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Abstract: This paper details works undertaken in the scope
of the Spices project concerning the behavioral verification of
AADL models. We give a high-level view of the tools involved
and describe the successive transformations performed by our
verification process. We also report on an experiment carried out
in order to evaluate our framework and give the first experimental
results obtained on real-size models. This demonstrator models a
network protocol in charge of data communications between an
airplane and ground stations. From this study we draw a set of
conclusions about the integration of model-checking tools in an
industrial development process.
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1. Introduction

As in many applicative domains related to Information
Technology, the size and complexity of avionic applications
is constantly growing. It is now common to embed hundreds
of mega bytes of code and data in on-board computers,
and applications typically include dozens of heterogeneous,
loosely connected features. This complexity explosion led
the avionic industry to rely on new architectures and op-
erating systems, more powerful, but also more complex
than their ancestors. While these new architectures make
development and maintenance easier, it is more difficult to
fully understand, analyze and test these systems. This trend
is a powerful incentive to improve model-based development
techniques and to bring architecture description languages
such as AADL — the SAE Architecture Analysis and Design
Language — on the designer’s desktop

In order to support model-based development, compa-
nies from the French Aeronautics, Space and Embedded
Systems competitivity pole (Aerospace Valley) have joined
their efforts to develop a common set of methods and tools.
The goal is to deliver an industrial strength system/software
development platform for embedded systems. The Top-
cased [9] initiative is part of this effort and AADL is among
the first languages supported in this project. Topcased is
also the name of a toolkit based on the Eclipse platform
and concepts that provides an open source, model oriented
set of tooling and standard implementations.

AADL is an architecture description language that allows
to describe both the hardware and software components of

a system. A key extension to this standard is the addition
of a Behavioral Annex for describing more precisely thread
activities. Today, static semantic verification of models — ar-
chitectural or not — is well known and commonly used, but
this is not the case with behavioral verifications, especially
of architectural models. In this paper, we describe a formal
verification toolchain for AADL enriched with its behavioral
annex. This toolchain (see Fig. 1), is connected for its input
to ADELE [1], a semantic editor for the elaboration of AADL
models. At the other end, verification activities ultimately
relies on the Tina toolset. In-between, the generation of
Tina models from an AADL description relies on the Fiacre
formal specification language [8].
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Figure 1. AADL to Tina toolchain

The paper details works undertaken within the ITEA2
Spices project concerning the behavioral verification of
AADL models. In Sections 2 and 3 we give a high-level
view of the tools and languages involved and illustrate
the successive transformations required by our verification
process. In Section 4, we report on the first representative
experiment carried out in order to evaluate our framework.
This demonstrator models a network protocol in charge of
data communications between an airplane and ground sta-
tions. More precisely, we models the dynamic architecture
of a software component implementing the onboard part of
this protocol. From this study, we draw a set of conclusions
about the integration of model-checking tools in an industrial
development process.



2. Modeling Dynamic Architectures with AADL and its
Behavioural Annex

In the scope of the SPICES project, Airbus has chosen
AADL for modeling the dynamic architecture of real time
softwares. A key point of AADL is to enable the precise
description of both the software components of a system:
process, thread, data, . . . , as well as the execution platform
supporting them: processor, device, bus, memory, . . . , by
using detailed properties for each component. The lan-
guage includes features (used to describe the interface of
components), and connections (used to link components).
Components can communicate through ports, synchronous
calls, and shared data. The AADL execution model is
suitable to describe real-time systems because it includes
the main types of dispatch protocols for threads (periodic,
aperiodic, sporadic, background) and the standard schedul-
ing properties (period, priority, deadline, WCET, scheduling
policy, . . . ).

The expressivity of AADL is not the only motivation to
explain its choice for modeling safety critical systems. First,
the language has a precise semantics and a well defined
execution model, which makes possible an automatic trans-
formation from AADL to formal languages, such as those
used in formal verification tools. Secondly, AADL runtime
relies on the hypothesis taken when implementing real-
time systems. For example, a subset of AADL can be
mapped to synchronous language concepts which make
AADL dynamic behavior deterministic.

The AADL Behavioral Annex is used to add specific real-
time properties to each component of the dynamic design
model and to define the software behavior at the thread
level. The behavior annex has reached the final stage to be
formally adopted by the SAE standardization committee.

2.1. The Language

AADL includes all the standard concepts found in Ar-
chitecture Description Languages (ADL): components; con-
nectors (used to describe the interface of components);
and connections (used to link components). The set of
components provided in AADL can be divided in three
categories: software components (process, thread, thread
group, subprogram, and data); hardware components (pro-
cessor, bus, memory, device); and a System component.

Components can communicate through ports, syn-
chronous calls, and shared data. A process represents a
virtual address space, or a partition, this address space
includes the program defined by its sub-components. A
process must contain at least one thread or thread group.
A thread group is a logical organisation of threads in a
process. A thread represents a sequential flow of execution,
it’s the only AADL component that can be scheduled. A
subprogram represents a piece of code that can be called
by a thread or another program. A data models a static
variable used in the code, they can be shared by threads
or processes.

A processor is an abstraction of the hardware and the
software in charge of the scheduling and the execution

of threads. The memory represents any platform com-
ponent that stores data or binary code. The buses are
communication channels used to connect different hardware
components. The devices represent interfaces between the
system described and its environment.

Systems allow to compose software components with
hardware components. The interactions can be defined at
a logical and a physical level. At a physical level, software
components are associated to hardwares component, a
thread to a processor, or a data to a memory for example.
The logical level is used to describe the communication
between hardware and software. At a logical level we can
define communication connections between processors or
devices and software components.

AADL uses the notion of mode to determine a set of
active components. This mechanism allows to describe
dynamic architectures. The set of active components can be
modified by the reception of an event. The AADL standard
describes a strict semantics of execution, this semantics
is customizable using properties. We will present only a
subset of AADL. We don’t take into account the hardware
components. Modes are not modeled yet, but it is planned
to integrate them in our model. We will present this semantic
aspect for the communication through ports, the scheduling
and the communication through shared data.

2.2. Communication Through Ports

Communication, and the way it interacts with the schedul-
ing of processes, is an important part of the AADL standard.
AADL provides three types of ports — data, event and
event data ports — that can be used to transmit data and
control and describe the interface of a component. Ports
are oriented: a port can be in input, output or input/output
mode.

Data transmitted through ports is typed. Each input
port is associated with a fresh variable that describes the
state of the port. If a port has received nothing between
two thread dispatches this variable is set to false. Each
event or event data input port is also associated with a
buffer that stores the data — or the number of events —
sent through connected output ports. On thread dispatch,
these inputs buffers are copied into the local memory
of the thread. Some properties permit to customize the
behavior of event and event data ports. For instance,
the property Queue_size determines the maximum num-
ber of events or event data that can be received, while
Overflow_handling_protocol describes the behavior of
the port in case of overflow. There are two default policies
for overflow, drop newest and drop oldest. The property
Dequeue_protocol describes the way elements in the
queue are accessed, one by one (OneItem) or all at once
(AllItems).

The diagram in Figure 2 describes the interaction be-
tween data communication through ports and thread dis-
patching. Data ports have the simplest behavior. Data is
sent at the end of the thread’s execution, or at deadline,
and is received at the next dispatch of the receiving thread.
At the opposite, event and event data ports can send an



event (resp. an event data) anytime during the execution of
a thread. Events and event data are queued in the destina-
tions ports. Input event and event data ports are delivered at
the dispatch of the thread. Data communications between
periodic threads can be declared as immediate or delayed.
If the connection is delayed, data is sent at the deadline
of the sending thread. If the connection is immediate, the
receiving thread must wait the sending thread to complete.
The received data will be available at the start of its (next)
execution.
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Figure 2. communication through ports in AADL.

2.3. Communication Through Shared Variables

As with all AADL components, data has a type and an
implementation. The internal structure of the data is de-
scribed in the data implementation. It is possible to specify
whether different components have a shared access to a
data subcomponent using the require_data_access con-
nector. Correspondingly, the provide_data_access con-
nector is used to state that a component allows other
components access to one of its data subcomponent. The
concurrency protocol used to access a data is defined by
a data property called concurrency_control_protocol.
This concurrency protocol can be implemented through
different concurrency control mechanisms such as mutex,
semaphore . . .

2.4. AADL Development Environments

AADL is supported by several tools like the OSATE initial
framework, which has been merged into the Topcased envi-
ronment, and extended with OSATE-BA, its behavior annex
syntax analyser. ADELE is a graphical editor which permits
to create AADL diagrams and models into Topcased, and
to generate AADL source code. Beside this set of tools for
the generation and lexical analysis of AADL models, we
describe a methodology and a set of tools for the formal
verification of AADL specifications.

3. Behavioural Verification with Tina and the
AADL-FIACRE-Tina Toolchain

We briefly describe the languages and tools that support
our approach for the verification of AADL models. In our
approach, the AADL description is first translated in the
Fiacre format, which offers a formal intermediate model to
represent both the behavioral and timing aspects of the
system. The Fiacre models encodes both the behavior of

the AADL system as well as the AADL execution semantics.
Then we compile the Fiacre model into a Time Transiton
System (TTS), which is a portable, formal specification
format, suitable for analysis using a model-checking tool.
Therefore, Fiacre is designed both as the target language
of a model transformation from AADL and as a front end
to the verification toolbox.

This generic architecture as been applied in different con-
text: transformations from different specification languages
to Fiacre have already been defined — e.g. for SDL and
UML — and two different verification toolboxes can be
targeted, namely CADP and Tina (see Figure 1). The
complete approach is based on tools that are integrated
in the Topcased environment.

In the remainder of this Section we introduce the Fiacre
modeling language, the Tina verification engine, and give
some ideas on their capabilities.

3.1. The Fiacre Language

The design of Fiacre is inspired from decades of research
on concurrency theory and real-time systems theory. For
instance, its timing primitives are borrowed from Time
Petri nets [6], while the integration of time constraints
and priorities into the language can be traced to the BIP
framework [4]. For what concerns the compositionality of
the language, Fiacre incorporates a parallel composition
operator and a notion of gate typing which were previously
adopted in E-Lotos and Lotos-NT. We briefly describe the
language. The detailed syntax and formal semantics of the
Fiacre can be found in [8].

Fiacre is a strongly typed language, meaning that type
annotations are exploited in order to guarantee the absence
of unchecked run-time type errors. Fiacre programs are
stratified in two main notions: processes, which describes
the behavior of sequential components and components,
which describes a system as a composition of processes,
possibly in a hierarchical manner.

A program is a sequence of declarations. A process is
defined by a set of control states and parameters, each
associated with a set of complex transitions, which are pro-
grams specifying how parameters are updated and which
transitions may fire. For example, the process declaration:
process T[p : bool](&u : array 5 of bool) is ...

expresses that T is a process that may interact over one
port, p, which transmits boolean values, and that it has one
parameters, u, which is a (reference to a) shared array.
The behavior of a process is defined by “complex transi-
tions”, built from expressions and deterministic constructs
available in classical programming languages (assignments,
conditionals, while loops and sequential compositions),
nondeterministic constructs (nondeterministic choice and
assignments) and communication events on ports.

A component is defined as the parallel composition of
processes and/or other components, expressed with the
operator par ... || ... end. While components are the
unit of composition, they are also the unit for process
instantiation and for ports and shared variables creation.
The syntax of components allows to restrict the access



mode and visibility of shared variables and ports, to asso-
ciate timing constraints with communications and to define
priority between communication events. For example, the
declaration port p : bool in [min,max] defines a port
that can only interact min time units after it has been
activated and must be used or deactivated before max time
units (min and max should be float or integer constants).

3.2. Translation Principles

The transformation of AADL code into Fiacre relies on
AADL properties and on the behavioral annex of AADL
that has been developed and integrated to the OSATE
AADL environment within Topcased. We follow a model-
driven approach. Alongside a meta-model of AADL, we
have developed a meta-model of the Fiacre language that
is integrated in the Topcased tool-chain. Hence, the trans-
formation from AADL to Fiacre can be obtained through
model transformation.

We do not precisely describe the translation process in
this paper, or detail the structure of the generated code. In
a nutshell, we associate a Fiacre process to each AADL
thread and map each AADL port to a communication port
in Fiacre. (Since we focus on the behavior of the system
and not its hardware architecture, we take a flattened view
of the AADL model as a set of communicating threads.)
Processes do not communicate directly. Events and data
exchanges are mediated by a specific glue process, which
manages communication and scheduling protocols. Timing
information, such as the period of threads, are modelled
using the time constraints mechanism provided by ports in
Fiacre. More information on the translation can be found
in [11].

The translation takes into account a substantial subset of
the AADL standard and all basic properties are considered
when generating a Fiacre model. More particularly, we take
into account (1) AADL modes and priorities, as well as (2)
access to shared variables. For the moment, while periods
can change, we assume that priorities are fixed. We take
into account that connections are determined by the current
mode. On the other hand, there is currently no support for
multiprocessor architecture in our translation from AADL to
Fiacre. As a result, we do not take into account the value
of the Actual_Processor_Binding property. We also do
not handle preemption. This last feature will be added in a
forthcoming version of the Fiacre language.

3.3. Behavioral Verification with Tina

Tina [7], the TIme Petri Net Analyzer, provides a software
environment to edit and analyze Petri Nets and Time Petri
Nets. It is particularly well suited to the verification of
systems subject to real time constraints, such as those
modeled using AADL.

Beside the usual analysis facilities of similar environ-
ments, the essential components of the Tina toolbox are
state space abstraction methods and model checking tools
that can be used for the behavioral verification of systems.
This is in contrast with the broader notion of functional
verification, in that we attempt to use formal techniques to

prove that requirements are met, or that certain undesired
behaviors cannot occur — like for instance deadlocks —
without resorting to actual tests on the system. The ap-
proach followed here is that commonly referred to as model-
checking, which basically consists in two abstract steps:
(1) the generation of a formal model from a description of
the system, followed by (2) a systematic exploration of the
states space of this model. This involves exploring states
and transitions in the model, relying on smart abstraction
techniques to reduce the number and size of these states
and therefore reducing the computing time.

The properties to be verified are often described in
temporal logics, such as linear temporal logic (LTL) or
computational tree logic (CTL). The result of the verification
may lead to an accepting status, meaning that the model
of the system satisfies the requirements, or exhibit an
error. In the last case, it is often possible to extract a
counterexample, which is an explanation at the level of
the model (generally an execution trace), which leads to
a problematic state. Such counterexamples could be stored
alongside an AADL model.

The core of the Tina toolset — a command line tool
called tina — is an exploration engine used to generate
state space abstractions that are fed to dedicated model
checking and transition system analyzer tools. The front-
ends to the exploration engine convert models into an
internal representation — the abstract Timed Transition
Systems (TTS) — that is an extension of Time Petri
nets handling data and priorities. The frac compiler, which
converts Fiacre description into TTS and is part of the
Topcased environment, is an example of such front-end.

State space abstractions are vital when dealing with
timed systems, that have in general infinite state spaces.
Tina offers several abstract state space constructions that
preserve specific classes of properties like absence of
deadlocks, linear time temporal properties, or bisimilarity.
A variety of properties can be checked on abstract state
spaces: general properties — such as reachability proper-
ties, deadlock freeness, liveness, . . . — specific properties
relying on the linear structure of the concrete space state
— for example linear time temporal logic properties, test
equivalence, . . . — or properties relying on its branching
structure – branching time temporal logic properties, bisim-
ulation, . . .

Tina provides several back-ends to convert abstract state
spaces into physical representations readable by the pro-
prietary or external model checkers and transition system
analyzers. Tina can present its results in a variety of
formats, understood by model checkers like MEC, a mu-
calculus formula checker, or behavior equivalence checkers
like Bcg, part of the CADP toolset. Hence we can apply all
these tools to the verification of systems modeled in AADL.
In addition, several model-checkers are being developed
specifically for Tina. The first available, selt, is a model-
checker for an enriched version of State/Event-LTL, a linear
time temporal logic supporting both state and transition
properties. (The logic is rich enough to encode marking
invariants.) For the properties found false, a timed counter



example is computed and can be replayed by the simulator.
We briefly introduce the temporal logic formulas that can

be checked with selt. Formulas p, q, ... of the logic
are expressions built from the classical logical operators:
negation (-p), conjunction (p /\ q), . . . and the basic LTL
modalities: [], <>, () and U. A formula is said to be true
if it holds on all computation paths. The formula p holds
(relative to a computation path) if p holds now. That is at
the start of the path. The meaning of the temporal modalities
is described below.

() p holds if p holds at the next step
[] p holds if p holds all along the path
<> p holds if p holds in a future step
p U q holds if p holds until the first moment that q holds

Instead of requiring end-users to provide properties
written in temporal logic, we propose a set of high-level
validation patterns that simplify the elicitation of formal
requirements. We give some example of verification pat-
terns in Section 4.3: the absence of global deadlock; the
unreachability of events in a set e (none of the events in e
will occur during execution); the resettability of the events
in e (events in e will repeat themself during execution). This
pragmatic approach help us mitigate some of the complexity
that is associated with the use of model-checking tools by
novice users.

In complement to the temporal logic approach, realtime
properties — like those expressed in so-called timed tempo-
ral logics — can be checked using the standard technique
of observers, encoding such properties into reachability
properties. The technique is applicable to a large class of
realtime properties and can be used to analyze most of the
“timeliness” requirements found in practice. For instance,
using observers, it is possible to implement a validation
pattern of the form p leadsto q inlessthan t, meaning
that whenever the system is in a state where p holds then,
before t units of time, property q will hold.

4. Experimentation

In this section, we report on our experiments carried
out on the dynamic architecture for a network protocol
(NPL) in charge of data communications between an air-
plane and ground stations. We describe the architecture of
our example, the properties that have been checked and
give some quantitative information. For this demonstrator,
proposed by Airbus, AADL has been used to model the
dynamic architecture of the NPL software subset. We show
the three layers of the NPL stack in Figure 3, with a
MiddleWare Protocol (MWP) mediating the communication
between several high-level APplications Protocols (APP)
and the underlying transfer protocol (TFTP in this case).

The NPL system includes several functions allowing the
pilot and ground stations to receive and send information
relative to the plane: weather, speed, destination, . . . NPL,
in the avionics side, is running on an IMA computer and

Figure 3. The Network Protocol Stack

consists of one ARINC 653 partition [3]. The NPL commu-
nicates with several other embedded computers through an
AFDX field bus.

4.1. NPL Protocol Description

The MiddleWare Protocol layer (MWP) of our system
is in charge of handling messages exchanged between
applications connected to the upper data-link and lower
ground systems. Messages are exchanged on top of the
Trivial File Transfer Protocol (TFTP). Hence, the MWP can
be considered as an upper layer of TFTP and shall provide
file transfer services such as: Read, Write, Abort. The list of
services and requests that can be addressed to the MWP
is quite rich and includes, among others, Registration, Dis-
registration, Downlink, Confirm, Indication, . . .

The overall MWP behavior can be modelled by a com-
municating automaton with three main states (closed,
opening and open) that correspond to the states of the
“virtual communication” channel between the aircraft and
the ground. While the number of states is small, the
dynamics of the system is quite complex as it requires
about sixty transitions: inputs and outputs actions of the
automaton correspond to requests received or sent from/to
the on-board applications or the lower ground layers. The
complete NPL system is composed of several applications,
and every data-link application has its own instance of the
MWP automaton

The behavior of the MWP was originally defined by
means of sequence diagrams describing usage scenarios in
nominal and default cases. These sequence diagrams have
all been checked against our automata-based specification
in order to assert the correctness of our modeling. A typical
usage scenario is given in Figure 4 that details a registration
sequence between an application protocol (APP); the Mid-
dleWare Protocol (MWP); the transfer protocol; and ground
layers tasks (the dashed line). This is the most significant
activity in the MWP since every application has to register
before starting any data exchanges with ground stations.
The scenarios illustrates two modes of the MWP. If the MWP
is in state closed and receives a registration_request
message from the APP, it initiates a connection (the MWP
goes into state opening). If the MWP is in the opening
state and receives a data_indication message from
TFTP then the connection is established (the MWP enters



Figure 4. APP registration sequence diagram

state open).
Links between requests and states are explained below.

Several sequence diagrams has been checked, in nominal
or default cases, and a typical one is a registration se-
quence between an application, MWP, TFTP and ground
layers (tasks) detailed hereafter :

4.2. Protocol Modelling with AADL

Our goal in this experiment is to model a part of a realistic
system that should be executed as a single application
into an ARINC 653 partition. The NPL software subset has
been modeled as a single application composed of one
main AADL component. The AADL code specifies both the
hardware and software architecture of the component and
is composed of:

• an AADL processor with its memory (AADL hardware
component types);

• one main AADL process that encloses five AADL
threads (AADL software component types). The
allocation of software components on hardware
components is defined by the AADL binding
mechanism.

Software Architecture: The diagram in Figure 5 details the
architecture of our system using the AADL graphical syntax.
This diagram has been edited with the ADELE graphical
modeler [1]. We have highlighted the five threads of the
NPL component, which carry out the main functions of
the application. A first thread takes care of the data-link
applications (thApplis) while there is another thread for the
message scheduler (thSeqMsgMWP). The remaining threads
are used for: implementing the MWP state automaton
(thMWP); supporting the Timer functions (thTIMER); and
supporting the underlying TFTP protocol (thTFTP).

We can define the real time properties of threads by
setting specific properties in the AADL specification, like
for instance the dispatch protocol (periodic or sporadic),
the period (time) and the deadline (time). An example of
declaration can be seen in the AADL code snippet for the
thread thApplis given in Listing 1. In our experiment, all

the threads are periodic with periods ranging from 5 ms to
20 ms.

Communication Architecture: Communication between
threads is based on mailboxes, implemented by AADL
shared data access. We choose to model communications
between tasks using shared data access instead of using
event data ports, which are also available in AADL. While
this choice complicates the description of the system, it
is closer to the actual design found on an aircraft. To
this end, the model includes ten shared memory buffers
that are used to store the data exchanged by thread over
asynchronous communication channels. These buffers are
connected to the threads through external data access
features. Data ports are represented by triangles while
connections, represented by the lines, establish a link
between a thread and a buffer.

The architecture of data connections between threads is
regular. Each pair of threads, excluding the timer thTIMER),
is connected through at least two buffers: one for wake-up,
and another for carrying the message part. For instance,
the buffer Wkup_Appli is used to store the “wake-up”
signal from the MWP controller, thMWP, to the data-link
applications. In our AADL specification, every memory data
is set as a 32 bits integer data type.

All the threads adhere to a common communication
protocol. When a thread needs to communicate with another
thread, it first put its message into the dedicated buffer
(for instance Prim_Appli) and then put its identifier into
the associated wake-up buffer. When a thread receives
an identifier into its wake-up buffer (pooling), it reads the
message and then clear the identifier.

Some threads have also access to data generated
outside the MWP, like for example message frames
exchanged with the environment, or are connected through
specific event ports (for instance, the timer and the MWP
controller threads). Data exchanged with the environment
are defined as structured, composite data formed from
several integer fields.

Modeling Thread Behavior: The behavior of each thread
can be expressed using the AADL Behavioral Annex syn-
tax. For instance, we outline the definition for the thread
thApplis in Listing 1. This code has been generated from
the diagrams of Figure 5 using the ADELE code generator,
except for the behavior declaration (the code in the block
ANNEX behavior_specification {** ... **}) which
was written manually.

The thread thApplis has five internal states : start,
pending, confirm, disreg and register. The thread
initial state, start, is activated only once after thread
initialisation. From this state, the guard moves to register
without guard conditions (but changes the value of an
internal DATA component as a side-effect). From then, the
thread remains in the pending state until it receives a new
request (register, disreg, or confirm).

Likewise, we can use the Behavioral Annex to directly



Figure 5. Graphical representation of the NPL component

THREAD thApplis
FEATURES
{ . . . }
END thApplis ;

THREAD IMPLEMENTATION thApplis . others
SUBCOMPONENTS

applis2ext_msg : DATA types : : msg . impl ;
{ . . . }
PROPERTIES

Dispatch_Protocol => Periodic ;
Deadline => 10 ms ;
Period => 10 ms ;

{ . . . }
ANNEX behavior_specification {∗∗
states
−− States Dec la ra t i on
start : initial state ;
pending : complete state ;
confirm : complete state ;
disreg : complete state ;
register : complete state ;

transitions
start −[]→ pending {

applis2ext_msg . req := 0 ;
applis2ext_msg . dat := 0 ;
} ;

pending −[ on applis2ext_msg . req=A_Reg_Req ]→
register { applis2ext_msg . req := 0 ; } ;

pending −[ on applis2ext_msg . req = A_Disreg_Ind ]→
disreg { applis2ext_msg . req := 0 ; } ;

pending −[ on applis2ext_msg . req = A_Confirm_Ind ]→
confirm { applis2ext_msg . req := 0 ; } ;

{ . . . }
∗∗} ;
END thApplis . others ;

Listing 1. Example of AADL behavior description

encode the behavior of the MWP controller (thread thMWP)
that was informally described in Section 4.1. We obtain a
specification with three states (closed, opening and open),
as given in the NPL description, and we can also specify
more precisely the data that should be checked or modified
within each transitions.

We do not describe more explicitly the behavior of the
other threads in this extended abstract. The complete AADL
specification of the MWP system requires eight graphical
diagrams (of the same complexity than the one given in
Figure 5). In its textual format, this amounts to about 800
lines of AADL source code with more than half of this code
automatically generated from the graphical specification. On
these 800 lines, the behavior of the MWP controller amounts
to about 300 lines of code.

This specification can be easily reused. Hence, several
applications and MWP threads could be modeled by using
several instances of the same AADL specifications with
update connections between them.

4.3. Functional Verification by Model-Checking

We have used the verification toolchain described in
Section 3 to check properties on the AADL specification
of the MWP system. The tools used to connect the AADL
specification with our model-checking tools are all integrated
within the Topcased platform [9], built on top of Eclipse.
The Topcased environment includes parts of the formal ver-
ification toolchain through the AADL2Fiacre plug-in, which
implement the transformation from AADL models into Fiacre
models.



The Fiacre model obtained after transformation takes
into account the complete behavior described in the AADL
model. It also includes the whole AADL language execution
model which means that, among other aspects, our inter-
pretation takes fully into account the scheduling semantics
as specified in the AADL standard. To achieve this goal, the
behavior of each translated thread is extended with special
states — dispatch, schedule, compute and complete —
to represent its interaction with the scheduler. For instance,
the state schedule corresponds to the selection of the
thread by the scheduler.

After this first encoding step, the Fiacre model is compiled
into a format suitable for the Tina verification toolbox
that constructs an abstract state space of the complete
system (the AADL components extended with the AADL
execution model). The abstract state space can be explored
and checked for properties expressed using temporal logic
formulas. The Tina toolbox includes a model-checker for a
variant of LTL (selt) and for the µ-calculus (muse).

We give more details on the properties that have been
formally checked on the model. The goal was to defined a
set of simple “property patterns” for dynamic architecture
verification and to give them to avionics software engineers
with no previous knowledge of model-checking or temporal
logic. We defined three patterns that were used by system
engineers to detect real-time pathologies. These properties,
described bellow, have been automatically checked on the
MWP model.
• NoGlobalDeadlock, applies to the whole model. This

pattern checks for absence of global deadlocks, that
is, the system can not lock himself due to a wrong
synchronisation;

• Unreachable (exp), applies to an internal state. This
pattern checks for the presence of dead states. This
is useful to check wether a thread may reach a given
behavior state;

• Resettable (exp), applies to a thread dispatch
state. This pattern checks for healthiness, that is the
fact that a given thread can be dispatched infinitely
often.

These three patterns can be directly encoded in terms
of the LTL-dialect used by the selt model-checker. The
pattern NoGlobaldeadlock is expressed by the formula
[] - dead, meaning that for every reachable state (al-
ways) it is false that no transitions can be taken from
this state. The pattern Unreachable (exp) is equiva-
lent to the formula [] - (exp), meaning that always,
the property exp is false. For example, the pattern
Unreachable (thApplis_pending) can be used to test
whether the thread can reach its state pending. Finally,
the pattern Resettable (exp) is equivalent to the formula
[] <> (exp), meaning that always, we will eventually
(after a finite number of transitions) enter in a state where
the property exp is satisfied. For example, the pattern
Resettable (thApplis_dispatch) can be used to test
whether the thread thApplis will (always) eventually be
dispatched.

In addition to these simple patterns, we have also used

the full expressivity of our approach to check temporal
constraints of the form: whenever the thread A is in state
s1 then the thread B will reach the state s2 within a delay
of at most t ms. Several scenarios have been tested with
this property, for example to find an upper limit on the time
needed for the completion of the sequence diagram given
in Figure 4.

4.4. Performance Evaluation and Experimental Results

Experiments based on the verification toolchain were
successful on the NPL use case as it was possible to verify
a substantial architecture model extracted from the system
described in Section 4. This model includes several threads
that exchange information through shared memory data.
The use of formal verification techniques at the model-level
was particularly interesting in this case. Indeed, the design
used in the definition of the communication architecture is
prone to concurrency access problems since all threads
must agree on the same order when accessing data.

With respect to performances, our verification toolchain
is able to handle the generation of the complete state
space of the demonstrator — which amounts to about
a million of states for the Fiacre intermediate model —
without any memory overflow on a typical basic develop-
ment computer (Intel dual-core processor at 2 GHz clock
frequency, and 2 Go of RAM memory). The abstract state
space construction and system compiling are performed, on
the same computer, in less than 5 minutes with a memory
footprint in the order of 500 Mo of RAM. On examples of
this size, the model checker included in Tina is able to
prove formal properties in a few seconds. For example,
it takes less than 2 minutes to check the 22 properties
derived from the patterns defined in Section 4.3: one test
for NoGlobalDeadlock; 5 resettable property (one for each
thread in the system); and 16 reachability test (one for each
state of each thread).

This experimentation, while still modest in size when
compared to a full-blown avionic protocol, gives a good
appraisal of the use of formal verification techniques for
real industrial software. These experimental results are very
encouraging. In particular, we can realistically envisage that
system engineers could evaluate different design choices for
the MWP protocol stack in a very short time cycle and test
the safety of their solutions at each iteration.

5. Future Work

We have described work undertaken within the ITEA2
project Spices. This project, initiated in 2006, gathers indus-
trial and academic partners from Belgium, France and Spain
with the goal to extend and improve the usability of AADL
in aeronautics, telecommunication and space domains.

During this project, several tools have been integrated to
provide a complete behavioral verification chain: ADELE,
a graphical AADL modeler based on Topcased frame-
work and developed by Ellidiss Technologies; OSATE, an
AADL handling back-end based on Eclipse and developed
by the Software Engineering Institute; AADL2Fiacre, an
Eclipse plug-in translating AADL models into Fiacre and



developed by IRIT; frac, a Fiacre compiler producing Tina
input models developed by LAAS-CNRS; Tina, a toolbox
for Petri networks and timed transitions systems including
behavioral space simplification and behavioral verification,
also developed by LAAS-CNRS. This paper details how
these tools can be combined in order to provide a behavioral
verification environment for AADL models within Topcased.

While the methodology of our verification toolchain has
already been described in previous works [11], this paper
is the first occasion to report experimental study that were
conducted on a significant avionic demonstrator. This exper-
imental study is also interesting by the fact that we can draw
from it a set of conclusions about the integration of model-
checking tools in an industrial development process as well
as several directions for extending our work. Further ideas
for improvements include: to enhance and standardize our
library of validation patterns; to improve behavioral modeling
capabilities of ADELE (e.g. with a graphical representation
of the behavioural annex); and to improve the integration of
the transformation toolchain in Topcased, in particular with
respect to better presenting the verification results to the
end user.
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