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path quantifier.
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CTL model checking is PTIME-complete.
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SOP’82.

[KVW94] Kupferman, Vardi, Wolper. An automata-theoretic approach to branching-time
model checking. CAV’94.
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Examples of CTL and CTL∗ formulas

In CTL∗, we have no restriction on modalities and quantifiers.

Theorem ([EH86,KVW94])
CTL∗ model checking is PSPACE-complete.

Theorem ([KVW94])
CTL∗ model checking on product structures is PSPACE-complete.

[EH86] Emerson, Halpern. "Sometimes" and "Not Never" Revisited: On Branching versus
Linear Time Temporal Logic. J.ACM, 1986.
[KVW94] Kupferman, Vardi, Wolper. An automata-theoretic approach to branching-time
model checking. CAV’94.
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Reasoning about open systems

Concurrent games
A concurrent game is made of

a transition system;
a set of agents (or players);
a table indicating the transition to be taken given the actions
of the players.

Turn-based games
A turn-based game is a game
where only one agent plays at
a time.
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Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

Theorem ([AHK02])
Model checking ATL is PTIME-complete.
Model checking ATL∗ is 2-EXPTIME-complete.

[AHK02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.



Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

p

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G( 〈〈 〉〉 F )

p

Theorem ([AHK02])
Model checking ATL is PTIME-complete.
Model checking ATL∗ is 2-EXPTIME-complete.

[AHK02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.



Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

33

p

33

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G( 〈〈 〉〉 F )

p

Theorem ([AHK02])
Model checking ATL is PTIME-complete.
Model checking ATL∗ is 2-EXPTIME-complete.

[AHK02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.



Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

p

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G( 〈〈 〉〉 F )

p

Theorem ([AHK02])
Model checking ATL is PTIME-complete.
Model checking ATL∗ is 2-EXPTIME-complete.

[AHK02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.



Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

3

p

3

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G( 〈〈 〉〉 F )

p

Theorem ([AHK02])
Model checking ATL is PTIME-complete.
Model checking ATL∗ is 2-EXPTIME-complete.

[AHK02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.



Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

p

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G( 〈〈 〉〉 F )

p

Theorem ([AHK02])
Model checking ATL is PTIME-complete.
Model checking ATL∗ is 2-EXPTIME-complete.

[AHK02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.



Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

p

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G( 〈〈 〉〉 F ) ≡ 〈〈 〉〉 G p
p

Theorem ([AHK02])
Model checking ATL is PTIME-complete.
Model checking ATL∗ is 2-EXPTIME-complete.

[AHK02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.



Temporal logics for games: ATL

ATL extends CTL with strategy quantifiers
〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

p

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G( 〈〈 〉〉 F ) ≡ 〈〈 〉〉 G p
p

Theorem ([AHK02])
Model checking ATL is PTIME-complete.
Model checking ATL∗ is 2-EXPTIME-complete.

[AHK02] Alur, Henzinger, Kupferman. Alternating-time Temporal Logic. J. ACM, 2002.



Outline of the presentation

1 Introduction

2 Basics of CTL and ATL
expressing properties of reactive systems
efficient verification algorithms

3 Temporal logics for multi-agent systems
specifying properties of complex interacting systems
expressive power of ATLsc
translation into Quantified CTL (QCTL)
algorithms for ATLsc

4 Conclusions and future works



ATL with strategy contexts [BDLM09]

〈〈 〉〉 G( 〈〈 〉〉 F )

consider the following strategy
of Player : “always go to ”;
in the remaining tree, Player
can always enforce a visit to .

[BDLM09] Brihaye, Da Costa, Laroussinie, M. ATL with strategy contexts. LFCS, 2009.



ATL with strategy contexts [BDLM09]

〈〈 〉〉 G( 〈〈 〉〉 F )

consider the following strategy
of Player : “always go to ”;

in the remaining tree, Player
can always enforce a visit to .

[BDLM09] Brihaye, Da Costa, Laroussinie, M. ATL with strategy contexts. LFCS, 2009.



ATL with strategy contexts [BDLM09]

〈〈 〉〉 G( 〈〈 〉〉 F )

consider the following strategy
of Player : “always go to ”;

in the remaining tree, Player
can always enforce a visit to .

[BDLM09] Brihaye, Da Costa, Laroussinie, M. ATL with strategy contexts. LFCS, 2009.



ATL with strategy contexts [BDLM09]

〈〈 〉〉 G( 〈〈 〉〉 F )

consider the following strategy
of Player : “always go to ”;
in the remaining tree, Player
can always enforce a visit to .

[BDLM09] Brihaye, Da Costa, Laroussinie, M. ATL with strategy contexts. LFCS, 2009.



ATL with strategy contexts

Definition
ATLsc has two new strategy quantifiers: 〈·A·〉ϕ and 〈-A-〉ϕ.

〈·A·〉 is similar to 〈〈A〉〉 but assigns the corresponding strategy
to A for evaluating ϕ;

〈-A-〉 drops the assigned strategies for A.

[·A·] is dual to 〈·A·〉 :

[·A·]ϕ ≡ ¬ 〈·A·〉 ¬ϕ

[·A·]ϕ which states that any strategy for A has an outcome
along which ϕ holds.
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Quantified CTL [ES84,Kup95,Fre01]

QCTL extends CTL with propositional quantifiers
∃p. ϕ means that there exists a labelling of the model

with p under which ϕ holds.

EF ∧ ∀p.
[
EF(p ∧ ) ⇒ AG( ⇒ p)

]

≡ uniq( )

; true if we label the Kripke structure;
; false if we label the computation tree;

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984.
[Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification
over Atomic Propositions. CAV, 1995.
[Fre01] French. Decidability of Quantifed Propositional Branching Time Logics. AJCAI, 2001.



Quantified CTL [ES84,Kup95,Fre01]

QCTL extends CTL with propositional quantifiers
∃p. ϕ means that there exists a labelling of the model

with p under which ϕ holds.

EF ∧ ∀p.
[
EF(p ∧ ) ⇒ AG( ⇒ p)

]

≡ uniq( )

; true if we label the Kripke structure;
; false if we label the computation tree;

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984.
[Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification
over Atomic Propositions. CAV, 1995.
[Fre01] French. Decidability of Quantifed Propositional Branching Time Logics. AJCAI, 2001.



Quantified CTL [ES84,Kup95,Fre01]

QCTL extends CTL with propositional quantifiers
∃p. ϕ means that there exists a labelling of the model

with p under which ϕ holds.

EF ∧ ∀p.
[
EF(p ∧ ) ⇒ AG( ⇒ p)

]
≡ uniq( )

; true if we label the Kripke structure;
; false if we label the computation tree;

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984.
[Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification
over Atomic Propositions. CAV, 1995.
[Fre01] French. Decidability of Quantifed Propositional Branching Time Logics. AJCAI, 2001.



Quantified CTL [ES84,Kup95,Fre01]

QCTL extends CTL with propositional quantifiers
∃p. ϕ means that there exists a labelling of the model

with p under which ϕ holds.

EF ∧ ∀p.
[
EF(p ∧ ) ⇒ AG( ⇒ p)

]
≡ uniq( )

; true if we label the Kripke structure;
; false if we label the computation tree;

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984.
[Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential Quantification
over Atomic Propositions. CAV, 1995.
[Fre01] French. Decidability of Quantifed Propositional Branching Time Logics. AJCAI, 2001.



Semantics of QCTL
structure semantics:

|=s ∃p.ϕ ⇔
p

|= ϕ

tree semantics:

|=t ∃p.ϕ ⇔ p

p p

p

|= ϕ



Semantics of QCTL
structure semantics:

|=s ∃p.ϕ ⇔
p

|= ϕ

tree semantics:

|=t ∃p.ϕ ⇔ p

p p

p

|= ϕ



Expressiveness of QCTL
QCTL can “count”:

EX1 ϕ ≡ EX ϕ ∧ ∀p. [EX(p ∧ ϕ) ⇒ AX(ϕ ⇒ p)]
EX2 ϕ ≡ ∃q. [EX1(ϕ ∧ q) ∧ EX1(ϕ ∧ ¬ q)]

QCTL can express (least or greatest) fixpoints:

µT .ϕ(T ) ≡ ∃t. [AG(t ⇐⇒ ϕ(t))∧
(∀t.′(AG(t ′ ⇐⇒ ϕ(t ′)) ⇒ AG(t ⇒ t ′)))]

Theorem
QCTL, QCTL∗ and MSO are equally expressive (under both
semantics).

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.
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QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.
[LM13a] Laroussinie, M. Quantified CTL: expressiveness and complexity. Submitted, 2013.
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QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree semantics
is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree semantics
is (k+1)-EXPTIME-complete.

Proof
polynomial-size automata for CTL;
quantification is handled by projection, which first requires
removing alternation (exponential blowup);

an automaton equivalent to a QCTL formula can be built
inductively;

emptiness of an alternating parity tree automaton can be
decided in exponential time.



Translating ATLsc into QCTL

player A has moves mA
1 , ..., m

A
n ;

from the transition table, we can compute the
set Next( ,A,mA

i ) of states that can be
reached from when player A plays mA

i .

〈·A·〉ϕ can be encoded as follows:

∃mA
1 . ∃mA

2 . . . ∃mA
n .

this corresponds to a strategy: AG(mA
i ⇔

∧
¬mA

j );
the outcomes all satisfy ϕ:

A
[
G(q ∧ mA

i ⇒ X Next(q,A,mA
i )) ⇒ ϕ

]
.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.
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Translating ATLsc into QCTL

player A has moves mA
1 , ..., m

A
n ;

from the transition table, we can compute the
set Next( ,A,mA

i ) of states that can be
reached from when player A plays mA

i .

Corollary
ATLsc model checking is decidable, with non-elementary complexity
(TOWER-complete).

Corollary

ATL0
sc (quantification restricted to memoryless strategies) model

checking is PSPACE-complete.

[DLM12] Da Costa, Laroussinie, M. Quantified CTL: expressiveness and model checking.
CONCUR, 2012.



What about satisfiability?

Theorem
QCTL satisfiability is decidable (for the tree semantics).

But

Theorem ([TW12])
ATLsc satisfiability is undecidable.

Why?

The translation from ATLsc to QCTL assumes
that the game structure is given!

[TW12] Troquard, Walther. On Satisfiability in ATL with Strategy Contexts. JELIA, 2012.
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Satisfiability for turn-based games

Theorem (LM13b)
When restricted to turn-based games, ATLsc satisfiability is
decidable.

player has moves , and .
a strategy can be encoded by marking some of
the nodes of the tree with proposition movA.

〈·A·〉ϕ can be encoded as follows:
∃movA.

it corresponds to a strategy: AG(turnA ⇒ EX1 movA);
the outcomes all satisfy ϕ: A

[
G(turnA ∧ XmovA) ⇒ ϕ

]
.

[LM13b] Laroussinie, M. Satisfiability of ATL with strategy contexts. Gandalf, 2013.
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What about Strategy Logic? [CHP07,MMV10]

Strategy logic
Explicit quantification over strategies + strategy assignement

Example
〈·A·〉ϕ ≡ ∃σ1.assign(σ1,A).ϕ

Strategy logic can also be translated into QCTL.

Theorem
Strategy-logic model-checking is decidable.
Strategy-logic satisfiability is decidable when restricted to
turn-based games.

[CHP07] Chatterjee, Henzinger, Piterman. Strategy Logic. CONCUR, 2007.
[MMV10] Mogavero, Murano, Vardi. Reasoning about strategies. FSTTCS, 2010.



Conclusions and future works

Conclusions
QCTL is a powerful extension of CTL;
it is equivalent to MSO over finite graphs and regular trees;

it is a nice tool to understand temporal logics for games (ATL
with strategy contexts, Strategy Logic, ...);

Future directions
Defining interesting (expressive yet tractable) fragments of
those logics;
Obtaining practicable algorithms.

Considering randomised strategies.
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