Temporal logics for multi-agent systems

Nicolas Markey
LSV — ENS Cachan

(based on joint works with Thomas Brihaye,
Arnaud Da Costa-Lopes, Francois Laroussinie)

EQualls <& Cassting

« Formalisation des Activités Concurrentes »

Toulouse, 16 April 2014

Model checking and synthesis

system' propriété

.

Tk 8

% [http://waw.embedded. com] %

<— AG(—B.overfull
A —B.dried_up)

http://www.embedded.com/design/prototyping-and-development/4024929/An-introduction-to-model-checking

Model checking and synthesis

system: propriété

» \ »

s
% [http://www.embedded. com] %

<— AG(—B.overfull
A —B.dried_up)

synthesis
algorithm

http://www.embedded.com/design/prototyping-and-development/4024929/An-introduction-to-model-checking

Qutline of the presentation

0 Introduction

© Basics of CTL and ATL
@ expressing properties of reactive systems
o efficient verification algorithms

© Temporal logics for multi-agent systems
@ specifying properties of complex interacting systems
@ expressive power of ATLgc
e translation into Quantified CTL (QCTL)
@ algorithms for ATL,

@ Conclusions and future works

Qutline of the presentation

© Basics of CTL and ATL
@ expressing properties of reactive systems
o efficient verification algorithms

Computation-Tree Logic (CTL)

@ atomic propositions: O, 0, ..

Computation-Tree Logic (CTL)
@ atomic propositions: O, 0, ..

e boolean combinators: —p, © V ¢, o A Y, ...

Computation-Tree Logic (CTL)
@ atomic propositions: O, 0, ..

e boolean combinators: —p, © V ¢, o A Y, ...

e temporal modalities:

X O—©—Q0O—(— ~-- “next "
pUy G—O@— Q- “o until "

Computation-Tree Logic (CTL)
@ atomic propositions: O, 0, ..
@ boolean combinators: =, ¢ V ¥, © A 1, ...

e temporal modalities:

X O—@®—@—0O0—0C-- “next "
e Uy @—E— @ -- “o until "
true U p=F g O—O ®—O--- ‘“eventually ¢"
~Fop=Go &—O@—@&—O@—®-- “always ¢"

Computation-Tree Logic (CTL)
@ atomic propositions: O, 0, ..
@ boolean combinators: =, ¢ V ¥, © A 1, ...

e temporal modalities:

X O—®&—@—0O0—0-- “next ¢
e Uy E—)—v Q- “ until "
true U p=F g O—O ®—O--- ‘“eventually ¢"
~Fop=Go &—O@—@&—O@—®-- “always ¢"
o path quantifiers:
—O- - - - SD
o - —
oL
E -~ A S
4 = 4 P —
¥
¥

o -

Examples of CTL and CTL* formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

J

Examples of CTL and CTL* formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

J

EFO © is reachable

O

Examples of CTL and CTL* formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

J

EFO © is reachable

O

Examples of CTL and CTL* formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

J

EG(—~O A EFQ) thereis a path along which © is always
reachable, but never reached

O

Examples of CTL and CTL* formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

J

EG(—~O A EFQ) thereis a path along which © is always
——
p reachable, but never reached

Examples of CTL and CTL* formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

J

EG(—~O A EFQ) thereis a path along which © is always
——
p reachable, but never reached

Examples of CTL and CTL* formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

Theorem ([CE81,Q582])
CTL model checking is PTIME-complete.

[CE81] Clarke, Emerson. Design and Synthesis of Synchronization Skeletons using
Branching-Time Temporal Logic. LOP’81.

[QS82] Queille, Sifakis. Specification and verification of concurrent systems in CESAR.
SOP’82.

Examples of CTL and CTL* formulas

In CTL, each temporal modality is in the immediate scope of a
path quantifier.

Theorem ([CE81,Q582])
CTL model checking is PTIME-complete.

Theorem ([KVW94])

CTL model checking on product structures is
PSPACE-complete.

[CE81] Clarke, Emerson. Design and Synthesis of Synchronization Skeletons using
Branching-Time Temporal Logic. LOP’81.

[QS82] Queille, Sifakis. Specification and verification of concurrent systems in CESAR.
SOP’82.

[KVW0O94] Kupferman, Vardi, Wolper. An automata-theoretic approach to branching-time
model checking. CAV'94.

Examples of CTL and CTL* formulas

In CTL*, we have no restriction on modalities and quantifiers.

Examples of CTL and CTL* formulas

In CTL*, we have no restriction on modalities and quantifiers.

EGF() thereis a path visiting O infinitely many times

O

Examples of CTL and CTL* formulas

In CTL*, we have no restriction on modalities and quantifiers. |

A(GFO = G(-0))) any path that visits O) infinitely many times,

never visits ()

CO

Examples of CTL and CTL* formulas

In CTL*, we have no restriction on modalities and quantifiers. |

A(GFO = G(-0))) any path that visits O) infinitely many times,

never visits ()

“D

Examples of CTL and CTL* formulas

In CTL*, we have no restriction on modalities and quantifiers.

)

Theorem ([EH86,KVW94])
CTL* model checking is PSPACE-complete.

Theorem ([KVW094])
CTL* model checking on product structures is PSPACE-complete.

W

[EH86] Emerson, Halpern. "Sometimes" and "Not Never" Revisited: On Branching versus
Linear Time Temporal Logic. J.ACM, 1986.

[KVW0O94] Kupferman, Vardi, Wolper. An automata-theoretic approach to branching-time
model checking. CAV'94.

Reasoning about open systems

Reasoning about open systems

Concurrent games
A concurrent game is made of

@ a transition system;

a1

qo0

q2

Reasoning about open systems

Concurrent games
A concurrent game is made of
@ a transition system;

@ a set of agents (or players);

a1

qo0

q2

Reasoning about open systems

Concurrent games

A concurrent game is made of
@ a transition system;
@ a set of agents (or players);

@ a table indicating the transition to be taken given the actions
of the players.

/ W

player 1
o BEINEIRY
O § q0
3

q0

player 2
/.“"\-'~
)

®|®
®

qi
q0 =
\Q “%&

q2

Reasoning about open systems

Concurrent games

A concurrent game is made of
@ a transition system;
@ a set of agents (or players);

@ a table indicating the transition to be taken given the actions
of the players.

Turn-based games C)O
A turn-based game is a game /

wh‘ere only one agent plays at S

a time.

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Example

Strategy for player
alternately go to © and ().

y. 0

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Example

Strategy for player -

alternately go to © and (). %/CD\
s RE

“o

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
(A) ¢ expresses that A has a strategy to enforce .

[AHKO02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
(A) ¢ expresses that A has a strategy to enforce ¢.

OQ o (O)FO
/N

[AHKO02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
(A) ¢ expresses that A has a strategy to enforce ¢.

@3 o (O)FO
/N

[AHKO02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
(A) ¢ expresses that A has a strategy to enforce ¢.

OQ o (O)FO
4\ o ()FO

[AHKO02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
(A) ¢ expresses that A has a strategy to enforce ¢.

OQ o (O)FO
4\ o (O)FO

[AHKO02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
(A) ¢ expresses that A has a strategy to enforce ¢.

O:D o (O)FO
4\ o ()FO

° (O) G({O) FO)

[AHKO02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
(A) ¢ expresses that A has a strategy to enforce . J

[AHKO02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.

Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers

(A) ¢ expresses that A has a strategy to enforce . }
p
QD o (O)FO
4\ o (O)FO
p ° (O) G({O) FO)= (O) Gp

Theorem ([AHKO02])

Model checking ATL is PTIME-complete.
Model checking ATL* is 2-EXPTIME-complete.

[AHKO02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM,

2002.

Qutline of the presentation

© Temporal logics for multi-agent systems
@ specifying properties of complex interacting systems
@ expressive power of ATLgc
e translation into Quantified CTL (QCTL)
@ algorithms for ATL,

ATL with strategy contexts [BDLMO9]

() G((@) FO)

[BDLMO09] Brihaye, Da Costa, Laroussinie, M. ATL with strategy contexts. LFCS, 2009.

ATL with strategy contexts [BDLMO9]

0

() G((@) FO)

/ \ @ consider the following strategy

g of Player @: “always go to ["
\
£ o b o

[BDLMO09] Brihaye, Da Costa, Laroussinie, M. ATL with strategy contexts. LFCS, 2009.

ATL with strategy contexts [BDLMO9]

0

() G((@) FO)

/ \ @ consider the following strategy

/O of Player @: “always go to |

[BDLMO09] Brihaye, Da Costa, Laroussinie, M. ATL with strategy contexts. LFCS, 2009.

ATL with strategy contexts [BDLMO9]

0

() G((@) FO)

/ \ @ consider the following strategy

/O of Player @: “always go to |

@ in the remaining tree, Player

d \ can always enforce a visit to Q.

[BDLMO09] Brihaye, Da Costa, Laroussinie, M. ATL with strategy contexts. LFCS, 2009.

ATL with strategy contexts

Definition
ATLs. has two new strategy quantifiers: (A) ¢ and ¢A) ¢.

e (A) issimilar to ((A) but assigns the corresponding strategy
to A for evaluating ¢;

ATL with strategy contexts

Definition
ATLs. has two new strategy quantifiers: (A) ¢ and ¢A) ¢.
e (A) issimilar to ((A) but assigns the corresponding strategy
to A for evaluating ¢;

@ (A~ drops the assigned strategies for A.

ATL with strategy contexts

Definition
ATLs. has two new strategy quantifiers: (A) ¢ and ¢A) ¢.

e (A) issimilar to ((A) but assigns the corresponding strategy
to A for evaluating ¢;

@ (A~ drops the assigned strategies for A.
o [A] is dual to (A):

[t = - (A) -

[A] ¢ which states that any strategy for A has an outcome
along which ¢ holds.

What ATLs. can express

o Client-server interactions for accessing a shared resource:

/\ (c) F access.

ceClients

(Server) G | A

- /\ access. /\ access.s
c#c!

What ATLs. can express

o Client-server interactions for accessing a shared resource:

/\ (-c) F access,

c€eClients

(Server) G | A
- /\ access. /\ access.s
c#c’

@ Existence of Nash equilibria:

Al,.‘., /\ QOA = QDA)

i

What ATLs. can express

o Client-server interactions for accessing a shared resource:

/\ (-c) F access,

c€eClients

(Server) G | A
- /\ access. /\ access.s
c#c’

@ Existence of Nash equilibria:

Al,.‘., /\ QOA = QDA)

i

e Existence of dominating strategy:

(A) [BI(—¢ = [A] ~¢)

More expressiveness results

Theorem
@ ATLg. is strictly more expressive than ATL,
@ The operator (-A) does not add expressive power,

@ ATl is as expressive as ATL..

More expressiveness results

Theorem
@ ATL is strictly more expressive than ATL,
@ The operator (-A5 does not add expressive power,

@ ATl is as expressive as ATL..

Proof

(A) ¢ = CAgt) (A) @

More expressiveness results

Theorem
@ ATL is strictly more expressive than ATL,
@ The operator (-A5 does not add expressive power,

@ ATl is as expressive as ATL..

Proof

(19 ((2) Xa A (29 X b) is only true in the second game.
But ATL cannot distinguish between these two games.

e e (1.1),(2.2),(3.3)

(2.1) (1.2),(1.3),(3.2) (2.1,(2.3),(3.1)

IO B

(1.1),(2.2)

More expressiveness results

Theorem
@ ATLg. is strictly more expressive than ATL,
e The operator (-A- does not add expressive power,
o ATL, is as expressive as ATL..

Proof

Replace implicit quantification with explicit one:

(1) = (1) [Agt\ {1} () &

~» we can always assume that the context is full.

More expressiveness results

Theorem
@ ATLg. is strictly more expressive than ATL,
e The operator (-A- does not add expressive power,
o ATL, is as expressive as ATL..

Proof

Replace implicit quantification with explicit one:

(1) = (1) [Agt\ {1} () &

~» we can always assume that the context is full.

e (A)pis then equivalent to [A] (0) ¢;
@ (() can be inserted between two temporal modalities.

Qutline of the presentation

© Introduction

@ Basics of CTL and ATL

© Temporal logics for multi-agent systems

e translation into Quantified CTL (QCTL)

@ Conclusions and future works

Quantified CTL [ES84,Kup95, Fre01]

QCTL extends CTL with propositional quantifiers

dp. ¢ means that there exists a labelling of the model
with p under which ¢ holds.

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984.
[Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification
over Atomic Propositions. CAV, 1995.

[Fre01] French. Decidability of Quantifed Propositional Branching Time Logics. AJCAI, 2001

Quantified CTL [ES84,Kup95, Fre01]

QCTL extends CTL with propositional quantifiers

dp. ¢ means that there exists a labelling of the model
with p under which ¢ holds.

e EFOAVp. [EF(p A O) = AGO = p)]

//Q\\QD

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984.
[Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification
over Atomic Propositions. CAV, 1995.

[Fre01] French. Decidability of Quantifed Propositional Branching Time Logics. AJCAI, 2001

Quantified CTL [ES84,Kup95, Fre01]

QCTL extends CTL with propositional quantifiers

dp. ¢ means that there exists a labelling of the model
with p under which ¢ holds.

e EFO AVp. [EF(p A O) = AG(O = p)] = unig(©)

//Q\\QD

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984.
[Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification
over Atomic Propositions. CAV, 1995.

[Fre01] French. Decidability of Quantifed Propositional Branching Time Logics. AJCAI, 2001

Quantified CTL [ES84,Kup95, Fre01]

QCTL extends CTL with propositional quantifiers

dp. ¢ means that there exists a labelling of the model
with p under which ¢ holds.

e EFO AVp. [EF(p A O) = AG(O = p)] = unig(©)

/q Qi)«» true if we label the Kripke structure;
— Ty

~ false if we label the computation tree;

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984.
[Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification
over Atomic Propositions. CAV, 1995.

[Fre01] French. Decidability of Quantifed Propositional Branching Time Logics. AJCAI, 2001

Semantics of QCTL

@ structure semantics:

é.\/@):s I e /g/@): o

Semantics of QCTL

@ structure semantics:
éq/ e

@ tree semantics:

(/g\o{ th s

Expressiveness of QCTL

@ QCTL can “count”:

EXip=EXp AVp. [EX(p A ¢) = AX(p = p)]
EX>p=3qg. [EXi(¢ A g) A EXi(e A —q)]

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

Expressiveness of QCTL

@ QCTL can “count”:

EXip=EXp AVp. [EX(p A ¢) = AX(p = p)]
EX>p=3qg. [EXi(¢ A g) A EXi(e A —q)]

@ QCTL can express (least or greatest) fixpoints:

uT.o(T)=3t. [AG(t <= p(t))A
(Vt/(AG(t = ¢(t') = AG(t = t')))]

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

Expressiveness of QCTL

@ QCTL can “count”:

EXip=EXp AVp. [EX(p A ¢) = AX(p = p)]
EX>p=3qg. [EXi(¢ A g) A EXi(e A —q)]

@ QCTL can express (least or greatest) fixpoints:

uT.o(T)=3t. [AG(t <= p(t))A
(Vt/(AG(t = ¢(t') = AG(t = t')))]

Theorem

QCTL, QCTL* and MSO are equally expressive (under both
semantics).

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

QCTL with structure semantics

Theorem

Model checking QCTL for the structure semantics is
PSPACE-complete.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

QCTL with structure semantics

Theorem

Model checking QCTL for the structure semantics is
PSPACE-complete.

Proof

Membership:

lteratively @ (nondeterministically) pick a labelling,
@ check the subformula.

Hardness:

QBF is a special case (without even using temporal modalities).

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

QCTL with structure semantics

Theorem

Model checking QCTL for the structure semantics is
PSPACE-complete.

Proof

Membership:

lteratively @ (nondeterministically) pick a labelling,
@ check the subformula.

Hardness:

QBF is a special case (without even using temporal modalities).

Theorem
QCTL satisfiability for the structure semantics is undecidable.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

QCTL with tree semantics

Theorem

e Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.

o Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.
[LM13a] Laroussinie, M. Quantified CTL: expressiveness and complexity. Submitted, 2013.

QCTL with tree semantics

Theorem

o Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.

e Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof

Using (alternating) parity tree automata:

QCTL with tree semantics

Theorem

o Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.

e Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof

Using (alternating) parity tree automata:

A

QCTL with tree semantics

Theorem

o Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.

e Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof

Using (alternating) parity tree automata:

8(90,9) = (g0, 91) V (91, 90)

4(q0,) = (q1, q1)
(g0, @) = (g2, 92)
5(a1,®) = (a1, 1) /\ a
8(q2,®) = (92, 92)

QCTL with tree semantics

Theorem

o Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.

e Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof
Using (alternating) parity tree automata:
(90,9) = (90, 91) V (91, 90) 5
6(q0,) = (g1, q1)
(90, @) = (a2, 92)
5(a1,®) = (1,) /\ a
(g2, ®) = (g2, 92)

QCTL with tree semantics

Theorem

o Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.

e Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof

Using (alternating) parity tree automata:
(90,9) = (90, 91) V (91, 90) 5
6(q0,) = (g1, q1) a q
(90, @) = (a2, 92)
5(a1,®) = (1,) /\ a
(g2, ®) = (g2, 92)

QCTL with tree semantics

Theorem

o Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.

e Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof

Using (alternating) parity tree automata:
(90,9) = (90, 91) V (91, 90) 5
6(q0,) = (g1, q1) a q
(90, @) = (a2, 92) &
5(a1,®) = (1,) /\ a
(g2, ®) = (g2, 92)

QCTL with tree semantics

Theorem

o Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.

e Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof

Using (alternating) parity tree automata:

QCTL with tree semantics

Theorem

o Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.

e Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof

Using (alternating) parity tree automata:

QCTL with tree semantics

Theorem

o Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.

e Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof

Using (alternating) parity tree automata:

QCTL with tree semantics

Theorem

o Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.

e Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof

Using (alternating) parity tree automata:

QCTL with tree semantics

Theorem

o Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.

e Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof

Using (alternating) parity tree automata:

5(q0a) = (q1> C/l)

5(q07 O) (q2a Q2) o . o
5(a1,®) = (a1, 01) 7\ \
8(q2,®) = (92, 92) @ ogoa @@ q

This automaton corresponds to EO U

QCTL with tree semantics

Theorem

Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.

Satistiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof

polynomial-size automata for CTL;

quantification is handled by projection, which first requires
removing alternation (exponential blowup);

an automaton equivalent to a QCTL formula can be built
inductively;

emptiness of an alternating parity tree automaton can be
decided in exponential time.

Translating AT L. into QCTL

@ player A has moves m’f\, m’,f‘;

@ from the transition table, we can compute the
Q set Next(©, A, m?) of states that can be

reached from © when player A plays m,-A.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

Translating AT L. into QCTL

@ player A has moves m’f\, m’,f‘;

@ from the transition table, we can compute the
Q set Next(©, A, m?) of states that can be

reached from © when player A plays m,-A.

(A) ¢ can be encoded as follows:

A A A
dmg. dmy' ... dm;).

o this corresponds to a strategy: AG(m? & A - mf‘);
o the outcomes all satisfy ¢:
A[G(g A m? = XNext(q, A, m?)) = ¢].

i

v

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

Translating AT L. into QCTL

@ player A has moves m’f\, m’,f‘;

@ from the transition table, we can compute the
Q set Next(©, A, m?) of states that can be
reached from © when player A plays m,-A.

Corollary

ATLsc model checking is decidable, with non-elementary complexity
(TOWER-complete).

V.

Corollary

ATLY_ (quantification restricted to memoryless strategies) model
checking is PSPACE-complete.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.

What about satisfiability?

Theorem
QCTL satisfiability is decidable (for the tree semantics).

What about satisfiability?

Theorem
QCTL satisfiability is decidable (for the tree semantics).

But

Theorem ([TW12])
ATL. satisfiability is undecidable.

[TW12] Troquard, Walther. On Satisfiability in ATL with Strategy Contexts. JELIA, 2012.

What about satisfiability?

Theorem
QCTL satisfiability is decidable (for the tree semantics).

But

Theorem ([TW12])
ATL. satisfiability is undecidable.

Why?

The translation from ATLs. to QCTL assumes
that the game structure is given!

[TW12] Troquard, Walther. On Satisfiability in ATL with Strategy Contexts. JELIA, 2012.

Satisfiability for turn-based games

Theorem (LM13b)

When restricted to turn-based games, ATLs. satisfiability is
decidable.

[LM13b] Laroussinie, M. Satisfiability of ATL with strategy contexts. Gandalf, 2013.

Satisfiability for turn-based games

Theorem (LM13b)

When restricted to turn-based games, ATLs. satisfiability is
decidable.

|__Y‘< @ player [has moves O and O.
Q @ a strategy can be encoded by marking some of

the nodes of the tree with proposition mov 4.

(A} ¢ can be encoded as follows:

dmov,.
@ it corresponds to a strategy: A G(turna = E X1 movy);
o the outcomes all satisfy ¢: A[G(turna A X mova) = ¢].

[LM13b] Laroussinie, M. Satisfiability of ATL with strategy contexts. Gandalf, 2013.

What about Strategy Logic? [CHP07,MMV10]

Strategy logic

Explicit quantification over strategies + strategy assignement

V.

Example
(A) o = Joy.assign(o1, A).p

Strategy logic can also be translated into QCTL.

Theorem
e Strategy-logic model-checking is decidable.

o Strategy-logic satisfiability is decidable when restricted to
turn-based games.

[CHPO7] Chatterjee, Henzinger, Piterman. Strategy Logic. CONCUR, 2007.
[MMV10] Mogavero, Murano, Vardi. Reasoning about strategies. FSTTCS, 2010.

Conclusions and future works

Conclusions
@ QCTL is a powerful extension of CTL;

@ it is equivalent to MSO over finite graphs and regular trees;

@ it is a nice tool to understand temporal logics for games (ATL
with strategy contexts, Strategy Logic, ...);

Conclusions and future works

Conclusions
@ QCTL is a powerful extension of CTL;
@ it is equivalent to MSO over finite graphs and regular trees;

@ it is a nice tool to understand temporal logics for games (ATL
with strategy contexts, Strategy Logic, ...);

Future directions

@ Defining interesting (expressive yet tractable) fragments of
those logics;

@ Obtaining practicable algorithms.

o Considering randomised strategies.

