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Examples of CTL and CTL* formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

Theorem ([CE81,Q582])
CTL model checking is PTIME-complete.

[CE81] Clarke, Emerson. Design and Synthesis of Synchronization Skeletons using
Branching-Time Temporal Logic. LOP’81.

[QS82] Queille, Sifakis. Specification and verification of concurrent systems in CESAR.
SOP’82.



Examples of CTL and CTL* formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

Theorem ([CE81,Q582])
CTL model checking is PTIME-complete.

Theorem ([KVW94])

CTL model checking on product structures is
PSPACE-complete.

[CE81] Clarke, Emerson. Design and Synthesis of Synchronization Skeletons using
Branching-Time Temporal Logic. LOP’81.

[QS82] Queille, Sifakis. Specification and verification of concurrent systems in CESAR.
SOP’82.

[KVW0O94] Kupferman, Vardi, Wolper. An automata-theoretic approach to branching-time
model checking. CAV'94.
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Examples of CTL and CTL* formulas

In CTL*, we have no restriction on modalities and quantifiers.

)

Theorem ([EH86,KVW94])
CTL* model checking is PSPACE-complete.

Theorem ([KVW094])
CTL* model checking on product structures is PSPACE-complete.

W

[EH86] Emerson, Halpern. "Sometimes" and "Not Never" Revisited: On Branching versus
Linear Time Temporal Logic. J.ACM, 1986.

[KVW0O94] Kupferman, Vardi, Wolper. An automata-theoretic approach to branching-time
model checking. CAV'94.
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Concurrent games

A concurrent game is made of
@ a transition system;
@ a set of agents (or players);

@ a table indicating the transition to be taken given the actions
of the players.
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Reasoning about open systems

Concurrent games

A concurrent game is made of
@ a transition system;
@ a set of agents (or players);

@ a table indicating the transition to be taken given the actions
of the players.

Turn-based games C)O
A turn-based game is a game /

wh‘ere only one agent plays at S

a time.



Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.
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A strategy for a given player is a function telling what to play
depending on what has happened previously.

Example

Strategy for player -

alternately go to © and (). %/CD\
s RE

“o




Temporal logics for games: ATL
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Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers

(A) ¢ expresses that A has a strategy to enforce . }
p
QD o (O)FO
4\ o (O)FO
p ° (O) G({O) FO)= (O) Gp

Theorem ([AHKO02])

Model checking ATL is PTIME-complete.
Model checking ATL* is 2-EXPTIME-complete.

[AHKO02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM,

2002.
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ATL with strategy contexts [BDLMO9]

0

() G((@) FO)

/ \ @ consider the following strategy

/O of Player @: “always go to |

@ in the remaining tree, Player

d \ can always enforce a visit to Q.

[BDLMO09] Brihaye, Da Costa, Laroussinie, M. ATL with strategy contexts. LFCS, 2009.
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ATL with strategy contexts

Definition
ATLs. has two new strategy quantifiers: (A) ¢ and ¢A) ¢.

e (A) issimilar to ((A) but assigns the corresponding strategy
to A for evaluating ¢;

@ (A~ drops the assigned strategies for A.
o [A] is dual to (A):

[t = - (A) -

[A] ¢ which states that any strategy for A has an outcome
along which ¢ holds.
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What ATLs. can express

o Client-server interactions for accessing a shared resource:

/\ (-c) F access,

c€eClients

(Server) G | A
- /\ access. /\ access.s
c#c’

@ Existence of Nash equilibria:

Al,.‘., /\ QOA = QDA)

i

e Existence of dominating strategy:

(A) [BI(—¢ = [A] ~¢)



More expressiveness results

Theorem
@ ATLg. is strictly more expressive than ATL,
@ The operator (-A) does not add expressive power,

@ ATl is as expressive as ATL..




More expressiveness results

Theorem
@ ATL is strictly more expressive than ATL,
@ The operator (-A5 does not add expressive power,

@ ATl is as expressive as ATL..

Proof

(A) ¢ = CAgt) (A) @




More expressiveness results

Theorem
@ ATL is strictly more expressive than ATL,
@ The operator (-A5 does not add expressive power,

@ ATl is as expressive as ATL..

Proof

(19 ((2) Xa A (29 X b) is only true in the second game.
But ATL cannot distinguish between these two games.

e e (1.1),(2.2),(3.3)

(2.1) (1.2),(1.3),(3.2) (2.1,(2.3),(3.1)

IO B

(1.1),(2.2)
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More expressiveness results

Theorem
@ ATLg. is strictly more expressive than ATL,
e The operator (-A- does not add expressive power,
o ATL, is as expressive as ATL..

Proof

Replace implicit quantification with explicit one:

(1) = (1) [Agt\ {1} () &

~» we can always assume that the context is full.

e (A)pis then equivalent to [A] (0) ¢;
@ (() can be inserted between two temporal modalities.
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Quantified CTL [ES84,Kup95, Fre01]

QCTL extends CTL with propositional quantifiers

dp. ¢ means that there exists a labelling of the model
with p under which ¢ holds.

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984.
[Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification
over Atomic Propositions. CAV, 1995.
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QCTL extends CTL with propositional quantifiers

dp. ¢ means that there exists a labelling of the model
with p under which ¢ holds.
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Quantified CTL [ES84,Kup95, Fre01]

QCTL extends CTL with propositional quantifiers

dp. ¢ means that there exists a labelling of the model
with p under which ¢ holds.

e EFO AVp. [EF(p A O) = AG(O = p)] = unig(©)

/q Qi)«» true if we label the Kripke structure;
— Ty

~ false if we label the computation tree;

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984.
[Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification
over Atomic Propositions. CAV, 1995.

[Fre01] French. Decidability of Quantifed Propositional Branching Time Logics. AJCAI, 2001
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Expressiveness of QCTL

@ QCTL can “count”:
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[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.
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Expressiveness of QCTL

@ QCTL can “count”:

EXip=EXp AVp. [EX(p A ¢) = AX(p = p)]
EX>p=3qg. [EXi(¢ A g) A EXi(e A —q)]

@ QCTL can express (least or greatest) fixpoints:

uT.o(T)=3t. [AG(t <= p(t))A
(Vt/(AG(t = ¢(t') = AG(t = t')))]

Theorem

QCTL, QCTL* and MSO are equally expressive (under both
semantics).

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.
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QCTL with structure semantics

Theorem

Model checking QCTL for the structure semantics is
PSPACE-complete.

Proof

Membership:

lteratively @ (nondeterministically) pick a labelling,
@ check the subformula.

Hardness:

QBF is a special case (without even using temporal modalities).

Theorem
QCTL satisfiability for the structure semantics is undecidable.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.



QCTL with tree semantics

Theorem

e Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.

o Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.
[LM13a] Laroussinie, M. Quantified CTL: expressiveness and complexity. Submitted, 2013.
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QCTL with tree semantics

Theorem

o Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.

e Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof

Using (alternating) parity tree automata:

5(q0a ) = (q1> C/l)

5(q07 O) (q2a Q2) o . o
5(a1,®) = (a1, 01) 7\ \
8(q2,®) = (92, 92) @ ogoa @@ q

This automaton corresponds to EO U




QCTL with tree semantics

Theorem

Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.

Satistiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof

polynomial-size automata for CTL;

quantification is handled by projection, which first requires
removing alternation (exponential blowup);

an automaton equivalent to a QCTL formula can be built
inductively;

emptiness of an alternating parity tree automaton can be
decided in exponential time.
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@ player A has moves m’f\, m’,f‘;

@ from the transition table, we can compute the
Q set Next(©, A, m?) of states that can be

reached from © when player A plays m,-A.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.



Translating AT L. into QCTL

@ player A has moves m’f\, m’,f‘;

@ from the transition table, we can compute the
Q set Next(©, A, m?) of states that can be

reached from © when player A plays m,-A.

(A) ¢ can be encoded as follows:

A A A
dmg. dmy' ... dm;).

o this corresponds to a strategy: AG(m? & A - mf‘);
o the outcomes all satisfy ¢:
A[G(g A m? = XNext(q, A, m?)) = ¢].

i

v

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.



Translating AT L. into QCTL

@ player A has moves m’f\, m’,f‘;

@ from the transition table, we can compute the
Q set Next(©, A, m?) of states that can be
reached from © when player A plays m,-A.

Corollary

ATLsc model checking is decidable, with non-elementary complexity
(TOWER-complete).

V.

Corollary

ATLY_ (quantification restricted to memoryless strategies) model
checking is PSPACE-complete.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.
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What about satisfiability?

Theorem
QCTL satisfiability is decidable (for the tree semantics).

But

Theorem ([TW12])
ATL. satisfiability is undecidable.

Why?

The translation from ATLs. to QCTL assumes
that the game structure is given!

[TW12] Troquard, Walther. On Satisfiability in ATL with Strategy Contexts. JELIA, 2012.



Satisfiability for turn-based games

Theorem (LM13b)

When restricted to turn-based games, ATLs. satisfiability is
decidable.

[LM13b] Laroussinie, M. Satisfiability of ATL with strategy contexts. Gandalf, 2013.



Satisfiability for turn-based games

Theorem (LM13b)

When restricted to turn-based games, ATLs. satisfiability is
decidable.

|__Y‘< @ player [ has moves O and O.
Q @ a strategy can be encoded by marking some of

the nodes of the tree with proposition mov 4.

(A} ¢ can be encoded as follows:

dmov,.
@ it corresponds to a strategy: A G(turna = E X1 movy);
o the outcomes all satisfy ¢:  A[G(turna A X mova) = ¢].

[LM13b] Laroussinie, M. Satisfiability of ATL with strategy contexts. Gandalf, 2013.



What about Strategy Logic? [CHP07,MMV10]

Strategy logic

Explicit quantification over strategies + strategy assignement

V.

Example
(A) o = Joy.assign(o1, A).p

Strategy logic can also be translated into QCTL.

Theorem
e Strategy-logic model-checking is decidable.

o Strategy-logic satisfiability is decidable when restricted to
turn-based games.

[CHPO7] Chatterjee, Henzinger, Piterman. Strategy Logic. CONCUR, 2007.
[MMV10] Mogavero, Murano, Vardi. Reasoning about strategies. FSTTCS, 2010.



Conclusions and future works

Conclusions
@ QCTL is a powerful extension of CTL;

@ it is equivalent to MSO over finite graphs and regular trees;

@ it is a nice tool to understand temporal logics for games (ATL
with strategy contexts, Strategy Logic, ...);




Conclusions and future works

Conclusions
@ QCTL is a powerful extension of CTL;
@ it is equivalent to MSO over finite graphs and regular trees;

@ it is a nice tool to understand temporal logics for games (ATL
with strategy contexts, Strategy Logic, ...);

Future directions

@ Defining interesting (expressive yet tractable) fragments of
those logics;

@ Obtaining practicable algorithms.

o Considering randomised strategies.




