 1 Core pre-image computation of the hullQe algorithm.

G ← QE(e)(P (v) ∧ T (v, v′) ∧ ¬P (v′))
H ← G
over ← false
while (¬over) do
G ← QE(e)(P (v) ∧ T (v, v′) ∧ makeNext(G))
if (G ≡ false) then

over ← true
else

if (SMTsolver.checkSat(H∧ ¬G) == UnSat) then
over ← true

else

H ← H∨ G
end if

end if

end while

return H

Given a transition system Σ = {v,D, I, T} and a proof objective P , let us
note vP the subset of v actually appearing in the cone of in�uence of P (v). The
set of variables we want to eliminate is e = (v \ vP)∪ v′. It contains the current-
state variables not appearing in P (v), and all the next-state variables. Let us
consider the following formula:

∃e, P (v) ∧ T (v, v′) ∧ ¬P (v′). (1)

which characterizes, in intention, the set of states satisfying P from which a state
violating P can be reached in a single transition. By using QE, to eliminate e:

G1(v) = QE(e)(P (v) ∧ T (v, v′) ∧ ¬P (v′)) (2)

we obtain a formula G1(v) characterizing exactly the same states as (1), but
in extensional form, and only in terms of vP variables. We can then proceed
by using QE on the following formula (where Gi(v′) is obtained by substituting
occurrences of v variables by their v′ counterparts):

G2(v) = QE(e)(P (v) ∧ T (v, v′) ∧ G1(v′)) (3)

which yields G2(v), a formula characterizing states for which P holds but from
which a state violating it can be reached in two transitions. Obviously, the idea
is to iterate to make our under-approximation of the gray state space more and
more precise:

Gk+1(v) = QE(e)(P (v) ∧ T (v, v′) ∧ Gk(v′)). (4)

The exact characterization of the gray states leading to a violation of P in
k transitions or less is then Hk(v) =

∨
1≤i≤k Gi(v) (due to the particular QE

method used, it is a formula in DNF).

3.2 A First, Simple Algorithm

A pseudo-code description of the pre-image computation algorithm is given in
Algorithm 1. The makeNext function syntactically substitutes the current state
variables with primed variables representing the next state, and allows to iterate
the pre-image computation, until no new states are discovered.

1: node top(a,b,c: bool) returns (o1, o2, ok: bool);
2: var
3: x, y, pre_x, pre_y: int;
4: n1, n2: int;
5: let
6: n1 = 10;
7: n2 = 6;
8: x = if (b or c) then 0 else (if (a and pre_x < n1) then pre_x + 1 else pre_x);
9: y = if (c) then 0 else (if (a and pre_y < n2) then pre_y + 1 else pre_y);

10: o1 = x = n1;
11: o2 = y = n2;
12: ok = o1 => o2;
13: pre_x = 0 -> pre(x);
14: pre_y = 0 -> pre(y);
15: prove(ok); (* main proof objective *)
16: prove(0 <= x and x <= 10); (* range lemma *)
17: prove(0 <= y and y <= 6); (* range lemma *)
18: tel

Fig. 1: A Lustre program using two counters.

A slight performance improvement is obtained by adding the constraint v 6=
v′ to the transition formula. It avoids the re-discovery of states s such that
T (s, s) and limits the size of the pre-image (it is not the only bene�t of this extra
constraint, as will be discussed in Section 4.2). From now on we will consider
that the constraint v 6= v′ is automatically added to the transition relation.

3.3 A Simple Example

As an example, let us consider the Lustre program shown in Figure 1. This
example is rather representative of functions mixing discrete and numeric logic
used for discrete input �ltering in embedded systems. The program uses integers
and booleans, which are not handled by Monniaux's original QE algorithm. See
Section 7.1 for adaptations of the QE algorithm allowing to handle these systems.
Its transition relation can be modeled as follows:

T (x, y, x′, y′, a, b, c) =

((
(b ∨ c) ∧ (x = 0)

)
∨
(
a ∧ ¬b ∧ ¬c ∧ (x < 10) ∧ (x′ = x+ 1)

)
∨
(
¬b ∧ ¬c ∧ (¬a ∨ ¬(x < 10)) ∧ (x′ = x)

))
∧
((

c ∧ (y = 0)
)

∨
(
a ∧ ¬c ∧ (y < 6) ∧ (y′ = y + 1)

)
∨
(
¬c ∧ (¬a ∨ ¬(y < 6)) ∧ (y′ = y)

))
.

∧ (x 6= x′ ∨ y 6= y′) (re�exivity breaker)

The proof objectives (lines 15-17) are formalized as follows:

P (x, y) = (0 ≤ x ≤ 10) ∧ (0 ≤ y ≤ 6) ∧ (x = 10→ y = 6) (5)

The intermediate pre-image results (Gi-s in the algorithm) are �rst x = 9∧0 ≤
y < 5, then (x = 8∧ 0 ≤ y < 4), (x = 7∧ 0 ≤ y < 3) . . . A �xed point is quickly
reached:

H5 ≡ (x = 9 ∧ 0 ≤ y < 5) ∨ (x = 8 ∧ 0 ≤ y < 4) ∨ (x = 7 ∧ 0 ≤ y < 3)

∨(x = 6 ∧ 0 ≤ y < 2) ∨ (x = 5 ∧ 0 ≤ y < 1)
(6)

This result, however interesting (the initial states do not intersect the gray
states, which entails that P holds), still leaves something to be desired. It just
consists in an enumeration of the gray states without any relational generaliza-
tion whatsoever, which would not be feasible for large systems. A more interest-
ing information about the system would be 8 ≤ x ≤ 9 ∧ 0 ≤ y < x − 4 for G2
for instance. Also, and more importantly, we do not really want hullQe to prove
anything by itself because of our context (cf. Section 1): we would rather �nd
strengthening lemmata allowing the k-induction engine to conclude easily. This
relational generalization will be obtained thanks to exact hulli�cation, described
in Section 4, and thanks to inexact hulli�cation, described in Section 5.

4 Convex Hulls

In this section, we describe how H, the intermediate disjunction of polyhedra
produced by the pre-image algorithm on line 13 of Algorithm 1, is simpli�ed by
searching for an equivalent but smaller formula through exact convex hulls com-
putation. First of all, let us assume two functions: convexHull which computes
a convex hull of two polyhedra given as parameters, and convexHullExact per-
forming the same computation as convexHull but failing if the resulting convex
hull is not exact (i.e. contains strictly more points than the union of its two
arguments).

4.1 Exact Convex Hull Computation

Given a list of polyhedra, the algorithm starts from a polyhedron p0 and
tries to compute the exact convex hull with every other polyhedron separately.
When an exact convex hull is found with polyhedron pi, the algorithm continues
after replacing p0 by the hull and discarding pi. If the hull with polyhedron pi
is not exact, pi is put aside to be examined again later. If at least one exact
convex hull was found once there are no more polyhedra to check, the algorithm
starts over with the previously computed hull as p0 and the polyhedra previously
put aside until a �xed point is reached. The algorithm then carries on with the
remaining polyhedra, and in the end returns the list of exact convex hulls it
found and polyhedra for which there was none. The process is iterated again
on the new list of polyhedra (because some separately computed hulls could
have become mergeable) until a �xed point is reached. Upon termination, the
polyhedra returned are such that (i) their union is equisatis�able to the union of
the input polyhedra and (ii) none of them can be merged exactly with another
one.

However, it can be the case that the only way to �nd an exact convex hull
between three or more polyhedra is to merge them at the same time; in this
case, the algorithm described above would not �nd it. It is worth noting that
the returned list of convex hulls is still an exact characterization of the gray
states encountered so far, as all inexact merges are rejected. In the rest of this
paper, we will call exact hulli�cation this convex hull computation, as opposed
to the inexact hulli�cation introduced later in Section 5.

Algorithm 2 Core hullQe algorithm, with convex hull computation.
(Here we assume an implicit conversion of polyhedra disjunctions from their formula representation
to a list representation suitable for the hullify function and back.)

1: T ← T ∧ v 6= v′

2: G ← hullify(QE(e)(P (v) ∧ T (v, v′) ∧ ¬P (v′)))
3: H ← G
4: over ← false
5: while (¬over) do
6: G ← hullify(QE(e)(P (v) ∧ T (v, v′) ∧ makeNext(G)))
7: if (G ≡ false) then
8: over ← true
9: else

10: if (SMTsolver.checkSat(H∧ ¬G) == UnSat) then
11: over ← true
12: else

13: H ← hullify(H∨ G)
14: end if

15: end if

16: end while

17: return H

4.2 Using Convex Hull Computation and Re�exivity Breaking

Convex hull computation is introduced in the core hullQe algorithm both at
the QE and at the hullQe level, as described in Algorithm 2.

One might be surprised to �nd two convex hull computations, one on line 6
(called GE,i) and another on line 13 (called HE,i). They are computed separately
because each of them serves a di�erent purpose. On the one hand, GE,i is used to
compute the next fringe Gi+1. We do not want to iterate the pre-image compu-
tation on Gi, since the cost of QE algorithm greatly increases with the number
of boolean atoms of the input formula, and GE,i has less atoms than HE,i. We
could use HE,i for pre-image computation, but this formula is in general (a lot)
larger, and would produce a result re-characterizing all the states found so far
(as HE,i characterizes the gray states leading to ¬P in i transitions or less).
Also, calling hulli�cation on such a result would recompute all the convex hulls
found up to this point plus those for the new polyhedra if any.
On the other hand, HE,i is the formula containing the most information. It char-
acterizes all the gray states found so far wrapped in convex hulls when possible.
It is also used for the �xed point check (line 10), and optionally to check whether
the original proof objective holds by verifying if some of the initial states are
gray.

The re�exivity breaking constraint, introduced in Section 3.2, has a positive
e�ect on the convex hull computation. We observed that:
� it reduces the time spent at every QE iteration by reducing the size of the
input formula;

� it saves a great deal of convex hull (re)computation, by making the convex
hulls calculus incremental (without it, every hull computation performed
would be re-done at every following step since the QE call would output all
the gray states found so far again with several new ones);

4.3 Simple Example (continued)

Going back to the example of Figure 1, the formula characterizing the �xed
point obtained using the exact hulli�cation is 5 ≤ x ≤ 9 ∧ 0 ≤ y < x− 4. Also,

¬P

hullI

hullE hullE

GE,1

HE,1

HI,1

hullE

hullI hullIhullI

GE,2

HE,2

HI,2

GE,i−1

HE,i−1

GE,i

HE,i

HI,i

GE,i+1

HE,i+1

HI,i+1

Fig. 2: Flow chart of pre-image, exact and inexact hulls computations.

as expected, the intermediary results (the Hi-s) become x = 9 ∧ 0 ≤ y < 5
for i = 1, 8 ≤ x ≤ 9 ∧ 0 ≤ y < x − 4 for i = 2, etc. Since these equations
characterize the gray state space, their negation must be used as when trying
to strengthen the proof objective under investigation using a forward method.
Let us consider in particular y < x− 4, appearing on hullQe's second iteration.
Its negation, y ≥ x− 4 is a strengthening lemma which makes the original proof
objective 1-inductive. In its original form, the proof objective is k-inductive for k
proportional to the di�erence of x and y's upper bounds, under the loop free path
assumption. In practice, k-induction alone will not be able to prove the property
if that k is too large (timers of a few hundred steps are not uncommon in reactive
systems). The range lemmas on x and y can be found easily using abstract
interpretation for any values of the upper bounds. Yet, proving the original
proof objective using AI alone requires non trivial domain partitioning directives.
Using the AI's range lemmata, hullQe discovers a strengthening lemma in two
iterations regardless of the model parameters. High level cooperation strategies
between these three techniques will be discussed in Section 7.

5 Inexact Convex Hulls

Even though hullQe with exact hulli�cation can already provide valuable in-
formation about a system, we would like to have an abstraction mechanism for
two di�erent, yet not unrelated, purposes. First, to perform abstraction on the
disjuncts of a pre-image in order to over-approximate the gray state space: the
goal is to o�er an alternative, inexact pre-image using heuristics to try to reach
useful information � such as a lemma making the proof objective 1-inductive, or
to o�er e�cient partitioning directives for Abstract Interpretation. In this case,
abstraction is not performed inside the hullQe engine, but on the information
communicated outside hullQe. The second approach is to perform abstraction
while iterating the pre-image computation in order to achieve better scalability.
This section only deals with the former approach, while the latter is currently un-
der investigation. The abstraction mechanism we set up is called inexact hulli�ca-
tion, as opposed to the exact hulli�cation developed in Section 4. This technique
is a heuristic; the algorithm is the same as exact hulli�cation but polyhedra are
merged (inexactly) provided they satisfy a given criterion (as opposed to being
merged only if the result is exact in exact hulli�cation).

5.1 Inexact Hulli�cation

The criterion retained to inexactly merge two hulls is that they must have
at least one point in common. The test itself consists in a simple satis�ability

node top(input1, input2, input3: real) returns (output: real);
var

equalized1, equalized2, equalized3: real;
equalization1, equalization2, equalization3 : real;
satCentering, centering : real;
df1, df2, df3, st1, st2, st3, c1, c2, c3, d1, d2, d3 : bool;
check: bool;

let
assert (input1 < 0.2); assert (input1 > -0.2);
assert (input2 < 0.2); assert (input2 > -0.2);
assert (input3 < 0.2); assert (input3 > -0.2);

equalized1 = input1 - equalization1;
df1 = equalized1 - output;
st1 = if (df1 > 0.5) then 0.5 else (if (df1 < -0.5) then -0.5 else df1);
equalization1 = 0.0 -> pre (equalization1) + (pre (st1) - pre (satCentering)) * 0.05;

equalized2 = input2 - equalization2;
df2 = equalized2 - output;
st2 = if (df2 > 0.5) then 0.5 else (if (df2 < -0.5) then -0.5 else df2);
equalization2 = 0.0 -> pre (equalization2) + (pre (st2) - pre (satCentering)) * 0.05;

equalized3 = input3 - equalization3;
df3 = equalized3 - output;
st3 = if (df3 > 0.5) then 0.5 else (if (df3 < -0.5) then -0.5 else df3);
equalization3 = 0.0 -> pre (equalization3) + (pre (st3) - pre (satCentering)) * 0.05;

c1 = equalized1 > equalized2; c2 = equalized2 > equalized3; c3 = equalized3 > equalized1;
output = if (c1 = c2) then equalized2 else (if (c2 = c3) then equalized3 else equalized1);
d1 = equalization1 > equalization2;
d2 = equalization2 > equalization3;
d3 = equalization3 > equalization1;

centering = if (d1 = d2) then equalization2
else (if (d2 = d3) then equalization3
else equalization1);

satCentering = if (centering > 0.25) then 0.25
else (if (centering < -0.25) then -0.25
else centering);

check = (equalization1 <= 2.0 * 0.2) and (equalization1 >= -2.0 * 0.2) and
(equalization2 <= 2.0 * 0.2) and (equalization2 >= -2.0 * 0.2) and
(equalization3 <= 2.0 * 0.2) and (equalization3 >= -2.0 * 0.2);

prove(check);
tel

Fig. 3: Rockwell Collins' Triplex Voter.

check using an SMT solver after asserting both polyhedra. Our polyhedra are
not necessarily closed, so checking them for intersection as they are entails that
some polyhedra would not be merged together despite having an adjacent edge,
such as x >= 0 ∧ y >= 0 ∧ x + y < 1 and x <= 1 ∧ y <= x ∧ x + y >= 1.
In our experience it is better to check for intersection on closed version of the
polyhedra, and then merge the originals together if the test succeeds. At each
step, we perform inexact hulli�cation on Hi+1 and then send both the exact
and the inexact version to the rest of the framework. Figure 2 describes the
hulli�cation process in a hullQe run: Subscripts E and I are used to distinguish
between exact and inexact hulli�cation operations and results. For example,
HE,2 is the result of the exact hulli�cation hullE between HE,1 and GE,2.

(a) First pre-image and strengthening
lemma found by hand

(b) Inexact hulli�cation

Fig. 4: hullQe on the duplex voter

5.2 Application to Rockwell Collins' Triplex Voter

Using inexact hulli�cation, we managed to prove the numerical stability of
Rockwell Collins' triplex voter [10] (without fault detection, code in Figure 3).
In [10], the strengthening lemma was found using a template based approach,
which requires an appropriate choice of the templates, whereas hullQe does not
need any user interaction. The following strengthening lemma was extracted
from hullQe's �rst pre-image and makes the original proof objective 1-inductive:

− 0.9 ≤ equalization1 + equalization2 + equalization3 ≤ 0.9 (7)

It is weaker than the lemma found in [10]:

− 2/3 ≤ equalization1 + equalization2 + equalization3 ≤ 2/3 (8)

because it is built by pre-image computation starting from the negation of the
proof objective, i.e. outside of the reachable state space provided the property
holds and gradually getting closer to it, while lemma (8) is built from the initial
states using k-induction's counterexamples to widen an under approximation
of the reachable state space. Also, it is worth noting the quantitative di�erence
between the exact H and the inexact one. On the triplex voter, the exact version
contains about thirty disjuncts (i.e.distinct ways of violating the property in one
transition), whereas the inexact H has four disjuncts.

A geometric illustration of the inexact hulli�cation process is given for a sim-
pli�cation of Rockwell Collins' triplex voter on Figure 4 to a two inputs system
instead of three, dubbed the duplex voter � created for experimental purposes.
The central octagon corresponds to the strengthening lemmata from [10]. The
gray triangles represent hullQe's H on the �rst iteration before (Figure 4a) and
after (Figure 4b) inexact hulli�cation. Additional processing, developed in the
next section, is needed to extract strengthening lemmata from the gray state
space characterization.

init = (x = 0 ∧ y = 0)
c1 = (x = 10 ∧ 0 ≤ y < 6)
c2 = (x = 10 ∧ 0 ≤ y < 5)

...
c6 = (x = 10 ∧ 0 ≤ y < 1)

R0 R1 R2 . . . R7 R8

init ¬c1 − . . . − −
init ¬c1 ∧ ¬c2 ¬c1 . . . − −
...

...
...

...
...

...
init ¬c1 ∧ · · · ∧ ¬c6 ¬c1 ∧ · · · ∧ ¬c5 . . . ¬c1 −
init ¬c1 ∧ · · · ∧ ¬c6 ¬c1 ∧ · · · ∧ ¬c6 . . . ¬c1 ∧ ¬c2 ¬c2

Fig. 5: Application of PDR on the double counter

6 Related Work

A very similar approach to hullQe was developed in [8] by de Moura et al.
for counterexample refutation, but it di�ers in the sense that its purpose is to
generalize step counter-examples in a k-induction engine to the states leading to
them in k transition(s), and not potential invariant generation in a collaborative
framework (not to mention exact and inexact hulli�cation). Nevertheless, com-
bining hullQe with k-induction (and abstract interpretation) yields interesting
results as we saw, and as will be discussed in 7. Also worth mentioning is the
work of Jeannet [13] who investigated dynamic partitioning in a backward ab-
stract interpretation approach. While Jeannet's main concern was to �nd a way
to automatically partition the abstract domains, ours is to some extent a dual
problem, as pre-image computation using QE yields a completely partitioned
expression of the state space, and raises the need for automatic simpli�cation a
posteriori, as discussed in Section 4.

Since both of them are property directed reachability methods, an attempt
to relate Bradley's algorithm PDR [3,11] to hullQe appears legitimate. hullQe
being designed for numerical system processing, and PDR being � in its current
form � purely propositional, a direct comparison is not possible. Nevertheless,
the run of a naïve adaptation of PDR on the double counter shown in Figure 5
allows us to highlight a few connections between the two. The run generates the
set of gray states computed in Section 3.3 by hullQe without hulli�cation: PDR
lazily enumerates gray states and blocks their generalizations one by one until
termination to either obtain a strengthening lemma or a counterexample; on
the other hand, hullQe takes a more greedy approach and computes the whole
pre-image using QE before broadcasting potential invariants found by hulli�ca-
tion at each step. Intuitively, hullQe's iterations are more expensive, but unlike
PDR, strengthening lemmata can be found at any time without exhaustively
enumerating the gray states � e.g. on the second iteration for the double counter
and on the �rst iteration for the triplex voter. Last, we believe that despite their

di�erences, some of PDR's ideas can be transposed to hullQe, such as the frame
structure. More perspectives are discussed in Section 8.

7 QE Adaptation, Implementation and Communication

7.1 Adaptation of QE and Hulli�cation to Discrete Systems

In its original version, Monniaux's QE algorithm only handles linear real
arithmetic. In order to perform quanti�er elimination on formulae of the logic
used to specify transition systems introduced in the previous section, we adopt
the following encoding: boolean variables are modeled by introducing real vari-
ables and real inequalities (i.e. a boolean variable v becomes 0.0 ≤ valt, and ¬v
becomes 0.0 > valt, where valt is a fresh variable introduced specially for v), and
integers are handled by relaxation to reals. However, polyhedra libraries, such
as the Parma Polyhedra Library which is used in our implementation, model
polyhedra using real (rational) values. Therefore, PPL can output non-empty
polyhedra when considering all the variables as reals, but empty when some of
them are actually integers. To cope with this problem, a satis�ability check is
performed a posteriori on each polyhedron to make sure it contains at least one
solution consistent with the e�ective sorts of the variables.

For the same reasons, the convexHullExact primitive o�ered by PPL can fail
on the real relaxation, even if the hull is exact when interpreted over the actual
sorts of the variables. In this case, instead of computing the exact hulls of the
polyhedra using convexHullExact, we use convexHull and check afterwards
for equisatis�ability between the inexact hull and the disjunction of the two
original polyhedra, using the e�ective sorts of the variables. This solution is not
satisfactory, and better ways to handle discrete variables will be studied.

7.2 Implementation, Communication

The authors implemented the algorithm presented on Figure 2 using Scala [17],
Microsoft Research's Z3 SMT solver [9] and the Parma Polyhedra Library [1] for
projections. Our collaborative framework [6] provides three analysis methods:
abstract interpretation [18], k-induction and hullQe. Analyzes are conducted as
follows. First, abstract interpretation with intervals as abstract domains is used
in an attempt to infer bounds on the state variables. hullQe and k-induction are
then run in parallel (using whatever information the AI discovered): hullQe sends
potential lemmata to the k-induction engine which tries to prove the main proof
objective in conjunction with the lemmata in an incremental fashion � i.e. any
lemma the k-induction falsi�es is removed and the proof attempt carries on with
whatever information has not been invalidated yet. Once a su�cient lemmata
set has been found (i.e. the k-induction proves the main proof objectives), it is
minimized and the proof is con�rmed using Tinelli's KIND k-induction tool [14].
The minimization consists in removing elements of the lemmata set one by one,
checking if the proof still holds, and putting them back if it does not. This min-
imization is being changed in favor of a more e�cient method based on unsat
cores. The whole strategy detailed above is performed automatically without

external intervention.
The actor oriented nature of our framework allows to easily run the di�erent
techniques in parallel. Additionally, it is possible to instantiate several di�erent
k-induction actors to make them run on di�erent sets of lemmata. In our case,
one for the negation of the inexact Hi, and one for the negated atoms of both
the exact and inexact Hi. Hence, we take advantage of the incremental nature
of our k-induction engine: since Hi is in DNF, negating it and propagating the
negations results in a CNF formula, whose conjuncts can be streamed to the
k-induction as soon as they are discovered by hullQe. The same goes for the
negated atoms which are sent as di�erent proof objectives.
This entails that we do not have to fear to fail the proof for sending falsi�able
potential lemmata, since they will be discarded and the analysis will continue.
The only problem would be choking the k-induction with too many of them, but
in our experience the number of lemmata the hullQe communicates stays rea-
sonable. For instance, hullQe only communicates about 20 lemmata on the �rst
iteration of the duplex's analysis (8 of which are actually needed by k-induction
to conclude). For the triplex voter, this number does not exceed 150. Regarding
performance, the double counter example is solved in less than three seconds, the
duplex in about one minute, and the triplex in a little more than two minutes.

8 Conclusion And Future Work

In this paper, we have presented a new property directed lemmata generator
for transition systems, which is based on a generic quanti�er elimination algo-
rithm. The most notable feature of the proposed analysis is the simpli�cation of
intermediate pre-image results using convex hulls computations, which can allow
to discover relational invariants of the transition systems in a property directed
way. This feature becomes valuable in a cooperation framework, where di�erent
techniques such as k-induction and abstract interpretation can be used to ana-
lyze a common proof objective and mutually enhance their results to conclude a
proof that no technique alone can conclude easily or at all. The work presented
here is still in an early state and perspectives are many.

First, at the QE level, we think performance gains can be obtained by pro-
cessing boolean variables using a dedicated boolean QE algorithm instead of
encoding them using real/integer variables. Also, it seems natural to try to per-
form abstraction on the pre-images hullQe iterates on, for example using the
mechanism mentioned at the beginning of Section 5, to accelerate hullQe's pro-
gression. Even if we did not witness any blowup on our examples in the amount
of potential lemmata sent to the k-induction, more e�cient ways to identify
relevant information still need to be found and enforced. Regarding abstract
interpretation, we believe information from hullQe could be used to infer parti-
tioning, variable packing and/or domain selection automatically. Such tuning is
usually performed by an expert user, to improve the precision of the analysis.
Last, even if hullQe can fail to discover a strengthening lemma, the shape of
relational potential lemmata can be transmitted to a template-based approach
for parameter tuning. Consider that for some system hullQe produces a formula
a.x + b.y + c.z < d where x, y, z are state variables, but too weak to be a

strengthening lemma. A template based approach could try to �nd a value d′

such that a.x+ b.y+ c.z < d′ is a strengthening lemma, in the spirit of Bradley's
early work [4].

A detailed re�exion on all of these matters will be carried out to make the
most out of hullQe features in a cooperative setting.

References

1. R. Bagnara, P. M. Hill, and E. Za�anella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and veri�cation of hardware
and software systems. Science of Computer Programming, 72(1�2), 2008.

2. C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satis�ability modulo
theories. In Handbook of Satis�ability. 2009.

3. A. R. Bradley. Sat-based model checking without unrolling. In VMCAI, 2011.
4. A. R. Bradley and Z. Manna. Veri�cation constraint problems with strengthening.

In ICTAC, 2006.
5. S. Chaki, A. Gur�nkel, and O. Strichman. Decision diagrams for linear arithmetic.

In FMCAD, 2009.
6. A. Champion, R. Delmas, P.L. Garoche, and P. Roux. Towards cooperation of

formal methods for the analysis of critical control systems. In SAE Aerotech, to be
published, 2011.

7. P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model for static
analysis of programs by construction or approximation of �xpoints. In POPL, 1977.

8. L. M. de Moura, H. Rueÿ, and M. Sorea. Bounded model checking and induction:
From refutation to veri�cation (extended abstract, category a). In CAV, 2003.

9. L. M.ça de Moura and N. Bjørner. Z3: An e�cient SMT solver. In TACAS, 2008.
10. M. Dierkes. Formal analysis of a triplex sensor voter in an industrial context. In

G. Salaün and B. Schätz, editors, Proceedings of the 16th edition of FMICS, volume
6959 of LNCS. Springer, 2011.

11. N. Een, A. Mishchenko, and R. Brayton. E�cient implementation of property
directed reachability. In Proceedings of IWLS. IEEE/ACM, 2011.

12. N. Halbwachs. A synchronous language at work: the story of Lustre. In Third
ACM/IEEE International Conference on Formal Methods and Models for Code-
sign, MEMOCODE'2005, Verona, Italy, jul 2005.

13. B. Jeannet. Dynamic partitioning in linear relation analysis: Application to the
veri�cation of reactive systems. Formal Methods in System Design, 23(1), 2003.

14. T. Kahsai and C. Tinelli. PKind: A parallel k-induction based model checker. In
PDMC, 2011.

15. B. L. Kaluzny. Polyhedral computation: A survey of projection methods, 2002.
16. D. Monniaux. A quanti�er elimination algorithm for linear real arithmetic. In

LPAR, 2008.
17. M. Odersky and al. An Overview of the Scala Programming Language. Technical

Report IC/2004/64, EPFL, Lausanne, Switzerland, 2004.
18. P. Roux, R. Delmas, and P.L. Garoche. Smt-ai: an abstract interpreter as oracle

for k-induction. Electr. Notes Theor. Comput. Sci., 267(2), 2010.
19. C. Scholl, S. Disch, F. Pigorsch, and S. Kupferschmid. Computing optimized repre-

sentations for non-convex polyhedra by detection and removal of redundant linear
constraints. In TACAS, 2009.

20. M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties using induction
and a SAT-solver. In FMCAD, 2000.

21. T. Sturm and A. Tiwari. Veri�cation and synthesis using real quanti�er elimina-
tion. In ISSAC, 2011.

	 A Lemma Generator Powered by Quantifier Elimination and Hull Computation.

