
Logical Foundations for Reasoning about
Transformations of Knowledge Bases

Mohamed Chaabani1, Rachid Echahed2, Martin Strecker3

1 LIMOSE, University of Boumerdès, Algeria
2 Laboratoire d’Informatique de Grenoble

3 Université de Toulouse / IRIT ?

Abstract. This paper is about transformations of knowledge bases with
the aid of an imperative programming language which is non-standard in
the sense that it features conditions (in loops and selection statements)
that are description logic (DL) formulas, and a non-deterministic assign-
ment statement (a choice operator given by a DL formula). We sketch an
operational semantics of the proposed programming language and then
develop a matching Hoare calculus whose pre- and post-conditions are
again DL formulas. A major difficulty resides in showing that the for-
mulas generated when calculating weakest preconditions remain within
the chosen DL fragment. In particular, this concerns substitutions whose
result is not directly representable. We therefore explicitly add substitu-
tion as a constructor of the logic and show how it can be eliminated by
an interleaving with the rules of a traditional tableau calculus.

Keywords: Description Logic; Graph Transformation; Programming Lan-
guage Semantics; Tableau Calculus

1 Introduction

Contribution The question explored in this paper is: What is an adequate formal-
ism for describing modifications of Knowledge Bases (KBs), and how to reason
about the effects of these modifications?

Let us fix some terminology: In this paper, a KB is perceived as a graph
structure, consisting of nodes and binary relations between these nodes. A KB
transformation modifies this graph structure, by inserting or deleting arcs in the
graph (and by adding or deleting nodes, but this aspect is not addressed in this
paper because it would need mechanisms analogous to memory allocation and
deallocation in traditional programming languages).

A KB can be seen as a model of a formula of a particular logical language. For
expressive logics, typical transformation problems (see further below) become
undecidable. We therefore cut down the problem to rather inexpressive logics,
in this case a variant of the Description Logic ALCQ.

A transformation of a KB induces a transformation of predicates true about
the KB: If predicate P is true for a KB k, which predicate P ′ is true for the

? Part of this research has been supported by the Climt project (ANR-11-BS02-016).

transformed KB k′? The answer to such a question depends on at least two
factors: the language used for defining transformations, and the logical formalism
for reasoning about them. Our contribution consists in

– a proposal for a transformation language similar to a traditional imper-
ative language, but endowed with some non-standard constructs (a non-
deterministic assignment operator and conditional and loop statements where
expressions are replaced by formulas). In spite of these features, transforma-
tions are effectively computable. The extension of ALCQ we use is defined
in Sect. 2, the programming language in Sect. 3.

– a sound and decidable Hoare-style calculus for reasoning about transforma-
tions written in this language.

The approach is rather standard: we compute weakest preconditions (WPs)
by structural recursion over the statements of the transformation language, see
Sect. 4. Unfortunately, it turns out that the logicALCQ is not directly closed wrt.
substitutions that have to be carried out when computing WPs. We therefore
add a new constructor for substitutions to the logic, and show how it can be
eliminated in a tableau calculus (in Sect. 5).

Related work Reasoning about graph transformations in full generality is hard
[7]. Some decidable logics for graph transductions are known, such as MSO [6],
but are descriptive, applicable to a limited number of graphs and often do not
match with an algorithmic notion of transformation. Some implementations of
verification environments for pointer manipulating programs exist [9], but they
often impose severe restrictions on the kind of graphs that can be manipulated,
such as having a clearly identified spanning tree.

In [4], the authors have introduced a dynamic logic which is very expressive.
It has been designed to describe different kinds of elementary knowledge base
transformations (addition of new items, addition and deletion of links, etc.). It
allows also to specify advanced properties on graph structures which go beyond
µ-calculus or MSO logics. Unfortunately, the expressive power of that logic has
a price: the undecidability of the logic. The purpose of the present paper is
to identify a programming language together with a logic such that the proof
problem resulting from the transformation of the KB is decidable. The trans-
formations themselves are not encoded in the logic itself (as in [4]) but in a
dedicated imperative language for which we develop a Hoare-style calculus.

Work on (KB) updates [8] seems to approach the problem from the opposite
direction: Add facts to a KB and transform the KB at the same time such that
certain formulas remain satisfied. In our approach, the modification of the KB
is exclusively specified by the program.

The work described in this paper is ongoing, some results are still prelimi-
nary. Based on previous work [5], we are in the process of coding the formalism
described here in the Isabelle proof assistant [10]. Parts of the coding in this
paper are inspired by formalizations in the Isabelle distribution and by [11].

The formal development accompanying this paper will be made available on the
web4, which should also be consulted for proofs.

Before starting with the formal development, let us give an example of the
kind of program (see Fig. 1) that we would like to write. Assume a knowledge
base with objects of class A and B, and a relation R. The node n is initially
connected to at least 3 objects of class A, and all objects it is connected to
are of class A or B. Because the number of connections to A is too large, we
execute a loop that selects an A-object (let’s call it a) that n is connected to, and
delete the r-connection between n and a. To compensate, we select an object b
of class B and connect n to b. We stop as soon as the number of A-connections
of n has reached 2, which is one of the post-conditions we can ascertain. The
resulting transformation is depicted in Fig. 2. One also sees that the language is
too weak to express other properties, for example that the total number of arcs
is preserved by the transformation.

vars n, a, b;

/* Pre: n : (≥ 3 R A) u (∀ R (A t B)) */

while (n : (> 2 R A)) do {
/* Inv: n : (≥ 2 R A) u (∀ R (A t B)) */

select a sth a : A ∧ (n R a);
delete(n R a);
select b sth b : B ;

add(n R b)
}

/* Post: n : (= 2 R A) u (∀ R (A t B)) */

Fig. 1. An example program

n : N

A A A B B

n : N

A A A B B

Fig. 2. Resulting transformation

4 http://www.irit.fr/~Martin.Strecker/Publications/dl_transfo2013.html

http://www.irit.fr/~Martin.Strecker/Publications/dl_transfo2013.html

2 Logic

Our logic is a three-tier framework, the first level being DL concepts, the second
level facts, the third level formulas (Boolean combinations of facts and a simple
form of quantification).

Concepts: We concentrate on a DL featuring concepts with simple roles and
number restrictions, similar to ALCQ [2]. For c being the type of concept names
and r the type of role names, the data type C of concepts can be defined induc-
tively by:

C ::= ⊥ (empty concept)
| c (atomic concept)
| ¬ C (negation)
| C u C (conjunction)
| C t C (disjunction)
| (≥ n r C) (at least)
| (< n r C) (no more than)
| C[r := RE] (explicit substitution)

We define the universal concept > as ¬⊥ and write (∃ r C) for (≥ 1 r C)
and (∀ r C) for (< 1 r (¬C)).

The last constructor, explicit substitution [1], is a particularity of our frame-
work, required for a lazy elimination of substitutions that replace, in a concept
C, a role name r by a role expression RE. If i is the set of individual variable
names, the type RE is defined by

RE ::= r (atomic role)
| r − (i, i) (deletion of relation instance)
| r + (i, i) (insertion of relation instance)

Please note that concepts implicitly depend on the types c, r and i, which we
assume mutually disjoint. A substitution can therefore never affect an individual
variable.

A set-theoretic semantics is provided by a domain ∆ and an interpretation
function I mapping c to a set of individuals (subsets of ∆), r to a binary relation
of individuals (subsets of ∆×∆), and i to individual elements of ∆.

For interpretation of concepts C, negation is inductively interpreted as com-
plement, concept conjunction as intersection and disjunction as union. I(≥
n r C) = {x | card{y | (x, y) ∈ I(r) ∧ y ∈ I(C)} ≥ n}, and analogously
for I(< n r C). Here, card is the cardinality of finite sets (and 0 otherwise).

For interpretation of role expressions RE, we define I(r − (i1, i2)) = I(r)−
{(I(i1), I(i2))}, and I(r + (i1, i2)) = I(r) ∪ {(I(i1), I(i2))}.

Interpretation update I [r:=rl] modifies the interpretation I at relation name
r to relation rl, thus I [r:=rl](r) = rl and I [r:=rl](r′) = I(r′) for r′ 6= r. With
this, we can define the semantics of explicit substitution by I(C[r := RE]) =
I [r:=I(RE)](C).

Facts: Facts make assertions about an instance being an element of a concept,
and about being in a relation. In DL parlance, facts are elements of an ABox.
The type of facts is defined as follows:

fact ::= i : C (instance of concept)
| i r i (instance of role)
| i (¬r) i (instance of role complement)
| i = i (equality of instances)
| i 6= i (inequality of instances)

The interpretation of a fact is a truth value, defined by:

– I(i : C) = (I(i) ∈ I(C))
– I(i1 r i2) = (I(i1), I(i2)) ∈ I(r) and I(i1 (¬r) i2) = (I(i1), I(i2)) /∈ I(r)
– I(i1 = i2) = (I(i1) = I(i2)) and I(i1 6= i2) = (I(i1) 6= I(i2))

Please note that since concepts are closed by complement, facts are closed by
negation (the negation of a fact is again representable as a fact), and this is the
main motivation for introducing the constructors “instance of role complement”
and “inequality of instances”.

Formulas: A formula is a Boolean combination of facts. We also allow quantifi-
cation over individuals i (but not over relations or concepts), and, again, have
a constructor for explicit substitution. We overload the notation ⊥ for empty
concepts and the Falsum.

form ::= ⊥
| fact
| ¬form
| form ∧ form | form ∨ form
| ∀i.form | ∃i.form
| form[r := RE]

The extension of interpretations from facts to formulas is standard; the inter-
pretation of substitution in formulas is in entire analogy to concepts. As usual,
a formula that is true under all interpretations is called valid.

When calculating weakest preconditions (in Sect. 4), we obtain formulas
which essentially contain no existential quantifiers; we keep them as constructor
because they can occur as intermediate result of computations. We say that a
formula is essentially universally quantified if ∀ only occurs below an even and ∃
only below an odd number of negations. For example, ¬(∃x. x : C∧¬(∀y. y : D))
is essentially universally quantified.

Implication f1 −→ f2 is the abbreviation for ¬f1 ∨ f2, and ite(c, t, e) the
abbreviation for (c −→ t) ∧ (¬c −→ e), not to be confused with the if-then-else
statement presented in Sect. 3.

3 Programming Language

The programming language is an imperative language manipulating relational
structures. Its distinctive features are conditions (in conditional statements and
loops) that are restricted DL formulas, in the sense of Sect. 2. It has a non-
deterministic assignment statement allowing to select an element satisfying a
fact. Traditional types (numbers, inductive types) are not provided.

In this paper, we only consider a core language with traditional control flow
constructs, but without procedures. Also, it is only possible to modify a relational
structure, but not to “create objects” (with a sort of new statement) or to
“deallocate” them. These constructs are left for further investigation.

The type of statements is defined by:
stmt ::= Skip (empty statement)

| select i sth form (assignment)
| delrel(i r i) (delete arc in relation)
| insrel(i r i) (insert arc in relation)
| stmt ; stmt (sequence)
| if form then stmt else stmt
| while form do stmt

The semantics is a big-step semantics with rules of the form (st, σ) ⇒ σ′

expressing that executing statement st in state σ produces a new state σ′.
The rules of the semantics are given in the Fig. 3. Beware that we overload

logical symbols such as ∃, ∧ and ¬ for use in the meta-syntax and as constructors
of form.

The state space σ is a function mapping individual variables to individuals
in the semantic domain ∆; concepts to sets of individuals, and so forth. It is
therefore identical to an interpretation function I as introduced in Sect. 2, and
it is only in keeping with traditional notation in semantics that we use the symbol
σ. We may therefore write σ(b) to evaluate the condition b (a formula) in state
σ.

Most of the rules are standard, apart from the fact that we do not use expres-
sions, but formulas as conditions. The auxiliary function delete edge modifies the
state σ by removing an r-edge between the elements represented by v1 and v2.
With the update function for interpretations introduced in Sect. 2, one defines

delete edge v1 r v2 σ = σ[r:=σ(r)−{(σ(v1),σ(v2))}]

and similarly

generate edge v1 r v2 σ = σ[r:=σ(r)∪{(σ(v1),σ(v2))}]

The statement select v sth F (v) selects an element vi that satisfies formula
F , and assigns it to v. For example, select a sth a : A∧(a r b) selects an element
a instance of concept A and being r-related with a given element b.

select is a generalization of a traditional assignment statement. There may
be several instances that satisfy F , and the expressiveness of the logic might
not suffice to distinguish them. In this case, any such element is selected, non-
deterministically. Let us spell out the precondition of (SelAssT): Here, σ[v:=vi]

is an interpretation update for individuals, modifying σ at individual name v ∈ i
with an instance vi ∈ ∆, similar to the interpretation update for relations seen
before. We therefore pick an instance vi, check whether the formula b would be
satisfied under this choice, and if it is the case, keep this assignment.

In case no satisfying instance exists, the semantics blocks, i.e. the given state
does not have a successor state, which can be considered as an error situation.

(Skip, σ)⇒ σ
(Skip)

(c1, σ)⇒ σ′′ (c2, σ
′′)⇒ σ′

(c1;c2, σ)⇒ σ′ (Seq)

σ′ = delete edge v1 r v2 σ

(delrel(v1 r v2), σ)⇒ σ′ (EDel)
σ′ = generate edge v1 r v2 σ

(insrel(v1 r v2), σ)⇒ σ′ (EGen)

∃vi.(σ′ = σ[v:=vi] ∧ σ′(b))

(select v sth b, σ)⇒ σ′ (SelAssT)

σ(b) (c1, σ)⇒ σ′

(if b then c1 else c2, σ)⇒ σ′ (IfT)
¬σ(b) (c2, σ)⇒ σ′

(if b then c1 else c2, σ)⇒ σ′ (IfF)

σ(b) (c, σ)⇒ σ′′ (while b do c, σ′′)⇒ σ′

(while b do c, σ)⇒ σ′ (WT)
¬σ(b)

(while b do c, σ)⇒ σ
(WF)

Fig. 3. Big-step semantics rules

Some alternatives to this design choice can be envisaged: We might treat a
select v sth F (v) with unsatisfiable F as equivalent to a Skip. This would
give us a choice of two rules, one in which the precondition of rule (SelAssT) is
satisfied, and one in which it is not. As will be seen in Sect. 4, this would introduce
essentially existentially quantified variables in our formulas when computing
weakest preconditions and lead us out of the fragment that we can deal with in
our decision procedure. Alternatively, we could apply an extended type check
verifying that select-predicates are always satisfiable, and thus ensure that type-
correct programs do not block. This is the alternative we prefer; details still have
to be worked out.

4 Weakest Preconditions

We compute weakest preconditions wp and verification conditions vc. Both take
a statement and a DL formula as argument and produce a DL formula. For this
purpose, while loops have to be annotated with loop invariants, and the while

constructor becomes: while {form} form do stmt. Here, the first formula (in
braces) is the invariant, the second formula the termination condition. The two
functions are defined by primitive recursion over statements, see Fig. 4.

wp(Skip, Q) = Q
wp(delrel(v1 r v2), Q) = Q[r := r − (v1, v2)]
wp(insrel(v1 r v2), Q) = Q[r := r + (v1, v2)]
wp(select v sth b, Q) = ∀v.(b −→ Q)
wp(c1; c2, Q) = wp(c1, wp(c2, Q))
wp(if b then c1 else c2, Q) = ite(b, wp(c1, Q), wp(c2, Q))
wp(while{iv} b do c, Q) = iv

vc(Skip, Q) = >
vc(delrel(v1 r v2), Q) = >
vc(insrel(v1 r v2), Q) = >
vc(select v sth b, Q) = >
vc(c1; c2, Q) = vc(c1, wp(c2, Q)) ∧ vc(c2, Q)
vc(if b then c1 else c2, Q) = vc(c1, Q) ∧ vc(c2, Q)
vc(while{iv} b do c, Q) = (iv ∧ ¬b −→ Q) ∧ (iv ∧ b −→ wp(c, iv)) ∧ vc(c, iv)

Fig. 4. Weakest preconditions and verification conditions

Without going further into program semantics issues, let us only state the fol-
lowing soundness result that relates the operational semantics and the functions
wp and vc:

Theorem 1 (Soundness). If vc(c,Q) is valid and (c, σ)⇒ σ′, then σ(wp(c,Q))
implies σ′(Q).

What is more relevant for our purposes is the structure of the formulas gener-
ated by wp and vc, because it has an impact on the decision procedure for the DL
fragment under consideration here. Besides the notion of “essentially universally
quantified” introduced in Sect. 2, we need the notion of quantifier-free formula:
A formula not containing a quantifier. In extension, we say that a statement is
quantifier-free if all of its formulas are quantifier-free.

By induction on c, one shows:

Lemma 1 (Universally quantified). Let Q be essentially universally quanti-
fied and c be a quantifier-free statement. Then wp(c,Q) and vc(c,Q) are essen-
tially universally quantified.

5 Decision Procedure

5.1 Overview

We present a decision procedure for verifying the validity of essentially univer-
sally quantified formulas. As seen in Lemma 1, this is the format of formulas
extracted by wp and vc, and as motivated by the soundness result (Theorem 1),

validity of verification conditions is a precondition for ensuring that a program
executes according to its specification.

Given an essentially universally quantified formula e, the rough lines of the
procedure for determining that e is valid are spelled out in the following.

Getting rid of quantifiers:

1. Convert e to an equivalent prenex normal form p, which will consist of a
prefix of universal quantifiers, and a quantifier-free body: ∀x1 . . . xn.b

2. p is valid iff its universal closure ucl(p) (universal abstraction over all free
variables of p) is.

3. Show the validity of ucl(p) by showing the unsatisfiability of ¬ucl(p).
4. ¬ucl(p) has the form ¬∀v1 . . . vk, x1 . . . xn.b. Pull negation inside the univer-

sal quantifier prefix, remove the resulting existential quantifier prefix, and
show unsatisfiability of ¬b with the aid of an extended tableau method.

Computation of prenex normal forms is standard. Care has to be taken to
avoid capture of free variables, by renaming bound variables. Free variables are
defined as usual; the free variables of a substitution f [r := r− (v1, v2)] are those
of f and in addition v1 and v2 (similarly for edge insertion). We illustrate the
problem with the following program fragment prg:

select a sth a : A ;

select b sth b r a ;

select a sth a r b

For a given post-condition Q, we obtain

wp(prg,Q) = ∀a.a : A −→ ∀b.(b r a) −→ ∀a.(a r b) −→ Q

whose prenex normal form ∀a1, b, a2. (a1 : A −→ (b r a1) −→ (a2 r b) −→ Q)
contains more logical variables than prg contains program variables.

Extended tableau method – prerequisites: The tableau method takes a quantifier-
free formula f and proves its unsatisfiability or displays a model. We aim at
reusing existing tableau methods (such as [3]) as much as possible. The difficulty
consists in getting rid of the substitution constructor.

Substitution is compatible with the constructors of formulas:

Lemma 2 (Substitution in formulas).
⊥[r := re] = ⊥
(¬f)[r := re] = (¬f [r := re])
(f1 ∧ f2)[r := re] = (f1[r := re] ∧ f2[r := re])
(f1 ∨ f2)[r := re] = (f1[r := re] ∨ f2[r := re])

The case of formulas which are facts, missing in Lemma 2, will be dealt with
separately. This is a consequence of substitution not being compatible with con-
cepts, as will be seen in Sect. 5.2: For a given concept C, there is not necessarily

a concept C ′ = C[r := re]. However, substitutions can be eliminated from facts,
by the equations given in Sect. 5.2.

We will refer to the equations in Lemma 2 and those in Sect. 5.2 as substitu-
tion elimination rules. We say that a substitution in a formula is visible if one of
these rules is applicable; and that it is hidden if none of these rules is applicable.
For example, the substitution in (x : (C1 u C2))[r := re] is visible; it is hidden
in (x : (C1[r := re] u C2[r := re])) and only becomes visible after application of
an appropriate tableau rule, for example of the system ALCQ.

To describe our procedure, we introduce the following terminology: An ABox
is a finite set of facts (interpreted as the conjunction of its facts), and a tableau
a finite set of ABoxes (interpreted as a disjunction of its ABoxes). We need the
following functions:

– push subst takes a formula and applies substitution elimination rules as far
as possible;

– form to tab converts to disjunctive normal form and then performs the ob-
vious translation to a tableau;

– tab to form takes a tableau and constructs the corresponding formula.

Extended tableau method – procedure: Our method is parameterized by the fol-
lowing interface of an implementation of your favorite tableau calculus:

– a transition system T =⇒ T ′, defining a one-step transformation of a tableau
T to a tableau T ′.

– a function sat which checks, for tableaux T that are irreducible wrt. =⇒,
whether T is satisfiable.

From this, we construct a restricted relation T =⇒r T ′, which is the same
as =⇒ provided that T does not contain visible substitutions:

T =⇒ T ′ no visible subst in T
T =⇒r T ′

We also define a relation =⇒s that pushes substitutions until they become
hidden:

T contains visible subst T ′ = form to tab(push subst(tab to form(T)))

T =⇒s T ′

From these, we define the relation =⇒s
r= (=⇒r ∪ =⇒s).

The extended tableau algorithm takes a formula f and computes a Tf such
that form to tab(f)(=⇒s

r)
∗Tf . The result of the algorithm is sat(Tf).

The following lemmas show that =⇒s
r is a correct and complete algorithm

for deciding the decidability of formulas with substitution provided =⇒ is for
substitution-free formulas.

Lemma 3 (Termination). =⇒s
r is well-founded provided =⇒ is.

To show termination of the extended algorithm, define

– the substitution size of a formula or fact as the sum of the term sizes below
its substitutions.

– the substitution size of a tableau as the multiset of the substitution sizes of
its facts.

Note that application of =⇒s leads to a reduction of the substitution size. For
a well-founded measure m of =⇒, construct a well-founded measure of =⇒s

r as
the lexicographic order of the substitution size and m.

Lemma 4 (Confluence). =⇒s
r is confluent provided =⇒ is.

=⇒s
r has no other critical pairs than =⇒.

Lemma 5 (Satisfiability). =⇒s
r preserves satisfiability provided =⇒ does.

The three auxiliary functions used for defining =⇒s do.

5.2 Elimination of Substitutions

We now show how substitutions can be pushed into facts. For lack of space, we
cannot treat all constructors.

For facts of the form x : C, where C is a concept, we have the cases:

– (x : ¬C)[r := re] reduces to x : (¬C[r := re])
– (x : C1 u C2)[r := re] reduces to x : (C1[r := re] u C2[r := re])
– (x : C1 t C2)[r := re] reduces to x : (C1[r := re] t C2[r := re])
– (x : (≥ n r C))[r′ := re], for r′ 6= r, reduces to x : (≥ n r C[r′ := re]), and

similarly when replacing ≥ by <
– (x : (≥ n r C))[r := r − (v1, v2)] reduces to

ite ((x = v1) ∧ (v2 : (C[r := r − (v1, v2)])) ∧ (v1 r v2),
(x : (≥ (n+ 1) r (C[r := r − (v1, v2)]))),
(x : (≥ n r (C[r := r − (v1, v2)]))))

and similarly when replacing ≥ by <
– (x : (≥ (n+ 1) r C))[r := r + (v1, v2)] reduces to

ite ((x = v1) ∧ (v2 : (C[r := r + (v1, v2)])) ∧ (v1 (¬r) v2),
(x : (≥ n r (C[r := r + (v1, v2)]))),
(x : (≥ (n+ 1) r (C[r := r + (v1, v2)]))))

and similarly when replacing ≥ by <
– (x : (≥ 0 r C))[r := r + (v1, v2)] reduces to >
– (x : (< 0 r C))[r := r + (v1, v2)] reduces to ⊥
– Pathological case (x : C[sbst1])[sbst2]: lift inner substitution to (x : C)[sbst1][sbst2],

then apply the above.

6 Conclusions

This paper proposes a language for rewriting knowledge bases, and methods for
reasoning about the correctness of these programs, by means of a Hoare-style
calculus. DL formulas are directly integrated into the statements of the pro-
gramming language. The verification conditions extracted from these programs
has been shown to be decidable, by a modular extension of existing tableau
algorithms.

The work described here is still preliminary, in several respects, and the
following points indicate directions for future investigations:

– We are in the process of coding the theory in the Isabelle proof assistant.
Some parts of the proofs of Sect. 4 and most of Sect. 5.1 still has to be done.
The purpose is to obtain a framework that will allow us to experiment more
easily with variations of the logic.

– We have currently focused on the logic ALCQ. It is interesting to consider
both less expressive logics (which offer more space for optimizations) and
more expressive logics (to explore decidability questions). The process de-
scribed in Sect. 5.1 is rather generic, but it remains to be seen whether more
expressive DLs, featuring more complex role expressions, can be accommo-
dated.

– In any case, the proof procedure sketched in Sect. 5 is rather of a theoret-
ical than a practical value; an efficient implementation should not convert
between formulas and tableaux as indiscriminately as suggested there, but
apply propagation of substitutions locally.

– In a similar vein, it would be interesting to implement a transformation
engine on the basis of the language described here, also with the purpose of
evaluating the practical expressiveness of the language on larger examples.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal
of Functional Programming, 1(4):375–416, October 1991.

2. Franz Baader and Ulrike Sattler. Expressive number restrictions in description
logics. Journal of Logic and Computation, 9(3):319–350, 1999.

3. Franz Baader and Ulrike Sattler. Tableau algorithms for description logics. In
Roy Dyckhoff, editor, Automated Reasoning with Analytic Tableaux and Related
Methods, volume 1847 of Lecture Notes in Computer Science, pages 1–18. Springer
Berlin / Heidelberg, 2000.

4. Philippe Balbiani, Rachid Echahed, and Andreas Herzig. A dynamic logic for
termgraph rewriting. In 5th International Conference on Graph Transformations
(ICGT), volume 6372 of Lecture Notes in Computer Science, pages 59–74. Springer,
2010.

5. Mohamed Chaabani, Mohamed Mezghiche, and Martin Strecker. Vérification
d’une méthode de preuve pour la logique de description ALC. In Yamine Ait-
Ameur, editor, Proc. 10ème Journées Approches Formelles dans l’Assistance au
Développement de Logiciels (AFADL), pages 149–163, June 2010.

6. Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order
logic, a language theoretic approach. Cambridge University Press, 2011.

7. Neil Immerman, Alex Rabinovich, Tom Reps, Mooly Sagiv, and Greta Yorsh. The
boundary between decidability and undecidability for transitive-closure logics. In
Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer Science Logic, vol-
ume 3210 of Lecture Notes in Computer Science, pages 160–174. Springer Berlin /
Heidelberg, 2004.

8. Hongkai Liu, Carsten Lutz, Maja Milicic, and Frank Wolter. Foundations of
instance level updates in expressive description logics. Artificial Intelligence,
175(18):2170–2197, 2011.

9. Anders Møller and Michael I. Schwartzbach. The pointer assertion logic engine.
In PLDI, pages 221–231, 2001.

10. Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL. A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg, 2002.

11. Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL.
PhD thesis, Technische Universität München, 2006.

	Logical Foundations for Reasoning about Transformations of Knowledge Bases

