
The Syntax and Semantics of FIACRE

Bernard Berthomieu∗, Jean-Paul Bodeveix+, Mamoun Filali+, Hubert Garavel†,

Frédéric Lang†, Didier Le Botlan∗, François Vernadat∗, Silvano dal Zilio∗

Draft Version 3.0

March 8, 2012

∗
LAAS-CNRS Université de Toulouse

7, avenue du Colonel Roche, 31077 Toulouse Cedex, France
E-mail: FirstName.LastName@laas.fr

+
IRIT

Université Paul Sabatier
118 Route de Narbonne, 31062 Toulouse Cedex 9, France

E-mail: FirstName.LastName@irit.fr

† INRIA
Centre de Recherche de Grenoble Rhône-Alpes / équipe-projet VASY

655, avenue de l’Europe, 38 334 Saint Ismier Cedex, France
E-mail: FirstName.LastName@inria.fr

———
Deliverable no F.3.2.11 of projet TOPCASED – Définition du langage pivot asynchrone V3

1 Introduction

1.1 Fiacre

This document presents the syntax and formal semantics of the Fiacre language, version 3.0.
Fiacre is an acronym for Format Intermédiaire pour les Architectures de Composants Répartis
Embarqués (Intermediate Format for the Architectures of Embedded Distributed Components).
Fiacre is a formal intermediate model to represent both the behavioural and timing aspects of
systems —in particular embedded and distributed systems— for formal verification and simulation
purposes. Fiacre embeds the following notions:

• Processes describe the behaviour of sequential components. A process is defined by a set of
control states, each associated with a piece of program built from deterministic constructs
available in classical programming languages (assignments, if-then-else conditionals, while
loops, and sequential compositions), nondeterministic constructs (nondeterministic choice
and nondeterministic assignments), communication events on ports, and jumps to next state.

• Components describe the composition of processes, possibly in a hierarchical manner. A com-
ponent is defined as a parallel composition of components and/or processes communicating
through ports and shared variables. The notion of component also allows to restrict the ac-
cess mode and visibility of shared variables and ports, to associate timing constraints with
communications, and to define priority between communication events.

Fiacre was designed in the framework of projects dealing with model-driven engineering and
gathering numerous partners, from both industry and academics. Therefore, Fiacre is designed
both as the target language of model transformation engines from various models such as Sdl

or Uml, and as the source language of compilers into the targeted verification toolboxes, namely
Cadp [8] and Tina [3] in the first step. In this document, we propose a textual syntax for Fiacre,
the definition of a metamodel being a different task, out of the scope of this deliverable.

Fiacre was primarily inspired from two works, namely V-Cotre [4] and Ntif [7], as well
as decades of research on concurrency theory and real-time systems theory. Its design started
after a study of existing models for the representation of concurrent asynchronous (possibly timed)
processes [5]. Its timing primitives are borrowed from Time Petri nets [11, 2]. The integration of
time constraints and priorities into the language was in part inspired by the BIP framework [1].
Concerning compositions, Fiacre incorporates a parallel composition operator [9] and a notion of
gate typing [6] which were previously adopted in E-Lotos [10] and Lotos-NT [12, 13].

This document is organized as follows: Section 2 presents the concrete syntax of Fiacre pro-
cesses, components, and programs. Section 3 presents the static semantics of Fiacre, namely
the well-formedness and well-typing constraints. Finally, Section 4 presents the formal dynamic
semantics of a Fiacre program, in terms of a timed state/transition graph.

1.2 From Fiacre V2.0 to Fiacre V3.0

This document presents the current draft specification of version 3.0 of the Fiacre language. This
Section summarizes the differences from the previous revision 2.0.

• Reading and writing shared variables:

3

A strong point of the Fiacre language is that it natively supports the two most widely used
communication paradigms: by messages or by shared variables. Hence, most of the interaction
mechanisms found in practical applications should be easily translated into Fiacre.

But handling these two paradigms in the same language is also the source of subtle semantic
issues that, in the first versions of the language were handled by limiting certain capabilities
of the language. In Fiacre 2.0, for instance, no transition path could simultaneously perform
a synchronization action (pure synchronization or communication) and manipulate a shared
variable (read or write).

The practice of Fiacre, in particular in projects aimed at translating AADL into Fiacre for
verification purposes, showed that this retriction led to overly complex translation schemes.
For these reasons, revision 3.0 takes a more permissive approach: shared variables can be
read everywhere in a process or component, and can be written everywhere except in init

initialization statememts. The strong restriction on the use of shared variables in revision 2.0
is replaced by a simpler independance check of shared variable assignements in interactions.
This way, many programs forbidden in revision 2.0 are now legal, while preserving the safety
of shared variable assignement.

Allowing shared variable to be read or written everywhere significantly impacts the formal
semantics of the language, however, since the possible interactions at some state can now
depend on a silent transition. But the benefits are important in terms of usability of shared
variables.

• Time constraints on silent transitions of processes, wait statements:

In revision 2.0, time constraints could only be applied to communication ports. So the
only means for timing an internal (silent) transition in a process was to add to it a dummy
synchronization action (provided, in 2.0, that this transition did not use shared variables.

Revision 3.0 introduces a wait statement for these purposes: any silent transition in a process
may include a wait statement that specifies a time constraint for the execution paths it is
found into, without the need for any dummy synchronizationm statement. Only one wait

statement is allowed along any execution path of a transition.

wait statements do not significantly impact the semantics of the language.

• Priorities between silent transitions in proceses, unless clauses in select statements:

As for time constraints, revision 2.0 did not allow to specify priority constraints between silent
transitions of a process, revision 3.0 allow this.

select statements can be now layered. The set of statements constituting a select can now
be partitionned into groups, separated by the unless keyword. The semantics is that a
transition in a group is possible only when no transition in some group after the unless

clause is possible.

As the previous, this extension does not significantly impact the semantics of the language.

• Decorrellation of timing constraints between transitions from same source state:

In revision 2.0, all timed transitions sourced at some process state were always reset syn-
chronously when one of them was taken. Revision 3.0 keyword loop (used in place of to s)

4

allows one to specify the transitions are not reset when taking some transition from state s.
This behavior was difficult to simulate in revision 2.0 (without loop), while mandatory for
some applications.

This extension significantly impact the formal timed semantics of the language as we now
have to maintain a clock for every possible transition (and path) from a state while 2.0 only
required one clock per state. The timed semantics of Fiacre is revised accordingly (see Section
5).

• New primitives:

A length primitive is added for queues, with the obvious meaning.

• Miscellaneous syntax enhancements:

Finally, revision 3.0 implements a few concrete syntax improvements:

1. Guarded commands: Though guarded commands could be expressed in 2.0, a specific
notation is introduced for them.

For any expression e and statement s:

“on e; s” is handled like “case e of true− > s end”.

2. any can be used as a value emitted in an output statement:

If mi is any and x a new variable (not occurring yet in the process), then:

“p!m1, . . . ,mi, . . . ,mn” is handled like “x := any; p!m1, . . . , x, . . . ,mn”

3. Finally, revision 3.0 implements some minor concrete syntax changes. In particular array
access and field access expressions and patterns are now considered atomic. This removes
the need for parenthesis in some contexts. E.g. expressions “not a[1]” or “S a.l” are
now legal (while revision 2.0 required parentheses around the inner expressions).

5

2 Concrete syntax

2.1 Notations

We describe the grammar of the Fiacre language using a variant of EBNF (Extended Bachus Naur
Form). The EBNF describes a set of production rules of the form “symb ::= expr”, meaning that
the nonterminal symbol symb represents anything that can be generated by the EBNF expression
expr. An expression expr may be one of the following:

• a keyword, written in bold font (e.g., type, record, etc.)

• a terminal symbol, written between simple quotes (e.g., ’:’, ’(’, etc.)

• a nonterminal symbol, written in teletype font (e.g., type, type decl, etc.)

• an optional expression, written “[expr0]”

• a choice between two expressions, written “expr1 | expr2”

• the concatenation of two expressions, written “expr1 expr2”

• the iterative concatenation of zero (resp. one) or more expressions, written “expr∗” (resp.
“expr+”)

• the iterative concatenation of zero (resp. one) or more expressions, each two successive
occurrences being separated by a given symbol s, written “expr∗s” (resp. “expr+s”)

The star and plus symbols have precedence over concatenation. Parentheses may be used to
group a sequence of expressions when iterative concatenation concerns the whole sequence.

2.2 Lexical elements

IDENT ::= any sequence of letters, digits, or ’_’, beginning by a letter

NATURAL ::= any nonempty sequence of digits

INTEGER ::= [’+’|’-’] NATURAL

DECIMAL ::= NATURAL [’.’ [NATURAL]] | ’.’ NATURAL

No upper bound is specified for the length of identifiers or numeric constants. The code
generation pass will check that numeric constants can indeed be interpreted.

Comments:

A comment is any sequence of characters between the comment brackets ’/*’ and ’*/’ in which
comment brackets are properly nested.

6

Reserved words and characters:

Keywords may not be used as identifiers, these are:

and any append array bool case channel component const dequeue do else

elsif empty end enqueue false first foreach from full if in init int is length

loop nat none not null of on or out par port priority process queue read

record select states then to true type union unless var wait where while

write

The following characters and symbolic words are reserved:

[] [] () { } {| |} : = <> < > <= >=

+ - * / % $ & | || := ; , ? ! -> # /* */

2.3 Types, type declarations

type id ::= IDENT

constr ::= IDENT

field ::= IDENT

type ::=

bool

| nat

| int

| type id

| exp ’..’ exp

| union (constr+
, [of type])+

|
end [union]

| record (field+
, ’:’ type)+

, end [record]

| array exp of type

| queue exp of type

The exp’s in types are functional expressions. They may make use of declared constants
(see Section 2.4). They should evaluate to nonnegative integers (in array and queue
types, in which they specify sizes) or to integers (in interval types, in which they specify
the interval bounds).

type decl ::= type type id is type

2.4 Expressions, constant declarations

unop ::= ’-’ | ’+’ | ’$’ | not | full | empty | dequeue | first | length

binop ::= enqueue | append

7

infixop ::=

or

| and

| ’=’ | ’<>’ |

| ’<’ | ’>’ | ’<=’ | ’>=’

| ’+’ | ’-’

| ’*’ | ’/’ | ’%’

Infix operators are listed in order of increasing precedence, those in same line have same
precedence. All are left associative.

var ::= IDENT

literal ::= INTEGER | true | false

atomexp ::=

literal

| var

| constr

| atomexp ’[’ exp ’]’

| atomexp ’.’ field

| ’(’ exp ’)’

exp ::=

atomexp

| ’[’ exp+
, ’]’

| ’{’ (field ’=’ exp)+
, ’}’

| ’{|’ exp∗, ’|}’
| constr atomexp

| unop atomexp

| binop ’(’ exp ’,’ exp ’)’

| exp infixop exp

| exp ’?’ exp ’:’ exp

const decl ::= const var ’:’ type is exp

2.5 Ports, channels, channel declarations

port := IDENT

channel_id ::= IDENT

channel ::= none | type+
| channel_id

channel_decl ::= channel channel_id is channel

8

A port is a process interaction point. Ports can be used for synchronization, communi-
cation, or setting timing or priority constraints, determined by the port type, or channel,
assigned to the port. Channels specified by a series of types separated by ’#’ are associ-
ated with ports transfering several values simultaneously. A port having channel none

may be used as a synchronization port (without any value transfered).

2.6 Processes

state ::= IDENT

name ::= IDENT

left ::= ’[’ DECIMAL | ’]’ DECIMAL

right ::= DECIMAL ’]’ | DECIMAL ’[’ | ’...’ ’[’

time_interval ::= left ’,’ right

port dec ::= port+
, ’:’ [in] [out] channel

Ports may have the optional in and/or out attributes, specifying that values may only
be received and/or sent through that port. By default, ports have both the in and out

attributes. The attributes and channel of a port may be omitted when shared with the
following port in the declaration.

arg dec ::= ([&] var)+
, ’:’ [read] [write] type

The parameters preceded by symbol & are passed by reference, the others are passed by
value. Parameters passed by reference may have the read and/or the write attribute,
specifying the operations that can be done on the variable, by default they have both
attributes. The attributes and type of a parameter may be omitted when shared with the
following parameter in the declaration.

var dec ::= var+
, ’:’ type [’:=’ exp]

Initial values are optional, they may also be specified by an initialisation statement (see
below). The type and initial value of a variable may be omitted when shared with the
following variable in the declaration.

transition ::= from state statement

atompatt ::=

any

| literal

| var

| constr

| atompatt ’[’ exp ’]’

9

| atompatt ’.’ field

| ’(’ pattern ’)’

pattern ::= atompatt | constr atompatt

statement ::=

null

| on exp

| pattern+
, ’:=’ exp+

,
| pattern+

, ’:=’ any [where exp]

| while exp do statement end [while]

| foreach var do statement end [foreach]

| if exp then statement (elsif exp then statement)* [else statement] end [if]

| select statement+

[]
(unless statement+

[]
)* end [select]

| case exp of (pattern ’->’ statement)+

|
end [case]

| to state

| loop

| wait time interval

| statement ’;’ statement

| port

| port ’?’ pattern+
, [where exp]

| port ’!’ (exp | any)+
,

Additional well-formedness constraints are given in Section 3. The last three statement
are referred to as “communication” statements.

process decl ::=

process name

[’[’ port_dec+
, ’]’]

[’(’ arg_dec+
, ’)’]

is states state+
,

[var var_dec+
,]

[init statement]

transition+

Name of the process, port parameters, functional parameters or references, states and
initial state, local variables, followed by an optional initialization statement and a series
of transitions. The initialization statement may not perform communications nor read
or write variables passed by reference.

2.7 Components

arg ::= exp | ’&’ var

instance ::= name [’[’ port+
, ’]’] [’(’ arg+

, ’)’]

10

Instance of a process or component. Arguments passed by reference are prefixed by
symbol &.

portset ::= ’*’ | port+
,

compblock ::= instance | composition

composition ::=

| par [portset in] ([portset ’->’] compblock)+

||
end [par]

component decl ::=

component name

[’[’ port_dec+
, ’]’]

[’(’ arg_dec+
, ’)’]

is [var var_dec+
,]

[port (port_dec [in time_interval])+
,]

[priority (port+

|
’>’ port+

|
)+
,]

[init statement]

composition

Name of the component, port parameters, functional parameters or references, local
variables or references, local ports with delay constraints, priority constraints, followed
by an optional initialization statement and a composition. The initialization statement
may not include communications or to statements, nor read or write variables passed by
reference. In priority declarations, a1|...|an > b1|...|bm is a shorthand for (∀i ∈
{1, . . . , n})(∀j ∈ {1, . . . ,m})(ai> bj).

2.8 Programs

declaration ::=

type decl

| channel decl

| const decl

| process decl

| component decl

program ::=

declaration+

name

The body of a program is specified as the name of a process or component. If that process
or component admits parameters, then these parameters are parameters of the program.

11

3 Static semantics

3.1 Well-formed programs

3.1.1 Constraints

A program is well-formed if its constituents obey the following static semantic constraints.

1. Process and component identifiers should all be distinct;

2. Type and channel identifiers should all be distinct;

3. In any record type all labels declared must be distinct;

4. In any union type all constructors declared must be distinct;

5. In declarations of ports, formal parameters, or local variables, all identifiers must be distinct;

6. In a state declaration, all states must be distinct;

7. There is a single syntactical class for shared variables, formal parameters of processes or com-
ponents, local variables, and union constructors. As a consequence, the sets of shared variable
identifiers, formal parameter identifiers, local variable identifiers and constructors identifiers
(declared globally or in the header of some process or component) should be pairwise disjoint;

8. No keyword (e.g. if , from, etc) may be used as the name of a component, process, variable,
constructor, type, channel or port;

9. In any interval type x..y, one must have x ≤ y;

10. In a process, there may be at most one transition from each state declared;

11. In timed local port declarations and wait statements, time intervals may not be empty (e.g.
intervals like [7, 3[or]1, 1] are rejected);

12. In priority declarations, the transitive closure of the priority relation defined must be a strict
partial order;

13. In any priority declaration e1 > e2 or e2 < e1, set e1 may only contain ports locally declared
in the same component;

14. In an assignment statement, the patterns on the left-hand side must be pairwise independent.
A sufficient condition for that constraint is explained in Section 3.1.2;

15. Process initialization statements may not include communication, wait, loop or unless state-
ments, and they may not write shared variables. In addition, each of their paths must include
a to statement;

16. Component initialization statements, may not include communication, wait, to, loop or
unless statements, and they may not write shared variables;

12

17. In any process transition, at most one communication, wait, or select statement with an
unless clause may be found along each execution path. This constraint, referred to as the
single-communication constraint is integrated with the well-typing condition for statements,
see Section 3.2.5;

18. In any process or component, local variables or their constituents should be initialized before
their first use, a sufficient static condition ensuring that property is discussed in Section 3.1.3;

3.1.2 Well-formedness of assignment statements:

Assuming constants are replaced by their values (their values must be statically computable),
left hand sides of assignment statements have the shape of series of access expressions possibly
surrounded by a series of constructors. Each access expression is a sequence a0 a1 . . . an where a0

is some variable and each ai (i > 0) is either a field access (shape .f) or an array component access
(shape [exp]).

Two patterns are independent if, omitting the surrounding constructors, the remaining access
expressions a0 a1 ... an and b0 b1 ... bm obey:

• either a0 6= b0

• or for some i such that 0 ≤ i ≤ min(n,m), one of the following conditions hold:

– ai and bi have shapes [x] and [y], respectively, where x and y are different integer
constants;

– ai and bi have shapes .f and .g, respectively, where f and g are different record labels.

– ai or bi is a universal any pattern, a 0-ary construction or a literal.

3.1.3 Initialization of variables:

A static sufficient condition ensures that the variables locally declared in processes, or any of their
constituents, are initialized before any use. The condition is similar to that used for the same
purpose in the Ntif intermediate form, the reader is referred to [7] for details.

3.2 Well-typed programs

3.2.1 Type declarations, type expressions, types

First, it is assumed in this section that the constants declared have been replaced in types and
expressions by their values, and that the “size” parameters of queue and array types and the “range”
parameters of interval types have been computed (these expressions may only hold constants and
literals and so are computable statically).

Next, let us distinguish type expressions from types: type expressions may contain user-defined
type identifiers while types may not. Type declarations introduce abbreviations (identifiers) for
types or type expressions. With each type expression t, one can clearly associate the type τ obtained
from it by recursively replacing type identifiers in t by the type expressions they abbreviate.

13

Similarly, we will make the same distinction between channel expressions (possibly containing
channel identifiers) and channels. With each channel expression p, one can associate the channel π
obtained from it by replacing channel identifiers by the channels they abbreviate.

All formal parameters of a process (ports or variables), and local variables, have statically
assigned type or channel expressions, in the headers of the process, from which one can compute
types or channels as above. By typing context, we mean in the sequel a map that associates:

• with each port, a set made of its attributes (a non empty subset of {in,out}) and a channel.
Unless some attribute is made explicit in its declaration, a port has both in and out attributes;

• with each shared variable, a set made of its attributes (a nonempty subset of {read,write})
and type. There are no default attributes for variables;

• with each formal parameter, its type;

• with each local variable, its type.

• with each constructor its type. If the constructor is 0-ary, this type is a union type. If it
is 1-ary, then that type is a function type τ1 → τ2, in which τ1 is the type expected for the
constructor argument and τ2 is the result type of the construction (a union type).

Typing contexts are written A in the sequel. A(x) denotes the information (attributes and
type(s)) associated with variable or port x in A.

3.2.2 Subtyping

The types obtained as explained above are partially ordered by a relation called subtyping, written
≤ and defined by the following rules:

τ ∈ {bool,nat, int}

τ ≤ τ
(SU1)

⊥ ≤ τ
(SU2)

nat ≤ int
(SU3)

x ≥ 0

x .. y ≤ nat
(SU4)

x .. y ≤ int
(SU5)

x1 ≥ x2 y1 ≤ y2

x1 .. y1 ≤ x2 .. y2
(SU6)

τ ≤ τ ′

array k of τ ≤ array k of τ ′
(SU7)

τ ≤ τ ′

queue k of τ ≤ queue k of τ ′
(SU8)

{f1, . . . , fn} = {g1, . . . , gn} (∀i, j)(fi = gj ⇒ τi ≤ τ ′j)

record f1 : τ1, . . . , fn : τn end ≤ record g1 : τ ′1, . . . , gn : τ ′n end
(SU9)

{c11, . . . , c
1
n} = {c21, . . . , c

2
m}

(∀i, j)(c1i = c2j ⇒ ((i ≤ u ∧ j ≤ v) ∨ (i > u ∧ j > v ∧ τi ≤ τ ′j))

union c11 | . . . | c1u | c1u+1 of τu+1 | . . . | c1n of τn end

≤ union c21 | . . . | c2v | c2v+1 of τ ′v+1 | . . . | c2m of τ ′n end

(SU10)

Fields in record types are unordered, as well as variants in union types. In the above
rule, constructors are assumed ordered so that those without arguments appear first.

14

bool and nat types are not related by subtyping, nor are record or union types with
different sets of fields or constructors, or arrays or queues of different finite sizes.

The subtyping relation is extended to channels by:

none ≤ none
(SU11)

τ1 ≤ τ ′1 . . . τn ≤ τ ′n
τ1# . . .#τn ≤ τ ′1# . . .#τ ′n

(SU12)

3.2.3 Typing expressions

A is some typing context, the following rules define the typing relation “:” for expressions.

Subsumption and any expressions

A ⊢ E : τ τ ≤ τ ′

A ⊢ E : τ ′
(ET1)

A ⊢ any : ⊥
(ET2)

any as an expression is only allowed as the value sent in an output statement.

Literals

K ∈ INTEGER V al(K) = k

A ⊢ K : k .. k
(ET3)

k ∈ {true, false}

A ⊢ k : bool
(ET4)

By abuse of notation, we write K ∈ INTEGER to mean that K belongs to the INTEGER

syntactical class. Function V al associates with a token in the INTEGER or NATURAL class
the integer it denotes.

Variables, constants and constructions (union values)

A(X) = {τ}

A ⊢ X : τ
(ET5)

{read, τ} ⊆ A(X)

A ⊢ X : τ
(ET6)

A(C) = {τ → τ ′} A ⊢ e : τ

A ⊢ C e : τ ′
(ET7)

Shared variables in write-only mode may not be read.

Arithmetic and logical primitives

A ⊢ x : bool

A ⊢ not x : bool
(ET8)

A ⊢ x : bool A ⊢ y : bool (@ ∈ {and,or})

A ⊢ x@y : bool
(ET9)

A ⊢ x : τ τ ≤ int

A ⊢ −x : τ
(ET10)

A ⊢ x : τ τ ′ ≤ τ ≤ int

A ⊢ $ x : τ ′
(ET11)

A ⊢ x : τ A ⊢ y : τ τ ≤ int (@ ∈ {+,−, ∗, /,%})

A ⊢ x@y : τ
(ET12)

A ⊢ x : τ A ⊢ y : τ τ ≤ int (@ ∈ {<,<=, >,>=})

A ⊢ x@y : bool
(ET13)

15

A ⊢ x : τ A ⊢ y : τ (@ ∈ {=, <>})

A ⊢ x@y : bool
(ET14)

Except for the coercion operator $, arithmetic primitives are homogeneous: their argu-
ment(s) and result have the same type. $ converts a numeric value of some type τ ≤ int

into a value of some subtype τ ′ of τ .

Records

{f1, . . . , fn} ⊆ Fields A ⊢ l1 : τ1 . . . A ⊢ ln : τn
A ⊢ {f1 : l1, . . . , fn : ln} : record f1 : τ1, . . . , fn : τn end

(ET15)

A ⊢ P : record . . . , f : τ, . . . end

A ⊢ P.f : τ
(ET16)

Fields is the set of record field identifiers declared in record types.

Arrays

A ⊢ k1 : τ . . . A ⊢ kn : τ

A ⊢ [k1, . . . , kn] : array n of τ
(ET17)

A ⊢ P : array k of τ A ⊢ E : 0 .. k−1

A ⊢ P [E] : τ
(ET18)

Queues

A ⊢ k1 : τ . . . A ⊢ kn : τ 0 ≤ n ≤ m

A ⊢ {|k1, . . . , kn|} : queue m of τ
(ET19)

A ⊢ q : queue k of τ

A ⊢ length q : 0..(k − 1)
(ET20)

A ⊢ q : queue k of τ

A ⊢ empty q : bool
(ET21)

A ⊢ q : queue k of τ

A ⊢ full q : bool
(ET22)

A ⊢ q : queue k of τ

A ⊢ first q : τ
(ET23)

A ⊢ q : queue k of τ

A ⊢ dequeue q : queue k of τ
(ET24)

A ⊢ q : queue k of τ A ⊢ E : τ

A ⊢ enqueue (q,E) : queue k of τ
(ET25)

A ⊢ q : queue k of τ A ⊢ E : τ

A ⊢ append (q,E) : queue k of τ
(ET26)

3.2.4 Typing patterns

By “pattern”, we mean the left hand sides of assignment statements, or the tuples of variables
following “?” in input communication statements.

When used as arguments of some primitive, types of values can be promoted to any of their
supertypes (by the use of the subsumption rule), but we want variables of all kinds to only store
values of their declared type, and not of larger types. For this reason, patterns cannot be typed
like expression.

16

As an illustrative example, assume variable X was declared with type nat, and array A with
type array 16 of int. If lhs of assignments were given types by ⊢, then the statement X := A[2]
would be well typed, storing an integer where a natural is expected, since the rhs has type int, and
the lhs has type nat, and nat is a subtype of int.

Patterns are given types instead by specific relation “:p”, defined by the following five rules.
These rules are similar to those for “:” for variable and access expressions except that subsumption
is restricted:

A(X) = {τ}

A ⊢ X :p τ
(LT1)

{write, τ} ⊆ A(X)

A ⊢ X :p τ
(LT2)

A(C) = {τ → τ ′} A ⊢ e :p τ

A ⊢ C e :p τ ′
(LT3)

K ∈ INTEGER A ⊢ K : τ

A ⊢ K :p τ
(LT4)

k ∈ {true, false}

A ⊢ k :p bool
(LT5)

A ⊢ any :p τ
(LT6)

A ⊢ P :p array k of τ A ⊢ E : 0 .. k−1

A ⊢ P [E] :p τ
(LT7)

A ⊢ P :p record . . . , f : τ, . . . end

A ⊢ P.f :p τ
(LT8)

Shared variables in read-only mode cannot be assigned.

3.2.5 Typing statements, well typed processes

Well-typing of the statement captured in a transition ensures that the variables and expres-
sions occurring in the transition are used consistently and that the statement obeys the “single-
communication restriction” introduced in Section 3.1.1.

As for expressions, some information is infered for statements, assuming a typing context; the
“typing” relation for statements is written “:s”.
Statement “types” are subsets of {Com,Wait,Prio}. A statement has:

Com if it holds some communication or synchronization statement;

Wait if it holds some wait statement;

Prio if it holds some select statement with unless clause(s);

A process is well-typed if all of its transitions are well-typed in the typing context obtained from
its port declarations, formal parameter declarations and local variable declarations. A transition is
well typed if the statement it is defined from is well-typed. A statement S is well typed if one can
infer S :s α, for some α ⊆ {Com,Wait,Prio}, according to the following rules.

Jumps, null

A ⊢ to s :s ∅
(ST1)

A ⊢ loop :s ∅
(ST2)

A ⊢ null :s ∅
(ST3)

17

Sequential composition

A ⊢ S1 :s {Com} A ⊢ S2 :s ∅

A ⊢ (S1;S2) :s {Com}
(ST4)

A ⊢ S1 :s ∅ A ⊢ S2 :s {Com}

A ⊢ (S1;S2) :s {Com}
(ST5)

A ⊢ S1 :s α A ⊢ S2 :s β α, β ⊆ {Wait,Prio} α ∩ β = ∅

A ⊢ (S1;S2) :s α ∪ β
(ST6)

On, Assignments and Case

A ⊢ E : bool

A ⊢ on E :s ∅
(ST7)

A ⊢ P1 :p τ1 . . . A ⊢ Pn :p τn A ⊢ E1 : τ1 . . . A ⊢ En : τn
A ⊢ P1, . . . , Pn := E1, . . . , En :s ∅

(ST8)

A ⊢ P1 :p τ1 . . . A ⊢ Pn :p τn A ⊢ E : bool

A ⊢ P1, . . . , Pn := any where E :s ∅
(ST9)

A ⊢ P1 :p τ . . . A ⊢ Pn :p τ A ⊢ E : τ
A ⊢ S1 :s α1 . . . A ⊢ Sn :s αn

A ⊢ case E of P1 → S1 | . . . | Pn → Sn end :s α1 ∪ · · · ∪ αn
(ST10)

Choices and while loop

A ⊢ E : bool A ⊢ S1 :s α1 A ⊢ S2 :s α2

A ⊢ if E then S1 else S2 end :s α1 ∪ α2
(ST11)

if e then s end is handled like if e then s else null end. elsif is handled like else if .

A ⊢ E : bool A ⊢ S :s α Com 6∈ α

A ⊢ while E do S end :s α
(ST12)

A(v) = {x .. y} A ⊢ S :s α Com 6∈ α

A ⊢ foreach v do S end :s α
(ST13)

A ⊢ S1 :s α1 . . . A ⊢ Sn :s αn

A ⊢ select S1 [] ... [] Sn end :s α1 ∪ · · · ∪ αn

(ST14)

A ⊢ S1 :s α1 . . . A ⊢ Sn :s αn (∀i ∈ {k + 1, . . . , n})(Com 6∈ αi)

A ⊢ select S1 [] ... [] Sk (unless . . .)∗ unless . . . [] Sn end :s α1 ∪ · · · ∪ αn ∪ {Prio}
(ST15)

Communications and wait

none ∈ A(p)

A ⊢ p :s {Com}
(ST16)

A ⊢ wait interval :s {Wait}
(ST17)

18

A ⊢ E1 : τ1 . . . A ⊢ En : τn {out, τ1# . . .#τn} ⊆ A(p)

A ⊢ p ! E1, . . . , En :s {Com}
(ST18)

A ⊢ X1 :p τ1 . . . A ⊢ Xn :p τn A ⊢ E : bool {in, τ1# . . .#τn} ⊆ A(p)

A ⊢ p ? X1, . . . ,Xn where E :s {Com}
(ST19)

In an output communication, the tuple of types of the values sent must be a subtype of
the channel declared for the port. In an input communication, the channel declared for
the port must be a subtype of the tuple of types of the reception pattern.

3.2.6 Well-typed components

Components are checked in a context made of:

• A typing context A, defined as for processes except that locally declared variables all have
attributes read and write;

• An interface context I, that associates with all previously declared processes and components
an interface of shape ((. . . , µi, . . .), (. . . , ηj , . . .)), in which µi is the set of attributes and
channel of the ith port declared for the process or component, and ηj is the set of attributes
and type of the jth formal parameter of the component.

The expressions in components are given types and attributes by relation :x, defined by:

A(X) = η

A, I ⊢ X :x η
(CT1)

A ⊢ E : τ (E not a variable)

A, I ⊢ E :x {τ}
(CT2)

A component is well-typed if ok can be inferred for it by relation :c, defined by:

A, I ⊢ c1 :c ok . . . A, I ⊢ cn :c ok (∀i)(Qi ⊆ Σ(ci))

A, I ⊢ par Q1 → c1 || . . . || Qn → cn end :c ok
(CT3)

The sort Σ(c) of a composition c is computed as follows, according to the structure of c:

Σ(par e1 → c1 || . . . || en → cn end) = Σ(c1) ∪ · · · ∪ Σ(c2)
Σ(P [q1, . . . , qm] (v1, . . . , vl)) = {q1, . . . , qm}

par . . . || ci || . . . end stands for par . . . || ∅ → ci || . . . end

par Q in Q1 → c1 || . . . || Qn → cn end stands for
par (Q ∪Q1) → c1 || . . . || (Q ∪Qn) → cn end

If ∗ ∈ Q, then Q→ c is handled like Σ(c) → c.

A ⊢ e1 :x η1 . . . A ⊢ en :x ηn ((A(p1), . . . , A(pn)), (η1, . . . , ηm)) ≺ I(C)

A, I ⊢ C [p1, . . . , pn] (e1, . . . , em) :c ok
(CT4)

Where ((µ1
1, . . . , µ

1
n1

), (η1
1 , . . . , η

1
m1

)) ≺ ((µ2
1, . . . , µ

2
n2

), (η2
1 , . . . , η

2
m2

)) holds iff:

19

• n1 = n2 and for each i:
µ2

i ⊆ µ1
i ∧ µ

1
i − µ2

i ⊆ {in,out}

• m1 = m2 and for each j:
if {read,write}∩η2

j 6= ∅ then η2
j ⊆ η1

j else τ1
j ≤ τ2

j where η1
j = {τ1

j } and η2
j = {τ2

j }

3.2.7 Well typed programs

A program is well typed if the declarations and component instance it contains are well typed.

3.3 Choosing types for expressions

Expressions may have in general several types: arithmetic expressions typically have several types,
resulting from the subtyping rules of arithmetics, the empty queue constant {| |} has any queue
type.

The typing rules and method explained in section 3.2 ensure that all expressions in some program
can be given at least one type such that the whole program is well-typed.

Now, as will be seen, the semantics of arithmetic operations depends on their type, which is why
it is necessary to explain the rules leading to a choice of a particular type for arithmetic primitives
and constants when several types are admissible.

The rule retained is the following: when several types are admissible for an expression, the
Fiacre typechecker assigns to it the largest (by the subtyping relation) type possible permitted
by the context. If no such largest type is implied by the context, then the expression is rejected
(considered ill-typed).

As an illustrative example, consider the following statements, with the assumption that the
enclosing process or component holds the declarations x : 0..255, y : int, q : queue 5 of nat:

1. y := x+ 5

Pattern y has type int, expression x has any supertype of 0..255. Hence, expression x+5 has
all types which are subtypes of int and supertypes of 0..255; type int will be selected;

2. x := x+ 5

Expression x+ 5 admits a single type: 0..255;

3. if x > 1000 then...

The arguments of > are only required to be subtypes of int, hence both that instance of x
and constant 1000 are assigned type int;

4. if q = {| |} then...

Similarly, constant {| |} has here the type of q : queue 5 of nat;

5. if {| |} = {| |} then...

The context does not provide any upper bound for the types of the empty queue constants,
hence this statement is rejected.

In the next Section, overloaded primitives whose interpretation depends on their type are as-
sumed annotated with an indication of the type chosen by the above method. This concerns arith-
metic primitives (annotated by the type of their(s) argument(s)) and queues primitives (annotated
by the type of their queue argument).

20

4 Operational semantics, part I

All programs in this section are assumed well-formed and well-typed. Declared constants are as-
sumed replaced throughout by their statically computed values. Overloaded primitives are assumed
annotated as explained in Section 3.3.

For readability, the semantics is broken into two parts. This section introduces the “bahavioral”
semantics, the next one will explain the effects of time constraints and priorities.

4.1 Semantics of expressions

4.1.1 Semantic domains

The semantics of expressions is given in denotational style, it associates with every well-typed
expression a value in some mathematical domain D built as follows.

Let ZZ and IN be the set of integers and non-negative integers, respectively, equipped with their
usual arithmetic and comparison functions;

B = {true, false} be a domain of truth values, equipped with functions not, and and or;

S be the set of finite strings containing letters, digits, and symbol ’ ’;

Arrays(E) be the set of mappings from finite subsets of IN to E;

Records(E) be set of mappings from finite subsets of S to E;

Then D = Dω, where:

D0 = ZZ ∪ B ∪ S

Dn+1 = Dn ∪Arrays(Dn) ∪Records(Dn)

Fiacre arithmetic expressions are given meanings in set ZZ, boolean expressions in B, ar-
rays in some set Arrays(Dn), union constants as strings, tagged unions and records in some set
Records(Dn), for some finite n, all subsets of D. Queues denote some elements of Arrays(Dn).
The following mappings are defined for queue denotations (D(m) is the domain of mapping m):

• empty q is equal to true if D(q) = ∅, or false otherwise;

• full k q (n ∈ IN) is equal to true if k − 1 ∈ D(q), or false otherwise;

• length q is l − 1, where l the largest integer in D(q);

• first q = q(0), assuming 0 ∈ D(q);

• dequeue q, assuming 0 ∈ D(q), is the mapping q′ such that q′(x− 1) = q(x) for all x ∈ D(q);

• enqueue q e is the mapping q′ such that q′(x) = q(x) for x ∈ D(q), and q′(a) = e, where a is
the smallest non negative integer not in D(q).

• append q e is the mapping q′ such that q′(0) = e and q′(x+ 1) = q(x) for x ∈ D(q).

21

4.1.2 Stores

Expression are given meanings relative to a store. The store associates values in D with (some)
variables. Stores are written e, e′, etc, e(x) is the value associated with variable x in store e, D(e)
is the domain of e.

4.1.3 Semantic rules for expressions

Evaluation rules all have the following shape. The rule means that, under conditions P1 to Pn, the
value of expression E with store e is v. The store e may be omitted if the result does not depend
on its contents.

P1 . . . Pn

e ⊢ E v

Core expressions

• Numeric constants denote integers in ZZ. Implementations may choose to reject literals that
are not machine representable;

• 0-ary constructors (union constants) denote strings in S;

• The booleans true and false denote values true and false in B, respectively;

• Representing mappings by their graphs, records, arrays and queues are given meanings by:

⊢ l1 v1 . . . ⊢ ln vn

⊢ [l1, . . . , ln] {(0, v1), . . . , (n− 1, vn)}
(ES1)

⊢ l1 v1 . . . ⊢ ln vn

⊢ {f1 : l1, . . . , fn : ln} {(f1, v1), . . . , (fn, vn)}
(ES2)

⊢ {| |} ∅
(ES3)

⊢ l1 v1 . . . ⊢ ln vn

⊢ {|l1, . . . , ln|} {(0, v1), . . . , (n − 1, vn)}
(ES4)

• 0-ary constructors (union constants) denote strings in S, constructions denote pairs in S×D.

e ⊢ C |C|
(ES5)

e ⊢ E v

e ⊢ C E {(|C|, v)}
(ES6)

|C| ∈ S the name of the constructor.

Given a value v and a pattern P , the matching predicate M(v, P), read “v matches P” is
defined as follows, according to the structure of P (C is a constructor):

M((c, v), C P) iff c ∈ S ∧ c = |C| ∧M(v, P)

M(c, C) iff c ∈ S ∧ c = |C|

M(l, L) iff ⊢ L l (L is a numeric or boolean literal)

22

M(v,X) true (X is a variable or an access pattern)

• Variables evaluate to the values they are bound to in the store. Non initialized or partially
initialized variables are not in the stores, hence the condition on domains. Satisfaction of
these conditions is guaranteed by the static semantic constraints explained in Section 3.1.3.

X ∈ D(e)

e ⊢ X e(X)
(ES7)

• Array and record access evaluate the obvious way (arrays are indexed from 0). Well-typing
ensures that array indices, when their evaluation succeed, cannot be out of range, nor fields
undefined in the records they are sought for.

e ⊢ P a e ⊢ E i i ∈ D(a)

e ⊢ P [E] a(i)
(ES8)

e ⊢ P r f ∈ D(r)

e ⊢ P.f r(f)
(ES9)

• Conditional expressions are given meanings as follows:

e ⊢ Ec true e ⊢ E1 v

e ⊢ Ec ? E1 : E2 v
(ES10)

e ⊢ Ec false e ⊢ E2 v

e ⊢ Ec ? E1 : E2 v
(ES11)

Primitives

Well-typing implies that all primitives in an expression can be assigned at least one type. When
several types can be assigned to some primitive, the typechecker is assumed to have computed
a suitable one for it, typically the type that puts the weakest constraints on the arguments of
the primitive (see Section 3.3). The primitives whose semantics is type-dependent appear in the
semantic rules with type annotations added (by the typechecker).

Some primitives are partially defined (e.g. arithmetic functions over intervals, or taking an
element from a queue). This appears in the rules by some extra hypothesis (side-conditions). The
rules do not make precise any exception handling mechanism, it is assumed that implementations
are able to detect when a rule is not applicable and take an adequate decision in that case.

• Arithmetic primitives at type τ (τ is some subtype of int):

e ⊢ x a In(−a, τ)

e ⊢ −τ x −a
(ES12)

e ⊢ x a e ⊢ y b In(a @ b, τ) @ ∈ {+,−, ∗}

e ⊢ x @τ y a @ b
(ES13)

e ⊢ x a In(a, τ)

e ⊢ $τ x a
(ES14)

e ⊢ x a e ⊢ y b b 6= 0 In(a @ b, τ) @ ∈ {/,%}

e ⊢ x @τ y a @ b
(ES15)

Operations over nat or interval types behave like those over int type except that they
are undefined if the result is not in the expected set. Predicate In is defined as follows:
In(v, int) always holds, In(v,nat) holds if v ≥ 0, and In(v, a..b) if a ≤ v ≤ b. Im-
plementations may strengthen predicate In by conditions asserting that the results are
machine representable.

23

• Boolean primitives:

e ⊢ x a

e ⊢ not x not a
(ES16)

e ⊢ x a e ⊢ y b

e ⊢ x and y a and b
(ES17)

e ⊢ x a e ⊢ y b

e ⊢ x or y a or b
(ES18)

Boolean operators are evaluated functionally. Lazy boolean operators can be implemented
with conditional expressions.

• Comparison and equality (@ ∈ {<,>,<=, >=,=, <>}):

e ⊢ x a e ⊢ x b a @ b

e ⊢ x @ y true
(ES19)

e ⊢ x a e ⊢ x b ¬(a @ b)

e ⊢ x @ y false
(ES20)

• Primitives for queues at type τ (a queue type)

Assuming τ is some queue type queue N of τ ′, Cap(τ) denote capacity N .

e ⊢ q Q

e ⊢ length q length Q
(ES21)

e ⊢ q Q

e ⊢ empty q empty Q
(ES22)

e ⊢ q Q

e ⊢ fullτ q full (Cap(τ)) Q
(ES23)

e ⊢ q Q D(Q) 6= ∅

e ⊢ first q first Q
(ES24)

e ⊢ q Q D(Q) 6= ∅

e ⊢ dequeue q dequeue Q
(ES25)

e ⊢ q Q e ⊢ x v Cap(τ) − 1 6∈ D(Q)

e ⊢ enqueueτ (q, x) enqueue Q v
(ES26)

e ⊢ q Q e ⊢ x v Cap(τ) − 1 6∈ D(Q)

e ⊢ appendτ (q, x) append Q v
(ES27)

first and dequeue are undefined on empty queues. enqueueτ and appendτ are un-
defined on full queues (already holding Cap(τ) elements).

4.1.4 Patterns

Left-hand sides of assignments evaluate to pairs (z, g), in which z is a value and g maps values to
stores. Intuitively, g(v), where v is the value put into the location referred to by the lhs, is the
updated store; z at some level is a partial value used to compute function g at the level above.

The evaluation relation for lhs of assignments is denoted l and defined by the following rules,
in which:

• (λv. f(v)) is the mapping that, applied to value v, returns the value mapped by f to v;

• extend f x = f x if x ∈ D(f), or ∅ otherwise;

24

• [x1 7→ v1, . . . , xn 7→ vn] ⊕ e is the function f such that f(xi) = vi for any i ∈ 1..n, and
f(z) = e(z) for any z ∈ D(e) − {x1, . . . , xn}.

e ⊢ X l (extend e X), (λv. [X 7→ v] ⊕ e)
(LS1)

e ⊢ P l e′, a e ⊢ E i

e ⊢ P [E] l (extend e′ i), (λv. a([i 7→ v] ⊕ e′))
(LS2)

e ⊢ C l ∅, e
(LS3)

Where C is a literal (numeric or boolean constant) or a 0-ary constructor.

e ⊢ P l e′, r

e ⊢ C P l e′, r
(LS4)

Where C is a 1-ary constructor.

4.2 Semantics of Processes

4.2.1 Semantics of statements

The semantics of statements is expressed operationally by a labelled relation. The relation holds

triples (S, e)
l

=⇒ (S′, e′) in which:

• S is a statement;

• e, e′ are stores;

• S′ ∈ {done}∪{self}∪{target s|s ∈ Λ}, where Λ is the declared set of states of the process;

• l is either a communication action or the silent action ǫ. Communication actions are sequences
p v1 . . . vn, in which p is a port and v1 . . . vn (n ≥ 0) are values.

Relation
l

=⇒ is defined inductively from the structure of statements, by the following rules.

To, loop, null, wait

(to s, e)
ǫ

=⇒ (target s, e)
(SS1)

(loop, e)
ǫ

=⇒ (self, e)
(SS2)

Behaviorally, loop is equivalent to to s, in which s is the state originating the transition
in which loop is found (this will be made clear in section 4.3.3). As will be seen in
Section 5, statements to s and loop only differ by their timed semantics.

(null, e)
ǫ

=⇒ (done, e)
(SS3)

(wait i, e)
ǫ

=⇒ (done, e)
(SS4)

null is the empty statement. wait specifies a timed constraint explained in Section 5.

25

Deterministic assignment, on

e ⊢ E1 v1
e ⊢ P1

l e1, a1

M(v1, P1)

e ⊢ E2 v2
a1(v1) ⊢ P2

l e2, a2

M(v2, P2)

. . .

. . .

. . .

e ⊢ En vn

an−1(vn−1) ⊢ Pn
l en, an

M(vn, Pn)
e′ = an(vn)

(P1, P2, . . . , Pn := E1, E2, . . . , En, e)
ǫ

=⇒ (done, e′)
(SS5)

The statement on exp is handled like true := exp

The independence property for accesses in multiple assignments, enforced by the static
semantic constraint in Section 3.1.2, ensures that the resulting store is invariant by any
permutation of accesses P1, . . . , Pn and the corresponding expressions E1, . . . , En.

Nondeterministic assignment

e ⊢ P1
l e1, a1

e′ = an(vn)
a1(v1) ⊢ P2

l e2, a2

[e′ ⊢ E true]
. . . an−1(vn−1) ⊢ Pn

l en, an

(P1, P2, . . . , Pn := any [where E], e)
ǫ

=⇒ (done, e′)
(SS6)

vi ranges over all values of the type of Pi (necessarily a boolean or numeric type).

While, foreach

e ⊢ E true (S;while E do S end, e)
l

=⇒ (S′, e′)

(while E do S end, e)
l

=⇒ (S′, e′)
(SS7)

e ⊢ E false

(while E do S end, e)
ǫ

=⇒ (done, e)
(SS8)

It is assumed that condition E eventually evaluates to false.

(V := v1 ; S ; . . . V := vn ; S, e)
l

=⇒ (S′, e′)

(foreach V do S end, e)
l

=⇒ (S′, e′)
(SS9)

Where v1, . . . , vn is the set of values of interval type V , in increasing order.

Deterministic choice

e ⊢ E true (S1, e)
l

=⇒ (S, e′)

(if E then S1 else S2 end, e)
l

=⇒ (S, e′)
(SS10)

e,E false (S2, e)
l

=⇒ (S, e′)

(if E then S1 else S2 end, e)
l

=⇒ (S, e′)
(SS11)

if e then s end is handled like if e then s else null end. elsif is handled like else if .

26

Case

e ⊢ E v M(v, P1) (P1 := E ; S1, e)
l

=⇒ (S′, e′)

(case E of P1 → S1 | ... | Pn → Sn end, e)
l

=⇒ (S′, e′)
(SS12)

e ⊢ E v ¬M(v, P1) (case E of P2 → S2 | ... | Pn → Sn end, e)
l

=⇒ (S′, e′)

(case E of P1 → S1 | ... | Pn → Sn end, e)
l

=⇒ (S′, e′)
(SS13)

Nondeterministic choice

(Si, e)
l

=⇒ (S′, e′)

(select S1 [] ... [] Sn end, e)
l

=⇒ (S′, e′)
(SS14)

Behaviorally, occurrences of unless can be replaced by “[]”. unless clauses introduce
priorities among the alternants of a select statement, explained in Section 5.

Sequential composition

(S1, e)
l

=⇒ (target s, e′)

(S1;S2, e)
l

=⇒ (target s, e′)
(SS15)

(S1, e)
l

=⇒ (self, e′)

(S1;S2, e)
l

=⇒ (self, e′)
(SS16)

(S1, e)
l1=⇒ (done, e′) (S2, e

′)
l2=⇒ (S′, e′′)

(S1;S2, e)
l1.l2==⇒ (S′, e′′)

(SS17)

with “.” such that ǫ.l = l.ǫ = l, for any l.
The well-formedness conditions implies l1 = ǫ ∨ l2 = ǫ.
Note that the statements following a to statement are dead code.

Communication

(pτ , e)
p

=⇒ (done, e)
(SS18)

e ⊢ E1 v1 . . . e ⊢ En vn

(p!E1, . . . , En, e)
p v1 ... vn
======⇒ (done, e)

(SS19)

If some Ei is any then vi is any value of the type of Ei

e ⊢ P1
l e1, a1

e′ = an(vn)
a1(v1) ⊢ P2

l e2, a2

[e′ ⊢ E true]
. . . an−1(vn−1) ⊢ Pn

l en, an

(p?P1, P2, .., Pn [where E], e)
p v1 ... vn

======⇒ (done, e′)
(SS20)

vi ranges over all values of the type of Pi.

27

4.2.2 Process configurations

A process configuration is a pair (s, e) constituted of a process state s and a store e capturing the
values of all variables referred to in the process.

Each process has a set of initial configurations, obtained as follows:

• Let s0 be a store capturing the values for all parameters and local variables of the process,
given their actual declared values. If some variable was not initialized in its declaration, then
any value can be chosen for it in s0 (e.g. ∅) as the “well-initialized” condition explained in
Section 3.1.3 guarantees that this default value will not be used;

• Then: If the process has no init statement, it admits a single initial configuration: (s0, e0),
in which s0 is the source state of the first transition of the process. Otherwise, from the
static restrictions put on init statements, (Si, e0) necessarily evaluates by

ǫ
=⇒ to some pair

(target s, e). Each such (target s, e) defines an initial configuration (s, e) for the process.

4.3 Semantics of components

The semantics, or behavior, of a component is a Timed Transition System. These are Labelled
Transition Systems extended with state properties and time-elapsing transitions. We focus in this
section on the discrete transitions of the semantics; Time elapsing transitions and the effects of
priorities will be explained in Section 5.

The semantics of a component is obtained compositionally from the semantics of the process
instances and component instances it captures and that of the composition operator.

4.3.1 Abstract components:

Consider the following grammar of abstract components:

c ::= hide H c hiding
| priority Π c priority
| c′ composition

c′ ::= g1 → c′1 | . . . | g2 → c′2 composition
| comp (c, a) component instance
| proc (s, a) process instance

Any Fiacre component can be represented by an abstract term of form hide H (priority Π c),
where c is some term involving only compositions and instances, set H is the set of ports declared
locally in the component and Π is a relation on port (the transitive closure of the relation specified
by the Fiacre priority declaration).

Compositions and components are assumed “normalized”: stars and factorized port sets in par

compositions are eliminated as explained in Section 3.2.6; proces states, bound ports and bound
variables in each process and component instances are assumed renamed so that no two process of
component instances share some port or variable name. The leaves of compositions are component
instances comp (c, a) in which (c, a) is an abstract component and a store, or process instances
proc (s, a), in which (s, a) is a process configuration.

28

4.3.2 Component configurations

Component configurations are pairs (c, e) in which c is an abstract component, as defined in Section
4.3.1 and e is a store.

As for processes, the values of the parameters passed to a process, of its local variables, and
possibly its initialization statement defines its initial store s0. A component may admit several
initial stores.

The initial configurations of a component all have the shape of the abstract component, in
which abstract process instances proc (s, a) capture an initial configuration of the process and
abstract component instances comp (c, a) capture an initial abstract state and initial store of the
subcomponent.

4.3.3 Semantic rules for components

The labelled semantics relation, linking component configurations, is written
l
−→, specifying an

action.
For any action l, let us define L(l) by L(ǫ) = ǫ, L(p v1 . . . vn) = p.

Process instance

(S, es ∪ a)
l

=⇒ (target s′, e′s ∪ a
′) (from s S) ∈ T

(proc (s, es ∪ a), es ∪ e)
l
−→ (proc (s′, e′s ∪ a

′), e′s ∪ e)
(PS1)

(S, es ∪ a)
l

=⇒ (self, e′s ∪ a
′) (from s S) ∈ T

(proc (s, es ∪ a), es ∪ e)
l
−→ (proc (s, e′s ∪ a

′), e′s ∪ e)
(PS2)

Where T is the set of transitions of the process.

The store of a process instance includes the local variables (a) and those shared by the
process instance (es).

self in the second rule is handled exactly as target s.

Component instance

(c, es ∪ a)
l
−→ (c′, e′s ∪ a

′)

(comp (c, es ∪ a), es ∪ e)
l
−→ (comp (c′, e′s ∪ a

′), e′s ∪ e)
(PS3)

Stores are handled exactly as for process instances.

Hiding

(c, e)
l
−→ (c′, e′) L(l) 6∈ H

(hide H c, e)
l
−→ (hide H c′, e′)

(PS4)
(c, e)

l
−→ (c′, e′) L(l) ∈ H

(hide H c, e)
ǫ
−→ (hide H c′, e′)

(PS5)

29

Compositions

For any abstract composition C = g1 → c1 | . . . | gn → cn with n components and any A =
{a1, . . . , am} ⊆ {1, . . . , n}, let C[ga1

→ ca1
, . . . , gam

→ cam
]A denote the result of replacing the

components of C indexed over A by those between brackets.
The semantics of compositions is then defined by the following rules:

(c, e)
l
−→ (c′, e′) L(l) 6∈ g

(C[g → c]{i}, e)
l
−→ (C[g → c′]{i}, e′)

(PS6)

(ca1
, e)

p v1 ... vk−−−−−−→ (c′a1
, e1) . . . (cam

, em−1)
p v1 ... vk−−−−−−→ (c′am

, e′) (∀i)(p ∈ gi ⇒ i ∈ A)

(C[ga1
→ can

, . . . , gam
→ cam

]A, e)
p v1 ... vk−−−−−−→ (C[ga1

→ c′a1
, . . . , gam

→ c′am
]A, e′)

(PS7)

The store may change as the result of any subcomponent move. It is assumed that
the effect on the store of all subcomponent moves are independent; implementations of
Fiacre should only accept specifications ensuring that property.

Priorities

The semantics of priorities will be explained in Section 5.

4.4 Semantics of programs

A program is a series of declarations followed by a component or process identifier. The semantics
of a program is the semantics of the process or component denoted by that identifier.

30

5 Operational semantics, part II

This section completes the semantics of Fiacre started in Section 4. It focuses on the effects of
timing and priority constraints on the semantics of processes and components (the semantics of
expressions is unaffected).

Time constraints appear as time interval annotations in port declarations in components or as
wait or loop statements in processes. Time constraints introduce time-elapsing transitions and
possibly restrict the set of possible discrete transitions from a configuration.

Priority constraints appear as explicit constraints on ports in priority declarations in compo-
nents or as unless clauses in select statements in processes. Priority constraints possibly restrict
the set of possible discrete transitions from a configuration.

5.1 Semantics of Processes

In Section 4.2, process statements were given a semantics in terms of relation (s, e)
l

=⇒ (s′, e′). It
may happen that statement s has several execution paths. The timed semantics requires to refine
this relation so that paths are made explicit.

The set of paths of a particular statement is finite. We will assume that paths are represented

by elements p1, p2, . . . of some set P . Relation (s, e)
l

=⇒ (s′, e′) is extended so that the path taken
in statement s for that particular derivation is made explicit. The updated relation is written as
follows, in which p is a path:

(s, e)
l

=⇒
p

(s′, e′)

5.2 Semantics of Components

5.2.1 Interactions

Elementary actions of a process instance: Assuming each statement derivation is associated

with some path p, as in (s, e)
l

=⇒
p

(s′, e′), each process instance derivation will be associated with a

triple (s, p, l) in which s is a process state, p a transition path and l an action. We will call such
triples elementary actions.

We only need to consider elementary actions in which the path leads to a statement target s′

or self , and statement s is attached with some fiacre transition (from s ∈ T). In addition, since
states in component instances are assumed uniquely renamed, a triple (s, p, l) identifies a single
elementary action among those of all process instances involved in a component.

Interactions of a component instance: Component instances typically involve several process
or component instances. Their actions, called interactions, may involve several actions from their
constituents.

Assuming a component makes use of n subcomponents, its interactions are the tuples (ι1, . . . , ιn)
in which each ιi is an elementary action (if subcomponent i is a process instance), an interaction
(if subcomponent i is a component instance) or the particular interaction •, meaning that subcom-
ponent i is not involved in that interaction.

By abuse of language, elementary actions will also be called interactions, even though they
involve a single component.

31

5.2.2 Clocks, clock assignements, persistent interactions

With each interaction of a component will be bijectively associated a clock.
We will say that an elementary action k = (s, p, l) is enabled when there exists some transition

(s, e)
l

=⇒
k

(s′, e′) and that an interaction is enabled if all its constituent interactions different from •

are enabled (in their respective subcomponents).
We will say that an an elementary action is persistent when its path p leads to a self state-

ment (rather than a target statement), and that an interaction (ι1, . . . , ιn) is persistent if all its
constituents different from • are persistent.

Finally, with each interaction k will be associated a time interval Is(k), called its static firing
interval. If k is an elementary action and its path contains a wait statement wait ti, then Is(k) = ti.
If k is an interaction labelled p and port p was assigned a time interval ti, then Is(k) = ti, otherwise
Is(k) is the trivial interval [0,∞[.

Given a time interval i, ↑i denotes its right end-point, or ∞ if the interval is unbounded.

5.2.3 Component configurations

Compared to Section 4.3, component configurations are enriched with a new element. Given a set
K of interactions (including its own interactions), a component configuration is a triple (s, e, φ) in
which:

• c is an abstract component (cf. Section 4.3.1);

• e is a store;

• φ : K → IR+ is a clock assignement to interactions. For each interaction k, φ(k) holds the
time elapsed since k was last enabled.

The semantics of a component is obtained as the union of two relations linking configurations:

The discrete transition relation
l
−→
k

(k is an interaction), and the continuous time-elapsing relation

θ
−→ (θ ∈ IR+). We now describe these relations.

Rajouter initial configurations ...

5.2.4 Time-elapsing transitions

Time-elapsing transitions on component configurations are defined as follows:

(∀k ∈ K)(k enabled⇒ φ(k) + θ ≤ ↑(Is(k))

(c, e, ψ)
θ
−→ (c′, e, ψ ∔ θ)

(TPS1)

where function ∔ is defined by: (∀k ∈ K)((φ∔ θ)(k) = φ(k) + θ).

The rule says that time can elapse as long as no enabled interaction overflows its deadline: φ(k)
captures the time elapsed since interaction k was last enabled; enabled interactions may not be
delayed longer than the longest delay in their assigned static time interval Is.

Time elapsing only affects the clock assignement components of configurations; the clocks of all
interactions are increased by θ.

32

5.2.5 Discrete transitions

Discrete transitions can affect all configuration components except the priority relation on interac-
tions (left in configurations for completness). They are defined by the following rules:

Process instance

(S, es ∪ a)
l

=⇒
p

(target s′, e′s ∪ a
′) (from s S) ∈ T

φ(k) ∈ Is(k)
(∀k′ 6= k ∈ K)(¬(k ≺∗ k′))

(proc (s, es ∪ a), es ∪ e, φ)
l

−−−−−→
k=(s,p,l)

(proc (s′, e′s ∪ a
′), e′s ∪ e, φ

′)
(TPS2)

(S, es ∪ a)
l

=⇒
p

(self, e′s ∪ a
′) (from s S) ∈ T

φ(k) ∈ Is(k)
(∀k′ 6= k ∈ K)(¬(k ≺∗ k′))

(proc (s, es ∪ a), es ∪ e, φ)
l

−−−−−→
k=(s,p,l)

(proc (s, e′s ∪ a
′), e′s ∪ e, φ

′)
(TPS3)

Precondition on φ(k) means that elementary action k can be performed without delay.

In both rules, φ′ is obtained as follows, for any elementary action k:

• If k is persistent, then φ′(k) = φ(k);

• Otherwise φ(k) = 0 (the clock associated with k is “reset”).

The last precondition means that no elementary action with higher priority than k can
be performed. ≺∗ is the transitive closure of the priority relation ≺ on the elementary
actions of the process, defined as follows:

If k = (s, p, l) and k′ = (s′, p′, l′) are elementary actions, then we have k ≺ k′ if and
only if s = s′, and for some statements x along path p and x′ along path p′, x and x′

occurs in different groups of some select statement of the fiacre process transition and
x′ occurs after x in the select statement (the groups of a select statement are the sets
of statements separated by unless).

Component instance

(c, es ∪ a, φ)
l
−→
k

(c′, e′s ∪ a
′, φ′)

(comp (c, es ∪ a), es ∪ e, φ)
l
−→
k

(comp (c′, e′s ∪ a
′), e′s ∪ e, φ

′)
(TPS4)

Hiding

(c, e, φ)
l
−→
k

(c′, e′, φ′) L(l) 6∈ H

(hide H c, e, φ)
l
−→
k

(hide H c′, e′, φ′)
(TPS5)

(c, e, φ)
l
−→
k

(c′, e′, φ′) L(l) ∈ H

(hide H c, e, φ)
ǫ
−→
k

(hide H c′, e′, φ′)
(TPS6)

33

Priorities

(c, e, φ)
l
−→
k

(c′, e′, φ′) (∀l′, k′, b)((c, e, φ)
l′
−→
k′

b⇒ (L(l′),L(l)) 6∈ Π)

(prio Π c, e, φ)
l
−→
k

(prio Π c′, e′, φ′)
(TPS7)

Priorities over labels induce priorities over interactions. An interaction may not occur
when some other interaction with higher priority is possible.

Compositions

Using the notations of Section 4, the semantics of compositions is obtained as follows:

(ci, e, φ/i)
l
−→
ki

(c′i, e
′, φ′/i) L(l) 6∈ g

(C[gi → ci]{i}, e, φ)
l
−→
k

(C[gi → c′i]{i}, e
′, φ′)

(TPS8)

(ca1
, e, φ/a1)

p v1 ... vk−−−−−−→
ka1

(c′a1
, e1, φ′/a1) . . . (cam

, em−1, φam
)

p v1 ... vk−−−−−−→
kam

(c′am
, e′, φ′am

)

(∀i)(p ∈ gi ⇒ i ∈ A)

(C[ga1
→ can

, . . . , gam
→ cam

]A, e, φ)
p v1 ... vk−−−−−−→

k
(C[ga1

→ c′a1
, . . . , gam

→ c′am
]A, e′, φ′)

(TPS9)

where:

• For each i:

– ki is the ith component of k;

– The domain of φi is the set of interactions of ci;

– φi is “consistent” with φ in the sense that:

∗ φi(ki) = φ(k);

∗ for each j in domain of φi there exists an interaction z in domain of φ
containing j and such that φi(j) = φ(z);

• φ′ = φ except that “newly enabled” interactions at destination have their clock
reset (cf. the process instance rules).

34

References

[1] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time systems in BIP. In
4th IEEE International Conference on Software Engineering and Formal Methods (SEFM06),
Pune, pages 3–12, September 2006.

[2] B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using time
Petri nets. IEEE Trans. on Software Engineering, 17(3):259–273, 1991.

[3] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool tina – construction of abstract state
spaces for petri nets and time petri nets. International Journal of Production Research, 42-
No 14, 2004.

[4] B. Berthomieu, P.-O. Ribet, F. Vernadat, J. Bernartt, J.-M. Farines, J.-P. Bodeveix, M. Fi-
lali, G. Padiou, P. Michel, P. Farail, P. Gaufillet, P. Dissaux, and J.-L. Lambert. Towards
the verification of real-time systems in avionics: the Cotre approach. In Proceedings of the
8th International Workshop on Formal Methods for Industrial Critical Systems FMICS’2003,
(Trondheim, Norway), volume 80 of Electronic Notes in Theoretical Computer Science, pages
201–216. Elsevier, June 2003. Also published as Rapport LAAS Nr. 03185.

[5] Mamoun Filali, Frédéric Lang, Florent Péres, Jan Stoecker, and François Vernadat. Modèles
pivots pour la reprśentation des processus concurrents asynchrones, February 2007. Délivrable
no 4.2.3 du projet ANR05RNTL03101 OpenEmbeDD.

[6] Hubert Garavel. On the introduction of gate typing in E-LOTOS. In Piotr Dembinski and
Marek Sredniawa, editors, Proceedings of the 15th IFIP International Workshop on Protocol
Specification, Testing and Verification (Warsaw, Poland). IFIP, Chapman & Hall, June 1995.

[7] Hubert Garavel and Frédéric Lang. NTIF: A general symbolic model for communicating
sequential processes with data. In Doron Peled and Moshe Vardi, editors, Proceedings of
the 22nd IFIP WG 6.1 International Conference on Formal Techniques for Networked and
Distributed Systems FORTE’2002 (Houston, Texas, USA), volume 2529 of Lecture Notes in
Computer Science, pages 276–291. Springer Verlag, November 2002. Full version available as
INRIA Research Report RR-4666.

[8] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. Cadp 2006: A tool-
box for the construction and analysis of distributed processes. In Proceedings of the 19th
International Conference on Computer Aided Verification CAV’07 (Berlin, Germany), 2007.

[9] Hubert Garavel and Mihaela Sighireanu. A graphical parallel composition operator for process
algebras. In Jianping Wu, Qiang Gao, and Samuel T. Chanson, editors, Proceedings of the Joint
International Conference on Formal Description Techniques for Distributed Systems and Com-
munication Protocols, and Protocol Specification, Testing, and Verification FORTE/PSTV’99
(Beijing, China), pages 185–202. IFIP, Kluwer Academic Publishers, October 1999.

[10] ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard 15437:2001, In-
ternational Organization for Standardization — Information Technology, Genève, September
2001.

35

[11] P. M. Merlin and D. J. Farber. Recoverability of communication protocols: Implications of a
theoretical study. IEEE Tr. Comm., 24(9):1036–1043, Sept. 1976.

[12] Mihaela Sighireanu. Contribution à la définition et à l’implémentation du langage “Extended
LOTOS”. Thèse de doctorat, Université Joseph Fourier (Grenoble), January 1999.

[13] Mihaela Sighireanu. LOTOS NT user’s manual (version 2.1). INRIA projet VASY.
ftp://ftp.inrialpes.fr/pub/vasy/traian/manual.ps.Z, November 2000.

36

