Temporal logics for multi-agent systems

Nicolas Markey LSV – ENS Cachan

(based on joint works with Thomas Brihaye, Arnaud Da Costa-Lopes, François Laroussinie)

« Formalisation des Activités Concurrentes »

Toulouse, 16 April 2014

Model checking and synthesis

Model checking and synthesis

Outline of the presentation

- Introduction
- Basics of CTL and ATL
 - expressing properties of reactive systems
 - efficient verification algorithms
- 3 Temporal logics for multi-agent systems
 - specifying properties of complex interacting systems
 - expressive power of ATL_{sc}
 - translation into Quantified CTL (QCTL)
 - algorithms for ATL_{sc}
- 4 Conclusions and future works

Outline of the presentation

- Introduction
- 2 Basics of CTL and ATL
 - expressing properties of reactive systems
 - efficient verification algorithms
- Temporal logics for multi-agent systems
 - specifying properties of complex interacting systems
 - expressive power of ATL_{sc}
 - translation into Quantified CTL (QCTL)
 - algorithms for ATL_{sc}
- 4 Conclusions and future works

• atomic propositions: \bigcirc , \bigcirc , ...

- atomic propositions: O, O, ...
- boolean combinators: $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$, ...

- atomic propositions: \bigcirc , \bigcirc , ...
- boolean combinators: $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$, ...
- temporal modalities:

- atomic propositions: \bigcirc , \bigcirc , ...
- boolean combinators: $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$, ...
- temporal modalities:

- atomic propositions: \bigcirc , \bigcirc , ...
- boolean combinators: $\neg \varphi, \varphi \lor \psi, \varphi \land \psi, ...$
- temporal modalities:

• path quantifiers:

In CTL, each temporal modality is in the immediate scope of a path quantifier.

In CTL, each temporal modality is in the immediate scope of a path quantifier.

In CTL, each temporal modality is in the immediate scope of a path quantifier.

In CTL, each temporal modality is in the immediate scope of a path quantifier.

 $\mathsf{EG}(\neg \bigcirc \land \mathsf{EF} \bigcirc)$

there is a path along which is always reachable, but never reached

In CTL, each temporal modality is in the immediate scope of a path quantifier.

$$\mathsf{EG}(\neg \bigcirc \land \underbrace{\mathsf{EF}}_{p})$$

there is a path along which is always reachable, but never reached

In CTL, each temporal modality is in the immediate scope of a path quantifier.

$$\mathsf{EG}(\neg \bigcirc \land \underbrace{\mathsf{EF}}_{p})$$

there is a path along which is always reachable, but never reached

In CTL, each temporal modality is in the immediate scope of a path quantifier.

Theorem ([CE81,QS82])

CTL model checking is PTIME-complete.

[CE81] Clarke, Emerson. Design and Synthesis of Synchronization Skeletons using Branching-Time Temporal Logic. LOP'81.

 $\cite{QS82}$ Queille, Sifakis. Specification and verification of concurrent systems in CESAR. SOP'82.

In CTL, each temporal modality is in the immediate scope of a path quantifier.

Theorem ([CE81,QS82])

CTL model checking is PTIME-complete.

Theorem ([KVW94])

CTL model checking on product structures is PSPACE-complete.

[CE81] Clarke, Emerson. Design and Synthesis of Synchronization Skeletons using Branching-Time Temporal Logic. LOP'81.

[QS82] Queille, Sifakis. Specification and verification of concurrent systems in CESAR. SOP'82.

[KVW94] Kupferman, Vardi, Wolper. An automata-theoretic approach to branching-time model checking. CAV'94.

In CTL*, we have no restriction on modalities and quantifiers.

In CTL*, we have no restriction on modalities and quantifiers.

EGF there is a path visiting infinitely many times

In CTL*, we have no restriction on modalities and quantifiers.

 $\mathsf{A}(\mathsf{G}\,\mathsf{F} \bigcirc \Rightarrow \mathsf{G}(\,\neg\,\bigcirc)) \qquad \text{any path that visits} \bigcirc \text{infinitely many times,}$ never visits \bigcirc

In CTL*, we have no restriction on modalities and quantifiers.

 $\mathsf{A}(\mathsf{G}\,\mathsf{F} \bigcirc \Rightarrow \mathsf{G}(\,\neg\,\bigcirc)) \qquad \text{any path that visits} \bigcirc \text{infinitely many times,}$ never visits \bigcirc

In CTL*, we have no restriction on modalities and quantifiers.

Theorem ([EH86,KVW94])

CTL* model checking is PSPACE-complete.

Theorem ([KVW94])

CTL* model checking on product structures is PSPACE-complete.

[EH86] Emerson, Halpern. "Sometimes" and "Not Never" Revisited: On Branching versus Linear Time Temporal Logic. J.ACM, 1986. [KVW94] Kupferman, Vardi, Wolper. An automata-theoretic approach to branching-time model checking. CAV'94.

Concurrent games

A concurrent game is made of

• a transition system;

Concurrent games

A concurrent game is made of

- a transition system;
- a set of agents (or players);

Concurrent games

A concurrent game is made of

- a transition system;
- a set of agents (or players);
- a table indicating the transition to be taken given the actions of the players.

		player 1		
				20
player 2		90	q_2	q_1
		q_1	90	q 2
	8	q ₂	q_1	90

Concurrent games

A concurrent game is made of

- a transition system;
- a set of agents (or players);
- a table indicating the transition to be taken given the actions of the players.

Turn-based games

A turn-based game is a game where only one agent plays at a time.

Strategies

A strategy for a given player is a function telling what to play depending on what has happened previously.

Strategies

A strategy for a given player is a function telling what to play depending on what has happened previously.

Example

Strategy for player : alternately go to and .

Strategies

A strategy for a given player is a function telling what to play depending on what has happened previously.

ATL extends CTL with strategy quantifiers

ATL extends CTL with strategy quantifiers

ATL extends CTL with strategy quantifiers

ATL extends CTL with strategy quantifiers

ATL extends CTL with strategy quantifiers

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers

 $\langle\!\langle A \rangle\!\rangle \varphi$ expresses that A has a strategy to enforce φ .

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers

 $\langle\!\langle A \rangle\!\rangle \varphi$ expresses that A has a strategy to enforce φ .

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers

 $\langle\!\langle A \rangle\!\rangle \varphi$ expresses that A has a strategy to enforce φ .

Theorem ([AHK02])

Model checking ATL is PTIME-complete. Model checking ATL* is 2-EXPTIME-complete.

Outline of the presentation

- Introduction
- 2 Basics of CTL and ATL
 - expressing properties of reactive systems
 - efficient verification algorithms
- 3 Temporal logics for multi-agent systems
 - specifying properties of complex interacting systems
 - expressive power of ATL_{sc}
 - translation into Quantified CTL (QCTL)
 - algorithms for ATL_{sc}
- 4 Conclusions and future works

$$\langle\!\langle \bigcirc \rangle\!\rangle$$
 G($\langle\!\langle \Box \rangle\!\rangle$ F $\bigcirc\!\langle \bigcirc$)

 consider the following strategy of Player ○: "always go to ";

 consider the following strategy of Player ○: "always go to □";

[BDLM09]

$$\langle\!\langle \bigcirc \rangle\!\rangle$$
 G($\langle\!\langle \Box \rangle\!\rangle$ F $\bigcirc\!\langle \bigcirc$)

- consider the following strategy of Player ○: "always go to ";
- in the remaining tree, Player can always enforce a visit to .

ATL with strategy contexts

Definition

ATL_{sc} has two new strategy quantifiers: $\langle A \rangle \varphi$ and $\langle A - \rangle \varphi$.

• $\langle A \rangle$ is similar to $\langle A \rangle$ but assigns the corresponding strategy to A for evaluating φ ;

ATL with strategy contexts

Definition

ATL_{sc} has two new strategy quantifiers: $\langle A \rangle \varphi$ and $\langle A - \rangle \varphi$.

- $\langle A \rangle$ is similar to $\langle A \rangle$ but assigns the corresponding strategy to A for evaluating φ ;
- $\langle -A \rangle$ drops the assigned strategies for A.

ATL with strategy contexts

Definition

ATL_{sc} has two new strategy quantifiers: $\langle A \rangle \varphi$ and $\langle A - \rangle \varphi$.

- $\langle A \rangle$ is similar to $\langle A \rangle$ but assigns the corresponding strategy to A for evaluating φ ;
- $\langle -A \rangle$ drops the assigned strategies for A.
- [A] is dual to $\langle A \rangle$:

$$[A]\varphi \equiv \neg \langle A \rangle \neg \varphi$$

 $[A] \varphi$ which states that any strategy for A has an outcome along which φ holds.

What ATL_{sc} can express

• Client-server interactions for accessing a shared resource:

$$\langle \mathsf{Server} \rangle \; \mathbf{G} \left[\begin{array}{c} \bigwedge\limits_{c \in \mathsf{Clients}} \langle c \cdot \rangle \; \mathbf{F} \, \mathsf{access}_c \\ \wedge \\ \neg \bigwedge\limits_{c \neq c'} \mathsf{access}_c \; \wedge \; \mathsf{access}_{c'} \end{array} \right]$$

What ATL_{sc} can express

Client-server interactions for accessing a shared resource:

$$\langle \mathsf{Server} \rangle \; \mathbf{G} \left[\begin{array}{c} \bigwedge\limits_{c \in \mathsf{Clients}} \langle c \rangle \; \mathbf{F} \; \mathsf{access}_c \\ \wedge \\ \neg \bigwedge\limits_{c \neq c'} \mathsf{access}_c \; \wedge \; \mathsf{access}_{c'} \end{array} \right]$$

Existence of Nash equilibria:

$$\langle A_1, ..., A_n \rangle \bigwedge_i (\langle A_i \rangle \varphi_{A_i} \Rightarrow \varphi_{A_i})$$

What ATL_{sc} can express

Client-server interactions for accessing a shared resource:

$$\langle \mathsf{Server} \rangle \; \mathbf{G} \left[\begin{array}{c} \bigwedge_{c \in \mathsf{Clients}} \langle c \cdot \rangle \; \mathbf{F} \; \mathsf{access}_c \\ \wedge \\ \neg \bigwedge_{c \neq c'} \mathsf{access}_c \; \wedge \; \mathsf{access}_{c'} \end{array} \right]$$

Existence of Nash equilibria:

$$\langle A_1,...,A_n \rangle \bigwedge_i (\langle A_i \rangle \varphi_{A_i} \Rightarrow \varphi_{A_i})$$

Existence of dominating strategy:

$$\langle A \rangle [B] (\neg \varphi \Rightarrow [A] \neg \varphi)$$

Theorem

- ATL_{sc} is strictly more expressive than ATL,
- The operator <-A-> does not add expressive power,
- ATL_{sc} is as expressive as ATL_{sc}^* .

Theorem

- ATL_{sc} is strictly more expressive than ATL,
- The operator <-A-> does not add expressive power,
- ATL_{sc} is as expressive as ATL_{sc}.

Proof

$$\langle\!\langle A \rangle\!\rangle\,\varphi \equiv \,\langle \text{-Agt--} \rangle \,\,\langle \cdot A \cdot \rangle \,\hat{\varphi}$$

Theorem

- ATL_{sc} is strictly more expressive than ATL,
- The operator <-A-> does not add expressive power,
- ATL_{sc} is as expressive as ATL $_{sc}^*$.

Proof

 $\langle 1 \rangle$ ($\langle 2 \rangle$ **X** $a \land \langle 2 \rangle$ **X** b) is only true in the second game. But ATL cannot distinguish between these two games.

Theorem

- ATL_{sc} is strictly more expressive than ATL,
- The operator $\langle -A \rangle$ does not add expressive power,
- ATL_{sc} is as expressive as ATL_{sc}.

Proof

Replace implicit quantification with explicit one:

$$\langle 1 \rangle \, \varphi \equiv \, \langle 1 \rangle \, \left[\mathsf{Agt} \setminus \{1\} \right] \, \langle \emptyset \rangle \, \widehat{\varphi}$$

 \sim we can always assume that the context is full.

Theorem

- ATL_{sc} is strictly more expressive than ATL,
- The operator ⟨-A-⟩ does not add expressive power,
- ATL_{sc} is as expressive as ATL $_{sc}^*$.

Proof

Replace implicit quantification with explicit one:

$$\langle 1 \rangle \varphi \equiv \langle 1 \rangle \text{ [Agt } \backslash \{1\} \text{] } \langle \emptyset \rangle \widehat{\varphi}$$

 \sim we can always assume that the context is full.

- $\langle -A \rangle \varphi$ is then equivalent to $[A] \langle \emptyset \rangle \varphi$;
- $\langle \emptyset \rangle$ can be inserted between two temporal modalities.

Outline of the presentation

- Introduction
- Basics of CTL and ATL
 - expressing properties of reactive systems
 - efficient verification algorithms
- 3 Temporal logics for multi-agent systems
 - specifying properties of complex interacting systems
 - expressive power of ATL_{sc}
 - translation into Quantified CTL (QCTL)
 - algorithms for ATL_{sc}
- 4 Conclusions and future works

 $\exists p. \ \varphi$ means that there exists a labelling of the model with p under which φ holds.

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984. [Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification over Atomic Propositions. CAV, 1995.

[Fre01] French. Decidability of Quantifed Propositional Branching Time Logics. AJCAI, 2001: * 4 🛢 🕨

 $\exists p. \ \varphi$ means that there exists a labelling of the model with p under which φ holds.

• $\mathsf{EF} \bigcirc \land \forall p. \ [\mathsf{EF}(p \land \bigcirc) \Rightarrow \mathsf{AG}(\bigcirc \Rightarrow p)]$

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984. [Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification over Atomic Propositions. CAV, 1995.

 $\exists p. \ \varphi$ means that there exists a labelling of the model with p under which φ holds.

• $\mathsf{EF} \bigcirc \land \forall p. \ [\mathsf{EF}(p \land \bigcirc) \Rightarrow \mathsf{AG}(\bigcirc \Rightarrow p)] \equiv \mathsf{uniq}(\bigcirc)$

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984. [Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification over Atomic Propositions. CAV, 1995.

 $\exists p. \ \varphi$ means that there exists a labelling of the model with p under which φ holds.

•
$$\mathsf{EF} \bigcirc \land \forall p. \ [\mathsf{EF}(p \land \bigcirc) \Rightarrow \mathsf{AG}(\bigcirc \Rightarrow p)] \equiv \mathsf{uniq}(\bigcirc)$$

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984. [Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification over Atomic Propositions. CAV, 1995.

Semantics of QCTL

• structure semantics:

Semantics of QCTL

• structure semantics:

• tree semantics:

Expressiveness of QCTL

QCTL can "count":

$$\mathbf{E} \, \mathbf{X}_1 \, \varphi \equiv \mathbf{E} \, \mathbf{X} \, \varphi \, \wedge \, \forall p. \, \left[\mathbf{E} \, \mathbf{X} (p \, \wedge \, \varphi) \, \Rightarrow \, \mathbf{A} \, \mathbf{X} (\varphi \, \Rightarrow \, p) \right]$$
$$\mathbf{E} \, \mathbf{X}_2 \, \varphi \equiv \exists q. \, \left[\mathbf{E} \, \mathbf{X}_1 (\varphi \, \wedge \, q) \, \wedge \, \mathbf{E} \, \mathbf{X}_1 (\varphi \, \wedge \, \neg \, q) \right]$$

Expressiveness of QCTL

QCTL can "count":

$$\mathbf{E} \, \mathbf{X}_1 \, \varphi \equiv \mathbf{E} \, \mathbf{X} \, \varphi \, \wedge \, \forall p. \, \left[\mathbf{E} \, \mathbf{X} (p \, \wedge \, \varphi) \, \Rightarrow \, \mathbf{A} \, \mathbf{X} (\varphi \, \Rightarrow \, p) \right]$$
$$\mathbf{E} \, \mathbf{X}_2 \, \varphi \equiv \exists q. \, \left[\mathbf{E} \, \mathbf{X}_1 (\varphi \, \wedge \, q) \, \wedge \, \mathbf{E} \, \mathbf{X}_1 (\varphi \, \wedge \, \neg \, q) \right]$$

QCTL can express (least or greatest) fixpoints:

$$\mu T.\varphi(T) \equiv \exists t. \ [\mathbf{A} \ \mathbf{G}(t \iff \varphi(t)) \land \\ (\forall t.'(\mathbf{A} \ \mathbf{G}(t' \iff \varphi(t')) \Rightarrow \mathbf{A} \ \mathbf{G}(t \Rightarrow t')))]$$

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.

Expressiveness of QCTL

QCTL can "count":

$$\mathbf{E} \, \mathbf{X}_1 \, \varphi \equiv \mathbf{E} \, \mathbf{X} \, \varphi \, \wedge \, \forall p. \, \left[\mathbf{E} \, \mathbf{X} (p \, \wedge \, \varphi) \, \Rightarrow \, \mathbf{A} \, \mathbf{X} (\varphi \, \Rightarrow \, p) \right]$$
$$\mathbf{E} \, \mathbf{X}_2 \, \varphi \equiv \exists q. \, \left[\mathbf{E} \, \mathbf{X}_1 (\varphi \, \wedge \, q) \, \wedge \, \mathbf{E} \, \mathbf{X}_1 (\varphi \, \wedge \, \neg \, q) \right]$$

QCTL can express (least or greatest) fixpoints:

$$\mu T.\varphi(T) \equiv \exists t. \ [\mathbf{A} \ \mathbf{G}(t \iff \varphi(t)) \land \\ (\forall t.'(\mathbf{A} \ \mathbf{G}(t' \iff \varphi(t')) \Rightarrow \mathbf{A} \ \mathbf{G}(t \Rightarrow t')))]$$

Theorem

QCTL, QCTL* and MSO are equally expressive (under both semantics).

QCTL with structure semantics

Theorem

Model checking QCTL for the structure semantics is PSPACE-complete.

QCTL with structure semantics

Theorem

Model checking QCTL for the structure semantics is PSPACE-complete.

Proof

Membership:

Iteratively

- (nondeterministically) pick a labelling,
- check the subformula.

Hardness:

QBF is a special case (without even using temporal modalities).

QCTL with structure semantics

Theorem

Model checking QCTL for the structure semantics is PSPACE-complete.

Proof

Membership:

Iteratively

- (nondeterministically) pick a labelling,
- check the subformula.

Hardness:

QBF is a special case (without even using temporal modalities).

Theorem

QCTL satisfiability for the structure semantics is undecidable.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking. CONCUR, 2012.

Theorem

- Model checking QCTL with k quantifiers in the tree semantics is k-EXPTIME-complete.
- Satisfiability of QCTL with k quantifiers in the tree semantics is (k+1)-EXPTIME-complete.

Theorem

- Model checking QCTL with k quantifiers in the tree semantics is k-EXPTIME-complete.
- Satisfiability of QCTL with k quantifiers in the tree semantics is (k+1)-EXPTIME-complete.

Proof

Using (alternating) parity tree automata:

Theorem

- Model checking QCTL with k quantifiers in the tree semantics is k-EXPTIME-complete.
- Satisfiability of QCTL with k quantifiers in the tree semantics is (k+1)-EXPTIME-complete.

Proof

Using (alternating) parity tree automata:

Theorem

- Model checking QCTL with k quantifiers in the tree semantics is k-EXPTIME-complete.
- Satisfiability of QCTL with k quantifiers in the tree semantics is (k+1)-EXPTIME-complete.

Proof

Using (alternating) parity tree automata:

$$\delta(\mathbf{q}_0, \bigcirc) = (\mathbf{q}_0, \mathbf{q}_1) \vee (\mathbf{q}_1, \mathbf{q}_0)$$

$$\delta(q_0, \bigcirc) = (q_1, q_1)$$

$$\delta(q_0, \mathbb{O}) = (q_2, q_2)$$

$$\delta(q_1, \mathfrak{D}) = (q_1, q_1)$$

$$\delta(\mathbf{q}_2, \mathfrak{D}) = (\mathbf{q}_2, \mathbf{q}_2)$$

Theorem

- Model checking QCTL with k quantifiers in the tree semantics is k-EXPTIME-complete.
- Satisfiability of QCTL with k quantifiers in the tree semantics is (k+1)-EXPTIME-complete.

Proof

$$\delta(\mathbf{q}_0, \bigcirc) = (\mathbf{q}_0, \mathbf{q}_1) \vee (\mathbf{q}_1, \mathbf{q}_0)$$

$$\delta(q_0, \bigcirc) = (q_1, q_1)$$

$$\delta(q_0, \mathbb{O}) = (q_2, q_2)$$

$$\delta(q_1, \mathfrak{D}) = (q_1, q_1)$$

$$\delta(q_2, \mathfrak{D}) = (q_2, q_2)$$

Theorem

- Model checking QCTL with k quantifiers in the tree semantics is k-EXPTIME-complete.
- Satisfiability of QCTL with k quantifiers in the tree semantics is (k+1)-EXPTIME-complete.

Proof

$$\delta(q_0, \bigcirc) = (q_0, q_1) \vee (q_1, q_0)$$

$$\delta(q_0, \bigcirc) = (q_1, q_1)$$

$$\delta(q_0, \mathbb{O}) = (q_2, q_2)$$

$$\delta(q_1, \mathfrak{D}) = (q_1, q_1)$$

$$\delta(q_2, \mathfrak{D}) = (q_2, q_2)$$

Theorem

- Model checking QCTL with k quantifiers in the tree semantics is k-EXPTIME-complete.
- Satisfiability of QCTL with k quantifiers in the tree semantics is (k+1)-EXPTIME-complete.

Proof

$$\delta(\mathbf{q}_0, \bigcirc) = (\mathbf{q}_0, q_1) \lor (q_1, \mathbf{q}_0)$$

$$\delta(\mathbf{q}_0, \bigcirc) = (q_1, q_1)$$

$$\delta(q_0, \bigcirc) = (q_2, q_2)$$

$$\delta(q_1, \mathfrak{D}) = (q_1, q_1)$$

$$\delta(q_2, \circledast) = (q_2, q_2)$$

Theorem

- Model checking QCTL with k quantifiers in the tree semantics is k-EXPTIME-complete.
- Satisfiability of QCTL with k quantifiers in the tree semantics is (k+1)-EXPTIME-complete.

Proof

$$\delta(\mathbf{q}_0, \bigcirc) = (\mathbf{q}_0, q_1) \lor (q_1, \mathbf{q}_0)$$

$$\delta(\mathbf{q}_0, \bigcirc) = (q_1, q_1)$$

$$\delta(q_0, \mathbb{O}) = (q_2, q_2)$$

$$\delta(q_1, \mathfrak{D}) = (q_1, q_1)$$

$$\delta(q_2, \circledast) = (q_2, q_2)$$

Theorem

- Model checking QCTL with k quantifiers in the tree semantics is k-EXPTIME-complete.
- Satisfiability of QCTL with k quantifiers in the tree semantics is (k+1)-EXPTIME-complete.

Proof

$$\delta(\mathbf{q}_0, \bigcirc) = (\mathbf{q}_0, q_1) \lor (q_1, \mathbf{q}_0)$$

$$\delta(\mathbf{q}_0, \bigcirc) = (q_1, q_1)$$

$$\delta(q_0, \mathbb{O}) = (q_2, q_2)$$

$$\delta(q_1, \mathfrak{D}) = (q_1, q_1)$$

$$\delta(q_2, \mathfrak{D}) = (q_2, q_2)$$

Theorem

- Model checking QCTL with k quantifiers in the tree semantics is k-EXPTIME-complete.
- Satisfiability of QCTL with k quantifiers in the tree semantics is (k+1)-EXPTIME-complete.

Proof

$$\delta(\mathbf{q}_0, \bigcirc) = (\mathbf{q}_0, q_1) \lor (q_1, \mathbf{q}_0)$$

$$\delta(\mathbf{q}_0, \bigcirc) = (q_1, q_1)$$

$$\delta(q_0, \mathbb{O}) = (q_2, q_2)$$

$$\delta(q_1, \mathfrak{D}) = (q_1, q_1)$$

$$\delta(q_2, \mathfrak{D}) = (q_2, q_2)$$

Theorem

- Model checking QCTL with k quantifiers in the tree semantics is k-EXPTIME-complete.
- Satisfiability of QCTL with k quantifiers in the tree semantics is (k+1)-EXPTIME-complete.

Proof

$$\delta(\mathbf{q}_0, \bigcirc) = (\mathbf{q}_0, q_1) \lor (q_1, \mathbf{q}_0)$$

$$\delta(\mathbf{q}_0, \bigcirc) = (q_1, q_1)$$

$$\delta(q_0, \mathbb{O}) = (q_2, q_2)$$

$$\delta(q_1, \mathfrak{D}) = (q_1, q_1)$$

$$\delta(q_2, \mathfrak{D}) = (q_2, q_2)$$

Theorem

- Model checking QCTL with k quantifiers in the tree semantics is k-EXPTIME-complete.
- Satisfiability of QCTL with k quantifiers in the tree semantics is (k+1)-EXPTIME-complete.

Proof

Using (alternating) parity tree automata:

$$\delta(\mathbf{q}_0, \bigcirc) = (\mathbf{q}_0, q_1) \lor (q_1, \mathbf{q}_0)$$

$$\delta(\mathbf{q}_0, \bigcirc) = (q_1, q_1)$$

$$\delta(q_0, \mathbb{O}) = (q_2, q_2)$$

$$\delta(q_1, \mathfrak{D}) = (q_1, q_1)$$

$$\delta(\mathbf{q}_2, \mathfrak{D}) = (\mathbf{q}_2, \mathbf{q}_2)$$

This automaton corresponds to **E** U

Theorem

- Model checking QCTL with k quantifiers in the tree semantics is k-EXPTIME-complete.
- Satisfiability of QCTL with k quantifiers in the tree semantics is (k+1)-EXPTIME-complete.

Proof

- polynomial-size automata for CTL;
- quantification is handled by projection, which first requires removing alternation (exponential blowup);
- an automaton equivalent to a QCTL formula can be built inductively;
- emptiness of an alternating parity tree automaton can be decided in exponential time.

Translating ATL_{sc} into QCTL

- player A has moves m_1^A , ..., m_n^A ;
- from the transition table, we can compute the set Next(\bigcirc , A, m_i^A) of states that can be reached from \bigcirc when player A plays m_i^A .

Translating ATL_{sc} into QCTL

- player A has moves m_1^A , ..., m_n^A ;
- from the transition table, we can compute the set $\text{Next}(\bigcirc, A, m_i^A)$ of states that can be reached from \bigcirc when player A plays m_i^A .

$\langle A \rangle \varphi$ can be encoded as follows:

$$\exists m_1^A. \exists m_2^A \ldots \exists m_n^A.$$

- this corresponds to a strategy: $\mathbf{A} \mathbf{G}(m_i^A \Leftrightarrow \bigwedge \neg m_j^A)$;
- the outcomes all satisfy φ :

$$A[G(q \land m_i^A \Rightarrow X Next(q, A, m_i^A)) \Rightarrow \varphi].$$

Translating ATL_{sc} into QCTL

- player A has moves m_1^A , ..., m_n^A ;
- from the transition table, we can compute the set Next(\bigcirc , A, m_i^A) of states that can be reached from \bigcirc when player A plays m_i^A .

Corollary

 ATL_{sc} model checking is decidable, with non-elementary complexity (TOWER-complete).

Corollary

 ATL_{sc}^{0} (quantification restricted to memoryless strategies) model checking is PSPACE-complete.

What about satisfiability?

Theorem

QCTL satisfiability is decidable (for the tree semantics).

What about satisfiability?

Theorem

QCTL satisfiability is decidable (for the tree semantics).

But

Theorem ([TW12])

ATL_{sc} satisfiability is undecidable.

What about satisfiability?

Theorem

QCTL satisfiability is decidable (for the tree semantics).

But

Theorem ([TW12])

ATL_{sc} satisfiability is undecidable.

Why?

The translation from ATL_{sc} to QCTL assumes that the game structure is given!

Satisfiability for turn-based games

Theorem (LM13b)

When restricted to turn-based games, ATL_{sc} satisfiability is decidable.

Satisfiability for turn-based games

Theorem (LM13b)

When restricted to turn-based games, ATL_{sc} satisfiability is decidable.

- player \square has moves \bigcirc , and \bigcirc .
- a strategy can be encoded by marking some of the nodes of the tree with proposition mov_A.

$\langle A \rangle \varphi$ can be encoded as follows:

$\exists \mathsf{mov}_A$.

- it corresponds to a strategy: $A G(turn_A \Rightarrow E X_1 mov_A)$;
- the outcomes all satisfy φ : $\mathbf{A}[\mathbf{G}(\mathsf{turn}_A \wedge \mathbf{X} \mathsf{mov}_A) \Rightarrow \varphi]$.

What about Strategy Logic? [CHP07,MMV10]

Strategy logic

Explicit quantification over strategies + strategy assignement

Example

$$\langle A \rangle \varphi \equiv \exists \sigma_1.\mathsf{assign}(\sigma_1, A).\varphi$$

Strategy logic can also be translated into QCTL.

Theorem

- Strategy-logic model-checking is decidable.
- Strategy-logic satisfiability is decidable when restricted to turn-based games.

Conclusions and future works

Conclusions

- QCTL is a powerful extension of CTL;
- it is equivalent to MSO over finite graphs and regular trees;
- it is a nice tool to understand temporal logics for games (ATL with strategy contexts, Strategy Logic, ...);

Conclusions and future works

Conclusions

- QCTL is a powerful extension of CTL;
- it is equivalent to MSO over finite graphs and regular trees;
- it is a nice tool to understand temporal logics for games (ATL with strategy contexts, Strategy Logic, ...);

Future directions

- Defining interesting (expressive yet tractable) fragments of those logics;
- Obtaining practicable algorithms.
- Considering randomised strategies.