
Temporal logics for multi-agent systems

Nicolas Markey
LSV – ENS Cachan

(based on joint works with Thomas Brihaye,
Arnaud Da Costa-Lopes, François Laroussinie)

« Formalisation des Activités Concurrentes »

Toulouse, 16 April 2014

Model checking and synthesis

system:

[http://www.embedded.com]

3

propriété

a!
b?

a?
b!

AG(¬ B.overfull
∧ ¬ B.dried_up)

model-checking
algorithm

yes/no

a?
b!

http://www.embedded.com/design/prototyping-and-development/4024929/An-introduction-to-model-checking

Model checking and synthesis

system:

[http://www.embedded.com]

3

propriété

a!
b?

a?
b! ? AG(¬ B.overfull

∧ ¬ B.dried_up)
synthesis
algorithm

yes/no

a?
b!

http://www.embedded.com/design/prototyping-and-development/4024929/An-introduction-to-model-checking

Outline of the presentation

1 Introduction

2 Basics of CTL and ATL
expressing properties of reactive systems
efficient verification algorithms

3 Temporal logics for multi-agent systems
specifying properties of complex interacting systems
expressive power of ATLsc
translation into Quantified CTL (QCTL)
algorithms for ATLsc

4 Conclusions and future works

Outline of the presentation

1 Introduction

2 Basics of CTL and ATL
expressing properties of reactive systems
efficient verification algorithms

3 Temporal logics for multi-agent systems
specifying properties of complex interacting systems
expressive power of ATLsc
translation into Quantified CTL (QCTL)
algorithms for ATLsc

4 Conclusions and future works

Computation-Tree Logic (CTL)
atomic propositions: , , ...

boolean combinators: ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ...

temporal modalities:

X ϕ ϕ “next ϕ”

ϕ U ψ ϕ ϕ ψ “ϕ until ψ”

ϕ “eventually ϕ”true U ϕ ≡ F ϕ

¬ F ¬ϕ ≡ G ϕ ϕ ϕ ϕ ϕ ϕ “always ϕ”

path quantifiers:

Eϕ
ϕ

Aϕ

ϕ
ϕ
ϕ
ϕ
ϕ
ϕ

Computation-Tree Logic (CTL)
atomic propositions: , , ...

boolean combinators: ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ...

temporal modalities:

X ϕ ϕ “next ϕ”

ϕ U ψ ϕ ϕ ψ “ϕ until ψ”

ϕ “eventually ϕ”true U ϕ ≡ F ϕ

¬ F ¬ϕ ≡ G ϕ ϕ ϕ ϕ ϕ ϕ “always ϕ”

path quantifiers:

Eϕ
ϕ

Aϕ

ϕ
ϕ
ϕ
ϕ
ϕ
ϕ

Computation-Tree Logic (CTL)
atomic propositions: , , ...

boolean combinators: ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ...

temporal modalities:

X ϕ ϕ “next ϕ”

ϕ U ψ ϕ ϕ ψ “ϕ until ψ”

ϕ “eventually ϕ”true U ϕ ≡ F ϕ

¬ F ¬ϕ ≡ G ϕ ϕ ϕ ϕ ϕ ϕ “always ϕ”

path quantifiers:

Eϕ
ϕ

Aϕ

ϕ
ϕ
ϕ
ϕ
ϕ
ϕ

Computation-Tree Logic (CTL)
atomic propositions: , , ...

boolean combinators: ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ...

temporal modalities:

X ϕ ϕ “next ϕ”

ϕ U ψ ϕ ϕ ψ “ϕ until ψ”

ϕ “eventually ϕ”true U ϕ ≡ F ϕ

¬ F ¬ϕ ≡ G ϕ ϕ ϕ ϕ ϕ ϕ “always ϕ”

path quantifiers:

Eϕ
ϕ

Aϕ

ϕ
ϕ
ϕ
ϕ
ϕ
ϕ

Computation-Tree Logic (CTL)
atomic propositions: , , ...

boolean combinators: ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ...

temporal modalities:

X ϕ ϕ “next ϕ”

ϕ U ψ ϕ ϕ ψ “ϕ until ψ”

ϕ “eventually ϕ”true U ϕ ≡ F ϕ

¬ F ¬ϕ ≡ G ϕ ϕ ϕ ϕ ϕ ϕ “always ϕ”

path quantifiers:

Eϕ
ϕ

Aϕ

ϕ
ϕ
ϕ
ϕ
ϕ
ϕ

Examples of CTL and CTL∗ formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

p p

p

Examples of CTL and CTL∗ formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

EF is reachable

p p

p

Examples of CTL and CTL∗ formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

EF is reachable

3

p

3

p

3

p

Examples of CTL and CTL∗ formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

EG(¬ ∧ EF) there is a path along which is always
reachable, but never reached

p p

p

Examples of CTL and CTL∗ formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

EG(¬ ∧ EF︸ ︷︷ ︸
p

) there is a path along which is always
reachable, but never reached

p p

p

Examples of CTL and CTL∗ formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

EG(¬ ∧ EF︸ ︷︷ ︸
p

) there is a path along which is always
reachable, but never reached

3
p

3
p

p

Examples of CTL and CTL∗ formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

Theorem ([CE81,QS82])
CTL model checking is PTIME-complete.

[CE81] Clarke, Emerson. Design and Synthesis of Synchronization Skeletons using
Branching-Time Temporal Logic. LOP’81.
[QS82] Queille, Sifakis. Specification and verification of concurrent systems in CESAR.
SOP’82.

[KVW94] Kupferman, Vardi, Wolper. An automata-theoretic approach to branching-time
model checking. CAV’94.

Examples of CTL and CTL∗ formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

Theorem ([CE81,QS82])
CTL model checking is PTIME-complete.

Theorem ([KVW94])

CTL model checking on product structures is
PSPACE-complete.

[CE81] Clarke, Emerson. Design and Synthesis of Synchronization Skeletons using
Branching-Time Temporal Logic. LOP’81.
[QS82] Queille, Sifakis. Specification and verification of concurrent systems in CESAR.
SOP’82.
[KVW94] Kupferman, Vardi, Wolper. An automata-theoretic approach to branching-time
model checking. CAV’94.

Examples of CTL and CTL∗ formulas

In CTL∗, we have no restriction on modalities and quantifiers.

p p

p

Examples of CTL and CTL∗ formulas

In CTL∗, we have no restriction on modalities and quantifiers.

EG F there is a path visiting infinitely many times

3

p

3

p

3

p

Examples of CTL and CTL∗ formulas

In CTL∗, we have no restriction on modalities and quantifiers.

A(G F ⇒ G(¬)) any path that visits infinitely many times,
never visits

p p

p

Examples of CTL and CTL∗ formulas

In CTL∗, we have no restriction on modalities and quantifiers.

A(G F ⇒ G(¬)) any path that visits infinitely many times,
never visits

3

p

3

p

3

p

3

Examples of CTL and CTL∗ formulas

In CTL∗, we have no restriction on modalities and quantifiers.

Theorem ([EH86,KVW94])
CTL∗ model checking is PSPACE-complete.

Theorem ([KVW94])
CTL∗ model checking on product structures is PSPACE-complete.

[EH86] Emerson, Halpern. "Sometimes" and "Not Never" Revisited: On Branching versus
Linear Time Temporal Logic. J.ACM, 1986.
[KVW94] Kupferman, Vardi, Wolper. An automata-theoretic approach to branching-time
model checking. CAV’94.

Reasoning about open systems

Concurrent games
A concurrent game is made of

a transition system;

a set of agents (or players);
a table indicating the transition to be taken given the actions
of the players.

q0

q1

q2

q0 q2 q1

q1 q0 q2

q2 q1 q0

player 1

pl
ay
er

2

Reasoning about open systems

Concurrent games
A concurrent game is made of

a transition system;

a set of agents (or players);
a table indicating the transition to be taken given the actions
of the players.

q0

q1

q2

q0 q2 q1

q1 q0 q2

q2 q1 q0

player 1

pl
ay
er

2

Reasoning about open systems

Concurrent games
A concurrent game is made of

a transition system;
a set of agents (or players);

a table indicating the transition to be taken given the actions
of the players.

q0

q1

q2

q0 q2 q1

q1 q0 q2

q2 q1 q0

player 1

pl
ay
er

2

Reasoning about open systems

Concurrent games
A concurrent game is made of

a transition system;
a set of agents (or players);
a table indicating the transition to be taken given the actions
of the players.

q0

q1

q2

q0 q2 q1

q1 q0 q2

q2 q1 q0

player 1

pl
ay
er

2

Reasoning about open systems

Concurrent games
A concurrent game is made of

a transition system;
a set of agents (or players);
a table indicating the transition to be taken given the actions
of the players.

Turn-based games
A turn-based game is a game
where only one agent plays at
a time.

Reasoning about open systems

Strategies
A strategy for a given player is a function telling what to play
depending on what has happened previously.

Example

Strategy for player :
alternately go to and .

...

...

...
...

Reasoning about open systems

Strategies
A strategy for a given player is a function telling what to play
depending on what has happened previously.

Example

Strategy for player :
alternately go to and .

...

...

...
...

Reasoning about open systems

Strategies
A strategy for a given player is a function telling what to play
depending on what has happened previously.

Example

Strategy for player :
alternately go to and .

...

...

...
...

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

Theorem ([AHK02])
Model checking ATL is PTIME-complete.
Model checking ATL∗ is 2-EXPTIME-complete.

[AHK02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

p

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G(〈〈 〉〉 F)

p

Theorem ([AHK02])
Model checking ATL is PTIME-complete.
Model checking ATL∗ is 2-EXPTIME-complete.

[AHK02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

33

p

33

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G(〈〈 〉〉 F)

p

Theorem ([AHK02])
Model checking ATL is PTIME-complete.
Model checking ATL∗ is 2-EXPTIME-complete.

[AHK02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

p

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G(〈〈 〉〉 F)

p

Theorem ([AHK02])
Model checking ATL is PTIME-complete.
Model checking ATL∗ is 2-EXPTIME-complete.

[AHK02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

3

p

3

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G(〈〈 〉〉 F)

p

Theorem ([AHK02])
Model checking ATL is PTIME-complete.
Model checking ATL∗ is 2-EXPTIME-complete.

[AHK02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

p

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G(〈〈 〉〉 F)

p

Theorem ([AHK02])
Model checking ATL is PTIME-complete.
Model checking ATL∗ is 2-EXPTIME-complete.

[AHK02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

p

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G(〈〈 〉〉 F) ≡ 〈〈 〉〉 G p
p

Theorem ([AHK02])
Model checking ATL is PTIME-complete.
Model checking ATL∗ is 2-EXPTIME-complete.

[AHK02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

p

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G(〈〈 〉〉 F) ≡ 〈〈 〉〉 G p
p

Theorem ([AHK02])
Model checking ATL is PTIME-complete.
Model checking ATL∗ is 2-EXPTIME-complete.

[AHK02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.

Outline of the presentation

1 Introduction

2 Basics of CTL and ATL
expressing properties of reactive systems
efficient verification algorithms

3 Temporal logics for multi-agent systems
specifying properties of complex interacting systems
expressive power of ATLsc
translation into Quantified CTL (QCTL)
algorithms for ATLsc

4 Conclusions and future works

ATL with strategy contexts [BDLM09]

〈〈 〉〉 G(〈〈 〉〉 F)

consider the following strategy
of Player : “always go to ”;
in the remaining tree, Player
can always enforce a visit to .

[BDLM09] Brihaye, Da Costa, Laroussinie, M. ATL with strategy contexts. LFCS, 2009.

ATL with strategy contexts [BDLM09]

〈〈 〉〉 G(〈〈 〉〉 F)

consider the following strategy
of Player : “always go to ”;

in the remaining tree, Player
can always enforce a visit to .

[BDLM09] Brihaye, Da Costa, Laroussinie, M. ATL with strategy contexts. LFCS, 2009.

ATL with strategy contexts [BDLM09]

〈〈 〉〉 G(〈〈 〉〉 F)

consider the following strategy
of Player : “always go to ”;

in the remaining tree, Player
can always enforce a visit to .

[BDLM09] Brihaye, Da Costa, Laroussinie, M. ATL with strategy contexts. LFCS, 2009.

ATL with strategy contexts [BDLM09]

〈〈 〉〉 G(〈〈 〉〉 F)

consider the following strategy
of Player : “always go to ”;
in the remaining tree, Player
can always enforce a visit to .

[BDLM09] Brihaye, Da Costa, Laroussinie, M. ATL with strategy contexts. LFCS, 2009.

ATL with strategy contexts

Definition
ATLsc has two new strategy quantifiers: 〈·A·〉ϕ and 〈-A-〉ϕ.

〈·A·〉 is similar to 〈〈A〉〉 but assigns the corresponding strategy
to A for evaluating ϕ;

〈-A-〉 drops the assigned strategies for A.

[·A·] is dual to 〈·A·〉 :

[·A·]ϕ ≡ ¬ 〈·A·〉 ¬ϕ

[·A·]ϕ which states that any strategy for A has an outcome
along which ϕ holds.

ATL with strategy contexts

Definition
ATLsc has two new strategy quantifiers: 〈·A·〉ϕ and 〈-A-〉ϕ.

〈·A·〉 is similar to 〈〈A〉〉 but assigns the corresponding strategy
to A for evaluating ϕ;

〈-A-〉 drops the assigned strategies for A.

[·A·] is dual to 〈·A·〉 :

[·A·]ϕ ≡ ¬ 〈·A·〉 ¬ϕ

[·A·]ϕ which states that any strategy for A has an outcome
along which ϕ holds.

ATL with strategy contexts

Definition
ATLsc has two new strategy quantifiers: 〈·A·〉ϕ and 〈-A-〉ϕ.

〈·A·〉 is similar to 〈〈A〉〉 but assigns the corresponding strategy
to A for evaluating ϕ;

〈-A-〉 drops the assigned strategies for A.

[·A·] is dual to 〈·A·〉 :

[·A·]ϕ ≡ ¬ 〈·A·〉 ¬ϕ

[·A·]ϕ which states that any strategy for A has an outcome
along which ϕ holds.

What ATLsc can express
Client-server interactions for accessing a shared resource:

〈·Server·〉 G


∧

c∈Clients

〈·c ·〉 F accessc

∧
¬
∧

c 6=c ′
accessc ∧ accessc ′



What ATLsc can express
Client-server interactions for accessing a shared resource:

〈·Server·〉 G


∧

c∈Clients

〈·c ·〉 F accessc

∧
¬
∧

c 6=c ′
accessc ∧ accessc ′


Existence of Nash equilibria:

〈·A1, ...,An·〉
∧
i

(〈·Ai ·〉ϕAi ⇒ ϕAi)

Existence of dominating strategy:

〈·A·〉 [·B·] (¬ϕ ⇒ [·A·] ¬ϕ)

What ATLsc can express
Client-server interactions for accessing a shared resource:

〈·Server·〉 G


∧

c∈Clients

〈·c ·〉 F accessc

∧
¬
∧

c 6=c ′
accessc ∧ accessc ′


Existence of Nash equilibria:

〈·A1, ...,An·〉
∧
i

(〈·Ai ·〉ϕAi ⇒ ϕAi)

Existence of dominating strategy:

〈·A·〉 [·B·] (¬ϕ ⇒ [·A·] ¬ϕ)

More expressiveness results

Theorem
ATLsc is strictly more expressive than ATL,
The operator 〈-A-〉 does not add expressive power,
ATLsc is as expressive as ATL∗sc .

More expressiveness results

Theorem
ATLsc is strictly more expressive than ATL,
The operator 〈-A-〉 does not add expressive power,
ATLsc is as expressive as ATL∗sc .

Proof

〈〈A〉〉ϕ ≡ 〈-Agt-〉 〈·A·〉 ϕ̂

But ATL cannot distinguish between these two games.

s

a b

s ′

a b

〈1.1〉,〈2.2〉 〈1.1〉,〈2.2〉,〈3.3〉

〈1.2〉 〈1.2〉,〈1.3〉,〈3.2〉〈2.1〉 〈2.1〉,〈2.3〉,〈3.1〉

More expressiveness results

Theorem
ATLsc is strictly more expressive than ATL,
The operator 〈-A-〉 does not add expressive power,
ATLsc is as expressive as ATL∗sc .

Proof

〈·1·〉 (〈·2·〉 X a ∧ 〈·2·〉 X b) is only true in the second game.
But ATL cannot distinguish between these two games.

s

a b

s ′

a b

〈1.1〉,〈2.2〉 〈1.1〉,〈2.2〉,〈3.3〉

〈1.2〉 〈1.2〉,〈1.3〉,〈3.2〉〈2.1〉 〈2.1〉,〈2.3〉,〈3.1〉

More expressiveness results

Theorem
ATLsc is strictly more expressive than ATL,
The operator 〈-A-〉 does not add expressive power,
ATLsc is as expressive as ATL∗sc .

Proof
Replace implicit quantification with explicit one:

〈·1·〉ϕ ≡ 〈·1·〉 [·Agt \ {1}·] 〈·∅·〉 ϕ̂

; we can always assume that the context is full.

〈-A-〉ϕ is then equivalent to [·A·] 〈·∅·〉ϕ;
〈·∅·〉 can be inserted between two temporal modalities.

More expressiveness results

Theorem
ATLsc is strictly more expressive than ATL,
The operator 〈-A-〉 does not add expressive power,
ATLsc is as expressive as ATL∗sc .

Proof
Replace implicit quantification with explicit one:

〈·1·〉ϕ ≡ 〈·1·〉 [·Agt \ {1}·] 〈·∅·〉 ϕ̂

; we can always assume that the context is full.

〈-A-〉ϕ is then equivalent to [·A·] 〈·∅·〉ϕ;
〈·∅·〉 can be inserted between two temporal modalities.

Outline of the presentation

1 Introduction

2 Basics of CTL and ATL
expressing properties of reactive systems
efficient verification algorithms

3 Temporal logics for multi-agent systems
specifying properties of complex interacting systems
expressive power of ATLsc
translation into Quantified CTL (QCTL)
algorithms for ATLsc

4 Conclusions and future works

Quantified CTL [ES84,Kup95,Fre01]

QCTL extends CTL with propositional quantifiers
∃p. ϕ means that there exists a labelling of the model

with p under which ϕ holds.

EF ∧ ∀p.
[
EF(p ∧) ⇒ AG(⇒ p)

]

≡ uniq()

; true if we label the Kripke structure;
; false if we label the computation tree;

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984.
[Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification
over Atomic Propositions. CAV, 1995.
[Fre01] French. Decidability of Quantifed Propositional Branching Time Logics. AJCAI, 2001.

Quantified CTL [ES84,Kup95,Fre01]

QCTL extends CTL with propositional quantifiers
∃p. ϕ means that there exists a labelling of the model

with p under which ϕ holds.

EF ∧ ∀p.
[
EF(p ∧) ⇒ AG(⇒ p)

]

≡ uniq()

; true if we label the Kripke structure;
; false if we label the computation tree;

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984.
[Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification
over Atomic Propositions. CAV, 1995.
[Fre01] French. Decidability of Quantifed Propositional Branching Time Logics. AJCAI, 2001.

Quantified CTL [ES84,Kup95,Fre01]

QCTL extends CTL with propositional quantifiers
∃p. ϕ means that there exists a labelling of the model

with p under which ϕ holds.

EF ∧ ∀p.
[
EF(p ∧) ⇒ AG(⇒ p)

]
≡ uniq()

; true if we label the Kripke structure;
; false if we label the computation tree;

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984.
[Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification
over Atomic Propositions. CAV, 1995.
[Fre01] French. Decidability of Quantifed Propositional Branching Time Logics. AJCAI, 2001.

Quantified CTL [ES84,Kup95,Fre01]

QCTL extends CTL with propositional quantifiers
∃p. ϕ means that there exists a labelling of the model

with p under which ϕ holds.

EF ∧ ∀p.
[
EF(p ∧) ⇒ AG(⇒ p)

]
≡ uniq()

; true if we label the Kripke structure;
; false if we label the computation tree;

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984.
[Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification
over Atomic Propositions. CAV, 1995.
[Fre01] French. Decidability of Quantifed Propositional Branching Time Logics. AJCAI, 2001.

Semantics of QCTL
structure semantics:

|=s ∃p.ϕ ⇔
p

|= ϕ

tree semantics:

|=t ∃p.ϕ ⇔ p

p p

p

|= ϕ

Semantics of QCTL
structure semantics:

|=s ∃p.ϕ ⇔
p

|= ϕ

tree semantics:

|=t ∃p.ϕ ⇔ p

p p

p

|= ϕ

Expressiveness of QCTL
QCTL can “count”:

EX1 ϕ ≡ EX ϕ ∧ ∀p. [EX(p ∧ ϕ) ⇒ AX(ϕ ⇒ p)]
EX2 ϕ ≡ ∃q. [EX1(ϕ ∧ q) ∧ EX1(ϕ ∧ ¬ q)]

QCTL can express (least or greatest) fixpoints:

µT .ϕ(T) ≡ ∃t. [AG(t ⇐⇒ ϕ(t))∧
(∀t.′(AG(t ′ ⇐⇒ ϕ(t ′)) ⇒ AG(t ⇒ t ′)))]

Theorem
QCTL, QCTL∗ and MSO are equally expressive (under both
semantics).

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

Expressiveness of QCTL
QCTL can “count”:

EX1 ϕ ≡ EX ϕ ∧ ∀p. [EX(p ∧ ϕ) ⇒ AX(ϕ ⇒ p)]
EX2 ϕ ≡ ∃q. [EX1(ϕ ∧ q) ∧ EX1(ϕ ∧ ¬ q)]

QCTL can express (least or greatest) fixpoints:

µT .ϕ(T) ≡ ∃t. [AG(t ⇐⇒ ϕ(t))∧
(∀t.′(AG(t ′ ⇐⇒ ϕ(t ′)) ⇒ AG(t ⇒ t ′)))]

Theorem
QCTL, QCTL∗ and MSO are equally expressive (under both
semantics).

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

Expressiveness of QCTL
QCTL can “count”:

EX1 ϕ ≡ EX ϕ ∧ ∀p. [EX(p ∧ ϕ) ⇒ AX(ϕ ⇒ p)]
EX2 ϕ ≡ ∃q. [EX1(ϕ ∧ q) ∧ EX1(ϕ ∧ ¬ q)]

QCTL can express (least or greatest) fixpoints:

µT .ϕ(T) ≡ ∃t. [AG(t ⇐⇒ ϕ(t))∧
(∀t.′(AG(t ′ ⇐⇒ ϕ(t ′)) ⇒ AG(t ⇒ t ′)))]

Theorem
QCTL, QCTL∗ and MSO are equally expressive (under both
semantics).

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

QCTL with structure semantics

Theorem
Model checking QCTL for the structure semantics is
PSPACE-complete.

Theorem
QCTL satisfiability for the structure semantics is undecidable.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

QCTL with structure semantics

Theorem
Model checking QCTL for the structure semantics is
PSPACE-complete.

Proof
Membership:

Iteratively
(nondeterministically) pick a labelling,
check the subformula.

Hardness:
QBF is a special case (without even using temporal modalities).

Theorem
QCTL satisfiability for the structure semantics is undecidable.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

QCTL with structure semantics

Theorem
Model checking QCTL for the structure semantics is
PSPACE-complete.

Proof
Membership:

Iteratively
(nondeterministically) pick a labelling,
check the subformula.

Hardness:
QBF is a special case (without even using temporal modalities).

Theorem
QCTL satisfiability for the structure semantics is undecidable.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.
[LM13a] Laroussinie, M. Quantified CTL: expressiveness and complexity. Submitted, 2013.

QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof
Using (alternating) parity tree automata:

q0

q1q0

q1 q0 q1 q1

q1 q1 q1 q1q1 q1 q1 q1

This automaton corresponds to E U

δ(q0,) = (q0, q1) ∨ (q1, q0)

δ(q0,) = (q1, q1)

δ(q0,) = (q2, q2)

δ(q1, ?) = (q1, q1)

δ(q2, ?) = (q2, q2)

QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof
Using (alternating) parity tree automata:

q0

q1q0

q1 q0 q1 q1

q1 q1 q1 q1q1 q1 q1 q1

This automaton corresponds to E U

δ(q0,) = (q0, q1) ∨ (q1, q0)

δ(q0,) = (q1, q1)

δ(q0,) = (q2, q2)

δ(q1, ?) = (q1, q1)

δ(q2, ?) = (q2, q2)

QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof
Using (alternating) parity tree automata:

q0

q1q0

q1 q0 q1 q1

q1 q1 q1 q1q1 q1 q1 q1

This automaton corresponds to E U

δ(q0,) = (q0, q1) ∨ (q1, q0)

δ(q0,) = (q1, q1)

δ(q0,) = (q2, q2)

δ(q1, ?) = (q1, q1)

δ(q2, ?) = (q2, q2)

QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof
Using (alternating) parity tree automata:

q0

q1q0

q1 q0 q1 q1

q1 q1 q1 q1q1 q1 q1 q1

This automaton corresponds to E U

δ(q0,) = (q0, q1) ∨ (q1, q0)

δ(q0,) = (q1, q1)

δ(q0,) = (q2, q2)

δ(q1, ?) = (q1, q1)

δ(q2, ?) = (q2, q2)

QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof
Using (alternating) parity tree automata:

q0

q1q0

q1 q0 q1 q1

q1 q1 q1 q1q1 q1 q1 q1

This automaton corresponds to E U

δ(q0,) = (q0, q1) ∨ (q1, q0)

δ(q0,) = (q1, q1)

δ(q0,) = (q2, q2)

δ(q1, ?) = (q1, q1)

δ(q2, ?) = (q2, q2)

QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof
Using (alternating) parity tree automata:

q0

q1q0

q1 q0

q1 q1

q1 q1 q1 q1q1 q1 q1 q1

This automaton corresponds to E U

δ(q0,) = (q0, q1) ∨ (q1, q0)

δ(q0,) = (q1, q1)

δ(q0,) = (q2, q2)

δ(q1, ?) = (q1, q1)

δ(q2, ?) = (q2, q2)

QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof
Using (alternating) parity tree automata:

q0

q1q0

q1 q0 q1 q1

q1 q1 q1 q1q1 q1 q1 q1

This automaton corresponds to E U

δ(q0,) = (q0, q1) ∨ (q1, q0)

δ(q0,) = (q1, q1)

δ(q0,) = (q2, q2)

δ(q1, ?) = (q1, q1)

δ(q2, ?) = (q2, q2)

QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof
Using (alternating) parity tree automata:

q0

q1q0

q1 q0 q1 q1

q1 q1 q1 q1

q1 q1 q1 q1

This automaton corresponds to E U

δ(q0,) = (q0, q1) ∨ (q1, q0)

δ(q0,) = (q1, q1)

δ(q0,) = (q2, q2)

δ(q1, ?) = (q1, q1)

δ(q2, ?) = (q2, q2)

QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof
Using (alternating) parity tree automata:

q0

q1q0

q1 q0 q1 q1

q1 q1 q1 q1q1 q1

q1 q1

This automaton corresponds to E U

δ(q0,) = (q0, q1) ∨ (q1, q0)

δ(q0,) = (q1, q1)

δ(q0,) = (q2, q2)

δ(q1, ?) = (q1, q1)

δ(q2, ?) = (q2, q2)

QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof
Using (alternating) parity tree automata:

q0

q1q0

q1 q0 q1 q1

q1 q1 q1 q1q1 q1 q1 q1

This automaton corresponds to E U

δ(q0,) = (q0, q1) ∨ (q1, q0)

δ(q0,) = (q1, q1)

δ(q0,) = (q2, q2)

δ(q1, ?) = (q1, q1)

δ(q2, ?) = (q2, q2)

QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof
Using (alternating) parity tree automata:

q0

q1q0

q1 q0 q1 q1

q1 q1 q1 q1q1 q1 q1 q1

This automaton corresponds to E U

δ(q0,) = (q0, q1) ∨ (q1, q0)

δ(q0,) = (q1, q1)

δ(q0,) = (q2, q2)

δ(q1, ?) = (q1, q1)

δ(q2, ?) = (q2, q2)

QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof
polynomial-size automata for CTL;
quantification is handled by projection, which first requires
removing alternation (exponential blowup);

an automaton equivalent to a QCTL formula can be built
inductively;

emptiness of an alternating parity tree automaton can be
decided in exponential time.

Translating ATLsc into QCTL

player A has moves mA
1 , ..., m

A
n ;

from the transition table, we can compute the
set Next(,A,mA

i) of states that can be
reached from when player A plays mA

i .

〈·A·〉ϕ can be encoded as follows:

∃mA
1 . ∃mA

2 . . . ∃mA
n .

this corresponds to a strategy: AG(mA
i ⇔

∧
¬mA

j);
the outcomes all satisfy ϕ:

A
[
G(q ∧ mA

i ⇒ X Next(q,A,mA
i)) ⇒ ϕ

]
.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

Translating ATLsc into QCTL

player A has moves mA
1 , ..., m

A
n ;

from the transition table, we can compute the
set Next(,A,mA

i) of states that can be
reached from when player A plays mA

i .

〈·A·〉ϕ can be encoded as follows:

∃mA
1 . ∃mA

2 . . . ∃mA
n .

this corresponds to a strategy: AG(mA
i ⇔

∧
¬mA

j);
the outcomes all satisfy ϕ:

A
[
G(q ∧ mA

i ⇒ X Next(q,A,mA
i)) ⇒ ϕ

]
.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

Translating ATLsc into QCTL

player A has moves mA
1 , ..., m

A
n ;

from the transition table, we can compute the
set Next(,A,mA

i) of states that can be
reached from when player A plays mA

i .

Corollary
ATLsc model checking is decidable, with non-elementary complexity
(TOWER-complete).

Corollary

ATL0
sc (quantification restricted to memoryless strategies) model

checking is PSPACE-complete.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

What about satisfiability?

Theorem
QCTL satisfiability is decidable (for the tree semantics).

But

Theorem ([TW12])
ATLsc satisfiability is undecidable.

Why?

The translation from ATLsc to QCTL assumes
that the game structure is given!

[TW12] Troquard, Walther. On Satisfiability in ATL with Strategy Contexts. JELIA, 2012.

What about satisfiability?

Theorem
QCTL satisfiability is decidable (for the tree semantics).

But

Theorem ([TW12])
ATLsc satisfiability is undecidable.

Why?

The translation from ATLsc to QCTL assumes
that the game structure is given!

[TW12] Troquard, Walther. On Satisfiability in ATL with Strategy Contexts. JELIA, 2012.

What about satisfiability?

Theorem
QCTL satisfiability is decidable (for the tree semantics).

But

Theorem ([TW12])
ATLsc satisfiability is undecidable.

Why?

The translation from ATLsc to QCTL assumes
that the game structure is given!

[TW12] Troquard, Walther. On Satisfiability in ATL with Strategy Contexts. JELIA, 2012.

Satisfiability for turn-based games

Theorem (LM13b)
When restricted to turn-based games, ATLsc satisfiability is
decidable.

player has moves , and .
a strategy can be encoded by marking some of
the nodes of the tree with proposition movA.

〈·A·〉ϕ can be encoded as follows:
∃movA.

it corresponds to a strategy: AG(turnA ⇒ EX1 movA);
the outcomes all satisfy ϕ: A

[
G(turnA ∧ XmovA) ⇒ ϕ

]
.

[LM13b] Laroussinie, M. Satisfiability of ATL with strategy contexts. Gandalf, 2013.

Satisfiability for turn-based games

Theorem (LM13b)
When restricted to turn-based games, ATLsc satisfiability is
decidable.

player has moves , and .
a strategy can be encoded by marking some of
the nodes of the tree with proposition movA.

〈·A·〉ϕ can be encoded as follows:
∃movA.

it corresponds to a strategy: AG(turnA ⇒ EX1 movA);
the outcomes all satisfy ϕ: A

[
G(turnA ∧ XmovA) ⇒ ϕ

]
.

[LM13b] Laroussinie, M. Satisfiability of ATL with strategy contexts. Gandalf, 2013.

What about Strategy Logic? [CHP07,MMV10]

Strategy logic
Explicit quantification over strategies + strategy assignement

Example
〈·A·〉ϕ ≡ ∃σ1.assign(σ1,A).ϕ

Strategy logic can also be translated into QCTL.

Theorem
Strategy-logic model-checking is decidable.
Strategy-logic satisfiability is decidable when restricted to
turn-based games.

[CHP07] Chatterjee, Henzinger, Piterman. Strategy Logic. CONCUR, 2007.
[MMV10] Mogavero, Murano, Vardi. Reasoning about strategies. FSTTCS, 2010.

Conclusions and future works

Conclusions
QCTL is a powerful extension of CTL;
it is equivalent to MSO over finite graphs and regular trees;

it is a nice tool to understand temporal logics for games (ATL
with strategy contexts, Strategy Logic, ...);

Future directions
Defining interesting (expressive yet tractable) fragments of
those logics;
Obtaining practicable algorithms.

Considering randomised strategies.

Conclusions and future works

Conclusions
QCTL is a powerful extension of CTL;
it is equivalent to MSO over finite graphs and regular trees;

it is a nice tool to understand temporal logics for games (ATL
with strategy contexts, Strategy Logic, ...);

Future directions
Defining interesting (expressive yet tractable) fragments of
those logics;
Obtaining practicable algorithms.

Considering randomised strategies.

