
Non preemptive static priority in network calculus: accuracy and integration
with P-GPS

William Mangoua Sofack, Marc Boyer
ONERA – The French Aerospace Lab

F31055 Toulouse, France
{William.Mangoua Sofack,Marc.Boyer}@onera.fr

Abstract

The real-time behaviour of critical real-time systems
relies on the real-time behaviour of the network and some
method to compute bounds on the traversal time (worst
case traversal time – WCTT). Network calculus (NC) is a
method designed to compute such bounds, and one chal-
lenge is to have tight bounds, i.e. reaching the exact
worst case, to avoid over-provisioning. In this paper, we
present a new way to handle non-preemptive static prior-
ity (NP-SP) with NC, very accurate (it reaches the real
worst cases in all thousands tested configurations), and to
combine it with packet-based generalised processor shar-
ing (P-GPS), providing bounds on NP-SP/P-GPS in net-
work calculus1.

1. Introduction

Static priorities (SP) and Generalised Processor Shar-
ing (GPS) are two common scheduling policy used to
share the bandwidth of a network element, responding to
two different needs: SP ensure that some critical flow will
not be disrupted by some less critical one, and GSP en-
sure a fair sharing between different flows. Moreover, be-
cause of non-preemption in networks, non-preemptive SP
(NP-SP) and packet-based GPS (P-GPS, aka WFQ [9])
are used in place of SP and GPS. One may like, in real-
time systems, to combine these two policies, having at first
level a strict static priority scheduling, ensuring the full
server speed to some flows with low latency, and some
fair sharing between flows sharing a same priority level,
giving a global NP-SP/P-GPS scheduling.

Nevertheless, whatever the policy is, in critical sys-
tems, some method bounding the network traversal time is
needed. And the bound has to be as close as possible to the
real worst case to avoid over-provisioning. Network cal-
culus [1, 2] is a method designed to compute such bounds,
that have been used to certify the A380 backbone [3].

This paper presents addresses the combination NP-
SP/P-GPS in network calculus.

1This works has been partialy funded by French ANR agency under
project id ANR-09-SEGI-009.

NP-SP have already been studied [1, 4, 5] but these
results appear not to carefully consider the hypothesis of
non-preemption. In particular, when a non-preemptive
flow is served, it benefits from the full speed of the server,
even if, from long term point of view, it gets only a frac-
tional part. This assessment was the starting point of [6]
and [7]. The more accurate results are in [6], and the more
general in [7]. [8] improves [7], and this paper shows that
the new results on NP-SP are very accurate, since the real
worst case is reached in all 2000 tested configurations.
Moreover, some technical point of the contribution of [8]
(the residual service is strict, not simple as in [6]) allows
to consider the low priority flow itself as the aggregation
of some sub-flows, and to apply another policy between
these flows.

GPS, and P-GPS (also known as WFQ) is a common
scheduling policy [9], designed to share a system in a
“fair” way. Nevertheless, in all studies, to our knowledge,
the capacity (or bandwidth) of the shared system was al-
ways assumed to be a constant. More formally, the system
was assumed to be able to handle r(s − t) work units on
any interval [t, s]. Network calculus generalises this no-
tion, considering a capacity β(s − t), for any β function.
Non constant service can be of interest when consider-
ing energy management, or when the considered service
is what is left unused by some disturbing process. In this
paper, it is shown how the definition of GPS and P-GPS
can be generalised to any kind of service in network cal-
culus.

At last, thanks to the compositional aspect of network
calculus, the combination NP-SP/P-GPS comes for free.

After a short presentation of network calculus, in Sec-
tion 2, modelling in network calculus of the on preemptive
static priority policy is presented (including some accu-
racy evaluation in Subsection 3.5). Section 4 presents the
modelling of GPS and P-GPS in network calculus. Sec-
tion 5 gives an example of NP-SP/P-GPS integration. Sec-
tion 6 concludes.

2. Network Calculus

The network calculus analysis focuses on worst case
performances. The information about the system features

are stored in functions, such as arrival curves character-
ising the traffic or service curves quantifying the service
guaranteed at the network nodes. These functions can be
combined together thanks to special network calculus op-
erations, in order compute bounds on buffers size or de-
lays.

2.1. Mathematical background: (min,+) dioid
Here are presented some operators of the (min,+)

dioid used by network calculus. Beyond usual operations
like the minimum or the addition of functions, network
calculus makes use of several classical operations which
are the translations of (+,×) filtering operations into the
(min,+) setting, as well as a few other transformations.

Network calculus mainly uses non-decreasing func-
tions, and related operators. Here are those used in this
article.

Set F F denote the set of wide-sense increasing func-
tions f : R→ R ∪ {+∞} such that f(t) = 0 for
t < 0.

Function []
+

: x 7→ max(x, 0).

Flooring and ceiling bxc ∈ N, bxc ≤ x < bxc + 1 ;
dxe ∈ N, dxe − 1 < x ≤ dxe

The Vertical deviation It is defined for two functions f
and g by v(f, g) = supt≥0 {f(t)− g(t)}

The Horizontal deviation It is defined for
two functions f and g by h(f, g) =
supt≥0 {inf {d ≥ 0 | f(t) ≤ g(t+ d)}}

The Min-plus convolution It is defined for
two functions f and g by (f ∗ g)(t) =
inf0≤s≤t {f(t− s) + g(s)}

The Positive and non-decreasing upper closure
It is defined for a functions f by f ↑ (t) =
[sup0≤s≤tf(s)]+

The pseudo inverse The inverse, f−1, of a function f ∈
F cannot always be assumed to exist, however, two
pseudo-inverses can be defined [10]:

f−1inf (u)
def
= inf{t|f(t) ≥ u} ppty

= sup {t f(t) < u}

f−1sup(u)
def
= sup{t|f(t) ≤ u} ppty

= inf {t f(t) > u}

To model flows constraint and service guarantees, net-
work calculus uses a set of usual parametrised curves, δd,
λR, βR,T , γr,b, νT,τ defined by:

δd(t) =

{
0 if t ≤ d
∞ otherwise

γr,b(t) =

{
rt+ b if t > 0

0 otherwise

λR(t) = Rt βR,T (t) = R[t− T]+

νT,τ (t) = min

(
δ0,

⌈
t+ τ

T

⌉)

t

b

r

γr,b

T

R

βR,T

d

δd

1
T − τ

νT,τ

Figure 1. Common curves

2.2. Network calculus: reality modelling
A network calculus model for a communication net-

work consists in the three following components:

1. A partition of the network into subsystems (often
called nodes) which may have different scales (from
elementary hardware like a processor to large sub-
networks).

2. A description of data flows, where each flow follows
a path through a specified sequence of subsystems
and where each flow is shaped by some arrival curve
just before entering the network.

3. A description of the behaviour of each subsystem,
that is service curves bounding the performances of
each subsystem, as well as service policies in case
of multiplexing (several flows entering the same sub-
system and thus sharing its service).

In network calculus, the real flows are modelled by cu-
mulative functions R ∈ F : R(t) counts the total amount
of data produced by the flow up to time t.

The servers are just relations between some input and
output flow (S ∈ F × F). Then (R,R′) ∈ S, denoted
R

S−→ R′, means that a server S receives an input flow,
R(t), and delivers the data after a variable delay. We have
relation R′ ≤ R, meaning that data goes out after being
entered. System S might be, for example, a single buffer
served at a constant rate, a complex communication node,
or even a complete network. Figure 3 shows input and
output functions for a single server queue.

The backlog is the amount of bits that are held inside
the system; if the system is a single buffer, it is the queue
length. In contrast, if the system is more complex, then
the backlog is the number of bits “in transit”, assuming
that we can observe input and output simultaneously [1].
For a system where R is the input and R′ the output, the
backlog at time t is b(t) = R(t) − R′(t). Obviously,
b(t) ≤ v(R,R′).

A backlogged period is a period during which the back-
log is not zero. Let t, a moment in a backlogged pe-
riod, this backlogged period has started at StBl(t) =
sup {u ≤ t | R′(u) = R(u)}.

The virtual delay at a time t is the delay that a
bit entered at time t will wait until going out, defined

2

R

R’

h(R,R’)

v(R,R’)

t

d(t)
b(t)

Figure 2. Backlog and delay

by d(t) = inf {τ ≥ 0 | R(t) ≤ R′(t+ τ)}. Obviously
d(t) ≤ h(R,R′).

These notions are illustrated in Figure 2.

2.3. Network calculus: contract modelling
To provide guarantees to data flows, some traffic con-

tract on the traffics and the services in the network are
needed. For this purpose, network calculus provides the
concepts of arrival curve and service curve.

Arrival curve A flow R ∈ F is constrained by α ∈ F
if and only if for all s ≤ t: R(t) − R(s) ≤ α(t − s). We
say also that R has α as an arrival curve, or also that R is
α-smooth. This condition is equivalent to R ≤ R ∗ α.

The function γr,b models the token-bucket contract: the
flow can send a burst of size b, and has a long-term rate r.
The function sνT,τ models a sporadic flow with packets
of maximal size s, a pseudo-period T and a jitter τ .

Service curve The behaviour of a server is modelled by
the concept of service curve, modelling some guarantees
on the service provided to flows.

The literature offers several definitions for different
flavours of service. [4] proposes a comparative study.
Consider a system R

S−→ R′, i.e. a server S with input
R and output R′ (Figure 3).

The server S offers to the flow a simple service of curve
β if and only if, for all pair R S−→ R, R′ ≥ R ∗ β.

We say that a system S offers a strict service of curve
β if, f, for all pair R S−→ R, during any backlogged period
[t, s), we have R′(s)−R′(t) ≥ β(s− t).

There is a hierarchy between these service notions. A
strict service is also a weak service. As discussed in Sec-
tion 2.4, the need to have these different definitions is the
decomposition of the residual service.

Let us now present the main network calculus results:

Theorem 1 (Backlog and delay bound). Assume a flow,
constrained by an arrival curve α, traverses a system that
offers a service curve β, the backlog b(t) for all t satisfies:
b(t) ≤ v(α, β).
The virtual delay d(t) for all t satisfies: d(t) ≤ h(α, β).

Figure 3. Servers.

R
2

1
R R

1
’

R
2
’

R
2

S
2

R
2
’

S

Figure 4. Residual server and residual ser-
vice

2.4. Aggregation and residual service
In general, servers are not used to transfer one single

flow, but a set of flows. The definition of server must
be generalised to multiple-input/multiple output servers:
S ∈ Fn × Fn, (R1, . . . , Rn)

S−→ (R′1, . . . , R
′
n). And the

capacity of the server is shared by several flows.
Modelling aggregation and residual service is an im-

portant issue in network calculus. Aggregation means that
the service is shared by different flows: for example, if a
server S offers an aggregated simple service of curve β to
two flowsR1 andR2 , it means that it offers this service to
the flowR = R1+R2 (i.e. R′1+R′2 ≥ (R1+R2)∗β), but
the repartition of the service between the flows depends
on priority flows and server policy (common policies are
FIFO [11], static priorities [5, 4], P-GPS/WFQ [9]).

The global idea, in network calculus, is to consider the
residual server Si associated to each flow (Ri

Si−→ R′i),
and to derive a residual service (simple or strict) of curve
βi offered by this server.

An important issue is the tightness: in network calcu-
lus, a residual service is said to be tight iff the residual
service allows to compute a delay that is a reachable case,
and not an over approximation.

In aggregation and residual service, the flavour of ser-
vice is crucial: some results need the assumption of strict
service, others of simple2. And the residual service can
also be simple or strict. And this is of importance in the
case of more than two flows, since a residual service can
be shared by aggregated flows.

3. Static priority in Network calculus

This part focuses on non-preemptive static priorities,
and the residual service of the low priority flows.

First, related works are presented (Section 3.1), then,
the contribution on NP-SP is presented (informally in Sec-
tion 3.2, formally in Section 3.3, and illustrated in Sec-
tion 3.4. The accuracy of the method is evaluated in more
than 2000 cases in Section 3.5.

3.1. Related works
Several results have been published on this subject,

each one refining the previous results. A detailed com-

2In fact, up to now, most results need a strict service, and the FIFO
policy is the only one requiring only simple service.

3

parison can be found in [8]. Here is just a quick overview.

All works assume a server S with a strict service of
curve β, shared by several flows Ri of arrival curve αi.

The first works on static priority can be found in [1,
Cor. 6.2.1], but it have some technical limitations3, and
the residual service is simple.

The two limitations described above have been inde-
pendently studied by [4, 5] with exactly the same result.
They can then be applied to any pair of arrival and service
curve, and can derive a simple and a strict service4.

But these approaches only model the negative impact
of non-preemption (the high-priority can be delayed by
one low priority packet), but not a positive one: when a
non-preemptive flow is served it benefits of the full speed
from the server.

The positive impact of non-preemption on the low pri-
ority flow described above has been studied in [6], which
gives an algorithm (without proof) to compute a residual
service with better delay bound than the one of [4, 5], as-
suming fixed size packets for all flows, and a constant ser-
vice rate5. The residual service is simple6.

Out of the network calculus area, the non-preemptive
static priority policy have been used, for example in [12]
for the CAN network. It assumes periodic messages of
bounded size, and computes the exact worst case.

3.2. Contribution overview
The same positive effect of non-preemption is the sub-

ject of [7, 8]. It generalises [6]: it need less hypotheses (it
does not assume a constant rate server, and fixed packet
size only for the considered flow), an analytical expres-
sion for the residual service is given (with its proof), and
the residual service is strict.

This work also generalises [12] in all except one point:
it assumes constant packet size for the flowRi to compute
its residual service βi, as [12] only need bounded size.
But on all other aspects, it generalises it: the flows are not
assumed to be periodic (only one arrival curve is needed),
the server is not assumed to be a constant rate (it can be a
variable speed system, or the residual service left by other
flow, etc.) and we do not only compute a delay but a resid-
ual service.

An important question is the tightness of the result:
does the residual service allow to compute the exact worst
case, or only an over-approximation? There no proof of
the tightness, up to now, but in this paper, the results are
compared with the ones of [12], on a very large set of ex-
periments (Section 3.5) and the exact worst case is always
reached, giving us strong confidence in the fact that this
work generalises [12], with the same exact accuracy.

3It can not be applied on any pair kind of service – arrival curve, since
the term [β − α1 − lmax

2]+ must be non decreasing.
4Note that [5] handle real-time calculus, not network calculus, but,

they are equivalent on the considered part, as shown in [4, § 3].
5The assumption is implicit in all the paper and the algorithm.
6The flavour of service is not given in [6], but [7] shows that it is a

simple one.

Period Size αi delay
R1 3 1

⌈
t
3

⌉
4

R2 9 3 3
⌈
t
9

⌉
5

R3 4 1
⌈
t
4

⌉
6

Table 1. First example

i χ′i χ”i χi

1 2 -4 2
2 7 1 7
3 11 5 11
4 16 10 16

Table 2. Calculation of β2

3.3. Theorem
Theorem 2 (NP-SP residual service). Consider a server
that offers to three flows, R1, R2 and R3, a strict service
curve represented by a non-decreasing function β. Sup-
pose that the flow R2 (resp. R3) emits its data into pack-
ets of fixed size l2 (resp. of maximal size l3). If the flow
R1 (resp. R2) is α1 (resp. α2) upper-constrained and R1

has a non-preemptive priority over the flow R2 and R2

has a non-preemptive priority over the flow R3, then the
server guarantees to R2 a strict service curve βnp2 defined
in eq (1).

βnp2 (t) = min

i× l2
β(t) + (i− 1)× l2 − β(χ′i)

β(t) + (i− 1)× l2
− β(χ”i + ψ2) + β(∆ + ψ2)

(1)

with i = max{j : χj ≤ t} and the definitions:

ψ1 =(β − α) ↑−1sup (0) ψi = β−1sup(li) for i ∈ {2, 3}
χ′i =((β − α1) ↑)−1inf (l3 + (i− 1)× l2)

χ”i =((β − α1)� δψ2
)−1inf (i× l2)

χi = max {χ′i, χ”i} ∆ = (α2)−1inf (2× l2)− ψ2

3.4. Example
As an illustration, consider a server with a strict service

curve β(t) = t for three flows R1, R2 and R3. Each flow
Ri is αi upper-constrained, and has fixed packet size li,
given in Table 1.

Let us evaluate βnp
2 , the residual service offered to flow

R2. ∆ = 6 and Table 2 shows the calculated values of χi.
Figure 5 shows the residual service, βnp

2 , offered to flow
R2 using the results of [8]. The function β2, computed
using [4, 5] is also drawn: βnp

2 ≥ β2, meaning that our
residual service is more accurate.

3.5. Accuracy
Theorem 2 gives a way to compute upper bounds on

delays, but the question of its accuracy arises: is the result
tight or not? Did it computes the exact worst case?

4

3

1

α2

2 4

2

3 51 t6 7 8 9 10 11 12 13 14 15 16 17

bits

6

9

β

β

Figure 5. Residual service βnp
2 on first exam-

ple (Table 2)

Test Size Nb Tests Mean Load
2 100 0.986988
3 217 0.984841
4 325 0.983228
5 452 0.986097
6 433 0.987534
7 342 0.988197
8 233 0.987539
9 118 0.98833

10 105 0.960005
Table 3. Configurations numbers and loads

We do not have, up to now, any tightness proof, neither
any counter example.

Since [12] is known to compute the exact worst case,
(assuming periodic flows and bounded frame size) the two
approaches have been compared on a significant number
of cases. Of course, the famous counter example of [12,
Table 3] have been one of the first test of our method, and,
as presented in [7, Table 2], the exact worst case is reached
using Theorem 2. This was a first test of the method, but
insufficient.

We have consider systems with n flows (n ∈ [2, 10]),
shared by periodic flows Ri, each flow having its period
Ti ∈ [1, 40], and messages of fixed size si.

In network calculus, each flow Ri has an arrival curve
αi = siνTi,0. The systems offers a strict service of curve
β(t) = t.

The number of flow is uniformly randomly chosen in
[2, 10]7. Then, the period of each flow is randomly chosen
in [2, 40]. The size of the flows is chosen to have a high
system load: the first flow randomly chose to use a part
of the bandwidth ρi, and the message size is then si =
bρiTic. The second flow randomly chose a part of the
remaining bandwidth, and so on.

The (min,plus) computations have been done with the
(min,plus) library of the RT@W-PEGASE tool [13].

More than 2000 configurations have been generated, all
with a heavy load (an overview is presented in Table 3).

7But, as can be seen in Table 3, the random generator seems not so
uniform as can be expected.

In all configurations, both Theorem 2 and [12] gives the
same result, i.e. the exact worst case.

Such experiment does not gives a tightness proof, but
provides a strong confidence that the result is tight, at least
when considering periodic messages and constant server.

4. GPS and P-GPS in network calculus

GPS and P-GPS (often known as WFQ [9]) are two
commons scheduling policies.

Nevertheless, up to our knowledge, all papers on such
subject, when looking into details of proofs, assume that
the server has a fixed constant capacity (also known as
constant rate server), i.e. the system was assumed to be
able to handle r(s − t) work units on any interval [t, s].
[1, § 2.1] integrates the result of [9] into network calcu-
lus but assumes also constant rate server. Some papers
on real-time calculus make some reference to GPS [14,
Fig. 8], but we did not find any formal proof for the gen-
eral case of any β service function. And, when trying to
integrate SP-NP and P-GSP, we can not restrict ourselves
to the constant rate server8.

So, this section formally generalises the GPS and P-
GPS scheduling policies to any strict service curve, in the
network calculus framework.

4.1. GPS policy
GPS, Generalized Processor Sharing, is presented in

[9] as a flow-based multiplexing discipline that is effi-
cient, flexible, and analyzable. However, it is a theoretical
scheduler, since it assume some fluid behaviour. Never-
theless, it is of interest, even if, in implementation, ap-
proximations of GPS will be used.

Let assume that a server is shared by n flows
R1, . . . , Rn. A Generalized Processor Sharing (GPS) pol-
icy, is often presented as a policy that shares is capacity
such that, each flow Ri receives a fraction φi/

∑
j φj .

GPS have been defined in [9] assuming a constant rate
service, but this definition can be generalised.

Definition 1 (GPS). Let S be a server shared by n flows,
R1, . . . , Rn. This server apply a Generalized Processor
Sharing policy of (non null) parameters φ1, . . . , φn iff, for
all interval [t, s) backlogged for a flow Ri, it holds, for all
j

R′i(s)−R′i(t) ≥
φi
φj

(R′j(s)−R′j(t)) (2)

This relation is often written R′
i(s)−R

′
i(t)

R′
j(s)−R′

j(t)
≥ φi

φj
but

is does not have the same good mathematical properties
when R′j(s)−R′j(t) = 0.

Theorem 3 (GPS residual service). Let S be a server, with
a strict service of curve β, shared by n flows, R1, . . . , Rn,
with a GPS policy of (non null) parameters φ1, . . . , φn.

8In fact, the βnp
i function of Theorem 2 can be under-approximated

by a rate-latency function, but it would be pessimistic.

5

Then, this servers offers to each flow Ri the strict service
of curve βgpsi defined by:

βgpsi =
φi∑n
j=1 φj

β (3)

Proof. The proof mimics the one of [9], except that con-
siders any curve β, not only a linear β(t) = rt.

Let [t, s) be a backlogged period for for Ri, then

(R′i(s)−R′i(t))
φj
φi
≥ R′j(s)−R′j(t)

=⇒
n∑
j=1

(R′i(s)−R′i(t))φj
φi

≥
n∑
j=1

R′j(s)−R′j(t)

and since S offers a strict service β, and [t, s) is a backlog
period,

∑n
j=1R

′
j(s)−R′j(t) ≥ β(t)

=⇒ (R′i(s)−R′i(t))
∑n
j=1 φj

φi
≥ β(t)

4.2. P-GPS policy
As mentioned in [9]: “a problem with GPS is that it

is an idealized discipline that does not transmit packets
as entities. It assumes that the server can serve multiple
sessions simultaneously and that the traffic is infinitely di-
visible”. Then, [9] defines P-GPS as an “an excellent ap-
proximation to GPS even when the packets are of variable
length.” This definition make no assumption of constant
rate service, and does not need be generalised.

Definition 2 (P-GPS). Let S be a server shared by n flows,
R1, . . . , Rn. This server apply a Generalized Processor
Sharing policy of (non null) parameters φ1, . . . , φn iff is
has the following behaviour (from [9]): “Let Fp be the
time at which packet p will depart (finish service) under
Generalized Processor Sharing. Then, a very good ap-
proximation of GPS would be a work-conserving scheme
that serves packets in increasing order of Fp. Now, sup-
pose that the server becomes free at time τ . The next
packet to depart under GPS may not have arrived at time
τ and, since the server has no knowledge of when this
packet will arrive, there is no way for the server to be
both work conserving and serve the packets in increasing
order of Fp. The server picks the first packet that would
complete service in the GPS simulation if no additional
packets were to arrive after time τ”.

In the following, like in [9], for a flow Ri (Ri the input
and R′i the output), which crosses the GPS server, we will
note R̂i (R̂i the input and R̂′i the output), the equivalent
flow on the P-GPS server (Ri = R̂i but, to be consistant
with [9], the two notations are used in this paper).

Then, an important theorem of [9] can be also gener-
alised to any service curve.

Theorem 4. Consider Ŝ a server that offers to n aggre-
gated flows, R1, . . . , Rn, a strict service curve β, with a
P−GPS policy of parameters φ1, . . . , φn. Let Sgps be the
reference GPS server used to compute the P-GPS schedul-
ing.

(R1, . . . , Rn)
Ŝ−→ (R̂′1, . . . , R̂′n)

(R1, . . . , Rn)
Sgps

−−→ (R′1, . . . , R
′
n)

For all times τ and sessions i:

R′i(τ)− R̂′i(τ) ≤ Lmax (4)

where Lmax is the maximum packet length.

Is simply means that the P-GPS can not delay output of
more that one packet size, for each flow.

It can also be written R′i(τ) − R̂′i(τ) ≤ Lmax, but the
presentation of [9] have been kept. In [9], the relation is
written (R′i(τ)−R′i(0))−(R̂′i(τ)−R̂′i(0)) ≤ Lmax, which
is equivalent. The proof is given in appendix A.

Theorem 5. Let S, Ŝ be two servers. Assume that S offers

a simple service β, and that, for all R, R̂′ such that R Ŝ−→
R̂′, it exist R′ such that R S−→ R′, verifying

∀t : R′(t)− R̂′(t) ≤M (5)

then, Ŝ offers a simple service β −M .

Proof. Let beR, R̂′ ∈ Ŝ, and some t ≥ 0. It existR,R′ ∈
S such that eq. 5 holds. And S has minimal service β i.e.

R′(t) ≥ inf
0≤s≤t

{R(t− s) + β(s)}

⇐⇒ R′(t)−M ≥ inf
0≤s≤t

{R(t− s) + β(s)−M}

=⇒ R̂′(t) ≥ (R ∗ (β −M))(t)

From this theorem, we can deduce the following result.

Theorem 6. Consider a server that offers to n aggre-
gated flows, R1, . . . , Rn, a strict service curve β. Sup-
pose that these flows transmit their data in the form of
packet, with maximum size Lmax. If these flows are served
with P-GPS policy of respective weight φ1, . . . φN , then
the server guarantees to each flow Ri a simple service
curve βpgpsi defined in eq (6).

βpgpsi = βgpsi − Lmax =
φi∑n
j=1 φj

β − Lmax (6)

Proof. Direct application of Theorem 5 and Theorem 4.

6

S

R3 R′
3

R1 R′
1

R2,1

R2,2

R′
2,1

R′
2,2

Figure 6. Serveur with NP-SP/P-GPS
scheduling

The Theorems 5, 4 and 6 could have been merged into
a single one, but P-GPS is not the only approximation of
GPS, and, for any policy, if the difference between the
ideal GPS and this policy can be bounded, a similar results
holds.

Moreover, the theorem need a strict service and only
gives a simple service. To have a strict service, one need
also a lower bound to the difference m ≤ R′ − R̂′ ≤
M and the resulting strict service will be β − (M − m)
(smaller than β −M if m < 0).

5. NP-SP/P-GPS integration example

Let us consider a server combining the NP-SP and P-
GPS policy. Flows are first grouped by priority, and, up to
the non-preemptive effect, no low priority flow is served
if there is one higher priority one waiting. Inside a same
priority level, flows are served with a P-GPS policy. To
apply our result, we also require all packets of the same
priority level to have the same size.

The flowRi,j will be a flow of priority level i, and have
a P-GPS parameter φi,j . Each flow Ri,j have an arrival
curve αi,j .

The analyse with network calculus first considers the
static priority scheduling: for each priority level i, a “vir-
tual” flow Ri =

∑
j Ri,j is build, with an arrival curve

αi =
∑
j αi,j . Then, using Theorem 2, the strict service

βnp
i of the residual server Si can be computed. Then, for

each individual flow Ri,j , using Theorem 6, the residual
service βi,j can be computed, and the delay of the flow
Ri,j is S can be bounded by h(αi,j , βi,j).

A simple example is given there (cf Figure 6). They are
three priority levels, with a single flow in the highest and
lowest priority levels, and two flows inside the second pri-
ority level, scheduled with a P-GPS policy of parameters
φ1 = 1, φ2 = 2.

Let us consider quite the same parameters as in Table 1,
where the flowR2 is decomposed into two sub-flows, each
one having period 9 and packet size 3

2 , i.e. α2,1(t) =
α2,2(t) = 3

2

⌈
t
9

⌉
.

The resulting curve βnp
2 associated to the aggregated

flow R2,1 +R2,2 is presented in Figure 7.
The resulting curves βnp/gps

2,i assuming a GPS scheduler,
and βnp/p-gps

2,i assuming a P-GPS are presented in Figure 8.

2
β
np

2
β

α2,ι

2
β
2

β
np

α2,ι

β

3

1

2 43 51 t6 7 8 9 10 11 12 13 14 15 16 17

bits

6

9

β

Figure 7. Residual service for R1,2 +R2,2

Flow NP-SP/GPS delay NP-SP/P-GPS Delay
R2,1 8 10
R2,1 5 7.66
Table 4. Delay for each flow R1,2 and R2,2

6. Conclusion

Network calculus [1, 2] is a very general theory to com-
pute bounds on worst case performance of real-time dis-
tributed systems, but one common criticism was the lack
of accuracy, compared to other specific methods.

[8] propose a generalisation of a lot of previous works
done on non preemptive static priority [4, 5, 6, 12]: it can
deal with any kind of traffic contract, not only periodic or
sporadic one, it handles any kind of service curve, not only
constant rate output, and provides a residual strict service,
an important technical detail in network calculus.

In this paper, these new network calculus results on
non-preemptive static priority (NP-SP) scheduling are
evaluated, on more than 2000 configurations, In all con-
figurations, its computes the exact worst case. Network
calculus then demonstrates it ability to be as good as other
methods.

This strict service property allows to combine the resid-
ual service with others. In this paper, the P-GPS (also
known as WFQ [9]) is chosen, since it is a very common
policy in networks. One contribution of this paper is to
propose a formal integration of P-GPS into network cal-
culus and also to generalise P-GPS scheduling to the case
of non constant rate service. We then prove the possibility
to compute an upper bound on worst case performance of
a system combining NP-SP and P-GPS policies.

The approach currently still have one drawback: it as-
sume fixed packet size for the considered flow. It seems
possible to solve it using [15].

The approach also open very interesting perspective.
Its very general assumption can be use in the case of
scheduling with voltage scaling for example.

References

[1] J.-Y. Le Boudec and P. Thiran, Network Calcu-
lus, volume 2050 of LNCS, Springer Verlag, 2001,
http://lrcwww.epfl.ch/PS files/NetCal.htm.

7

2
β
np

2
β

α2,ι

2
β
2

β
np

α2,ι

β

2,1
β
np/gps

2,1
β
np/p−gps

2,2
β
np/gps

2,2
β
np/p−gps

3

1

2 43 51 t6 7 8 9 10 11 12 13 14 15 16 17

bits

6

9

β

Figure 8. Residual services for R1,2 and R2,2

[2] C. Cheng-Shang, Performance Guarantees in Com-
munication Networks, volume ISBN : 1-85233-226-3,
Springer-Verlag, 2000.

[3] J. Grieu, Analyse et évaluation de techniques de commu-
tation Ethernet pour l’interconnexion des systèmes avion-
iques, Thèse de Doctorat, Institut National Polytechnique
de Toulouse, Toulouse, 2004.

[4] A. Bouillard, L. Jouhet, and E. Thierry, “Service curves in
Network Calculus: dos and don’ts”, Rapport de recherche
INRIA 7094, INRIA, Novembre 2009.

[5] W. Haid and L. Thiele, “Complex task activation
schemes in system level performance analysis”, in
ESWeek’07: Proc. of the 5th IEEE/ACM int. conf.
on Hardware/Software Codesign and System Synthesis
(Salzburg, Austria, September 30 - October 03, 2007),
2007, pp. 173–178, New York, NY, USA. ACM.

[6] D. B. Chokshi and P. Bhaduri, “Modeling Fixed Priority
Non-Preemptive Scheduling with Real-Time Calculus”, in
RTCSA ’08: Proc. of the 2008 14th IEEE int. conf. on Em-
bedded and Real-Time Computing Systems and Applica-
tions, 2008, Washington, DC, USA. IEEE Computer Soci-
ety.

[7] W. Mangoua Sofack and M. Boyer, “Non preemptive static
priority with network calculus”, in Proc. of the 16th IEEE
int. conf. on Emerging Technologies and Factory Automa-
tion (ETFA’11), September 2011.

[8] W. Mangoua Sofack and M. Boyer, “Non preemptive static
priority with network calculus: Enhanced”, in Proc. of the
16th International GI/ITG Conference on Measurement,
Modelling and Evaluation of Computing Systems and De-
pendability and Fault Tolerance (MMB & DFT 2012) –
Workshop on Network Calculus (WoNeCa), March 2012.

[9] A. K. Parekh and R. G. Gallager, “A generalized proces-
sor sharing approach to flow control in integrated services
networks: the single-node case”, IEEE/ACM Transactions
on Networking (TON), vol. 1, 1993.

[10] V. Pollex, H. Lipskoch, F. Slomka, and S. Kollmann,
“Runtime improved computation of path latencies with the

real-time calculus”, in Proc. of the 1st International Work-
shop on Worst-Case Traversal Time, WCTT ’11, 2011, pp.
58–65. ACM.

[11] L. Lenzini, E. Mingozzi, and G. Stea, “Delay bounds for
FIFO aggegates: a case study”, Computer Communica-
tions, vol. 28, pp. 287–299, 2004.

[12] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Con-
troller Area Network (CAN) Schedulability Analysis: Re-
futed, Revisited and Revised”, 2007.

[13] M. Boyer, J. Migge, and M. Fumey, “PEGASE, A Ro-
bust and Efficient Tool for Worst Case Network Traversal
Time”, in Proc. of the SAE 2011 AeroTech Congress &
Exhibition, 2011, Toulouse, France. SAE International.

[14] E. Wandeler, Modular Performance Analysis and
Interface-Based Design for Embedded Real-Time Systems,
PhD thesis, PhD Thesis ETH Zurich, 2006.

[15] A. Bouillard, N. Farhi, and B. Gaujal, “Packetization and
Aggregate Scheduling”, Technical Report 7685, INRIA,
2011.

A. Proof of Theorem 4

We demonstrate here the first lemma, the first and sec-
ond theorem of [9] in a broader context (β ∈ F).

Lemma 7. Let p and p′ be packets in a GPS system at
time τ , and suppose that packet p completes service be-
fore packet p′ if there are no arrivals after time τ . Then,
packet p will also complete service before packet p′ for
any pattern of arrivals after time τ .

Proof. Idem as in [9].
The sessions to which packets p and p belong are both
backlogged from time r until one completes transmission.
By (2), the ratio of the service received by these sessions
is independent of future arrivals.

8

Lemma 8. Now let Fp (resp. F̂p) be the time at which
packet p departs under GPS (resp. P-GPS). For all pack-
ets p, Fp − F̂p ≤ P̄ where P̄ is an upper bound on the
processing time of a packet of size Lmax

Proof. Since both GPS and P-GPS are work-conserving
disciplines, their busy periods coincide, i.e. the GPS
server is in a busy period iff the PGPS server is in a busy
period. Hence, it suffices to prove the result for each busy
period. Consider any busy period and let the time that it
begins be time zero. Let pk be the kth packet in the busy
period to depart under P-GPS, and let its length be Lk.
Also, let tk be the time that pk departs under P-GPS and
uk be the time that pk departs under GPS. Finally, let ak
be the time that pk arrives. Let us show that

tk ≤ uk + P̄

for k = 1, 2, . . . Let m be the largest integer that satisfies
both 0 < m ≤ k − 1 and um > uk. Thus,

um > uk ≥ ui for m < i < k

Then, packet pm is transmitted before packets
pm+1, . . . , pk under P-GPS but after all these pack-
ets under GPS. If no such integer m exists, then set
m = 0. Now, for the case m > 0, packet pm begins trans-
mission at tm− trans(m), (trans(m) is the transmission
time of pm); so, from Lemma 7,

min{am+1, . . . , ak} > tm − trans(m)

Since pm+1, . . . , pk−1 arrive after tm−trans(m) and de-
part before pk does under GPS,

uk ≥ (trans(m+1)+· · ·+trans(k−1)+trans(k))+tm−trans(m)

=⇒ uk ≥tk − trans(m)

≥tk − P̄

If m = 0, then pk−1, . . . , p1 all leave the GPS server
before pk does, and so

uk ≥ tk

Now comes the proof of the main theorem.

Proof of Theorem 4. The slope of R̂′i alternates between
the maximum capacity of the server when a session i
packet is being transmitted, and 0 when session i is not be-
ing served. Since the slope of R′i also obeys these limits,
the difference (R′i(τ)−R′i(0))−(R̂′i(τ)−R̂′i(0)) reaches
its maximal value when session i packets begin transmis-
sion under P-GPS. Let t be some such time, and let L be
the length of the packet p going into service. Then, the
packet completes transmission at time t+ trans(p). Let ρ

be the time at which the given packet completes transmis-
sion under GPS. Then, since session i packets are served
in the same order under both schemes,

(R′i(ρ)−R′i(0)) = (R̂′i(t+ trans(p))− R̂′i(0)) (7)

From Theorem 8 (with Fp = ρ and F̂p = t+ trans(p)),

t+ trans(p)− τ ≤ P̄

=⇒ ρ ≥ t+ trans(p)− P̄ (8)

Then,

(R′i(t+ trans(p)− P̄)−R′i(0))

≤ (R′i(ρ)−R′i(0)) (from eq. 8)

= (R̂′i(t+ trans(p))− R̂′i(0)) (from eq. 7)

= (R̂′i(t)− R̂′i(0)) + L (from the definition of trans(p))

Then,

(R′i(t+ trans(p)− P̄)−R′i(0)) ≤ (R̂′i(t)− R̂′i(0)) +L
(9)

Let L̃ the length of the packet p̃ that requires the largest
transmission time. With P̄ = trans(p̃), eq.9 becomes

(R′i(t)−R′i(0)) ≤(R̂′i(t)− R̂′i(0)) + L̃

≤(R̂′i(t)− R̂′i(0)) + Lmax

Then,

(R′i(t)−R′i(0))− (R̂′i(t)− R̂′i(0)) ≤ Lmax (10)

Since t is a time where the difference (R′i(τ)− R′i(0))−
(R̂′i(τ) − R̂′i(0)) reaches its maximal value, with the
eq. 10, we can write ∀ times τ and sessions i:

(R′i(τ)−R′i(0))− (R̂′i(τ)− R̂′i(0)) ≤ Lmax

Note for reviewers
The reference [8] have been accepted, but it not published

up to now. We can of course send a copy of this paper.

9

