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Abstract

This is a user’s guide for the RoMulOC toolbox. At this date the toolbox performs
simple modeling operations for a large class of uncertain systems. LMI based functionalities
are provided for robust performance analysis.
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1 Introduction

This user’s guide for RoMulOC is dedicated to a concise description of the toolbox utilities.
The theoretical results on which are built the methods are not discussed in detail and the
interested reader is referred to relevant published papers.

The toolbox contains some modeling utilities allowing simple system manipulations and a
flexible description of uncertainties.

The manipulated models are in state-space, a dedicated Matlab object called ssmodel is
defined on the basis of ss objects in the Control Toobox of Matlab. The originality of the
ssmodel object is in explicitly distinguishing between several types of inputs and outputs : for
example a disturbance input used to define noise rejection performance is different from a control
input.

Two types of uncertain systems are then defined as ussmodel objects.
The first one corresponds to affine polytopic descriptions for which the parameters of the

state-space representation live in the convex hull of a finite number of vertices. This polytopic
modeling encompasses two sub-types : parallelotopic and interval descriptions, which can be
manipulated with dedicated functionalities.

The second type of uncertain models is based on an Linear-Fractional Transform (LFT)
representation where an uncertain operator is fed back to a Linear Time Invariant (LTI) ssmodel.
A large variety of uncertain blocks can be defined as uncertainty objects, going from norm-
bounded uncertainties to interval descriptions. The uncertain blocks can have any diagonal
structure.

Based on these modeling functionalities, the toolbox allows to build Linear Matrix Inequal-
ity (LMI) optimization formulations for robust performance analysis and in the close future
for robust multi objective design. Robust stability is one of the basic analysis tests but pole
location, H∞ cost, H2 cost and impulse-to-peak performances are also tackled in the robust
framework. Depending on the users requirements the LMI formulations can be more or less
conservative and computationally demanding. The results are based on theoretical results that
borrow from techniques such as quadratic stability, parameter dependent Lyapunov functions,
quadratic separation and slack variables.

All analysis and design problems are formulated as LMIs with the YALMIP format, [Löf04a],
[Löf04b]. Optimization can therefore be performed with any Semi-Definite Programming (SDP)
solver interfaced by YALMIP. The users can therefore, if they desire, fully use the potentialities
of the solvers and the YALMIP functionalities.
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2 Getting started

2.1 Install ROMULOC, YALMIP and an SDP solver

RoMulOC is entirely based on m-code, and is thus easy to install. Remove any old version of
RoMulOC, unzip the file romuloc.zip and add the two directories to your MATLAB path as
illustrated in see Example 2.1.

Example 2.1 Add the RoMulOC paths in Matlab
>> addpath whereIputTHEdirectory/romuloc
>> addpath whereIputTHEdirectory/romuloc/library

If you have used RoMulOC before, type clear classes or restart MATLAB before using
the new version. When this is done, most of the RoMulOC functions should work except for
the essential ones that need to install

• YALMIP : http://control.ee.ethz.ch/∼joloef/manual/yalmip.html

• and at least one SDP solver among those listed in
http://control.ee.ethz.ch/∼joloef/manual/htmldata/solvers.htm.
The solvers should be installed as described in the solver manuals. Make sure to add
required paths.

To test your installation, run the commands yalmiptest.m and romuloc.m.

2.2 License agreement

The current versions of RoMulOC and YALMIP are free of charge and openly distributed, but
note that they are distributed in the hope that they will be useful, but without any warranty;
without even the implied warranty of merchantability or fitness for a particular purpose
(if your satellite crash or you fail your Phd due to a bug in RoMulOC or YALMIP, your loss!).
RoMulOC and YALMIP may not be re-distributed as a part of a commercial product (if you
make money from YALMIP, let Yohan in first!). RoMulOC and YALMIP must be referenced
when used in a published work (give us some credit for saving your valuable time!).

@manual{romuloc,
author = "D. Peaucelle",
title = "{RoMulOC} a YALMIP-MATLAB based Robust Multi Objective Control Toolbox}",
url = {http://www.laas.fr/OLOCEP/romuloc},
year = "2005"}

@manual{yalmiphome,
author = "J. L{\"o}fberg",
title = "{YALMIP} : A Toolbox for Modeling and Optimization in {MATLAB}",
url = {http://control.ee.ethz.ch/∼joloef/yalmip.php},
year = "2004"}
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or/and
@InProceedings{yalmipconf,
author = "J. L{\"o}fberg",
title = "{YALMIP} : A Toolbox for Modeling and Optimization in {MATLAB}",
booktitle = "Proceedings of the {CACSD} Conference",
year = "2004",
address = "Taipei, Taiwan"}

2.3 A short example for a start

The following example is taken from [GdOB02] and [XLZZ04]. It is used here to illustrate robust
H2 performance analysis. Let us follow step by step the example without getting into details of
the functions used.

>> sys=ssmodel(’Geromel et al. 2002’)
name: Geromel et al. 2002
empty SSMODEL

ROMULOC works along with a new definition of systems in Matlab environment. Here we
have declared a new system, with an identifying tag for nice display purpose. The variable
contains no data on the system. Now simply append the model

>> sys.A=[0.9 0.1; 0.01, 0.9];
>> sys.Bw=[ 1 0 0 ; 0 1 0];
>> sys.Cy=[1 0;1 1];
>> sys.Dyw=[0 0 1.414;0 0 0];
>> sys.T=1
name: Geromel et al. 2002

n=2 mw=3
n=2 dx = A*x + Bw*w
py=2 y = Cy*x + Dyw*w
discrete time ( dx : advance operator ) period T=1

At this stage we have declared a discrete-time linear system of order 2, with 3 disturbance
inputs (represented by the notation w) and 2 measured outputs (represented by the notation
y). In [GdOB02] and [XLZZ04], the uncertain system is defined as

(
xk+1

yk

)
=




0.9 0.1 1 0 0
0.01 0.9 0 1 0
1 0 0 0 1.414
1 1 0 0 0

+ δ1

 0 0.06
0 0

0

0 0

+ δ2

 0 0
0.05 0

0

0 0


( xk

wk

)

where the uncertainties are norm-bounded |δi| ≤ 1. This modeling is called parallelotopic. It
amounts to adding variations around the ’central’ system sys along axes that are systems with
the same dimensions. Therefore let us define a variable called axes that defines an empty system
with identical dimensions as sys
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>> axes=ssmodel(0,sys)
n=2 mw=3

n=2 dx =
py=2 y =
discrete time ( dx : advance operator ) period T=1

This variable is used as an array of systems with identical dimensions. Each element of the
array contains one axis.

>> axes(1).A=[0 0.06;0 0];
>> axes(2).A=[0 0;0.05 0]
Array of 2 systems

n=2 mw=3
n=2 dx = A*x
py=2 y =
discrete time ( dx : advance operator ) period T=1

Based on these data, the uncertain parallelotopic system is declared as

>> usys=uparal(sys,axes)
Uncertain model : parallelotope 2 param
-------- WITH --------

n=2 mw=3
n=2 dx = A*x + Bw*w
py=2 y = Cy*x + Dyw*w
discrete time ( dx : advance operator ) period T=1

In [XLZZ04] an output filter is designed for signal reconstruction. The performance of the
filter with respect to the disturbance input is measured using the H2 norm of the transfer
between w and z where z is the performance output signal of the filter defined as follows:

>> filter=ssmodel(’filter Xie et al.2004’);
>> filter.A=[0.0705 0.0263;1.2779 0.5492];
>> filter.Bu=[0.9114 0;-0.9972 0];
>> filter.Cz=[-1.2885 -0.2382];
>> filter.Dzu=[0 1];
>> filter.T=1
name: filter Xie et al.2004

n=2 mu=2
n=2 dx = A*x + Bu*u
pz=1 z = Cz*x + Dzu*u
discrete time ( dx : advance operator ) period T=1

The filtered uncertain system is obtained by plugging in the output of the system sys into
the control input of filter. This corresponds to the usual multiplication of systems

>> filtered=filter*usys;
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>> filtered.name = ’Filtered system’
Uncertain model : parallelotope 2 param
-------- WITH --------
name: Filtered system

n=4 mw=3
n=4 dx = A*x + Bw*w
pz=1 z = Cz*x
discrete time ( dx : advance operator ) period T=1

The robust analysis methods implemented in ROMULOC allow to deal with polytopic models
which are a more general representation than parallelotopes. Polytopes describe uncertain sets
as the convex combination of vertices. It is tedious to transform parallelotopes into polytopes
but ROMULOC does it for you

>> filtered=u2poly(filtered)
Uncertain model : polytope 4 vertices
-------- WITH --------
name: Filtered system

n=4 mw=3
n=4 dx = A*x + Bw*w
pz=1 z = Cz*x
discrete time ( dx : advance operator ) period T=1

Now that the uncertain system is declared, the ROMULOC functions allow to test two
methods for computing its robust H2 cost. This is done in three steps. First declare the type of
problem you want to solve and the methodology to be used.

>> quiz=ctrpb
CHOOSE A CONTROL PROBLEM
(a) Analysis
(b) State-Feedback design
(c) Full-Order Dynamic Output-Feedback
choice > a
CHOOSE A TYPE OF LYAPUNOV FUNCTION
(a) Unique over all uncertainties (quadratic stability)
(b) Quadratic w.r.t. del*(I-Ddd*del)^-1*Cd (for LFT SSMODEL objects)
(c) Polytopic (for polytopic USSMODEL objects)
choice > a

control problem: ANALYSIS
Lyapunov function: UNIQUE (quadratic stability)
No specified performance

Second, append the quiz variable to indicate that H2 performance of filtered is required

>> quiz=h2(quiz,filtered)
control problem: ANALYSIS
Lyapunov function: UNIQUE (quadratic stability)
Specified performances / systems:
# minimize H2 / Filtered system
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At this stage an LMI problem has been declared and stored in YALMIP format in the variable
quiz. The analysis problem can be solved as a third and last step, using whatever sdpsettings
of YALMIP.

>> solvesdp( quiz , sdpsettings(’solver’,’sdpt3’) )

num. of constraints = 11
dim. of sdp var = 20, num. of sdp blk = 5
dim. of linear var = 4
SDPT3: Infeasible path-following algorithms

*******************************************************************
it pstep dstep p_infeas d_infeas gap mean(obj) cputime
-------------------------------------------------------------------
0 0.000 0.000 4.4e+01 2.0e+00 2.8e+02 -4.205273e+01 0.0 spchol 1 1
....
14 0.998 1.000 2.3e-09 2.1e-16 6.9e-07 -2.212779e+01 1.8
Stop: max(relative gap, infeasibilities) < 1.00e-07
...
-------------------------------------------------------------------
H2 norm = 4.70402 is guaranteed for all uncertainties
ans =

4.7040

Note that the optimization has been done here using SDPT3 and the results are satisfying.
This may not be the case for all examples and for all solvers. A significant issue of YALMIP
(and therefore of ROMULOC) is to change solvers easily. For example, for the same problem
perform the optimization using SeDuMi gives:

>> solvesdp( quiz , sdpsettings(’solver’,’sedumi’) )
SeDuMi 1.05R5 by Jos F. Sturm, 1998, 2001-2003.

Alg = 2: xz-corrector, theta = 0.250, beta = 0.500
eqs m = 11, order n = 25, dim = 85, blocks = 6
nnz(A) = 238 + 0, nnz(ADA) = 111, nnz(L) = 61
it : b*y gap delta rate t/tP* t/tD* feas cg cg
0 : 1.13E+01 0.000

...
20 : -2.21E+01 1.26E-11 0.000 0.0759 0.9900 0.9900 1.00 2 2

iter seconds digits c*x b*y
20 0.8 Inf -2.2127786147e+01 -2.2127786146e+01
|Ax-b| = 6.6e-10, [Ay-c]_+ = 4.1E-11, |x|= 4.6e+02, |y|= 2.8e+01
Max-norms: ||b||=1, ||c|| = 2.577000e+00,
Cholesky |add|=0, |skip| = 0, ||L.L|| = 940.335.

Feasibility is not determined
Worst constraint residual is -4.14989e-11 < 0
4.70402 (=sqrt(double(CTRPB.vars{2}))) may be a guaranteed H2 norm
ans =

NaN

The two results are close except that SeDuMi converged to a non strictly feasible point. The

7



distance to feasibility is evaluated as equal to 4.14989e-11.

At this stage we have obtained that the H2 norm of the uncertain system is less than 4.70402
whatever the uncertainties. Now let test the second method that involves parameter-dependent
Lyapunov functions.

>> quiz=ctrpb;
CHOOSE A CONTROL PROBLEM
(a) Analysis
(b) State-Feedback design
(c) Full-Order Dynamic Output-Feedback
choice > a
CHOOSE A TYPE OF LYAPUNOV FUNCTION
(a) Unique over all uncertainties (quadratic stability)
(b) Quadratic w.r.t. del*(I-Ddd*del)^-1*Cd (for LFT SSMODEL objects)
(c) Polytopic (for polytopic USSMODEL objects)
choice > c

>> quiz=h2(quiz,filtered)

control problem: ANALYSIS
Lyapunov function: POLYTOPIC (only for polytopic USSMODEL)
Specified performances / systems:
# minimize H2 / Filtered system

>> solvesdp(quiz,sdpsettings(’solver’,’sdpt3’))

num. of constraints = 73
dim. of sdp var = 36, num. of sdp blk = 5
dim. of linear var = 4
*******************************************************************

SDPT3: Infeasible path-following algorithms
*******************************************************************
it pstep dstep p_infeas d_infeas gap mean(obj) cputime
-------------------------------------------------------------------
0 0.000 0.000 1.4e+02 2.5e+00 1.1e+03 -8.410546e+01 0.1 spchol 2 2
...
13 0.355 1.000 9.3e-07 1.5e-13 5.4e-06 -1.539477e+01 2.4
Stop: relative gap < infeasibility.
...
H2 norm = 3.92362 is guaranteed for all uncertainties

For analysis purpose, parameter-dependent Lyapunov function based methods are all proved
to be less conservative than quadratic stability. The conservatism is reduced at the expense
of larger LMI problems to solve. Here the number of constraints grow from 11 to 73 and the
number of decision variables from 20 to 36. Meanwhile the computation time grows (on the
SunBlade 150 computer I used) from 1.8 to 2.4. In terms of conservatism, the computed upper
bound on the worst-case H2 norm is reduced from 4.70402 to 3.92362.

To finish with this experiment, compute the H2 norm of some specific systems within the
uncertain set. First test the central ’nominal’ system (calculated as the center of the polytope):
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>> norm(filtered,2)
Nominal
ans =

2.9636

Second test any of the four vertices of the polytope, for example the fourth:

>> norm(filtered(4),2)
System is stable
ans =

3.9236

The H2 norm on this vertex is equal to the upper bound found by the second method.
Therefore we may conclude that it is the worst-case H2 norm for the filtered system. This is
also attested using a gridding in [XLZZ04].
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3 Modeling of LTI state-space systems : ssmodel object

3.1 Three types of inputs and outputs

To cope simultaneously with controller design requirements, input/output performances and
uncertainties, the ssmodel object explicitly distinguishes between three pairs of outputs/inputs:

• Measurements/Control inputs. Denoted y/u, these are the actual vector signals
accessible for control purpose.

• Control outputs/Perturbations. Denoted z/w, these vector signals are used to
define input/output performance specifications such as H∞ norm, H2 norm or impulse-to-
peak.

• Exogenous. Denoted z∆/w∆, these are fictitious vector signals used for LFT modeling
of uncertainties.

Both continuous-time and discrete-time LTI systems can be defined. For the discrete-time case
δ[x(t)] = x(t + T ) where T is the sampling time. For the continuous-time case δ[x(t)] = ẋ(t).
The matrices of the state-space model are as follows:

x ∈ R
n w∆ ∈ R

m∆ w ∈ R
mw u ∈ R

mu

δ[x(t)] = Ax(t)+ B∆w∆(t)+ Bww(t)+ Buu(t)
z∆ ∈ R

p∆ z∆(t) = C∆x(t)+ D∆∆w∆(t)+ D∆ww(t)+ D∆uu(t)
z ∈ R

pz z(t) = Czx(t)+ Dz∆w∆(t)+ Dzww(t)+ Dzuu(t)
y ∈ R

py y(t) = Cyx(t)+ Dy∆w∆(t)+ Dyvv(t)+ Dyuu(t)

Any of the seven dimensions n, m∆,mw,mu, p∆, pz, py may be equal to zero.

3.2 Extract data from an ssmodel

3.2.1 Display an ssmodel

The output display of ssmodel objects shows explicitly the relations (if any) between the various
input/outputs, without giving numerical values of the various matrices. The display insists on
the defined dimensions and non zero matrices. Examples 3.1, 3.2 and 3.3 illustrate three possible
displays.

Example 3.1 First example of ssmodel display
>> sys1
name: example1

n=4 md=2 mw=2 mu=1
n=4 dx = A*x + Bd*wd + Bw*w + Bu*u
pd=3 zd = Cd*x + Ddd*wd + Ddw*w + Ddu*u
pz=1 z = Cz*x + Dzd*wd + Dzw*w
py=1 y = Cy*x
continuous time system ( dx : derivative operator )

3.2.2 Extract data of an ssmodel

All the data can be extracted using structured array referencing, see Example 3.4.
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Example 3.2 Second example of ssmodel display
>> sys2
Array of 4 systems
name: example2
static gain md=1 mw=2 mu=2
pd=1 zd = Ddw*w + Ddu*u
pz=1 z = Dzd*wd
py=3 y = Dyd*wd + Dyw*w + Dyu*u

Example 3.3 Third example of ssmodel display
>> sys3
name: example3

n=7 mw=1 mu=3
n=7 dx = A*x + Bw*w + Bu*u
pz=1 z = Cz*x + Dzu*u
py=3 y = Cy*x + Dyu*u
discrete time LTI system ( dx : advance operator ) period T=1

Example 3.4 Extract data from ssmodel objects
>> sys3.Dzu
ans =

0 0 1
>> sys3.name
ans =
example3
>> sys3.Ts
ans =

1
>> sys3.n
ans =

7
>> sys2.nb
ans =

4
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3.2.3 Extract size of ssmodel

All system dimensions can be either display with the previous subsreference controls or else with
the size function, see Example 3.5.

Example 3.5 Extract size of ssmodel objects
>> size(sys1)
8 states
3/2 exogenous outputs/inputs
1 performance outputs / 2 disturbance inputs
1 measure outputs / 1 control inputs

>> [ qu, py ] = size(sys1)
ans =

1 1

>> [ n, pz, pg, py, mw, mv, mu ] = size( sys1, ’all’ )
ans =

4 3 1 1 2 2 1

3.3 Define an ssmodel

Defining an ssmodel implies declaring quite a number of matrices, which is quite tricky to do at
once because of possible confusions and errors in the dimensions. Therefore several alternative
methods are available for the user.

3.3.1 Indirect method

The procedure is to define an empty object and then set each field of the structured array. The
assignment is done as for a structured array, see Example 3.6.

3.3.2 Partitioning method

This method is based on a description where all the matrices are concatenated into a unique
matrix M representing the linear transformation:

δ[x]
z∆

z
y

 = M


x

w∆

w
u


The blocks corresponding to each transfer matrix may not be ordered as in this equation. They
are specified using sets of row indices Ixr, Iz∆, Iz, Iy and column indices Ixc, Iw∆, Iw, Iu.
These sets are defined in Matlab as vectors ixr, izd, iz, iy, ixc, iwd, iw and iu respectively.
The various matrices of the LTI system are obtained from the M = (mij) matrix as follows:

A = (mij)i∈Ixr,j∈Ixc , B∆ = (mij)i∈Ixr,j∈Iw∆
, Dyw = (mij)i∈Iy ,j∈Iw

This partitioning method is described in Example 3.7.
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Example 3.6 Indirect method to declare an ssmodel
>> sys4 = ssmodel
empty SSMODEL
>> sys4.Bw = rand(4,2)

mw=2
n=2 dx = Bw*w
continuous time ( dx : derivative operator )
>> sys4.name=’helicopter’
name: helicopter

mw=2
n=2 dx = Bw*w
continuous time system ( dx : derivative operator )
>> sys4.A = rand(2,2)
??? Error using ==> ssmodel/set
dimensions do not fit with specified number of states
>> sys4.A(1:2,1:2) = rand(2,2)
name: helicopter

n=4 mw=2
n=4 dx = A*x + Bw*w
continuous time system ( dx : derivative operator )

Example 3.7 Example of partitioning method to declare an ssmodel
>> ixr = 1:3; izd = 4:5; iz = 5; iy = 5:6;
>> ixc = 1:3; iwd = 4; iw = 4:5; iu = 5:7;
>> ssmodel(M, ixr, izd, iz, iy, ixc, iwd , iw, iu, 0.1)

n=3 md=1 mw=2 mu=3
n=3 dx = A*x + Bd*wd + Bw*w + Bu*u
pd=2 zd = Cd*x + Ddw*w + Ddu*u
pz=1 z = Cz*x + Dzw*w + Dzu*u
py=2 y = Cy*x + Dyw*w + Dyu*u
discrete time ( dx : advance operator ) period T=0.1
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3.3.3 Compatibility with the Control System Toolbox:

Our toolbox is compatible with the CST and a ssmodel can de defined from a given lti object
of the CST. The idea is similar to the partitioning method, see Example 3.8.

Example 3.8 Compatibility with lti objects of the Control Toolbox
>> sysControl = ss(A,B,C,D);
>> izd = 1; iz = 2:3; iy = 4:6;
>> iwd = 1:2; iw = 3:4; iu = 5:6;
>> heli = ssmodel(sysControl, izd,iz,iy, iwd,iw,iu, ’helicopter’)
name: helicopter

n=3 md=1 mw=2 mu=3
n=3 dx = A*x + Bd*wd + Bw*w + Bu*u
pd=2 zd = Cd*x + Ddd*wd + Ddw*w + Ddu*u
pz=2 z = Cz*x + Dzw*w + Dzu*u
py=2 y = Cy*x + Dyd*wd + Dyw*w + Dyu*u
continuous time system ( dx : derivative operator )

Two abbreviated notations are also available to specify directly that all the inputs and
outputs of the lti system describe either the y/u couple of control signals or the z/w couple of
performance signals, see Example 3.9.

Example 3.9 Compatibility with lti objects of the Control Toolbox
>> pidControl = tf( ... );
>> pid = ssmodel(pidControl , ’control’)

n=3 mu=1
n=3 dx = A*x + Bu*u
py=1 y = Cy*x + Dyu*u
continuous time system ( dx : derivative operator )

>> weightControl = zpk( ... );
>> weight = ssmodel(weightControl , ’filter’)

n=2 mw=1
n=2 dx = A*x + Bw*w
pz=1 z = Cz*x
continuous time system ( dx : derivative operator )

3.3.4 Compatibility with the LFR Toolbox

We plan in the close future to implement the compatibility with the LFR toolbox of J.-F. Magni
which provides functions to build minimal, well conditioned system LFT representations.

3.4 Arrays of ssmodel objects

It is possible to define arrays of models with the same number of state/input/output signals
and the same sampling time. The usefulness is illustrated in the section devoted to ussmodel
objects that describe uncertain LTI systems.

Only one dimensional ssmodel arrays are implemented at this time. The subs-referencing
sys2(4) (to access the fourth element of the array of ssmodel stored in sys2) is valid while

14



sys(1,2) will not work.
Arrays of ssmodel can be build using subs-referencing or else can be obtained:

- with the partitioning method as in table 3.7, in that case M should be a three dimensional
matrix;
- or using the compatibility with CST as in table 3.8, in that case sysControl should be a one
dimensional array of lti objects.
In case M or sysControl have more dimension, then the resulting ssmodel has the same number
of elements but reshaped to a one dimensional array.

To access and modify the data of an array of ssmodel objects see Example 3.10.

Example 3.10 Manipulating arrays of ssmodel objects
>> size(sys2)
Array of 4 systems
Each model has:
0 states
1/1 exogenous outputs/inputs
1 performance outputs / 2 disturbance inputs
3 measure outputs / 2 control inputs

>> sys2(1)
name: example2
static gain md=1 mw=2 mu=2
pd=1 zd = Ddw*w + Ddu*u
pz=1 z = Dzd*wd
py=3 y = Dyd*wd + Dyw*w + Dyu*u

>> sys2(1).Ddd = 1
Array of 4 systems
name: example2
static gain md=1 mw=2 mu=2
pd=1 zd = Ddd*wd + Ddw*w + Ddu*u
pz=1 z = Dzd*wd
py=3 y = Dyd*wd + Dyw*w + Dyu*u

All the operators defined for ssmodel objects that are described in the following sub sections
for the case of a single ssmodel, can also handle arrays of such objects. See the inline help for
details.

3.5 Specific functions for ssmodel objects

3.5.1 Connect systems

The following elementary operations between two systems are available only for systems of the
same class of ssmodel objects. To perform these operations with other objects such as lti
objects, it is required to convert first to the ssmodel class using any method illustrated in
Examples 3.8 and 3.9.

Multiply two systems: This operation corresponds to building a model for two models in
series where the measured output is applied to the control input. The obtained exogenous signals
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are concatenations of those of the original systems. Multiplication is not valid if both systems
have controlled outputs z or disturbance inputs w. The global scheme is given on figure 1.

[1]
Σ Σ

[2]

[1]
Σ Σ

[2]

=

*

[1] [1]

[2] or [2]

Δ ΔΔ Δ
[2]

[1] [1] [2]

z
z z

z

zor[1]z

[1] [1] [2] [2]

y y

y[1]

u u[2]

w
w w

w
[2]

[2]
Δw
wΔ[1]

zΔ[2]
zΔ[1]

ww[1]

u[2]

Figure 1: Multiplication

It is assumed that the measured output of the first system has the same dimension as the
input of the second system. See Example 3.11 for notations.

Example 3.11 Multiplication of two ssmodel objects
>> sysMULT = mtimes( sys , pid );
>> sysMULT = sys * pid ;

Performance/Disturbance shaping: In case of loop-shaping as well as for many other in-
dustrial specifications, it may be needed to weight the input disturbance or output performance
signals. This amounts to introducing some LTI model in series with the input w or the output
z. This other model may as well have z∆/w∆ exogenous signals but it does not have con-
trol/measure signals since it is only defined for performance purpose. The global scheme is that
of figure 2. The global scheme is defined for both cases where the shaping operates on the input
w or on the output z.

It is assumed that the performance output of the first system has the same dimension as the
disturbance of the second system. Moreover, one of the two systems must have zero measured
output / control input dimensions. See Example 3.12 for notations.

Example 3.12 Shaping the disturbance input
>> shape(sys, weight, ’helicopter with shaped input’)
name: helicopter with shaped input

n=5 md=1 mw=2 mu=3
n=5 dx = A*x + Bd*wd + Bw*w + Bu*u
pd=2 zd = Cd*x + Ddd*wd + Ddw*w + Ddu*u
pz=1 z = Cz*x + Dzw*w + Dzu*u
py=2 y = Cy*x + Dyd*wd + Dyw*w + Dyu*u
continuous time system ( dx : derivative operator )
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Figure 2: Disturbance/Performance shaping

Uncertainty feedback: Two types of feedback loops are considered. The first one is an
“upper” feedback that connects the output/input signals z∆/w∆ with some constant gain matrix.
This operation amounts to chosing a value for the uncertain parameters of the system. It can
be used when the user wants to test the system properties for given values of the uncertainty.
The global scheme is that of figure 3. Example 3.13, where heli is the variable defined on page
14, illustrates the use of certain.

z
y certain (Σ , Δ )Σ

Δ
wΔΔz

y
z w

u
w
u

Figure 3: Uncertainty feedback

Example 3.13 Fixing the uncertainty value
>> Delta = [ 0.1 , 3.45 ];
>> certain( heli , Delta )

n=3 mw=2 mu=3
n=3 dx = A*x + Bw*w + Bu *u
pz=2 z = Cz*x + Dzw*w + Dzu*u
py=2 y = Cy*x + Dyw*w + Dyu*u
continuous time system ( dx : derivative operator )

Control feedback: The second feedback loop is a “lower” feedback that connects the out-
put/input signals y/u with some control law. The global scheme is that of figure 4. Note that in
order to analyse the closed loop fragility, the controller may be uncertain. Therefore, exogenous
signals may be defined for the controller and the closed loop model concatenates these with the
exogenous signals of the process model. The same rule applies on the performance signals z/w
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of the two systems as for the multiplication operator. Example reft-fb-ssmodel-2, where heli is
the variable defined on page 14, illustrates the use of feedback.
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wz )Σ , Κ(feedback

w
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Δ

ΔK

z
z
Δ

ΔK
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Figure 4: Control feedback

Example 3.14 Controlled helicopter
>> K = [ 0.1 , 3.45 ];
>> feedback( heli, K, ’closed loop helicopter’)
name: closed loop helicopter

n=3 md=1 mw=2 mu=3
n=3 dx = A*x + Bd*wd + Bw*w + Bu*u
pd=2 zd = Cd*x + Ddd*wd + Ddw*w + Ddu*u
pz=2 z = Cz*x + Dzd*wd + Dzw*w + Dzu*u
py=2 y = Cy*x + Dyd*wd + Dyw*w + Dyu*u
continuous time system ( dx : derivative operator )

Note that a function sfeedback is available for state-feedback (uK = x).

3.5.2 Standard analysis functions

Standard analysis tools can be developped for the ssmodel objects. The point of the toolbox
being LMI-based techniques for robust and multi objective control, the developed functions are
trivial interfaces with existing Matlab (Control Toolbox) functions.

Here is a list of such functions:

• Compute poles: poles

• Compute the norm of the performance/disturbance transfer: norm

• Plot impulse response for the performance/disturbance transfer and get the maximal norm
of the output z: impulse
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4 Modeling of uncertain operators: uncertainty object

Real valued parametric uncertainties are considered. Extensions to complex valued uncertainties,
non-linear uncertain blocks and others, may be considered in the future. At this stage, the
uncertainties are assumed to be real and constant.

4.1 Two types of uncertainties and sub-types

Block-diagonal structured uncertainties are assumed. Each block may appear several times on
the diagonal at arbitrary locations.An example of uncertainties with three independent blocks
is:

∆ =



∆1 0 0 0 0 0

0 ∆2 0 0 0 0

0 0 ∆3 0 0 0

0 0 0 ∆2 0 0

0 0 0 0 ∆1 0

0 0 0 0 0 ∆2

 .

Two main types of blocks are considered: {X, Y , Z}-dissipative uncertainties and polytopic
uncertainties.

4.1.1 {X, Y , Z}-dissipative uncertainties

{X, Y , Z}-dissipative uncertainties are constrained by a quadratic matrix inequality such as:

[
1 ∆

] [ X Y
Y ′ Z

] [
1

∆

]
≤ 0 , Z ≥ 0 .

This modeling of constraints on uncertain blocks is quite general. It allows the users to avoid
tedious manipulations on models and uncertainties for the cases when the uncertainties are not
in norm-bounded format. Indeed, if the uncertainty is defined by the following norm-bounded
constraint (centered at ∆o, scalled by T1 and T2):

‖T1(∆−∆o)T2‖ ≤ ρ

without modifying the LFT between the uncertainty and the LTI system it may be defined as
a {X, Y , Z}-dissipative uncertainty where:

X = ∆′
oT

′
1T1∆o − ρ2T−T

2 T−1
2 , Y = −∆′

oT
′
1T1 , Z = T ′

1T1 .

The advantage of such modeling is to keep the knowledge of the actual uncertain parameters.
Well-known sub-cases of {X, Y , Z}-dissipative uncertainties are:

• norm-bounded uncertainties (‖∆‖ ≤ ρ) which are {−ρ2
1, 0, 1}-dissipative uncertainties,

• positive-real uncertainties (∆′ + ∆ ≥ 0) which are {0, −1, 0}-dissipative uncertainties.

These two important sub-types are included explicitely in the toolbox.
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4.1.2 Polytopic uncertainties

These uncertainties lie in the convex hull of a finite number of vertices:

co
{

∆[1],∆[2], . . . ,∆[N ]
}

=

{
∆ =

N∑
i=1

ζi∆[i] : ζi ≥ 0 ,
N∑

i=1

ζi = 1

}
.

Such modeling describes structured uncertainties with N independent parameters: the barycen-
tric coordinates ζ.

Two sub-types of polytopic uncertainties are:

• Parallelotopes: These polytopes are built starting from an initial nominal matrix and
describing unitary variations around this point along several axes. The formulas are: ∆ = ∆|0| +

Np∑
i=1

δi∆|i| : |δi| ≤ 1

 .

The parallelotopes defined by Np axes are polytopes with N = 2Np vertices built out from
all extremal points such that |δi| = 1.

• Intervals: A sub-case of parallelotopes where the ∆|i| matrices are of rank one and belong
to the standard Euclidian basis of matrices. The simplest notation is:{

∆ � ∆ � ∆̄
}

where the � symbol stands for entry-wise inequalities ( ∆i,j ≤ ∆i,j ≤ ∆̄i,j ). Intervals
are polytopes with 2NI vertices where NI is the number of distinct elements in ∆ and ∆̄
matrices. The vertices are built out from all the combinations of elements from ∆ and ∆̄.

Again, these two important sub-types are included explicitely in the toolbox.

4.2 Extract data from an uncertainty

4.2.1 Display an uncertainty

The display gives the block structure of the uncertainty and the type of constraints of each
block. The chosen display does not insist numerical values but gives a short description of each
block, see Example 4.1.

Example 4.1 Example of uncertainty display
>> uD
diagonal structured uncertainty
size: 7x9 | nb blocks: 5 | independent blocks: 4
wd = diag( #2 #4 #5 #6 #4 ) * zd
index size constraint name
#2 2x1 norm-bounded by 1.235 gain of filters
#4 1x2 polytope 3 vertices coupled parameters m1 and m2
#5 1x2 interval 2 param independent parameters n1 and n2
#6 2x2 parallelotope 3 param independent parameters p1, p2, p3
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4.2.2 Extract uncertainty block from a structured uncertainty

A specific block of a structured uncertainty may be extracted using curly braces, see Example
4.2.

Example 4.2 Extract a block from an uncertainty
>> a=uD{4}
wd = #4 * zd
index size constraint name
#4 1x2 polytope 3 vertices coupled parameters m1 and m2

4.2.3 Extract data of an uncertainty block

The data on constraints on each block can be extracted with the udata function, see Example
4.3. The first input argument is the uncertainty and the second one indicates the block for
which the data are required. For uncertainties with single block, the second input argument is
optionnal.

Example 4.3 Extract data on constraints from uncertainty objects
>> [valmin,valmax,name] = udata(uD,5)
valmin =

-2 -3
valmax =

4 3
name =
independent parameters n1 and n2

4.2.4 Extract size of an uncertainty

See Example 4.4.

Example 4.4 Extract size of uncertainty object
>> size(uD)
ans =

7 9
>> a = uD{2}
wd = #2 * zd
index size constraint name
#2 2x1 norm-bounded by 1.235 gain of filters

>> size(a,2)
ans =

1

4.3 Define an uncertainty

There is a single Matlab object to store all possible uncertainties. But to make it simpler for
the user, specific functions are developed for each type of constraints on uncertainty blocks. To
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produce a structured uncertainty, it is first necessary to define each individual block.

4.3.1 {X, Y , Z}-dissipative (udiss), Norm-bounded (unb), Positive-real (upos)

A function udiss allows to declare any {X, Y , Z}-dissipative uncertainty. The input arguments
are the X, Y , Z matrices as well as an optional string name (used for nice display). As exposed
earlier, the most common {X, Y , Z}-dissipative uncertainties are the norm-bounded uncertain-
ties and the positive-real uncertainties. For these two sub-cases, dedicated functions (unb and
upos) are exposed. Example 4.5 illustrates the use of these functions.

Example 4.5 Define dissipative, norm-bounded and positive-real uncertainty
>> uiner = udiss( -5*eye(2), [1 0 0;0 1 0], eye(3), ’uncertainties on inertia’)
wd = #1 * zd
index size constraint name
#1 3x2 {X,Y,Z}-dissipative uncertainties on inertia

>> ufilt = unb( 2, 1, 1.234567, ’gain of filters’);

>> ufric = upos( 3, ’passive friction’)
wd = #3 * zd
index size constraint name
#3 3x3 positive-real passive friction

4.3.2 Polytopic (upoly), Interval (uinter), Parallelotopic (uparal)

A function upoly allows to declare any polytopic uncertainty. The input argument is a three-
dimensional array, the third dimension spanning the vertices, and an optional string name (used
for nice display). As exposed earlier, two sub-cases are frequently encountered in the litterature.
Dedicated functions, uinter for interval uncertainties and uparal for parallelotopic uncertain-
ties, are implemented. Example 4.6 illustrates the use of these functions.

Example 4.6 Define polytopic, interval, parallelotopic uncertainty
>> v(:,:,1)=[-1 1];
>> v(:,:,2)=[-1 -1];
>> v(:,:,3)=[ 1 0];
>> uM = upoly( v, ’coupled parameters m1 and m2’);

>> uN = uinter( [-2 -3], [4 3], ’independent parameters n1 and n2’);

>> cntr=eye(2);
>> ax(:,:,1)=[0 1;1 0];
>> ax(:,:,2)=[1 0;0 0];
>> ax(:,:,3)=[0 0;0 1];
>> uP = uparal( cntr, ax, ’independent parameters p1, p2, p3’);
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4.3.3 Diagonal structured: diag

Block diagonal structured uncertainties are declared using the overloaded function diag, see
Example 4.7. An important feature here is that blocks can be repeated times on the diagonal

Example 4.7 Define diagonal structured uncertainty
>> uD = diag( ufilt, uM, uN, uP, uM);

4.4 Modify uncertainty constraints

4.4.1 Convert parallelotopes and intervals to polytopes

Most of the robust analysis methods implemented at this time in the toolbox are dedicated to
polytopic uncertainties rather than parallelotopic or interval. Therefore a simple function is
developed to convert uncertainties to polytopic modeling when it is possible, see Example 4.8.

Example 4.8 Convert to polytopic modeling
>> uP
wd = #5 * zd
index size constraint name
#5 2x2 parallelotope 3 param independent parameters p1, p2, p3

>> u2poly(uP)
wd = #7 * zd
index size constraint name
#7 2x2 polytope 8 vertices independent parameters p1, p2, p3
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5 Modeling of uncertain systems: ussmodel object

5.1 LFT type uncertain systems

A ussmodel object describes an uncertain LTI model. It is composed of an ssmodel (see section
3) and an uncertainty (section 4). This object inherits of all properties and functions associated
to these two objects. In particular functionalities such as getting data, display, multiplication,
etc. that apply to ssmodel and uncertainty object apply exactly the same for ussmodel
objects.

Example 5.1 shows the declaration of an LFT type uncertain model such as described on
figure 5.

Example 5.1 Define ussmodel object
>> usys = ussmodel( sys , uD );

Σ

Δ

z
y u

w
wzΔ Δ

Figure 5: Uncertain LTI system

5.2 Polytopic type uncertain systems

Not all the uncertain LTI systems are described by LFTs. A common modeling is to define the
system matrices as elements of a polytope. In that case there is no z∆/w∆ signals. A simple
manner to describe this type of modeling is to declare the system vertices of the polytope. All
vertices are LTI systems and must have same output/input and state dimensions. If each vertex
(Σ[i]) is defined as:

x ∈ R
n v ∈ R

mw u ∈ R
mu

δ[x(t)] = A[i]x(t)+ B
[i]
w w(t)+ B

[i]
u u(t)

z ∈ R
pz z(t) = C

[i]
z x(t)+ D

[i]
zww(t)+ D

[i]
zuu(t)

y ∈ R
py y(t) = C

[i]
y x(t)+ D

[i]
yww(t)+ D

[i]
yuu(t)

then the uncertain polytopic system with vertices Σ[1], Σ[2], . . . Σ[N ] is described by the set :{
Σ(ζ) : ζi ≥ 0 ,

N∑
i=1

ζi = 1

}
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where matrices of the systems Σ(ζ) are such that:

A(ζ) =
N∑

i=1

ζiA
[i] Bw(ζ) =

N∑
i=1

ζiB
[i]
w Bu(ζ) =

N∑
i=1

ζiB
[i]
u

Cz(ζ) =
N∑

i=1

ζiC
[i]
z Dzw(ζ) =

N∑
i=1

ζiD
[i]
zw Dgu(ζ) =

N∑
i=1

ζiD
[i]
gu

Cy(ζ) =
N∑

i=1

ζiC
[i]
y Dyw(ζ) =

N∑
i=1

ζiD
[i]
yw Dyu(ζ) =

N∑
i=1

ζiD
[i]
yu

Similarly as for matrices of polytopic uncertain operators described in section 4, two sub types
of polytopic systems are: parallelotopic and interval systems. Their definition follows the same
rules as for uncertainties, see Examples 5.2, 5.3 and 5.4. As for the uncertainty objects, the
function u2poly converts all parallelotopic and interval systems into polytopic ones, see Example
5.5.

Example 5.2 Define polytopic uncertain system
>> Svtx
Array of 4 systems

n=2 mw=2 mu=1
n=2 dx = A*x + Bw*w + Bu*u
pz=1 z = Cz*x + Dzw*w + Dzu*u
py=2 y = Cy*x + Dyw*w + Dyu*u
continuous time ( dx : derivative operator )

>> usPo=upoly(Svtx)
Uncertain model : polytope 4 vertices
-------- WITH --------

n=2 mw=2 mu=1
n=2 dx = A*x + Bw*w + Bu*u
pz=1 z = Cz*x + Dzw*w + Dzu*u
py=2 y = Cy*x + Dyw*w + Dyu*u
continuous time ( dx : derivative operator )

25



Example 5.3 Define parallelotopic uncertain system
>> whos Scntr Sax
Name Size Bytes Class

Sax 1x2x2 3870 ssmodel object
Scntr 1x2 3670 ssmodel object

Grand total is 317 elements using 7540 bytes

>> usPa=uparal(Scntr,Sax)
Uncertain model : parallelotope 2 param
-------- WITH --------

n=2 mu=2
n=2 dx = A*x + Bu*u
py=1 y = Cy*x + Dyu*u
continuous time ( dx : derivative operator )

Example 5.4 Define interval uncertain system
>> usIn = uinter(Smin,Smax)
Uncertain model : interval 3 param
-------- WITH --------

n=4 mu=2
n=4 dx = A*x + Bu*u
py=3 y = Cy*x
continuous time ( dx : derivative operator )

Example 5.5 Convert to polytopic system
>> u2poly(usIn)
Uncertain model : polytope 8 vertices
-------- WITH --------

n=4 mu=2
n=4 dx = A*x + Bu*u
py=3 y = Cy*x
continuous time ( dx : derivative operator )
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6 Analysis and design problems: ctrpb object

The toolbox is focused on LMI methods for the robust performance analysis of certain and
uncertain systems defined in sections 3 and 5. In the future versions of RoMulOC robust
controller design with several performance specifications will be implemented.

6.1 Stability and performance

All results are Lyapunov-type and based on the following definitions for an LTI system without
uncertainties:

δ[x(t)] = Ax(t)+ Bww(t)
z(t) = Czx(t)+ Dzww(t)

6.1.1 Stability

First define the matrix Rs as either

Rsc =
[

0 1
1 0

]
or Rsd =

[
1 0
0 −1

]
respectively for continuous-time and discrete-time systems. Stability is proved by the existence
of a solution P to the LMI problem:

P > 0
[
1 AT

]
Rs ⊗P

[
1

A

]
< 0

For stability analysis or stabilizing controller design a single function is defined: stability. Its
usage is such as of Example 6.1 where quiz is a ctrpb object described later in sub-section 6.4.

Example 6.1 Define a stability analysis/design problem
>> quiz = stability( quiz, sys );

6.1.2 D-Stability

Pole location is considered for half planes and discs of the complex plane. To declare such regions
a region object is available for the user, see Example 6.2.

Remark: In the case of real-valued matrices, pole location in a sector of the complex plane
is equivalent to pole location in the inclined half plane with same angle as illustrated on Figure
6. Specifications on the time response, damping, natural frequency can be easily defined with
the considered regions.

All the considered regions are in fact described by a quadratic constraint on the poles p such
as: (

1 p∗
)
R

(
1
p

)
≤ 0

and the pole location is proved by the existence of a solution P to the LMI problem:

P > 0
[
1 AT

]
R⊗P

[
1

A

]
< 0 .

For all pole location problems the usage is such as of Example 6.3 where reg is a region object.
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Example 6.2 Regions of the complex plane
>> help region
--- help for region/region.m ---

REGION - Define a region of the complex plane

r = region(’plane’,a) : half-plane such that Re(z)<=Re(a)
r = region(’plane’,a,pi) : half-plane such that Re(z)>=Re(a)
r = region(’plane’,a,psi) : half-plane below the inclined line

that crosses the point ’a’
and makes an angle of ’psi’ with the imag. axis

r = region(’disk’,c,rad) : disk centered at ’c’ with radius ’rad’
default ’rad=1’
if ’rad<0’ the region is the exterior of the disk.

SEE ALSO dstability

Im

Re

Im

Re

Figure 6: Sector pole location for real-valued matrices

Example 6.3 Define a D-stability analysis/design problem
>> quiz = dstability( quiz, sys, reg );
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6.1.3 H∞ performance

The H∞ norm of the system is proved to be less than γ if there exists a solution P to the LMI
problem:

P > 0

[
1 AT

0 BT
w

]
Rs ⊗P

[
1 0

A Bw

]
+
[

CT
z Cz CT

z Dzw

DT
zwCz DT

zwDzw − γ2
1

]
< 0 .

To define H∞ problems the usage is such as of Example 6.4 where perf is the γ to test. If the
argument perf is empty or omitted, γ is minimized.

Example 6.4 Define an H∞ analysis/design problem
>> quiz = hinfty( quiz, sys, perf );

6.1.4 H2 performance

The H2 norm of the system is proved to be less than γ by the existence of a solution P to the
LMI problem (Dzw should be zero for continuous-time systems):

P > 0
[
1 AT

]
Rs ⊗P

[
1

A

]
+ CT

z Cz < 0 Trace(BT
wPBw + DT

zwDzw) ≤ γ2 .

To define H2 problems the usage is such as of Example 6.5 where perf is the γ to test. If the
argument perf is empty or omitted, γ is minimized.

Example 6.5 Define an H2 analysis/design problem
>> quiz = h2( quiz, sys, perf );

6.1.5 Impulse-to-peak performance

The peak norm of the impulse response of the system is proved to be less than γ by the existence
of a solution P to the LMI problem:

P > 0
[
1 AT

]
Rs ⊗P

[
1

A

]
< 0 BT

wPBw ≤ γ2
1 CT

z Cz ≤ P DT
zwDzw ≤ γ2

1 .

To define impulse-to-peak problems the usage is such as of Example 6.6 where perf is the γ to
test. If the argument perf is empty or omitted, γ is minimized.

Example 6.6 Define an impulse-to-peak analysis/design problem
>> quiz = i2p( quiz, sys, perf );

6.2 Robust methods

For each type of uncertain system (LFT and polytopic) the toolbox allows to build conservative
LMI results that prove the stability or the specified performance. These LMI results are now
briefly presented for the case of robust stability analysis.
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6.2.1 Quadratic stability and quadratic separators

In the case of LFT uncertain systems robust stability can be proved by the existence of a unique
quadratic Lyapunov function for all values of the uncertain parameters, V (x) = xT Px, and a
quadratic separator Θ such that the following constraints hold:

P > 0

[
1 AT

0 BT
∆

]
Rs ⊗P

[
1 0

A B∆

]
<

[
CT

∆ 0

DT
∆∆ 1

]
Θ
[

C∆ D∆∆

0 1

]
[
1 ∆T

]
Θ
[
1

∆

]
≤ 0 ∀∆ ∈ �

where � is the set of uncertainties. This set has infinite number of elements. To make the
problem tractable one therefor needs an (eventually conservative) relaxation to describe the
admissible separators with a finite number of constraints. The implemented relaxations are
based on, [IH98]:

• vertex separators for polytopic uncertainties,

• D-scaling for full block dissipative uncertainties,

• DG-scaling for repeated scalar dissipative uncertainties.

The construction of these separators is not discussed here. To generate examples of separators,
know that separators are built in a YALMIP format using a single internal function separator.

6.2.2 Quadratic-LFT Lyapunov function and quadratic separators

The previous result is conservative due to the choice of a unique Lyapunov function for all
uncertainties. A second implemented result attenuates the conservatism with the use of a so
called quadratic-LFT Lyapunov function:

V (x,∆) = xT
[
1 ∆T

c

]
P
[

1

∆c

]
x ∆c = ∆(1−D∆∆∆)−1C∆

The LMI results are then as follows:
1 0 0

0 1 0

A B∆ 0

0 0 1


T

Rs⊗P


1 0 0

0 1 0

A B∆ 0

0 0 1

 <


C∆ D∆∆ 0

C∆A C∆B∆ D∆∆

0 1 0

0 0 1


T

Θ


C∆ D∆∆ 0

C∆A C∆B∆ D∆∆

0 1 0

0 0 1


where Θ is a separator for the structured uncertainty diag(∆,∆).

6.2.3 Quadratic stability and vertices

In the case of polytopic uncertainties specific methods are implemented. The first one is based on
a unique Lyapunov function V (x) = xTPx. The stability is then proved by the LMI constraints:

P > 0

[
1 A[i]T

]
Rs ⊗P

[
1

A[i]

]
< 0 ∀i ∈ {1 . . . N} .
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6.2.4 Polytopic Lyapunov function and slack variables

A less conservative result, [PABB00], based on a polytopic Lyapunov function is also imple-
mented. The result is such that the Lyapunov function is:

V (x, ζ) = xT

(
N∑

i=1

ζiP[i]

)
x

and the LMI constraints are:

P[i] > 0 Rs ⊗P[i] +

[
A[i]T

−1

]
GT + G

[
A[i] −1

]
< 0 ∀i ∈ {1 . . . N} .

6.2.5 Other methods for the next versions

Currently many other methods are developed such as [RP01, Bli04]. In cooperation with their
authors we hope to integrate these results to the present tool as soon as possible.

6.3 Analysis and design problems

At this time, only robust analysis methods are implemented in RoMulOC. The next version with
state-feedback and full-order dynamic output-feedback is expected for the autumn 2006. For
these design problems, LMI conditions will be derived from the analysis inequalities with the
help of the classical linearising changes of variables described in [BGP89] for the state-feedback
case and [SGC97] for the full-order output-feedback case.

The toolbox is developed in order to give the possibility to define multi-objective design
problems in a simple manner. Example 6.7 illustrates a mixed H2/H∞ declaration.

Example 6.7 Define a mixed H2/H∞ design problem
>> quiz = h2( quiz, sys1 );
>> quiz = hinfty( quiz, sys2, gamma );

6.4 Define and append a ctrpb object

All the control problems of the type considered in the toolbox depend on four elements:

• uncertainty modeling (LFT or Polytopic system),

• type of controller (state-feedback or full-order output-feedback),

• type of method (quadratic stability or parameter-dependent Lyapunov functions),

• stability or performance (pole location, H∞, H2 or impulse-to-peak).

For each case a specific Matlab function is developed. These functions are not accessible to
the user but are called inside the stability, dsatbility, hinfty, h2 and i2p functions. The
system is always specified by the second input argument of the functions while the type of
controller and the type of method are specified by a ctrpb object called here quiz, see Example
6.8.
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Example 6.8 Define a control problem (ctrpb)
>> quiz = ctrpb;
CHOOSE A CONTROL PROBLEM
(a) Analysis
(b) State-Feedback design
(c) Full-Order Dynamic Output-Feedback
choice > a
CHOOSE A TYPE OF LYAPUNOV FUNCTION
(a) Unique over all uncertainties (quadratic stability)
(b) Quadratic w.r.t. del*(I-Ddd*del)^-1*Cd (for LFT SSMODEL objects)
(c) Polytopic (for polytopic USSMODEL objects)
choice > a

>> quiz
control problem: ANALYSIS
Lyapunov function: UNIQUE (quadratic stability)
No specified performance

Once the quiz variable is declared, the functions stability, dsatbility, hinfty, h2 and
i2p allow to append the object LMI constraints correspondingly to required stability or perfor-
mances. Example 6.9 where usys is a ussmodel of LFT type named Demo example 1 illustrates
such a declaration.

Example 6.9 Append a control problem (ctrpb)
>> quiz = hinfty( quiz, us )
control problem: ANALYSIS
Lyapunov function: UNIQUE (quadratic stability)
Specified performances / systems:
# Hinfinity / Demo Example 1

6.5 Solve a control problem

The user of the RoMulOC toolbox may not know the structure of the ctrpb object and simply
choose to solve the problem and get the solution. This is the case in Example 6.10.

For more details about solving control problems (ctrpb objects) in RoMulOC, the reader
should get information about the YALMIP parser for optimization problems. Indeed, the ctrpb
object contains the LMI contraints (lmi) involving matrix variables (vars) and a linear objective
that can be visualized as shown in Example 6.11.

One of the main features of YALMIP is the possibility to call various SDP solvers. The
usage here is the same as for YALMIP (sdpsettings) and is illustrated in Example 6.12.
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Example 6.10 Solve a control problem (ctrpb)
>> solvesdp( quiz )
SeDuMi 1.05R5 by Jos F. Sturm, 1998, 2001-2003.
Alg = 2: xz-corrector, Step-Differentiation, theta = 0.250, beta = 0.500
eqs m = 60, order n = 33, dim = 337, blocks = 5
nnz(A) = 563 + 0, nnz(ADA) = 3132, nnz(L) = 1596
it : b*y gap delta rate t/tP* t/tD* feas cg cg
0 : 5.67E+02 0.000
1 : -1.79E+00 1.16E+02 0.000 0.2040 0.9028 0.9000 0.97 1 1
2 : -7.25E+00 3.07E+01 0.000 0.2650 0.9000 0.9121 0.07 1 1

...
33 : -8.17E+00 7.19E-11 0.000 0.5127 0.9000 0.9000 0.44 19 24
34 : -8.17E+00 3.01E-11 0.000 0.4180 0.9000 0.9000 0.58 19 25
Run into numerical problems.
iter seconds digits c*x b*y
34 3.6 Inf -8.1713266118e+00 -8.1713258776e+00
|Ax-b| = 3.6e-08, [Ay-c]_+ = 0.0E+00, |x|= 1.3e+01, |y|= 6.3e+04
Max-norms: ||b||=1, ||c|| = 2,
Cholesky |add|=2, |skip| = 10, ||L.L|| = 500000.
Warning: Numerical problems (SeDuMi)

Hinfinity norm = 2.85855 is guaranteed for all uncertainties

ans =

2.8586

Example 6.11 LMIs and variables of a control problem (ctrpb)
>> quiz.lmi
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
| ID| Constraint| Type| Tag|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
| #1| Numeric value| Element-wise 1x1| multi-conv : Zu3>=0|
| #2| Numeric value| Matrix inequality 2x2| multi-conv : Zu4>=0|
| #3| Numeric value| Matrix inequality 3x3| separate vertex 1|
| #4| Numeric value| Element-wise 1x1| Dscaling : Du1>0|
| #5| Numeric value| Element-wise 1x1| Dscaling : Du2>0|
| #6| Numeric value| Matrix inequality 16x16| Var Lyap <0|
| #7| Numeric value| Matrix inequality 8x8| Lyap >0|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
>> quiz.vars

ans =

[ 8x8 sdpvar] ’Lyapunov matrix’
[ 1x1 sdpvar] ’g > (Hinf cost)^2’
[13x13 sdpvar] ’Quadratic separator’

>> quiz.vars{1}
Linear matrix variable 8x8 (symmetric, real, eigenvalues between [1.1228,153.6718])
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Example 6.12 Solve control problem with SDPT3 solver and silent display
>> opt = sdpsettings( ’solver’, ’sdpt3’, ’verbose’, 0 );
>> Hinf = solvesdp( quiz, opt )

Hinf =

2.8585
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