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Foreword

Over ten years ago, Malik Ghallab, Dana Nau, and Paolo Traverso gave us the first—
and to date only—comprehensive textbook dedicated to the field of Automated Planning,
providing a much needed resource for students, researchers and practitioners. Since then,
this rich field has continued to evolve rapidly. There is now a unified understanding of what
once seemed disparate work on classical planning. Models and methods to deal with time,
resources, continuous change, multiple agents, and uncertainty have substantially matured.
Cross-fertilization with other fields such as software verification, optimization, machine
learning, and robotics has become the rule rather than the exception. A phenomenal range
of applications could soon be within reach—given the right future emphasis for the field.

Today, the authors are back with a new book, Automated Planning and Acting. As the
title indicates, this is not a mere second edition of the older book. In line with the authors’
analysis of where the future emphasis should lie for the field to realize its full impact, the
book covers deliberative computational techniques for both planning and acting, that is for
deciding which actions to perform and also how to perform them. Automated Planning and
Acting is more than a graduate textbook or a reference book. Not only do the authors
outstandingly discharge their duties of educating the reader about the basics and much of
the recent progress in the field, but they also propose a new framework from which the
community can start to intensify research on deliberative acting and its integration with
planning.

These aims are reflected in the book’s content. The authors put the integration of plan-
ning and acting at the forefront by dedicating an entire chapter to a unified hierarchical
model and refinement procedures that suit the needs of both planning and acting func-
tions. Each chapter devoted to a particular class of representations also includes significant
material on the integration of planning and acting using these representations. Overall,
the book is more focused than its predecessor, and explores in even greater depth models
and approaches motivated by the needs of planning and acting in the real world, such as
handling time and uncertainty. At the same time, the authors successfully balance breadth
and depth by providing an elegant, concise synthesis of a larger body of work than in their
earlier text.

There is no doubt that Automated Planning and Acting will be the text I require my
students to read when they first start, and the goto book on my shelf for my own reference.
As a timely source of motivation for game-changing research on the integration of planning
and acting, it will also help shape the field for the next decade.

Sylvie Thiébaux
The Australian National University

xiv



Preface

This book is about methods and techniques that a computational agent can use for delib-
erative planning and acting, that is, for deciding both which actions to perform and how
to perform them, to achieve some objective. The study of deliberation has several scientific
and engineering motivations.

Understanding deliberation is an objective for most cognitive sciences. In artificial intel-
ligence research, this is done by modeling deliberation through computational approaches
to enable it and to allow it to be explained. Furthermore, the investigated capabilities are
better understood by mapping concepts and theories into designed systems and experiments
to test empirically, measure, and qualify the proposed models.

The engineering motivation for studying deliberation is to build systems that exhibit
deliberation capabilities and develop technologies that address socially useful needs. A tech-
nological system needs deliberation capabilities if it must autonomously perform a set of
tasks that are too diverse – or must be done in environments that are too diverse – to engi-
neer those tasks into innate behaviors. Autonomy and diversity of tasks and environments is
a critical feature in many applications, including robotics (e.g., service and personal robots;
rescue and exploration robots; autonomous space stations, satellites, or vehicles), complex
simulation systems (e.g., tutoring, training or entertainment), or complex infrastructure
management (e.g., industrial or energy plants, transportation networks, urban facilities).

Motivation and Coverage

The coverage of this book derives from the view we advocated in our previous work [229],
which we now briefly summarize.

Automated planning is a rich technical field, which benefits from the work of an active
and growing research community. Some areas in this field are extensively explored and
correspond to a number of already mature techniques. However, there are other areas in
which further investigation is critically needed if automated planning is to have a wider
impact on a broader set of applications. One of the most important such areas, in our view,
is the integration of planning and acting. This book covers several different kinds of models
and approaches – deterministic, hierarchical, temporal, nondeterministic and probabilistic
– and for each of them, we discuss not only the techniques themselves but also how to use
them in the integration of planning and acting.

The published literature on automated planning is large, and it is not feasible to cover all
of it in detail in a single book. Hence our choice of what to cover was motivated by putting
the integration of planning and acting at the forefront. The bulk of research on automated
planning is focused on a restricted form called classical planning, an understanding of which
is prerequisite introductory material, and we cover it in part of Chapter 2. But we have
devoted large parts of the book to extended classes of automated planning and acting that
relax the various restrictions required by classical planning.

There are several other kind of deliberation functions, such as monitoring, reasoning
about one’s goals, reasoning about sensing and information-gathering actions, and learning
and otherwise acquiring deliberation models. Although these are not our focus, we cover
them briefly in Chapter 7.
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The technical material in this book is illustrated with examples inspired from concrete
applications. However, most of the technical material is theoretical. Case studies and
application-oriented work would certainly enrich the integration of planning and acting
view developed in here. We plan to devote a forthcoming volume to automated planning
and acting applications.

Using This Book

This work started as a textbook project, to update our previous textbook on automated
planning [230]. Our analysis of the state of the art led us quickly to embrace the objective of
covering planning and acting and their integration and, consequently, to face two obstacles:

• The first problem was how to cover a domain whose scope is not easily amenable to a
sharp definition and that requires integrating conceptually heterogenous models and
approaches. In contrast to our previous book, which was focused on planning, this
one proved harder to converge into a reasonably united perspective.

• The second problem was how to combine a textbook approach, that is, a coherent
synthesis of the state of the art, with the development of new material. Most of this
new material is presented in comprehensive detail (e.g., in Chapter 3) consistent with
a textbook use. In a few parts (e.g., Section 4.5.3), this new material is in preliminary
form and serves as an invitation for further research.

This book can be used as a graduate-level textbook and as an information source for
scientists and professionals in the field. We assume the reader to be familiar with the
basic concepts of algorithms and data structures at the level that one might get in an
undergraduate-level computer science curriculum. Prior knowledge of heuristic search tech-
niques would also be helpful, but is not strictly necessary because the appendices provide
overviews of needed tools.

A complete set of lecture slides for this book and other auxiliary materials are available
online.
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Chapter 1

Introduction

This chapter introduces informally the concepts and technical material developed in the rest
of the book. It discusses in particular the notion of deliberation, which is at the core of the
interaction between planning and acting. Section 1.1 motivates our study of deliberation
from a computational viewpoint and delineates the scope of the book. We then introduce
a conceptual view of an artificial entity, called an actor, capable of acting deliberately on
its environment, and discuss our main assumptions. Deliberation models and functions are
presented next. Section 1.4 describes two application domains that will be simplified into
illustrative examples of the techniques covered in rest of the book.

1.1 Purpose and Motivations

1.1.1 First Intuition

What is deliberative acting? That is the question we are studying in this book. We address
it by investigating the computational reasoning principles and mechanisms supporting how
to choose and perform actions.

We use the word action to refer to something that an agent does, such as exerting a force,
a motion, a perception or a communication, in order to make a change in its environment
and own state. An agent is any entity capable of interacting with its environment. An
agent acting deliberately is motivated by some intended objective. It performs one or
several actions that are justifiable by sound reasoning with respect to this objective.

Deliberation for acting consists of deciding which actions to undertake and how to per-
form them to achieve an objective. It refers to a reasoning process, both before and during
acting, that addresses questions such as the following:

• If an agent performs an action, what will the result be?

• Which actions should an agent undertake, and how should the agent perform the
chosen actions to produce a desired effect?

Such reasoning allows the agent to predict, to decide what to do and how do it, and to
combine several actions that contribute jointly to the objective. The reasoning consists of
using predictive models of the agent’s environment and capabilities to simulate what will
happen if the agent performs an action. Let us illustrate these abstract notions intuitively.

Example 1.1. Consider a bird in the following three scenes:

• To visually track a target, the bird moves its eyes, head, and body.

• To get some food that is out of reach, the bird takes a wire rod, finds a wedge to bend
the wire into a hook, uses the hook to get the food.

• To reach a worm floating in a pitcher, the bird picks up a stone and drops it into the
pitcher, repeats with other stones until the water has risen to a reachable level, and
then picks up the worm.

1



Example 1.1 mentions actions such as moving, sensing, picking, bending and throwing.
The first scene illustrates a precise coordination of motion and sensing that is called visual
servoing. This set of coordinated actions is certainly purposeful: it aims at keeping the
target in the field of view. But it is more reactive than deliberative. The other two scenes
are significantly more elaborate: they demand reasoning about causal relations among
interdependent actions that transform objects, and the use of these actions to achieve an
objective. They illustrate our intuitive notion of acting deliberately.

The mechanisms for acting deliberately have always been of interest to philosophy.1

They are a subject of intense research in several scientific disciplines, including biology,
neuroscience, psychology, and cognitive sciences. The deliberative bird behaviors of Exam-
ple 1.1 have been observed and studied from the viewpoint of how deliberative capabilities
are developed, in species of corvids such as crows [595] or rooks [70, 69]. Numerous other
animal species have the ability to simulate their actions and deliberate on the basis of such
simulations.2 The sophisticated human deliberation faculties are the topic of numerous
research, in particular regarding their development in infants and babies, starting from the
work of Piaget (as in [476, 477]) to the recent diversity of more formal psychology models
(e.g., [561, 18, 459]).

We are interested here in the study of computational deliberation capabilities that allow
an artificial agent to reason about its actions, choose them, organize them purposefully, and
act deliberately to achieve an objective. We call this artificial agent an actor. This is to
underline the acting functions on which we are focusing and to differentiate them from
the broader meaning of the word “agent.” We consider physical actors such as robots, as
well as abstract actors that act in simulated or virtual environments, for example, through
graphic animation or electronic Web transactions. For both kinds of actors, sensory-motor
functions designate in a broad sense the low-level functions that implement the execution
of actions.

1.1.2 Motivations

We address the issue of how an actor acts deliberately by following the approaches and
methods of artificial intelligence (AI). Our purpose proceeds from the usual motivations of
AI research, namely:

• To understand, through effective formal models, the cognitive capabilities that corre-
spond to acting deliberately.

• To build actors that exhibit these capabilities.

• To develop technologies that address socially useful needs.

Understanding deliberation is an objective for most cognitive sciences. The specifics of
AI are to model deliberation through computational approaches that allow us to explain as
well as to generate the modeled capabilities. Furthermore, the investigated capabilities are
better understood by mapping concepts and theories into designed systems and experiments
to test empirically, measure, and qualify the proposed models. The technological motivation
for endowing an artificial actor with deliberation capabilities stems from two factors:

• autonomy, meaning that the actor performs its intended functions without being di-
rectly operated by a person, and

• diversity in the tasks the actor can perform and the environments in which it can
operate.

1In particular, the branch of philosophy called action theory, which explores questions such as, “What is
left over if I subtract the fact that my arm goes up from the fact that I raise my arm?” [608].

2In the interesting classification of Dennett [149], these species are called Popperian, in reference to the
epistemologist Karl Popper.



Without autonomy, a directly operated or teleoperated device does not usually need to
deliberate. It simply extends the acting and sensing capabilities of a human operator who
is in charge of understanding and decision making, possibly with the support of advice and
planning tools, for example, as in surgical robotics and other applications of teleoperation.

An autonomous system may not need deliberation if it operates only in the fully specified
environment for which it has been designed. Manufacturing robots autonomously perform
tasks such as painting, welding, assembling, or servicing a warehouse without much delib-
eration. Similarly, a vending machine or a driverless train operates autonomously without
a need for deliberation. For these and similar examples of automation, deliberation is per-
formed by the designer. The system and its environment are engineered so that the only
variations that can occur are those accounted for at the design stage in the system’s prede-
fined functioning envelope. Diversity in the environment is not expected. A state outside
of the functioning envelope puts the system into a failure mode in which a person takes
deliberate actions.

Similarly, a device designed for a unique specialized task may perform it autonomously
without much deliberation, as long the variations in its environment are within its designed
range. For example, a vacuum-cleaning or lawn mowing robot does not deliberate, but it
can cope autonomously with its specialized tasks in a reasonable range of lawns or floors.
However, it may cease to function properly when it encounters a slippery floor, a steep
slope, or any condition outside of the range for which it was designed.

When a designer can account, within some functioning envelope, for all the environments
and tasks a system will face and when a person can be in charge of deliberating outside of
this envelope, by means of teleoperation or reprogramming, then deliberation generally is
not needed in the system itself. Such a system will be endowed with a library of reactive
behaviors (e.g., as the bird’s visual target tracking in Example 1.1) that cover efficiently
its functioning envelope. However, when an autonomous actor has to face a diversity of
tasks, environments and interactions, then achieving its purpose will require some degree
of deliberation. This is the case in many robotics applications, such as service and personal
robots, rescue and exploration robots, autonomous space stations and satellites, or even
driverless cars. This holds also for complex simulation systems used in entertainment (e.g.,
video games) or educational applications (serious games). It is equally applicable to many
control systems that manage complex infrastructures such as industrial or energy plants,
transportation networks, and urban facilities (smart cities).

Autonomy, diversity in tasks and environments, and the need for deliberation are not
binary properties that are either true or false. Rather, the higher the need for autonomy
and diversity, the higher the need for deliberation. This relationship is not restricted to
artificial systems. Numerous natural species (plants and some invertebrates such as sponges
or worms) have been able to evolve to fit into stable ecological niches, apparently without
much deliberation. Species that had to face rapid changes in their environment and to
adapt to a wide range of living conditions had to develop more deliberation capabilities.

1.1.3 Focus and Scope

We address deliberation from an AI viewpoint. Our focus is on the reasoning functions
required for acting deliberately. This focus involves two restrictions:

• We are not interested in actions that consists solely of internal computations, such as
adding “2 + 3” or deducing that “Socrates is mortal.” These computations are not
actions that change the state of the world.3 They can be used as part of the actor’s
deliberation, but we take them as granted and outside of our scope.

• We are not concerned with techniques for designing the sensing, actuation, and

3The borderline between computational operations and actions that change the external world is not as
sharp for an abstract actor as for a physical one.



sensory-motor control needed for the low-level execution of actions. Sensory-motor
control (e.g., the visual servoing of Example 1.1) can be essential for acting, but its
study is not within our scope. We assume that actions are performed with a set of
primitives, which we will call commands, that implement sensory-motor control. The
actor performs its actions by executing commands. To deliberate, it relies on models
of how these commands work.

The scope of this book is not limited to the most studied deliberation function, which is
planning what actions to perform. Planning consists of choosing and organizing the actions
that can achieve a given objective. In many situations, there is not much need for planning:
the actions to perform are known. But there is a need for significant deliberation in deciding
how to perform each action, given the context and changes in the environment. We develop
the view that planning can be needed for deliberation but is seldom sufficient. We argue
that acting goes beyond the execution of low-level commands.

Example 1.2. Dana finishes breakfast in a hotel restaurant, and starts going back to his
room. On the way, he notices that the elevator is not on his floor and decides to walk up
the stairs. After a few steps he becomes aware that he doesn’t have his room key which he
left on the breakfast table. He goes back to pick it up.

In this example, the actor does not need to plan the simple task of going to his room. He
continually deliberates while acting: he makes opportunistic choices, simulates in advance
and monitors his actions, stops when needed and decides on alternate actions.

Deliberation consists of reasoning with predictive models as well as acquiring these
models. An actor may have to learn how to adapt to new situations and tasks, as much
as to use the models it knows about for its decision making. Further, even if a problem
can be addressed with the actor’s generic models, it can be more efficient to transform the
explicit computations with these models into low-level sensory-motor functions. Hence, it
is natural to consider learning to act as a deliberation function. Section 7.3 offers a brief
survey on learning and model acquisition for planning and acting. However, our focus is on
deliberation techniques using predefined models.

1.2 Conceptual View of an Actor

1.2.1 A Simple Architecture

An actor interacts with the external environment and with other actors. In a simplified
architecture, depicted in Figure 1.1(a), the actor has two main modules: a set of deliberation
functions and an execution platform.

The actor’s sensory-motor functions are part of its execution platform. They transform
the actor’s commands into actuations that execute its actions (e.g., the movement of a limb
or a virtual character). The execution platform also transforms sensed signals into features
of the world (e.g., to recognize a physical or virtual object, or to query information from the
Web). The capabilities of the platform are explicitly described as models of the available
commands.

Deliberation functions implement the reasoning needed to choose, organize, and perform
actions that achieve the actor’s objectives, to react adequately to changes in the environ-
ment, and to interact with other actors, including human operators. To choose and execute
commands that ultimately achieve its objectives, the actor needs to perform a number of
deliberation functions. For example, the actor must commit to intermediate goals, plan for
those goals, refine each planned action into commands, react to events, monitor its activities
to compare the predicted and observed changes, and decide whether recovery actions are
needed. These deliberation functions are depicted in Figure 1.1(b) as two main functions:
planning and acting. The acting function is in charge of refining actions into commands,
reacting to events, and monitoring.
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Figure 1.1: Conceptual view of an actor (a); its restriction to planning and acting (b).

1.2.2 Hierarchical and Continual Online Deliberation

The view presented in Section 1.2.1 can be a convenient first approach for describing an
actor, but one must keep in mind that it is an oversimplification.

Example 1.3. To respond to a user’s request, a robot has to bring an object o7 to a
location room2 (see Figure 1.2). To do that, it plans a sequence of abstract actions such
as “navigate to,” “fetch,” and “deliver.” One of these refines into “move to door,” “open
door,” “get out,” and “close door.” Once the robot is at the door, it refines the “open door”
action appropriately for how it perceives that particular door.

The robot’s deliberation can be accomplished by a collection of hierarchically organized
components. In such a hierarchy, a component receives tasks from the component above it,
and decides what activities need to be performed to carry out those tasks. Performing a task
may involve refining it into lower-level steps, issuing subtasks to other components below
it in the hierarchy, issuing commands to be executed by the platform, and reporting to the
component that issued the task. In general, tasks in different parts of the hierarchy may
involve concurrent use of different types of models and specialized reasoning functions.

This example illustrates two important principles of deliberation: hierarchical organiza-
tion and continual online processing.

• Hierarchically organized deliberation. Some of the actions the actor wishes to per-
form do not map directly into a command executable by its platform. An action may
need further refinement and planning. This is done online and may require different
representations, tools, and techniques from the ones that generated the task. A hier-
archized deliberation process is not intended solely to reduce the search complexity of
offline plan synthesis. It is needed mainly to address the heterogeneous nature of the
actions about which the actor is deliberating, and the corresponding heterogeneous
representations and models that such deliberations require.

• Continual online deliberation. Only in exceptional circumstances will the actor do
all of its deliberation offline before executing any of its planned actions. Instead,
the actor generally deliberates at runtime about how to carry out the tasks it is
currently performing. The deliberation remains partial until the actor reaches its
objective, including through flexible modification of its plans and retrials. The actor’s
predictive models are often limited. Its capability to acquire and maintain a broad
knowledge about the current state of its environment is very restricted. The cost
of minor mistakes and retrials are often lower than the cost of extensive modeling,
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Figure 1.2: Multiple levels of abstraction in deliberative acting. Each solid red arrow
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arrow maps a task into a plan of actions.

information gathering, and thorough deliberation. Throughout the acting process,
the actor refines and monitors its actions; reacts to events; and extends, updates,
and repairs its plan on the basis of its perception focused on the relevant part of the
environment.

Different parts of the actor’s hierarchy often use different representations of the state of
the actor and its environment. These representations may correspond to different amounts
of detail in the description of the state and different mathematical constructs. In Figure 1.2,
a graph of discrete locations may be used at the upper levels, while the lower levels may
use vectors of continuous configuration variables for the robot limbs.

Finally, because complex deliberations can be compiled down by learning into low-level
commands, the frontier between deliberation functions and the execution platform is not
rigid; it evolves with the actor’s experience.

1.2.3 Assumptions

We are not seeking knowledge representation and reasoning approaches that are effective
across every kind of deliberation problem and at every level of a hierarchically organized
actor. Neither are we interested in highly specialized actors tailored for a single niche,
because deliberation is about facing diversity. Instead, we are proposing a few generic
approaches that can be adapted to different classes of environments and, for a given actor,



to different levels of its deliberation. These approaches rely on restrictive assumptions
that are needed from a computational viewpoint, and that are acceptable for the class of
environments and tasks in which we are interested.

Deliberation assumptions are usually about how variable, dynamic, observable, and
predictable the environment is, and what the actor knows and perceives about it while
acting. We can classify them into assumptions related to the dynamics of the environment,
its observability, the uncertainty managed in models, and how time and concurrency are
handled.

• Dynamics of the environment. An actor may assume to be in a static world except
for its own actions, or it may take into account exogenous events and changes that
are expected and/or observed. In both cases the dynamics of the world may be
described using discrete, continuous or hybrid models. Of these, hybrid models are
the most general. Acting necessarily involves discontinuities in the interaction with
the environment,4 and these are best modeled discretely. But a purely discrete model
abstracts away continuous processes that may also need to be modeled.

• Observability of the environment. It is seldom the case that all the information needed
for deliberation is permanently known to the actor. Some facts or parameters may
be always known, others may be observable if specific sensing actions are performed,
and others will remain hidden. The actor may have to act on the basis of reasonable
assumptions or beliefs regarding the latter.

• Uncertainty in knowledge and predictions. No actor is omniscient. It may or may
not be able to extend its knowledge with specific actions. It may or may not be
able to reason about the uncertainty regarding the current state of the world and the
predicted future (e.g., with nondeterministic or probabilistic models). Abstracting
away uncertainty during a high-level deliberation can be legitimate if the actor can
handle it at a lower level and correct its course of action when needed.

• Time and concurrency. Every action consumes time. But deliberation may or may
not need to model it explicitly and reason about its flow for the purpose of meeting
deadlines, synchronizing, or handling concurrent activities.

Different chapters of the book make different assumptions about time, concurrency,
and uncertainty. Except for Section 7.4 on hybrid models, we’ll restrict ourself to discrete
approaches. This is consistent with the focus and scope discussed in Section 1.1.3, be-
cause it is primarily in sensory-motor functions and commands that continuous models are
systematically needed.

1.3 Deliberation Models and Functions

1.3.1 Descriptive and Operational Models of Actions

An actor needs predictive models of its actions to decide what actions to do and how to
do them. These two types of knowledge are expressed with, respectively, descriptive and
operational models.

• Descriptive models of actions specify the actor’s “know what.” They describe which
state or set of possible states may result from performing an action or command.
They are used by the actor to reason about what actions may achieve its objectives.

• Operational models of actions specify the actor’s “know how.” They describe how to
perform an action, that is, what commands to execute in the current context, and how
organize them to achieve the action’s intended effects. The actor relies on operational
models to perform the actions that it has decided to perform.

4Think of the phases in a walking or grasping action.



In general, descriptive models are more abstract than operational models. Descriptive
models abstract away the details, and focus on the main effects of an action; they are useful
at higher levels of a deliberation hierarchy. This abstraction is needed because often it is
too difficult to develop very detailed predictive models, and because detailed models require
information that is unknown at planning time. Furthermore, reasoning with detailed models
is computationally very complex. For example, if you plan to take a book from a bookshelf,
at planning time you will not be concerned with the available space on the side or on the
top of the book to insert your fingers and extract the book from the shelf. The descriptive
model of the action will abstract away these details. It will focus on where the book is,
whether it is within your reach, and whether you have a free hand with which to pick it up.

The simplifications allowed in a descriptive model are not possible in an operational
model. To actually pick up the book, you will have to determine precisely where the book
is located in the shelf, which positions of your hand and fingers are feasible, and which
sequences of precise motions and manipulations will allow you to perform the action.

Furthermore, operational models may need to include ways to respond to exogenous
events, that is, events that occur because of external factors beyond the actor’s control. For
example, someone might be standing in front of the bookshelf, the stool that you intended
to use to reach the book on a high shelf might be missing, or any of a potentially huge
number of other possibilities might interfere with your plan.

In principle, descriptive models can take into account the uncertainty caused by exoge-
nous events, for example, through nondeterministic or probabilistic models (see Chapters 5
and 6), but the need to handle exogenous events is much more compelling for operational
models. Indeed, exogenous events are often ignored in descriptive models because it is im-
practical to try to model all of the possible joint effects of actions and exogenous events, or
to plan in advance for all of the contingencies. But operational models must have ways to
respond to such events if they happen, because they can interfere with the execution of an
action. In the library example, you might need to ask someone to move out of the way, or
you might have to stand on a chair instead of the missing stool.

Finally, an actor needs descriptive models of the available commands in order to use
them effectively, but in general it does not need their operational models. Indeed, commands
are the lower-level sensory-motor primitives embedded in the execution platform; their
operational models correspond to what is implemented in these primitives. Taking this
remark to the extreme, if one assumes that every known action corresponds to an executable
command, then all operational models are embedded in the execution platform and can be
ignored at the deliberation level. This assumption seldom holds.

1.3.2 Description of States for Deliberation

To specify both descriptive and operational models of actions, we will use representational
primitives that define the state of an actor and its environment; these are called state
variables. A state variable associates a relevant attribute of the world with a value that
changes over time. The definition of a state with state variables needs to include enough
details for the actor’s deliberations, but it does not need to be, nor can it be, exhaustive.

In a hierarchically organized actor, different deliberative activities may need different
amounts of detail in the state description. For example, in actions such as “grasp knob”
and “turn knob” at the bottom of Figure 1.2, to choose the commands for grasping and
operating the handle, the actor needs to reason about detailed parameters such as the robot’s
configuration coordinates and the position and shape of the door handle. Higher up, where
the actor refines “bring o7 to room2” into actions such as “go to hallway” and “navigate to
room1,” such details are not needed. It is more convenient there to reason about the values
of more abstract variables, such as location(robot) = room1 or position(door) = closed. To
establish correspondences between these abstract variables and the detailed ones, the actor
could have definitions saying, for example, that location(robot) = room1 corresponds to a



particular area in an Euclidean reference frame.

The precise organization of a hierarchy of data structures and state representations is a
well-known area in computer science (e.g., [520]). It may take different forms in application
domains such as robotics, virtual reality, or geographic information systems. Here, we’ll
keep this point as simple as possible and assume that at each part of an actor’s deliberation
hierarchy, the state representation includes not only the variables used in that part of the
hierarchy (e.g., the robot’s configuration coordinates at the bottom of Figure 1.2), but also
the variables used higher up in the hierarchy (e.g., location(robot)).

An important issue is the distinction and correspondence between predicted states and
observed states. When an actor reasons about what might happen and simulates changes of
state to assess how desirable a course of action is, it uses predicted states. When it reasons
about how to perform actions in some context, it relies on observed states; it may contrast
its observations with its expectations. Predicted states are in general less detailed than the
observed one; they are obtained as a result of one or several predictions starting from an
abstraction of the current observed state. To keep the distinction clear, we’ll use different
notations:

• s ∈ S is a predicted state;

• ξ ∈ Ξ is an observed state.

Because of partial and inaccurate observations, there can be uncertainty about the
present observed state as well as about the future predicted states. Furthermore, information
in a dynamic environment is ephemeral. Some of the values in ξ may be out-of-date: they
may refer to things that the actor previously observed but that it cannot currently observe.
Thus, ξ is the state of the actor’s knowledge, rather than the true state of the world. In
general, the actor should be endowed with appropriate means to manage the uncertainty
and temporality of the data in ξ.

Observability is an additional issue. As underlined in Section 1.2.3, some information
relevant to the actor’s behavior can be momentarily or permanently hidden; it must be
indirectly inferred. In the general case, the design of an actor should include the following
distinctions among state variables:

• A variable is invisible if it is not observable but can only be estimated from observa-
tions and a priori information.

• A variable is observable if its value can be obtained by performing appropriate actions.
At various points, it may be either visible if its value is known to the actor, or hidden
if the actor must perform an observation action to get its value.

For simplicity, we’ll start out by assuming that the values of all state variables are
precisely known at every moment while acting. Later in the book, we’ll consider more
realistically that some state variables are observable but can only be observed by performing
some specific actions. In Chapter 5, we deal with a specific case of partial observability: in
Section 5.8.4, we transform a partially observable domain into an abstracted domain whose
states are sets of states. We also examine (in Chapter 6) the case in which some state
variables are permanently or momentarily observable but others remain hidden. The class
of models known as partially observable models, in which every state variable is assumed
to be either always known or always hidden, is discussed in Section 6.8.3.

1.3.3 Planning Versus Acting

The simple architecture of Figure 1.1(b) introduces planning and acting as respectively
finding what actions to perform and how to refine chosen actions into commands. Here, we
further discuss these two functions, how they differ, and how they can be associated in the
actor’s deliberation.

The purpose of planning is to synthesize an organized set of actions to carry out some



activity. For instance, this can be done by a lookahead procedure that combines prediction
steps (Figure 1.3: when in state s, action a is predicted to produce state s′) within a search
through alternative sets of actions for a set that leads to a desired goal state.
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Figure 1.3: Planning as a combination of prediction steps and a search mechanism.

Planning problems vary in the kinds of actions to be planned for, the kinds of predictive
models that are needed, and the kinds of plans that are considered satisfactory. For some
kinds of problems, domain-specific planning methods have been developed that are tailor-
made for that kind of problem. For instance, motion planning synthesizes a geometric
and kinematic trajectory for moving a mobile system (e.g., a truck, a robot, or a virtual
character); perception planning synthesizes an organized set of sensing and interpretation
actions to recognize an object or to build a three-dimensional model of a scene; infrastructure
planning synthesizes plans to deploy and organize facilities, such as a public transportation
infrastructure, to optimize their usage or to meet the needs of a community. Many other such
examples can be given, such as flight navigation planning, satellite configuration planning,
logistics planning, or industrial process planning.

There are, however, commonalities to many forms of planning. Domain-independent
planning tries to grasp these commonalities at an abstract level, in which actions are generic
state transformation operators over a widely applicable representation of states as relations
among objects.

Domain-independent and domain-specific planning complement each other. In a hier-
archically organized actor, planning takes place at multiple levels of the hierarchy. At high
levels, abstract descriptions of a problem can be tackled using domain-independent planning
techniques. The example shown in Figure 1.2 may require a path planner (for moving to lo-
cations), a manipulation planner (for grasping the door handle), and a domain-independent
planner at the higher levels of the hierarchy.

Acting involves deciding how to perform the chosen actions (with or without the help
of a planner) while reacting to the context in which the activity takes place. Each action
is considered as an abstract task to be refined, given the current context, progressively into
actions or commands that are more concrete. Whereas planning is a search over predicted
states, acting requires a continual assessment of the current state ξ, to contrast it with
a predicted state s and adapt accordingly. Consequently, acting also includes reacting to
unexpected changes and exogenous events, which are independent from the actor’s activity.

The techniques used in planning and acting can be compared as follows. Planning can be
organized as an open-loop search, whereas acting needs to be a closed-loop process. Planning
relies on descriptive models (know-what); acting uses mostly operational models (know-
how). Domain-independent planners can be developed to take advantage of commonalities
among different forms of planning problems, but this is less true for acting systems, which
require more domain-specific programming.

The relationship between planning and acting is more complex than a simple linear



sequence of “plan then act.” Seeking a complete plan before starting to act is not always
feasible, and not always needed. It is feasible when the environment is predictable and well
modeled, for example, as for a manufacturing production line. It is needed when acting
has a high cost or risk, and when actions are not reversible. Often in such applications,
the designer has to engineer out the environment to reduce diversity as much as possible
beyond what is modeled and can be predicted.

In dynamic environments where exogenous events can take place and are difficult to
model and predict beforehand, plans should be expected to fail if carried out blindly until
the end. Their first steps are usually more reliable than the rest and steer toward the
objectives. Plan modification and replanning are normal and should be embedded in the
design of an actor. Metaphorically, planning is useful to shed light on the road ahead, not
to lay an iron rail all the way to the goal.

The interplay between acting and planning can be organized in many ways, depending
on how easy it is to plan and how quickly the environment changes. A general paradigm is
the receding horizon scheme, which is illustrated in Figure 1.4. It consists of repeating the
two following steps until the actor has accomplished its goal:

(i) Plan from the current state toward the goal, but not necessarily all the way to the
goal.

(ii) Act by refining one or a few actions of the synthesized plan into commands to be
executed.
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Figure 1.4: Receding horizon scheme for planning and acting.

A receding horizon approach can be implemented in many ways. Options include various
planning horizon, number of actions to perform at each planning stage, and what triggers
replanning. Furthermore, the planning and acting procedures can be run either sequentially
or in parallel with synchronization.

Suppose an actor does a depth-first refinement of the hierarchy in Figure 1.2. Depending
on the actor’s planning horizon, it may execute each command as soon as one is planned
or wait until the planning proceeds a bit farther. Recall from Section 1.3.2 that the ob-
served state ξ may differ from the predicted one. Furthermore, ξ may evolve even when
no commands are being executed. Such situations may invalidate what is being planned,
necessitating replanning.

The interplay between acting and planning is relevant even if the planner synthesizes
alternative courses of action for different contingencies (see Chapters 5 and 6). Indeed, it
may not be worthwhile to plan for all possible contingencies, or the planner may not know
in advance what all of them are.

1.3.4 Other Deliberation Functions

We have mentioned deliberation functions other than planning and acting: perceiving,
monitoring, goal reasoning, communicating, and learning. These functions (surveyed in



Chapter 7) are briefly described here.

Perceiving goes beyond sensing, even with elaborate signal processing and pattern
matching methods. Deliberation is needed in bottom-up processes for getting meaning-
ful data from sensors, and in top-down activities such as focus-of-attention mechanisms,
reasoning with sensor models, and planning how to do sensing and information gathering.
Some of the issues include how to maintain a mapping between sensed data and deliberation
symbols, where and how to use the platform sensors, or how to recognize actions and plans
of other actors.

Monitoring consists of comparing observations of the environment with what the actor’s
deliberation has predicted. It can be used to detect and interpret discrepancies, perform di-
agnosis, and trigger initial recovery actions when needed. Monitoring may require planning
what observation actions to perform, and what kinds of diagnosis tests to perform. There
is a strong relationship between planning techniques and diagnosis techniques.

Goal reasoning is monitoring of the actor’s objectives or mission, to keep the actor’s
commitments and goals in perspective. It includes assessing their relevance, given the
observed evolutions, new opportunities, constraints or failures, using this assessment to
decide whether some commitments should be abandoned, and if so, when and how to
update the current goals.

Communicating and interacting with other actors open numerous deliberation issues
such as communication planning, task sharing and delegation, mixed initiative planning,
and adversarial interaction.

Learning may allow an actor to acquire, adapt, and improve through experience the
models needed for deliberation and to acquire new commands to extend and improve the
actor’s execution platform. Conversely, techniques such as active learning may themselves
require acting for the purpose of better learning.

1.4 Illustrative Examples

To illustrate particular representations and algorithms, we’ll introduce a variety of examples
inspired by two application domains: robotics and operations management. We’ll use highly
simplified views of these applications to include only the features that are relevant for the
issue we’re trying to illustrate. In this section, we provide summaries of the real-world
context in which our simple examples might occur.

1.4.1 A Factotum Service Robot

We will use the word factotum to mean a general-purpose service robot that consists of a
mobile platform equipped with several sensors (lasers, cameras, etc.) and actuators (wheels,
arms, forklift) [328]. This robot operates in structured environments such as a mall, an of-
fice building, a warehouse or a harbor. It accomplishes transportation and logistics tasks
autonomously (e.g., fetching objects, putting them into boxes, assembling boxes into con-
tainers, moving them around, delivering them or piling them up in storage areas).

This robot platform can execute parameterized commands, such as localize itself in the
map, move along a path, detect and avoid obstacles, identify and locate items, grasp, ungrasp
and push items. It knows about a few actions using these commands, for example, map
the environment (extend or update the map), goto a destination, open a door, search for or
fetch an item.

These actions and commands are specified with descriptive and operational models. For
example, move works if it is given waypoints in free space or an obstacle-free path that
meet kinematics and localization constraints; the latter are, for example, visual landmarks
required by action localize. These conditions need to be checked and monitored by the robot
while performing the actions. Concurrency has to be managed. For example, goto should
run in parallel with detect, avoid, and localize.



Factotum needs domain-specific planners, for example, a motion planner for move, a
manipulation planner for grasp (possibly using locate, push, and move actions). Corre-
sponding plans are more than a sequence or a partially ordered set of commands; they
require closed-loop control and monitoring.

At the mission-preparation stage (the upper levels in Figure 1.2), it is legitimate to view
a logistics task as an organized set of abstract subtasks for collecting, preparing, conveying,
and delivering the goods. Each subtask may be further decomposed into a sequence of still
abstract actions such as goto, take, and put. Domain-independent task planning techniques
are needed here.

However, deliberation does not end with the mission preparation stage. A goto action
can be performed in many ways depending on the environment properties: it may or may
not require a planned path; it may use different localization, path following, motion control,
detection, and avoidance methods (see the “goto” node in Figure 1.2). A goto after a take
is possibly different from the one before because of the held object. To perform a goto
action in different contexts, the robot relies on a collection of skills defined formally by
methods. A method specifies a way to refine an action into commands. The same goto may
start with a method (e.g., follow GPS waypoints) but may be pursued with more adapted
methods when required by the environment (indoor without GPS signal) or the context.
Such a change between methods may be a normal progression of the goto action or a retrial
due to complications. The robot also has methods for take, put, open, close, and any other
actions it may need to perform. These methods endow the robot with operational models
(its know-how) and knowledge about how to choose the most adapted method with the
right parameters.

The methods for performing actions may use complex control constructs with concurrent
processes (loops, conditionals, semaphores, multithread and real-time locks). They can be
developed from formal specifications in some representation and/or with plan synthesis
techniques. Different representations may be useful to cover the methods needed by the
factotum robot. Machine learning techniques can be used for improving the methods,
acquiring their models, and adapting the factotum to a new trade.

In addition to acting with the right methods, the robot has to monitor its activity at
every level, including possibly at the goal level. Prediction of what is needed to correctly
perform and monitor foreseen activities should be made beforehand. Making the right
predictions from the combined models of actions and models of the environment is a difficult
problem that involves heterogeneous representations.

Finally, the robot requires extended perception capabilities: reasoning on what is ob-
servable and what is not, integrating knowledge-gathering actions to environment changing
actions, acting in order to maintain sufficient knowledge for the task at hand with a con-
sistent interpretation of self and the world.

1.4.2 A Complex Operations Manager

A Harbor Operations Manager (HOM) is a system that supervises and controls all the tasks
performed in a harbor.5 Examples of such tasks include unloading cars from ships, parking
them in storage areas, moving them to a repair area, performing the repair, preparing the
delivery of cars according to orders, and loading them onto trucks when the trucks arrive at
the harbor. Some of these operations are performed by human workers, others automatically
by machines such as the factotum robot of previous section. This complex environment has
several features that require deliberation:

• It is customizable: for example, delivery procedures can be customized according to
the car brand, model, or retailer-specific requirements.

5Example inspired from a facility developed for the port of Bremen, Germany [75, 99].



• It is variable: procedures for unloading/loading cars depend on the car brands; storage
areas have different parking procedures, for example.

• It is dynamic: ships, cars, trucks, and orders arrive dynamically.

• It is partially predictable and controllable: cars may be damaged and need repair,
storage areas may not be available, orders have unpredictable requirements, ships and
trucks have random delays, for example.
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Figure 1.5: Deliberation components for a Harbor Operations Manager.

At a high level, an HOM has to carry out a simple sequence of abstract tasks: ⟨unload,
unpack, store, wait-for-order, treatment, delivery⟩ (see Figure 1.5). This invariant plan is
easily specified by hand. The deliberation problem in an HOM is not in the synthesis of
this plan but in the dynamic refinement of its tasks in more concrete subtasks. For example,
an HOM refines the abstract task store of Figure 1.5 into subtasks for registering a car to
be stored, moving it, and other tasks, down to executable commands.

Moreover, the tasks to be refined and controlled are carried out by different components,
for example, ships, gates, and storage or repair areas. Each ship has its own procedure to
unload cars to a gate. A gate has its own procedure to accept cars that are unloaded to
the deck. A natural design option is therefore to model the HOM in a distributed way, as a
set of interacting deliberation components. The interactions between ships and gates, gates
and trucks, and trucks and storage areas must be controlled with respect to the global
constraints and objectives of the system. To do that, HOM must deal with uncertainty
and nondeterminism due to exogenous events, and to the fact that each component may
– from the point of view of the management facility – behave nondeterministically. For
instance, in the task to synchronize a ship with a gate to unload cars, the ship may send a
request for unloading cars to the unloading manager, and the gate may reply either that the
request meets its requirements and the unloading operation can proceed according to some
unloading specifications, or that the request cannot be handled. The management facility



may not know a priori what the request, the unloading specifications, and reply will be.
In summary, an HOM relies on a collection of interacting components, each implementing

its own procedures. It refines the abstract tasks of the high-level plan into a composition
of these procedures to address each new object arrival and adapt to each exogenous event.
The refinement and adaptation mechanisms can be designed through an approach in which
the HOM is an actor organized into a hierarchy of components, each abstract action is a
task to be further refined and planned for, and online planning and acting are performed
continually to adapt and repair plans. The approach embeds one or several planners within
these components, which are called at run-time, when the system has to refine an abstract
action to adapt to a new context. It relies on refinement mechanisms that can be triggered
at run-time whenever an abstract action in a procedure needs to be refined or an adaptation
needs to be taken into account.

1.5 Outline of the Book

This chapter has provided a rather abstract and broad introduction. Chapter 2 offers
more concrete material regarding deliberation with deterministic models and full knowledge
about a static environment. It covers the “classical planning” algorithms and heuristics,
with state-space search, forward and backward, and plan-space search. It also presents how
these planning techniques can be integrated online with acting.

Chapter 3 is focused on refinement methods for acting and planning. It explores how a
unified representation can be used for both functions, at different levels of the deliberation
hierarchy, and in different ways. It also discusses how the integration of planning and acting
can be performed.

Chapter 4 is about deliberation with explicit time models using a representation with
timelines and chronicles. A temporal planner, based on refinement methods, is presented
together with the constraint management techniques needed for handling temporal data.
Using the techniques from Chapter 3, we also discuss the integration of planning and acting
with temporal models.

Uncertainty in deliberation is addressed in Chapters 5 and 6. The main planning tech-
niques in nondeterministic search spaces are covered in Chapter 5, together with model
checking and determinization approaches. In this chapter, we present online lookahead
methods for the interleaving of planning and acting. We also show how nondeterministic
models can be used with refinements techniques that intermix plans, actions, and goals. We
discuss the integration of planning and acting with input/output automata to cover cases
such as the distributed deliberation in the HOM example.

We cover probabilistic models in Chapter 6. We develop heuristic search techniques for
stochastic shortest path problems. We present online approaches for planning and acting,
discuss refinement methods for acting with probabilistic models, and analyze the specifics of
descriptive models of actions in the probabilistic case together with several practical issues
for modeling probabilistic domains.

Chapters 2 through 6 are devoted to planning and acting. Chapter 7 briefly surveys
the other deliberation functions introduced in Section 1.3.4: perceiving, monitoring, goal
reasoning, interacting, and learning. It also discusses hybrid models and ontologies for
planning and acting.



Chapter 2

Deliberation with Deterministic
Models

Having considered the components of an actor and their relation to the actor’s environment
we now need to develop some representational and algorithmic tools for performing the
actor’s deliberation functions. In this chapter we develop a simple kind of descriptive model
for use in planning, describe some planning algorithms that can use this kind of model, and
discuss some ways for actors to use those algorithms.

This chapter is organized as follows. Section 2.1 develops state-variable representations
of planning domains. Sections 2.2 and 2.3 describe forward-search planning algorithms,
and heuristics to guide them. Sections 2.4 and 2.5 describe backward-search and plan-space
planning algorithms. Section 2.6 describes some ways for an actor to use online planning.
Sections 2.7 and 2.8 contain the discussion and historical remarks, and the student exercises.

2.1 State-Variable Representation

The descriptive models used by planning systems are often called planning domains. How-
ever, it is important to keep in mind that a planning domain is not an a priori definition
of the actor and its environment. Rather, it is necessarily an imperfect approximation that
must incorporate trade-offs among several competing criteria: accuracy, computational per-
formance, and understandability to users.

2.1.1 State-Transition Systems

In this chapter, we use a simple planning-domain formalism that is similar to a finite-state
automaton:

Definition 2.1. A state-transition system (also called a classical planning domain) is a
triple Σ = (S,A, γ) or 4-tuple Σ = (S,A, γ, cost), where

• S is a finite set of states in which the system may be.

• A is a finite set of actions that the actor may perform.

• γ : S × A → S is a partial function called the prediction function or state-transition
function. If (s, a) is in γ’s domain (i.e., γ(s, a) is defined), then a is applicable in s,
with γ(s, a) being the predicted outcome. Otherwise a is inapplicable in s.

• cost : S×A→ [0,∞) is a partial function having the same domain as γ. Although we
call it the cost function, its meaning is arbitrary: it may represent monetary cost, time,
or something else that one might want to minimize. If the cost function isn’t given
explicitly (i.e., if Σ = (S,A, γ)), then cost(s, a) = 1 whenever γ(s, a) is defined.

To avoid several of the difficulties mentioned in Chapter 1, Definition 2.1 requires a set
of restrictive assumptions called the classical planning assumptions:
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Figure 2.1: A two-dimensional network of locations connected by roads.

1. Finite, static environment. In addition to requiring the sets of states and actions to
be finite, Definition 2.1 assumes that changes occur only in response to actions: if
the actor does not act, then the current state remains unchanged. This excludes the
possibility of actions by other actors, or exogenous events that are not due to any
actor.

2. No explicit time, no concurrency. There is no explicit model of time (e.g., when to
start performing an action, how long a state or action should last, or how to perform
other actions concurrently). There is just a discrete sequence of states and actions
⟨s0, a1, s1, a2, s2, . . .⟩.1

3. Determinism, no uncertainty. Definition 2.1 assumes that we can predict with cer-
tainty what state will be produced if an action a is performed in a state s. This
excludes the possibility of accidents or execution errors, as well as nondeterministic
actions, such as rolling a pair of dice.

In environments that do not satisfy the preceding assumptions, classical domain models
may introduce errors into the actor’s deliberations but this does not necessarily mean that
one should forgo classical models in favor of other kinds of models. The errors introduced
by a classical model may be acceptable if they are infrequent and do not have severe con-
sequences, and models that do not use the above assumptions may be much more complex
to build and to reason with.

Let us consider the computational aspects of using a state-transition system. If S and
A are small enough, it may be feasible to create a lookup table that contains γ(s, a) and
cost(s, a) for every s and a, so that the outcome of each action can be retrieved directly
from the table. For example, we could do this to represent an actor’s possible locations and
movements in the road network shown in Figure 2.1.

In cases in which Σ is too large to specify every instance of γ(s, a) explicitly, the usual
approach is to develop a generative representation in which there are procedures for com-
puting γ(s, a) given s and a. The specification of Σ may include an explicit description of
one (or a few) of the states in S; other states can be computed using γ.

The following is an example of a domain-specific representation, that is, one designed
specifically for a given planning domain. We then develop a domain-independent approach

1This does not prohibit one from encoding some kinds of time-related information (e.g., timestamps) into
the actions’ preconditions and effects. However, to represent and reason about actions that have temporal
durations, a more sophisticated planning-domain formalism is usually needed, such as that discussed in
Chapter 4.
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Figure 2.2: Geometric model of a workpiece, (a) before and (b) after computing the effects
of a drilling action.

for representing any classical planning domain.

Example 2.2. Consider the task of using machine tools to modify the shape of a metal
workpiece. Each state might include a geometric model of the workpiece (see Figure 2.2),
and information about its location and orientation, the status and capabilities of each
machine tool, and so forth. A descriptive model for a drilling operation might include the
following:

• The operation’s name and parameters (e.g., the dimensions, orientation, and machin-
ing tolerances of the hole to be drilled).

• The operation’s preconditions, that is, conditions that are necessary for it to be used.
For example, the desired hole should be perpendicular to the drilling surface, the
workpiece should be mounted on the drilling machine, the drilling machine should
have a drill bit of the proper size, and the drilling machine and drill bit need to be
capable of satisfying the machining tolerances.

• The operation’s effects, that is, what it will do. These might include a geometric
model of the modified workpiece (see Figure 2.2(b)) and estimates of how much time
the action will take and how much it will cost.

The advantage of domain-specific representations is that one can choose whatever data
structures and algorithms seem best for a given planning domain. The disadvantage is that
a new representation must be developed for each new planning domain. As an alternative,
we now develop a domain-independent way to represent classical planning domains.

2.1.2 Objects and State Variables

In a state-transition system, usually each state s ∈ S is a description of the properties
of various objects in the planner’s environment. We will say that a property is rigid if it
remains the same in every state in S, and it is varying if it may differ from one state to
another. To represent the objects and their properties, we will use three sets B, R, and X,
which we will require to be finite:

• B is a set of names for all of the objects, plus any mathematical constants that may be
needed to represent properties of those objects. We will usually divide B into various
subsets (robots, locations, mathematical constants, and so forth).

• To represent Σ’s rigid properties, we will use a set R of rigid relations. Each r ∈ R
will be an n-ary (for some n) relation over B.

• To represent Σ’s varying properties, we will use a set X of syntactic terms called state
variables, such that the value of each x ∈ X depends solely on the state s.

Which objects and properties are in B, R, and X depends on what parts of the environment
the planner needs to reason about. For example, in Figure 1.2, the orientation of the robot’s
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Figure 2.3: A few of the states and transitions in a simple state-transition system. Each
robot can hold at most one container, and at most one robot can be at each loading dock.

gripper may be essential for deliberating about a low-level task such as “open door,” but
irrelevant for a high-level task such as “bring 07 to room2.” In a hierarchically organized
actor, these tasks may be described using two state spaces, S and S′ whose states describe
different kinds of objects and properties.

Here are examples of B and R. We will say more about X shortly.

Example 2.3. Figure 2.3 depicts some states in a simple state-transition system. B in-
cludes two robots, three loading docks, three containers, three piles (stacks of containers),
the Boolean constants T and F, and the constant nil:

B = Robots ∪Docks ∪ Containers ∪ Piles ∪ Booleans ∪ {nil};
Booleans = {T,F};
Robots = {r1, r2};
Docks = {d1, d2, d3};

Containers = {c1, c2, c3};
Piles = {p1, p2, p3}.

We will define two rigid properties: each pair of loading docks is adjacent if there is a road
between them, and each pile is at exactly one loading dock. To represent these properties,
R = {adjacent, at}, where

adjacent = {(d1, d2), (d2, d1), (d2, d3), (d3, d2), (d3, d1), (d1, d3)};
at = {(p1, d1), (p2, d2), (p3, d2)}.

In the subsequent examples that build on this one, we will not need to reason about objects
such as the roads and the robots’ wheels, or properties such as the colors of the objects.
Hence B and R do not include them.



Definition 2.4. A state variable over B is a syntactic term

x = sv(b1, . . . , bk), (2.1)

where sv is a symbol called the state variable’s name, and each bi is a member of B. Each
state variable x has a range,2 Range(x) ⊆ B, which is the set of all possible values for x.

Example 2.5. Continuing Example 2.3, let

X = {cargo(r), loc(r), occupied(d), pile(c), pos(c), top(p)
| r ∈ Robots, d ∈ Docks, c ∈ Containers, p ∈ Piles},

where the state variables have the following interpretations:

• Each robot r can carry at most one container at a time. We let cargo(r) = c if
r is carrying container c, and cargo(r) = nil otherwise. Hence Range(cargo(r)) =
Containers ∪ {nil}.

• loc(r) is robot r’s current location, which is one of the loading docks. Hence Range(loc(r)) =
Docks.

• Each loading dock d can be occupied by at most one robot at a time. To indicate
whether d is occupied, Range(occupied(d)) = Booleans.

• pos(c) is container c’s position, which can be a robot, another container, or nil if c is
at the bottom of a pile. Hence Range(pos(c)) = Containers ∪ Robots ∪ {nil}.

• If container c is in a pile p then pile(c) = p, and if c is not in any pile then pile(c) = nil.
Hence Range(pile(c)) = Piles ∪ {nil}.

• Each pile p is a (possibly empty) stack of containers. If the stack is empty then
top(p) = nil, and otherwise top(p) is the container at the top of the stack. Hence
Range(top(p)) = Containers ∪ {nil}.

A variable-assignment function over X is a function s that maps each xi ∈ X into a
value zi ∈ Range(xi). If X = {x1, . . . , xn}, then because a function is a set of ordered pairs,
we have

s = {(x1, z1), . . . , (xn, zn)}, (2.2)

which we often will write as a set of assertions:

s = {x1= z1, x2= z2, . . . , xn= zn}. (2.3)

Because X and B are finite, so is the number of variable-assignment functions.

Definition 2.6. A state-variable state space is a set S of variable-assignment functions over
some set of state variables X. Each variable-assignment function in S is called a state in
S.

If the purpose of S is to represent some environment E, then we will want each state
in s to have a sensible interpretation in E. Without getting into the formal details, an
interpretation is a function I that maps B, R, and X to sets of objects, rigid properties,
and variable properties in some environment E, in such a way that each s ∈ S corresponds
to a situation (roughly, a combination of the objects and properties in the image of I) that
can occur in E.3 If a variable-assignment function does not correspond to such a situation,
then should not be a state in S.4

2We use range rather than domain to avoid confusion with planning domain.
3The details are quite similar to the definition of an interpretation in first-order logic [533, 515]. However,

in first-order logic, E is a static domain rather than a dynamic environment, hence the interpretation maps
a single state into a single situation.

4This is ideally how an interpretation should work, but in practice it is not always feasible to define an
interpretation that satisfies those requirements completely. As we said in Section 2.1, a planning domain is
an imperfect approximation of the actor and its environment, not an a priori definition.



Example 2.7. Continuing Example 2.5, let us define the state-variable state space S de-
picted in Figure 2.3. The state s0 is the following variable-assignment function:

s0 = {cargo(r1)= nil, cargo(r2)= nil,
loc(r1)= d1, loc(r2)= d2,
occupied(d1)=T, occupied(d2)=T, occupied(d3)=F,
pile(c1)= p1, pile(c2)= p1, pile(c3)= p2,
pos(c1)= c2, pos(c2)= nil, pos(c3)= nil,
top(p1)= c1, top(p2)= c3, top(p3)= nil}.

(2.4)

In the same figure, the state s1 is identical to s0 except that cargo(r1) = c1, pile(c1) = nil,
pos(c1) = r1, and top(p1) = c2.

In Example 2.5, the sizes of the state variables’ ranges are

|Range(cargo(r1))| = |Range(cargo(r2))| = 4,

|Range(loc(r1))| = |Range(loc(r2))| = 3,

|Range(occupied(d1))| = |Range(occupied(d2))| = |Range(occupied(d3))| = 2,

|Range(pile(c1))| = |Range(pile(c2))| = |Range(pile(c3))| = 4,

|Range(pos(c1))| = |Range(pos(c2))| = |Range(pos(c3))| = 6,

|Range(top(p1))| = |Range(top(p2))| = |Range(top(p3))| = 4.

Thus the number of possible variable-assignment functions is

42 × 32 × 23 × 43 × 63 × 43 = 1, 019, 215, 872.

However, fewer than 750 of these functions are states in S. A state-variable assignment
function is a state in S if and only if it has an interpretation in the environment depicted
in Figure 2.3.

One way to specify the members of S is to give a set of consistency constraints (i.e.,
restrictions on what combinations of variable assignments are possible) and to say that
a state-variable assignment function is a state in S if and only if it satisfies all of the
constraints. Here are some examples of consistency constraints for S. A state s cannot
have both loc(r1)= d1 and loc(r2) = d1, because a loading dock can only accommodate
one robot at a time; s cannot have both pos(c1) = c3 and pos(c2) = c3, because two
containers cannot have the same physical location; and s cannot have both pos(c1)= c2 and
pos(c2)= c1, because two containers cannot be on top of each other. Exercise 2.2 is the task
of finding a complete set of consistency constraints for S.

The preceding example introduced the idea of using consistency constraints to determine
which variable-assignment functions are states but said nothing about how to represent and
enforce such constraints. Throughout most of this book, we avoid the need to represent
such constraints explicitly, by writing action models in such a way that if s is a state and a
is an action that is applicable in s, then γ(s, a) is also a state. However, in Chapter 4, we
will use a domain representation in which some of the constraints are represented explicitly
and the planner must make sure never to use an action that would violate them.

2.1.3 Actions and Action Templates

To develop a way to write action models, we start by introducing some terminology borrowed
loosely from first-order logic with equality:

Definition 2.8. A positive literal, or atom (short for atomic formula), is an expression
having either of the following forms:

rel(z1, . . . , zn) or sv(z1, . . . , zn) = z0,



where rel is the name of a rigid relation, sv is a state-variable name, and each zi is either a
variable (an ordinary mathematical variable, not a state variable) or the name of an object.
A negative literal is an expression having either of the following forms:

¬rel(z1, . . . , zn) or sv(z1, . . . , zn) ̸= z0.

A literal is ground if it contains no variables, and unground otherwise.

In the atom sv(z1, . . . , zn) = z0, we will call sv(z1, . . . , zn) the atom’s target. Thus in
Equation 2.3, a state is a set of ground atoms such that every state variable x ∈ X is the
target of exactly one atom.

Definition 2.9. Let l be an unground literal, and Z be any subset of the variables in l.
An instance of l is any expression l′ produced by replacing each z ∈ Z with a term z′ that
is either an element of Range(z) or a variable with Range(z′) ⊆ Range(z).

Definition 2.9 generalizes straightforwardly to any syntactic expression that contains
literals. We will say that such an expression is ground if it contains no variables and it is
unground otherwise. If it is unground, then an instance of it can be created as described
in Definition 2.9.

Definition 2.10. Let R and X be sets of rigid relations and state variables over a set of
objects B, and S be a state-variable state space over X. An action template5 for S is a
tuple α = (head(α),pre(α), eff(α), cost(α)) or α = (head(α),pre(α), eff(α)), the elements of
which are as follows:

• head(α) is a syntactic expression6 of the form

act(z1, z2, . . . , zk),

where act is a symbol called the action name, and z1, z2, . . . , zk are variables called
parameters. The parameters must include all of the variables (here we mean ordi-
nary variables, not state variables) that appear anywhere in pre(α) and eff(α). Each
parameter zi has a range of possible values, Range(zi) ⊆ B.

• pre(α) = {p1, . . . , pm} is a set of preconditions, each of which is a literal.

• eff(α) = {e1, . . . , en} is a set of effects, each of which is an expression of the form

sv(t1, . . . , tj)← t0 (2.5)

where sv(t1, . . . , tj) is the effect’s target, and t0 is the value to be assigned. No target
can appear in eff(α) more than once.

• cost(α) is a number c > 0 denoting the cost of applying the action.7 If it is omitted,
then the default is cost(α) = 1.

We usually will write action templates in the following format (e.g., see Example 2.12). The
“cost” line may be omitted if c = 1.

act(z1, z2, . . . , zk)
pre: p1, . . . , pm
eff: e1, . . . , en

cost: c
5In the artificial intelligence planning literature, these are often called planning operators or action

schemas; see Section 2.7.1.
6The purpose of head(α) is to provide a convenient and unambiguous way to refer to actions. An

upcoming example is load(r1, c1, c2, p1, d1) at the end of Example 2.12.
7This can be generalized to make cost(α) a numeric formula that involves α’s parameters. In this

case, most forward-search algorithms and many domain-specific heuristic functions will still work, but most
domain-independent heuristic functions will not, nor will backward-search and plan-space search algorithms
(Sections 2.4 and 2.5).



Definition 2.11. A state-variable action is a ground instance a of an action template α
that satisfies the following requirements: all rigid-relation literals in pre(a) must be true
in R, and no target can appear more than once in eff(a). If a is an action and a state s
satisfies pre(a), then a is applicable in s, and the predicted outcome of applying it is the
state

γ(s, a) = {(x,w) | eff(a) contains the effect x←w}
∪ {(x,w) ∈ s | x is not the target of any effect in eff(a)}. (2.6)

If a isn’t applicable in s, then γ(s, a) is undefined.

Thus if a is applicable in s, then

(γ(s, a))(x) =

{
w, if eff(a) contains an effect x←w,

s(x), otherwise.
(2.7)

Example 2.12. Continuing Example 2.5, suppose each robot r has an execution platform
that can perform the following commands:

• if r is at a loading dock and is not already carrying anything, r can load a container
from the top of a pile;

• if r is at a loading dock and is carrying a container, r can unload the container onto
the top of a pile; and

• r can move from one loading dock to another if the other dock is unoccupied and
there is a road between the two docks.

To model these commands, let A comprise the following action templates:

load(r, c, c′, p, d)
pre: at(p, d), cargo(r)= nil, loc(r)= d, pos(c)= c′, top(p)= c
eff: cargo(r)= c, pile(c)← nil, pos(c)← r, top(p)← c′

unload(r, c, c′, p, d)
pre: at(p, d), pos(c)= r, loc(r)= d, top(p)= c′

eff: cargo(r)← nil, pile(c)← p, pos(c)← c′, top(p)← c

move(r, d, d′)
pre: adjacent(d, d′), loc(r)= d, occupied(d′)=F
eff: loc(r)← d′, occupied(d)←F, occupied(d′)←T

In the action templates, the parameters have the following ranges:

Range(c) = Containers; Range(c′) = Containers ∪ Robots ∪ {nil};
Range(d) = Docks; Range(d′) = Docks;
Range(p) = Piles; Range(r) = Robots.

Let a1 be the state-variable action load(r1, c1, c2, p1, d1). Then

pre(a1) =

{at(p1, d1), cargo(r1)= nil, loc(r1)= d1, pos(c1)= c2, top(p1)= c1}.

Let s0 and s1 be in Example 2.5 and Figure 2.3. Then a1 is applicable in s0, and γ(s0, a1) =
s1.

2.1.4 Plans and Planning Problems

Definition 2.13. Let B, R, X, and S be as in Section 2.1.2. Let A be a set of action
templates such that for every α ∈ A, every parameter’s range is a subset of B, and let
A = {all state-variable actions that are instances of members of A}. Finally, let γ be as in
Equation 2.6. Then Σ = (S,A, γ, cost) is a state-variable planning domain.



Example 2.14. If B, R, X, S, A and γ are as in Examples 2.3, 2.5, 2.7, and 2.12, then
(S,A, γ) is a state-variable planning domain.

Just after Definition 2.6, we discussed the notion of an interpretation of a state space S.
We now extend this to include planning domains. An interpretation I of a state-variable
planning domain Σ in an environment E is an interpretation of S in E that satisfies the
following additional requirement: under I, each a ∈ A corresponds to an activity in E
such that whenever a is applicable in a state s ∈ S, performing that activity in a situation
corresponding to s will produce a situation corresponding to γ(s, a).8

Definition 2.15. A plan is a finite sequence of actions

π = ⟨a1, a2, . . . , an⟩.

The plan’s length is |π| = n, and its cost is the sum of the action costs: cost(π) =∑n
i=1 cost(ai).

As a special case, ⟨⟩ is the empty plan, which contains no actions. Its length and cost
are both 0.

Definition 2.16. Let π = ⟨a1, . . . , an⟩ and π′ = ⟨a′1, . . . , a′n′⟩ be plans and a be an action.
We define the following concatenations:

π.a = ⟨a1, . . . , an, a⟩;
a.π = ⟨a, a1, . . . , an⟩;
π.π′ = ⟨a1, . . . , an, a′1, . . . , a′n′⟩;
π.⟨⟩ = ⟨⟩.π = π.

Definition 2.17. A plan π = ⟨a1, a2, . . . , an⟩ is applicable in a state s0 if there are states
s1, . . . , sn such that γ(si−1, ai) = si for i = 1, . . . , n. In this case, we define

γ(s0, π) = sn;

γ̂(s0, π) = ⟨s0, . . . , sn⟩.

As a special case, the empty plan ⟨⟩ is applicable in every state s, with γ(s, ⟨⟩) = s and
γ̂(s, ⟨⟩) = ⟨s⟩.

In the preceding, γ̂ is called the transitive closure of γ. In addition to the predicted
final state, it includes all of the predicted intermediate states.

Definition 2.18. A state-variable planning problem is a triple P = (Σ, s0, g), where Σ is a
state-variable planning domain, s0 is a state called the initial state, and g is a set of ground
literals called the goal. A solution for P is any plan π = ⟨a1, . . . , an⟩ such that the state
γ(s0, π) satisfies g.

Alternatively, one may write P = (Σ, s0, Sg), where Sg is a set of goal states. In this
case, a solution for P is any plan π such that γ(s0, π) ∈ Sg.

For a planning problem P , a solution π is minimal if no subsequence of π is also a
solution for P , shortest if there is no solution π′ such that |π′| < |π|, and cost-optimal (or
just optimal, if it is clear from context) if

cost(π) = min{cost(π′) | π′ is a solution for P}.
8Ideally one would like to put a similar requirement on the interpretation of the action’s cost, but we

said earlier that its interpretation is arbitrary.



Forward-search (Σ, s0, g)
s← s0; π ← ⟨⟩
loop

if s satisfies g, then return π
A′ ← {a ∈ A | a is applicable in s}
if A′ = ∅, then return failure
nondeterministically choose a ∈ A′ (i)
s← γ(s, a); π ← π.a

Algorithm 2.1: Forward-search planning schema.

Deterministic-Search(Σ, s0, g)
Frontier← {(⟨⟩, s0)} // (⟨⟩, s0) is the initial node
Expanded← ∅
while Frontier ̸= ∅ do

select a node ν = (π, s) ∈ Frontier (i)
remove ν from Frontier and add it to Expanded
if s satisfies g then (ii)

return π
Children← {(π.a, γ(s, a)) | s satisfies pre(a)}
prune (i.e., remove and discard) 0 or more nodes

from Children, Frontier and Expanded (iii)
Frontier← Frontier ∪ Children (iv)

return failure

Algorithm 2.2: Deterministic-Search, a deterministic version of Forward-search.

Example 2.19. Let P = (Σ, s0, g), where Σ is the planning domain in Example 2.12 and
Figure 2.3, s0 is as in Equation 2.4, and g = {loc(r1)= d3}. Let

π1 = ⟨move(r1, d1, d3)⟩;
π2 = ⟨move(r2, d2, d3),move(r1, d1, d2),move(r2, d3, d1),move(r1, d2, d3)⟩;
π3 = ⟨load(r1, c1, c2, p1, d1), unload(r1, c1, c2, p1, d1),move(r1, d1, d3)⟩.

Then π1 is a minimal, shortest, and cost-optimal solution for P ; π2 is a minimal solution
but is neither shortest nor cost-optimal; and π3 is a solution but is neither minimal nor
shortest nor cost-optimal.

2.2 Forward State-Space Search

Many planning algorithms work by searching forward from the initial state to try to con-
struct a sequence of actions that reaches a goal state. Forward-search, Algorithm 2.1, is a
procedural schema for a wide variety of such algorithms. In line (i), the nondeterministic
choice is an abstraction that allows us to ignore the precise order in which the algorithm
tries the alternative values of a (see Appendix A). We will use nondeterministic algorithms
in many places in the book to discuss properties of all algorithms that search the same
search space, irrespective of the order in which they visit the nodes.

Deterministic-Search, Algorithm 2.2, is a deterministic version of Forward-search. Frontier
is a set of nodes that are candidates to be visited, and Expanded is a set of nodes that
have already been visited. During each loop iteration, Deterministic-Search selects a node,
generates its children, prunes some unpromising nodes, and updates Frontier to include the
remaining children.



In the Deterministic-Search pseudocode, each node is written as a pair ν = (π, s), where π
is a plan and s = γ(s0, π). However, in most implementations ν includes other information,
for example, pointers to ν’s parent and possibly to its children, the value of cost(π) so that
it will not need to be computed repeatedly, and the value of h(s) (see Equation 2.8 below).
The “parent” pointers make it unnecessary to store π explicitly in ν; instead, ν typically
contains only the last action of π, and the rest of π is computed when needed by following
the “parent” pointers back to s0.

Many forward-search algorithms can be described as instances of Deterministic-Search
by specifying how they select nodes in line (i) and prune nodes in line (iii). Presently we
will discuss several such algorithms; but first, here are some basic terminology and concepts.

The initial or starting node is (⟨⟩, s0), that is, the empty plan and the initial state.
The children of a node ν include all nodes (π.a, γ(s, a)) such that a is applicable in s. The
successors or descendants of ν include all of ν’s children and, recursively, all of the children’s
successors. The ancestors of ν include all nodes ν ′ such that ν is a successor of ν ′. A path
in the search space is any sequence of nodes ⟨ν0, ν1, . . . , νn⟩ such that each νi is a child of
νi−1. The height of the search space is the length of the longest acyclic path that starts at
the initial node. The depth of a node ν is the length of the path from the initial node to
ν. The maximum branching factor is the maximum number of children of any node. To
expand a node ν means to generate all of its children.

Most forward-search planning algorithms attempt to find a solution without exploring
the entire search space, which can be exponentially large.9 To make informed guesses about
which parts of the search space are more likely to lead to solutions, node selection (line (i) of
Deterministic-Search) often involves a heuristic function h : S → R that returns an estimate
of the minimum cost of getting from s to a goal state:

h(s) ≈ h∗(s) = min{cost(π) | γ(s, π) satisfies g}. (2.8)

For information on how to compute such an h, see Section 2.3.

If 0 ≤ h(s) ≤ h∗(s) for every s ∈ S, then h is said to be admissible. Notice that if h is
admissible, then h(s) = 0 whenever s is a goal node.

Given a node ν = (π, s), some forward-search algorithms will use h to compute an
estimate f(ν) of the minimum cost of any solution plan that begins with π:

f(ν) = cost(π) + h(s) ≈ min{cost(π.π′) | γ(s0, π.π′) satisfies g}. (2.9)

If h is admissible, then f(ν) is a lower bound on the cost of every solution that begins with
π.

In many forward-search algorithms, the pruning step (line (iii) of Deterministic-Search)
often includes a cycle-checking step:

remove from Children every node (π, s) that has an ancestor
(π′, s′) such that s′ = s.

In classical planning problems (and any other planning problems where the state space is
finite), cycle-checking guarantees that the search will always terminate.

2.2.1 Breadth-First Search

Breadth-first search can be written as an instance of Deterministic-Search in which the
selection and pruning are done as follows:

• Node selection. Select a node (π, s) ∈ Children that minimizes the length of π. As a
tie-breaking rule if there are several such nodes, choose one that minimizes h(s).

9The worst-case computational complexity is expspace-equivalent (see Section 2.7), although the com-
plexity of a specific planning domain usually is much less.



• Pruning. Remove from Children and Frontier every node (π, s) such that Expanded
contains a node (π′, s). This keeps the algorithm from expanding s more than once.

In classical planning problems, breadth-first search will always terminate and will return a
solution if one exists. The solution will be shortest but not necessarily cost-optimal.

Because breadth-first search keeps only one path to each node, its worst-case memory
requirement is O(|S|), where |S| is the number of nodes in the search space. Its worst-case
running time is O(b|S|), where b is the maximum branching factor.

2.2.2 Depth-First Search

Although depth-first search (DFS) is usually written as a recursive algorithm, it can also
be written as an instance of Deterministic-Search in which the node selection and pruning
are done as follows:

• Node selection. Select a node (π, s) ∈ Children that maximizes the length of π. As a
tie-breaking rule if there are several such nodes, choose one that minimizes h(s).

• Pruning. First do cycle-checking. Then, to eliminate nodes that the algorithm is done
with, remove ν from Expanded if it has no children in Frontier ∪ Expanded, and do
the same with each of ν’s ancestors until no more nodes are removed. This garbage-
collection step corresponds to what happens when a recursive version of depth-first
search returns from a recursive call.

In classical planning problems, depth-first search will always terminate and will return a
solution if one exists, but the solution will not necessarily be shortest or cost-optimal.
Because the garbage-collection step removes all nodes except for those along the current
path, the worst-case memory requirement is only O(bl), where b is the maximum branching
factor and l is the height of the state space. However, the worst-case running time is O(bl),
which can be much worse than O(|S|) if there are many paths to each state in S.

2.2.3 Hill Climbing

A hill climbing (or greedy) search is a depth-first search with no backtracking:

• Node selection. Select a node (π, s) ∈ Children that minimizes h(s).

• Pruning. First, do cycle-checking. Then assign Frontier ← ∅, so that line (iv) of
Algorithm 2.2 will be the same as assigning Frontier← Children.

The search follows a single path, and prunes all nodes not on that path. It is guaranteed
to terminate on classical planning problems, but it is not guaranteed to return an optimal
solution or even a solution at all. Its worst-case running time is O(bl) and its the worst-case
memory requirement is O(l), where l is the height of the search space and b is the maximum
branching factor.

2.2.4 Uniform-Cost Search

Like breadth-first search, uniform-cost (or least-cost first) search does not use a heuristic
function. Unlike breadth-first search, it does node selection using the accumulated cost of
each node:

• Node selection. Select a node (π, s) ∈ Children that minimizes cost(π).

• Pruning. Remove from Children and Frontier every node (π, s) such that Expanded
contains a node (π′, s). In classical planning problems (and any other problems in
which all costs are nonnegative), it can be proved that cost(π′) ≤ cost(π), so this step
ensures that the algorithm only keeps the least costly path to each node.



In classical planning problems, the search is guaranteed to terminate and to return an opti-
mal solution. Like breadth-first search, its worst-case running time and memory requirement
are O(b|S|) and O(|S|), respectively.

2.2.5 A*

A* is similar to uniform-cost search, but uses a heuristic function:

• Node selection. Select a node ν ∈ Children that minimizes f(ν) (defined in Equa-
tion 2.9).

• Pruning. For each node (π, s) ∈ Children, if A* has more than one plan that goes to
s, then keep only the least costly one. More specifically, let

Vs = {(π′, s′) ∈ Children ∪ Frontier ∪ Expanded | s′ = s};

and if Vs contains any nodes other than (π, s) itself, let (π′, s) be the one for which
cost(π′) is smallest (if there is a tie, choose the oldest such node). For every node
ν ∈ Vs other than (π′, s), remove ν and all of its descendants from Children, Frontier ,
and Expanded.

Here are some of A*’s properties:

• Termination, completeness, and optimality. On any classical planning problem, A*
will terminate and return a solution if one exists; and if h is admissible, then this
solution will be optimal.

• Epsilon-optimality. If h is ϵ-admissible (i.e., if there is an ϵ > 0 such that 0 ≤ h(s) ≤
h∗(s)+ϵ for every s ∈ S), then the solution returned by A* will be within ϵ of optimal
[489].

• Monotonicity. If h(s) ≤ cost(γ(s, a)) + h(γ(s, a)) for every state s and applicable
action a, then h is said to be monotone or consistent. In this case, f(ν) ≤ f(ν ′) for
every child ν ′ of a node ν, from which it can be shown that A* will never prune any
nodes from Expanded, and will expand no state more than once.

• Informedness. Let h1 and h2 be admissible heuristic functions such that h2 dominates
h1, i.e., 0 ≤ h1(s) ≤ h2(s) ≤ h∗(s) for every s ∈ S.10 Then A* will never expand more
nodes with h2 than with h1,

11 and in most cases, it will expand fewer nodes with h2
than with h1.

A*’s primary drawback is its space requirement: it needs to store every state that it visits.
Like uniform-cost search, A*’s worst-case running time and memory requirement are O(b|S|)
and O(|S|). However, with a good heuristic function, A*’s running time and memory
requirement are usually much smaller.

2.2.6 Depth-First Branch and Bound

Depth-first branch and bound (DFBB) is a modified version of depth-first search that uses a
different termination test than the one in line (ii) of Algorithm 2.2. Instead of returning the
first solution it finds, DFBB keeps searching until Frontier is empty. DFBB maintains two
variables π∗ and c∗, which are the least costly solution that has been found so far, and the
cost of that solution. Each time DFBB finds a solution (line (ii) of Deterministic-Search), it
does not return the solution but instead updates the values of π∗ and c∗. When Frontier is
empty, if DFBB has found at least one solution then it returns π∗, and otherwise it returns

10Dominance has often been described by saying that “h2 is more informed than h1,” but that phrase is
somewhat awkward because h2 always dominates itself.

11Here, we assume that A* always uses the same tie-breaking rule during node selection if two nodes have
the same f -value.



failure. Node selection and pruning are the same as in depth-first search, but an additional
pruning step occurs during node expansion: if the selected node ν has f(ν) ≥ c∗, DFBB
discards ν rather than expanding it. If the first solution found by DFBB has a low cost,
this can prune large parts of the search space.

DFBB has the same termination, completeness, and optimality properties as A*. Be-
cause the only nodes stored by DFBB are the ones in the current path, its space requirement
is usually much lower than A*’s. However, because it does not keep track of which states
it has visited, it may regenerate each state many times if there are multiple paths to the
state; hence its running time may be much worse than A*’s. In the worst case, its running
time and memory requirement are O(bl) and O(bl), the same as for DFS.

2.2.7 Greedy Best-First Search

For classical planning problems where nonoptimal solutions are acceptable, the search algo-
rithm that is used most frequently is Greedy Best-First Search (GBFS). It works as follows:

• Node selection. Select a node (π, s) ∈ Children that minimizes h(s).

• Pruning. Same as in A*.

Like hill climbing, GBFS continues to expand nodes along its current path as long as that
path looks promising. But like A*, GBFS stores every state that it visits. Hence it can
easily switch to a different path if the current path dead-ends or ceases to look promising
(see Exercise 2.4).

Like A*, GBFS’s worst-case running time and memory requirement are O(b|S|) and
O(|S|). Unlike A*, GBFS is not guaranteed to return optimal solutions; but in most cases,
it will explore far fewer paths than A* and find solutions much more quickly.

2.2.8 Iterative Deepening

There are several search algorithms that do forward-search but are not instances of Deterministic-
Search. Several of these are iterative-deepening algorithms, which gradually increase the
depth of their search until they find a solution. The best known of these is iterative deep-
ening search (IDS), which works as follows:

for k = 1 to ∞,
do a depth-first search, backtracking at every node of depth k
if the search found a solution, then return it
if the search generated no nodes of depth k, then return failure

On classical planning problems, IDS has the same termination, completeness, and optimality
properties as breadth-first search. Its primary advantage over breadth-first search is that its
worst-case memory requirement is only O(bd), where d is the depth of the solution returned
if there is one, or the height of the search space otherwise. If the number of nodes at each
depth k grows exponentially with k, then IDS’s worst-case running time is O(bd), which
can be substantially worse than breadth-first search if there are many paths to each state.

A closely related algorithm, IDA*, uses a cost bound rather than a depth bound:

c← 0
loop

do a depth-first search, backtracking whenever f(ν) > c
if the search found a solution, then return it
if the search did not generate an f(ν) > c, then return failure
c← the smallest f(ν) > c where backtracking occurred

On classical planning problems, IDA*’s termination, completeness, and optimality proper-
ties are the same as those of A*. IDA*’s worst-case memory requirement is O(bl), where l



is the height of the search space. If the number of nodes grows exponentially with c (which
usually is true in classical planning problems but less likely to be true in nonclassical ones),
then IDA*’s worst-case running time is O(bd), where d is the depth of the solution returned
if there is one or the height of the search space otherwise. However, this is substantially
worse than A* if there are many paths to each state.

2.2.9 Choosing a Forward-Search Algorithm

It is difficult to give any hard-and-fast rules for choosing among the forward-search algo-
rithms presented here, but here are some rough guidelines.

If a nonoptimal solution is acceptable, often the best choice is to develop a planning algo-
rithm based on GBFS (e.g., [508, 611]). There are no guarantees as to GBFS’s performance;
but with a good heuristic function, it usually works quite well.

If one needs a solution that is optimal (or within ϵ of optimal) and has a good heuristic
function that is admissible (or ϵ-admissible), then an A*-like algorithm is a good choice if
the state space is small enough that every node can be held in main memory. If the state
space is too large to hold in main memory, then an algorithm such as DFBB or IDA* may
be worth trying, but there may be problems with excessive running time.

For integration of planning into acting, an important question is how to turn any of
these algorithms into online algorithms. This is discussed further in Section 2.6.

2.3 Heuristic Functions

Recall from Equation 2.8 that a heuristic function is a function h that returns an estimate
h(s) of the minimum cost h∗(s) of getting from the state s to a goal state and that h
is admissible if 0 ≤ h(s) ≤ h∗(s) for every state s (from which it follows that h(s) = 0
whenever s is a goal node).

The simplest possible heuristic function is h0(s) = 0 for every state s. It is admissible
and trivial to compute but provides no useful information. We usually will want a heuristic
function that provides a better estimate of h∗(s) (e.g., see the discussion of dominance at
the end of Section 2.2.5). If a heuristic function can be computed in a polynomial amount
of time and can provide an exponential reduction in the number of nodes examined by the
planning algorithm, this makes the computational effort worthwhile.

The best-known way of producing heuristic functions is relaxation. Given a planning
domain Σ = (S,A, γ) and planning problem P = (Σ, s0, g), relaxing them means weakening
some of the constraints that restrict what the states, actions, and plans are; restrict when
an action or plan is applicable and what goals it achieves; and increase the costs of actions
and plans. This produces a relaxed domain Σ′ = (S′, A′, γ′) and problem P ′ = (Σ′, s′0, g

′)
having the following property: for every solution π for P , P ′ has a solution π′ such that
cost′(π′) ≤ cost(π).

Given an algorithm for solving planning problems in Σ′, we can use it to create a heuristic
function for P that works as follows: given a state s ∈ S, solve (Σ′, s, g′) and return the cost
of the solution. If the algorithm always finds optimal solutions, then the heuristic function
will be admissible.

Just as domain representations can be either domain-specific or domain-independent,
so can heuristic functions. Here is an example of the former:

Example 2.20. Let us represent the planning domain in Figure 2.1 as follows. The objects
include a set of locations and a few numbers:

B = Locations ∪Numbers;

Locations = {loc1, . . . , loc9};
Numbers = {1, . . . , 9}.
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Figure 2.4: Initial state and goal for Example 2.21.

There is a rigid relation adjacent that includes every pair of locations that have a road
between them, and rigid relations x and y that give each location’s x and y coordinates:

adjacent = {(loc0, loc1), (loc0, loc6), (loc1, loc0), (loc1, loc3), . . .};
x = {(loc0, 2), (loc1, 0), (loc2, 4), . . .};
y = {(loc0, 4), (loc1, 3), (loc2, 4), . . .}.

There is one state variable loc with Range(loc) = Locations, and 10 states:

si = {loc = loci}, i = 0, . . . , 9.

There is one action template:

move(l,m)
pre: adjacent(l,m), loc = l
eff: loc←m

cost: distance(l,m)

where Range(l) = Range(m) = Locations, and distance(l,m) is the Euclidean distance
between l and m:

distance(l,m) =
√

(x(l)− x(m))2 + (y(l)− y(m))2.

Consider the planning problem (Σ, s0, s8). One possible heuristic function is the Euclidean
distance from loc to the goal location,

h(s) = distance(s(loc), loc8),

which is the length of an optimal solution for a relaxed problem in which the actor is not
constrained to follow roads. This is a lower bound on the length of every route that follows
roads to get to loc8, so h is admissible.

It is possible to define a variety of domain-independent heuristic functions that can
be used in any state-variable planning domain. In the following subsections, we describe
several such heuristic functions, and illustrate each of them in the following example.

Example 2.21. Figure 2.4 shows a planning problem P = (Σ, s0, g) in a planning domain
Σ = (B,R,X,A) that is a simplified version of the one in Figure 2.3. B includes one robot,
one container, three docks, no piles, and the constant nil:

B = Robots ∪Docks ∪ Containers ∪ {nil};
Robots = {r1};
Docks = {d1, d2, d3};

Containers = {c1}.



There are no rigid relations, that is, R = ∅. There are two state variables,X = {cargo(r1), loc(c1)},
with

Range(cargo(r1)) = {c1, nil};
Range(loc(c1)) = {d1, d2, d3, r1}.

A contains three action templates:

load(r, c, l)
pre: cargo(r)= nil, loc(c)= l, loc(r)= l
eff: cargo(r)← c, loc(c)← r

cost: 1

unload(r, c, l)
pre: cargo(r)= c, loc(r)= l
eff: cargo(r)← nil, loc(c)← l

cost: 1

move(r, d, e)
pre: loc(r)= d
eff: loc(r)← e

cost: 1

The action templates’ parameters have the following ranges:

Range(c) = Containers; Range(d) = Range(e) = Docks;
Range(l) = Locations; Range(r) = Robots.

P ’s initial state and goal are

s0 = {loc(r1) = d3, cargo(r1) = nil, loc(c1) = d1};
g = {loc(r1) = d3, loc(c1) = r1}.

Suppose we are running GBFS (see Section 2.2.7) on P . In s0, there are two applicable
actions: a1 = move(r1, d3, d1) and a2 = move(r1, d3, d2). Let

s1 = γ(s0, a1) = {loc(r1) = d1, cargo(r1) = nil, loc(c1) = d1}; (2.10)

s2 = γ(s0, a2) = {loc(r1) = d2, cargo(r1) = nil, loc(c1) = d1}. (2.11)

In line (i) of Algorithm 2.2, GBFS chooses between a1 and a2 by evaluating h(s1) and h(s2).
The following subsections describe several possibilities for what h might be.

2.3.1 Max-Cost and Additive Cost Heuristics

The max-cost of a set of literals g = {g1, . . . , gk} is defined recursively as the largest max-
cost of each gi individually, where each gi’s max-cost is the minimum, over all actions that
can produce gi, of the action’s cost plus the max-cost of its preconditions. Here are the
equations:

∆max(s, g) = max
gi∈g

∆max(s, gi);

∆max(s, gi) =

{
0, if gi ∈ s,
min{∆max(s, a) | a ∈ A and gi ∈ eff(a)}, otherwise;

∆max(s, a) = cost(a) + ∆max(s,pre(a)).

In a planning problem P = (Σ, s0, g), the max-cost heuristic is

hmax(s) = ∆max(s, g).

As shown in the following example, the computation of hmax can be visualized as an And/Or
search going backward from g.
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Figure 2.5: Computation of hmax(s1, g) and h
max(s2, g).
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Figure 2.6: Computation of hadd(s1, g) and h
add(s2, g).

At the beginning of Section 2.3, we said that most heuristics are derived by relaxation.
One way to describe hmax is that it is the cost of an optimal solution to a relaxed problem in
which a goal (i.e., a set of literals such as g or the preconditions of an action) can be reached
by achieving just one of the goal’s literals, namely, the one that is the most expensive to
achieve.

Example 2.22. In Example 2.21, suppose GBFS’s heuristic function is hmax. Figure 2.5
shows the computation of hmax(s1) = 1 and hmax(s2) = 2. Because hmax(s1) < hmax(s2),
GBFS will choose s1.

Although hmax is admissible, it is not very informative. A closely related heuristic, the



additive cost heuristic, is not admissible but generally works better in practice. It is similar
to hmax but adds the costs of each set of literals rather than taking their maximum. It is
defined as

hadd(s) = ∆add(s, g),

where

∆add(s, g) =
∑
gi∈g

∆add(s, gi);

∆add(s, gi) =

{
0, if gi ∈ s,
min{∆add(s, a) | a ∈ A and gi ∈ eff(a)}, otherwise;

∆add(s, a) = cost(a) + ∆add(s,pre(a)).

As shown in the following example, the computation of hadd can be visualized as an And/Or
search nearly identical to the one for hmax.

Example 2.23. In Example 2.21, suppose GBFS’s heuristic function is hadd. Figure 2.6
shows the computation of hadd(s1) = 2 and hadd(s2) = 3. Because hadd(s1) < hadd(s2),
GBFS will choose s1.

To see that hadd is not admissible, notice that if a single action a could achieve both
loc(r1)=d3 and loc(c1)=r1, then hadd(g) would be higher than h∗(g), because hadd would
count a’s cost twice.

Both hmax and hadd have the same time complexity. Their running time is nontrivial,
but it is polynomial in |A| +

∑
x∈X |Range(x)|, the total number of actions and ground

atoms in the planning domain.

2.3.2 Delete-Relaxation Heuristics

Several heuristic functions are based on the notion of delete-relaxation, a problem relaxation
in which applying an action never removes old atoms from a state, but simply adds new
ones.12

If a state s includes an atom x= v and an applicable action a has an effect x← w, then
the delete-relaxed result of applying a will be a “state” γ+(s, a) that includes both x= v
and x=w. We will make the following definitions:

• A relaxed state (or r-state, for short) is any set ŝ of ground atoms such that every
state variable x ∈ X is the target of at least one atom in ŝ. It follows that every state
is also an r-state.

• A relaxed state ŝ r-satisfies a set of literals g if S contains a subset s ⊆ ŝ that satisfies
g.

• An action a is r-applicable in an r-state ŝ if ŝ r-satisfies pre(a). In this case, the
predicted r-state is

γ+(ŝ, a) = ŝ ∪ γ(s, a). (2.12)

• By extension, a plan π = ⟨a1, . . . , an⟩ is r-applicable in an r-state ŝ0 if there are
r-states ŝ1, . . . , ŝn such that

ŝ1 = γ+(ŝ0, a1), ŝ2 = γ+(ŝ1, a2), . . . , ŝn = γ+(ŝn−1, an).

In this case, γ+(ŝ0, π) = ŝn.

• A plan π is a relaxed solution for a planning problem P = (Σ, s0, g) if γ+(s0, π)
r-satisfies g. Thus the cost of the optimal relaxed solution is

∆+(s, g) = min{cost(π) | γ+(s, π) r-satisfies g}.
12The hadd and hmax heuristics can also be explained in terms of delete-relaxation; see Section 2.7.9.



HFF(Σ, s, g)
ŝ0 = s; A0 = ∅
for k = 1 by 1 until a subset of ŝk r-satisfies g do (i)
Ak ← {all actions that are r-applicable in ŝk−1}
ŝk ← γ+(ŝk−1, Ak)
if ŝk = ŝk−1 then // (Σ, s, g) has no solution (ii)

return ∞
ĝk ← g
for i = k down to 1 do (iii)

arbitrarily choose a minimal set of actions
âi ⊆ Ai such that γ+(ŝi, âi) satisfies ĝi

ĝi−1 ← (ĝi − eff(âi)) ∪ pre(âi)
π̂ ← ⟨â1, â2, . . . , âk⟩ (iv)
return

∑
{cost(a) | a is an action in π̂}

Algorithm 2.3: HFF, an algorithm to compute the Fast-Forward heuristic.

For a planning problem P = (Σ, s0, g), the optimal relaxed solution heuristic is

h+(s) = ∆+(s, g).

Example 2.24. Let P be the planning problem in Example 2.21. Let ŝ1 = γ+(s0,move(r1, d3, d1))
and ŝ2 = γ+(ŝ1, load(r1, c1, d1)). Then

ŝ1 = {loc(r1) = d1, loc(r1) = d3, cargo(r1) = nil, loc(c1) = d1};
ŝ2 = {loc(r1) = d1, loc(r1) = d3, cargo(r1) = nil, cargo(r1) = c1,

loc(c1) = d1, loc(c1) = r1}.

The r-state ŝ2 r-satisfies g, so the plan π = ⟨move(r1, d3, d1), load(r1, c1, d1)⟩ is a relaxed
solution for P . No shorter plan is a relaxed solution for P , so h+(s) = ∆+(s0, g).

Because every ordinary solution for P is also a relaxed solution for P , it follows that
h+(s) ≤ h∗(s) for every s. Thus h+ is admissible, so h+ can be used with algorithms such
as A* to find an optimal solution for P . On the other hand, h+ is expensive to compute:
the problem of finding an optimal relaxed solution for a planning problem P is NP-hard
[67].13

We now describe an approximation to h+ that is easier to compute. It is based on the
fact that if A is a set of actions that are all r-applicable in a relaxed state ŝ, then they will
produce the same predicted r-state regardless of the order in which they are applied. This
r-state is

γ+(ŝ, A) = ŝ ∪
⋃
a∈A

eff(a). (2.13)

HFF, Algorithm 2.3, starts at an initial r-state ŝ0 = s, and uses Equation 2.13 to generate
a sequence of successively larger r-states and sets of applicable actions,

ŝ0, A1, ŝ1, A2, ŝ2 . . . ,

until it generates an r-state that r-satisfies g. From this sequence, HFF extracts a relaxed
solution and returns its cost. Line (ii) whether the sequence has converged to an r-state
that does not r-satisfy g, in which case the planning problem is unsolvable.

13If we restrict P to be ground (see Section 2.7.1), then the problem is NP-complete.



from ŝ0:
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Figure 2.7: Computation of HFF(Σ, s1, g) = 2. The solid lines indicate the actions’ precon-
ditions and effects. The elements of ĝ0, â1, and ĝ1 are shown in boldface.

from ŝ0:
 

 Atoms in ŝ2:
Actions in A2:
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Figure 2.8: Computation of HFF(Σ, s2, g) = 3. The solid lines indicate the actions’ precon-
ditions and effects. The atoms and actions in each ĝi and âi are shown in boldface.

The Fast-Forward heuristic, hFF(s), is defined to be the value returned by HFF.14 The
definition of hFF is ambiguous, because the returned value may vary depending on HFF’s
choices of âk, âk−1, . . . , â1 in the loop (iii). Furthermore, because there is no guarantee that
these choices are the optimal ones, hFF is not admissible.

As with hmax and hadd, the running time for HFF is polynomial in |A|+
∑

x∈X |Range(x)|,
the number of actions and ground atoms in the planning domain.

Example 2.25. In Example 2.21, suppose GBFS’s heuristic function is hFF, as computed
by HFF.

To compute hFF(s1), HFF begins with ŝ0 = s1, and computes A1 and ŝ1 in the loop at
line (i). Figure 2.7 illustrates the computation: the lines to the left of each action show
which atoms in ŝ0 satisfy its preconditions, and the lines to the right of each action show
which atoms in ŝ1 are its effects. For the loop at line (iii), HFF begins with ĝ1 = g and
computes â1 and ĝ0; these sets are shown in boldface in Figure 2.7. In line (iv), the relaxed
solution is

π̂ = ⟨â1⟩ = ⟨{move(r1, d1, d3), load(r1, c1, d1)}⟩.

Thus HFF returns hFF(s1) = cost(π̂) = 2.

Figure 2.8 is a similar illustration of HFF’s computation of hFF(s2). For the loop at line
(i), HFF begins with ŝ0 = s2 and computes the sets A1, ŝ1, A2, and ŝ2. For the loop at line
(iii), HFF begins with ĝ2 = g and computes â2, ĝ1, â1, and ĝ0, which are shown in boldface

14The name comes from the FF planner in which this heuristic was introduced; see Section 2.7.9.



in Figure 2.8. In line (iv), the relaxed solution is

π̂ = ⟨â1, â2⟩ = ⟨{move(r1, d2, d1)⟩}, {⟨move(r1, d1, d3), load(r1, c1, d1)}⟩,

so HFF returns hFF(s2) = cost(π̂) = 3.
Thus hFF(s1) < hFF(s2), so GBFS will choose to expand s1 next.

The graph structures in Figures 2.7 and 2.8 are called relaxed planning graphs.

2.3.3 Landmark Heuristics

Let P = (Σ, s0, g) be a planning problem, and let ϕ = ϕ1∨. . .∨ϕm be a disjunction of atoms.
Then ϕ is a disjunctive landmark for P if every solution plan produces an intermediate state
(i.e., a state other than s0 and g) in which ϕ is true.

The problem of deciding whether an arbitrary ϕ is a disjunctive landmark is PSPACE-
complete [280]. However, that is a worst-case result; many disjunctive landmarks can often
be efficiently discovered by reasoning about relaxed planning graphs [280, 507].

One way to to do this is as follows. Let s be the current state, and g be the goal;
but instead of requiring g to be a set of atoms, let it be a set g = {ϕ1, . . . , ϕk} such that
each ϕi is a disjunction of one or more atoms. For each ϕi, let Ri = {every action whose
effects include at least one of the atoms in ϕi}. Let from Ri every action a for which we
can show (using a relaxed-planning-graph computation) that a’s preconditions cannot be
achieved without Ri, and let Ni = {a1, a2, . . . , ak} be the remaining set of actions. If we
pick a precondition pj of each aj in N , then ϕ′ = p1 ∨ . . . ∨ pk is a disjunctive landmark.
To avoid a combinatorial explosion, we will not want to compute every such ϕ′; instead we
will only compute landmarks consisting of no more than four atoms (the number 4 being
more-or-less arbitrary). The computation can be done by calling RPG-landmark(s, ϕi) once
for each ϕi, as follows:

RPG-landmark(s, ϕ) takes two arguments: a state s, and a disjunction ϕ of one or more
atoms such that ϕ is false in s (i.e., s contains none of the atoms in ϕ). It performs the
following steps:

1. Let Relevant = {every action whose effects include at least one member of ϕ}. Then
achieving ϕ will require at least one of the actions in Relevant. If some action a ∈
Relevant has all of its preconditions satisfied in s, then ⟨a⟩ is a solution, and the only
landmark is ϕ itself, so return ϕ.

2. Starting with s, and using only the actions in A\Relevant (i.e., the actions that cannot
achieve ϕ), construct a sequence of r-states and r-actions ŝ0, A1, ŝ1, A2, ŝ2, . . . as
in the HFF algorithm. But instead of stopping when HFF does, keep going until an
r-state ŝk is reached such that ŝk = ŝk−1. Then ŝk includes every atom that can be
produced without using the actions in Relevant.

3. Let Necessary = {all actions in Relevant that are applicable in ŝk}. Then achieving
ϕ will require at least one of the actions in Necessary. If Necessary = ∅ then ϕ cannot
be achieved, so return failure.

4. Consider every disjunction of atoms ϕ′ = p1 ∨ . . . ∨ pm having the following proper-
ties: m ≤ 4 (as we noted earlier, this is an arbitrary limit to avoid a combinatorial
explosion), every pi in ϕ

′ is a precondition of at least one action in Necessary, every
action in Necessary has exactly one of p1, . . . , pm as a precondition, and s0 contains
none of p1, . . . , pm. Then none of the actions in Necessary will be applicable until ϕ′

is true, so ϕ′ is a disjunctive landmark.

5. For every landmark ϕ′ found in the previous step, recursively call RPG-landmark(s, ϕ′)
to find additional landmarks.15 These landmarks precede ϕ′, that is, they must be

15In implementations, this usually is done only if every atom in ϕ′ has the same type, for example,
ϕ′ = loc(r1)= d1 ∨ loc(r2)= d1.



Backward-search(Σ, s0, g0)
π ← ⟨⟩; g ← g0 (i)
loop

if s0 satisfies g then return π
A′ ← {a ∈ A | a is relevant for g}
if A′ = ∅ then return failure
nondeterministically choose a ∈ A′

g ← γ−1(g, a) (ii)
π ← a.π (iii)

Algorithm 2.4: Backward-search planning schema. During each loop iteration, π is a plan
that achieves g from any state that satisfies g.

achieved before ϕ′. Return every ϕ′ and all of the landmarks found in the recursive
calls.

The simple landmark heuristic is

hsl(s) = the total number of landmarks found by the preceding algorithm.

Although the algorithm is more complicated than the HFF algorithm, its running time is
still polynomial.

Better landmark heuristics can be devised by doing additional computations to discover
additional landmarks and by reasoning about the order in which to achieve the landmarks.
We discuss this further in Section 2.7.9.

Example 2.26. As before, consider the planning problem in Example 2.21.

To compute hsl(s1), we count the number of landmarks between s1 and g. If we start in
s1, then every solution plan must include a state in which cargo(r1) = c1. We will skip the
computational details, but this is the only landmark that the landmark computation will
find for s1. Thus h

sl(s1) = 1.

If we start in state s2, then the landmark computation will find two landmarks: cargo(s1) =
c1 as before, and loc(r1) = d1 (which was not a landmark for s1 because it was already true
in s1). Thus h

sl(s2) = 2.

2.4 Backward Search

Backward-search, Algorithm 2.4, does a state-space search backward from the goal. As with
Forward-search, it is a nondeterministic algorithm that has many possible deterministic
versions. The variables in the algorithm are as follows: π is the current partial solution,
g′ is a set of literals representing all states from which π can achieve g, Solved is a set of
literals representing all states from which a suffix of π can achieve g, and A′ is the set of all
actions that are relevant for g′, as defined next.

Informally, we will consider an action a to be relevant for achieving a goal g if a does not
make any of the conditions in g false and makes at least one of them true. More formally:

Definition 2.27. Let g = {x1 = c1, . . . , xk = ck}, where each xi is a state variable and
each ci is a constant. An action a is relevant for g if the following conditions hold:

• For at least one i ∈ {1, . . . , k}, effa contains xi ← ci.

• For i = 1, . . . , k, effa contains no assignment statement xi ← c′i such that c′i ̸= ci.

• For each xi that is not affected by a, pre(a) does not contain the precondition xi ̸= ci,
nor any precondition xi = c′i such that c′i ̸= ci.



In line (ii) of Backward-search, γ−1(g, a) is called the regression of g through a. It is a
set of conditions that is satisfied by every state s such that γ(s, a) satisfies g. It includes
all of the literals in pre(a), and all literals in g that a does not achieve:

γ−1(g, a) = pre(a) ∪ {(xi, ci) ∈ g | a does not affect xi} (2.14)

We can incorporate loop-checking into Backward-search by inserting the following line
after line (i):

Solved← {g}

and adding these two lines after line (iii):

if g ∈ Solved then return failure
Solved← Solved ∪ {g}

We can make the loop-checking more powerful by replacing the preceding two lines with
the following subsumption test :

if g ∈ Solved then return failure
if ∃g′ ∈ Solved s.t. g′ ⊆ g then return failure

Here, Solved represents the set of all states that are “already solved,” that is, states from
which π or one of π’s suffixes will achieve g0; and g′ represents the set of all states from
which the plan a.π will achieve g0. If every state that a.π can solve is already solved, then
it is useless to prepend a to π. For any solution that we can find this way, another branch
of the search space will contain a shorter solution that omits a.

Example 2.28. Suppose we augment Backward-search to incorporate loop checking and
call it on the planning problem in Example 2.21. The first time through the loop,

g = {cargo(r1)= c1, loc(r1)= d3},

and there are three relevant actions: move(r1, d1, d3), move(r1, d2, d3), and load(r1, c1, d3).
Suppose Backward-search’s nondeterministic choice is move(r1, d1, d3). Then in lines 7–10,

g ← γ−1(g,move(r1, d1, d3)) = {loc(r1)= d1, cargo(r1)= c1};
π ← ⟨move(r1, d1, d3)⟩;

Solved← {{cargo(r1)= c1, loc(r1)= d3}, {loc(r1)= d1, cargo(r1)= c1}}.

In its second loop iteration, Backward-search chooses nondeterministically among three rele-
vant actions in line 6: move(r1, d2, d1), move(r1, d3, d1), and load(r1, c1, d1). Let us consider
two of these choices.

If Backward-search chooses move(r1, d3, d1), then in lines 7–9,

g ← γ−1(g,move(r1, d3, d1)) = {loc(r1)= d3, cargo(r1)= c1};
π ← ⟨move(r1, d3, d1),move(r1, d1, d3)⟩;
g ∈ Solved, so Backward-search returns failure.

If Backward-search instead chooses load(r1, c1, d1), then in lines 7–10,

g ← γ−1(g, load(r1, c1, d1)) = {loc(r1)= d1, cargo(r1)= nil};
π ← ⟨load(r1, c1, d1),move(r1, d1, d3)⟩;

Solved← {{cargo(r1)= c1, loc(r1)= d3}, {loc(r1)= d1, cargo(r1)= c1},
{loc(r1)= d1, cargo(r1)= nil}}.

Consequently, one of the possibilities in Backward-search’s third loop iteration is to set

π ← ⟨move(r1, d1, d3), load(r1, c1, d1),move(r1, d1, d3)⟩.

If Backward-search does this, then it will return π at the start of the fourth loop iteration.



To choose among actions in A, Backward-search can use many of the same heuristic
functions described in Section 2.3, but with the following modification: rather than using
them to estimate the cost of getting from the current state to the goal, what should be
estimated is the cost of getting from s0 to γ−1(g, a).

2.5 Plan-Space Search

Another approach to plan generation is to formulate planning as a constraint satisfaction
problem and use constraint-satisfaction techniques to produce solutions that are more flex-
ible than linear sequences of ground actions. For example, plans can be produced in which
the actions are partially ordered, along with a guarantee that every total ordering that is
compatible with this partial ordering will be a solution plan.

Such flexibility allows some of the ordering decisions to be postponed until the plan
is being executed, at which time the actor may have a better idea about which ordering
will work best. Furthermore, the techniques are a first step toward planning concurrent
execution of actions, a topic that we will develop further in Chapter 4.

2.5.1 Definitions and Algorithm

The PSP algorithm, which we will describe shortly, solves a planning problem by making
repeated modifications to a “partial plan” in which the actions are partially ordered and
partially instantiated, as defined here.

A partially instantiated action is any instance of an action template. It may be either
ground or unground.

Informally, a partially ordered plan is a plan in which the actions are partially ordered.
However, some additional complication is needed to make it possible (as it is in ordinary
plans) for actions to occur more than once. The mathematical definition is as follows:

Definition 2.29. A partially ordered plan is a triple π = (V,E, act) in which V and E are
the nodes and edges of an acyclic digraph, and each node v ∈ V contains an action act(v).16

The edges in E represent ordering constraints on the nodes in V , and we define v ≺ v′ if
v ̸= v′ and (V,E) contains a path from v to v′. A total ordering of π is any (ordinary) plan
π′ = ⟨act(v1), . . . , act(vn)⟩ such that v1 ≺ v2 ≺ . . . ≺ vn and {v1, . . . , vn} = V .

A partially ordered solution for a planning problem P is a partially ordered plan π such
that every total ordering of π is a solution for P .

Definition 2.30. A partial plan is a 4-tuple π = (V,E, act, C), where (V,E, act) is the
same as in Definition 2.29 except that each action act(v) may be partially instantiated, and
C is a set of constraints. Each constraint in C is either an inequality constraint or a causal
link:

• An inequality constraint is an expression of the form y ̸= z, where y and z may each
be either a variable or a constant.

• A causal link is an expression v1
x=b
99K v2, where v1 and v2 are two nodes such that

v1 ≺ v2, x= b is a precondition of act(v2), and x← b is an effect of act(v1).

The purpose of a causal link is to designate act(v1) as the (partially instantiated) action
that establishes act(v2)’s precondition x = b. Consequently, for every node such that
v1 ≺ v3 ≺ v2, we will say that v3 violates the causal link if x is the target of one of act(v3)’s
effects, even if the effect is x← b.17

16For readers familiar with partially ordered multisets [232], we essentially are defining a partially ordered
plan to be a pomset in which act(.) is the labeling function.

17The reason for calling this a violation even if the effect is x← b is to ensure that PSP (Algorithm 2.5)
performs a systematic search [410, 335], that is, it does not generate the same partial plan several times in
different parts of the search space.



PSP(Σ, π)
loop

if Flaws(π) = ∅ then return π
arbitrarily select f ∈ Flaws(π) (i)
R← {all feasible resolvers for f}
if R = ∅ then return failure
nondeterministically choose ρ ∈ R (ii)
π ← ρ(π)

return π

Algorithm 2.5: PSP, plan-space planning.

A partial plan π = (V,E, act, C) is inconsistent if (V,E) contains a cycle, C contains a
self-contradictory inequality constraint (e.g., y ̸= y) or a violated causal link, or an action
act(v) has an illegal argument. Otherwise π is consistent.

Definition 2.31. If π = (V,E, act, C) is a consistent partial plan, then a refinement of π
is any sequence ρ of the following modifications to π:

• Add an edge (v, v′) to E. This produces a partial plan (V,E′, act, C) in which v ≺ v′.
• Instantiate a variable x. This means replacing all occurrences of x with an object
b ∈ Range(x) or a variable y with Range(y) ⊆ Range(x). This produces a partial
plan (V,E, act′, C ′), where C ′ and act′ are the instances of C and act produced by
replacing x.

• Add a constraint c. This produces a partial plan (V,E, act, C ∪ {c}).
• Add a new node v containing a partially instantiated action a. This produces a partial
plan π′ = (V ′, E, act′, C), where V ′ = V ∪ {v} and act′ = act ∪ {(v, a)}.

A refinement ρ is feasible for π if it produces a consistent partial plan.

2.5.2 Planning Algorithm

The PSP algorithm is Algorithm 2.5. Its arguments include a state-variable planning domain
Σ = (B,R,X,A) and a partial plan π = (V,E, act, C) that represents a planning problem
P = (Σ, s0, g). The initial value of π is as follows, where v0 and vg are nodes containing
two dummy actions that PSP uses to represent the initial state and goal:

• V = {v0, vg} and E = {(v0, vg)},
• act(v0) is a dummy action a0 that has pre(a0) = ∅ and eff(a0) = s0.

• act(vg) is a dummy action ag that has pre(ag) = g and eff(ag) = ∅.

• C = ∅, that is, there are not (yet) any constraints.

The reason for calling a0 and ag “dummy actions” is that they look syntactically like actions
but are not instances of action templates in A. Their sole purpose is to represent s0 and g
in a way that is easy for PSP to work with.

PSP repeatedly makes feasible refinements to π in an effort to produce a partially ordered
solution for P . PSP does this by finding flaws (things that prevent π from being a solution
to P ) and for each flaw applying a resolver (a refinement that removes the flaw).

In PSP, Flaws(π) is the set of all flaws in π. There are two kinds of flaws: open goals
and threats. These and their resolvers are described next.

Open goals. If a node v ∈ V has a precondition p ∈ pre(act(v)) for which there is no
causal link, then p is an open goal. There are two kinds of resolvers for this flaw:
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Figure 2.9: Initial state and goal for Example 2.32.

• Establish p using an action in π. Let v′ be any node of π such that v ̸≺ v′. If act(v)
has an effect e that can be unified with p (i.e., made syntactically identical to p by
instantiating variables), then the following refinement is a resolver for p: instantiate

variables if necessary to unify p and e; add a causal link v′
e′
99K v (where e′ is the

unified expression); and add (v′, v) to E unless v′ ≺ v already.

• Establish p by adding a new action. Let a′ be a standardization of an action template
a ∈ A (i.e., a′ is a partially instantiated action produced by renaming the variables
in a to prevent name conflicts with the variables already in π). If eff(a′) has an effect
e that can be unified with p, then the following refinement is a resolver for p: add a
new node v′ to V ; add (v′, a′) to act; instantiate variables if necessary to unify p and

e; add a causal link v′
e′
99K v; make v0 ≺ v′ by adding (v0, v

′) to E; and add (v′, v) to
E.

Threats. Let v1
x=b
99K v2 be any causal link in π, and v3 ∈ V be any node such that v2 ̸≺ v3

and v3 ̸≺ v1 (hence it is possible for v3 to come between v1 and v2). Suppose act(v3)
has an effect y ← w that is unifiable with x, that is, π has an instance (here we extend
Definition 2.9 to plans) in which both x and y are the same state variable). Then v3 is a
threat to the causal link. There are three kinds of resolvers for such a threat:

• Make v3 ≺ v1, by adding (v3, v1) to E.

• Make v2 ≺ v3, by adding (v2, v3) to E.

• Prevent x and y from unifying, by adding to C an inequality constraint on their
parameters.

Example 2.32. Figure 2.9 shows the initial state and goal for a simple planning problem
in which there are two robots and three loading docks, that is, B = Robots ∪Docks, where
Robots = {r1, r2} and Docks = {d1, d2, d3}. There are no rigid relations. There is one action
template,

move(r, d, d′)
pre: loc(r)= d, occupied(d′)=F
eff: loc(r)← d′,

where r ∈ Robots and d, d′ ∈ Docks. The initial state and the goal (see Figure 2.9) are

s0 = {loc(r1)= d1, loc(r2)= d2, occupied(d1)=T,

occupied(d2)=T, occupied(d3)=F};
g = {loc(r1)= d2, loc(r2)= d1}.

Figure 2.10 shows the initial partial plan, and Figures 2.11 through 2.14 show successive
snapshots of one of PSP’s nondeterministic execution traces. Each action’s preconditions
are written above the action, and the effects are written below the action. Solid arrows
represent edges in E, dashed arrows represent causal links, and dot-dashed arrows represent
threats. The captions describe the refinements and how they affect the plan.
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Figure 2.10: The initial partial plan contains dummy actions a0 and ag that represent s0
and g. There are two flaws: ag’s two preconditions are open goals.
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a2!=!move(r2,d',d1)

Figure 2.11: Resolving ag’s open-goal flaws. For one of them, PSP adds a1 and a causal
link. For the other, PSP adds a2 and another causal link.

2.5.3 Search Heuristics

Several of the choices that PSP must make during its search are very similar to the choices
that a backtracking search algorithm makes in order to solve constraint-satisfaction prob-
lems (CSPs); for example, see [515]. Consequently, some of the heuristics for guiding CSP
algorithms can be translated into analogous heuristics for guiding PSP. For example:

• Flaw selection (line (i) of PSP) is not a nondeterministic choice, because all of the
flaws must eventually be resolved, but the order in which PSP selects the flaws can
affect the size of the search space generated by PSP’s nondeterministic choices in
line (ii). Flaw selection is analogous to variable ordering in CSPs, and the Minimum
Remaining Values heuristic for CSPs (choose the variable with the fewest remaining
values) is analogous to a PSP heuristic called Fewest Alternatives First : select the
flaw with the fewest resolvers.

• Resolver selection (line (ii) of PSP) is analogous to value ordering in CSPs. The Least
Constraining Value heuristic for CSPs (choose the value that rules out the fewest
values for the other variables) translates into the following PSP heuristic: choose the
resolver that rules out the fewest resolvers for the other flaws.

The preceding heuristic ignores an important difference between plan-space planning
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Figure 2.12: Resolving a1’s open-goal flaws. For one of them, PSP substitutes d1 for d
(which also resolves a1’s free-variable flaw) and adds a causal link from a0. For the other,
PSP adds a3 and a causal link. The new action a3 causes two threats (shown as red dashed-
dotted lines).
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Figure 2.13: Resolving a2’s open-goal flaws. For one of them, PSP substitutes r2 for r and
d′ for d′′, and adds a causal link from a3. For the other, PSP adds a causal link from a1.
As a side effect, these changes resolve the two threats.
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Figure 2.14: Resolving a3’s open-goal flaws. For one of them, PSP adds a causal link. For
the other, PSP substitutes d3 for d′ and adds a causal link. The resulting partially ordered
plan contains no flaws and hence solves the planning problem.

and CSPs. Ordinarily, the number of variables in a CSP is fixed in advance, hence the
search tree is finite and all solutions are at exactly the same depth. If one of PSP’s
resolvers introduces a new action that has n new preconditions to achieve, this is like
introducing n new variables (and a number of new constraints) into a CSP, which
could make the CSP much harder to solve.

One way of adapting this heuristic to PSP is by first looking for resolvers that do not
introduce open goals, and if there are several such resolvers, then to choose the one
that rules out the fewest resolvers for the other flaws.

Although the preceding heuristics can help speed PSP’s search, implementations of PSP
tend to run much more slowly than the fastest state-space planners. Generally the latter
are GBFS algorithms that are guided by heuristics like the ones in Section 2.3, and there
are several impediments to developing an analogous version of PSP. Because plan spaces
have no explicit states, the heuristics in Section 2.3 are not directly applicable, nor is it
clear how to develop similar plan-space heuristics. Even if such heuristics were available,
a depth-first implementation of PSP would be problematic because plan spaces generally
are infinite. Consequently, for solving problems like the ones in the International Planning
Competitions [290], most automated-planning researchers have abandoned PSP in favor of
forward-search algorithms.

On the other hand, some important algorithms for temporal planning (see Chapter 4)
are extensions of PSP and are useful for maintaining flexibility of execution in unpredictable
environments. An understanding of PSP is useful to provide the necessary background for
understanding those algorithms.

2.6 Incorporating Planning into an Actor

We now consider what is needed for actors to utilize the planning algorithms in this chapter.
Because it is quite unlikely that the environment will satisfy all of the assumptions in
Section 2.1.1, a planning domain will almost never be a fully accurate model of the actor’s
environment. Hence if a planning algorithm predicts that a plan π will achieve a goal g,
this does not ensure that π will achieve g when the actor performs the actions in π.



go(r, l, l′)
pre: adjacent(l, l′), loc(r)= l
eff: loc(r)← l′

navigate(r, l, l′)
pre: ¬adjacent(l, l′), loc(r)= l
eff: loc(r)← l′

take(r, l, o)
pre: loc(r)= l, pos(o)= l,

cargo(r)= nil
eff: pos(o)← r, cargo(r)← o

Figure 2.15: Action templates for Example 2.33.

Example 2.33. To illustrate some of the things that can go wrong, suppose a robot, rbt,
is trying to accomplish the task “bring o7 to loc2” near the top of Figure 1.2. To create an
abstract plan for this task, suppose rbt calls a planner on a planning problem P = (Σ, s0, g)
in which Σ contains the action templates shown in Figure 2.15, and

s0 = {loc(rbt)= loc3, pos(o7)= loc1, cargo(rbt)= nil},
g = {pos(o7)= loc2}.

The planner will return a solution plan π = ⟨a1, a2, a3, a4, a5⟩ in which the actions are
slightly more detailed versions of the ones near the top of Figure 1.2:

a1 = go(rbt,loc3,hall), a2 = navigate(rbt,hall,loc1),

a3 = take(rbt,loc1,o7), a4 = navigate(rbt,loc1,loc2),

a5 = put(rbt,loc2,o7).

When rbt tries to perform π, several kinds of problems may occur:

1. Execution failures. Suppose rbt’s refinement of a1 involves opening a door, as in
Figure 1.2. Then a1 will succeed if the lower-level actions work correctly or if there is
a fixable problem (e.g., rbt’s gripper may slip on the doorknob, but rbt may be able
to reposition its gripper and continue). However, if there is a problem that rbt cannot
fix (e.g., the door is locked or broken), then a1 will fail, and rbt will need to revise π
(e.g., by taking an alternate route to loc1).

2. Unexpected events. Suppose that once rbt finishes a1 and reaches the hallway, someone
puts an object o6 onto rbt. Then a2 is still applicable, but a3 is not, because rbt can
only hold one object at a time. Depending on what o6 is and why it was put there,
some possible courses of action might be to remove o6 and then go to loc1, to take o6
to loc1 and remove it there, or to take o6 somewhere else before going to loc1.

3. Incorrect information. Suppose that when rbt tries to perform a2, a navigation error
causes it to go to a different location, loc4. To recover, it will need to navigate from
loc4 to loc1.

4. Partial information. Suppose loc1 is where o7 is normally stored, but rbt cannot
observe whether o7 is there except by going there. Because state-variable represen-
tations assume that the current state is always fully known, a planner that uses this
formalism cannot create a conditional plan such as

look for o7 in loc1; and if it’s not there then look for it in loc4.

As a work-around, if rbt thinks o7 is likely to be at loc1, then it could include
pos(o7)= loc1 in s0 when calling the planner. If rbt reaches loc1 and o7 is not there,
then rbt could call the planner with another guess for o7’s location; and so forth.

Alternatively, we might want to give rbt a planner that can create conditional plans
or policies (see Chapters 5 and 6). But even then, situations can arise in which the



Run-Lookahead(Σ, g)
while (s← abstraction of observed state ξ) ̸|= g do
π ← Lookahead(Σ, s, g)
if π = failure then return failure
a← pop-first-action(π); perform(a)

Algorithm 2.6: Run-Lookahead replans before every action.

Run-Lazy-Lookahead(Σ, g)
s← abstraction of observed state ξ
while s ̸|= g do
π ← Lookahead(Σ, s, g)
if π = failure then return failure
while π ̸= ⟨⟩ and s ̸|= g and Simulate(Σ, s, g, π) ̸= failure do
a← pop-first-action(π); perform(a)
s← abstraction of observed state ξ

Algorithm 2.7: Run-Lazy-Lookahead replans only when necessary.

Run-Concurrent-Lookahead(Σ, g)
π ← ⟨⟩; s← abstraction of observed state ξ
thread 1: // threads 1 and 2 run concurrently

loop
π ← Lookahead(Σ, s, g)

thread 2:
loop

if s |= g then return success
else if π = failure then return failure
else if π ̸= ⟨⟩ and Simulate(Σ, s, g, π) ̸= failure then
a← pop-first-action(π); perform(a)
s← abstraction of observed state ξ

Algorithm 2.8: Run-Concurrent-Lookahead does acting and replanning concurrently.

planner did not plan for all of the possible contingencies because it did not know they
were possible. Thus rbt may still need work-arounds such as that just described.

Consequently, actors need ways to change their plans when problems are detected. The
following section describes some ways to do that.

2.6.1 Repeated Planning and Replanning

Algorithms 2.6 through 2.8 illustrate some ways for an actor to use a planner. In each of
them, (Σ, s, g) is a planning problem, and Lookahead is an online planning algorithm, that
is, a planning algorithm that incorporates modifications (which we discuss in Section 2.6.2)
to facilitate interaction between planning and acting. An important consequence of these
modifications is that the plan returned by Lookahead is not guaranteed to solve (Σ, s, g).
Ideally we might like it to be at least a partial solution, that is, a plan that can be extended
to produce a solution—but even that cannot be guaranteed.

Recall from Section 1.3.2 that the planner’s initial state s is an abstraction that may
differ from the actor’s current state ξ. It may omit parts of ξ that are irrelevant for planning
and may include hypothesized values of state variables that the actor cannot currently
observe, or it may be a hypothetical future state. Similarly, the goal g in Algorithms 2.6–



2.8 is for planning purposes and may sometimes differ from what the actor ultimately wants
to achieve. For example, it may be a subgoal (see Section 2.6.2).

In each algorithm, pop-first-action removes and returns the first action in π; and perform
calls the actor’s acting component—which may execute the action if it is a command to the
execution platform or else refine it into lower-level actions and commands.

Here are some comparisons among the procedures:

• Run-Lookahead is a simple version of the receding-horizon approach in Figure 1.4. Each
time it calls Lookahead, it performs only the first action of the plan that Lookahead
returned. This is useful, for example, in unpredictable or dynamic environments in
which some of the states are likely to be different from what the planner predicted.

The biggest disadvantage of Run-Lookahead is that repeatedly waiting for Lookahead
may be impractical if Lookahead has a large running time, and may be unnecessary
if the action models are known to give very accurate predictions.

• Run-Lazy-Lookahead executes each plan π as far as possible, calling Lookahead again
only when π ends or a plan simulator says that π will no longer work properly. This
can be useful in environments where it is computationally expensive to call Lookahead
and the actions in π are likely to produce the predicted outcomes.

Simulate is the plan simulator, which may use the planner’s prediction function γ or
may do a more detailed computation (e.g., a physics-based simulation) that would
be too time-consuming for the planner to use. Simulate should return failure if its
simulation indicates that π will not work properly – for example, if it finds that an
action in π will have an unsatisfied precondition or if π is supposed to achieve g and
the simulation indicates that it will not do so.

The biggest disadvantage of Run-Lazy-Lookahead is that sometimes it can be difficult
to predict that replanning is needed without actually doing the replanning to find out.
In such cases, Run-Lazy-Lookahead may fail to detect problems until it is too late to
fix them easily. For example, in Example 2.33, suppose rbt uses Run-Lazy-Lookahead,
and Lookahead returns the partial solution ⟨a1, a2⟩. In problem 2 of the example, rbt
will take o6 to loc1 without considering whether to leave o6 in the hallway or take it
elsewhere.

• Run-Concurrent-Lookahead is a receding-horizon procedure in which the acting and
planning processes run concurrently. Each time an action is performed, the action
comes from the most recent plan that Lookahead has provided. This avoids Run-
Lookahead’s problem with waiting for Lookahead to return. Like Run-Lazy-Lookahead,
it risks continuing with an old plan in situations where it might be better to wait for
a new one, but the risk is lower because the plan is updated more frequently.

The foregoing procedures are not the only possibilities. For example, there are variants of
Run-Lazy-Lookahead that maintain information [195] about which actions in π establish the
preconditions of other actions in π. This information can be used to detect situations where
an action can be removed from π because it is no longer needed, or where a specific part of
π needs to be revised.

2.6.2 Online Planning

Most of the planning algorithms earlier in this chapter were designed to run off-line. We now
discuss how to adapt them for use with the acting procedures in Section 2.6.1, which need
to interact with planners that run online. The biggest issue is that the planning algorithms
were designed to find plans that (according to the planner’s domain model) are complete
(and in some cases, optimal) solutions to the planning problem. In online planning, the
actor may need to start acting before such a plan can be found.

Most of the planning algorithms presented earlier – especially the ones that use forward



search – can be modified to end their search early and return the best “partial solution”
that they have found, and we will now discuss several techniques for how to do that.

The term partial solution is somewhat misleading because there is no guarantee that
the plan will actually lead to a goal. But neither can we guarantee that an actor will reach
the goal if it uses a purported “complete solution plan.” As we discussed in Section 2.6.1,
acting procedures may need to deal with a variety of problems that were not in the planner’s
domain model.

Subgoaling. In each of the algorithms in the previous section, the goal g′ given to the
planner does not have to be the actor’s ultimate goal g; instead it may be a subgoal. If g′

is a subgoal, then once it has been achieved, the actor may formulate its next subgoal and
ask the planner to solve it.

How to formulate these subgoals is somewhat problematic, but one can imagine several
possible techniques. The elements of a compound goal g = {g1, . . . , gk} could be used as
subgoals, if one can decide on a reasonable order in which to try to achieve them. Another
possibility may be to compute an ordered set of landmarks and choose the earliest one as a
subgoal.

In practical applications, g′ usually is selected in a domain-specific manner. For example,
subgoaling with short-term objectives such as “get to shelter” is used to plan actions for the
computerized opponents in Killzone 2, a “first-person shooter” video game [583, 112]. The
acting algorithm is similar to Run-Concurrent-Lookahead, and the planner is similar to the
SeRPE algorithm that we discuss in Chapter 3. The actor runs the planner several times
per second, and the planner generates plans that are typically about four or five actions
long. The main purpose of the planner is to generate credible humanlike actions for the
computerized opponents, and it would not work well to do more elaborate planning because
the current state changes quickly as the game progresses.

Limited-horizon planning. Recall that in the receding-horizon technique, the interac-
tion between the actor and planner is as depicted in Figure 1.4. Each time the actor calls
Lookahead, the planner starts at the current state and searches until it either reaches a goal
or exceeds some kind of limit, and then it returns the best solution or partial solution it has
found. Several of the algorithms in this section can easily be modified to do that. Following
are some examples.

We can modify A* (Section 2.2.5) to return if the least costly node in Frontier has a
cost that exceeds a limit cmax, by putting the following step immediately after line (i) of
Algorithm 2.2:

if cost(π) + h(s) > cmax, then return π

Here is a modified version of IDS (Section 2.2.8) that uses a depth limit, kmax:

for k = 1 to kmax:
do a depth-first search, backtracking at every node of depth
k, and keeping track of which node ν = (π, s) at depth k
has the lowest value f(ν)

if the search finds a solution, then return it
return π

Both A* and IDS can also be modified to use a time limit, by having them throw an
exception when time runs out. When the exception is thrown, IDS would return the plan
π mentioned in the preceding pseudocode, and A* would return the plan found in the node
ν = (π, s) ∈ Frontier that minimizes f(ν).



Sampling. In a sampling search, the planner uses a modified version of hill climbing
(see Section 2.2.3) in which the node selection is randomized. The choice can be purely
random, or it can be weighted toward the actions in Actions that produce the best values
for h(γ(s, a)), using techniques similar to the ones that we describe later in Section 6.4.4.
The modified algorithm could do this several times to generate multiple solutions and either
return the one that looks best or return the n best solutions so that the actor can evaluate
them further. Such a technique is used in the UCT algorithm (Algorithm 6.20) in Chapter 6.

2.7 Discussion and Historical Remarks

2.7.1 Classical Domain Models

Classical representations. Problem representations based on state variables have long
been used in control-system design [243, 526, 160] and operations research [557, 4, 284],
but their use in automated-planning research came much later [28, 30, 214]. Instead, most
automated-planning research has used representation and reasoning techniques derived from
mathematical logic. This began with the early work on GPS [449] and the situation calculus
[411] and continued with the STRIPS planning system [196] and the widely used classical18

representations [458, 470, 383, 230, 515].
In a classical representation, all atoms have the same syntax as our rigid relations. Each

state s is represented as the set of all atoms that are true in s, hence any atom not in this
set is false in s. Each planning operator (the classical counterpart of an action template)
has preconditions and effects that are literals.

Example 2.34. Here is a classical representation of s0 in Equation 2.4:

s0 = {loc(r1, d1), loc(r2, d2),
occupied(d1), occupied(d2),
pile(c1, p1), pile(c2, p1), pile(c3, p2),
pos(c1, c2), pos(c2, nil), pos(c3, nil),
top(p1, c1), top(p2, c3), top(p3, nil)}.

Here is a classical planning operator corresponding to the load action template in Exam-
ple 2.12:

load(r, c, c′, p, d)
pre: at(p, d), ¬cargo(r), loc(r, d), pos(c, c′), top(p, c)
eff: cargo(r), ¬pile(c, p), pile(c, nil), ¬pos(c, c′), pos(c, r),
¬top(p, c), top(p, c′)

The well-known PDDL planning language ([203, 215]) is based on a classical represen-
tation but incorporates a large number of extensions.

Classical planning domains can be translated to state-variable planning domains, and
vice versa, with at most a linear increase in size:

• Translating a classical planning operator into an action template involves converting
each logical atom p(t1, . . . , tn) into a Boolean-valued state variable xp(t1, . . . , tn). This
can be done by replacing each negative literal ¬p(t1, . . . , tn) with xp(t1, . . . , tn) = F,
and each positive literal p(t1, . . . , tn) with xp(t1, . . . , tn) = T. This produces an action
template that has the same numbers of parameters, preconditions, and effects as the
classical operator.

• Translating an action template α into a classical planning operator involves converting
each state-variable x(t1, . . . , tn) into a set of logical atoms

{px(t1, . . . , tn, v) | v ∈ Range(x(t1, . . . , tn)}.
18These are also called STRIPS representations but are somewhat simpler than the representation used

in the STRIPS planner [196].



The conversion can be done as follows. For each expression x(t1, . . . , tn) = v or
x(t1, . . . , tn) ̸= v in α’s preconditions, replace it with px(t1, . . . , tn, v) or ¬px(t1, . . . , tn, v),
respectively. For each expression x(t1, . . . , tn) ← v′ in α’s effects, replace it with
px(t1, ..., tn, v

′), and also do the following. If α’s preconditions include px(t1, . . . , tn, v)
for some v, then add to α a new effect ¬px(t1, . . . , tn, v). Otherwise, add to α a new
parameter u, a new precondition px(t1, . . . , tn, u), and a new effect ¬px(t1, . . . , xn, u).
Note that the planning operator may have twice as many effects and parameters as
the action template. The reason is that each state variable x(t1, . . . , tn) has only one
value at a time, so the planning operator must ensure that px(t1, . . . , tn, v) is true for
only one v at a time. In the state-variable representation, this happens automatically;
but in the classical representation, asserting a new value requires explicitly deleting
the old one.

The classical and state-variable representation schemes are expspace-equivalent [181,
230]. In both of them, the time needed to solve a classical planning problem may be
exponential in the size of the problem description. We emphasize, however, that this is a
worst-case result; most classical planning problems are considerably easier.

Ground representations. A classical representation is ground if it contains no unground
atoms. With this restriction, the planning operators have no parameters; hence each plan-
ning operator represents just a single action. Ground classical representations usually are
called propositional representations [104], because the ground atoms can be rewritten as
propositional variables.

Every classical representation can be translated into an equivalent propositional repre-
sentation by replacing each planning operator with all of its ground instances (i.e., all of
the actions that it represents), but this incurs a combinatorial explosion in the size of the
representation. For the load operator in Example 2.34, if r, c, p, and d are the numbers of
robots, containers, piles, and locations, then the the number of load actions represented by
the operator is rc2pd.

More generally, if a planning operator has p parameters and each parameter has v
possible values, then there are vp ground instances. Each of them must be written explicitly,
so the ground classical representation is larger by a multiplicative factor of vp.

A ground state-variable representation is one in which all of the state variables are
ground. Each ground state variable can be rewritten as a state variable that has no argu-
ments (like an ordinary mathematical variable) [30, 266, 508]. Every state-variable repre-
sentation can be translated into an equivalent ground state-variable representation, with a
combinatorial explosion like the one in the classical-to-propositional conversion. If an ac-
tion template has p parameters and each parameter has v possible values, then the ground
representation is larger by a factor of vp.

The propositional and ground state-variable representation schemes are both pspace-
equivalent [103, 29]. They can represent exactly the same set of planning problems as
classical and state-variable representations; but as we just discussed, they may require
exponentially more space to do so. This lowers the complexity class because computational
complexity is expressed as a function of the size of the input.

In a previous work [230, Section 2.5.4], we claimed that propositional and ground state-
variable representations could each be converted into the other with at most a linear increase
in size, but that claim was only partially correct. Propositional actions can be converted
to state-variable actions with at most a linear increase in size, using a procedure similar to
the one we used to convert planning operators to action templates. For converting in the
reverse direction, the worst-case size increase is polynomial but superlinear.19

19We believe it is a multiplicative factor between lg v and v, where v is the maximum size of
any state variable’s range. The lower bound follows from the observation that if there are n state
variables, then representing the states may require n lg v propositions, with commensurate increases



The literature contains several examples of cases in which the problem representation
and the computation of heuristic functions can be done more easily with state variables than
with propositions [267, 508]. Helmert [266, Section 1.3] advances a number of arguments for
considering ground state-variable representations superior to propositional representations.

2.7.2 Generalized Domain Models

The state-variable representation in Section 2.1 can be generalized to let states be arbi-
trary data structures, and an action template’s preconditions, effects, and cost be arbitrary
computable functions operating on those data structures. Analogous generalizations can be
made to the classical representation by allowing a predicate’s arguments to be functional
terms whose values are calculated procedurally rather than inferred logically (see Fox and
Long [203]). Such generalizations can make the domain models applicable to a much larger
variety of application domains.

With the preceding modifications, the forward-search algorithms in Section 2.2 will
still work correctly [458, 356, 286], but they will not be able to use the domain-independent
heuristic functions in Section 2.3, because those heuristics work by manipulating the syntac-
tic elements of state-variable and classical representations. Instead, domain-specific heuris-
tic functions will be needed.

One way to generalize the action model while still allowing the use of domain-independent
heuristics is to write each action as a combination of two parts – a “classical” part that uses
a classical or state-variable representation and a “nonclassical” part that uses some other
kind of representation – and write separate algorithms to reason about the classical and
nonclassical parts. Ivankovic et al. [294] coordinate the two parts in a manner somewhat like
planning with abstraction (see Section 2.7.6). Gregory et al. [245] use a “planning modulo
theories” approach that builds on recent work on SAT modulo theories [454, 40].

The action models in Section 2.1.3 can also be generalized in several other ways, for
example, to explicitly model the actions’ time requirements or to model uncertainty about
the possible outcomes. Such generalizations are discussed in Chapters 4, 5, and 6.

2.7.3 Heuristic Search Algorithms

Heuristic functions that estimated the distance to the goal were first developed in the mid-
1960s [448, 386, 159], and the A* algorithm was developed a few years later by Hart et al.
[254, 255]. A huge amount of subsequent work has been done on A* and other heuristic
search algorithms. Nilsson [458] and Russell and Norvig [515]20 give tutorial introductions
to some of these algorithms, and Pearl [465] provides a comprehensive analysis of a large
number of algorithms and techniques. Our definition of problem relaxation in Section 2.3
is based on Pearl’s.

Branch-and-bound algorithms have been widely used in combinatorial optimization
problems [372, 32, 423, 506]. DFBB (Section 2.2.6) is the best-known version, but most
forward-search algorithms (including, for example, A*) can be formulated as special cases
of branch-and-bound [289, 355, 445].

Although some related ideas were explored much earlier by Pohl [489], the first version
of GBFS that we know of is the algorithm that Russell and Norvig [515] called “greedy
search.” We believe the name “greedy best-first search” was coined by Bonet and Geffner
[81].

Computer programs for games such as chess and checkers typically use an acting proce-
dure similar to Run-Lookahead (Algorithm 2.8). In these programs, the Lookahead subrou-

in the size of the planning operators. The upper bound follows from the existence of a conver-
sion procedure that replaces each action’s effect x(c1, . . . , cn) ← d with the following set of literals:

{px(c1, . . . , cn, d)} ∪ {¬x(c1, . . . , cn, d′) | d′ ∈ Range(x(c1, . . . , cn)) \ {d}}.
20The version of A* in Russell and Norvig [515] does not guarantee optimality unless h is monotone (see

Section 2.2.5) because of a subtle flaw in its pruning rule.



tine is similar to the time-limited version of depth-first iterative deepening in Section 2.6.2,
except that the depth-first search is the well-known alpha-beta algorithm [337, 458, 515].

The IDA* algorithm in Section 2.2.8 is attributable to Korf [350]. Iterative-deepening
algorithms are a special case of node-regeneration algorithms that retract nodes to save
space and regenerate them later if they need to examine them again. There are several
other search algorithms (e.g., the RBFS algorithm [352]) that do node regeneration in one
way or another. Zhang [623] provides a survey of such algorithms.

2.7.4 Planning Graphs

A planning graph is similar to HFF’s relaxed planning graphs (see Figures 2.7 and 2.8), but
it also includes various mutex (i.e., mutual exclusion) conditions: for example, two actions
are mutex if they change the same state variable to different values. Rather than including
all r-applicable actions, each Ak only includes the ones whose preconditions are not mutex
in ŝk. Weld [596] gives a good tutorial account of this.

Planning graphs were first used in Blum and Furst’s GraphPlan algorithm [73]. Graph-
plan does an iterative-deepening search to generate successively larger r-states. For each
r-state ŝk such that the atoms of g are non-mutex in ŝk, GraphPlan uses a backward-search
backtracking algorithm to look for a relaxed solution π such that the actions in each âi are
non-mutex. Such a π is often called a parallel plan or layered plan, and it is a partially
ordered solution (although not necessarily an optimal one).

It can be proven that if a planning problem P has a solution, then a sufficiently large
planning graph will contain a solution to P . Hence Graphplan is complete. Furthermore,
because GraphPlan’s backward search is restricted to the planning graph, it usually can
solve classical planning problems much faster than planners based on Backward-search or
PSP [596].

GraphPlan inspired a large amount of follow-up research on planning-graph techniques.
These can be classified roughly as follows. Some of them extend planning graphs in various
nonclassical directions, such as conformant planning [546], sensing [598], temporal plan-
ning [547, 220, 394], resources [339, 340, 554], probabilities [72], soft constraints [420], and
distributed planning [295].

Others modify the planning-graph techniques to obtain improved performance on classical-
planning problems. Kautz and Selman’s BlackBox planner [322] translates a planning graph
into a satisfiability problem and searches for a solution using a satisfiability solver. Long and
Fox’s STAN [392] uses a combination of efficient planning-graph implementation and do-
main analysis. Gerevini and Serina’s LPG [224] does a stochastic local search on a network
of the actions in the planning graph.

2.7.5 Converting Planning Problems into Other Problems

Earlier we mentioned BlackBox’s technique of translating a planning graph into a satisfia-
bility problem. Blackbox can also be configured so that it instead will translate the planning
problem itself into a satisfiability problem [320]. The basic idea is, for n = 1, 2 . . . , to take
the problem of finding a plan of length n, rewrite it as a satisfiability formula fn, and try to
solve fn. If the planning problem is solvable, then fn will be solvable for sufficiently large
n.

Some related approaches involve translating the planning graph into a constraint-satisfaction
problem [44] and translating a network-flow representation of the planning problem into an
integer programming problem [569, 570]. Nareyek et al. [441] give an overview of such
techniques.



2.7.6 Planning with Abstraction

Planning with abstraction refers not to the kind of abstraction described in Chapter 1, but
instead to a relaxation process in which an abstract planning problem P ′ = (Σ′, s′0, g

′) is
formed from a classical planning problem P = (Σ, s0, g) by removing some of the atoms
(and any literals that contain those atoms) from P [517, 334, 332, 614, 234]. If a planner
finds a solution π′ = ⟨a′1, . . . , a′n⟩ for P ′, then π′ can be used to constrain the search for a
solution to P . The idea is to look for solutions π0, π1, . . . , πn, respectively, for the following
sequence of planning problems, in which each ai is the action whose abstraction is a′i:

P0 = (Σ, s0, pre(a1));

P1 = (Σ, s1, pre(a2)), where s1 = γ(s0, π0);

. . . ;

Pn−1 = (Σ, sn−1, pre(an)), where sn−1 = γ(sn−2, πn−2);

Pn = (Σ, sn, g), where sn = γ(sn−1, πn−1).

If a condition called the downward refinement property [614, 401, 402] is satisfied, then
π1, . . . , πn will exist and their concatenation will be a solution for P .

Planning with abstraction typically is done at multiple levels. To constrain the search
for a solution to P ′, one can first create and solve an abstraction P ′′ of P ′; to constrain the
search for a solution to P ′′, one can first create and solve an abstraction P ′′′ of P ′′; and so
forth.

An important characteristic of this approach is that in an abstraction of a planning
problem P , each state or action represents an equivalence class of states or actions in P .
Earlier, these equivalence classes were induced by the removal of atoms, but there are other
ways to create equivalence classes with analogous properties and use them for planning with
abstraction [401, 402].

There are many cases in which it is not possible to satisfy the downward refinement
property mentioned earlier, whence planning with abstraction is not guaranteed to work.
However, abstracted planning problems can also be used to provide heuristic functions to
guide the search for a solution to the unabstracted problem (see abstraction heuristics in
Section 2.7.9).

2.7.7 HTN Planning

In some planning domains, we may want the planner to use a set of recipes or “standard
operating procedures” for accomplishing some task. For example, if we want to move
container c1 from dock d1 to dock d2, then we might want to specify that the proper way
to accomplish this task is as follows:

Have a robot r go to d1, pick up c1, and then go to d2.

Such recipes can be written as HTN methods; see Section 3.5.2 for details.

The expressive power of HTN methods can be useful for developing practical applica-
tions [601, 442, 381], and a good set of methods can enable an HTN planner to perform
well on benchmark problems [393]. A drawback of this approach is that it requires the do-
main author to write and debug a potentially complex set of domain-specific recipes [307].
However, research is being done on techniques for aiding this process (see Section 7.3.3).

2.7.8 Temporal Logic

Search-control rules written in temporal logic [27, 366] can be used to describe constraints
that must be satisfied by the sequence of states that a plan will generate. As an example,
we discuss linear temporal logic (LTL) [177, 105], a modal logic that extends first-order logic



[533] to include ways to reason about the sequences of states that a state-transition system
might go through.

LTL formulas may include four modal operators X, F, G, and U (for “neXt,” “Future,”
“Globally,” and “Until”). These operators refer to properties of an infinite sequence of
states Mi = ⟨si, si+1, . . .⟩. Here are the possible forms an LTL formula ϕ might have, and
the conditions under which Mi satisfies ϕ:

• If ϕ is a statement in first-order logic, then Mi |= ϕ if si |= ϕ.

• If ϕ has the form Xψ where ψ is an LTL formula, then Mi |= ϕ if Mi+1 |= ψ.

• If ϕ has the form Fψ where ψ is an LTL formula, then Mi |= ϕ if there is a j ≥ i such
that Mj |= ψ.

• If ϕ has the form Gψ where ψ is an LTL formula, then Mi |= ϕ if for every j ≥ i,
Mj |= ψ.

• If ϕ has the form ψ1 Uψ2 where ψ1 and ψ2 are LTL formulas, then Mi |= ϕ if there is
a k ≥ i such that Mk |= ψ2 and Mj |= ψ1 for i ≤ j < k.

As in the HTN example earlier, suppose we want a robot r to move container c1 from dock
d1 to dock d2. Then we might want to specify the following restriction on r’s behavior:

r should not leave d1 without first picking up c1, and r should not put c1 down
until it reaches d1.

If we represent states and actions using the classical representation in Example 2.34, we
can write that restriction as the following LTL formula:

G[at(r, d1)⇒ (at(r, d1)Upos(c1, r))]

∧G[pos(c1, r)⇒ (pos(c1, r)Uat(r, d2))]

Such a formula can be used as a search-control rule in a forward-search algorithm similar to
the ones in Section 2.2, with modifications to make the algorithm backtrack whenever the
current plan π produces a sequence of states such that γ̂(s0, π) does not satisfy the formula.

One domain-independent planner that works this way is TLPlan [27, 366]. Another
that uses a different kind of temporal logic is TALplanner [155, 154]. In addition, LTL has
become popular for motion planning in robotics [68, 609, 313].

The benefits and drawbacks of this approach are similar to the ones that we stated
earlier for HTN planning. On one hand, a good set of control rules can enable an temporal-
logic planner to perform well [393], and the expressive power of the control rules can be
important in practical applications [156]. On the other hand, the domain author must write
and debug a potentially complex set domain-specific information [307], but research is being
done on techniques to aid this process (see Section 7.3.3).

2.7.9 Domain-Independent Planning Heuristics

For many years, it was tacitly assumed that good heuristic functions were necessarily
domain-specific. This notion was disproven when the domain-independent hadd and hmax

heuristics in Section 2.3.1 were developed by Bonet and Geffner [81] for use in their HSP
planning system. HSP’s excellent performance in the 1998 planning competition [414]
sparked a large amount of subsequent research on domain-independent planning heuristics.
Most of them can be classified roughly as delete-relaxation heuristics, landmark heuristics,
critical-path heuristics, and abstraction heuristics [268]. We discuss each of these classes
next.



Delete-Relaxation Heuristics

Delete-relaxation and the h+ and hFF heuristics (see Section 2.3.2) were pioneered primarily
by Hoffmann [275, 279], and the name of the hFF heuristic comes from its use in the FF
planning system [277]. Delete-relaxation can also be used to describe the hadd and hmax

heuristics in Section 2.3.1; hmax is the optimal parallel solution (see Section 2.7.4) for the
delete-relaxed problem [269, 67].

Helmert’s [265, 266] causal graph heuristic involves analyzing the planning domain’s
causal structure using a directed graph whose nodes are all of the state variables in the plan-
ning domain, and whose edges represent dependencies among the state variables. Although
it is not immediately obvious that this is a delete-relaxation heuristic, a delete-relaxation
heuristic hcea has been developed that includes both the causal graph heuristic and hadd as
special cases [269].

Landmark Heuristics

The early work on landmarks by Porteous, Sebastia, and Hoffmann [491] has been hugely
influential, inspiring a large amount of additional work on the subject. The landmark
heuristic that we described in Section 2.3.3 is a relatively simple one, and there are many
ways to improve it.

The problem of determining whether a fact is a landmark is PSPACE-complete, and
so is the problem of deciding whether one landmark must precede another. Consequently,
research on landmark generation has focused on the development of polynomial-time criteria
that are sufficient (but not necessary) to guarantee that a fact is a landmark or that one
landmark must proceed another. Some of the better-known approaches involve relaxed
planning graphs [280], domain transition graphs [507, 508], and hitting sets [89].

Other work on landmarks includes, for example, using them to find optimal solutions to
planning problems [315], improving the efficiency of planning by splitting planning problems
into subproblems [582], and the development of landmark heuristics for use in temporal
planning [316].

Critical-Path Heuristics

There is a set {hm | m = 1, 2, . . .} of heuristic functions based loosely on the notion of
critical paths (an important concept in project scheduling). They approximate the cost of
achieving a goal g by the cost of achieving the most costly subset of size m [260, 258]. More
specifically, for m = 1, 2, . . . , let

∆m(s, g) =


0 if s |= g,

mina∈Rel(g) cost(a) + ∆m(s, γ−1(g, a)) if |g| ≤ m,
maxg′⊆g and |g′|≤m∆m(s, g′) otherwise,

where Rel(g) is the set of all actions that are relevant for g (see Definition 2.27). Then
hm(s) = ∆m(s, g). It is easy to show that h1 = hmax.

For each m, the heuristic hm is admissible; and if we hold m fixed then hm can be
computed in polynomial time in |A|+

∑
x∈X |Range(x)|, the number of actions and ground

atoms in the planning domain. However, the computational complexity is exponential in
m.

Abstraction Heuristics

An abstraction of a planning domain Σ is a γ-preserving homomorphism from Σ onto a
smaller planning domain Σ′. For each planning problem P = (Σ, s0, g), this defines a
corresponding abstraction P ′ = (Σ′, s′0, g

′); and if we let c∗ denote the cost of an optimal



solution to a planning problem, then it follows that c∗(P ′) ≤ c∗(P ). If Σ′ is simple enough
that we can compute c∗(P ′) for every planning problem P ′ in Σ′, then the function h(s) =
c∗(Σ′, s′, g′) is an admissible heuristic for P .

The best-known such abstraction is pattern database abstraction, an idea that was orig-
inally developed by Culberson and Schaeffer [131] and first used in domain-independent
classical planning by Edelkamp [166]. The pattern is a subset X ′ of the state variables in
Σ, and the mapping from Σ to Σ′ is accomplished by removing all literals with variables
that are not in X ′. The pattern database is a table (constructed by brute force) that gives
c∗(P ′) for every planning problem P ′ in Σ′.

One problem is deciding which state variables include in X ′; algorithms have been
developed to do this automatically [259, 271]. A bigger problem is that the size of the
pattern database and the cost of computing each entry, both grow exponentially with the
size ofX ′. This problem can be alleviated [167, 33] using symbolic representation techniques
that we discuss in Section 5.4, but it still is generally necessary to keep X ′ small [272].
Because the database provides no information pertaining to variables not in X ′, this limits
the informedness of h.

An awareness of this limitation has led to research on other kinds of criteria for aggre-
gating sets of states in Σ into individual state in Σ′, including merge-and-shrink abstraction
[270, 272] and structural-pattern abstraction [318], as well as ways to improve the heuristic’s
informedness by composing several different abstractions [317].

2.7.10 Plan-Space Planning

The two earliest plan-space planners were NOAH [517] and NONLIN [559], both of which
combined plan-space search with HTN task refinement (see Section 3.5.2). Initially plan-
space planning was known as nonlinear planning, reflecting some debate over whether
“linear” planning referred to the structure of the planner’s current set of actions (a sequence
instead of a partial order) or to its search strategy that addresses one goal after the previous
one has been completely solved.

Korf [351] introduced distinctions among problems with fully independent goals, serial-
izable goals (where there is an ordering for solving the goals without violating the previously
solved ones), and arbitrarily interacting goals.21 This goal dependence hierarchy was further
refined by Barrett and Weld [39], who introduced a planner-dependent notion of trivially
and laboriously serializable goals. According to their analysis, plan-space planners can more
often lead to trivially serializable goals that are easily solved.

In a linear sequence of actions, it is trivial to check whether some condition is true or not
in some current state. But in a partially ordered and partially instantiated set of actions,
it is less easy to verify whether a proposition is true before or after the execution of an
action in a partially ordered and partially instantiated set of actions. The so-called modal
truth criterion (MTC) [113] provided a necessary and sufficient condition for the truth of
a proposition at some point in a partial plan π and showed that if π contains actions with
conditional effects, then the evaluation of the MTC is NP-hard. This complexity result led
to a belief that plan-space planning with extended representation is impractical, which is
incorrect because planning does not require a necessary and sufficient truth condition. It
only has to enforce a sufficient truth condition, which basically corresponds in PSP to the
identification and resolution of flaws, performed in polynomial time. A detailed analysis of
the MTC in planning appears in [310].

The SNLP algorithm [410] introduced the concept of a systematic search in which a
plan-space planner generates each partial plan at most once [305, 335]. We use this concept
in Definition 2.30 (see the paragraph after the definition).

21For example, Exercise 2.10 in the next section uses a nonserializable planning problem known as the
Sussman anomaly [591].



The UCPOP planner [470, 37, 597] extended SNLP to handle some extensions to the clas-
sical domain representation, including conditional effects and universally quantified effects
[467, 468] Several other extensions have also been studied, such as incomplete information
and sensing actions [472, 183, 237] and some kinds of extended goals [599].

Other work related to planning performance has included studies of search control and
pruning [222], commitment strategies [421, 422, 620], state space versus plan space [577],
and domain features [336].

Kambhampati et al. [311, 309] provide a general formalization that takes into account
most of the above issues.

2.7.11 Online Planning

The automated planning literature started very early to address the problems of integrating
a planner in the acting loop of an agent. Concomitant to the seminal paper on STRIPS
[196], Fikes [195] proposed a program called Planex for monitoring the execution of a
plan and revising planning when needed. Numerous contributions followed (e.g., [17, 251,
537, 578, 490, 440, 96]). Problems involving integration of classical planning algorithms
(as discussed in this chapter) into the control architecture of specific systems, such as
spacecraft, robots, or Web services, have been extensively studied. However, the dominant
focus of many contributions has been the integration of planning and execution (rather
than acting), under an assumption that the plans generated by the planning algorithms
were directly executable – an assumption that is often unrealistic. In the next chapter,
we will return to the integration of planning and acting, with refinement of actions into
commands, and ways to react to events.

The receding-horizon technique has been widely used in control theory, specifically in
model-predictive control. The survey by Garcia et al. [210] traces its implementation back
to the early sixties. The general idea is to use a predictive model to anticipate over a given
horizon the response of a system to some control and to select the control such that the
response has some desired characteristics. Optimal control seeks a response that optimizes
a criterion. The use of these techniques together with task planning has been explored by
Dean and Wellman [145].

Subgoaling has been used in the design of several problem-solving and search algorithms
(e.g., [370, 351]). In planning, issues such as serializable goals and abstraction hierarchies
with interesting properties have been extensively studied (e.g., [38, 333, 614]). Sampling
techniques have been developed and are widely used for handling stochastic models of
uncertainty and nondeterminism, about which more is said in Chapter 6.

2.8 Exercises

2.1. Let P1 = (Σ, s0, g1) and P2 = (Σ, s0, g2) be two state-variable planning problems with
the same planning domain and initial state. Let π1 = ⟨a1, . . . , an⟩ and π2 = ⟨b1, . . . , bn⟩ be
solutions for P1 and P2, respectively. Let π = ⟨a1, b1, . . . , an, bn⟩.
(a) If π is applicable in s0, then is it a solution for P1? For P2? Why or why not?

(b) E1 be the set of all state variables that are targets of the effects in eff(a1), . . . , eff(an),
and E2 be the set of all state variables that are targets of the effects in eff(b1), . . . , eff(bn).
If E1 ∩ E2 = ∅, then is π applicable in s0? Why or why not?

(c) Let P1 be the set of all state variables that occur in pre(a1), . . . ,pre(an), and P2 be
the set of all state variables that occur in the preconditions of pre(b1), . . . ,pre(bn). If
P1 ∩P2 = ∅ and E1 ∩E2 = ∅, then is π applicable in s0? Is it a solution for P1? For
P2? Why or why not?

2.2. Let S be the state-variable state space discussed in Example 2.7. Give a set of restric-
tions such that s is a state of S if and only if it satisfies those restrictions.



take(r, l, c)
pre: loc(r)= l, pos(c)= l,

cargo(r)= nil
eff: cargo(r)= c, pos(c)← r

put(r, l, c)
pre: loc(r)= l, pos(c)= r
eff: cargo(r)← nil, pos(c)← l

move(r, l,m)
pre: loc(r)= l
eff: loc(r)←m

								loc1	 						loc2	

r1	 r2	
c1	 c2	

s0 = {loc(r1)= loc1, loc(r2)= loc2,

cargo(r1)= nil, cargo(r2)= nil,

pos(c1)= loc1, pos(c2)= loc2}

g = {pos(c1)= loc2, pos(c2)= loc2}

(a) action templates (b) initial state and goal

Figure 2.16: Planning problem for Exercise 2.7. In the action templates, r is a robot, l
and m are locations, and c is a container. In this problem, unlike some of our previous
examples, both robots may have the same location.

2.3. Give a state-variable planning problem P1 and a solution π1 for P1 such that π1 is
minimal but not shortest. Give a state-variable planning problem P2 and a solution π2 for
P2 such that π2 is acyclic but not minimal.

2.4. Under what conditions will GBFS switch to a different path if its current path is not
a dead end?

2.5. Let P be any solvable state-variable planning problem.

(a) Prove that there will always be an execution trace of Forward-search that returns a
shortest solution for P .

(b) Prove that there will always be an execution trace of Backward-search that returns a
shortest solution for P .

2.6. What might be an effective way to use hadd, hmax, hFF, and hsl with Backward-search?

2.7. Figure 2.16 shows a planning problem involving two robots whose actions are controlled
by a single actor.

(a) If we run Forward-search on this problem, how many iterations will the shortest execu-
tion traces have, and what plans will they return? For one of them, give the sequence
of states and actions chosen in the execution trace.

(b) If we run Backward-search on this problem, how many iterations will the shortest
execution traces have, and what plans will they return? For one of them, give the
sequence of goals and actions chosen in the execution trace.

(c) Compute the values of hadd(s0) and h
max(s0).

(d) In the HFF algorithm, suppose that instead of exiting the loop at the first value of k
such that ŝk r-satisfies g, we instead keep iterating the loop. At what value of k will
|ŝk| reach its maximum? At what value of k will |Ak| reach its maximum?

(e) Compute the value of hFF(s0).

(f) Compute the value of hsl(s0).

2.8. Here is a state-variable version of the problem of swapping the values of two variables.
The set of objects is B = Variables ∪ Numbers, where Variables = {foo, bar, baz}, and
Numbers = {0, 1, 2, 3, 4, 5}. There is one action template:



a1	=	assign(foo,bar,5)

value(bar)=1
value(foo)=5

value(bar)=5
value(foo)=1

value(baz)=0

finish start

value(foo)=5

value(bar)=5

value(bar)=1

value(x)=1
a2	=	assign(bar,x,1)

Figure 2.17: Partial plan for swapping the values of two variables.

assign(x1, x2, n)
pre: value(x2)=n
eff: value(x1)←n

where Range(x1) = Range(x2) = Variables, and Range(n) = Numbers. The initial state
and goal are

s0 = {value(foo)=1, value(bar)=5, value(baz)=0};
g = {value(foo)=5, value(bar)=1}.

At s0, suppose GBFS is trying to choose between the actions a1 = assign(baz,foo,1) and
a2 = assign(foo,bar,5). Let s1 = γ(s0, a1) and s2 = γ(s0, a2). Compute each pair of heuristic
values below, and state whether or not they will produce the best choice.

(a) hadd(s1) and h
add(s2).

(b) hmax(s1) and h
max(s2).

(c) hFF(s1) and h
FF(s2).

(d) hsl(s1) and h
sl(s2).

2.9. Figure 2.17 shows a partial plan for the variable-swapping problem in Exercise 2.8.

(a) How many threats are there? What are they? What are their resolvers?

(b) Can PSP generate this plan? If so, describe an execution trace that will produce it.
If no, explain why not.

(c) In PSP’s search space, how many immediate successors does this partial plan have?

(d) How many solution plans can PSP produce from this partial plan?

(e) How many of the preceding solution plans are minimal?

(f) Trace the operation of PSP if we start it with the plan in Figure 2.17. Follow whichever
of PSP’s execution traces finds the shortest plan.

2.10. Blocks world is a well-known classical planning domain in which some children’s
blocks, Blocks = {a, b, c, . . .}, are arranged in stacks of varying size on an infinitely large
table, table. To move the blocks, there is a robot hand, hand, that can hold at most one
block at a time.

Figure 2.18(a) gives the action templates. For each block x, loc(x) is x’s location, which
may be table, hand, or another block; and top(x) is the block (if any) that is on x, with
top(x) = nil if nothing is on x. Finally, holding tells what block the robot hand is holding,
with holding = nil if the hand is empty.



pickup(x)
pre: loc(x) = table, top(x) = nil,

holding = nil
eff: loc(x)← hand, holding←x

putdown(x)
pre: holding = x
eff: loc(x)← table, holding← nil

unstack(x, y)
pre: loc(x) = y, top(x) = nil,

holding = nil
eff: loc(x)← hand, top(y)← nil,

holding←x

stack(x, y)
pre: holding = x, top(y) = nil
eff: loc(x)← y, top(y)←x,

holding← nil

Range(x) = Range(y) = Blocks

a	
c	

b	

Objects = Blocks ∪ {hand, table, nil}
Blocks = {a, b, c}

s0 = {top(a)= c, top(b)= nil,

top(c)= nil, holding= nil,

loc(a)= table, loc(b)= table,

loc(c)= a}

g = {loc(a)= b, loc(b)= c}

(a) action templates (b) objects, initial state, and goal

Figure 2.18: Blocks-world planning domain, and a planning problem.

hold=&x
clear(a)=T

unstack(x,a)

loc(b)=c
loc(a)=b

loc(a)=table
hold=nil

loc(b)=table

finish start

hold=nil

loc(x)=a
stack(a,b)
hold=a

hold=nil
clear(x)=T clear(b)=T

pickup(a)

loc(a)=table

hold=nil
clear(a)=T

loc(x)=table

putdown(x)
hold=x

loc(x)=hand

hold=nil
clear(x)=T

hold=a
loc(a)=hand

pickup(b)
clear(b)=T

hold=nil
loc(b)=table

hold=b
loc(b)=hand

loc(b)=c
stack(b,c)

hold=b
clear(c)=T

hold=nil
clear(c)=F

loc(a)=b
clear(b)=F

loc(c)=a
clear(a)=F
clear(b)=T
clear(c)=T

Figure 2.19: Partial plan for Exercise 2.12.

(a) Why are there four action templates rather than just two?

(b) Is the holding state variable really needed? Why or why not?

(c) In the planning problem in Figure 2.18(b), how many states satisfy g?

(d) Give necessary and sufficient conditions for a set of atoms to be a state.

(e) Is every blocks world planning problem solvable? Why or why not?

2.11. Repeat Exercise 2.8 on the planning problem in Figure 2.18(b), with s1 = γ(s0, unstack(c,a))
and s2 = γ(s0, pickup(b)).

2.12. Repeat Exercise 2.9 using the planning problem in Figure 2.18(b) and the partial
plan shown in Figure 2.19.



2.13. Let π be a partially ordered solution for a planning problem P = (Σ, s0, g).

(a) Write a simple modification of Run-Lazy-Lookahead to execute π.

(b) Suppose your procedure is executing π, and let π′ be the part of π that it has not
yet executed. Suppose an unanticipated event invalidates some of the total orderings
of π′ (i.e., not all of them will still achieve g). Write an algorithm to choose a total
ordering of π′ that still achieves g, if one exists.

2.14. If π = ⟨a1, . . . , an⟩ is a solution for a planning problem P , other orderings of the
actions in π may also be solutions for P .

(a) Write an algorithm to turn π into a partially ordered solution.

(b) Are there cases in which your algorithm will find a partially ordered solution that
PSP will miss? Are there cases in which PSP will find a partially ordered solution
that your algorithm will miss? Explain.

2.15. Let P be a planning problem in which the action templates and initial state are
as shown in Figure 2.16, and the goal is g = {loc(c1)= loc2}. In the Run-Lazy-Lookahead
algorithm, suppose the call to Lookahead(P ) returns the following solution plan:

π = {take(r1,loc1,c1),move(r1,loc1,loc2), put(r1,loc2,c1)}.

(a) Suppose that after the actor has performed take(r1,loc1,c1) and move(r1,loc1,loc2),
monitoring reveals that c1 fell off of the robot and is still back at loc1. Tell what will
happen, step by step. Assume that Lookahead(P ) will always return the best solution
for P .

(b) Repeat part (a) using Run-Lookahead.

(c) Suppose that after the actor has performed take(r1,loc1,c1), monitoring reveals that
r1’s wheels have stopped working, hence r1 cannot move from loc1. What should the
actor do to recover? How would you modify Run-Lazy-Lookahead, Run-Lookahead, and
Run-Concurrent-Lookahead to accomplish this?



Chapter 3

Deliberation with Refinement
Methods

Chapter 2 concentrated mostly on planning with descriptive action models. Although it
described some ways for an actor to receive guidance from such a planner, it did not describe
the operational models that an actor might need to perform the planned actions. In the
current chapter, we present a formalism for operational models and describe how to use
these models for deliberative acting.

Section 3.1 describes a formalism for operational models based on refinement methods.
A method specifies how to accomplish a task (an abstract activity of some kind) by refining
it into other activities that are less abstract. These activities may include other tasks that
will need further refinement and commands that can be sent to the execution platform.
Section 3.2 describes an acting procedure, RAE, that uses a collection of refinement methods
to generate and traverse a refinement tree similar to the one in Figure 1.2. It recursively
refines abstract activities into less abstract activities, ultimately producing commands to
the execution platform.

If we modify the refinement methods by replacing the commands with descriptive mod-
els, the modified methods can also be used for planning. The basic idea is to augment the
acting procedure with predictive lookahead of the possible outcome of commands that can
be chosen. Section 3.3 describes a planner, SeRPE, that does this. Section 3.4 describes
how to integrate such a planner into acting procedures.

Although the formalism in this chapter removes many of the simplifying assumptions
that we made in Chapter 2, it still incorporates some assumptions that do not always hold
in practical applications. Section 3.5 discusses these and also includes historical remarks.

3.1 Operational Models

In this section, we present a formalism for operational models of actions, and describe how
to use these models for deliberative acting. This formalism weakens or removes several of
the simplifying assumptions that we made in Section 2.1.1:

• Dynamic environment. The environment is not necessarily static. Our operational
models deal with exogenous events, that is, events due to other causes than the actor’s
actions.

• Imperfect information. In Section 2.1.1, we assumed that the actor had perfect infor-
mation about its environment. In reality, it is rare for an actor to be able to know the
current value of every state variable and to maintain this knowledge while the world
evolves. Operational models often need to deal with what the actor knows or does
not know and how to acquire necessary information.

A convenient notation for handling partial knowledge is to extend the range of every
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state variable to include a special symbol, unknown, which is the default value of any
state variable that has not been set or updated to another value.

• Overlapping actions. Actions take time to complete, and multiple actions may proceed
simultaneously. To manage an agenda of overlapping activities, the formalism in this
chapter includes cases in which actions may proceed simultaneously. However, we will
not introduce a formal model of time durations until Chapter 4. For now, facts are
not time stamped but simply refer to the current state of the world.1

• Nondeterminism. An action may have multiple possible outcomes, because of acci-
dents, interfering exogenous events, or sensing and information acquisition. The actor
has to systematically observe which outcomes actually occur to respond accordingly.
Our operational models provide a way to deal with such observations. However, we
will not introduce a formal model of nondeterministic actions and the ability to reason
about them until Chapter 5 and Chapter 6.

• Hierarchy. Actors are often organized hierarchically, and our operational models
provide a way to represent and organize a hierarchical actor’s deliberations. However,
the formalism still incorporates some simplifying assumptions that do not always hold
in practical applications. For example, a hierarchical actor may use different state and
action spaces in different parts of the hierarchy (rather than the same ones throughout,
as assumed in Section 3.1), and there are several ways in which it may traverse the
hierarchy (e.g., in layers, or as a collection of components), rather than using depth-
first recursion as described in Section 3.2 and Section 3.3. For further discussion of
these issues, see Section 3.5.

• Discrete and Continuous Variables. Actors may need to deal with both discrete and
continuous variables. The operational model introduced in this chapter allows for
state variables whose range can be finite or nonfinite, discrete or continuous. In
Section 7.4, we discuss how to reason about hybrid models that allow for both discrete
and continuous variables.

3.1.1 Basic Ingredients

We will use a state variable representation similar to the one in Definition 2.6, but with some
generalizations. One of them is that if x ∈ X is a state variable, then Range(x) can be finite
or nonfinite, discrete or continuous. State variables ranging over multidimensional domains,
such as vectors, matrices and other data structures, are also permitted. For example, we
could let coordinates(r1) ∈ R3 be the current coordinates (in some reference frame) of a
robot r1.

Recall from Chapters 1 and 2 that ξ is the actor’s currently observed state. A fact is any
ground atom x=v in ξ. For example, if ξ contains position(door3)=open and coordinates(r1)=(3.5, 7.61, 1.58),
then door3 is currently open, and r1 is at the coordinates (3.5, 7.61, 1.58) in some reference
frame.

One way we used state variables in Chapter 2 was to test their values (e.g., in an
action’s preconditions). We do the same in this chapter, but the tests will be more general.
A simple test has the form (x ◦ v), where ◦ ∈ {=, ̸=, <,>}. A compound test is a negation,
conjunction, or disjunction of simple and compound tests. Tests are evaluated with respect
to the current state ξ. In tests, the symbol unknown is not treated in any special way; it is
just one of the state variable’s possible values.

As in Chapter 2, a state variable also can be the target of an assignment statement, but
here the assignments are more general. An assignment is a statement of the form x← expr,
where expr may be any ground value in Range(x), or any expression that returns a ground
value in Range(x) without having side effects on the current state. When the assignment is

1This does not preclude the author of a domain model from including a time stamp as an ordinary state
variable; other limited capabilities for handling temporal conditions are briefly discussed in Section 3.2.4.



executed, it will update the value of the state variable x to the value that expr has in the
current state ξ.

Three additional ingredients are needed in this representation:

• Tasks: a task is a label naming an activity to be performed. It is of the form task-
name(args), where task-name designates the task considered and the task arguments
args is an ordered list of objects and values. A task is refined into subtasks and
commands. The actor has to perform external tasks, which are specified by the user
or a planner, as well as internal tasks that result from the refinement of other tasks.

• Events: an event designates an occurrence detected by the execution platform; it is in
the form event-name(args). Events are, for example, the activation of an emergency
signal or the arrival of a transportation vehicle; they correspond to exogenous changes
in the environment to which the actor may have to react.

• Commands: a command is the name of a primitive function that can be executed by
the execution platform. It is in the form command-name(args). When a command is
triggered, there is a state variable in ξ, denoted status(command) ∈ {running, done,
failed}; it is updated by the platform to express that the execution of that command
is going on, has terminated or failed.

Example 3.1. Consider a simple domain where a single robot is servicing a harbor navigat-
ing in a topological map, searching for a particular container. The objects are Robots = {r1},
Containers = {c1, c2, . . .}, and Locations = {loc1, loc2, . . .}. The following state variables
are kept up-to-date by the robot’s execution platform:

• loc(r) ∈ Locations is the current location of robot r.

• load(r) ∈ Containers ∪ {nil} indicates whether robot r is carrying a container, and if
so then which one.

• pos(c) ∈ Locations∪Robots∪ {unknown} gives a container’s position at a location, on
a robot, or unknown.

• view(l) ∈ {T, F} indicates whether the robot has perceived the content of location l.
When view(l)=T then for every container c in l, pos(c) = l is a fact in ξ.

The robot’s execution platform can execute the following commands:

• move-to(r, l): robot r goes to location l

• take(r, o, l): r takes object o at location l

• put(r, o, l): r puts o in l

• perceive(r, l): r perceives which objects are in a location l

These commands are applicable under some conditions, for example, move-to requires the
destination l to be reachable from the current location, and take and put require r to be
in l. Upon the completion of a command, the platform updates the corresponding state
variables. For example, when perceive(r, l) terminates, view(l)=T and pos(c) = l for every
container c in l.

3.1.2 Refinement Methods

A refinement method is either a triple (task, precondition, body) or a triple (event, precondition, body).
The first field in a method, either a task or an event, is its role; it tells what the method
is about. When the precondition holds in the current state, the method can be used to
address the task or event in its role by running a program given in the method’s body. This
program refines the task or event into a sequence of subtasks, commands, and assignments.

As for actions, refinement methods are specified as parameterized method templates



that have one of the following forms:

method-name(arg1, . . . , argk)
task: task-identifier
pre: test

body: program

method-name(arg1, . . . , argk)
event: event-identifier
pre: test

body: program

where

• method-name is a unique symbol designating the method;

• arg1, . . . , argk are variables appearing in the method; an applicable instance of a
method binds these variables to objects and values;

• task-identifier gives the task to which the method is applicable; similarly for an event;

• test specifies conditions under which the method may be used;

• program is a sequences of steps with the usual control constructs (if-then-else, while,
loop, etc.).2 A step in this sequence is either an assignment, a command to the exe-
cution platform or a task that needs further refinement. Assignments and commands
are as defined in previous section.

An instance of a method template is given by the substitution of its variables arg1, . . . , argk
by constants. A method whose role matches a current task or event and whose precondi-
tion is satisfied by the current values of the state variables in ξ has an applicable current
instance. A method may have several applicable instances for the current state, tasks, and
events. An applicable instance of a method, if executed, addresses a task or an event by
refining it into subtasks, commands, and updates in ξ, as specified in its body.

3.1.3 Illustrations

Let us illustrate the refinement method representation with a few examples.

Example 3.2. Consider the task for the robot in Example 3.1 to pick up a particular
container c. The robot may know the location of c (i.e., this information may be in ξ), in
which case the robot goes to that location to take c. Otherwise, the robot will have to look
at the locations it can reach until it finds what it is looking for. This is expressed through
two tasks, fetch and search, and the following refinement methods:

m-fetch(r, c)
task: fetch(r, c)
pre:

body: if pos(c) = unknown then search(r, c)
else if loc(r) = pos(c) then take(r, c, pos(c))
else do

move-to(r, pos(c))
take(r, c, pos(c))

m-fetch refines the task fetch into a task search when the position of c is unknown; otherwise,
it triggers the appropriate take and, if needed, move-to commands to pick up c.

2We use informal pseudocode descriptions of the bodies of methods.



m-search(r, c)
task: search(r, c)
pre: pos(c) = unknown

body: if ∃ l ∈ Locations such that view(l) = F then do
move-to(l)
perceive(l)
if pos(c) = l then take(r, c, l)
else search(r, c)

else fail

The method performs a search by going to a location l, the content of which is not yet
known, and perceiving l. If c is there, the robot takes it; otherwise the method recursively
searches in other locations. If all locations have been perceived, the search task fails.

The above example illustrates two task refinement methods. Let us provide the robot
with a method for reacting to an event.

Example 3.3. Suppose that a robot in the domain of Example 3.1 may have to react to
an emergency call by stopping its current activity and going to the location from where
the emergency originates. Let us represent this with an event emergency(l, i) where l is the
emergency origin location and i ∈ N is an identification number of this event. We also need
an additional state variable: emergency-handling(r)∈{T, F} indicates whether the robot r is
engaged in handling an emergency.

m-emergency(r, l, i)
event: emergency(l, i)
pre: emergency-handling(r)=F

body: emergency-handling(r)← T
if load(r) ̸= nil then put(r, load(r))
move-to(l)
address-emergency(l, i)

This method is applicable if robot r is not already engaged in handling an emergency. In
that case, the method sets its emergency-handling state variable; it unloads whatever the
robot is loaded with, if any; it triggers the command to go the emergency location, then
it sets a task for addressing this emergency. Other methods are supposed to switch back
emergency-handling(r) when r has finished with the task address-emergency.

The previous simple examples introduced the representation. Let us now illustrate how
refinement methods can be used to handle the more complex tasks discussed in Figure 1.2,
such as opening a door. To keep the example readable, we consider a one-arm robot and
assume that the door is unlocked (Exercises 3.9 and 3.10 cover other cases).

Example 3.4. Let us endow the robot with methods for opening doors. In addition to
the four state variables loc, load, pos, view introduced previously, we need to characterize
the opening status of the door and the position of the robot with respect to it. The two
following state variables fill that need:

• reachable(r, o) ∈{T, F}: indicates that robot r is within reach of object o, here o is
the door handle;

• door-status(d) ∈ {closed, cracked, open, unknown}: gives the opening status of door d,
a cracked door is unlatched.

Furthermore, the following rigid relations are used:

• adjacent(l, d): means that location l is adjacent to door d;

• toward-side(l, d): location l is on the “toward” side of door d (i.e., where the door
hinges are);



• away-side(l, d): location l is on the “away” side of door d;

• handle(d, o): o is the handle of door d;

• type(d, rotates) or type(d,slide): door d rotates or slides;

• side(d, left) or side(d, right): door d turns or slides to left or to the right respectively
with respect to the “toward” side of the door.

The commands needed to open a door are as follows:

• move-close(r, o): robot r moves to a position where reachable(r, o)=T;

• move-by(r, λ): r performs a motion of magnitude and direction given by vector λ;

• grasp(r, o): robot r grasps object o;

• ungrasp(r, o): r ungrasps o;

• turn(r, o, α): r turns a grasped object o by angle α ∈ [−π,+π];
• pull(r, λ): r pulls its arm by vector λ;

• push(r, λ): r pushes its arm by λ;

• monitor-status(r, d): r focuses its perception to keep door-status updated;

• end-monitor-status(r, d): terminates the monitoring command.

We assume that commands that take absolute parameters stop when an obstacle is de-
tected, for example, turn(r, o, α) stops when the turning reaches a limit for the rotation of
o, similarly for move-by.

m-opendoor(r, d, l, o)
task: opendoor(r, d)
pre: loc(r) = l ∧ adjacent(l, d) ∧ handle(d, o)

body: while ¬reachable(r, o) do
move-close(r, o)

monitor-status(r, d)
if door-status(d)=closed then unlatch(r, d)
throw-wide(r, d)
end-monitor-status(r, d)

m-opendoor is a method for the opendoor task. It moves the robot close to the door handle,
unlatches the door if it is closed, then pulls it open while monitoring its status. It has two
subtasks: unlatch and throw-wide.

m1-unlatch(r, d, l, o)
task: unlatch(r, d)
pre: loc(r, l)∧ toward-side(l, d)∧ side(d, left)∧ type(d, rotate)

∧ handle(d, o)
body: grasp(r, o)

turn(r, o, alpha1)
pull(r, val1)
if door-status(d)=cracked then ungrasp(r, o)
else fail

m1-throw-wide(r, d, l, o)
task: throw-wide(r, d)
pre: loc(r, l)∧ toward-side(l, d)∧ side(d,left)∧ type(d, rotate)

∧ handle(d, o)∧ door-status(d)=cracked
body: grasp(r, o)

pull(r, val1)
move-by(r, val2)



The preceding two methods are for doors that open by rotating on a hinge, to the left and
toward the robot. Other methods are needed for doors that rotate to the right, doors that
rotate away from the robot, and sliding doors (see Exercise 3.7).

The method m1-unlatch grasps the door handle, turns then pulls the handle before
ungrasping. The method m1-throw-wide grasps the handle, pulls, then moves backward.
Here alpha1 is a positive angle corresponding to the maximum amplitude of the rotation of
a door handle (e.g., about 1.5 rad), val1 is a small vector toward the robot (an amplitude of
about 0.1 meter), and val2 is a larger vector backward (of about 1 meter). More elaborate
methods may, for example, survey the grasping status of whatever the robot is grasping, or
turn the handle in the opposite direction before ungrasping it (see Exercise 3.8).

3.1.4 Updates of the Current State

Recall that ξ is the actual state of the world, not a predicted state. For example, posi-
tion(door3) gets the value open not when the robot decides to open it but when it actually
perceives it to be open. This state variable is said to be observable. This does not mean
that it is always known; it only means that there are states in which it can be observed. In
Examples 3.2 and 3.4, all state variables are observable. The value of some of them can be
at some point unknown, for example, pos(c) for containers at location l where view(l)=F.
Observable state variables are updated by the execution platform when adequate sensing is
performed.

Some state variables represent the deliberation state of the actor. In Example 3.3, the
state variable emergency-handling corresponds to a deliberation decision. It is said to be a
computable state variable. Another illustration of computable state variables is, for example,
stable(o,pose)=T, meaning that object o in some particular pose is stable, as a result of some
geometric and dynamic computation. Computable state variables are updated by methods
when the corresponding decision or computation is performed.

Further, there are state variables that refer to observable properties of the environment
that change independently of the actor’s activity. For example, when in room1, the robot
detects that a person is there. But outside of room1 the robot cannot trust such a fact
indefinitely. At some point, it has to consider that the location of that person is unknown
unless it can sense it again.

The general problem of maintaining the current state of the world requires complex han-
dling of uncertainty, time, and nonmonotonic reasoning. For example, there is a difference
between knowing nothing about the whereabouts of a person and having seen her some
time ago in room1. This knowledge erodes with time.

To keep things simple, we assume in this chapter that updates in ξ for observed and
computed state variables are timely and exact. Every state variable has a value, possibly
unknown. Known values correctly reflect the current state of the actor and its environments.

3.2 A Refinement Acting Engine

Refinement methods provide operational models for how to accomplish a task or react to
an event. This section defines a Refinement Acting Engine (RAE), which provides the
techniques needed for acting with this representation. RAE is inspired from a programming
language and open source software, called OpenPRS, widely used in robotics.3 RAE is
capable of trying alternative methods in nondeterministic choices. Planning techniques for
performing informed choices are discussed in the following section.

After a global view, we will describe three procedures that implement a simple version
of RAE (Section 3.2.2). Some of the possible extensions of that engine are then discussed

3We depart from the OpenPRS system (https://git.openrobots.org/projects/openprs/wiki) by us-
ing a state variable representation and an abstract syntax and by dropping a few nonessential programming
facilities.

https://git.openrobots.org/projects/openprs/wiki


(Section 3.2.4).

3.2.1 Global View

RAE uses a library of methodsM to address new tasks the actor has to perform and new
events it has to react to. The input to RAE consists of (i) a set of facts reflecting the
current state of the world ξ, (ii) a set of tasks to be performed and (iii) a set of events
corresponding to exogenous occurrences to which the actor may have to react. These three
sets change continually. Tasks come from task definition sources, for example, a planner
or a user. Events come from the execution platform, for example, through a sensing and
event recognition system. Facts come either from the execution platform, as updates of the
perceived state of the world, or from RAE, as updates of its own reasoning state.

Acting

tasks

Execution Platform

Environment

eventscommands

𝜉M facts

Figure 3.1: A simple architecture for a refinement acting engine.

RAE outputs commands to the execution platform. It gets the platform feedback about
the perceived state of the world as updates in its input through new facts and events. Figure
3.1 schematically depicts a simple architecture for RAE that can be viewed as part of a more
complete architecture, as in Figure 1.1(a).

Tasks given by the planner or the user, and events sent from the platform, are called
external (to distinguish them from tasks in refinement methods). They appear in the input
stream of the engine. RAE repeatedly reads its input stream and addresses an external task
or event as soon as it arrives. At some points, there can be several external tasks and events
being processed concurrently.

To each external task or event τ that RAE reads in its stream, it associates a LIFO
stack that keeps track of how the refinement of τ is progressing. There can be several such
stacks being concurrently processed. The refinement of τ is done according to a method in
M, which may, at some point, lead to a subtask τ ′ that will be put on top of the stack of
τ . This is pursued recursively. A refinement at any level by a method may fail, but other
methods may be applicable and are tried.

For each external task or event that RAE is currently processing, it maintains a refine-
ment stack that is analogous to the execution stack of a computer program. A refinement
stack contains the following items:

• all pending subtasks in which an external task or event is being refined,

• the method currently tried for each pending subtask,

• the current execution step of each method, and

• previous methods tried for each subtask that failed.



A refinement stack is organized as a LIFO list of tuples: stack=⟨tuple1,. . . ,tuplek⟩. Each
tuple is of the form (τ,m, i, tried) where τ is a task or an event, m is an instance of a method
in M addressing τ , i is a pointer to the current step in the body of m, and tried is a set
of instances of methods already tried for τ that failed to accomplish it. The top tuple of a
refinement stack corresponds to the active method.

Progressing in a refinement stack means advancing sequentially by one step in the body
of the topmost method in the stack. The external task or event that initiates a refinement
stack remains under progress, at the bottom of the stack, as long as this stack is not empty.

While RAE is advancing on a refinement stack, other external tasks and events may
appear in its input stream. RAE will create refinement stacks for them too and will process
all of its refinement stacks concurrently. At this stage, RAE does not consider the possible
dependencies among concurrent stacks (extensions are discussed in Section 3.2.4). In partic-
ular, it does not perform any ordering or synchronization between them. The management
of possible conflicts between concurrent stacks has to be taken care of in the specification
of the methods.

3.2.2 Main Algorithms

To describe RAE in more detail, we will use the following notation:

• M is the library of methods.

• Instances(M, τ, ξ) is the set of instances of methods in M whose preconditions hold
in ξ and whose role matches the task or event τ .

• m is an instance of a method inM.

• m[i] is the step in the body of m pointed at by pointer i; moving from m[i] to the
next step is done according to control statements in the body of m, which are not
counted as steps.

• type(m[i]) is either a command, an assignment or a task; if type(m[i]) =command then
status(m[i]) ∈ {running, failure, done} is a state variable in ξ updated by the platform;
its value informs RAE about the execution status of that command.

• Agenda is the set of refinement stacks concurrently under progress,

• a stack ∈ Agenda is a LIFO list of tuples of the form (τ,m, i, tried) where τ is an event,
task, subtask, or goal; m is an instance of a method that matches τ ; i is a pointer to
the current step in the body of m initialized to nil (no step has been executed); and
tried is a set of instances of methods already tried for τ that failed to accomplish it.

RAE relies on three procedures named RAE, Progress, and Retry. RAE is the main loop of
the engine (Algorithm 3.1). It repeats two steps forever: (i) update of Agenda with respect
to new external tasks and events that are read in the input stream and (ii) progress by one
step in the topmost method of each stack in Agenda.

To progress a refinement stack, Progress (Algorithm 3.2) focuses on the tuple (τ,m, i, tried)
at the top of the stack. If the method m has already started (i ̸= nil) and the current step
m[i] is a command, then the running status of this command is checked. If the command is
still running, then this stack has to wait. If the command failed, then alternative methods
will be tried. The execution of the next step of the top-most method takes place only when
the command is done. If i is the last step in the body of method m, the current tuple is
removed from the stack: method m has successfully addressed τ . The following task in the
stack will be resumed at the next RAE iteration. If i is not the last step, the engine proceeds
to the next step in the body of m.

nextstep(m, i) increments pointer i taking into account control statements, if any. These
control statements are conditioned on tests deterministically computed for the current ξ.
The next stepm[i] is either a state variable assignment, which is performed in ξ, a command



Rae(M)
Agenda← ∅
loop

until the input stream of external tasks and events is empty do
read τ in the input stream
Candidates← Instances(M, τ, ξ)
if Candidates = ∅ then output(“failed to address” τ)
else do

arbitrarily choose m ∈ Candidates
Agenda← Agenda ∪ {⟨(τ,m, nil,∅)⟩}

for each stack ∈ Agenda do
Progress(stack)
if stack = ∅ then Agenda← Agenda \ {stack}

Algorithm 3.1: Main procedure of the Refinement Acting Engine (RAE).

Progress(stack)
(τ,m, i, tried)← top(stack)
if i ̸= nil and m[i] is a command then do

case status(m[i])
running: return
failure: Retry(stack); return
done: continue

if i is the last step of m then
pop(stack) // remove stack ’s top element

else do
i← nextstep(m, i)
case type(m[i])

assignment: update ξ according to m[i]; return
command: trigger command m[i]; return
task: continue

τ ′ ← m[i]
Candidates ← Instances(M, τ ′, ξ)
if Candidates = ∅ then Retry(stack)
else do

arbitrarily choose m′ ∈ Candidates
stack ← push((τ ′,m′, nil,∅),stack)

Algorithm 3.2: RAE: progressing a refinement stack.

whose execution is triggered in the platform, or a task τ ′. In the latter case, instances of
methods applicable to τ ′ for current ξ are computed, one of which is chosen to address τ ′.
The corresponding tuple is added on top of the stack. If there is no applicable method to
τ ′, then the current method m failed to accomplish τ , and other methods are tried.

The method m chosen by RAE to address τ may fail. If that happens, RAE uses the
Retry procedure to try other methods for τ (Algorithm 3.3). Retry adds m to the set of
method instances that have been tried for τ and failed. If there are any method instances
for τ that are not in that set and are applicable in the current state ξ, then Retry chooses
one of them; the refinement of τ will proceed with that method. Otherwise, RAE cannot
accomplish τ . If the stack is empty, then τ is an external task or event. Otherwise, Retry
calls itself recursively on the topmost stack element, which is the one that generated τ as a
subgoal.



Retry(stack)
(τ,m, i, tried)← pop(stack)
tried← tried ∪ {m}
Candidates ← Instances(M, τ, ξ)\ tried
if Candidates ̸= ∅ then do

arbitrarily choose m′ ∈ Candidates
stack ← push((τ,m′, nil, tried),stack)

else do
if stack ̸= ∅ then Retry(stack)
else do

output(“failed to accomplish” τ)
Agenda← Agenda\stack

Algorithm 3.3: RAE: trying alternative methods for a task.

Although Retry implements a mechanism similar to backtracking, it is not backtracking
in the usual sense. It does not go back to a previous computational node to pick up another
option among the candidates that were applicable when that node was first reached. If it
finds another method among those that are now applicable for the current state of the world
ξ. This is essential because RAE interact with a dynamic world. It cannot rely on the set
of Instances(M, τ, ξ) computed earlier, because some of these may no longer be applicable,
while new methods may be applicable.

Note that the same method instance that failed at some point may succeed later on.
However, RAE does not attempt to retry method instances that it has already tried. In
general, this would require a complex analysis of the conditions responsible for the failed
method to be sure that these conditions no longer hold.

Example 3.5. Let us illustrate how RAE works, using the two methods given in Example 3.2
and the problem depicted in Figure 3.2. The robot r1 is at location loc3, which has been
observed. Container c1 is in loc1, and container c2 in loc2, but neither location has been
observed, hence the position of c1 and c2 is unknown. The task fetch(r1,c2) is given to
RAE.

													loc1	

																loc3	
	
	
	

													loc2	c1	 c2	 													loc1	

												loc3	
	
	
	

													loc2	c1	

r1	

r1	 c2	

Figure 3.2: A simple environment

Figure 3.3 shows the tree of RAE methods called for fetch(r1,c2). Initially, method
m-fetch(r1,c2) is applicable. That method refines fetch(r1,c2) into search(r1,c2). Method
m-search finds a location, say loc1, that has not been seen yet. It triggers the commands
move-to(loc1) then perceive(loc1); because c2 is not in loc1, the method recursively refines
into another search task. At this point, only loc2 remains unseen. The second instance
of m-search triggers the commands move-to(loc2), perceive(loc2), then take(r1,c2). This
terminates successfully the three methods in the stack.

Example 3.6. To illustrate the concurrent progressing of several stacks, let us take a
simple abstract example. A task τ1 is addressed with a method m1 which refines it



fetch(r1,c2)

m-fetch(r1,c2)

search(r1,c2)

m-search(r1,c2)

m-search(r1,c2)

move-to(loc1) perceive(loc1) search(r1,c2)

move-to(loc2) perceive(loc2) take(r1,c2)

Figure 3.3: Refinement tree of tasks, methods and commands for the task fetch(r1,c2).

successively into subtasks τ11 then τ12. At this point RAE has just one stack Agenda =
{⟨(τ11,m11, i

′,∅), (τ1,m1, i,∅)⟩}. Note that τ12 is not in the stack until τ11 finishes.

A task τ2 appears in the input stream of RAE. A new stack ⟨(τ2,m2, nil,∅)⟩ is created:
Agenda = {⟨(τ11,m11, i

′,∅), (τ1,m1, i,∅)⟩, ⟨(τ2,m2, nil,∅)⟩}.
The next iteration of RAE progresses with one step inm11 and one step inm2. The latter

refines τ2 into τ21 then τ22. This givesAgenda = {⟨(τ11,m11, i
′,∅), (τ1,m1, i,∅)⟩, ⟨(τ21,m21, j

′,∅), (τ2,m2, j,∅)⟩}.
The following iterations progress one step at a time in m11 and m21 until one of these

methods finishes, refines into some other subtasks (to be pushed in its stack), or fails (leading
to try other methods for the task).

Note that dependencies between activities corresponding to concurrent stacks are not
handled by this simple version of RAE (see Section 3.2.4).

3.2.3 Goals in RAE

Goals, like tasks, refer to an actor’s objectives. The objective for a task is to perform some
activity. The objective for a goal is to reach a state ξ where some condition g holds (see
Definition 2.18). In some cases, an actor’s objectives are more easily expressed through
goals than through tasks.

Refinement methods are convenient for expressing and performing tasks. We can easily
extend the refinement method approach of RAE to handle goals in a restricted way.4 Our
previous definition of a method as a triple (role, precondition, body) still holds. The role is
now either a task, an event or a goal. A goal g is specified syntactically by the construct
achieve(g).

The body of a refinement method for any type of role is, as before, a sequence of steps
with control statements; each step is a command, an assignment, or a refinement into a
subtask or a subgoal. As we explain shortly, a few modifications to RAE are sufficient to
enable it to use such methods. However, there is an important limitation.

Unlike the planning algorithms in Chapter 2, RAE does not search for arbitrary sequences
of commands that can achieve a goal g. Instead, just as it would do for a task, RAE will
choose opportunistically among the methods in M whose roles match g. If M does not
contain such a method, then g will not be reachable by RAE. The same actor, with exactly
the same set of commands and execution platform, might be able to reach the goal g ifM

4See Section 5.7 for a more general handling of goals.



contained a richer collection of methods. This limitation can be overcome, but it requires
using a planner, as we discuss in Sections 3.3 and 3.4.2.

Example 3.7. Consider the task fetch of Example 3.2. Instead of refining it with another
task, we may choose to refine it with a goal of making the position of the container c known.
The methods in Example 3.1 can be rewritten as follows:

m-fetch(r, c)
task: fetch(r, c)
pre:

body: achieve(pos(c) ̸= unknown)
move-to(pos(c))
take(r, c)

m-find-where(r, c)
goal: achieve(pos(c) ̸= unknown)
pre:

body: while there is a location l such that view(l)=F do
move-to(l)
perceive(l)

The last method tests its goal condition and succeeds as soon as g is met with respect to
current ξ. The position of c may become known by some other means than the perceive
command, for example, if some other actor shares this information with the robot. These
two methods are simpler than those in Example 3.2.

Because achieve(g) has the semantics and limitations of tasks, it is processed by RAE as a
task. One may ask what is the advantage of introducing goals in RAE? The main advantage
is to allow for monitoring of the condition g with respect to the observed environment
expressed in ξ. For a method m whose role is achieve(g), RAE can check before starting the
body of m whether g holds in current state ξ. It also performs this test at every progression
step in the body of m and when m finishes. If the test succeeds, then the goal is achieved,
and the method stops. If the test fails when the progression finishes, then the method has
failed, and the Retry process is performed.

In the previous example, nothing needs to be done if pos(c) is known initially; if not,
the m-find-where method stops if that position becomes known at some point of the while
loop.

The monitoring test is easily implemented by making three modifications to the Progress
procedure, Algorithm 3.2:

• If the previous step m[i] is a command that returns failure: a Retry is performed only
when g does not hold in the current ξ.

• If i is the last step of m: if g is met in the current ξ, then the top tuple is removed
from the stack (success case); if not a Retry on current stack is performed.

• After i is updated with nextstep(m, i): if g is met in the current ξ, then the top tuple
is removed from current stack without pursuing the refinement further.

Note that if the previous step is a command that is still running, we postpone the test until
it finishes (no progress for the method in that case).

The monitoring capability allowed with goals is quite convenient. It can be generalized
to tasks by adding an extra field in methods: (role, precondition, expected-results, body). The
expected-results field is a condition to be tested in the same way as a goal.

3.2.4 Additional Features for RAE

As illustrated in previous examples, the behavior of the RAE is quite simple. Additional
features are needed to extend its capabilities and simplify the specification of methods.



For example it can be desirable to suspend, resume, or stop a task depending on specific
conditions or to refine a task into concurrent subtasks. Furthermore, the choice of a method
instance among the set of candidates in RAE, Progress, and Retry needs to be well informed
(steps expressed as “arbitrarily choose m ∈ Candidates”). Let us discuss informally a few
possible extensions of this simple version of RAE.

Controlling the progress of tasks. The need for controlling the progress of tasks can
be illustrated in Example 3.3. The method m-emergency is not supposed to be running in
parallel with other previously started tasks. The state variable emergency-handling, when
set to true, should suspend other currently running tasks.

A simple extension for controlling the progress of a task is to generalize the condition
field in methods: the designer should be able to express not only preconditions, as seen
earlier, but also conditions under which the engine is required to stop, suspend, or resume
the progress of a task. The needed modifications in the RAE procedures are the following:

• The precondition of a method is checked only once to define the applicable Instances(M, τ, ξ);
the stop and suspend conditions of a method m, if any, have to be tested at each call
of Progress for a stack where m appears.

• This test has to be performed not only for the method m on top of the stack, but
also for the methods beneath it: stopping or suspending a task means stopping or
suspending the subtasks in which it is currently being refined, that is, those that are
above it in the stack.

• When a task is stopped the corresponding stack is removed from the agenda; when a
task is suspended, the corresponding stack remains pending with no further progress,
but its resume condition is tested at each iteration of RAE to eventually pursue its
progression.

Some commands may be running when a stop or suspend condition is set on: the engine
has to trigger corresponding orders to the execution platform to stop or suspend these
commands when this is feasible.

It can be convenient to express control statements with respect to relative or absolute
time. Let us assume that the value of the current time is maintained in ξ as a state variable,
called now. Alarms, watchdog timers, periodic commands, and other temporal statements
can be expressed in the body of methods, for example by conditioning the progress of
a task (suspend, resume, stop) with respect to values of now. Because the main loop of
RAE progresses by just one step in the top-most methods of pending stacks, it is possible to
implement a real-time control of tasks at an intermediate level of reactivity (see Section 3.5).

Refining into concurrent subtasks. In the simple version of RAE, a task is refined into
sequential subtasks. It can be desirable to allow for concurrent subtasks in a refinement
step. For example, a robot may have to tour a location exhaustively while concurrently
performing appropriate sensing actions to correctly accomplish a perceive action.

To specify a concurrent refinement, a step in the body of a method can be expressed
with a “concurrent” operator as follows:
{concurrent: ⟨ν1,1, . . . , ν1,n⟩⟨ν2,1, . . . , ν2,m⟩ . . . ⟨νk,1, . . . , νk,l⟩}

where each ⟨νi,1, . . . , νi,j⟩ is a sequence of steps as seen in the body of methods so far.

The refinement of a concurrent step splits into k parallel branches that share the current
instance of that method. The corresponding stack is split into k substacks. There is an
important difference with what we saw earlier for the concurrent progression of several
stacks. The latter correspond to independent tasks that may succeed or fail independently
of each others. Here, all the k substacks in which a concurrent refinement splits have to
succeed before considering that concurrent refinement step as being successful.



Choosing methods and stack ordering. Two types of choices have been left open in
RAE:

• which method among applicable ones to choose for addressing a task;

• in which order to progress the stacks in the current agenda.

Because all stacks have to be progressed at each iteration, the second open choice is not
as critical as the first. One may envision general heuristics such as reacting to events first
and then addressing new tasks, before progressing on the old ones. Application specific
heuristics should allow refinement of this ordering choice.

The choice of the appropriate method for addressing a task when several are applicable
should be based on an estimate of how effective a method will be in the current context
for that task. Domain-specific heuristics can be convenient for making informed choices.
Ideally, however, one needs predictive models and a lookahead capability to be able to
compare alternative courses of actions but RAE uses operational models without predictive
capability: the refinement methods defined so far are solely reactive.5 Let us first extend
them for the purpose of planning in the next section, then we’ll come back to this issue of
informed choices in RAE with look-ahead mechanisms in Section 3.4.

3.3 Refinement Planning

One way to help RAE make choices is to do refinement planning, that is, to explore RAE’s
search space in order to predict the outcomes of different possible courses of action. This
section describes two refinement-planning algorithms, SeRPE and IRT, that can be used for
that purpose. In both of them, the basic idea is to do predictive simulations of RAE’s task
refinement process.

The planner’s initial state s0 will be RAE’s current state ξ, and the planner will use
methods like the ones that RAE uses; but instead of using commands to an execution
platform, the planner will use descriptive models – action templates as in Chapter 2 – to
predict the effects of the commands. At points where RAE would choose a method m to use
for some task or goal τ , the planner will use search techniques like the ones in Chapter 2 to
explore several of the possible choices for m, to predict for each m whether it will succeed
in accomplishing τ .

As written, SeRPE and IRT require the classical planning assumptions discussed in
Section 2.1.1. Consequently, they cannot reason about how RAE might handle situations
in which actions have outcomes that are not known in advance. For example, Example 3.2
involved searching for a container using a command called perceive. We know in advance
that if the actor performs the perceive action, the values of some state variables will become
known, but we do not know what those values will be. Hence we cannot write a classical
action template for perceive.

3.3.1 Sequential Refinement Planning

Algorithm 3.4 is SeRPE (Sequential Refinement Planning Engine), a refinement planning
algorithm for situations in which there are no concurrent tasks. In other words, these are
situations in which RAE has only one refinement stack and none of the refinement methods
contain the “concurrent” operator defined in Section 3.2.4. In Section 3.3.2, we discuss
another planning algorithm, IRT, that loosens this restriction.

SeRPE generates plans by simulating RAE’s task refinement process. It chooses task-
refinement methods nondeterministically, but an implementation of SeRPE would make the
choice using a search mechanism like the ones in Section 2.2. SeRPE’s arguments are a set

5This does not prevent from embedding in these methods planning capabilities for performing specific
tasks or steps, as illustrated in Exercises 3.1, 3.2, and 3.3.



SeRPE(M,A, s, τ)
Candidates← Instances(M, τ, s)
if Candidates = ∅ then return failure (i)
nondeterministically choose m ∈ Candidates
return Progress-to-finish(M,A, s, τ,m)

Progress-to-finish(M,A, s, τ,m)
i← nil // instruction pointer for body(m)
π ← ⟨⟩ // plan produced from body(m)
loop

if τ is a goal and s |= τ then return π (ii)
if i is the last step of m then

if τ is a goal and s ̸|= τ then return failure (iii)
return π

i← nextstep(m, i)
case type(m[i])

assignment: update s according to m[i]
command:
a← the descriptive model of m[i] in A
if s |= pre(a) then
s← γ(s, a); π ← π.a

else return failure
task or goal:
π′ ← SeRPE(M,A, s,m[i])
if π′ = failure then return failure
s← γ(s, π′); π ← π.π′

Algorithm 3.4: SeRPE, the Sequential Refinement Planning Engine.

M of refinement methods, a set A of action templates that are models of RAE’s commands,
the state s in which SeRPE’s planning should begin, and τ , a task to accomplish.

SeRPE nondeterministically chooses a method instance m that is both relevant for τ
and applicable in s, and calls Progress-to-finish to simulate RAE’s execution of body(m).
RAE would call Progress once for each step in the execution of body(m); each of these calls
is simulated by an iteration of Progress-to-finish’s loop. In this loop, if m[i] is a command
to perform, Progress-to-finish uses a descriptive model of the command to predict what the
command will do. If m[i] is a task to accomplish, Progress-to-finish calls SeRPE recursively:
here, SeRPE’s recursion stack corresponds to RAE’s refinement stack for τ . If the execution
trace completes successfully, Progress-to-finish returns a plan that it predicts will accomplish
τ . If the execution trace fails, then SeRPE returns failure.

Lines (ii) and (iii) are SeRPE’s way of simulating the goal monitoring described in
Section 3.2.3.

In line (ii), SeRPE returns early if τ is a goal and s satisfies τ (denoted by s |= τ). In
line (iii), SeRPE fails if τ is a goal and m does not produce a state that satisfies τ .

In line (i), SeRPE returns failure because there are no methods for τ . If τ is a goal
rather than a task, then a possible fallback might be to search for any plan whose outcome
satisfies τ , regardless of whether there are any refinement methods to produce that plan.
To modify SeRPE to do this, we can replace line (i) with this:

if Candidates = ∅ then
if τ is a goal achieve(g) then return find-plan(Σ, s, g)

else return failure

where Σ is the planning domain (S,A, γ), A is the set of actions corresponding to each



command, and S is the set of states constructed with a generative approach from s and γ.
In the modification proposed for line (i), find-plan could be one of the planning algorithms
in Chapter 2, with modifications to make it return control to SeRPE if it sees a goal for
which there is an applicable method (see the discussion of this in Section 3.5.2).

Refinement trees. SeRPE can be modified so that when invoked on a task τ , instead
of returning a plan π it returns a refinement tree. This is a tree in which the root node
contains the task or goal τ , the intermediate nodes contain the methods chosen by SeRPE
and the subtasks produced by those methods, and the terminal nodes contain the actions
in π.

Such a modification will be useful for integrating SeRPE with RAE (see Section 3.4), and
the modification is relatively straightforward: in each of SeRPE’s recursive calls, it would
add to the tree a node containing the task or action that SeRPE chose at this point in its
search.

In the rest of this chapter, we refer to the input of RAE as a planning problem P =
(M,A, s, τ), whereM is a set of methods, A is a set of action templates, s is a state, and
τ is a task.

Example 3.8. Figure 3.4 shows a state in a planning domain similar to the one in Exam-
ple 2.12 except that there is only one robot. Consider the tasks of uncovering a container and
putting it into a specified pile. Following are methods to accomplish those tasks in some (but
not all) cases. The variables in these methods have the following ranges: c ∈ Containers;
r ∈ Robots; d, d′ ∈ Docks; p, p′ ∈ Piles. There are three kinds of tasks:

• put-in-pile(c, p′) is the task of putting container c into pile p′ if it is not already there.
There are two methods for this task. One, for the case where c is already in p′, does
nothing. The other uses a robot to take c, move (if it is not already there) to the dock
where p′ is located, and put c on p′. Here they are:

m1-put-in-pile(c, p′)
task: put-in-pile(c, p′)
pre: pile(c) = p′

body: // empty

m2-put-in-pile(r, c, p, d, p′, d′)
task: put-in-pile(c, p′)
pre: pile(c)= p ∧ at(p, d) ∧ at(p′, d′)

∧ p ̸= p′ ∧ cargo(r)= nil
body: if loc(r) ̸= d then navigate(r, d)

uncover(c)
load(r, c, pos(c), p, d)
if loc(r) ̸= d′ then navigate(r, d′)
unload(r, c, top(p′), p′, d′)

• uncover(c) is the task of ensuring that c is at the top of a pile p. There are two
methods for this task: one for the case where c is already at the top of p, and another
that uses a robot r to move containers from p to another pile p′ until c is at the top
of p. The robot r must be empty, and r and p′ must have the same location as p.

m1-uncover(c)
task: uncover(c)
pre: top(pile(c))= c

body: // empty

m2-uncover(r, c, p, p′, d)
task: uncover(c)
pre: pile(c)= p ∧ top(p) ̸= c

∧ at(p, d) ∧ at(p′, d) ∧ p ̸= p′

∧ loc(r)= d ∧ cargo(r)= nil
body: while top(p) ̸= c do

c′ ← top(p)
load(r, c′, pos(c′), p, d)
unload(r, c′, top(p′), p′, d)
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Figure 3.4: The state s0 in Equation 3.1.

• navigate(r, d′) is the task of moving r along some undetermined route that ends at
dock d′. In an actual application, such a task would probably be handled by calling
a specialized route-planning algorithm, but in this simple example, we can use the
following three methods. The first is for the case in which r is already at d, and it
does nothing. The second one moves r to d′ if loc(r) is adjacent to d′. The third one
moves to an adjacent dock other than d′.

m1-navigate(r, d′)
task: navigate(r, d′)
pre: loc(r) = d′

body: // empty

m2-navigate(r, d′)
task: navigate(r, d′)
pre: loc(r) ̸= d′ ∧

adjacent(loc(r), d′)
body: move(r, loc(r), d′)

m3-navigate(r, d, d′)
task: navigate(r, d′)
pre: loc(r) ̸= d′ ∧ d ̸= d′

∧ adjacent(loc(r), d)
body: move(r, loc(r), d)

navigate(r, d′)

Now consider the planning problem P = (M,A, s0, put-in-pile(c1, p2)), where M con-
tains the six methods defined above, A contains the four actions defined in Example 2.12,
and s0 is the following state, which is shown in Figure 3.4:

s0 = {cargo(r1)= nil, loc(r1)= d1,
occupied(d1)=T, occupied(d2)=F, occupied(d3)=F,
pile(c1)= p1, pile(c2)= p2, pile(c3)= p2,
pos(c1)= nil, pos(c2)= c3, pos(c3)= nil,
top(p1)= c1, top(p2)= c2, top(p3)= nil}.

(3.1)

If we do cycle-checking (see Section 2.2), then there are only two ways to refine the subtask
navigate(r1, d2), and Figure 3.5 shows the refinement trees for both choices. These trees
correspond to the following solution plans:

π1 = ⟨load(r1, c1, c2, p1, d1),move(r1, d1, d2), unload(r1, c1, c3, p2, d2)⟩;
π2 = ⟨load(r1, c1, c2, p1, d1),move(r1, d1, d3),move(r1, d3, d2),

unload(r1, c1, c3, p2, d2)⟩.

Discussion. For simplicity of presentation, we wrote the SeRPE pseudocode to choose a
method m nondeterministically from the set of candidate methods. An implementation of
SeRPE would make this choice using search techniques like those in Section 2.2, modified to
search over methods as well as actions. In such an implementation, the search algorithm’s
efficiency depends on what the refinement methods are like (writing the body of a refinement
method is basically a programming task), and what kinds of search heuristics are used.

When RAE has a single task to accomplish, RAE’s refinement of that task proceeds in a
depth-first, left-to-right fashion, since that is the order in which RAE will need to execute
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Figure 3.5: Refinement trees for two solution plans.
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Figure 3.6: The initial state s0 from Example 2.5.

the actions. Because SeRPE works by simulating RAE’s execution, it explores its search
space in the same depth-first, left-to-right fashion.

In some application domains, it would be desirable to have a planning engine that can
explore the nodes of the search space in a different order. For example, to take an airplane
trip from the United States to Europe, one needs to get to the airport before taking a
flight, but to plan the trip, one usually wants to examine alternative flight itineraries before
planning how to get to the airport. Something like this can be accomplished by giving the
planner a different set of refinement methods than the ones used by the actor, but that
makes it difficult to ensure consistency between the deliberation done by the planner and
the deliberation done by the actor. An alternative approach is to combine task refinement
with plan-space planning (see Section 3.5.2) or to use input/output automata that allow
for interactions between different tasks (see Chapter 5).

3.3.2 Interleaved Plans

In Section 3.3.1, one of the restrictions was that none of the methods inM could contain
the “concurrent” programming construct described in Section 3.2.4. The main reason for



this restriction is the difficulty of reasoning about what will happen when several primitive
commands are running concurrently, which requires a temporal-planning model that we
will not introduce until Chapter 4. However, it can be useful to loosen the restriction by
allowing multiple tasks to be interleaved provided that at most one primitive command will
be executed at a time. Here is a motivating example:

Example 3.9. Let s0 be as shown in Figure 3.6. Suppose we want to move c1 to p2 and
move c3 to p1, using the following two plans:

π3 = ⟨load(r1, c1, c2, p1, d1),move(r1, d1, d2), unload(r1, c1, p3, nil, d2)⟩,
π4 = ⟨load(r2, c3, nil, p2, d2),move(r2, d2, d3),move(r2, d3, d1),

unload(r2, c3, c2, p1, d1)⟩.

If we tried to use either π3 or π4 alone, some of the actions would fail. Only one robot
can occupy a loading dock at a time, so neither robot can move to the other dock unless
the other robot first leaves that dock. We can accomplish this by interleaving π3 and π4 to
produce a plan such as this:

π5 = ⟨load(r1, c1, c2, p1, d1), load(r2, c3, nil, p2, d2),
move(r2, d2, d3),move(r1, d1, d2),move(r2, d3, d1),

unload(r1, c1, p3, nil, d2)⟩, unload(r2, c3, c2, p1, d1)⟩.

To provide a way of specifying that a plan such as π5 is a permissible solution, we will
allow the body of a method to include steps of the form

{interleave: p1, . . . , pn},

where each pi is a sequence of steps ⟨νi,1, . . . , νi,j⟩ for some j. This operator has the same
semantics as the “concurrent” operator in Section 3.2.4, except that only one command can
be performed at a time.

Example 3.10. Continuing with Example 3.9, suppose that M includes the following
additional method, where c, c′ ∈ Containers and p, p′ ∈ Piles:

put-interleaved(c, p, c′, p′)
task: put-both(c, p, c′, p′)
pre: none

body: {interleave:
⟨put-in-pile(c, p)⟩,
⟨put-in-pile(c′, p′)⟩}

Then from the task put-both(c1, p2, c3, p1), we can get the refinement tree in Figure 3.7,
which corresponds to π5.

Algorithm 3.5, the IRT (Interleaved Refinement Tree) algorithm, generates refinement
trees like the one in Figure 3.7, in planning domains where the bodies of the methods may
include “interleave” statements. The IRT pseudocode requires the planning domain to have
no goals, that is, no tasks of the form achieve(g). These could be added, but we omit them
for simplicity of presentation. IRT’s refinement trees contain five kinds of nodes:

• A task node and an action node contain a task or action, respectively.

• A method node or program node is labeled with a pair (p, i), where p is a method or
a program, and i is a program counter.

• An interleaving node represents a statement of the form {interleave: p1, . . . , pk}. It is
an empty node whose children include program nodes ν1, . . . , νk.

Generally there may be many different possible orders in which to expand the nodes below
each interleaving node. IRT handles this by repeatedly making nondeterministic choices
from a list called Pending that includes all nodes IRT has not yet finished expanding.
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move(r2,d3,d1)

Figure 3.7: An interleaved refinement tree corresponding to π5.

Implementation considerations. The practical considerations for implementing IRT
are similar to the ones for implementing SeRPE. However, the efficiency consideration is
especially critical in IRT. The nondeterministic choice in (i) makes IRT consider all feasible
orderings of the nodes in Pending. To implement IRT, it would be necessary to implement
this as a deterministic search. Because the number of feasible orderings can be exponentially
large, this is not practical unless the algorithm has a way (e.g., some sort of heuristic
guidance) to find a satisfactory ordering without too much backtracking.

Simulating concurrency. IRT’s “interleave” operator can be used, in a limited way,
to do predictive simulations of concurrent tasks in RAE, by making some changes to the
domain representation. Recall that each action a is a descriptive model of a command to the
execution platform. For simplicity of presentation, let us assume that a’s preconditions need
to be true when the command starts executing, and a’s effects occur when the command
finishes executing. Instead of modeling the command with a single action a, let us use a
task named do-a, the body of which contains two actions start-a and end-a that represent



IRT(D, s, τ)
π ← ⟨⟩
ρ← a new task node; data(ρ)← τ
Pending← {ρ}
while Pending ̸= ∅ do

nondeterministically choose a node µ ∈ Pending
that has no children in Pending (i)

case type(µ)
task:
τ ← data(µ)
remove µ from Pending
M ← Instances(M(τ), s)
if M = ∅ then return failure
nondeterministically choose m ∈M
ν ← a new method node; data(ν)← (m, 0)
make ν a child of µ // this will be µ’s only child
insert ν into Pending

action:
a← data(µ)
remove µ from Pending
if a is not applicable in s then return failure
s← γ(s, a); π ← π.a

program or method:
v ← IRT-progress(D,µ, s,Pending)
if v = failure then return failure

return (π, ρ)

Algorithm 3.5: IRT, a refinement-planning algorithm that can do interleaving. Interleaving
nodes are handled by the IRT-progress subroutine, Algorithm 3.6.

m-do-a
task: do-a
pre: // no preconditions

body: start-a, end-a

start-a
pre: p, running-a=F
eff: running-a← T

end-a
pre: running-a=T
eff: e, running-a← F

Figure 3.8: Translation of a command a into one refinement method and two actions.

the command’s starting and ending points.6 If a’s preconditions and effects are p and e,
then the method and the two actions are as shown in Figure 3.8.

In the body of each method, let us replace all occurrences of the action a with the task
do-a, and replace all occurrences of “concurrent” with “interleave”. Thus, {concurrent: a1, a2, . . . , an}
will become

{interleave: do-a1, . . . , do-an}. (3.2)

In Figure 3.8, the state variable running-a prevents multiple overlapping occurrences of
the same action. If we want to allow multiple overlapping occurrences for some reason,
then IRT will need to be modified so that each time it refines an instance of do-a, it uses a

6More generally, one may need to represent preconditions and effects that occur at several points during
a command’s execution. In this case, we would need to include one or more additional actions during1-a,
during2-a, . . . , so that there is an action at each point where a precondition or effect occurs.



IRT-progress(D,µ, s,Pending)
(p, i)← data(µ)
if i is the last step of m then

remove µ from Pending
return

else if p[i] is a task then
ν ← a new task node; data(ν)← p[i]
append ν to µ’s list of children
insert ν into Pending

else if p[i] is a primitive command then do
ν ← a new action node; data(ν)← ap[i]
append ν to µ’s list of children
insert ν into Pending

else
// p[i] has the form {interleave: p1, . . . , pk}
ν ← a new interleaving node
append ν to µ’s list of children
for i = 1, . . . , k do
νi ← a new program node; data(ν)← (pi, 0)
insert νi into ν’s set of children
insert νi into Pending

Algorithm 3.6: Subroutine of IRT to simulate the next step in a method.

different state variable in start-a and end-a.

Limitations. The biggest difficulty with this way of simulating concurrency is that IRT
will impose a specific linear order on the starting points and ending points of the actions in
Equation 3.2. Without knowing something about the amount of time each action will take,
there is no way to know whether the ordering chosen by IRT is a realistic one; and even
if it is realistic, it will not provide sufficient flexibility to deal with situations in which the
duration of an action may vary and is not controllable. If we extract a partial order from the
linear order (which can be done reasoning about which actions establish the preconditions
of other actions) and modify the actions to include time stamps, it will alleviate the problem
but not fully solve it. Chapter 4 presents a more comprehensive way to reason about time.

3.4 Acting and Refinement Planning

We now consider how to integrate refinement planning with acting. Section 3.4.1 shows how
to modify the procedures in Section 2.6 to use an online version of SeRPE; and Section 3.4.2
describes REAP, a modified version of RAE that incorporates a SeRPE-like refinement plan-
ner.

3.4.1 Planning and Acting at Different Levels

At the start of Section 3.3, our stated motivation for SeRPE was to provide guidance for
RAE by simulating its possible execution paths. However, another possibility is to use
SeRPE and RAE at different levels of an actor’s hierarchy. The actor could use a SeRPE-like
planning procedure to generate plans consisting of abstract actions and a RAE-like acting
procedure to refine the abstract actions into lower-level commands, for example, as shown
in the planning and acting levels of Figure 1.2.



Refine-Lookahead(M,A, τ)
while (s← abstraction of observed state ξ) ̸|= τ do (i)
π ← SeRPE-Lookahead(M,A, s, τ)
if π = failure then return failure
a← pop-first-action(π)); Perform(a)

Algorithm 3.7: Replanning before every action.

Refine-Lazy-Lookahead(M,A, τ)
s← abstraction of observed state ξ
while s ̸|= τ do
π ← SeRPE-Lookahead(M,A, s, τ)
if π = failure then return failure
while π ̸= ⟨⟩ and s ̸|= τ and Simulate(Σ, s, τ, π) ̸= failure do
a← pop-first-action(π)); Perform(a)
s← abstraction of observed state ξ

Algorithm 3.8: Replanning only when necessary.

Refine-Concurrent-Lookahead(M,A, τ)
π ← ⟨⟩; s← abstraction of observed state ξ
thread 1: // threads 1 and 2 run concurrently

loop
π ← SeRPE-Lookahead(M,A, s, τ)

thread 2:
loop

if s |= τ then return success
else if π = failure then return failure
else if π ̸= ⟨⟩ and Simulate(Σ, s, τ, π) ̸= failure then
a← pop-first-action(π)); Perform(a)
s← abstraction of observed state ξ

Algorithm 3.9: Replanning concurrently with acting.

To illustrate some ways to accomplish this, Algorithms 3.7, 3.8, and 3.9 are straight-
forward modifications of the algorithms in Section 2.6.1. In them, SeRPE-Lookahead is a
version of SeRPE that has been modified to incorporate online-planning techniques such as
receding-horizon planning or sampling (see Section 2.6.2), and Perform is a procedure for
performing a by using a RAE-like procedure to refine the action a into commands for the
actor’s execution platform.

Simulate is the same kind of plan simulator as in Section 2.6.1, except that the third
argument is a task τ rather than a goal g, and it is only when τ = achieve(g) that Simulate
will check whether π achieves g.

Example 3.11. Consider an actor that uses Refine-Lookahead. Suppose that in line (i) of
Refine-Lookahead, the state-abstraction function is the identity function, that is, it always
assigns s← ξ.

Suppose the actor begins with the state s0 shown in Figure 3.4 and the task τ =
put-in-pile(c1, p2). In the first iteration of the while loop, suppose SeRPE-Lookahead returns

π1 = ⟨load(r1, c1, c2, p1, d1),move(r1, d1, d2), unload(r1, c1, c3, p2, d2)⟩.

Then Refine-Lookahead pops load(r1, c1, p1) from π1 and calls Perform(load(r1, c1, p1)). If



no execution errors or other unanticipated events occur, then the observed state and its
abstraction are s1 = γ(s0, load(r1, c1, c2, p1, d1)).

In the second iteration of the while loop, if SeRPE-Lookahead’s nondeterministic choices
are consistent with the ones it made the previous time, then it returns

π2 = ⟨move(r1, d1, d2), unload(r1, c1, c3, p2, d2)⟩,

so Refine-Lookahead pops and performsmove(r1, d1, d2). If no execution errors or other unan-
ticipated events occur, then the observed state and its abstraction are s2 = γ(s1,move(r1, d1, d2)).

In the third iteration, if SeRPE-Lookahead’s nondeterministic choices are consistent with
its previous ones, then it returns

π3 = ⟨unload(r1, c1, c3, p2, d2)⟩,

so Refine-Lazy-Lookahead pops and performs unload(r1, c1, c3, p2, d2). If no execution errors
or other unanticipated events occur, then the observed state and its abstraction are s3 =
γ(s2, unload(r1, c1, c3, p2, d2)).

In the fourth loop iteration, s3 |= g, so Refine-Lazy-Lookahead exits.

Instead of Refine-Lookahead, suppose the actor uses Refine-Lazy-Lookahead or Refine-
Lazy-Lookahead, with the same abstraction function and the same version of SeRPE-Lookahead
as before. If no execution errors or unanticipated events occur, then the actor will perform
the same actions as before, in the same order.

Limitations. Because Algorithms 3.7–3.9 are analogous to the procedures in Section 2.6.1,
they have several of the same trade-offs discussed in that section. Moreover, as illustrated
in the following example, additional problems can occur if the author of the domain model
does not specify refinement methods for all of the possible states in which SeRPE-Lookahead
might be invoked.

Example 3.12. Suppose a programmer writes a method m to accomplish a task τ . This
method is applicable in a state s0 and it produces a sequence of commands ⟨a1, a2, a3⟩.
Suppose the programmer believes s0 is the only state in which the actor will ever be given
τ as an external task, and thus the programmer does not write any methods to accomplish
τ in any other state. Suppose the actor starts in a state ξ0 whose abstraction is s0 and uses
Refine-Lookahead:

• Refine-Lookahead calls SeRPE-Lookahead(M,A, s0, τ), and SeRPE-Lookahead uses m
to produce a plan π.

• The actor removes the first action from π and performs it, producing a state ξ1
whose abstraction is s1. Then Refine-Lookahead calls SeRPE-Lookahead(M,A, s1, τ).
Because m is inapplicable in s1, SeRPE-Lookahead returns failure, even though the
remaining actions in π are still capable of accomplishing τ .

A similar problem will occur if the actor uses Refine-Concurrent-Lookahead. If Refine-
Lookahead returns a complete solution plan, the problem will not occur if the actor uses
Refine-Lazy-Lookahead, which will continue to perform actions in π as long as Simulate pre-
dicts that π will execute correctly. But the problem will occur in Refine-Lazy-Lookahead if
SeRPE-Lookahead returns a partial solution plan (e.g., if Refine-Lookahead does a receding-
horizon search).

A more robust (although more complicated) approach is to integrate SeRPE-like refine-
ment planning with RAE-like refinement acting at all levels of the actor’s hierarchy. The
next section describes a way to do that.



REAP-main(M,A)
Agenda← ∅
loop

until the input stream of external tasks and events is empty do
read τ in the input stream
Candidates← Instances(M, τ, ξ)
if Candidates = ∅ then output(“failed to address” τ)
s← abstraction of observed state ξ
T ← Refinement-tree(Candidates,M,A, s, τ) (i)
if T = failure then

output(“failed to address” τ) (ii)
else do
m← the method instance at the top of T (iii)
Agenda← Agenda ∪ {⟨(τ,m, nil,∅, T )⟩}

for each stack ∈ Agenda do
REAP-progress(M, A, stack)
if stack = ∅ then Agenda← Agenda \ {stack}

Algorithm 3.10: Main procedure of REAP, a modified version of RAE that calls a planner
to choose method instances.

3.4.2 Integrated Acting and Planning

This section describes REAP (Refinement Engine for Acting and Planning). Most of the
REAP pseudocode (Algorithms 3.10, 3.11, and 3.12) is quite similar to RAE in Section 3.2,
except that REAP uses a planner (Refinement-tree in the pseudocode) to help it choose
methods in Candidates. Refinement-tree is an online SeRPE-like planner similar to SeRPE-
Lookahead in Section 3.4.1, but modified to use Candidates rather thanM as the methods
for the task τ and to return a refinement tree instead of a plan.

We introduced the notion of refinement trees briefly in Section 3.3.1 and gave two
examples in Figure 3.5. In more detail, if T is the refinement tree for a task τ , then T has
a root node t that is labeled with τ , and t has one child u that is labeled with the method
instance m that the planner chose for τ . Let τ1, . . . , τk be the subtasks and actions in the
planner’s simulation of body(m), in the order that they were created. Then µ has children
t1, . . . , tk defined as follows. For each τi that is a task, ti is the root node of the refinement
tree for τi; and for each τi that is an action, ti is a leaf node that is labeled with τi.

REAP-main calls Refinement-tree on a planning problem in which the only methods
available for the current state are the ones in Candidates. If the planner returns a refinement
tree T for a task τ , then the method at the top of T is the one that the planner recommends
using for τ , so REAP-main chooses this method in line (iii).

In line (ii), REAP-main stops trying to accomplish τ if Refinement-tree returns failure.
However, REAP-main can be modified to incorporate various fallback options. Depending
on the planning domain and the developer’s objectives, a modified version of REAP-main
could call Refinement-tree with a set M′ of fallback methods that it would not otherwise
use, postpone accomplishment of τ until the environment changes in a way that makes τ
feasible, or modify τ (see “goal reasoning” in Section 1.3.4) to make it easier to accomplish.

In lines (ii)–(iii) of REAP-progress, the same approach is used to choose a method m′

for the task τ ′. Because τ ′ is a subgoal of the task τ in REAP-main, this can be viewed as a
kind of subgoaling (see Section 2.6.2). The same approach is used again in lines (i)–(ii) of
REAP-retry.

Simulation. In line (i) of REAP-progress, Simulate is a plan simulator like the one in
Section 3.4.1, but with two significant differences. First, its argument is a refinement tree



REAP-progress(M,A, stack)
(τ,m, i, tried, T )← top(stack)
if i ̸= nil and m[i] is a command then

case status(m[i])
running: return
failure: REAP-retry(M,A, stack); return
done:
T ′ ← the unexecuted part of T
if Simulate(ξ, T ′) = failure then (i)

REAP-retry(M,A, stack); return
else continue

if i is the last step of m then
pop(stack) // remove (τ,m, i, tried, T )

else
i← nextstep(m, i)
case type(m[i])

assignment: update ξ according to m[i]; return
command: trigger command m[i]; return
task or goal: continue

τ ′ ← m[i]
Candidates← Instances(M, τ ′, ξ)
if Candidates = ∅ then

REAP-retry(M,A, stack); return
s← abstraction of observed state ξ
T ′ ← Refinement-tree(Candidates,M,A, s, τ) (ii)
if T ′ = failure then REAP-retry(M, A, stack)
else do
m′ ← the topmost method in T ′ (iii)
stack ← push((τ ′,m′, nil,∅, T ′),stack)

Algorithm 3.11: REAP’s procedure for progressing a refinement stack.

T , and it simulates the plan contained in T ’s leaf nodes. Second, REAP-progress calls it
many times on many different refinement trees.

Every time REAP-progress refines a stack element, it calls Refinement-tree in line (ii).
Hence each stack element (τ,m, tried, T ) contains a refinement tree that is a subtree of
the refinement tree in the stack element below it. To obtain a prediction of whether the
rest of body(m) will execute correctly, REAP-progress calls Simulate(ξ, T ) in line (i). If the
simulation predicts a failure, then REAP-progress calls REAP-retry.

Example 3.13. Let us repeat Example 3.11 using REAP. As before, we will suppose that
no execution errors or unforeseen events occur.

In REAP-main’s first loop iteration, it reads τ = put-in-pile(c1, p2) and calls Refinement-
tree. Suppose Refinement-tree returns the refinement tree T1 in Figure 3.5. The topmost
method in T is m = carry-to-pile(r1, c1, p1, d1, c3, p2, d2), and REAP-main puts stack1 =
⟨(τ,m, nil,∅, T )⟩ into Agenda. Assuming that nothing else arrives in the input stream,
REAP-main calls REAP-progress repeatedly on stack1 until τ has been accomplished, as
follows:

• In the first call to REAP-progress, the top element of the stack is (τ,m, nil,∅, T ).
After the call to nextstep, this is replaced by (τ,m, i,∅, T ), with i pointing to τ1 =
uncover(c1). REAP-progress calls Refinement-tree, which returns a tree T1 that is a
copy of T ’s leftmost branch. The topmost method in T1 is m1 = m-uncover(c1), and
REAP-progress pushes (τ1,m1, nil,∅, T1) onto stack1.



REAP-retry(M,A, stack)
(τ,m, i, tried, T )← pop(stack)
tried← tried ∪ {m}
Candidates← Instances(M, τ, ξ) \ tried
if Candidates = ∅ then output(“failed to address” τ)
s← abstraction of observed state ξ
T ′ ← Refinement-tree(Candidates,M,A, s, τ) (i)
if T ′ ̸= failure then
m′ ← the topmost method in T ′ (ii)
push((τ,m′, nil, tried, T ′), stack)

else
if stack ̸= ∅ then REAP-retry(M,A, stack)
else do

output(“failed to accomplish” τ)
Agenda← Agenda \ stack

Algorithm 3.12: REAP’s version of RAE’s Retry subroutine.

• In the second call to REAP-progress, the top element of stack1 is (τ1,m1, nil,∅, T1).
Because c1 is already uncovered, the method produces no actions or subtasks, and
REAP-progress removes (τ1,m1, nil,∅, T1) from stack1.

• In the third call to REAP-progress, i points at uncover(c1) until nextstep is called.
Afterward, i points at the action load(r1, c1, p1), which REAP-progress sends as a com-
mand to the execution platform. In the fourth call to REAP-progress, let us suppose
that the command is still running. Then REAP-progress just returns.

• In the fifth call to REAP-progress, suppose the command has finished. Then Simulate
returns success, and the call to nextstep makes i point to τ2 = navigate(r1, d2). REAP-
progress calls Refinement-tree, which returns a tree T2 that is a copy of T ’s third branch.
The topmost method in T2 is m2 = m2-navigate(r1, d1, d2), and REAP-progress pushes
(τ2,m2, nil,∅, T2) onto stack1.

• In the sixth call to REAP-progress, the top element of the stack is (τ2,m2, nil,∅, T2).
After the call to nextstep, this is replaced by (τ2,m2, i,∅, T2), with i pointing to
the action move(r1, d1, d2). REAP-progress sends it as a command to the execution
platform. In the seventh and eighth calls to REAP-progress, suppose the command is
still running. Then REAP-progress returns.

• In the ninth call to REAP-progress, suppose the command has finished. Then Simulate
returns success, and i is the last step of m, so REAP-progress removes (τ2,m2, i,∅, T2)
from stack1.

• In the tenth call to REAP-progess, the top element of the stack is (τ1,m1, i,∅, T1),
and i points at τ2 = navigate(r1, d2). After the call to nextstep, i points at the
action unload(r1, c1, c3, p2, d2). REAP-progress sends it as a command to the execution
platform. In the eleventh call to REAP-progress, suppose the command is still running.
Then REAP-progress returns.

• In the twelfth call to REAP-progress, suppose the command has finished. Then
Simulate returns success, and i is the last step of m, so REAP-progress removes
(τ1,m1, i,∅, T1) from stack1.

At this point, Agenda is empty, so REAP-main continues to iterate its main loop without
any further calls to REAP-progess unless something new arrives in the input stream.



Comparison with RAE. In our examples, often only one method instance was applicable
in a given state. In such cases, RAE would have chosen the same method instance as REAP,
without needing to call a planner. Thus it may not be immediately evident to the reader
why REAP’s planner is useful. It is useful in two ways:

• In situations where multiple method instances are applicable, planning can be useful
to explore the alternatives and suggest which method instance to use. For example,
in Example 3.13, REAP had to choose whether to go directly from d1 to d2, or to go
from d1 to d3 and then to d2. Here, the planner was useful for telling it what route
to choose.

• By using the planner to look ahead, REAP sometimes can detect cases when future
failure is inevitable, so that it can abandon the current course of action and try
something else. This may enable it to accomplish a task in cases where RAE would
just continue until the failure occurred.

3.5 Discussion and Historical Remarks

3.5.1 Refinement Acting

Early planning and acting systems relied on a uniform set of action primitives, that is,
planned actions were assument to be directly executable without refinement. This is ex-
emplified in Planex by Fikes [195], one of the first acting systems, which was coupled with
the STRIPS planner. Planex assumes correct and complete state updates after each action
execution, from which it detects failures but also opportunities for pursuing a plan. It relies
on triangle tables to monitor the progress of a plan with respect to the goal.

The lack of robustness of this and similar systems was addressed by various approaches
for specifying operational models of actions and techniques for context-dependent refinement
into lower level commands. Among these, procedure-based systems are quite popular. RAP
(Reactive Action Package), proposed by Firby [198], is an early example. Each package is
in charge of satisfying a particular goal, corresponding to a planned action. Deliberation
chooses the appropriate package according to the current context.

PRS (Procedural Reasoning System), by Ingrand et al. [292], is a widely used procedure-
based action refinement and monitoring system. As in RAP, one writes procedures to
achieve goals or react to particular events and observations. The system commits to goals
and tries alternative procedures when needed. It allows for concurrent procedure execution
and multithreading. Some planning capabilities were added to PRS by Despouys and In-
grand [151] to anticipate execution paths leading to failure by simulating the execution of
procedures and exploring different branches.

TCA by Simmons [537] and TDL by Simmons and Apfelbaum [539] extend the capabil-
ities of procedure-based systems with a wide range of synchronization constructs between
commands and temporal constraints management. These and other timeline-oriented acting
systems, such as RMPL of Ingham et al. [291] are further discussed in Section 4.6.

XFRM by Beetz and McDermott [48] uses transformation rules to modify hand written
conditional plans expressed in a representation called Reactive Plan Language [47]. It
searches in plan space to improve its refinements, using simulation and probabilities of
possible outcomes. It replaces the currently executed plan on the fly if it finds another
one more adapted to the current situation. Beetz [46] extended this approach with more
elaborate reactive controllers.

Other procedure-based approaches have been proposed, such as IPEM by Ambros-
Ingerson and Steel [17], EXEC by Muscettola et al. [439], or CPEF by Myers [440]. Con-
currency and synchronization issues, which often arise at the command level, have been
addressed by a few Petri net–based systems. For example, Wang et al. [593] model with
Petri nets the proper order of the execution of commands and their required coordination.



The model can be used in simulation for verification and performance testing. Similar ap-
proaches have been pursued by Barbier et al. [35] and Ziparo et al. [627] to specify an acting
system whose properties can be validated with reachability and deadlock analysis.

Finite State Automata have also been used as acting models, in which an abstract
action is represented as an FSA whose transitions are labelled with sensory-motor signals
and commands. For example, FSA have been used jointly with IxTeT by Chatilla et al.
[114]. Verma et al. [581] illustrate in PLEXIL a representation in which the user specifies
nodes as computational abstractions. A node can monitor events, execute commands, or
assign values to variables. It may refer hierarchically to a list of lower level nodes. Execution
is controlled by constraints (start, end), guards (invariant), and conditions.

SMACH, the ROS execution system of Bohren et al. [78], also implements an automata-
based approach. The user writes a set of hierarchical state machines. Each state corresponds
to the execution of a particular command. The interface with ROS actions, services, and
topics is very natural, but the semantics of constructs available in SMACH is limited for
reasoning on goals and states. Let us also mention the approach of Pistore et al. [484],
based on the Business Process Execution Language (BPEL, of Andrews et al. [21]), which
proposes to plan and compose asynchronous software services represented as state transition
systems. The approach produces a controller that takes into account uncertainty and the
interleaving of the execution of different processes. It is extended by Bucchiarone et al. [100]
to deal at run-time with a hierarchical representation that includes abstract actions; Pistore
and Traverso [483] address the problem of automated synthesis and run-time monitoring of
processes. This work is further discussed in Chapter 5.

Unlike the procedure-based approaches, automata and Petri net approaches allow for
formal analysis, such as reachability and dead locks checking, which can be critical for the
specification and the verification of acting models. A few systems try to overcome the en-
gineering bottleneck of hand specification of procedures or automata by relying on logic
inference mechanisms for extending high-level specifications. Examples are the Temporal
Action Logic approach of Doherty et al. [157] for monitoring (but not action refinement)
and the situation calculus approach. The latter is exemplified in GOLEX by Hähnel et al.
[250], an execution system for the GOLOG planner. In GOLOG and GOLEX, the user
specifies respectively planning and acting knowledge in the situation calculus representa-
tion. GOLEX provides Prolog hand-programmed “exec” clauses that explicitly define the
sequence of commands a platform has to execute. It also provides monitoring primitives to
check the effects of executed actions. GOLEX executes the plan produced by GOLOG, but
even if the two systems rely on the same logic programming representation, they remain
completely separated, limiting the interleaving of planning and acting. The Platas system
of Claßen et al. [123] relies on GOLOG with a mapping between the PDDL langage and the
Situation Calculus. The Readylog language of Ferrein and Lakemeyer [193], a derivative
of GOLOG, combines planning with programming. It relies on a decision-theoretic planner
used by the acting component when a problem needs to be solved. The acting compo-
nent monitors and perceives the environment through passive sensing, and acts or plans
accordingly.

Finally, there are several systems that rely on probabilistic approaches, possibly with
sampling techniques, which are discussed in Section 6.8.

3.5.2 Refinement Planning

HTN planning. Hierarchical Task Network (HTN) planning uses HTN methods, which
are like refinement methods except that instead of being a program to execute, the body of
a method is a partially or totally ordered set of tasks and actions, along with constraints
that the state variables need to satisfy over various parts of the partial ordering.

The first HTN planning systems, which were developed in the mid-1970s [518, 559], used
plan-space HTN planning, that is, they combined HTN task refinement with plan-space



search [306]. Theoretical models for plan-space HTN planning began to be developed in the
early 1990s [613, 308], culminating in a formal semantics [179], a provably correct planning
algorithm [180], and analysis showing that HTN planning has greater expressive power
than classical planning [178]. Work was also done on making plan-space HTN planning
more efficient using planning-graph techniques [396, 395].

Most current HTN planning algorithms use a forward-search procedure such as the one
in SeRPE (Algorithm 3.4). For example, the SHOP algorithm [444] can be rewritten as a
special case of SeRPE, and a slightly modified version7 of the SHOP2 algorithm [446] can be
rewritten as a special case of IRT (Algorithm 3.5), using HTN methods that include “inter-
leave” operators. The approach of Biundo and Schattenberg [71] integrates HTN with plan
space planning; it has been extended with efficient heuristics using task decomposition and
landmarks [176, 51]. Other extensions to HTN planning have been proposed, for example,
to temporal planning [109] (see Chapter 4) and planning with preferences [551].

A recent formal model of HTN search spaces [10] has shown that because they have
a more complex structure than classical search spaces, there is a wider variety of possible
ways to search them, including some possibilities for which no planning algorithms have yet
been written. The model suggests it may be feasible to develop domain-independent HTN
planning heuristics using a relaxation of one of these search spaces, but such heuristics have
not yet been developed.

HTN methods can be useful for encoding “standard operating procedures” for accom-
plishing tasks in various application domains [601]. Some examples include scheduling [602],
logistics and crisis management [132, 560, 71], spacecraft planning and scheduling [1, 182],
equipment configuration [6], manufacturing process planning [548], evacuation planning
[436], computer games [549, 112], and robotics [428, 429].

Combining refinement planning and classical planning. When a classical planner
is trying to achieve a goal g, it may examine any sequence of actions that it thinks will
lead toward g. When a refinement planner is trying to accomplish a task, it will examine
only those action sequences that can be produced using the available refinement methods.
Thus if we use refinement planning to plan for a task of the form achieve(g), this can be
considered a way of constraining the search for g.

On one hand, constraining the search in this manner can convey a substantial efficiency
advantage [443]. On the other hand, Example 3.12 demonstrates that unless the planner is
given a comprehensive set of methods that cover all of the possible tasks to accomplish, and
all of the possible situations in which they might need to be accomplished, planning can
fail in situations in which one would want it to succeed. Consequently, several researchers
have investigated ways to combine the advantages of both refinement planning and classical
planning by using refinement methods when they are applicable and classical planning when
no refinement methods are available.

One approach involves running a classical planner and an HTN planner as two separate
subroutines, with the refinement planner passing control to the classical planner whenever
it encounters a task for which no methods have been defined, and the classical planner
passing control to the refinement planner whenever it encounters an “action” that matches
the head of an HTN method [219].

Another approach achieves the same kind of effect by compiling a set of HTN methods
(subject to certain restrictions because HTN planning has greater expressivity than classical
planning) into a set of classical “actions” whose names, preconditions, and effects encode
the steps involved in applying the methods, and using these actions in a classical planner
[8].

7The modification is to remove SHOP2’s requirement that a method m’s preconditions must be evaluated
in the same state as the preconditions of the first action in the decomposition tree below m. Enforcing such
a requirement is not feasible in dynamic environments, and IRT and RAE do not attempt to do so.



A third approach [531] uses an HTN-like formalism in which there are goals rather than
tasks, and the body of a method is a sequence of goals and actions. If the planner encounters
a goal for which there is an applicable method then it uses the method. Otherwise it invokes
a landmark-based forward search. During each episode of landmark generation, the planner
treats the landmarks as intermediate goals, reverting to refinement planning whenever it
encounters a landmark for which there is an applicable method.

3.5.3 Translating Among Multiple Domain Models

Throughout this chapter, we assumed that all of the refinements took place in the same
state space. However, in applications in which refinements are done at multiple levels of
abstraction (e.g., see Figure 1.2), different state and action representations may be needed
at different levels of abstraction.

In principle, the algorithms and procedures in this chapter can be generalized to accom-
modate this, using techniques somewhat like the ones used in abstraction heuristics (see
Section 2.7.9). However, such a generalization will require formal definitions of the relation-
ships among tasks, states and actions at different levels, translation algorithms based on
these definitions, and planning and acting algorithms that can accommodate these transla-
tions. A comprehensive approach for this problem has yet to be developed.

3.6 Exercises

3.1. Modify the m-search method of Example 3.2 by assuming it uses a planning function,
plan-path, which computes an optimized sequence of locations with content that is not yet
known; the search proceeds according to this sequence.

3.2. Complete the methods of Example 3.2 by considering that move-to is not a command
but a task addressed by a method that calls a motion planner, which returns a trajectory,
then controls the motion of the robot along that trajectory.

3.3. Complete the methods of Example 3.2 by considering that perceive is not a command
but a task that requires calling a perception planner that returns a sequence of observation
poses. Define two methods: (i) for a complete survey of a location where perceive goes
through the entire sequence of observation poses and (ii) for a focus perception that stops
when the searched object is detected.

3.4. Analyze how the methods in Exercises 3.1, 3.2, and 3.3 embed planning capabilities
in refinement methods at the acting level. Relate this to Figure 1.2 and the discussion in
Section 1.2.2.

3.5. Combine the two scenarios of Examples 3.2 and 3.3: while the robot is searching for a
container, it has to react to an emergency. What needs to be done to ensure that the robot
returns to its search when the task address-emergency finishes (see Section 3.2.4)?

3.6. In Example 3.4, in the body of m-opendoor, why is the first word “while” rather than
“if”?

3.7. Complete the methods of Example 3.4 for refining the tasks unlatch(r, d) and throw-
wide(r, d) when the door turns to the right, when the door opens away from the robot, and
when the door slides.

3.8. Complete the methods of Example 3.4 with appropriate steps to survey the grasping
status of whatever the robot is grasping and to turn the handle in the opposite direction
before ungrasping it.



3.9. Extend Example 3.4 for a robot with two arms: the robot uses its left (or right) arm
if the door turns or slides to the left (or right, respectively). Add a method to move an
object from one of the robot’s hands to the other that can be used if the hand holding the
object is needed for the opening the door.

3.10. Extend Example 3.4 for the case in which the door might be locked with an RFID
lock system and the robot’s RFID chip is attached to its left arm.

3.11. Redefine the pseudocode of RAE, Progress, and Retry to implement the extensions
discussed in Section 3.2.4 for controlling the progress of a task.

3.12. Implement and test the fetch task of Example 3.2 in OpenPRS (https://git.
openrobots.org/projects/openprs/wiki). Integrate the results of Exercise 3.1 in your
implementation; use for plan-path a simple Dijkstra graph-search algorithm. Is it possible to
extend your OpenPRS implementation to handle the requirements stated in Exercise 3.5?

3.13. In Example 3.8, rewrite the two methods for put-in-pile(c, p′) as a single method.
What are the benefits and drawbacks of having them as one method rather than two?

3.14. For the task uncover(c) in Example 3.8, write a method or set of methods for the
case where there are containers on c but no other pile at the same dock.

3.15. Professor Prune says that the m-navigate method in Example 3.8 can cause excessive
backtracking. Is he correct? Explain why or why not, and if he is correct, then write a
better method or set of methods.

3.16. Following is a domain-specific acting algorithm to find near-optimal solutions for
blocks world problems (see Exercise 2.10), where “optimal” means the smallest possible
number of actions. In it, s0 is an initial state in which holding = nil, and g is a set of loc
atoms (e.g., as in Figure 2.18). Here are some definitions of terms used in the algorithm:

• For each block b, if g contains an atom of the form loc(b) = c, then goal(b) = c. If
there is no such atom, then goal(b) = nil.

• A block b is unfinished if s0(loc(b)) ̸= goal(b) and goal(b) ̸= nil, or if s0(loc(b)) is an
unfinished block. Otherwise b is finished.

• A block b is clear if top(b) = nil.

Here is the acting algorithm:

Stack-blocks(s0, g)
while there is at least one unfinished block do

if there is an unfinished clear block b such that
goal(b) = table or goal(b) is a finished clear block

then
move b to goal(b)

else
choose a clear unfinished block b
move b to table

(a) What sequence of actions will this algorithm produce for the planning problem in
Exercise 2.10(b)?

(b) Write a set of refinement methods that encode this algorithm. You may assume
that there is already a function finished(b) that returns true if b is finished and false
otherwise.

3.17. Suppose we try to use SeRPE on the problem in Example 3.6. Draw as much of the
refinement tree as you can. What problem prevents you from drawing the entire refinement
tree? Suggest a way to resolve the problem.

https://git.openrobots.org/projects/openprs/wiki
https://git.openrobots.org/projects/openprs/wiki


3.18. Rewrite the pseudocode for SeRPE, replacing the nondeterministic choice with depth-
first backtracking.

3.19. In Example 3.11, suppose that every time r1 starts down the road from d1 to d2, it
hits a bump that knocks c1 off of r1 and back onto p1.

(a) What sequence of commands will ARP-lazy, ARP-interleaved, and ARP-asynchronous
execute?

(b) What sequence of commands will REAP execute?

3.20. In Exercise 3.16, suppose that when the robot hand tries to pick up a block, sometimes
it will drop the block onto the table.

(a) What sequence of commands will ARP-lazy, ARP-interleaved, and ARP-asynchronous
execute?

(b) What sequence of commands will REAP execute? What kind of modification could
you make to REAP to make it keep trying until it succeeds?

3.21. Redo Example 3.11 using a refinement planner that does a receding-horizon search.
More specifically, the planner is a modified version of SeRPE that generates the first two
actions of every refinement plan (hence it looks at all partial plans of two steps or less), and
it returns the partial plan that (according to some kind of heuristic evaluation) is closest to
accomplishing the task or goal. You can assume that the heuristic evaluation always gives
accurate results.



Chapter 4

Deliberation with Temporal
Models

This chapter is about planning and acting approaches in which time is explicit in the descrip-
tive and operational models of actions, as well as in the models of the expected evolution of
the world. It describes several algorithms and computation methods for handling durative
and concurrent activities with respect to a predicted dynamics.

The first section addresses the need of making time explicit in the deliberation of an ac-
tor. A knowledge representation for modeling actions with temporal variables is presented
in Section 4.2. It relies on an extension of the refinement methods introduced earlier, which
are seen here as chronicles, that is, collections of assertions and tasks with explicit temporal
constraints. A planning algorithm with temporal refinement methods is developed in Sec-
tion 4.3. The basic techniques for managing temporal constraints and the controllability of
temporal plans are then presented in Section 4.4. Acting problems with temporal domain
models, are discussed, considering different types of operational models in Section 4.5. The
chapter concludes with a discussion and historical remarks, followed by exercises.

4.1 Introduction

To perform an action, different kinds of resources may need to be borrowed (e.g., space,
tools) or consumed (e.g., energy). Time is a resource required by every action, but it differs
from other types of resources. It flows independently from the actions being performed, and
it can be shared ad infinitum by independent actors as long as their actions do not interfere
with each other.

In previous chapters, we left time implicit in our models: an action produced an instan-
taneous transition from one state to the next. However, deliberative acting often requires
explicit temporal models of actions. Rather than just specifying an action’s preconditions
and effects, temporal models must specify what things an action requires and what events
it will cause at various points during the action’s performance. For example, moving a
robot r1 from a loading dock d1 to a loading dock d2 does not require d2’s availability at
the outset but it does require it shortly before r1 reaches d2.

Actions may, and sometimes must overlap, even if their conditions and effects are not
independent. As one example, r1 may move from d1 to d2 while r2 is concurrently moving
from d2 to d1. As another, opening a door that has a knob and a spring latch that controls
the knob requires two tightly synchronized actions: (i) pushing and maintaining the latch
while (ii) turning the knob. Modeling such concurrency requires an explicit representation
of time.

Goals are sometimes constrained with absolute deadlines. Events may be expected
to occur at future time periods, for example, the arrival of scheduled ships at a harbor.
Actions may have to be located in time with respect to expected events or deadlines. Time
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can be required qualitatively, to handle synchronization between actions and with events,
and quantitatively, to model the duration of actions with respect to various parameters.

In summary, the main motivations for making time explicit in planning and acting are
the following:

• modeling the duration of actions;

• modeling the effects, conditions, and resources borrowed or consumed by an action at
various moments along its duration, including delayed effects;

• handling the concurrency of actions that have interacting and joint effects;

• handling goals with relative or absolute temporal constraints;

• planning and acting with respect to exogenous events that are expected to occur at
some future time; and

• planning with actions that maintain a value while being executed, as opposed to just
changing that value (e.g., tracking a moving target, or keeping a spring latch in some
position).

An explicit representation of time for the purpose of acting and planning can be either:

• “State-oriented”: one keeps the notion of global states of the world, as we have done
so far, and one includes time explicitly in the model of the transitions between states
(e.g., as in timed automata and various forms of temporal logics). The dynamics
of the world are modeled as a collection of global snapshots, each of which gives a
complete description of the domain at some time point.

• “Time-oriented”: one represents the dynamics of the world as a collection of partial
functions of time, describing local evolutions of state variables. Instead of a state,
the building block here is a timeline (horizontal slice in Figure 4.1) that focuses
on one state variable and models its evolution in time. Time-oriented approaches use
either instants or intervals as temporal primitives, with qualitative and/or quantitative
relations.

We use the time-oriented approach in this chapter; a comparison to the state-oriented
approach is briefly discussed in Section 4.6.
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Figure 4.1: State-oriented versus time-oriented views.

4.2 Temporal Representation

This section describes timelines, chronicles, and temporal refinement methods for modeling
and reasoning about actions.



4.2.1 Assertions and Timelines

We rely on a quantitative discrete model of time described by a collection of temporal
variables, for example, t, t′, t1, t2, . . .; each variable designates a time point. An interval is a
pair [t, t′] such that t < t′; its duration is t′− t > 0. We also use open intervals, for example,
[t, t′), in the usual sense. For simplicity, we assume that temporal variables range over the
set of integers.1

These temporal variables will not be instantiated at planning time into precise values.
They will be constrained with respect to other temporal variables or constants; we will
have to keep the constraints consistent. The value of a temporal variable will be set by the
execution platform when an action is performed, that is, when the commands executing that
action are triggered or when their effects are observed. In other words, a temporal variable
remains constrained but uninstantiated as long as it refers to the future. It is instantiated
with a value corresponding to the current time when the fact that this variable qualifies
takes place, either controlled or observed by the actor. After that point, the variable refers
to the past.

Temporal constraints are specified with the usual arithmetic operators (<,≤,=, etc.)
between temporal variables and integer constants, for example, t < t′ says that t is before
t′; d ≤ t′ − t ≤ d′ constrains the duration of the interval [t, t′] between the two bounds d
and d′.

In the time-oriented view, each state variable x is a function of time; hence the notation
x(t) refers to the value of that variable at time t. The knowledge about the evolution of a
state variable as a function of time is represented with temporal assertions.

Definition 4.1. A temporal assertion on a state variable x is either a persistence or a
change:

• A persistence, denoted [t1, t2]x = v, specifies that x(t) = v for every t in the interval
t1 ≤ t ≤ t2.

• A change, denoted [t1, t2]x:(v1, v2), specifies that the value of x changes over the
interval [t1, t2] from x(t1) = v1 to x(t2) = v2, with v1 ̸= v2.

As a shorthand, [t]x = v stands for [t, t + 1)x=v and [t]x : (v, v′) stands for [t, t +
1]x:(v, v′); the former gives the value of x at a single time point and the latter expresses
a transition from v to v′ over two consecutive time-points. In general, and assertion
[t, t′]x:(v, v′) does not model how the change takes place within the interval [t, t′]; it can be
gradual over possibly intermediate values or instantaneous at any moment in [t, t′]. How-
ever, if t′ = t + 1, then the value of x changes discretely from v at time t to v′ at time
t+ 1.

For example, the assertion [t1, t2]loc(r1):(loc2,loc3) says that r1’s location changes from
loc2 to loc3. The precise moments of this change and intermediate values of loc(r1) are not
stated by this assertion. Their values will be established by the command that performs
the change from loc2 to loc3.

Temporal assertions are parameterized, for example, [t1, t2]loc(r):(l, loc1) states that
some robot r moves from a location l to loc1. The values of r and l will be fixed at some
planning or acting stage; the values of t1 and t2 are instantiated only at acting time.

Definition 4.2. A timeline is a pair (T , C) where T is a conjunction of temporal assertions
on a state variable, possibly parameterized with object variables, and C is a conjunction of
constraints on the temporal variables and the object variables of the assertions in T .

T and C are denoted as sets of assertions and constraints. Constraints on temporal
variables are unary and binary inequalities and equalities. Constraints on object variables
are with respect to rigid relations, for example, connected(l,loc1), or binding constraints, as
in the following example.

1This assumption avoids some minor issues regarding closed versus open intervals.



Example 4.3. The whereabouts of the robot r1, as depicted in Figure 4.2, can be expressed
with the following timeline:

({[t1, t2]loc(r1):(loc1, l), [t2, t3]loc(r1)=l, [t3, t4]loc(r1):(l, loc2)},
{t1 < t2 < t3 < t4, l ̸= loc1, l ̸= loc2})

In this timeline, T has three assertions: one persistence and two changes; C has temporal
and object constraints. The constraints are in this particular case entailed from the three
intervals and two change assertions in T . Instances of the timeline are substitutions of
possible values in these assertions for the five variables l, t1, . . . , t4.

Note that this timeline does not say what happens between t1 and t2; all we know is that
r1 leaves loc1 at or after t1, and it arrives at l at or before t2. To say that these two changes
happen exactly at t1 and t2, we can add the following assertions in the timeline: [t1, t1 + 1]
loc(r1):(loc1,route), and [t2 − 1, t2] loc(r1):(route, l), where route is some intermediate loca-
tion. These assertions say that [t1]loc(r1)=loc1, [t1 + 1]loc(r1)=route, [t2 − 1]loc(r1)=route,
and [t2]loc(r1) = l.
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Figure 4.2: A timeline for the state variable loc(r1). The positions of the points on the two
axes are qualitative; the rough lines do not necessarily represent linear changes.

Temporal assertions in a timeline (T , C) are expressed with temporal and object vari-
ables that can be instantiated within their respective domains with the usual unification
mechanisms. Not every instance of a timeline makes sense as a possible evolution of the
corresponding state variable.

Definition 4.4. An instance of (T , C) is consistent if it satisfies all the constraints in C
and does not specify two different values for a state variable at the same time. A timeline
(T , C) is consistent if its set of consistent instances is not empty.

A pair of temporal assertions is possibly conflicting (conflicting, for short), if it can
have inconsistent instances; otherwise, it is nonconflicting. Because change assertions ab-
stract away the precise times at which the changes occur, we consider that two assertions
[t1, t2]x:(v1, v2) and [t′1, t

′
2]x:(v

′
1, v

′
2) are conflicting if they overlap in time, unless the overlap

is only at their endpoints (i.e., v2 = v′1 and t2 = t′1, or v
′
2 = v1 and t′2 = t1) or if they are

strictly identical.
A separation constraint for a pair of conflicting assertions is a conjunction of constraints

on object and temporal variables that exclude inconsistent instances. The set of separation
constraints of a conflicting pair of assertions contains all possible conjunctions that exclude
inconsistent instances.

Example 4.5. The two persistence assertions {[t1, t2] loc(r)=loc1, [t3, t4] loc(r1)=l} are
conflicting, because they can have inconsistent instances. For example, if r = r1, l ̸= loc1
and either t1 ≤ t3 ≤ t2 or t1 ≤ t4 ≤ t2, then the robot r1 would have to be at loc1 and at
l ̸= loc1 simultaneously.



The assertions {[t1, t2]loc(r1) = loc1, [t2, t3]loc(r1) : (loc1, loc2)} is nonconflicting: they
have no inconsistent instances.

The pair {[t1, t2]loc(r1) = loc1, [t3, t4]loc(r1) : (l, l′)} is conflicting. A separation con-
straint is (t2 = t3, l = loc1).

The set of separation constraints for that pair is:
{(t2 < t3), (t4 < t1), (t2 = t3, l = loc1), (t4 = t1, l

′ = loc1)}.

A set of assertions is conflicting if any pair of the set is. A separation constraint for a
set of conflicting assertions is a consistent conjunction of constraints that makes every pair
of the set nonconflicting. Note that a set of assertions may have separation constraints for
every pair while there is no consistent conjunction of separation constraints for the entire
set.

Example 4.6. Consider the set of assertions {[t1, t2]loc(r1):(loc1, loc2), [t2, t3]loc(r1)=l, [t3, t4]loc(r1):(loc3, loc4)}.
The constraint l = loc2 is a separation for the first two assertions, while the constraint
l = loc3 is required for the last two assertion.

Note that the consistency of a timeline (T , C) is a stronger notion than just satisfying the
constraints in C. It also requires the assertions in T to have a nonconflicting instance that
satisfies C. A timeline is inconsistent if in particular there are no separation constraints,
or none that is consistent with C. A convenient case is when C includes the separation
constraints needed by T . For such a case, satisfying the constraints in C guarantees the
consistency of the timeline. This is the notion of secure timelines.

Definition 4.7. A timeline (T , C) is secure if and only if it is consistent and every instance
that meets the constraints in C is consistent.

In a secure timeline (T , C), no instance that satisfies C will specify different values for
the same state variable at the same time. In other words, every pair of assertions in T is
either nonconflicting or has a separation constraint entailed from C. A consistent timeline
may possibly be augmented with separation constraints to make it secure.

Example 4.8. The timeline ({[t1, t2]loc(r1)=loc1, [t3, t4] loc(r1):(loc1, loc2)}, {t2 < t3}) is
secure; its assertions are nonconflicting. The timeline ({[t1, t2] loc(r)=loc1, [t3, t4]loc(r1)=l}, {t1 <
t2, t3 < t4}) is consistent but not secure; when augmented with either (r ̸= r1) or (t2 < t3)
it becomes secure.

Another important notion is that of the causal support of an assertion in a timeline.
Timelines are used to reason about the dynamic evolution of a state variable. An actor’s
reasoning about a timeline requires every element in this evolution to be either given by
its observation or prior knowledge (e.g., for the initial state), or explained by some reason
due the actor’s own actions or to the dynamics of the environment. For example, looking
at the timeline in Figure 4.2, the locations of the robot in l, then in loc2, are explained by
the two change assertions in that timeline. However, nothing explains how the robot got to
loc1; we have to state an assertion saying that it was there initially or brought there by a
move action.

Definition 4.9. An assertion [t, t′]x=v or [t, t′]x:(v, v′) in a timeline is causally supported
if the timeline contains another assertion [t′′, t]x=v or [t′′, t]x:(v′′, v) that asserts the value
v at time t.

Note that by definition of the intervals [t′′, t] and [t, t′] we have t′′ < t < t′. Hence this
definition excludes circular support, that is, assertion α cannot support assertion β while
β supports α, regardless of whether this support is direct or by transitivity via some other
assertions.



Example 4.10. In Example 4.3 assertion [t2, t3]loc(r1)=l is supported by [t1, t2]loc(r1):(loc1, l).
Similarly, assertion [t3, t4]loc(r1):(l, loc2) is supported by [t2, t3]loc(r1)=l. However, the first
assertion in that timeline is unsupported: nothing asserts [t1] loc(r1)=loc1.

It may be possible to support an assertion in a timeline by adding constraints on ob-
ject and temporal variables. For example, [t1, t2]loc(r1):(loc1,loc2) can be supported by
[t, t′]loc(r)=l if the following constraints are added to the timeline: (t′ = t1, r=r1, l = loc1).
Another way of supporting an assertion is by adding a persistence condition. For example,
in the timeline ({[t1, t2]loc(r1):(loc1,loc2), [t3, t4]loc(r1):(loc2,loc3)}, {t1 < t2 < t3 < t4}), the
second assertion can be supported by adding the following persistence: [t2, t3] loc(r1)=loc2.
Adding a change assertion can also be used to support assertions. As we’ll see in Sec-
tion 4.3.3, adding a new action to a plan results in new assertions that can provide the
required support.

It is convenient to extend to sets of timelines the previous notation and definitions. If
T is a set of temporal assertions on several state variables and C are constraints, then the
pair (T , C) corresponds to a set of timelines {(T1, C1), . . . , (Tk, Ck)}. (T , C) is consistent or
secure if each of its timelines is. While reasoning about actions and their effects, an actor
will perform the following operations on a set of timelines (T , C):

• add constraints to C, to secure a timeline or support its assertions; for example,
for the first timeline in Example 4.8, the constraint t2 = t3 makes the assertion
[t3, t4]loc(r1):(loc1, loc2) supported.

• add assertions to T , for example, for the timeline in Figure 4.2 to take into account
additional motions of the robot.

• instantiate some of the variables, which may possibly split a timeline of the set with
respect to different state variables, for example, assertions related to loc(r) and loc(r′)
refer to the same state variable, but that timeline will be split if r is instantiated as
r1 and r′ as r2.

4.2.2 Actions

We model an action as a collection of timelines. More precisely, a primitive action template,
or a primitive for short, is a triple (head, T , C), where head is the name and arguments of
the primitive, and (T , C) is a set of timelines. The reader may view this representation as
an extension of the action templates of Chapter 2 with explicit time expressing conditions
and effects at different moments during the time span of an action.

Example 4.11. Suppose several robots are moving in a connected network of roads con-
nected to some loading docks. Fixed in each dock are one crane and several piles where
containers are stacked. A dock can contain at most one robot at a time. Robots and cranes
can carry at most one container at a time. Waypoints in roads guide the robot navigation.

The objects in this domains are of the following types: r ∈ Robots, k ∈ Cranes, c ∈
Containers, p ∈ Piles, d ∈ Docks, w ∈ Waypoints.

The invariant structure of the domain is given by three rigid relations:

attached ⊆ (Cranes ∪ Piles)×Docks

adjacent ⊆ Docks×Waypoints

connected ⊆Waypoints×Waypoints



The domain is described with the following state variables:

loc(r) ∈ Docks ∪Waypoints for r ∈ Robots

freight(r) ∈ Containers ∪ {empty} for r ∈ Robots

grip(k) ∈ Containers ∪ {empty} for k ∈ Cranes

pos(c) ∈ Robots ∪ Cranes ∪ Piles for c ∈ Containers

stacked-on(c) ∈ Containers ∪ {empty} for c ∈ Containers

top(p) ∈ Containers ∪ {empty} for p ∈ Piles

occupant(d) ∈ Robots ∪ {empty} for d ∈ Docks.

The constant empty means that a robot, a crane, a pile, or a dock is empty, or that a
container is not stacked on any other container.

The task in this example is to bring containers from their current position to a destina-
tion pile. It is specified with primitives, tasks, and methods (to which we’ll come back in
the next section). The primitives are the following:

leave(r, d, w) : robot r leaves dock d to an adjacent waypoint w,

enter(r, d, w) : r enters d from an adjacent wyapoint w,

navigate(r, w,w′) : r navigates from waypoint w to a connected one w′,

stack(k, c, p) : crane k holding container c stacks it on top of pile p,

unstack(k, c, p) : crane k unstacks a container c from the top of pile p,

put(k, c, r) : crane k holding a container c and puts it onto r,

take(k, c, r) : crane k takes container c from robot r.

A descriptive model of leave is specified by the following template:

leave(r, d, w)
assertions: [ts, te]loc(r):(d,w)

[ts, te]occupant(d):(r, empty)
constraints: te ≤ ts + δ1

adjacent(d,w)

This expression says that the leave action changes the location of r from dock d to the
adjacent waypoint w, with a delay smaller than δ1 after the action starts at ts; the dock d
is empty when the action ends at te.

Similarly, enter is defined by the following action template:

enter(r, d, w)
assertions: [ts, te]loc(r):(w, d)

[ts, te]occupant(d):(empty, r)
constraints: te ≤ ts + δ2

adjacent(d,w)

The take primitive is specified as follows:

take(k, c, r)
assertions: [ts, te]pos(c):(r, k)

[ts, te]grip(k):(empty, c)
[ts, te]freight(r):(c, empty)
[ts, te]loc(r)=d

constraints: attached(k, d), attached(p, d)



The assertions in this primitive say that a container c loaded on r at ts is taken by crane
k at te; r remains in the same dock as k.

Similar specifications are required for the primitives put(k, c, r), to put a container on
r, stack(k, c, p), to put the container c held by k on top of pile p, unstack(k, c, p), to take
with k the top container c of pile p, and navigate(r, w,w′) to navigate between connected
waypoints (see Exercise 4.1).

Note that actions leave, enter, take, and so on, are said to be primitive at the planning
level, but they will be refined at the acting level. We’ll see in Example 4.25 how to further
refine them into executable commands.

As illustrated in Example 4.11, primitives are specified as assertions and constraints
on temporal variables and object variables. By convention, ts and te denote the starting
point and ending point of each primitive. The temporal variables of an action template
are not in its list of parameters because we are going to handle them differently from the
object variables. The planner will instantiate object variables, but it will only constrain the
temporal variables with respect to other time points. Their instantiation into constants is
performed at acting time, from the triggering of controllable time points and the observation
of the uncontrollable points (see Section 4.4.3).

Note that this representation does not use two separate fields for preconditions and
effects. A change assertion in a primitive, such as [ts, t]grip(k):(empty, c), expresses both
the precondition that crane k should be empty at time ts and the effect that k holds
container c at time t. The temporal assertions in a primitive refer to several instants, not
necessarily ordered, within the timespan of an action.

Temporal and object variables in a primitive are free variables. To make sure that
different instances of a primitive, say take, refer to different variables ts, te, k, r, c, we rely
on the usual variable renaming, which is detailed later in the chapter.

4.2.3 Methods and Tasks

We define a task as in the previous chapter, that is, a label naming an activity to be
performed by refining it into a collection of subtasks and primitives. A task has temporal
qualifications, written as follows:

[t, t′]task.

The preceding expression means that task takes place over an interval contained within
[t, t′], that is, it starts at or after t, and finishes at or before t′. Note that [t, t′]task has
different semantics than a persistence condition on a state variable. It just says task should
happen within [t, t′] and does not require task to persist throughout the entire interval.

A task is refined into subtasks and primitives using refinement methods. A temporal
refinement method is a tuple (head, task, refinement, T , C), where head is the name and
arguments of the methods, task gives the task to which the method applies, refinement is the
set of temporally qualified subtasks and primitives in which it refines task, T are assertions
and C constraints on temporal and object variables. A temporal refinement method does
not need a separate precondition field, as in the methods of previous chapter. This is
because temporal assertions may express conditions as well as effects in a flexible way and
at different moments. Temporal refinement methods are illustrated in Example 4.12.

Example 4.12. Let us further develop the domain in Example 4.11 by specifying a few
tasks as temporal refinement methods. The task of bringing containers to destination piles
can be broken into the following tasks: bring, move, uncover, load, and unload. Some of the
methods for performing these tasks are the following:



m-bring(r, c, p, p′, d, d′, k, k′)
task: bring(r, c, p) # r brings container c to pile p

refinement: [ts, t1]move(r, d′)
[ts, t2]uncover(c, p

′)
[t3, t4]load(k

′, r, c, p′)
[t5, t6]move(r, d)
[t7, te]unload(k, r, c, p)

assertions: [ts, t3]pile(c)=p
′

[ts, t3]freight(r)=empty
constraints: attached(p′, d′), attached(p, d), d ̸= d′

attached(k′, d′), attached(k, d)
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

This method refines the bring task into five subtasks to move the robot to d′ then to d,
to uncover container c to have it at the top of pile p′, to load the robot in d′ and unload
in d in the destination pile p. As depicted in Figure 4.3, the first move and uncover are
concurrent (t2 and t3 are unordered). When both tasks finish, the remaining tasks are
sequential. Container c remains in its original pile, and robot r remains empty until the
load task starts.

1

move 

t3

t1

t2

ts

uncover

pile(c)=p’ 
cargo(r)=nil

load

move 

unload

t4 t6t5 t7 te

Figure 4.3: Assertions, actions and subtasks of a refinement method for the bring task. The
diagonal arrows represent precedence constraints.

m-move1(r, d, d′, w, w′)
task: move(r, d) #moves a robot r to a dock d

refinement: [ts, t1]leave(r, d
′, w′)

[t2, t3]navigate(w
′, w)

[t4, te]enter(r, d, w)
assertions: [ts, ts + 1]loc(r)=d′

constraints: adjacent(d,w), adjacent(d′, w′), d ̸= d′

connected(w,w′)
t1 ≤ t2, t3 ≤ t4

This method refines the move to a destination dock d into three successive steps: leave
the starting dock d′ to an adjacent waypoint w′, navigate to a connected waypoint w adjacent
to the destination and enter the destination d, which is required to be empty only when the
robot gets there. The move task requires additional methods to address cases in which the
robot starts from a road or when it is already there (see Exercise 4.2).



m-uncover(c, p, k, d, p′)
task: uncover(c, p) #un-pile p until its top is c

refinement: [ts, t1]unstack(k, c
′, p)

[t2, t3]stack(k, c
′, p′)

[t4, te]uncover(c, p)
assertions: [ts, ts + 1]pile(c)=p

[ts, ts + 1]top(p)=c′

[ts, ts + 1]grip(k)=empty
constraints: attached(k, d), attached(p, d)

attached(p′, d), p ̸= p′, c′ ̸= c
t1 ≤ t2, t3 ≤ t4

This method refines the uncover task into unstacking the container at the top of pile p
and moving it to a nearby pile p′ and then invoking uncover again recursively if the top of
p is not c. Another method should handle the case where c is at the top of p.

Finally, the task load can be refined into unstack and put primitives; task unload is
similarly refined into take and stack (see Exercise 4.2).

As in primitives, assertions in methods specify conditions as well as effects at any mo-
ment during the duration of the task. Note that the specific conditions of subtasks and
primitives of a task τ should be expressed in their respective definitions, instead of being
in the specification of the methods handling task τ . Redundancy between conditions in
methods of tasks, and conditions in subtasks and primitives is not desirable. For example,
the primitive enter has the assertion [ts, te]occupant(d):(empty, r); the same assertion (with
different variables that will be unified with ts, te, d and r) may appear in the method m-
move1, but it is not needed. Redundancy, as well as incomplete specifications, are sources
of errors.

Planning and acting procedures will view tasks as labelled networks with associated
contraints. For example, a task bring in Example 4.12 can be the root of a network whose
first successor with method m-bring is a task move, which in turn leads with m-move1 to
the primitive leave. A leaf in a task network is a primitive. An inner node is a task, which,
at some point in the planning and/or acting process, is either:

• refined : it is associated with a method; it has successors labelled by subtasks and
primitives as specified in the method with the associated constraints or

• nonrefined : its refinement with an applicable method is pending.

This refinement mechanism takes place within a data structure called a chronicle.

4.2.4 Chronicles

A chronicle is a collection of temporally qualified tasks, primitives, and assertions with
associated constraints. It is used, among other things, to give the initial specifications of a
planning problem, including the following:

(i) the tasks to be performed;

(ii) the current and future known facts that will take place independently of the planned
activities; and

(iii) the assertions to be achieved; these are constraints on future states of the world, that
planning will have to satisfy.

Because the elements in (ii) are also expressed as temporal assertions, we refer to them
as a priori supported assertions to distinguish them from assertions in (iii), which require
support from the planned activities. More formally:

Definition 4.13. A chronicle is a tuple (A,ST , T , C) whereA is a set of temporally qualified
primitives and tasks, ST is a set of a priori supported assertions, T is a set of assertions,



and C is a conjunction of constraints on the temporal and object variables in A,ST , and
T .

Example 4.14. Let us augment the domain of Example 4.12 by specifying that a pile p
can be on a ship, and that a crane k on a dock d can unstack containers from that pile p
only when the corresponding ship is docked at d (see Exercise 4.3).

Consider the case in which this domain has two robots r1 and r2, initially in dock1 and
dock2, respectively. A ship ship1 is expected to be docked at dock3 at a future interval of
time; it has a pile, pile-ship1, the top element of which is a container c1. The problem is to
bring container c1 to dock4 using any robot and to have the two robots back at their initial
locations at the end. This problem is expressed with the following chronicle:

ϕ0 :
tasks: [t, t′]bring(r, c1, dock4)

supported: [ts]loc(r1)=dock1
[ts]loc(r2)=dock2
[ts + 10, ts + δ]docked(ship1)=dock3
[ts]top(pile-ship1)=c1
[ts]pos(c1)=pallet

assertions: [te]loc(r1) = dock1
[te]loc(r2) = dock2

constraints: ts < t < t′ < te, 20 ≤ δ ≤ 30, ts = 0

By convention, ts and te denote the starting and end points of a chronicle. Here ts has an
absolute value (origin of the clock).

Chronicles will also be used to express partial plans that will be progressively trans-
formed by the planner into complete solution plans.

Example 4.15. Consider two robots r1 and r2 in the domain of Example 4.12 performing
concurrent actions where each robot moves from its dock to the other robot’s dock as
depicted in Figure 4.4. The following chronicle (where ST and T are not detailed) expresses
this set of coordinated actions:

ϕ :
tasks: [t0, t1]leave(r1,dock1,w1)

[t1, t2]navigate(r1,w1,w2)
[t3, t4]enter(r1,dock2,w2)
[t′0, t

′
1]leave(r2,dock2,w2)

[t′1, t
′
2]navigate(r2,w2,w1)

[t′3, t
′
4]enter(r2,dock1,w1)

supported: ST
assertions: T

constraints: t′1 < t3, t1 < t′3, ts < t0, ts < t′0, t4 < te, t
′
4 < te

adjacent(dock1,w1), adjacent(dock2,w2)
connected(w1,w2)

This chronicle says that r1 leaves dock1 before r2 enters dock1 (t1 < t′3); similarly, r2
leaves dock2 before r1 gets there (t′1 < t3). Each action navigate starts when the correspond-
ing leave finishes (t1 and t′1). However, an enter may have to wait until after the navigate
finishes (t2 to t3) and the way is free.

The set T of assertions in a chronicle ϕ = (A,ST , T , C) contains all the assertions of the
primitives already in A, for example, leave and enter in Example 4.15. When a task τ ∈ A
is refined with a method m, τ is replaced in A by the subtasks and primitives specified in



3

time

r1

leave  
dock1

t1 t3 t4t0

navigate enter  
dock2

r2

leave  
dock2

t’1 t’2 t’4t’0

navigate
enter  
dock1

t2

t’3

Figure 4.4: Temporally qualified actions of two robots, r1 and r2. The diagonal arrows
represent the precedence constraints t′1 < t3 and t1 < t′3.

m, and T and C are augmented with the assertions and constraints of m and those of its
primitives.

When a task is refined, the free variables in methods and primitives are renamed and
possibly instantiated. For example, enter is specified in Example 4.11 with the free variables
r, d, w, ts, te. In the first instance of enter in the chronicle of Example 4.15, these variables
are respectively bound to r1, dock2, w2, t3, and t4. In the second instance of enter, they are
bounded to r2, dock1, w1, t′3, t

′
4. The general mechanism for every instance of a primitive

or a method is to rename the free variables in its template to new names, then to constrain
and/or instantiate these renamed variables when needed.

Furthermore, when refining a task and augmenting the assertions and contraints of a
chronicle, as specified by a method, we need to make sure that (T , C) remains secure.
Separation constraints will be added to C to handle conflicting assertions. The consistency
of the resulting constraints will be checked. This is detailed in Section 4.4.

Finally, all the assertions of a chronicle must be supported through the mechanisms
presented next.

4.3 Planning with Temporal Refinement Methods

A temporal planning domain Σ is defined by giving the sets of objects, rigid relations and
state variables of the domain, and by specifying the primitives and methods for the tasks
of the domain.

A planning problem is defined as a pair (Σ, ϕ0), where Σ is a temporal planning domain
and ϕ0 = (A,ST , T , C) is an initial chronicle . This chronicle gives the tasks to perform,
the goals to achieve, and the supported assertions stating the initial and future states of
the world that are expected to occur independently of the activities to be planned for. The
pair (T , C) in ϕ0 is required to be secure. Note that the planning problem ϕ0 is defined in
terms of tasks as well as goals. Hence planning will proceed by refinement of tasks as well
as by generative search for goals.

Partial plans are also expressed as chronicles. A chronicle ϕ defines a solution plan when



all its tasks have been refined and all its assertions are supported. At that point, ϕ contains
all the primitives initially in ϕ0 plus those produced by the recursive refinement of the tasks
in ϕ0, according to methods in Σ, and those possibly needed to support the assertions in
ϕ0 or required by the task refinements. It also contains the assertions and constraints in
ϕ0 plus those of the primitives in ϕ and the methods used in the task refinements, together
with their constraints and possible separation constraints. More formally:

Definition 4.16. A chronicle ϕ is a valid solution plan of the temporal planning problem
(Σ, ϕ0) if and only if the following conditions hold:

(i) ϕ does not contain nonrefined tasks;

(ii) all assertions in ϕ are causally supported, either by supported assertions initially in
ϕ0 or by assertions from methods and primitives in the plan; and

(iii) the chronicle ϕ is secure.

Condition (i) says that all tasks in ϕ0 have been refined recursively down into primitives;
this is similar to what we saw in Section 3.3.1. Condition (ii) extends to temporal domains
the notion of causal link seen in Section 2.5. Condition (iii) is a requirement to make sure
that the solution chronicle cannot have inconsistent instances. This is because a solution
plan has in general non-instantiated temporal and object variables, which are instantiated
at execution time (see Section 4.4.3 and Section 4.5).

4.3.1 Temporal Planning Algorithm

A temporal planning algorithm proceeds by transforming the initial chronicle ϕ0 with refine-
ment methods and the addition of primitives and separation constraints until the preceding
three conditions are met. Let ϕ be the current chronicle in that transformation process;
ϕ may contain three types of flaws with respect to the requirements of a valid plan in
Definition 4.16:

• ϕ has nonrefined tasks : violates condition (i)

• ϕ has nonsupported assertions : violates condition (ii), and

• ϕ has conflicting assertions : violates condition (iii).

Because ϕ is obtained by transforming ϕ0, when ϕ does not contain nonrefined tasks, then
all tasks of ϕ0 have been refined into actions, that is, planning primitives.

A flaw of one of the preceding three types is addressed by finding its resolvers , that is,
ways of solving that flaw. The planning algorithm chooses a resolver nondeterministically
and transforms the current chronicle accordingly. This is repeated until either the current
chronicle is without flaws, that is, it is a valid solution or a flaw has no resolver, in which case
the algorithm must backtrack to previous choices. Algorithm 4.1, TemPlan, is a recursive
algorithm to do this.

TemPlan(ϕ,Σ)
Flaws ← set of flaws of ϕ
if Flaws=∅ then return ϕ
arbitrarily select f ∈ Flaws (i)
Resolvers ← set of resolvers of f (ii)
if Resolvers=∅ then return failure
nondeterministically choose ρ ∈ Resolvers (iii)
ϕ← Transform(ϕ, ρ) (iv)
Templan(ϕ,Σ)

Algorithm 4.1: A chronicle temporal planner.



In Algorithm 4.1, step (i) is a heuristic choice of the order in which the resolvers of a
given flaw are searched. This choice affects the performance but not the completeness of the
algorithm. Step (iii) is a backtracking point in a deterministic implementation of TemPlan:
all resolvers for a flaw may need to be tried to ensure completeness.

The main technical issues in this temporal planning algorithm are the following:

• How to find the flaws in ϕ and their resolvers, and how to transform ϕ with a resolver
ρ, that is, the Transform subroutine in Templan. This is discussed for the different
types of flaws in Sections 4.3.2 to 4.3.4.

• How to organize and explore the search space efficiently. This is discussed in Sec-
tion 4.3.5.

• How to check and maintain the consistency of the constraints in ϕ. This is discussed
in Section 4.4.

4.3.2 Resolving Nonrefined Tasks

An nonrefined task is easy to detect in the current ϕ. A resolver for a flaw of that type is an
applicable instance of a temporal refinement method for the task. An instance is obtained
by renaming all variables in the method and instantiating some of these variables with the
task parameters and with the variables and constraints of the current chronicle ϕ.

An instance m of a method is applicable to a chronicle ϕ when its task matches a task in
ϕ and all the constraints ofm are consistent with those of ϕ. Transforming ϕ = (A,ST , T , C)
with such a resolver m consists of the following transformations of ϕ:

• replacing in A the task by the subtasks and actions of m,

• adding the assertions of m and those of the primitives in m either to ST if these
assertions are causally supported or to T , and

• adding to C the constraints of m and those of its actions.

Note that an applicable instance of a method m may have assertions that are not causally
supported by ϕ. For instance, in Example 4.12, the method m-bring is applicable for refining
a task bring(r, c, p) if m-bring has an instance such that the constraints (attached(p′, d′), attached(p, d), d ̸=
d′, t2 ≤ t1, t3 ≤ t1) are consistent with those of current ϕ, given the current binding con-
straints of these variables. However, the assertion [ts, t1]freight(r)=empty in that method
may or may not be already supported by another assertion in ϕ. If it is not, then refining
a task in ϕ with m-bring adds a nonsupported assertion in the current chronicle.

4.3.3 Resolving Nonsupported Assertions

Nonsupported assertions in ϕ = (A,ST , T , C) are those initially in ϕ0 plus those from the
refinement of tasks and the insertion of primitives. As discussed in Section 4.2.1, the three
ways to support an assertion α ∈ T and move it to ST are the following:

• add in C constraints on object and temporal variables,

• add in ST a persistence assertion, and

• add in A a task or primitive that brings an assertion supporting α.

For the last type of resolver, a supporting assertion for α may come from either a
primitive or a method for a task. Supporting α by inserting the body of a method in ϕ is
equivalent to refining a task. Supporting it with a primitive introduces primitives in the
plan, which may not result from the refinement of tasks. The use of a primitive as a resolver
for supporting an unsupported assertion is a generative search for a goal, similar to what
we have seen in plan-space planning (Section 2.5). Let us assume at this point that all
primitives in Σ can be freely used to augment a plan for supporting assertions, as well as
through task refinement methods. We’ll discuss this assumption in Section 4.3.7.



4.3.4 Resolving Conflicting Assertions

Flaws corresponding to conflicting assertions are more easily handled in an incremental
way by maintaining ϕ as a secure chronicle and keeping track of what is needed for it to
remain secure. The mechanisms here are a generalization of those used in Section 2.5 for
handling threats in plan-space planning. There are, however, several substantial differences
(see Exercise 4.7).

All assertions in ϕ0 are required to be nonconflicting. Every transformation of ϕ by re-
finement, addition of persistence assertions or constraints, or addition of tasks or primitives
requires detecting and marking as flaws potential conflicts between newly added assertions
and those of current ϕ. Resolvers for a potential conflict are sets of separation constraints
consistent with the constraints in the current ϕ, as discussed in Section 4.2.1. The corre-
sponding transformation consists of adding the chosen separation constraints to those of ϕ.
One way of keeping the current ϕ secure is to detect and solve potential conflicts at every
transformation step. However, other flaw selection strategies can be applied.

4.3.5 Search Space

The search space of TemPlan is a directed acyclic graph in which search states are chronicles.
An edge (ϕ, ϕ′) in this graph is such that ϕ′ = Transform(ϕ, ρ), ρ being a resolver for some
flaw in ϕ. The graph is acyclic because each edge augments the previous chronicle with
additional constraints, primitives, and/or assertions and there is no removal transformation.
In general, however, the search space is not finite: it can grow indefinitely from the addition
of new primitives and tasks. It can be made finite by the specification of global constraints,
such as the total duration of the plan.

Starting from ϕ0, TemPlan explores a subtree of this complex search space. The problems
for organizing and exploring this space are in many aspects similar to those of algorithm
PSP in Section 2.5. Both follow the same approach of transforming a partial plan by finding
flaws and repairing them. Their types of flaws are, however, different. Flaws corresponding
to nonrefined tasks do no exist in PSP; they are inherent to the refinement methods used
here. The nonsupported assertion flaws extend the open goal flaws of PSP to temporal
domains. Similarly, conflicting assertions generalize what we referred to as threats in PSP.

Both the Templan and PSP algorithms use a dynamic constraint-satisfaction approach in
which new constraints and variables are repeatedly added during the search for a solution.
The constraint-satisfaction problem (CSP) approach is very general and allows taking into
account not only time and variable binding constraints, as in TemPlan, but also resource
constraints, which are quite often part of planning problems. The Meta-CSP framework,
which expresses the disjunctions of possible resolvers for flaws as (meta) constraints, can
help formalize the integration of several types of constraints related to time and resources
and possibly help in their resolution (see discussion in Section 4.6.1).

The basic heuristics for TemPlan are similar to those of PSP. These are basically variants
of the variable-ordering and value-ordering heuristics of CSP. A heuristic analogous to
variable-ordering chooses a flaw f that has the smallest number of resolvers (step (i) of
TemPlan). For a heuristic analogous to value-ordering, the idea is to choose a resolver ρ
that is the least constraining for the current chronicle ϕ. This notion is more difficult to
assess; it leads to take into account differently resolvers that add constraints, assertions, or
refinement methods, from those that add new tasks or primitives. Adding new tasks and
primitives augments the size of the problem at hand and requires the use of more elaborate
heuristics.

Advanced heuristics rely on elaborate extensions of domain transition graphs, reacha-
bility graphs and some of the techniques presented in Section 2.3. They can be integrated
within various search strategies such as iterative deepening or A*-based search. These
considerations are essential for designing an efficient implementation of TemPlan. Possible
options for heuristics and search strategies are briefly discussed in Section 4.6.2.



TemPlan is sound when it is implemented with sound subroutines for finding flaws,
resolvers and transforming chronicles. When a global constraint on the plan to find is set,
such as the total duration of that plan or its maximum number of actions, then TemPlan is
also complete, that is, at least one of its execution traces returns a solution plan, if there is
one. These properties are conditioned on the soundness and completeness of the constraint
handling procedures used in TemPlan, which are detailed in Section 4.4.

4.3.6 Illustration

Let us illustrate some of the steps of TemPlan on a detailed example.
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Figure 4.5: A planning problem involving two robots, r1 and r2, servicing four docks, d1 to
d4; the task is to bring the containers c1 from pile p’1 to p3 and c2 from p’2 to p4.

Example 4.17. Consider the problem depicted in Figure 4.5 for the domain of Exam-
ple 4.11 where two robots, r1 and r2, are servicing four docks, d1 to d4, connected with four
roads, as illustrated. Starting from the initial state shown in the figure, the task is to bring
the containers c1 to pile p3 and c2 to p4. No constraint on the final location of the robots
is stated. Hence, the initial chronicle ϕ0 has no unsupported assertion (see Exercise 4.4).

At the first recursion of TemPlan, there are two flaws in current ϕ: the nonrefined tasks
bring(r, c1, p3) and bring(r′, c2, p4). Suppose the method m-bring is used to refine the
first task into move, uncover, load, move and unload. At this point, c, p, p′, d, d′, k, k′ will be
instantiated, respectively, to c1, p3, p’1, d3, d1, k1, k3; r is constrained to be in {r1, r2}
and the time points are constrained as depicted in Figure 4.3.

At the following recursion, there are six nonrefined tasks in ϕ. Assume m-bring is sim-
ilarly used to refine bring(r′, c2, p4). Now the resulting chronicle contains ten nonrefined
tasks (two uncovers, loads and unloads, and four moves) as well as conflicting assertions
related to the loc(r) and loc(r′) assertions in the four load and unload tasks. Separation
constraints are either r ̸= r′ or precedence constraints such that the tasks are run sequen-
tially.

If the former separation is chosen, a final solution plan would be, for example, to have r1
navigate to d2 while r2 navigates to d1. At the same time, k1 uncovers c1 while k2 uncovers
c2. Two synchronizations then take place: before load(k2, r1, c2, p’2) and, concurrently,



before load(k1, r2, c1, p’1) (as in Figure 4.3). These two concurrent actions are then followed
by move(r1,d4) concurrently with move(r2,d3), and finally with the two unload actions. The
details of the remaining steps for reaching a solution are covered in Exercise 4.5.

If we assume more realistically that navigation between waypoints is constrained by
the traversal of docks, and that no dock can contain more than one robot at a time, then
additional synchronizations will be required for the motion of the two robots (see Exer-
cise 4.6).

4.3.7 Free Versus Task-Dependent Primitives

This section discusses some of the issues for integrating in TemPlan a task-oriented approach
with refinement methods to a goal-oriented approaches with a generative search mechanism.
Indeed, the initial chronicle ϕ0 = (A,ST , T , C) specifies (in A) the tasks to perform as well
as (in T ) the goals to achieve in the form of temporal assertions. However, the flexibility
of the representation and the search space can limit the computational performance of
the algorithm when the domain has few methods to depend on and relies significantly on
generative search.

There is another issue regarding the use of primitives to support assertions that relates
to the specification style of a domain. A primitive a is specified in our representation as
a collection of assertions and constraints; it is also a temporally qualified component of
one or several methods. A method m may contain other assertions and primitives that are
needed as a context for performing a. Hence a may or may not be freely usable in a plan,
independently of a method m that refines a task into several primitives, including a.

These considerations motivate a distinction between free and task-dependent primitives
. A primitive is free if it can be used alone for supporting assertions. A primitive is task-
dependent if it can be used only as part of a refinement method in generative planning.
Such a property is a matter of design and specification style of the planning domain.

Example 4.18. The designer of the domain in Example 4.24 may consider that the prim-
itives unload, load, stack, and unstack are free. These actions can be performed whenever
their specified conditions are met; they can be inserted in a plan when their assertions
are needed to support nonsupported assertions. However, the primitives leave and enter
can be specified as being task-dependent; they should necessarily appear as the result of a
decomposition of a move task. In other words, the designer does not foresee any reason to
perform an action such as leave or enter except within tasks that require leaving or entering
a place.

The use of a task-dependent primitive branches over the choice of which task to use if
the same action appears in the decomposition of several tasks. It introduces an nonrefined
task flaw, which branches over several methods for its decomposition.

Note that if all primitives in a domain are free, then the refinement in Templan is
limited to the tasks in the initial chronicle. However, if all primitives are task-dependent,
then refinement will be needed for every nonsupported assertion that cannot be supported
by constraints and persistence assertions.

4.4 Constraint Management

At each recursion of TemPlan, we have to find resolvers for current flaws and transform
the current chronicle ϕ by refinement and insertion of assertions, constraints, primitives,
and tasks. Each transformation must keep the set C of constraints in ϕ consistent; it must
detect conflicts in the set of assertions in ϕ and find separation constraints consistent with
C. The steps (ii) and (iv) of TemPlan (Algorithm 4.1) require checking the consistency of
the constraints in C.



Definition 4.2 introduces two types of constraints in C: temporal constraints and object
constraints. Let us assume that these two types of constraints are decoupled, that is, there
is no constraint that restricts the value of a time point as a function of object variables,
or vice versa. For example, we introduced constant parameters δi in Example 4.11; there
would be a coupling if these delays where not constant but functions of which robot r is
doing the leave or which crane the unload actions. With this simplifying assumption, C is
consistent if and only if its object constraints and its temporal constraints are consistent.
Constraint checking relies on two independent constraint managers for the two types of
constraints. Let us discuss them in the next sections.

4.4.1 Consistency of Object Constraints

A temporal planner must check and maintain the consistency of unary and binary con-
straints on object variables that come from binding and separation constraints and from
rigid relations. This corresponds to maintaining a general CSP over finite domains, the con-
sistency checking of which is an NP-complete problem. Restrictions on the representation
that may give a tractable CSP are not practical; even inequality constraints, such as x ̸= y
in a separation constraint, make consistency checking NP-complete.

Filtering techniques, such as incremental arc or path consistency, are not complete,
but they are efficient and offer a reasonable trade-off for testing the consistency of object
constraint networks. Indeed, if TemPlan progresses with an inconsistent set of object con-
straints, it will later detect that some variables do not have consistent instantiations; it will
have to backtrack. Incomplete consistency checking in each search node does not reduce
the completeness of the algorithm, it just prunes fewer nodes in its search tree. Hence,
there is trade-off between (i) an early detection of all inconsistencies with a complete but
costly consistency checking at each node of the search, and (ii) using incremental constraint
filtering techniques and performing a complete variable instantiation checking only at the
end of TemPlan search, which may require further backtracking.

A good principle for balancing this trade-off is to perform low complexity procedures at
each search node, and to keep more complex ones as part of the search strategy. In that
sense, filtering techniques efficiently remove many inconsistencies and reduce the search
space at a low cost. They may be used jointly with complete algorithms, such as forward-
checking at regular stages of the search. Such a complete consistency check has to be
performed on the free variables remaining in the final plan. Other trade-offs, such as
choosing flaws that lead to instantiate object variables, are also relevant for reducing the
complexity of maintaining variable binding constraints.

4.4.2 Consistency of Temporal Constraints

Simple Temporal Networks (STNs) provide a convenient framework for handling tem-
poral constraints. An STN is a pair (V, E), where V is a set of temporal variables V
= {t1, t2, . . . , tn}, and E is a set of binary constraints of the form:

aij ≤ tj − ti ≤ bij , denoted rij = [aij , bij ], where aij and bij are integers.

Note that rij entails rj,i = [−bij ,−aij ]. To represent unary constraints (i.e., constraints on
one variable rather than two), let us introduce an additional temporal variable t0 with a
fixed value t0 = 0. Then r0j = [a, b] represents the constraint a ≤ tj ≤ b.

A solution to an STN (V, E) gives an integer value to each variable in V. The STN is
consistent if it has a solution that meets all the constraints in E . It is minimal if every
value in each interval rij belongs to a solution.

TemPlan proceeds by transforming a chronicle ϕ = (A,ST , T , C) such as to meet the
conditions of a solution plan. These transformations add in C constraints of methods for re-
fining tasks, constraints for supporting assertions, and separation constraints for conflicting



assertions. Each transformation should keep C consistent. The set of temporal constraints
in C is an STN (V, E), which evolves by the addition of new variables and constraints while
staying consistent. TemPlan requires checking incrementally that an STN remains consis-
tent when more variables and contraints are added to it. This is more easily done when the
network it is also maintained minimal, as explained next.

Two operations are essential for checking the consistency of E :
• composition: rik • rkj = [aik + akj , bik + bkj ], which corresponds to the transitive sum
of the two constraints from i to j through k:
aik ≤ tk − ti ≤ bik and akj ≤ tj − tk ≤ bkj ;

• intersection: rij ∩ r′ij = [max{aij , a′ij},min{bij , b′ij}], which is the conjunction of two
constraints on (ti, tj): aij ≤ tj − ti ≤ bij and a′ij ≤ tj − ti ≤ b′ij .

Three constraints rik, rkj , and rij are consistent when rij ∩ (rik • rkj) ̸= ∅.
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Figure 4.6: A simple temporal network.

Example 4.19. Consider the network in Figure 4.6 where vertices are time points and
edges are labelled with temporal constraints: r12 = [1, 2], r2,3 = [3, 4] and r13 = [2, 3].
r12 and r2,3 entail by transitivity r′13 = r12 • r23 = [4, 6]. But r′13 is not compatible with
r13: the upper bound of r13 is 3, smaller than the lower bound of r′13 which is 4. That is
r13 ∩ r′13 = ∅. There is no pair of variables t1, t3 that can satisfy both r13 and r′13: this
network is inconsistent.

The path-consistency algorithm PC (Algorithm 4.2) tests all triples of variables in V with
a transitive update operation: rij ← rij ∩ (rik • rkj). If a pair (ti, tj) is not constrained,
then we take rij = (−∞,+∞); in that sense, an STN corresponds implicitly to a complete
graph.

PC(V, E)
for k = 1, . . . , n do

for each pair i, j such that 1 ≤ i < j ≤ n, i ̸= k, and j ̸= k do
rij ← rij ∩ [rik • rkj ]
if rij = ∅ then return inconsistent

Algorithm 4.2: Path consistency algorithm for simple constraint networks

PC is complete and returns the minimal network. Its complexity is O(n3). It is easily
transformed into an incremental version. Assume that the current network (V, E) is consis-
tent and minimal; a new constraint r′ij is inconsistent with (V, E) if and only if rij ∩r′ij = ∅.
Furthermore, when rij ⊆ r′ij the new constraint does not change the minimal network
(V, E). Otherwise rij is updated as rij ∩ r′ij and propagated over all constraints rik and rkj
with the transitive update operation; any change is subsequently propagated. Incremental
path consistency is in O(1) for consistency checking and in O(n2) for updating a minimal
network.

Example 4.20. Let us give the network in Figure 4.7 as input to PC (Algorithm 4.2).
The first iteration of PC for k = 1 with 2 ≤ i < j ≤ 5 does not change the constraints
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Figure 4.7: A consistent STN.

r23, r24, r25, r34, r35; it updates r25 as follows: r25 ← r25∩ [r21•r15] = (−∞,+∞)∩ [−2,−1]•
[6, 7] = [4, 6]. The remaining iterations confirm that this network is consistent and minimal
(see Exercise 4.9).

Another approach for maintaining the consistency of STNs is the Floyd-Warshall all-
pairs minimal distance algorithm. Here, a network (V,E) is transformed into a distance
graph, the vertices of which are again the time points in V. Each constraint rij = [aij , bij ]
of the network defines two edges in the graph: (i) an edge from ti to tj labelled with a
distance bij , and (ii) an edge from tj to ti labelled with a distance −aij . The original
network is consistent if and only if there is no negative cycle in this distance graph. The
Floyd-Warshall algorithm checks consistency and computes minimal distances between all
pairs of vertices in the graph, in O(n3) time. An incremental version of this algorithm has
been devised for planning.

The Bellman-Ford algorithm computes the single source distances in the distance graph.
It can also be used for consistency checking with a complexity in O(n×m), where n is the
number of vertices and m the number of edges of the distance graph. The graph is kept
sparse (m < n2), but the algorithm does not maintain a minimal network. There is also an
incremental version of this algorithm.

4.4.3 Controllability of Temporal Constraints

TemPlan returns a valid chronicle that meets the conditions of Definition 4.16. Temporal
variables in ϕ are generally not instantiated but related with a set of consistent constraints.
Let ts and te be the time points referring to the start and end of an action a in that
plan. At acting time, a will be triggered according to the constraints on ts. The precise
triggering moment of a is under the control of the actor. However, the moment at which
the action terminates, and the other intermediate instants while the action is taking place,
are generally not under its control. These time points are observable, that is, the execution
platform will report when the action terminates and when the intermediate time points in
its model are reached, but these are not controllable. Let us discuss here the controllability
issue at the planning level, that is, what must be done at planning time to take into account
that some temporal variables of the plan are not controllable.

For an action a in [ts, te], a constraint on its controllable starting point is such that:
l ≤ ts − t ≤ u, where t is an observable time point, either controllable or not. This
requirement on ts can be met by choosing freely the starting point in the range [l, u] after
observing t. If required for meeting other constraints, this interval can be squeezed into
any other nonempty interval [l′, u′] ⊆ [l, u]. However, a constraint on the end point of
action a such as l ≤ te − ts ≤ u, has a different meaning; it says that the duration of the
interval [ts, te] is a random number in the range [l, u]. This duration will be observed once



a terminates; we assume that it will range in the uncertainty interval [l, u]. The actor
has no freedom for the choice of te. This constraint cannot be squeezed. Consequently,
the transitive update operation rij ← rij ∩ (rik • rkj) for checking and maintaining the
consistency of a network, which squeezes intervals, is not applicable to action durations.

These considerations are not specific to action durations. They hold for any contingent
time point and constraint. They apply in particular to expected events that can be specified
in the initial chronicle (as in Example 4.14). We view the time distance between an absolute
reference point and the expected event as a contingent duration similar to that of an action.

Example 4.21. Consider the robot of Example 4.12 that has to achieve a task, denoted
bring&move, that will take it to dock1. Concurrently, the crane at dock1 has to uncover
a container that will be loaded on the robot. The duration of bring&move from t1 to t2
is specified in the model of the task to be in [30, 50] time units; task uncover from t2 to
t3 takes 5 to 10 time units. Further, the initial chronicle requires the two tasks to be
synchronized such that neither one lags after the other by more than 5 time units, that is,
−5 ≤ t4 − t2 ≤ 5. This is depicted in Figure 4.8(a) (where the tasks are depicted as plain
arrows and the synchronization constraints as dashed arrows).
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Figure 4.8: An uncontrollable network.

A direct application of PC to the network in Figure 4.8(a) shows that this network
is consistent; it returns the minimal network in Figure 4.8(b) (see Exercise 4.11). Let us
assume that this network is used by an actor who only controls the triggering of the two
tasks, that is, t1 and t3. It is clear that t1 should precede t3 because [t1, t3] ⊆ [15, 50].
Suppose the first task is triggered at time t1 = 0. When should the second task be triggered
such to meet the synchronization constraint between t2 and t4?

Let d and d′ be the respective durations of the two tasks. The synchronization constraint
says −5 ≤ t4 − t2 ≤ 5, that is, −5 ≤ t3 + d′ − d ≤ 5. The choice of t3 should satisfy the
constraints d− d′ − 5 ≤ t3 and t3 ≤ d− d′ + 5 for all values of d and d′ in their respective
intervals. Clearly this is not feasible (e.g., taking d = 50, d′ = 5 for the lower bound and
d = 30, d′ = 10 for the upper bound gives 40 ≤ t3 and t3 ≤ 25).

How do we explain this inconsistency in a network that is said to be consistent and
minimal (meaning that every value in the allowed constraints is part of a solution)? The
reason is simple: the consistency and minimality of an STN assumes a full control over
every variable, which is not the case here. The reader can easily check that there is no
problem in meeting all the constraints if one can freely choose d and d′ in their intervals,
for example, d = 30, d′ = 10 leaves t3 ∈ [15, 25].

The actor does not control the end points of actions but it can observe them. It may
devise a conditional strategy on the basis of what it observes. For example, it may start
uncover at most 40 units after t1 or earlier if bring&move finishes before. In this particular
example, such a strategy does not work, but if the actor can observe an intermediate
time point between t1 and t2, this may make his synchronization problem controllable, as
explained next.

The issues raised in the previous example are addressed through the notion of Simple



Temporal constraint Networks with Uncertainty (STNU). An STNU is like an STN except
that its time points and constraints are partitioned into controllable ones and contingent
ones.

Definition 4.22. An STNU is a tuple (V, Ṽ, E , Ẽ), where V and Ṽ are disjoint sets of time
points, and E and Ẽ are disjoint sets of binary constraints on time points. V and E are said
to be controllable; Ṽ and Ẽ are said to be contingent. If [l, u] is a contingent constraint in
Ẽ on the time points [ts, te], then 0 < l < u <∞ and te is a contingent point in Ṽ.

The intuition is that elements in Ṽ denote the ending time points of actions, while
contingent constraints in Ẽ model the positive nonnull durations of actions, predicted with
uncertainty. If [ts, te] ⊆ [l, u] is a contingent constraint, then the actual duration te − ts
can be viewed as a random variable whose value will be observed within [l, u], once the
corresponding action terminates. The actor controls ts: it assigns a value to it. However, it
only observes te, knowing in advance that it will be within the bounds set for the contingent
constraint on te − ts. A meaningful STNU cannot have a contingent variable te, which is
the end point of two contingent constraints.

The controllability issue is to make sure (at planning time) that there exist values for
the controllable variables such as for any observed value of the contingent variables the
contraints are met. One can view controllable variables as being existentially quantified,
while contingent ones are universally quantified. However, the actor does not need to
commit to values for all its controllable variables before starting to act. It can choose a
value for a controllable variable only when needed at acting time. It can make this choice
as a function of the observed values of past contingent variables.

Definition 4.23. A dynamic execution strategy for an STNU (V, Ṽ, E , Ẽ) is a procedure for
assigning values to controllable variables t ∈ V while acting, in some order consistent with
E , such that all the constraints in E related to t are met, and given that the values of all
contingent variables in Ṽ preceding t are known and fit the constraints in Ẽ . An STNU is
dynamically controllable if there exists a dynamic execution strategy for it.
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Figure 4.9: A dynamically controllable STNU.

Example 4.24. As discussed at the end of Example 4.21, the STNU in Figure 4.8(a) is
not dynamically controllable. Now consider a modification of this network in which task
bring&move is broken down into two tasks: bring from t1 to t then move from t′ to t2
(Figure 4.9). The total duration [t1, t2] remains in [30, 50].

A dynamic execution strategy for this STNU can be the following: assign t1, observe t,
assign t′ at any moment after t in [0, 5] then assign t3 10 units after t′. It is easy to check
that, whatever the durations of the three tasks are, within the bounds of the contingent
constraints, the constraint [−5,+5] on their end points t2 and t4 will be met.

These considerations lead to an additional requirement for TemPlan: to synthesize a
plan whose underlying STNU is dynamically controllable. TemPlan has to test not only
the consistency of the current temporal network but also its dynamic controllability. It



turns out that dynamic controllability checking is feasible on the basis of an extension of
the consistency-checking algorithm. This extension is technically involved, but fortunately
it does not change the computational complexity of the algorithm.

A first step would be to consider an STNU just like an ordinary STN on which PC is run:
if the transitive update operation (rij ← rij ∩ (rik • rkj)) reduces any contingent constraint,
then the network is not dynamically controllable. A network in which all the contingent
constraints are minimal (in the PC sense) is said to be pseudo-controllable, a necessary but
not a sufficient condition of dynamic controllability.
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Figure 4.10: Basic constraints for dynamic controllability.

Dynamic controllability can be analyzed with three constraints between two controllable
points and a contingent one, as depicted in Figure 4.10. This network is assumed to be
consistent and minimal. It may or may not be dynamically controllable: depending on the
values of the parameters and the eventual observation of te, there may be cases in which it
is possible to choose t while meeting the constraints. To do so, further reductions on the
controllable constraints can be needed. These reductions would have to be propagated to
other time points that may possibly be related to ts, te, and t.

The position of t with respect to te fits into three main cases:

(i) v < 0 : t follows necessarily te; the observation of te allows the choice of t while
meeting the constraint [u, v].

(ii) u ≥ 0 : t is before or simultaneous with te. t has to be chosen before observing te in an
interval that meets all the constraints regardless of the value of te, if such an interval
exists. The constraint on [t, te] requires te−v ≤ t ≤ te−u. At the latest te is such that
te = ts+b; at the earliest te = ts+a. Hence ts+b−v ≤ t ≤ ts+a−u. If this inequality
can be met, then the choice of t in [b − v, u − a] after ts meets all the constraints.
Constraint [p, q] has to be reduced to [b − v, a − u]. Note that [b − v, a − u] ⊆ [p, q]
since the network is minimal. However, [b− v, a− u] can be empty, in which case the
network is not dynamically controllable (see Exercise 4.12 and 4.13).

(iii) u < 0 and v ≥ 0 : t may either precede or follow te. A dynamic execution strategy
should wait for te until some point, and depending on whether te has occurred or not
at that point, different choices for t will be taken. A reasoning identical to case (ii)
shows that t cannot be earlier than t ≥ ts + b − v, if te does not occur before. The
waiting point is ts + b− v. If a < b− v then either [ts, te] occurs in [a, b− v]: the wait
will make t follow te, and we are back to case (i), or [ts, te] occurs in [b − v, b]: t is
before te which is case (ii). If a ≥ b− v then te cannot occur before the wait expires.

The preceding analysis gives the constraints to be reduced to satisfy dynamic controlla-
bility (e.g., [p, q] reduced to [b−v, a−u] in case (ii)). It also exhibits a ternary wait relation:
t should wait until either te or ts + b− v. The trick is to consider this wait as a particular
binary relation on the pair [ts, t]: the corresponding edge in the network is labelled with
a constraint denoted ⟨te, b − v⟩. Specific propagation rules for handling jointly these wait
constraints and the normal ones in a network need to be devised.



Table 4.1: Constraint propagation rules for dynamic controllability, where a′ = a− u, b′ =
b− v, double arrows are contingent constraints, and ⟨t, α⟩ are wait constraints.

Conditions Propagated constraint

ts
[a,b]

====⇒ te , t
[u,v]−−−−→ te , u ≥ 0 ts

[b′,a′]−−−−→ t

ts
[a,b]

====⇒ te , t
[u,v]−−−−→ te , u < 0 , v ≥ 0 ts

⟨te,b′⟩−−−−−→ t

ts
[a,b]

====⇒ te , ts
⟨te,u⟩−−−−→ t ts

[min{a,u},∞]−−−−−−−−−→ t

ts
⟨te,b⟩−−−−→ t , t′

[u,v]−−−−→ t ts
⟨te,b′⟩−−−−−→ t′

ts
⟨te,b⟩−−−−→ t , t′

[u,v]
====⇒ t , te ̸= t ts

⟨te,b−u⟩−−−−−−→ t′

These propagation rules are given in Table 4.1. A row in this table is similar to the
propagated contraint (rik • rkj) from i to j through k that we used in PC. The left column
gives the conditions under which a propagation rule applies, and the right column states
the constraint to be added to the network according to that rule. Double arrows repre-
sent contingent constraints, and angle brackets are wait constraints. The first and second
rules implement, respectively, the cases (ii) and (iii). The third rule adds a lower bound
constraint to a wait, which follows directly from the above argument. The last two rules
correspond to transitive propagations of a wait.

It can be shown that a modified path consistency algorithm relying on these rules is
correct: a network is dynamically controllable if and only if it is accepted by the algorithm.
Furthermore, the reduced controllable constraints obtained in the final network give a dy-
namic execution strategy. The transposition of the wait constraints as a distance graph
allows the incremental testing of dynamic controllability with a an algorithm in O(n3)
inspired from Bellman-Ford.

Synthesis of dynamically controllable plans. From the preceding discussion, it is
clear that the conditions in Definition 4.16 are not sufficient. We need to add a fourth
requirement that the temporal constraints in chronicle ϕ define a dynamically controllable
STNU. This requirement has to be taken into account in TemPlan as follows: dynamic
controllability is checked whenever a resolver adds to current ϕ a contingent constraints;
that resolver is rejected if the resulting STNU is not dynamically controllable.

This strategy can, however, be demanding for computational resources. Indeed, the
complexity growth of dynamic controllability checking is polynomial, but the constant fac-
tor is high. A possible compromise is to maintain solely the pseudo-controllability of ϕ.
The standard PC algorithm already tests that a network is pseudo-controllable (no contin-
gent constraint should be reduced during propagation), a necessary condition for dynamic
controllability. Hence consistency checking allows the ability to filter out incrementally re-
solvers that make the STNU not pseudo-controllable. Dynamic controllability is checked
before terminating with a complete solution or at a few regular stages. The risk of excessive
backtracking, as for any incremental filtering strategy, has to be assessed empirically.

4.5 Acting with Temporal Models

As seen in Chapter 3, acting deliberately may or may not rely on an a priori synthesized
plan. For critical applications with well-modeled domains and limited variability, an actor
first synthesizes a plan, then follows it as much as possible by refining the plan steps into low-
level commands and revising the plan when needed. In less predictable and more variable
environments, it may be preferable to act by choosing opportunistically among available



methods relying, when feasible, on lookahead mechanisms. These general considerations
apply to temporal domains, with specific issues for handling time constraints. This section
presents successively the following:

• techniques for acting by refining the primitives in a temporal plan with atemporal
methods,

• techniques for acting without a temporal plan but with temporal refinement methods,
and

• open issues where acting and planning with temporal methods are mixed.

4.5.1 Acting with Atemporal Refinement Methods

The motivations here are those discussed in previous chapters and summarized in Fig-
ure 1.1(b) and Figure 3.1: the actor plans, refines the planned actions into commands and
revises its plan when needed. It queries TemPlan for producing a plan for the tasks it has to
achieve; TemPlan receives as input the appropriate initial chronicle with the current state
and the predicted exogenous events. It returns a chronicle ϕ that meets the conditions of
Definition 4.16.

Actions in the solution plan ϕ are primitives for TemPlan, for example, leave, enter,
stack, unstack, etc. (as in Example 4.11). However, these primitives are compound tasks at
the acting level, to be refined into commands with appropriate refinement methods. This
acting refinement goes one level down in the representation hierarchy. We consider here
primitive refinements using the atemporal methods of Chapter 3.

Example 4.25. In Example 4.11, we defined several primitives such as leave or unstack.
Here are two methods to decompose them into commands:

m-leave(r, d, w, e)
task: leave(r, d, w)
pre: loc(r)=d, adjacent(d,w), exit(e, d, w)

body: until empty(e) wait(1)
goto(r, e)

The method m-leave waits until the exit e from dock d toward waypoint w is empty,
then it moves the robot to that exit. The method m-unstack locates the grasping position
for container c on top of a pile p, moves the crane to that position, grasps it, ensures the
grasp (e.g., closes latches) to guarantee a firm grasp, raises the container slowly above the
pile, then moves away to the neutral position of that crane.

m-unstack(k, c, p)
task: unstack(k, c, p)
pre: pos(c)=p, top(p)=c, grip(k)=empty

attached(k, d), attached(p, d)
body: locate-grasp-position(k, c, p)

move-to-grasp-position(k, c, p)
grasp(k, c, p)
until firm-grasp(k, c, p) ensure-grasp(k, c, p)
lift-vertically(k, c, p)
move-to-neutral-position(k, c, p)

It is interesting to compare these methods with the descriptive models of the same
primitives in Example 4.11. Here effects are not predicted; they will be observed from the
execution of commands. However, the operational models given in these methods detail the
commands needed to perform the action, including conditionals and loops.



The acting refinement methods in this subsection are not temporal. In other words, our
model for refining an action into commands does not break down its temporal qualifications
from planning level to finer temporal requirements at the execution level. As illustrated in
the preceding example, the temporal qualification [ts, te] of an action a in ϕ is not detailed
into smaller durations for the commands in which a is refined.

An important motivation for combining temporal planning with atemporal action re-
finement is the uncertainty in the duration of a, represented through the interval [ts, te].
It certainly makes sense to reason about contingent constraints at the abstract level of ac-
tions, but at the lower level of commands, one may take into account a global constraint
without refining it into bounds that can be even more uncertain and difficult to model in
a meaningful way. For example, it may be useful to account for the time needed to open a
door, which can be assessed from statistics. However, breaking this duration into how long
it takes to reach for the handle and how long to turn the handle introduces more noise in
operational models. There is also a computational complexity issue for reasoning at a finer
temporal granularity level that is clarified next.

Acting with atemporal methods allows us to rely on the techniques seen in Chapter 3
for refining a task into commands achieving it. We’ll use an extended version of the reactive
engine RAE, and call it eRAE. Even without temporal refinement at the acting level, there
is still a need for temporal reasoning in eRAE: we require a dispatching function to trigger
actions and controllable events at the right moments. Dispatching takes into account past
occurrences and the current time; these are propagated into the temporal network to keep
it dynamically controllable.

Given a dynamically controllable STNU (V, Ṽ, E , Ẽ), dispatching has to trigger elements
of V at the right moment, given the observation of elements of Ṽ, and given the progress
of current time, denoted now. Values of observed and triggered time points are propagated
in the network. The network remains dynamically controllable as long as there are no
violations of contingent constraints, for example, the observed durations of actions fit within
their stated bounds. A violation of a contingent constraint can be due to a delay exceeding
the modeled upper bound, or to a failure of the action. It can lead to a failure of the plan.

Recall that acting triggers only commands, not the effects specified the action models.
These effects have to be observed, as in RAE. There can be several intermediate time points
in the network maintained by TemPlan that are not the beginnings and ends of actions, for
example, point t in the definition of leave or unstack in Example 4.11. At the acting level,
we consider them as contingent points. Constraints issued through propagation from these
intermediate points are essential for the dynamic controllability of the network. However,
unless there is a wait constraint for such an intermediate point, it does not concern the
dispatching algorithm. It can be removed from the network used for dispatching.

Example 4.26. Assume that RAE is acting according to the plan in Figure 4.4: it has
to perform the three actions leave(r1,dock1), navigate(r1,w1,w2), enter(r1,dock2) and the
symmetrical three actions for r2. The two leave actions are triggered concurrently in any
order. As soon as an exit is free, the robot gets to the corresponding way and immediately
starts its navigation. When a navigation finishes, the enter action is triggered only when
the other robot has left its original position.

A temporal network is grounded when at least one of its temporal variable receives
an absolute value with respect to current time. Before starting the execution, the STNU
may or may not be grounded, but as soon as the execution of a plan starts, the network
is necessarily grounded. In a grounded network, every time point t is bounded within an
absolute interval [lt, ut] with respect to current time. As time goes by, some time points in
the network have occurred (i.e., triggered by the actor for controllable points or observed
for contingent ones), and others remain in the future. Dispatching is concerned with the
latter and more precisely with enabled time points.



Definition 4.27. A controllable time point t ∈ [lt, ut] that remains in the future is alive
if the current time now ∈ [lt, ut]. Furthermore, t is enabled if (i) t is alive, (ii) for every
precedence constraints t′ < t, t′ has occurred, and (iii) for every wait constraint ⟨te, α⟩,
either te has occurred or α has expired.

Recall that in a wait constraint ⟨te, α⟩, α is defined with respect to a controllable time
point ts. Thus α has expired when ts has occurred and ts + α ≤ now (see Section 4.4.3).

Algorithm 4.3, the Dispatch algorithm, allows the actor to control when to start each
action. It triggers repeatedly enabled points whose upper bound is now : these cannot wait
any longer. It has the flexibility to trigger any other enabled point; the arbitrary choice in
step (i) of Dispatch can be made with respect to domain specific considerations. It then
propagates in the network the value of triggered points. Because the network is dynamically
controllable, this propagation is guaranteed to succeed and keep the network dynamically
controllable as long as contingent constraints are not violated. Initialization consists of
deciding when to start the plan if the network is not already grounded, that is, assigning a
value (or absolute bounds) to at least one enabled time point.

Dispatch(V, Ṽ, E , Ẽ)
initialize the network
while there are elements in V that have not occurred, do

update now

update contingent points in Ṽ that have been observed
enabled ← set of enabled time points
for every t ∈ enabled such that now= ut, trigger t
arbitrarily choose other points in enabled, and trigger them (i)
propagate in the network the values of triggered points

Algorithm 4.3: A dispatching function for eRAE.

The propagation step is the most costly one in Dispatch: its complexity is in 0(n3) where
n is the number of remaining future points in the network. Ideally, this propagation should
be fast enough to allow iterations and updates of now that are consistent with the temporal
granularity of the plan. As discussed earlier about the motivation for atemporal refinement,
this complexity is lower when temporal refinement does not break down primitives at the
finer command level.

Example 4.28. Let us extend Example 4.26 by requiring robot r1 to bring a container c1
in dock d2 to some destination. TemPlan synthesizes a plan ϕ, part of which is shown in
Figure 4.11. To keep the figure readable, the value of the constraints and parameters are
omitted; the end point of an action starting at ti is implicitly named t′i. Note that some
of the object variables are instantiated, but some are not (e.g., c′); temporal variables in ϕ
are not instantiated.

The initial step in Dispatch triggers t1. When t′1 is observed, t2 is enabled and triggered,
which make t3 and t4 enabled. t3 will be triggered enough in advance to free dock d2
allowing r1 to get in (at t5). Similarly for the subtask of uncovering container c, which is
triggered at t4. When t′2 and t′3 are observed, t5 become enabled and triggered. t7 will
become enabled after observing t′5 and t′6. The rest of the plan follows linearly.

The Dispatch algorithm is easily integrated into eRAE. Triggering the starting point of
an action a means putting a new task in the input stream of RAE (Algorithm 3.1), that
is, starting a new stack for progressing on the refinement of a. The upper bound on the
duration of a is taken as a deadline for terminating this stack. Progress, and eventually
Retrace, will pursue refinements in this stack until the action succeeds or fails, or until the
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Figure 4.11: Part of a temporal plan given to eRAE for execution.

deadline is reached, which is another failure condition. The proximity of the deadline can
be used as a heuristics for prioritizing the most urgent tasks in RAE.

Failures are addressed as plan repairs. For a deadline failure, the repair can take two
forms:

• stopping the delayed action and seeking alternate ways for achieving the plan from
the current state, as for other types of failure, or

• finishing the action despite the delay and repairing the remaining part of the plan.

The latter option is preferable when the violated contingent constraint can be resolved at
the STNU propagation level. For example, if navigate(r1) in Figure 4.11 takes slightly longer
than the maximum duration specified, the entire plan will still be feasible with a delay, which
is possibly acceptable. However, if this navigation is taking longer than expected because
robot r1 broke down, a better option is to seek another robot to perform the task. These
considerations must be integrated in the actor’s monitoring function (see Section 7.2).

Plan repair in case of a failure has to be performed with respect to the current state, and
to remaining predicted events and tasks whose achievement is still in the future. The repair
can be local or global. In the latter case, a full replanning is performed. A local repair
can benefit from the plan-space planning approach of TemPlan as follows. The failed action
is removed from the remaining chronicle ϕ together with all the assertions coming from
that action template. This removal introduces flaws in ϕ with respect to which TemPlan
is recursively called. This can lead to other flaws (including for the refinement of the task
that lead the failure); it may or may not succeed in finding a repair and may require a
full replanning. Monitoring should help assess the failure and decide whether to try a local
repair.

In summary, this section illustrated how actions in a temporal plan can be handled
with an extended version of the acting engine RAE through a dispatch function. Atempo-
ral refinement methods are used to map, in a context-dependent way, each action a into
commands whose execution achieves a.

4.5.2 Acting with Temporal Refinement Methods

Refinement methods can be used for both planning and acting (Chapter 3). Temporal
refinement methods can also be used for both functions. We demonstrated their use for
planning (Section 4.3). Let us discuss here temporal refinement for acting.

There are cases in which the actor does not have to plan for the task at hand. This can
happen because that plan is trivially given in the task model, descriptive models of actions
are unreliable, or the environment is too dynamic and acting with possible errors is not
critical. In these cases it may still be meaningful to reason about time at the acting level,
even without a temporal plan. This is evidently the case when acting has to be synchronized
with future predicted event, for example, take the next bus and leave it at the train station



stop.

The idea is to extend the refinement acting engine illustrated in Figure 3.1 with a
library of temporal refinement methods. Let us call TemRAE the corresponding engine.
The methods used by this engine have two characteristics (Section 4.2.3):

• their body is not a sequence of tasks, commands, assignments, and control steps, as
in RAE, but a chronicle with a collection of temporally qualified tasks, assertions, and
constraints, and

• they do not have a precondition field; they are conditioned on their temporal asser-
tions.

In RAE the evaluation of a conditional expression is with respect to the current observed
state ξ. In TempRAE, we need to extend ξ with temporal qualifications to provide causal
support to temporal assertions in chronicles (Definition 4.9).

Extending ξ with temporal qualification may require, in general, maintaining the past
timelines for every state variable as well as the predicted future timelines for exogenous
variables about which the actor has predictions. To keep things simple, let us assume that
the qualifications in temporal methods with respect to the past do not extend beyond when
each state variable acquired its current value (this assumption is akin to the Markovian
property, which is introduced in Section 6.1). With this assumption, our interest in the
past is satisfied by keeping track for each state the variable x of a pair (t, x=v), meaning
that the value of variable is x = v since time t. In other words, the following assertion holds
in ξ:

[t,now]x=v,where now it the value of current time.

ξ also contains predictions about exogenous future events, as seen in the initial chronicle
in temporal planning. In this sense, ξ is a particular chronicle which maintains the current
present and the exogenous future.

TemRAE works in a similar way to RAE. It reads its input stream for a task to perform.
For each such a task τ , it finds M(τ), the set of methods whose task is τ . It chooses a
method m in M(τ) that is applicable for current ξ; it refines τ according to the subtasks
specified in m. There are, however, differences in how methods are evaluated as applicable
and in how refinements proceed.

Definition 4.29. An instance in a methodm ∈M(τ) is applicable for the current chronicle
ξ if and only if:

• every assertion in m is causally supported by ξ and

• the constraints in m are consistent with ξ and there are no conflicting assertions.

The second condition guarantees that the application of this instance of m to ξ (in the
sense seen in Section 4.3.2) gives a secure chronicle. The first condition represents a strong
requirement. Assertions in m such as [t, t′]x=v or [t, t′]x:(v, v′), where t ≤ ts ≤ t′ and ts
is the starting point of m, needs naturally to be supported before any command issued
from the refinement of m can begin. Moreover, according to this definition, assertions in
m about the future have also to be supported by predictions in ξ, for m to be applicable
to ξ. In other words, assertions that are required to be supported by the effects of actions,
other than those in m or issued from the refinement of its subtasks, are not allowed by
TempRAE. This is because the acting engine is not inserting additional actions to satisfy
the requirements of a method.

It is interesting to compare the previous definition to Definition 4.16 of a valid solution
plan. Their difference is with respect to nonrefined tasks, forbidden in a solution plan but
allowed here, because TemRAE refines a task τ with the subtasks in a method m. Let us
illustrate how this can be done through an example.



Example 4.30. Consider the domain specified in Example 4.11. Assume that TempRAE
is given a set of methods to handle the tasks bring, move, and uncover of Example 4.12, in
addition to methods for leave, enter, navigate, unload, load, stack, and unstack, as illustrated
in the previous section.

The task is to bring a container c1, which is now in pile p1 in dock d1, to a pile p2 in
d2. There is now an empty robot r1 in d3. An instance of the method m-bring is applicable
to this task with c=c1, p=p2, p′=p1, d=d2, d′=d1, r=r1; ts can be instantiated to now :
TemRAE triggers the tasks move(r1,d1) and uncover(c1). Because of the constraints t2 ≤ t1
and t3 ≤ t1, the three other tasks have to wait until both move and uncover finish.

The method m-move1 is applicable to move(r1,d1). The action leave will be triggered;
when it is observed that it has finished, navigate then enter will be successively triggered.

Concurrently with this process, TempRAE addresses the uncover task: method m-uncover
is applicable; it will lead to triggering a succession of unstack and stack actions until d1 is
at the top of pile p1.

The termination of the last actions issued from the refinement of move(r1,d1) and un-
cover(c1) will set respectively time points t2 and t3 of m-bring, allowing the method to
pursue on the remaining subtasks load, move and unload.

As illustrated in the previous example, TemRAE requires an elaborate bookkeeping
mechanism, in particular for monitoring observed changes, as reported in ξ, with respect to
expected time points, before progressing in its refinements. We are not providing a detailed
pseudocode specification of TempRAE, but let us discuss briefly its main principles and
limitations.

TempRAE selects a method m applicable for a task τ ; it refines τ into a collection of
temporally qualified subtasks. Progressing in this refinement requires a synchronization
according to the temporal specifications in m. This synchronization is based on a simplified
dispatching algorithm that triggers enabled controllable time points and waits for expected
contingent ones. TempRAE can implement a Retry procedure for trying alternative methods
if the chosen one fails (similar to the atemporal case in Algorithm 3.3): a Retry is possible
as long as upper bounds on a task and its refinements have not been violated.

The limitations of TempRAE are due to its lack of lookahead. As underlined from
Definition 4.29, temporal refinement acting cannot cope with the requirement of a future
change that is not brought by the subtasks of a method and their refinements. Furthermore,
the STNU corresponding to the entire refinement tree of a task τ is not guaranteed to
be dynamically controllable. This STNU is discovered progressively as tasks and actions
are achieved and effects and events are observed. Precedence constraints with respect to
contingent events or absolute time (e.g., bringing a container before the scheduled departure
of a ship) may lead to deadline failures. In this approach, it is the responsibility of the
designer to specify methods that refine into dynamically controllable networks. Techniques
presented in Section 4.4.3 can be used to verify this requirement.

4.5.3 Acting and Planning with Temporal Methods

As clear from the previous discussion, a temporally constrained domain cannot to be always
addressed with reactive refinement. TempRAE requires enough lookahead for the choice of
its methods and the dynamic controllability of the temporal network.

One approach is to plan for the task at hand with TemPlan then act with TempRAE on the
basis of the methods and the dynamically controllable STNU found at the planning stage.
Here, TempRAE does not need to test the applicability of its methods with the restrictive
Definition 4.29. This testing is done at planning time by adding, when and where needed,
actions in the plan to support every assertions in the predicted future. TempRAE has to
monitor that the current ξ is the one expected at planning time. TempRAE has also to
synchronize the subtasks and actions in the plan with a Dispatch algorithm according to
the constraints in the dynamically controllable STNU.



The preceding approach is not substantially different from what we developed in Sec-
tion 4.5.1 with atemporal refinement for acting. However, there can be a significant differ-
ence if the actor is able to control the level at which refinement planning is pursued in a
context-dependent way. The idea is to allow TemPlan to decide not refine a subtask. This
can be done if TempPlan can evaluate the likely effects and temporal bounds of that subtask
and assess that they are sufficient to stop planning and start acting on a partial plan that
contains unrefined tasks. These can be refined at acting time, by planning concurrently with
acting on some other predecessor subtasks, or even when an unrefined task is dispatched.

The implementation of this idea requires further research, in particular for defining the
likely effects and bounds of a subtask and assessing whether a partial plan is acceptable and
can be used to start acting with. Approaches in that direction are discussed in the next
section.

4.6 Discussion and Historical Remarks

4.6.1 Temporal Representation and Reasoning

Temporal models are widely used in artificial intelligence well beyond planning. Numerous
works are devoted to knowledge representations and reasoning techniques for handling time,
in particular, for dealing with change, events, actions, and causality; see, for example, Allen
[11], McDermott [412], Shoham [534], Shoahm and McDermott [532], Sandewall [521], and
the handbook of Fisher et al. [199].

Most of the work cited above relies on a state-oriented view based on various temporal
logics. The timeline approach, developed in this chapter, decomposes a reasoning task into
a specialized solver say a planner and a temporal reasoner, that maintains, through queries
and updates, a consistent network of temporal references. In addition to planning, this
approach is used in other applications, such as temporal databases [98], monitoring [498],
diagnosis [97, 373], multi-media document management [186, 5], video interpretation [589],
and process supervision [161, 162].

Temporal networks can use as primitives either time points or intervals; they can manage
either qualitative or quantitative constraints. A synthetic introduction to temporal networks
can be found in Ghallab et al. [230, chapter 13] and the recent book of Barták et al. [43].

Qualitative approaches to temporal reasoning were introduced by Allen [13] with a
specific algebra over intervals and a path consistency filtering algorithm. Vilain and Kautz
[586] introduced the point algebra and showed that the consistency checking problem is
NP-complete. Several tractable subclasses of the interval or the time point algebra have
been proposed, for example, by Vilain et al. [587], Meiri [417], Nebel and Burckert [447] and
Drakengren and Jonsson [163]. Other authors, such as Ligozat [384], Golumbic and Shamir
[241] and Jonsson et al. [301], studied representations integrating time points and intervals
and their tractable subclasses.

Quantitative approaches to handling time relied initially on linear equations and linear
programming techniques, for example, in Malik and Binford [399]. Temporal constraint
satisfaction problems and their tractable subclass of Simple Temporal Networks, used in
this chapter, were introduced by Dechter et al. [146]. Several improvements have been
proposed, for example, for the incremental management of STNs by Cesta and Oddi [110]
or Planken [485]. Various extensions to STNs have been studied, such as preferences in
Khatib et al. [327] or specific constraints in Koubarakis [353].

The controllability issue and STNUs were introduced by Vidal and Ghallab [585]. Dif-
ferent levels of strong, weak and dynamic controllability were analyzed in Vidal and Fargier
[584]. Algorithms for the strong and weak controllability cases were respectively proposed
by Cimatti et al. [118] and Cimatti et al. [117]. State space planning with strong controlla-
bility is studied by Cimatti et al. [119]. A polynomial algorithm for dynamic controllability
was proposed by Morris et al. [431] and improved in Morris and Muscettola [432]. Incremen-



tal dynamic controllability has been introduced by Stedl and Williams [555]; the algorithm
of cubic complexity is due to Nilsson et al. [456, 457].

Constraints in planning can play an important role. Naturally authors have sought
ways to efficiently structure them, in particular with meta-CSPs. A meta-CSP is a CSP
above lower level CSPs. Its meta-variables are the lower level constraints; their values
are alternative ways to combine consistently these constraints. For example, with disjunc-
tive temporal constraints the values correspond to possible disjuncts. The approach has
been used in different CSP settings, such as for example the management of preferences
in temporal reasoning by Moffitt and Pollack [426], Moffitt [425] or Barták et al. [43]. It
has been applied to temporal planning by several authors, for example, Gerevini et al.
[221], Rodriguez-Moreno et al. [513] and Gregory et al. [244]. It appears to be particularly
appealing for handling temporal and other constraints on different kind of resources, as
illustrated by Mansouri and Pecora [400].

4.6.2 Temporal Planning

There is a long and rich history of research in temporal planning. Numerous temporal
planners have been proposed, starting from early HTN planners such as Deviser by Vere
[579], SIPE by Wilkins [602], FORBIN by Dean et al. [140] or O-PLAN by Currie and
Tate [132]; these planners integrate various temporal extensions to HTN representations
and algorithms.

The state-oriented view in temporal planning extends the classical model of instanta-
neous precondition-effect transitions with durative actions. The basic model considers a
start point and a duration. It requires preconditions to hold at the start and effects at the
end of an action; this is illustrated in TGP by Smith and Weld [545] or in TP4 by Haslum
and Geffner [261]. Extensions of this model with conditions that prevail over the duration
of the action, (as in the model of Sandewall and Rönnquist [522]) have been proposed, for
example, in the SAPA planner of Do and Kambhampati [153], or in the domain description
language specifications PDDL2.1 of Fox and Long [203]. Several planners rely on the latter
representation, among which HS by Haslum and Geffner [261], TPSYS by Garrido [213] or
CRICKEY by Coles et al. [126].

A few planners using the durative action model adopt the plan-space approach, notably
Zeno of Penberthy and Weld [469] which relies on linear programming techniques, or VH-
POP of Younes and Simmons [621] which uses STN algorithms. Some planners pursue the
HTN approach, as the earlier planners mentioned above, or more recently SHOP2 by Nau
et al. [446] or Siadex by Castillo et al. [108].

Most durative actions temporal planners rely on state-based search techniques. A few
are based on temporal logic approaches. Among these are TALplanner by Doherty and
Kvarnstrom [155, 365], a model-checking based planner by Edelkamp [168], and a SAT-
based planner by Huang et al. [288]. Significant effort has been invested in generalizing
classical state-space planning heuristics to the durative action case. The action compression
technique, which basically abstract the durative transition to an instantaneous one for the
purpose of computing a heuristic, is quite popular, for example in the work of Gerevini and
Schubert [223] or Eyerich et al. [184]. Various temporal extensions of the relaxed planning
graph technique (Section 2.3.2), as in Metric RPG of Hoffmann [276], have been proposed,
for example, Haslum and Geffner [261], Long and Fox [394], Coles et al. [126] and Haslum
[257]. Sampling over a duration interval with action compression has also been investigated
by Kiesel and Ruml [329].

A few durative action planners can handle hybrid discrete-continuous change. Some
planners address continuous effects through repeated discretization, for example, UPMur-
phy of Penna et al. [471]. Linear programming techniques, when the continuous dynamics
is assumed to be linear, have been used since ZENO [469] by several planners. A recent
and quite elaborate example is COLIN of Coles et al. [127]. The Kongming planner of Li



and Williams [380] relies on domain specific dynamic models.

The durative action model led to the design of quite performant planners. But it usually
has a weak notion of concurrency that basically requires independence between concurrent
actions. Interfering effects, as discussed in Example 4.15, can be addressed by a few of the
above mentioned planners, for example, notably COLIN [127]. Alternatively, interfering
effects can be addressed with the time-oriented view.

Planning along the time-oriented view was introduced by Allen and Koomen [15] in a
planner based on the interval algebra and plan-space search Allen [14, 12]. The Time-Map
Manager of Dean and McDermott [144] led to the development of a few planners [140, 74]
and several original ideas related to temporal databases and temporal planning operators.

Planning with chronicles was introduced in IxTeT by Ghallab et al. [226][227]. The
IxTeT kernel is an efficient manager of time point constraints of Ghallab and Mounir-Alaoui
[228]. IxTeT handles concurrent interfering actions, exogenous events and goals situated in
time. It uses distance-based heuristics of Garcia and Laborie [211] integrated to abstraction
techniques in plan-space planning. Its performance and scalability were improved by several
other timeline oriented planners using similar representations. These are notably ParcPlan
of El-Kholy and Richard [175] and Liatsos and Richard [382], ASPEN of Rabideau et al.
[499], PS of Jónsson et al. [300], IDEA of Muscettola et al. [437], EUROPA of Frank and
Jónsson [205], APSI of Fratini et al. [207], and T-REX of Py, Rajan et al. [496, 501, 502].
Elaborate heuristics, generalizing the reachability and dependency graphs of state-space
planning, have been designed for these representations, for example, by Bernardini and
Smith [57]. A few of the mentioned planners have been deployed in demanding applications,
for example, for controlling autonomous space systems and underwater vehicles.

An interesting development has been brought by the Action Notation Modeling Lan-
guage (ANML) proposed by Smith et al. [543]. ANML is a representation that combines
HTN decomposition methods with the expressivity of the timeline representation, as devel-
oped in the temporal refinement methods of this chapter. FAPE by Dvorak et al. [164] is a
first planning and acting system based on ANML.

Refinement methods reduce the search complexity by providing domain-specific knowl-
edge, but they do not palliate the need of good heuristics. Some temporal logic based
planners, like TALplan, rely on control rules. Most of the state-based temporal planners
referred to earlier exploit successfully the techniques of Section 2.3. The use of classical
planning heuristics has even been an important motivation for the state-oriented view of
temporal planning. These techniques have been extended to plan-space planning (e.g., in
RePop [452] and VHPOP [621]) and further developed for timeline based planners. There is
notably the mutual exclusion technique of Bernardini and Smith [54] and their dependency
graph approach [57]. Dependency graphs record relationship between possible activities in
a domain. They are based on activity transition graphs [55, 56], which are a direct exten-
sion of the domain transition graphs of state variables [266]. These techniques have been
successfully demonstrated on the EUROPA2 planner.

Finally, let us mention that temporal planning has naturally been associated with re-
sources handling capabilities. Several of the planners mentioned above integrate planning
and scheduling functions, in particular with constraint-based techniques, which where intro-
duced early in IxTeT by Laborie and Ghallab [369]. Algorithmic issues for the integration of
resource scheduling and optimization in planning attracted numerous contributions Smith
et al. [544], Cesta et al. [111], Laborie [368], Verfaillie et al. [580]. A global overview of
scheduling and resource handling in planning is proposed by Baptiste et al. [34].

4.6.3 Acting with Temporal Models

Several of the acting representations and systems discussed in Section 3.5.1, based on proce-
dures, rules, automata, Petri-nets or CSPs, integrates directly or have been extended with
temporal primitives and techniques for handling explicit time. The PRS system of Ingrand



et al. [292] or the RPL language of McDermott [413] offer some mechanisms for handling
real-time “watchdogs” and delay primitives. More elaborate synchronization constructs
have been developed by Simmons [538] in TCA and TDL [539].

A few of the temporal planners discussed earlier have been integrated to an actual
planning and acting system. This is in particular the case for timeline oriented planners
along an approach akin to that of Section 4.5.1. For example, Cypress of Wilkins and
Myers [603] is the combination of SIPE for planning and PRS for acting. DS1/RAX of
Muscettola et al. [439] implements a procedure-based acting technique combined with the
PS planner. Casper of Knight et al. [331] is a temporal constraint-based executor for the
ASPEN planner. IxTeT-Exec of Lemai-Chenevier and Ingrand [374] integrates IxTeT and
PRS with plan repair and action refinement mechanisms. T-REX of Rajan and Py [501]
follows a distributed approach over a set of “reactors” sharing timelines. It has been used
mostly with the EUROPA planner. The dispatchability property studied in Muscettola et al.
[438] and [430] requires simplifying the STNs resulting from the above planners in order to
rely on local propagation at acting time. This technique provides some improvements in
the dispatching algorithm but does not handle dynamic controllability.

The Reactive Model-based Programming Language (RMPL) of Ingham et al. [291] fol-
lows an approach more akin to that of Section 4.5.2. RMPL programs are transformed into
the Temporal Plan Networks (TPN) representation of Williams and Abramson [604]. TPN
extends STN with symbolic constraints and decision nodes. Planning with a TPN is find-
ing a path in the explicit network that meets the constraints. Conrad et al. [128] introduce
choices in the acting component of RMPL. TPNs with error recovery, temporal flexibility,
and conditional context dependent execution are considered in Effinger et al. [174]. There,
tasks have random variable durations with probability distributions. A particle-sampling
dynamic execution algorithm finds an execution guaranteed to succeed with a given proba-
bility. Santana and Williams [524] studied probabilistic TPNs with the notions of weak and
strong consistency, and proposed techniques to check these properties. TPNUs of Levine
and Williams [379] add the notion of uncertainty for contingent decisions taken by the en-
vironment and other agents. The acting system adapts the execution to observations and
predictions based on the plan. It has been illustrated with a service robot which observes
and assists a human.

4.7 Exercises

4.1. Specify the primitives stack, unstack and navigate of Example 4.11. For the latter,
assume that navigation between connected waypoints is unconstrained.

4.2. For the domain in Example 4.12, define methods for the tasks load and unload. For
the task bring, define additional methods to cover the following cases:

• the destination pile is at the same dock as the source pile,

• the robot r is already loaded with container c,

• container c is already in its destination pile.

Similarly, define other methods for the task move to cover the cases where the robot starts
from a waypoint or when it is already at destination, and another method for the task
uncover when the container c is at the top of pile p.

4.3. Augment the domain of Example 4.12 by considering that a pile p can be attached to
a ship and that a crane k on a dock d can unstack containers from a pile p only when the
corresponding ship is docked at d.

4.4. Specify the initial chronicle ϕ0 for the problem of Example 4.17 and Figure 4.5.

4.5. In Example 4.17, develop the steps of TemPlan until reaching a solution to the planning
problem.



4.6. For the domain in Example 4.12, redefine navigate as a task which refines into the
traversal of roads and the crossing to docks. The navigation between two roads adjacent
to a dock d requires crossing d which should not be occupied during the crossing interval.
For example, in Figure 4.5 the navigation from d4 to d1 requires the traversal of d3 which
should be empty when the robot gets there. Analyze the conflicting assertions that result
from this modification in the first few steps of TemPlan for Example 4.17 and find resolvers
for the corresponding flaws.

4.7. Analyse the commonalities and differences between the notion of threats in Section 2.5
and that of conflicting assertions. Notice that the former relate actions while the latter are
with respect to assertions. Since a threat is a menace to a causal link, can there be conflicting
assertions without a causal support? If the answer is affirmative, give an example.

4.8. In Example 4.17, implement the modification introduced in Exercise 4.4: consider that
piles p’1 and p’2 are not fixed in their respective docks but attached to two ships that will be
docked respectively to d1 and d2 at two future intervals of time [t1, t1 + δ1] and [t2, t2 + δ2].
How is modified the solution found in Exercise 4.5 when these two intervals do not overlap.
What happens when [t1, t1 + δ1] and [t2, t2 + δ2] are overlapping?

4.9. Run algorithm PC on the networks in Figure 4.7. Show that it adds the constraints
r1,3 = [1, 3], r24 = [1, 2] and r45 = [2, 3].

4.10. Specify and implement an incremental version of the PC algorithm; use it to analyze
how the network in Figure 4.7 evolves when are added to it successively t6, r36 = [5, 8], r56 =
[2, 5] then t7, r47 = [3, 6], r67 = [1, 7].

4.11. Run algorithm PC on the networks in Figure 4.8 and Figure 4.9 and compute all
the implicit constraints entailed from those in the networks; show that both networks are
minimal.

4.12. Prove that the minimal network in Figure 4.10 is such that [b− v, a− u] ⊆ [p, q].

4.13. Consider the minimal network in Figure 4.10 for the case where u ≥ 0 and [b− v, a−
u] = ∅. Prove that this network is not dynamically controllable.

4.14. Consider the temporal network associated to the solution of Exercise 4.5: under what
condition is it dynamically controllable?

4.15. For all the primitives in Example 4.11, define atemporal acting refinement methods
similar to the two given in Example 4.25.

4.16. Run algorithm Dispatch for the solution plan found in Exercise 4.5 assuming that
robot r1 is much faster than r2.



Chapter 5

Deliberation with
Nondeterministic Models

In this chapter we drop the unrealistic assumption of determinism, that is, the assumption
that each action performed in one state leads deterministically to one state. This apparently
simple extension introduces uncertainty in the model of the domain and requires new ap-
proaches to planning and acting. Deliberation must take into account that actions can lead
to a set of states; plans are no longer sequences of actions, but conditional plans; solutions
may have different strengths. Deliberative acting with nondeterministic models allows us
to take into account uncertainty when actions are performed.

The main motivations for planning and acting with nondeterministic models are in Sec-
tion 5.1. The planning problem is formalized in Section 5.2. In the subsequent three sections
we present some different approaches to planning with nondeterministic models: And/Or
graph search (Section 5.3), symbolic model checking (Section 5.4), and determinization
techniques (Section 5.5). In Section 5.6, we present techniques that interleave planning and
acting. In Section 5.7, we present planning techniques with refinement methods and non-
deterministic models, and in Section 5.8, we show techniques for deliberative acting with
input/output automata. Comparisons among different approaches and main references are
given in the discussion and historical remarks in Section 5.9. The chapter ends with a few
exercises.

5.1 Introduction and Motivation

Recall that in deterministic models, the prediction of the effects of an action is deterministic:
only one state is predicted as the result of performing an action in a state (see Chapter 2,
Section 2.1.1, assumption in item 3). Nondeterministic models predict alternative options:
an action when applied in a state may result in one among several possible states. For-
mally, γ(s, a) returns a set of states rather than a single state. The extension allowed by
nondeterministic models is important because it allows for modeling the uncertainty of the
real world.

In some cases, using a deterministic or a nondeterministic model is a design choice. For
instance, in the real world, the execution of an action may either succeed or fail. Despite
this, in many cases, it still makes sense to model just the so-called nominal case (in which
failure does not occur), monitor execution, detect failure when it occurs, and recover, for
example by replanning or by re-acting with some failure-recovery mechanism. In these
cases, deterministic models can still be a convenient choice. Indeed, despite the fact that
nondeterministic models may have some advantages, because they allow us to model the
world more accurately and to plan for recovery mechanisms at design time, they have clear
disadvantages. Indeed, taking into account all the different possible outcomes may become
much more complicated, both conceptually and computationally.
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In other cases, modeling the world with nondeterminism is instead a must. Indeed, in
certain environments there is no nominal case. And sometimes we need to consider different
possible action outcomes during both planning and acting, independently of the fact that
no model is perfect and the world is seldom completely predicable. For instance, there is
no nominal case in the throw of a dice or in the toss of a coin or in a sensing action of a
robot. There is no nominal case in the method for an online payment if the choice is left to
the user (cash, credit card, or bank transfer). There is no nominal case in the confirmation
given to a Web service by the user. And if we need to generate a software service that
works, we need to consider equally all possibilities.

Notice that, of course, even nondeterministic models are not perfect models of the world.
Even if we model the six outcomes of the throw of a dice, the tossed dice might run off
the playing board, and end up under the table. Similarly, a coin may land on its edge,
and the operating system of the hosting of a Web service can break. In all these cases,
however, nondeterministic models are definitely more realistic, and often not avoidable,
independently of the fact that everything can always happen in the world and no perfect
model exists.

Planning and acting with nondeterministic models is a different and much more chal-
lenging task than the deterministic case:

• The search space is no longer represented as a graph. It becomes an And/Or graph
(see Appendix A) in which each And-branch corresponds applying an action that
may lead from one state to many possible states, and each Or-branch corresponds to
choosing which action to apply in a state. We can choose the action, but we cannot
choose which outcome it will produce.

• Plans cannot be restricted to sequences of actions.1 In the nondeterministic case,
we need to generate conditional plans, that is, plans with conditional control struc-
tures that sense the actual action outcome among the many possible ones, and act
accordingly to the information gathered at execution time.

• The definition of solution plan is not trivial, because solutions of different strength
can be devised. For instance, a plan may either guarantee the achievement of a goal
or just have some chances of success, or it may guarantee the achievement of the goal
according to some assumptions.

As a consequence, in the case of nondeterministic domains the problem of devising
practical algorithms that can deal effectively with the search space is much harder than in
the deterministic case. Planning algorithms need to analyze not only single paths to find
one that leads to the goal, but all the execution paths of a plan. Keeping track of the
different possible branches of execution typically induces large search spaces.

Online planning and acting is one of the most effective techniques for dealing with large
state spaces. In Chapter 2, we presented the idea of interleaving planning and acting to
deal with large models. This motivation for online planning and acting is even stronger
in the case of nondeterministic models. Interleaving acting with planning can be used to
determine which of the nondeterministic outcomes has actually taken place.

Last but not least, nondeterministic domains are key models for deliberative acting (see
the discussion in Section 1.2.3 and Section 2.6). They are a proper and natural way to
represent operational models that describe how to perform an action, because operational
models have to take into account possibly different evolutions of the execution of commands.
Planning in nondeterministic domains can thus be a powerful deliberation mechanism.

1Conformant planning generates sequences of plans in nondeterministic domains. It is, however, a re-
stricted and specific case.



5.2 The Planning Problem

Planning with nondeterministic models relaxes the assumption that γ(s, a) returns a single
state. Then for every state s and action a, either γ(s, a) = ∅ (i.e., the action is not
applicable) or γ(s, a) is the set of states that may result from the application of a to the
state s, that is, γ : S ×A→ 2S .

Following the notation introduced in Chapter 2, Section 2.1.3, an operator can be rep-
resented with multiple effects:

act(z1, z2, . . . , zk)
pre: p1, . . . , pm
eff1: e11, . . .
. . .

effn: e1n, . . .

5.2.1 Planning Domains

A nondeterministic planning domain can be described in terms of a finite set of states S, a
finite set of actions A, and a transition function γ(s, a) that maps each state s and action
a into a set of states:

Definition 5.1. (Planning Domain) A nondeterministic planning domain Σ is the tuple
(S,A, γ), where S is the finite set of states, A is the finite set of actions, and γ : S×A→ 2S

is the state transition function.

An action a ∈ A is applicable in state s ∈ S if and only if γ(s, a) ̸= ∅. Applicable(s) is the
set of actions applicable to state s:

Applicable(s) = {a ∈ A | γ(s, a) ̸= ∅}

Example 5.2. In Figure 5.1, we show a simple example of nondeterministic planning
domain, inspired by the management facility for a harbor, where an item (e.g., a container,
a car) is unloaded from the ship, stored in some storage area, possibly moved to transit
areas while waiting to be parked, and delivered to gates where it is loaded on trucks. In
this simple example, we have just one state variable, pos(item), which can range over nine
values: on ship, at harbor, parking1, parking2, transit1, transit2, transit3, gate1, and gate2.
For simplicity, we label each state in Figure 5.1 only with the value of the variable pos(item).

In this example, we have just five actions. Two of them are deterministic, unload and
back, and three are nondeterministic, park, move, and deliver. Action unload unloads the
item from the ship to the harbor, its preconditions are pos(item) = on ship, and its effects
pos(item) ← at harbor. Action back moves the item back from any position in the harbor
to the position pos(item) = at harbor. To keep the figure simple, in Figure 5.1 we show only
two instances of actions back from the state where pos(item) = parking2 and the state where
pos(item) = gate1, but a back arrow should be drawn from each state where the position is
parking1, parking2, transit1, transit2, transit3, gate1, and gate2.

A possible description of action park is the following, where eff1, eff2, and eff3 are the
three possible effects of the action:

park
pre: pos(item) = at harbor
eff1: pos(item)← parking2
eff2: pos(item)← parking1
eff3: pos(item)← transit1

The actions park, move, and deliver are nondeterministic. In the case of action park, we
represent with nondetermism the fact that the storage areas parking1 and parking2 may be
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Figure 5.1: A simple nondeterministic planning domain model.

unavailable for storing items, for example, because they may be closed or full. Whether
an area is available or not cannot be predicted, because there are other actors parking and
delivering items, for example from different ships. However, we assume that it is always
possible either to park the item in one of the two parking areas or to move it to transit
area transit1. The item waits in transit1 until one of the two parking areas are available,
and it can be stored by the action move. Also in the case of move, we use nondeterminism
to represent the fact that we do not know a priori which one of the two areas may become
available.2 From the two parking areas, it is possible to deliver the container and load them
on trucks or to a transit area, from which it is necessary to move the container into either
one of the two parking areas. The deliver action moves containers from parking1 to one of
the two gates where trucks are loaded or to a transit area from which it is necessary to
move the container again to load trucks in one of the two gates.3 The same action from
parking2 may lead to gate1 or to another transit area.

5.2.2 Plans as Policies

A plan for a nondeterministic domain can be represented as a policy, that is, a partial4

function π that maps states into actions. Intuitively, if π(s) = a, it means that we should
perform action a in state s.

2In general, if an action’s outcome depends on something that is unknown to the actor, then it is
sometimes useful for the actor to think of the possible outcomes as nondeterministic. As an analogy,
we think of random number generators as having nondeterministic outcomes, even though many of these
generators are deterministic.

3Notice that deliver action has two possible effects in one instance and three in another. This is allowed
because the degree of nondeterminism can depend on the state in which an action is performed.

4That is, there may be states for which it is undefined.



PerformPolicy(π)
s← observe the current state
while s ∈ Dom(π) do

perform action π(s)
s← observe the current state

Algorithm 5.1: Procedure for performing the actions of a policy.

Definition 5.3. (Policy) Let Σ = (S,A, γ) be a planning domain. Let S′ ⊆ S. A
policy π for a planning domain Σ is a function π : S′ → A such that, for every s ∈ S′,
π(s) ∈ Applicable(s). It follows that Dom(π) = S′.

Example 5.4. Consider the domain of Example 5.2 shown in Figure 5.1. The following
are policies for this planning domain:

π1 : π1(pos(item)=on ship) = unload
π1(pos(item)=at harbor) = park
π1(pos(item)=parking1) = deliver

π2 : π2(pos(item)=on ship) = unload
π2(pos(item)=at harbor) = park
π2(pos(item)=parking1) = deliver
π2(pos(item)=parking2) = back
π2(pos(item)=transit1) = move
π2(pos(item)=transit2) = move
π2(pos(item)=gate1) = back

π3 : π3(pos(item)=on ship) = unload
π3(pos(item)=at harbor) = park
π3(pos(item)=parking1) = deliver
π3(pos(item)=parking2) = deliver
π3(pos(item)=transit1) = move
π3(pos(item)=transit2) = move
π3(pos(item)=transit3) = move

A procedure that performs the actions of a policy consists of observing the current state
s, performing the corresponding action π(s), and repeating these two steps until the state
is no longer in the domain of π (see Algorithm 5.1).

A remark is in order. A policy is a convenient way to represent plans in nondeterministic
domain models. An alternative is to represent plans with decision trees or with conditional
statements. The expressiveness of policies and the one of decision trees are incomparable.
On one hand, policies allow for infinite iterations of the application of actions, which are
not allowed by finite decision trees. On the other hand, decision trees allow for performing
different actions in the same state depending on at which point we are in the tree, whereas
policies always perform the same action in a state. We call our policies memoryless policies.
A policy with memory is a mapping from a history of states to an action. Policies with
memory allow for performing different actions in the same state, depending on the states
visited so far.

5.2.3 Planning Problems and Solutions

In deterministic domains, a plan is a sequence of actions that, when performed from an
initial state induces a sequence of states, one for each action in the plan. A solution to
a planning problem in a deterministic domain is a plan that induces a sequence of states
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Figure 5.2: Reachability graph for policy π1.

such that the last state is in the set of goal states. The states reachable from a state s by a
sequence of applicable actions a1, a2, . . . can be defined easily by composing the transition
function: {s} ∪ γ(s, a1) ∪ γ(γ(s, a1), a2) ∪ . . ..

To define a solution to a planning problem in nondeterministic domains, we need to do
something similar, that is to define which states are reached by a policy π in a planning
domain Σ = (S,A, γ). However, we have to take into account that, in a nondeterministic
planning domain, γ(s, a) returns a set of states, and therefore a plan can result in many
possible different paths, that is, sequences of states that are reached by the policy.

We start by introducing the notion of the set of states reachable from state s by a policy
π:

γ̂(s, π) denotes the transitive closure of γ(s, π(s)), that is, the set that includes
s and all its successors states reachable by π

To check whether a policy reaches some goals, we are interested in the final states that
are reached by the policy π from state s, that is in what we call the leaves of a policy π
from state s:

leaves(s, π) = {s′ | s′ ∈ γ̂(s, π) and s′ ̸∈ Dom(π)}

Notice that leaves(s, π) can be empty, that is, there may be no leaves. This is the case of
policies that cycle on the same set of states. If π is the empty plan, then leaves(s, π) = {s}.
We define the reachability graph that connects the reachable states from state s through a
policy π:

Graph(s, π) = {γ̂(s, π), (s′, s′′) | s′ ∈ γ̂(s, π) and s′′ ∈ γ(s′, π(s′))}

We call Γ̂(s) the set of states reachable from a state s.
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Example 5.5. Let π1, π2, and π3 be as in Example 5.4. Their leaves from state pos(item)=on ship
are:5

leaves(pos(item)=on ship, π1) = {pos(item)=parking2,
pos(item)=transit1,
pos(item)=gate1,
pos(item)=gate2,
pos(item)=transit2}

leaves(pos(item)=on ship, π2) = {pos(item)=gate2}
leaves(pos(item)=on ship, π3) = {pos(item)=gate1, pos(item)=gate2}

Figures 5.2, 5.3, and 5.4 show the reachability graphs of π1, π2, and π3 from the state where
pos(item)=on ship. Notice also that all states are reachable from state where pos(item)=on ship.

Given these preliminary definitions, we can now introduce formally the notion of a
planning problem and solution in a nondeterministic domain.

Definition 5.6. (Planning Problem) Let Σ = (S,A, γ) be a planning domain. A plan-
ning problem P for Σ is a tuple P = (Σ, s0, Sg), where s0 ∈ S is the initial state and Sg ⊆ S
is the set of goal states.

Notice that we have a single initial state s0 rather than a set of initial states S0 ⊆ S.
A set of initial states represents partially specified initial conditions, or in other words
uncertainty about the initial state. However, restricting to a single initial state is not a
limitation, because a domain with a set of initial states S0 is equivalent to a domain where
we have a single initial state s0 ̸∈ S and an additional action ao ̸∈ A such that γ(s0, a0) = S0.

We can now define different kinds of solutions to a planning problem.

5In this case, the value on ship of the state variable pos(item) identifies a single state.
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Figure 5.4: Reachability graph for policy π3.

Definition 5.7. (Solution) Let P = (Σ, s0, Sg) be a planning problem for a domain Σ =
(S,A, γ). Let π be a policy for Σ. Then π is a solution if and only if leaves(s0, π)∩Sg ̸= ∅

Solutions are policies that may lead to a goal. They can achieve the goal in different ways,
with different levels of guarantee, and with different strengths. The requirement we impose
on a policy to be a solution is that at least one state of its leaves is a goal state. We are
interested in safe solutions.

Definition 5.8. (Safe Solution) Let P = (Σ, s0, Sg) be a planning problem for a domain
Σ = (S,A, γ). Let π be a solution for Σ. Then π is a safe solution if and only if ∀s ∈
γ̂(s0, π)(leaves(s, π) ∩ Sg ̸= ∅)

Safe solutions are policies in which the goal is reachable from the initial state. Notice that,
in general, they are not policies in which the goal is reachable from any state of the domain
of the policy (Dom(π)), because we may have a state in Dom(π) that is not the initial state
and from which we do not reach the goal.

Definition 5.9. (Unsafe Solution) Let P = (Σ, s0, Sg) be a planning problem for a
domain Σ = (S,A, γ). Let π be a solution for Σ. Then π is an unsafe solution if it is not
safe.

Unsafe solutions either have a leaf that is not in the set of goal states or there exists a
reachable state from which it is not possible to reach a leaf state. It is easy to prove that π is
an unsafe solution if and only if ∃s ∈ leaves(s0, π) | s ̸∈ Sg∨∃s ∈ γ̂(s0, π) | leaves(s, π) = ∅

Intuitively, unsafe solutions may achieve the goal but are not guaranteed to do so. If an
agent tries to perform the actions dictated by the policy, the agent may end up at a nongoal
state or end up in a “bad cycle” where it is not possible to go out and reach the goal.



Figure 5.5: Different kinds of solutions: class diagram.

It is important to distinguish between two kinds of safe solutions, cyclic and acyclic.
Acyclic solutions are safe solutions whose reachability graph is acyclic; all other safe solu-
tions are cyclic.

Definition 5.10. (Cyclic Safe Solution) Let P = (Σ, s0, Sg) be a planning problem for
a domain Σ = (S,A, γ). Let π be a solution for Σ. Then π is a cyclic safe solution if and
only if leaves(s0, π) ⊆ Sg ∧ (∀s ∈ γ̂(s0, π)(leaves(s, π) ∩ Sg ̸= ∅) ∧Graph(s0, π) is cyclic.

Cyclic Safe Solutions are safe solutions with cycles.

Definition 5.11. (Acyclic Safe Solution) Let P = (Σ, s0, Sg) be a planning problem for
a domain Σ = (S,A, γ). Let π be a solution for Σ. Then π is an acyclic safe solution if and
only if leaves(s0, π) ⊆ Sg ∧Graph(s0, π) is acyclic.

Acyclic Safe Solutions are safe solutions that are guaranteed to terminate and to achieve the
goal despite nondeterminism. They are guaranteed to reach the goal in a bounded number
of steps, and the bound is the length of the longest path in Graph(s0, π). This amounts to
saying that all the leaves are goal states and there are no cycles in the reachability graph.

Figure 5.5 depicts in a class diagram the different forms of solutions. Unsafe Solutions
are not of interest, because they do not guarantee to achieve the goal. However, as we
will see in Section 5.5, planning for (possibly unsafe) solutions can be used by planning
algorithms to guide the search for Safe Solutions. In general, we are interested in safe (cyclic
and acyclic) solutions, because they provide (with different strengths) some assurance to
achieve the goal despite nondeterminism. Acyclic Safe Solutions are the best because they
can really ensure that we get to the goal. Cyclic Safe Solutions provide a weaker degree
of assurance to achieve the goal: assuming that sooner or later execution will get out of
possibly infinite loops, they are guaranteed to achieve the goal. They guarantee that there
is always a possibility to terminate the loop. However, for some applications, this may be
not enough.

Example 5.12. Consider the three policies π1, π2, and π3 in Example 5.4. Consider the
planning problem P with domain Σ the nondeterministic domain described in Example 5.2,
initial state s0 where pos(item)=on ship, and goal states Sg = {pos(item)=gate1, pos(item)=gate2}.

All three policies are solutions for the planning problem P ; indeed there exists at least
one leaf state that is in the set of goal states. Policy π1 is an unsafe solution because there
are leaves that do not belong to Sg from which it is impossible to reach the goal: such leaves
are the states where pos(item)=parking2, or pos(item)=transit1, or pos(item)=transit2.

Policies π2 and π3 are safe solutions. Policy π2 is a safe cyclic solution because from each
state in its graph it is possible to reach a state in the goal (pos(item)=gate2). Policy π3 is a
safe acyclic solution because it is guaranteed to reach one of the two gates, pos(item)=gate1
or pos(item)=gate2, without the danger of getting trapped in cycles.



Table 5.1: Solutions: different terminologies in the literature.

our terminology nondeterminism probabilistic

solutions weak solutions -

unsafe solutions - improper solutions

safe solutions strong cyclic solutions proper solutions

cyclic safe solutions - -

acyclic safe solutions strong solutions -

Notice that for the planning problem P ′ on the same domain, the same initial state,
but with goal Sg = {pos(item)=gate2}, a safe acyclic solution does not exist, and the safest
solution we can find is the safe cyclic solution π2.

A remark is in order. We require that solutions have some leaf states. In this way, we do
not consider policies that lead to the goal and then loop inside the set of goal states. One
may argue that such policies might be considered as solutions. However, notice that for any
solution of this kind, there exists a solution according to our definition. It is indeed enough
to eliminate the states in the policy that lead to the loop inside the set of goal states.

In the following, we specify the relations among different kinds of solutions.

unsafe solutions ∪ safe solutions = solutions
cyclic safe solutions ∪ acyclic safe solutions = safe solutions
unsafe solutions ∩ safe solutions = ∅
cyclic safe solutions ∩ acyclic safe solutions = ∅

Notice that our terminology here and in Chapter 6 are identical, but different from the
usual terminology in the literature, in which our solutions and safe solutions are called weak
solutions and strong cyclic solutions, respectively. In the literature, every strong solution
is also a weak solution, which can be confusing. In most of the literature on probabilistic
planning, our safe and unsafe solutions are called proper and improper, and there is no notion
that makes a distinction between cyclic safe solutions and acyclic safe solutions, despite
the different strength they provide. We will not also differentiate cyclic and a cyclic safe
solutions in probabilistic planning in Chapter 6, despite their differences (see discussion in
Section 6.7.5). Table 5.1 summarizes the corresponding terminology used in planning with
nondeterminism and in probabilistic planning literature.

5.3 And/Or Graph Search

A nondeterministic planning domain can be represented as an And/Or graph (see Ap-
pendix A) in which each Or-branch corresponds to a choice among the actions that are
applicable in a state, and each And-branch corresponds to the possible outcomes of the
chosen action. In this section, we present algorithms that search And/Or graphs to find
solutions.

5.3.1 Planning by Forward Search

We first present a simple algorithm that finds a solution by searching the And/Or graph
forward from the initial state. Find-Solution (see Algorithm 5.2) is guaranteed to find a
solution if it exists. The solution may be either safe or unsafe. It is a simple modification of
forward state-space search algorithms for deterministic planning domains (see Chapter 2).
The main point related to nondeterminism is in the “progression” line (see line (i)), where
we nondeterministically search for all possible states generated by γ(s, a).



Find-Solution (Σ, s0, Sg)
π ← ∅; s← s0; Visited← {s0}
loop

if s ∈ Sg then return π
A′ ← Applicable(s)
if A′ = ∅ then return failure
nondeterministically choose a ∈ A′

nondeterministically choose s′ ∈ γ(s, a) (i)
if s′ ∈ Visited then return failure
π(s)← a; Visited← Visited ∪ {s′}; s← s′

Algorithm 5.2: Planning for solutions by forward search.

Find-Safe-Solution (Σ, s0, Sg)
π ← ∅
Frontier← {s0}
for every s ∈ Frontier \ Sg do

Frontier← Frontier \ {s}
if Applicable(s) = ∅ then return failure
nondeterministically choose a ∈ Applicable(s)
π ← π ∪ (s, a)
Frontier← Frontier ∪ (γ(s, a) \Dom(π))
if has-unsafe-loops(π, a,Frontier) then return failure

return π

Algorithm 5.3: Planning for safe solutions by forward search.

Find-Solution simply searches the And/Or graph to find a path that reaches the goal,
without keeping track of which states are generated by which action. In this way, Find-
Solution ignores the real complexity of nondeterminism in the domain. It deals with the
And-nodes as if they were Or-nodes, that is, as if it could choose which outcome would be
produced by each action.

Recall that the nondeterministic choices “nondeterministically choose a ∈ A′” and “nondeterministically choose s′ ∈
γ(s, a)” correspond to an abstraction for ignoring the precise order in which the algorithm
tries actions a among all the applicable actions to state s and alternative states s′ among
the states resulting from performing a in s.

Example 5.13. Consider the planning problem described in Example 5.2. Let the initial
state s0 be pos(item)=on ship, and let the set of goal states Sg be {pos(item)=gate1, pos(item)=gate2}.
Find-Solution proceeds forward from the initial state on ship. It finds initially only one ap-
plicable action, that is, unload. It then expands it into at harbor, one of the possible nonde-
terministic choices is s′ = parking1, which gets then expanded to gate2; π1 (see Example 5.4)
is generated in one of the possible nondeterministic execution traces.

Algorithm 5.3 is a simple algorithm that finds safe solutions. The algorithm performs
a forward search and terminates when all the states in Frontier are goal states. Find-Safe-
Solution fails if the last action introduces a “bad loop”, that is, a state from which no
state in Frontier is reachable. The routine has-unsafe-loops checks whether a “bad loop” is
introduced. A “bad loop” is introduced when the set of states resulting from performing
action a, which are not in the domain of π, will never lead to the frontier:

has-unsafe-loops(π, a,Frontier) iff
∃s ∈ (γ(s, a) ∩Dom(π)) such that γ̂(s, π) ∩ Frontier = ∅.



Find-Acyclic-Solution (Σ, s0, Sg)
π ← ∅
Frontier← {s0}
for every s ∈ Frontier \ Sg do

Frontier← Frontier \ {s}
if Applicable(s) = ∅ then return failure
nondeterministically choose a ∈ Applicable(s)
π ← π ∪ (s, a)
Frontier← Frontier ∪ (γ(s, a) \Dom(π))
if has-loops(π, a,Frontier) then return failure

return π

Algorithm 5.4: Planning for safe acyclic solutions by forward search.

Algorithm 5.4 is a simple algorithm that finds safe acyclic solutions. The algorithm
is the same as Find-Safe-Solution, but in the failure condition. It fails if the last action
introduces a loop, that is, a state from which the state itself is reachable by performing the
plan:

has-loops(π, a,Frontier) iff
∃s ∈ (γ(s, a) ∩Dom(π)) such that s ∈ γ̂(s, π)

Example 5.14. Consider the planning problem P with domain Σ the nondeterministic
domain described in Example 5.2, initial state pos(item)=on ship, and set of goal states Sg
as {pos(item)=gate1, pos(item)=gate2}. Find-Acyclic-Solution starts from the initial state
on ship, for every state s in the frontier expands the frontier by performing γ(s, a). A
successful trace of execution evolves as follows6:

Step0 : on ship
Step1 : at harbor
Step2 : parking2, parking1, transit1
Step3 : transit3, gate1, gate2, transit2
Step4 : gate1, gate2

5.3.2 Planning by MinMax Search

This section introduces a technique that is based on a cost model of actions. Recall cost
models defined in Chapter 2. We assign a cost to each action that is performed in a state,
cost(s, a). Weighting actions with cost can be useful in some application domains, where,
for instance, actions consume resources or are more or less difficult or expensive to perform.

Algorithm 5.5 uses costs to identify which may be the best direction to take. It starts
from the initial state and selects actions with minimal costs among the ones that are appli-
cable. We are interested in finding a solution with the minimum accumulated cost, that is,
the minimum of the costs of each action that is selected in the search. Because the domain
model is nondeterministic and γ(s, a) results in different states, we want to minimize the
worst-case accumulated cost, that is, the maximum accumulated cost of each of the possible
states in γ(s, a). This is given by the following recursive formula:

c(s) =

{
0 if s is a goal,

mina∈Applicable(s)(cost(a) + maxs′∈γ(s,a) c(s
′)) otherwise.

6For simplicity, in the following we use on ship, at harbor, and so on, as names of states rather than a
state variable notation.



Find-Acyclic-Solution-by-MinMax (Σ,S0,Sg)
return Compute-worst-case-for-action(S0, Sg, ∞, ∅)

Compute-worst-case-for-action(S, Sg, β, ancestors)
c′ ← −∞
π′ ← ∅
// if S is nonempty, this loop will be executed at least once:
for every s ∈ S

if s ∈ ancestors then
return (π′,∞)

(π,c) ← Choose-best-action(s, Sg, β, ancestors ∪{s})
π′ ← π ∪ π′
c′ ← max(c′, c)
if c′ ≥ β then

break
return (π′, c′)

Algorithm 5.5: Planning for safe acyclic solutions by MinMax Search.

Choose-best-action(s, Sg, β, ancestors)
if s ∈ Sg then

return (∅, 0)
else if Applicable(s) = ∅ then

return (∅, ∞)
else do
c←∞
// this loop will always be executed at least once:
for every a ∈ Applicable(s) do

(π′, c′) ← Compute-worst-case-for-action(γ(s, a), Sg, β, ancestors)
if c > c′ + cost(s, a) then do
c← c′ + cost(s, a)
π(s)← π′ ∪ (s, a)

β ← min(β, c)
return (π, c)

Algorithm 5.6: The policy with minimal cost over actions.

For this reason, the algorithm is said to perform a “MinMax search.” While performing
the search, the costs of actions that are used to expand the next states are accumulated,
and the algorithm checks whether the accumulated cost becomes too high with respect to
alternative selections of different actions. In this way, the accumulated cost is used to find
an upper bound in the forward iteration.

Find-Acyclic-Solution-by-MinMax (Algorithm 5.5) finds safe acyclic solutions for nonde-
terministic planning problems in domains that may have cycles. It returns a pair (π,c),
where π is a safe acyclic solution that is worst-case optimal, that is, the maximum cost of
executing π is as low as possible, and c is the maximum cost of executing π.

Find-Acyclic-Solution-by-MinMax implements a depth-first search by minimizing the max-
imum sum of the costs of actions along the search. It alternates recursively between calls
to Choose-best-action (Algorithm 5.6) and Compute-worst-case-for-action. The former calls
the latter on the set of states γ(s, a) resulting from the application of actions a that are
applicable to the current state s, where Compute-worst-case-for-action returns the policy π′

and its corresponding cost c′. Visited states are accumulated in the “ancestors” variable.



Choose-best-action then updates the cost of π with the cost of the action (c = c′+cost(s, a)),
and updates the policy with the selected action in the current state (π = π′ ∪ (s, a)). In
the Choose-best-action procedure, β keeps track of the minimum cost of alternative policies
computed at each iteration, which is compared with the maximum cost computed over paths
in π by Compute-worst-case-for-action (see the instruction c′ = max(c′, c)). If the current
children’s maximum cost c′ is greater than or equal to the current minimum cost β, then
the policy π′ gets discarded and control gets back to Choose-best-action which chooses a
different action.

Indeed, while we are considering each state s′ ∈ γ(s, a), the worst-case cost of a policy
that includes an action a is greater than the maximum cost at each s′ visited so far. We
know that elsewhere in the And/Or graph there exists a policy whose worst case cost is less
than β. If the worst-case cost of a policy that includes a is greater or equal to β, then we
can discard a.

Find-Acyclic-Solution-by-MinMax’s memory requirement is linear in the length of the
longest path from s0 to a goal state, and its running time is linear in the number of paths
from s0 to a goal state.

Find-Acyclic-Solution-by-MinMax ignores the possibility of multiple paths to the same
state. If it comes to a state s again along a different path, it does exactly the same search
below s that it did before. One could use memoization techniques to store these values
rather than recomputing them – which would produce better running time but would require
exponentially more memory. See Exercise 5.9.

5.4 Symbolic Model Checking Techniques

The conceptually simple extension led by nondeterminism causes a practical difficulty. Be-
cause one action can lead to a set of states rather than a single state, planning algorithms
that search for safe (cyclic and acyclic) solutions need to analyze all the states that may
result from an action. Planning based on symbolic model checking attempts to overcome the
difficulties of planning in nondeterministic domains by working on a symbolic representation
of sets of states and actions. The underlying idea is based on the following ingredients:

• Algorithms search the state space by working on sets of states, rather than single
states, and on transitions from sets of states through sets of actions, rather than
working separately on each of the individual transition.

• Sets of states, as well as sets of transitions, are represented as propositional formu-
las, and search through the state space is performed by logical transformations over
propositional formulas

• Specific data structures, Binary Decision Diagrams (BDDs), are used for the compact
representation and effective manipulation of propositional formulas

Example 5.15. In this example we give a first intuition on how a symbolic representation
of sets of states can be advantageous. Consider the planning problem P with the nonde-
terministic domain Σ described in Example 5.2, the initial state s0 is the state labeled in
Figure 5.1 as on ship, and goal states Sg = {gate1, gate2}. The states of this simple planning
domain can be described by a single state variable indicating the position of the item, for
example, a container. The state variable pos(item) can assume values on ship, at harbor,
parking1, parking2, transit1, transit2, transit3, gate1, and gate2.

Now let’s suppose that at each position, the item can be either on the ground or on a
vehicle for transportation. We would have a second variable loaded, the value of which is
either on ground or on vehicle.

Let’s also suppose that we have a variable that indicates whether a container is empty,
full, or with some items inside. The domain gets to 54 states.
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Figure 5.6: BDD for pos(item) = gate1 ∨ pos(item) = gate2

Now, if we want to represent the set of states in which the container is ready to be loaded
onto a truck, this set can be compactly represented by the formula pos(item) = gate1 ∨
pos(item) = gate2. This is a symbolic, compact representation of a set of states. Now
suppose that further 10 state variables are part of the domain representation. There may
be many states in which the container is ready to be loaded onto a truck, while their
representation is the same as before: pos(item) = gate1 ∨ pos(item) = gate2.

BDDs provide a way to implement the symbolic representation just introduced. A
BDD is a directed acyclic graph (DAG). The terminal nodes are either “truth” or “falsity”
(alternatively indicated with 0 and 1, respectively). The corresponding BDDis in Figure 5.6.

In the rest of this section, we describe the algorithms for planning via symbolic model
checking both as operation on sets of states and as the corresponding symbolic transforma-
tions on formulas.

5.4.1 Symbolic Representation of Sets of States

A state variable representation, where each variable xi can have a value vij ∈ Range(xi),
can be mapped to an equivalent representation based on propositional variables. We can
represent a state by means of assignments to propositional variables rather than assignments
to state variables: For each state variable xi and for each value vij ∈ Range(xi), we have a
binary variable that is true if xi = vij , and xi = vik is false for each k ̸= j.

In symbolic model checking, a state is represented by means of propositional variables
(that is, state variables that have value either true (T) or false (F)) that hold in that state.
We write P (s) a formula of propositional variables whose unique satisfying assignment of
truth values corresponds to s. Let xxx be a vector of distinct propositional variables.

This representation naturally extends to any set of states Q ⊆ S. We associate a set of
states with the disjunction of the formulas representing each of the states.

P (Q) =
∨
s∈Q

P (s).

The satisfying assignments of P (Q) are the assignments representing the states of Q.

Example 5.16. In Example 5.2, consider the case in which the item (e.g., a car) that needs
to be moved to a parking area may get damaged. Moreover, the parking area can be either



open or closed, and the area can be either full or have a slot where the item can be stored.
We can represent the set of states of this domain with three propositional variables in xxx:

x1 : status(car) = damaged
x2 : areaavailability = open
x3 : areacapacity= full

The set of states S of the domain has eight states. The single state s1 in which the item
is not damaged, the storage area is open, and there is a slot available for storage can be
represented by the assignment of truth values to the three proposition variables

x1 ← F
x2 ← T
x3 ← F

or analogously by the truth of the formula

P (s1) = ¬x1 ∧ x2 ∧ ¬x3.

The four states in which the car is undamaged is represented by the single variable assign-
ment

x1 ← F

or analogously by the truth of the formula

P (Q) = ¬x1.

The main effectiveness of the symbolic representation is that the cardinality of the
represented set is not directly related to the size of the formula. As a further advantage,
the symbolic representation can provide an easy way to ignore irrelevant information. For
instance, in the previous example, notice that the formula ¬x1, because it does not say
anything about the truth of x2 and x3, represents four states, where the item is not damaged
in all of them. The whole state space S (eight states) can thus be represented with the
propositional formula that is always true, T, while the empty set can be represented by
falsity, F. These simple examples give an intuitive idea of one of the main characteristics
of a symbolic representation of states: the size of the propositional formula is not directly
related to the cardinality of the set of states it represents. If we have one billion propositional
variables to represent 210

9
states, with a proposition of length one, for example, x, where x

is one of the propositional variables of xxx, we can represent all the states where x is true.

For these reasons, a symbolic representation can have a dramatic improvement over an
explicit state representation which enumerates the states of a state transition system.

Another advantage of the symbolic representation is the natural encoding of set-theoretic
transformations (e.g., union, intersection, complementation) with propositional connectives
over propositional formulas, as follows:

P (Q1 ∪Q2) = P (Q1) ∨ P (Q2)
P (Q1 ∩Q2) = P (Q1) ∧ P (Q2)
P (S −Q) = P (S) ∧ ¬P (Q)

5.4.2 Symbolic Representation of Actions and Transitions

We can use a vector of propositional variables, say yyy, to name actions. Naming actions with
a binary string of yyy bits will allow us to use BDDs at the implementation level in the next
sections. If we have n actions, we can use ⌈log n⌉ propositional variables in yyy. For instance,



in the previous example, we can use variables y1 and y2 in yyy to name actions park, move,
and deliver. We can use for instance the following encoding:

P (park) = ¬y1 ∧ ¬y2 P (move) = y1 ∧ ¬y2 P (deliver) = ¬y1 ∧ y2.
Now we represent symbolically the transition function γ(s). We will call the states in

γ(s) the next states. To represent next states, we need a further vector of propositional
variables, say, xxx′, of the same dimension of xxx. Each variable x′ ∈ xxx′ is called a next-state
variable. We need it because we need to represent the relation between the old and the new
variables. Similarly to P (s) and P (Q), P ′(s) and P ′(Q) are the formulas representing state
s and the set of states Q using the next state variables in xxx′. A transition is therefore an
assignment to variables in xxx, yyy, and xxx′

Example 5.17. Consider Example 5.16 and Example 5.2. Suppose the item to be moved is
a car. The unloading operation may damage the car, and the parking area may be closed and
full,7 We have therefore some level of nondeterminism. Let x4 and x5 be the propositional
variable for pos(car)=on ship and pos(car)=at harbor. The transition pos(car)=at harbor ∈
γ(pos(car)=on ship, unload) can be symbolically represented as8

x4 ∧ (¬y1 ∧ ¬y2) ∧ x′5,

which means that in the next state the car is at the harbor and may or may not be damaged.

We define now the transition relation R corresponding to the transition function γ (this
will be convenient for the definition of the symbolic representation of transition relations):

∀s ∈ S,∀a ∈ A,∀s′ ∈ S (R(s, a, s′) ⇐⇒ s′ ∈ γ(s, a)).
In the rest of this section, we adopt the following notation:9

• Given a set of states Q, Q(xxx) is the propositional formula representing the set of states
Q in the propositional variables xxx;

• R(xxx,yyy,xxx′) is the propositional formula in the propositional variables xxx, yyy, and xxx′

representing the transition relation.

We also adopt a QBF-like notation, the logic of Quantified Boolean Formulas, a definitional
extension of propositional logic in which propositional variables can be universally and
existentially quantified. According to this notation, we have:

• ∃xQ(xxx) stands for Q(xxx)[x ← T] ∨Q(xxx)[x ← F], where [x ← T] stands for the substi-
tution of x with T in the formula;

• ∀xQ(xxx) stands for Q(xxx)[x← T] ∧Q(xxx)[x← F].

Let us show how operations on sets of states and actions can be represented symbolically.
Consider the set of all states s′ such that from every state in Q, s′ is a possible outcome of
every action. The result is the set of states containing any next state s′ that for any state
s in Q and for any action a in A satisfies the relation R(s, a, s′): 10

{s′ ∈ S | ∀s ∈ Q and ∀a ∈ A. R(s, a, s′)}.

Such set can be represented symbolically with the following formula, which can be
represented directly as a BDD:

(∃xxxyyy(R(xxx,yyy,xxx′) ∧Q(xxx)))[x′ ← x].

7This nondeterminism models the fact that we do not know at planning time whether the parking area
will be available.

8Here we omit the formalization of the invariant that states what does not change.
9Recall that a set of states is represented by a formula in state variables in x.

10The formula is equivalent to
⋃

s∈A,a∈A γ(s, a).



Find-Safe-Solution-by-ModelChecking(Σ, s0, Sg)
univpol← {(s, a) | s ∈ S and a ∈ Applicable(s) }
π ← SafePlan(univpol, Sg)
if s0 ∈ (Sg ∪Dom(π)) then return π
else return(failure)

SafePlan(π0,Sg)
π ← ∅
π′ ← π0
while π ̸= π′ do
π ← π′

π′ ← π′ \ {(s, a) ∈ π′ | γ(s, a) ̸⊆ (Sg ∪Dom(π′))} (i)
π′ ← PruneUnconnected(π′, Sg) (ii)

return RemoveNonProgress(π′, Sg) (iii)

Algorithm 5.7: Planning for safe solutions by symbolic model checking.

PruneUnconnected(π,Sg)
Oldπ ← fail
Newπ ← ∅
while Oldπ ̸= Newπ do

Oldπ ← Newπ
Newπ ← π ∩ preimgpol(Sg ∪Dom(Newπ))

return Newπ

Algorithm 5.8: PruneUnconnected: Removing unconnected states.

In this formula, the “and” operation symbolically simulates the effect of the application
of any applicable action in A to any state in Q. The explicit enumeration of all the pos-
sible states and all the possible applications of actions would exponentially blow up, but
symbolically we can compute all of them in a single step.

Policies are relations between states and actions, and can therefore be represented sym-
bolically as propositional formulas in the variables xxx and yyy. In the following, we write such
a formula as π(xxx,yyy).

We are now ready to describe the planning algorithms based on symbolic model checking.
In the subsequent sections, we consider an extension of the definition of planning problem
where we allow for a set of initial states rather than a single initial state.

5.4.3 Planning for Safe Solutions

In Find-Safe-Solution-by-ModelChecking, Algorithm 5.7, univpol is the so-called “universal
policy,” that is, the set of all state-action pairs (s, a) such that a is applicable in s. Notice
that starting from the universal policy may appear unfeasible in practice, because the set
of all state-action pairs can be very large. We should not forget, however, that very large
sets of states can be represented symbolically in a compact way. Indeed, the symbolic
representation of the universal policy is:

univpol = ∃xxx′R(xxx,yyy,xxx′),

which also represents the applicability relation of an action in a state.

Find-Safe-Solution-by-ModelChecking calls the SafePlan routine that refines the universal
policy by iteratively eliminating pairs of states and corresponding actions. This is done in
two steps. First, line (i) removes from π′ every state-action pair (s, a) for which γ(s, a)



RemoveNonProgress(π,Sg)
Oldπ ← fail
Newπ ← ∅
while Oldπ ̸= Newπ do

preπ ← π ∩ preimgpol(Sg ∪Dom(Newπ))
Oldπ ← Newπ
Newπ ← PruneStates(preπ, Sg ∪Dom(Newπ))

return Newπ

Algorithm 5.9: RemoveNonProgress: Removing states/actions that do not lead towards the
goal.

includes a nongoal state s′ that has no applicable action in π′. Next, line (ii) removes from
π′ every state-action pair (s, a) for which π′ contains no path from s to the goal. This second
step is performed by the routine PruneUnconnected (see Algorithm 5.8). PruneUnconnected
repeatedly applies the intersection between the current policy π and the “preimage” policy,
that is, preimgpol applied to the domain of the current policy and the goal states. The
preimage policy, given a set of states Q ⊆ S, returns the policy that has at least one
out-coming state to the given set of states:

preimgpol(Q) = {(s, a) | γ(s, a) ∩Q ̸= ∅}.

preimgpol(Q) is represented symbolically as a formula in the current state variables xxx and
the action variables yyy:

preimgpol(Q) = ∃xxx′(R(xxx,yyy,xxx′) ∧Q(xxx′)).

The pruning of outgoing and unconnected states is repeatedly performed by the while loop
in SafePlan until a fixed point is reached. Then in line (iii), SafePlan removes states and
corresponding actions in the policy that do not lead toward the goal. This is done by calling
the RemoveNonProgress routine (see Algorithm 5.9) that repeatedly performs the pruning
in two steps. First, the preimage policy preπ that leads to the domain of the policy or to the
goal state in computed (“preimage policy” step). Then the states and actions that lead to
the same domain of the preimage policy or to the goal are pruned away by the PruneStates
routine (let Q ⊆ S):

PruneStates(π,Q) = {(s, a) ∈ π | s ̸∈ Q}.

The routine PruneStates that eliminates the states and actions that lead to the same domain
of a policy is computed symbolically as follows:

PruneStates(π,Q) = π(xxx,yyy) ∧ ¬Q(xxx)).

SafePlan thus returns the policy π that has been obtained from the universal policy by re-
moving outgoing, unconnected and nonprogressing actions. Find-Safe-Solution-by-ModelChecking
finally tests whether the set of states in the returned policy union with the goal states con-
tains all the initial states. If this is the case, π is a safe solution; otherwise no safe solution
exists.

Example 5.18. Let us consider the planning problem on the domain described in Exam-
ple 5.2, initial state s0 where pos(car)=on ship, and goal states Sg = {pos(car)=gate2}. The
“elimination” phase of the algorithm does not remove any policy from the universal policy.
Indeed, the goal state is reachable from any state in the domain, and therefore there are
no outgoing actions. As a consequence, function RemoveNonProgress receives in input the
universal policy and refines it, taking only those actions that may lead to a progress versus



Find-Acyclic-Solution-by-ModelChecking(Σ, S0, Sg)
π0 ← failure
π ← ∅
while (π0 ̸= π and S0 ̸⊆ (Sg ∪Dom(π))) do

strongpreπ ← strongpreimgpol(Sg ∪Dom(π))
π0 ← π
π ← π ∪ PruneStates(strongpreπ, Sg ∪Dom(π))

if (S0 ⊆ (Sg ∪Dom(π)))
then return π
else return failure

Algorithm 5.10: Planning for acyclic solutions by symbolic model checking

the goal. The sequence πi of policies built by function RemoveNonProgress is as follows (in
the following we indicate with parking1 the state where pos(car)=parking1, etc.):

Step 0 : ∅
Step 1 : π1(parking1) = deliver;π1(transit2) = move
Step 2 : π2(parking1) = deliver;π2(transit2) = move;π2(at harbor) = park;

π2(transit1) = move
Step 3 : π3(parking1) = deliver;π3(transit2) = move;π3(at harbor) = park;

π3(transit1) = move;π3(parking2) = back;π3(transit3) = back;
π3(gate1) = back;π3(on ship) = unload

Step 4 : π3

A remark is in order. Algorithm 5.7 can find either safe cyclic or safe acyclic solutions.
It can be modified such that it looks for a safe acyclic solution, and only if there is no such
solution does it search for a safe cyclic solution (see Exercise 5.11).

5.4.4 Planning for Safe Acyclic Solutions

Find-Acyclic-Solution-by-ModelChecking (Algorithm 5.10) performs a backward breadth-first
search from the goal toward the initial states. It returns a safe acyclic solution plan π if it
exists, otherwise it returns failure. The policy π is constructed iteratively by the while loop.
At each iteration step, the set of states S for which a safe acyclic policy has already been
found is given in input to the routine strongpreimgpol, which returns a policy that contains
the set of pairs (s, a) such that a is applicable in s and such that a leads to states which
are all in Q ⊆ S:

strongpreimgpol(Q) = {(s, a) | a ∈ Applicable(s) and γ(s, a) ⊆ Q}.

The routine strongpreimgpol, which returns a policy that contains the set of pairs (s, a) such
that a is applicable in s and such that a leads to states which are all in Q ⊆ S:

strongpreimgpol(Q) = ∀xxx′(R(xxx,yyy,xxx′)→ Q(xxx′)) ∧ ∃xxx′R(xxx,yyy,xxx′),

which states that any next state must be in Q and the action represented by yyy must be
applicable. Notice that both preimgpol(Q) and strongpreimgpol(Q) are computed in one
step. Moreover, policies resulting from such computation may represent an extremely large
set of state-action pairs.

The routine PruneStates that eliminates the states and actions that lead to the same
domain of a policy,

PruneStates(π,Q) = {(s, a) ∈ π | s ̸∈ Q}



can be represented symbolically very simply by the formula

π(xxx,yyy) ∧ ¬Q(xxx)).

PruneStates removes from strongpreπ the pairs (s, a) such that a solution is already known.
This step is what allows to find the worst-case optimal solution.

Example 5.19. Let us consider the planning problem on the domain described in Ex-
ample 5.2, initial set of states S0 = {on ship}, and goal states Sg = {gate1, gate2}. The
sequence πi of policies built by algorithm Find-Acyclic-Solution-by-ModelChecking is as fol-
lows:

π0 : ∅
π1 : π1(transit3) = move;π1(transit2) = move
π2 : π2(transit3) = move;π2(transit2) = move;

π2(parking1) = deliver;π2(parking2) = deliver
π3 : π3(transit3) = move;π3(transit2) = move;

π3(parking1) = deliver;π3(parking2) = deliver;
π3(transit1) = move

π4 : π4(transit3) = move;π4(transit2) = move;
π4(parking1) = deliver;π4(parking2) = deliver;
π4(transit1) = move;π4(at harbor) = park

π5 : π5(transit3) = move;π5(transit2) = move;
π5(parking1) = deliver;π5(parking2) = deliver;
π5(transit1) = move;π5(at harbor) = park;
π5(on ship) = unload

π6 : π5

Notice that at the fifth iteration, PruneStates removes from π5 all the state-action pairs that
move the container back (action back) from states such that a solution is already known.
For instance, π5(parking2) = back, π5(gate1) = back, and so on.

5.4.5 BDD-based Representation

In the previous section, we showed how the basic building blocks of the planning algo-
rithm can be represented through operations on propositional formulas. In this section, we
show how specific data structures, Binary Decision Diagrams (BDDs) , can be used for the
compact representation and effective manipulation of propositional formulas.

A BDD is a directed acyclic graph (DAG). The terminal nodes are either True or False
(alternatively indicated with 0 and 1, respectively). Each nonterminal node is associated
with a boolean variable and with two bdds, which are called the left and right branches.
Figure 5.7 (a) shows a BDD for the formula (a1 ↔ b1) ∧ (a2 ↔ b2) ∧ (a3 ↔ b3).

Given a BDD, the value corresponding to a given truth assignment to the variables
is determined by traversing the graph from the root to the leaves, following each branch
indicated by the value assigned to the variables. A path from the root to a leaf can visit
nodes associated with a subset of all the variables of the BDD. The reached leaf node is
labeled with the resulting truth value. If v is a BDD, its size |v| is the number of its
nodes.11 If n is a node, we will use var(n) to denote the variable indexing node n. BDDs
are a canonical representation of boolean formulas if

• there is a total order < over the set of variables used to label nodes, such that for
any node n and correspondent nonterminal child m, their variables must be ordered,
var(n) < var(m), and

11Notice that the size can be exponential in the number of variables. In the worst case, BDDs can be very
large. We do not search through the nodes of a BDD, however, but rather represent compactly (possibly
very large) sets of states and work on such a representation of sets of states.



• the BDD contains no subgraphs that are isomorphic to the BDD itself.

The choice of variable ordering may have a dramatic impact on the dimension of a BDD. For
example, Figure 5.7 depicts two BDDs for the same formula (a1 ↔ b1)∧(a2 ↔ b2)∧(a3 ↔ b3)
obtained with different variable orderings.12
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Figure 5.7: Two BDDs for the formula (a1 ↔ b1) ∧ (a2 ↔ b2) ∧ (a3 ↔ b3).

BDDs can be used to compute the results of applying the usual boolean operators. Given
a BDD that represents a formula, it is possible to transform it to obtain the BDD representing
the negation of the formula. Given two BDDs representing two formulas, it is possible to
combine them to obtain the BDD representing the conjunction or the disjunction of the two
formulas. Substitution and quantification on boolean formulas can also be performed as
BDD transformations.

5.5 Determinization Techniques

Recent works address the problem of planning in nondeterministic domains by determinizing
the planning domain. Intuitively the idea is to consider one of the possible many outcomes
of a nondeterministic action at a time, using an efficient classical planning technique to find
a plan that works in the deterministic case. Then different nondeterministic outcomes of an
action are considered and a new plan for that state is computed, and finally the results are
joined in a contingent plan that considers all the possible outcomes of actions. Of course,
it may be that when a partial plan is extended to consider new outcomes, no solution is
possible, and the algorithm must find an alternative solution with different actions.

12A state variable representation can lead to a variable ordering in which closely related propositions are
grouped together, which is critical to good performance of BDD exploration.



Guided-Find-Safe-Solution (Σ,s0,Sg)
if s0 ∈ Sg then return(∅)
if Applicable(s0) = ∅ then return(failure)
π ← ∅
loop
Q← leaves(s0, π) \ Sg
if Q = ∅ then do
π ← π \ {(s, a) ∈ π | s ̸∈ γ̂(s0, π)}
return(π)

select arbitrarily s ∈ Q
π′ ← Find-Solution(Σ, s, Sg)
if π′ ̸= failure then do
π ← π ∪ {(s, a) ∈ π′ | s ̸∈ Dom(π)}

else for every s′ and a such that s ∈ γ(s′, a) do
π ← π \ {(s′, a)}
make a not applicable in s′

Algorithm 5.11: Guided planning for safe solutions.

5.5.1 Guided Planning for Safe Solutions

Before getting into the details, we show a basic idea underlying determinization techniques.
Safe solutions can be found by starting to look for (possibly unsafe) solutions, that is,
plans that may achieve the goal but may also be trapped in states where no action can
be executed or in cycles where there is no possibility of termination. The idea here is
that finding possibly unsafe solutions is much easier than finding safe solutions. Compare
indeed the algorithm for finding solutions Find-Solution and the one for finding safe solutions
Find-Safe-Solution in Section 5.3. Whereas Find-Solution does not distinguish between And-
branches and Or-branches, Find-Safe-Solution needs to check that there are no unsafe loops,
and this is done with the has-unsafe-loops routine.

Algorithm 5.11 is based on this idea, that is, finding safe solutions by starting from
possibly unsafe solutions that are found by Find-Solution.

Guided-Find-Safe-Solution takes in as input a planning problem in a nondeterministic
domain Σ with initial state s0 and goal states Sg. If a safe solution exists, it returns the
safe solution π.

The algorithm checks first whether there are no applicable actions in s0. If this is the
case, it returns failure.

In the loop, Q is the set of all nongoal leaf states reached by π from the initial state. If
there are no nongoal leaf states, then π is a safe solution. When we have the solution, we
get rid of the part of π whose states are not reachable from any of the initial state (we say
we “clean” the policy).

If there are instead nongoal leaf states reached by π, then we have to go on with the
loop. We select arbitrarily one of the nongoal leaf states, say, s, and find a (possibly unsafe)
solution from initial state s with the routine Find-Solution, see Algorithm 5.2.

If Find-Solution does not return failure, then π′ is a (possibly unsafe) solution, and
therefore we add to the current policy π all the pairs (s, a) of the (possibly unsafe) solution
π′ that do not have already a state s in π.

If a (possibly unsafe) solution does not exists (the else part of the conditional) this means
we are trapped in a loop or a dead end without any possibility of getting out. According to
Definition 5.9, then, this is not a safe solution. We therefore get rid from π of all the pairs
(s′, a) that lead to dead-end state s. We implement this by making action a not applicable



Find-Safe-Solution-by-Determinization (Σ,s0,Sg)
if s0 ∈ Sg then return(∅)
if Applicable(s0) = ∅ then return(failure)
π ← ∅
Σd ← mk-deterministic(Σ)
loop

Q← leaves(s0, π) \ Sg
if Q = ∅ then do
π ← π \ {(s, a) ∈ π | s ̸∈ γ̂(s0, π)}
return(π)

select s ∈ Q
p′ ← Forward-search (Σd, s, Sg)
if p′ ̸= fail then do
π′ ← Plan2policy(p′, s)
π ← π ∪ {(s, a) ∈ π′ | s ̸∈ Dom(π)}

else for every s′ and a such that s ∈ γ(s′, a) do
π ← π \ {(s′, a)}
make the actions in the determinization of a
not applicable in s′

Algorithm 5.12: Planning for safe solutions by determinization.

in s′.13 In this way, at the next loop iteration, we will not have the possibility to become
stuck in the dead end.

5.5.2 Planning for Safe Solutions by Determinization

The idea underlying the Guided-Find-Safe-Solution algorithm is to use possibly-unsafe so-
lutions to find safe solutions. Find-Solution returns a path to the goal by considering only
one of the many possible outcomes of an action. Looking for just one action outcome and
finding paths inspires the idea of determinization. If we replace each action a leading from
state s to n states s1, . . . , sn with n deterministic actions a1, . . . , an, each one leading to a
single state s1, . . . , sn, we obtain a deterministic domain, and we can use classical efficient
planners to find solutions in the nonderministic domain as sequences of actions in the de-
terministic domain. We will have then to transform a sequential plan into a corresponding
policy, and to extend it to consider multiple action outcomes. According to this idea, we
define a determinization of a nondeterministic domain.14

Algorithm 5.12 exploits domain determinization and replaces Find-Solution in Guided-
Find-Safe-Solution with search in a deterministic domain. Here we use the simple forward
search algorithm Forward-search presented in Chapter 2, but we could use a more sophis-
ticated classical planner, as long as it is complete (i.e., it finds a solution if it exists).
This algorithm is similar to the first algorithm for planning by determinization proposed in
literature.

Find-Safe-Solution-by-Determinization is like Guided-Find-Safe-Solution, except for the fol-
lowing steps:

13This operation can be done in different ways, and depends on which kind of representation we use for
the domain. This operation may not be efficient depending on the implementation of Σ.

14The operation of transforming each nondeterministic action into a set of deterministic actions is com-
plicated by the fact that we have to take into account that in different states the same action can lead to a
set of different states. Therefore, if the set of states has exponential size with respect to the number of state
variables, then this operation would generate exponentially many actions.



Plan2policy(p = ⟨a1, . . . , an⟩,s)
π ← ∅
loop for i from 1 to n do
π ← π ∪ (s, det2nondet(ai))
s← γd(s, ai)

return π

Algorithm 5.13: Transformation of a sequential plan into a corresponding policy.

Figure 5.8: Offline versus run-time search spaces.

1. The determinization step: We add a determinization step. The function mk-
deterministic returns a determinization of a nondeterministic planning domain.

2. The classical planner step: We apply Forward-search on the deterministic domain
Σd rather than using Find-Solution on the nondeterministic domain Σ. In general, we
could apply any (efficient) classical planner.

3. The plan2policy transformation step: We transform the sequential plan p′ found
by Forward-search into a policy (see routine Plan2policy, Algorithm 5.13), where γd(s, a)
is the γ of Σd obtained by the determinization of Σ. The routine det2nondet returns
the original nondeterministic action corresponding to its determinization ai.

4. The action elimination step: We modify the deterministic domain Σd rather than
the nondeterministic domain Σ.

5.6 Online approaches

In Chapter 1 (see Section 1.3.3), we introduced the idea of interleaving planning and acting.
Interleaving is required because planning models are just approximations, and sensing is
required to adapt to a changing environment. Another motivation is the ability to deal with
realistic large domains. Dealing with large state spaces is even more difficult in the case
of nondeterministic domains. The idea is that while offline planners have to find a large
policy exploring a huge state space, if we interleave acting and planning, we significantly
reduce the search space. We need indeed to find a partial policy, for example, the next
few “good” actions, perform all or some of them, and repeat these two interleaved planning
and acting steps from the state that has been actually reached. This is the great advantage
of interleaving acting and planning: we know exactly which of the many possible states
has been actually reached, and the uncertainty as well as the search space is significantly
reduced.



Lookahead-Partial-Plan(Σ, s0, Sg)
s← s0
while s /∈ Sg and Applicable(s) ̸= ∅ do
π ←Lookahead(s, θ) (i)
if π = ∅ then return failure
else do

perform partial plan π (ii)
s← observe current state

Algorithm 5.14: Interleaving planning and execution by lookahead.

Intuitively, the difference in search space between planning offline and interleaving plan-
ning and acting is shown in Figure 5.8. In the case of purely offline planning, uncertainty
in the actual next state (and therefore the number of states to search for) increases expo-
nentially from the initial state (the left vertex of the triangle) to the set of possible final
states (the right part of the triangle): the search space is depicted as the large triangle. In
planning and acting, we plan just for a few next steps, then we act and we know exactly in
which state the application of actions results. We repeat the interleaving of planning and
acting until we reach a goal state. The search space is reduced to the sequence of small
triangles depicted in Figure 5.8.

Notice that there is a difference between the search space depicted in Figure 5.8 and
the ones depicted in Figures 1.3 and 1.4, because here we have uncertainty in the outcome
of each action, and the base of each small triangle represents all the possible outcomes of
an action rather than the different outcomes of the search for each different action in a
deterministic domain.

The selection of “good” actions (i.e., actions that tend to lead to the goal) can be done
with estimations of distances from and reachability conditions to the goal, like in heuristic
search, and by learning step by step after each application better estimates of the distance.

A critical issue is the possibility of getting trapped in dead ends. In safely explorable
domains (see also Chapter 6), that is, domains where execution cannot get trapped in
situations where there is no longer a path to the goal, it is possible to devise methods
that are complete, i.e., that guarantee to reach the goal if there exists a solution, and that
guarantee the termination of the planning/acting loop if no solution exists. However, not
all domains are safely explorable, and not all actions are reversible. A navigation robot can
be trapped in a hole where no navigation operation is possible anymore; a bank transaction
is critical and cannot be easily undone. Even worse, the actor may not easily recognize that
it is trapped in a dead end. For instance, a navigation robot can enter an area where it is
possible to navigate but it is impossible to get out of that area. Despite these problems,
planning and acting methods remain a viable solution to problems that cannot be solved
purely offline.

In this section, we present some basic techniques that can be used to interleave planning
and execution.

5.6.1 Lookahead

The idea underlying lookahead methods is to generate a partial plan to interleave planning
and acting. The Lookahead-Partial-Plan procedure, Algorithm 5.14, interleaves partial plan-
ning in line (i) with acting in line (ii). At each loop, Lookahead searches for a partial plan
rooted at s. It returns a partial plan as a policy π that is partially defined, at least in s.
A context-dependent vector of parameters θ restricts in some way the search for a solution.
Working with a progressively generated policy, defined when and where it is needed, allows
us to deal with large domain models that cannot be represented a priori and with partial
domain knowledge. This approach combines naturally with a generative definition of Σ. A



full specification of a domain is not necessary to a partial exploration, as discussed in more
detail in Chapter 6.

There are different ways in which the generated plan can be partial and different ways
for interleaving planning and acting. Indeed, the procedure Lookahead-Partial-Plan is para-
metric along two dimensions:

The first parametric dimension is in the call to the lookahead planning step, that is,
Lookahead(s, θ). The parameter θ determines the way in which the generated plan π is
partial. For instance, it can be partial because the lookahead is bounded, that is, the forward
search is performed for a bounded number of steps without reaching the goal. In the simplest
case, Lookahead(s, θ) can look ahead just one step, choose an action a (in this case π = a),
and at the next step perform action a. This is the extreme case of interleaving in which
the actor is as reactive as possible. In general, however, Lookahead(s, θ) can look ahead
for n ≥ 1 steps.15 The greater n is, the more informed is the choice on the partial plan to
execute; the drawback is that the cost of the lookahead increases. In the extreme case in
which the lookahead reaches the goal from the initial state s0, if performing the found plan
succeeds, then there is no actual interleaving.

Rather than specifying the bound as a number of steps to search, θ can specify other
kinds of bounds for the plan generation phase, for example, some real-time interruption
mechanism corresponding to the planning deadline and the need to switch to acting.

However, there are other ways in which the generated plan is partial. For instance,
Lookahead can consider a some of the outcomes of a nondeterministic action, that is, only
some of its possible outcomes of a nondeterministic action, and in this way the lookahead
procedure can reach the goal. Even if the goal is reached, the plan is still partial because
it is not guaranteed that the execution will actually go through the considered outcomes of
the actions. In the extreme case, Lookahead can consider just one of the possible outcomes
of an action, look for a possibly unsafe solution to the goal or, in other words, pretend that
the domain model is deterministic. In this case, the lookahead procedure is not bounded,
but the plan is still partial. The policy π in this case can be reduced to a sequential plan.

It is of course possible to combine the two types of partiality – bounded lookahead and
partial number of outcomes – in any arbitrary way.

The second parametric dimension is in the application of the partial plan that has been
generated, i.e., in the execution of the partial plan π. Independently of the lookahead,
we can still execute π in a partial way. Suppose, for instance, that we have generated a
branching plan of depth n; we can decide to perform m ≤ n steps.

Two approaches to the design of a Lookahead procedure are presented next:

• lookahead by determinization, and

• lookahead with a bounded number of steps.

The former approach does not bound the search to a limited number of steps, but
searches for a (possibly unsafe) solution to the goal. At execution time, it checks whether
the reached state corresponds to the one predicted by the (possibly unsafe) solution. The
latter approach bounds the search to a limited number of steps (in the simplest case, just one
step), selects an action according to some heuristics, memorizes the results, and performs
a value update to learn a better heuristics in possible future searches.

5.6.2 Lookahead by Determinization

Lookahead can be realized by determinizing the domain. FS-Replan (Algorithm 5.15) illus-
trates a determinization relaxation introduced in Section 5.5.2. The idea is to generate a
path πd from the current state to a goal for for all outcomes of the determinized domain
Σd using a deterministic planner – in this case Forward-search, but it could be any efficient
deterministic planner, as in the case of the offline determinization (Algorithm 5.12). The

15In nondeterministic domains, lookahead for n steps means to generate a branching tree.



FS-Replan (Σ, s, Sg)
πd ← ∅
while s /∈ Sg and Applicable(s) ̸= ∅ do

if πd undefined for s then do
πd ← Plan2policy(Forward-search(Σd, s, Sg), s)
if πd = failure then return failure

perform action πd(s)
s← observe resulting state

Algorithm 5.15: Online determinization planning and acting algorithm.

MinMax LRTA* (Σ, s0, Sg)
s← s0
while s ̸∈ Sg and Applicable(s) ̸= ∅ do (i)
a← argmina∈Applicable(s) maxs′∈γ(s,a)h(s

′) (ii)

h(s)← max{h(s), 1 + maxs′∈γ(s,a)h(s
′)} (iii)

perform action a
s← the current state

Algorithm 5.16: MinMax Learning Real Time A*.

actor acts using πd until reaching a state s that is not in the domain of πd. At that point, a
new deterministic plan starting at s is generated. If the planning domain is safely explorable
and because Forward-search is a complete deterministic planner, then FS-Replan will lead to
a goal. If the domain has dead ends, then FS-Replan is not guaranteed to reach the goal.

Notice the relation between FS-Replan and Lookahead-Partial-Plan. In the case FS-Replan
the parameter θ of Lookahead-Partial-Plan is realized by the condition checking whether πd
is undefined for the current state s. FS-Replan does not look ahead for only some steps, but
until the goal is reached according to a simplified (i.e., determinized) model of the domain.

5.6.3 Lookahead with a Bounded Number of Steps

MinMax Learning Real Time A* (MinMax LRTA*, Algorithm 5.16) searches the state space
forward from the initial state s0 until in line (i), the termination checking step, the search
reaches the goal or a state that has no applicable actions. In line (ii), the action selection
step, the algorithm looks for the best worst-case action. This is the action a that produces
the smallest maximum value for h(s′), where h(s′) is the estimated distance from s′ to the
goal. In line (iii), the value update step, the algorithm improves the estimate h(s) using the
h-values of s’s children. This step is useful if we perform multiple runs of the planning and
acting routine and we learn from each run.

MinMax LRTA* is guaranteed to terminate and to generate a solution only in safely
explorable domains. Notice that the termination condition Applicable(s) ̸= ∅ can check
only whether we are in a direct dead end , but in order to check whether we may end up in
a indirect dead end we would need to explore all of the states that are reachable from s.

MinMax LRTA* can easily be extended to deal with domains that include costs of ac-
tions. We need only to replace the formula in the value update step with this: h(s) ←
max{h(s), c(s, a) + maxs′∈γ(s,a)h(s

′)}.
To choose the action a, the algorithm does a lookahead of one step. It is possible to

extend it to look ahead n steps by generating a partial search tree by searching forward from
the current state s. Then we can update the values in the local search space by assigning at
each state the minmax distance under the assumptions that such values do not overestimate
the correct minmax distance to the goal.



5.7 Refinement Methods with Nondeterministic Models

In Chapter 3, we introduced a formalism for operational models based on refinement meth-
ods. A method specifies how to accomplish a task (an abstract activity of some kind) by
refining it into other activities that are less abstract. These activities may include other
tasks that will need further refinement. We devised the SeRPE and IRT algorithms to
do refinement planning and choose among different possible refinements in a deterministic
model. We extended the formalism to include goals, which can be further refined with
different refinement methods.

In this section, we use nondeterministic models in refinement methods. This allows
us to model commands and tasks with nondeterministic outcomes, and to search for safe
cyclic or acyclic solutions. We consider tasks that are specified with programs. Tasks can
be iteratively refined in subtasks and goals through programs that contain the usual control
constructs, like constructs for sequences of steps, conditionals, loops, and so on. Planning
algorithms that use deterministic models, such as SeRPE and IRT, can simply simulate the
execution through such control structures and replace commands with the corresponding γ,
which leads from one state to a single state. Planning algorithms that use nondeterministic
models must instead take into account that programs might be executed in different states.
A simple simulation starting from one state does not allow us to know exactly in which state
the program will be executed. This makes the planning algorithms much more complicated.

In the following subsections, we first recall the formalism for tasks and adapt it to nonde-
terministic models (Section 5.7.1). We then define context-dependent plans (Section 5.7.2).
They are more expressive than policies because they can take into account the context in
which a step of the plan is executed, and the context can depend of the steps that have
been executed so far. In the subsequent two subsections, we provide a planning algorithm
to generate context dependent plans that achieve tasks. We do this in two steps. First, we
generate automatically search automata from given tasks (Section 5.7.3). Search automata
are used to guide the search for context-dependent plans. Second, we define the planning
algorithm that exploits the generated planning automata (Section 5.7.4).

5.7.1 Tasks in Refinement Methods

We start from a slightly revised version of the formalism defined in Chapter 3, Section 3.1.2.
A refinement method is a task with a body.16 The body is a program that refines the task
into a sequence of subtasks, commands, and goals. The program contains usual control
structures, like sequences, conditionals, and loops, over tasks, goals, and commands.

In Section 3.1.2 we defined the following kinds of tasks:

• A reachability goal g, that is, a partial state variable assignment xi = vi, . . . , xk = vk,
for each xi, . . . , xk ∈ X, and each vi ∈ Range(xi), . . . , vk ∈ Range(xk). To distinguish
between safe cyclic and safe acyclic solutions (see Definition 5.10 and Definition 5.11,
respectively), we now have two kinds of reachability goals:

– achieve-cyclic(g)

– achieve-acyclic(g)

• A command cmd. We model each command in a nondeterministic domain Σ =
(A,S, γ), where γ is nondeterministic: γ : S ×A→ 2S .

• A sequence of tasks: t1; t2, where t1 and t2 are tasks.

• A conditional task : if p then t1 else t2, where t1 and t2 are tasks and p is partial
variable assignment.

• An iterative task : while p do t, where t is a task and p is partial variable assignment.

16Here we do not have a separate precondition field but use conditional tasks.



• A test : test p, where p is partial variable assignment.

We also will define another kind of task that is specifically useful when we plan in nonde-
terministic domains:

• A failure-handling task :
if t1 fails then t2, where t1 and t2 are tasks.

The failure-handling task if t1 fails then t2 is the basic construct for handling failure. It
expresses a preference to achieve t1 if possible, and to try to achieve t2 only if t1 is impossible.

5.7.2 Context-Dependent Plans

Policies as defined so far are stationary or memoryless policies, that is, they always perform
the same action in the same state, independently of the actions that have been previously
performed and the states that have been previously visited. Policies are not enough to rep-
resent plans that can satisfy tasks with programs in the body a refinement methods. Plans
should take into account previously-executed steps. Consider for instance a sequence of
tasks t1; t2, where both t1 and t2 are reachability goals, for example, t1 = achieve acyclic g1
and t2 = achieve acyclic g2. In this case, we might need to perform different actions (and
execute the different corresponding commands) in the same state depending on whether
the actor is trying to achieve the first goal in the first task g1 or the second task g2. As a
simple example, consider the case in which a robot has to move to a given location and has
to come back afterward. Similar examples can be given for the constructs for conditional
and iterative tasks, as well for failure-handling and recovery constructs.

One could address this issue by extending the representation of a state to include all
relevant data, for example, the history of states visited so far. This might work in theory,
but its implementation is not practical. We take a different approach by introducing the
notion of context. A context specifies which subtask the actor is in the process of satisfying.
For instance, in the previous example, where we have the task t1; t2, then the actor is in a
context while trying to satisfy task t1, and in a different context while trying to satisfy task
t2. In this way, actions to be performed can depend not only on the current state of the
domain but also on the “internal state” of the actor, on its “intention” to satisfy one subtask
or another. To represent this kind of plans, we introduce the notion of context-dependent
plan.

Definition 5.20. (Context-dependent Plans) A context-dependent plan π for a domain
Σ = (S,A, γ) is a structure (C, c0, act, ctxt), where:

• C is a set of contexts, representing the internal state of the actor

• c0 is the initial context,

• act : S × C ⇀ A is the action function, and

• ctxt : S × C × S ⇀ C is the context function.

If we are in a state s and in a context c, then act(s, c) returns the action to be performed
by the plan, while ctxt(s, c, s′) associates to each reached state s′ a new context. The pair
(s, c) ∈ S × C defines the state of the context-dependent plan.

Example 5.21. In Figure 5.9, we have a nondeterministic planning domain for a navigation
robot. Each state si corresponds to a location of the robot in a building. Some of the actions
for moving the robot are nondeterministic. Let us suppose that the robot is initally in state
s1, and the task is achieve-acyclic(s2); achieve-cyclic(s4).

There is no policy on the set of states S = {s1, s2, s3, s4} that can achieve such task.
The context-dependent plan in Figure 5.10 achieves instead the task (we write the context-
dependent plan in a tabular form to make it easier to read).



Figure 5.9: An example of nondeterministic planning domain

Figure 5.10: A context-dependent plan.

An important remark is in order. One may think that it is enough to define policies on
the domain of pairs state contexts S × C rather than on the set of states S, and reuse all
the algorithms and approach defined so far. Notice however, that we need to know which
are the possible contexts in C, and this can be done in practice only with a generative
approach that, given a task, constructs the contexts corresponding to the subtasks. This
will be explained in Section 5.7.3.

We need to define now when a context-dependent plan achieves a task. In the following,
we provide just an intuitive idea.

• When t is achieve-cyclic(g) or achieve-acyclic(g), then π satisfies t if and only if π is
equivalent to a safe cyclic solution or a safe acyclic solution for g, respectively.

• When t is a command cmd, then π achieves t in state (s, c) if and only if there exists
an action a corresponding to cmd that is applicable in state (s, c). Otherwise, it fails.

• When t is a sequence t1; t2, then π achieves t if and only if π achieves first t1 and, if
t1 is achieved , then π achieves t2. If π achieves t1 and then it does not achieve t2,
then π fails. If π does not achieve t1, then π fails.

• When t is if p then t1 else t2, then π needs to satisfy t1 if p holds in (s, c), and it needs
to satisfy t2 if p does not hold in (s, c).

• When t is while p do t1, then π must satisfy cyclically t1 while p holds. Moreover, π
should guarantee the termination of the loop.



• When t is test p, then π must lead to a state (s, c) where p holds.

• When t is if t1 fails then t2, then π must satisfy t1. In the case it fails (i.e., there is
no possibility to satisfy t1), then is must satisfy t2.

5.7.3 Search Automata

In this section we define a mapping from tasks to a class of automata called Search Automata.
In the subsequent subsection (see Section 5.7.4), we show how search automata can be used
to guide the search for context-dependent plans.

The states of each search automaton correspond to the contexts of the plan under
construction, according to Definition 5.20. Given a task, we generate the contexts that we
need in the context-dependent plan. It is a generative approach, which allows us determine
the set of contexts C. The transitions from a state (context) to other states (contexts) of
each search automaton define constraints on the states that have to be searched for by the
planning algorithm.

Definition 5.22. (Search Automata) Let S be the set of states of the planning domain.
A search automaton is a tuple (C, c0, T,RB) where:

• C is the set of states of the search automaton.17

• c0 ∈ C is the initial state of the search automaton.

• T (c) = (t1, . . . , tm) is the list of transition for state c ∈ C. Each transition ti is either

– normal, in which case ti ∈ 2S × (C × {always, some})∗

– immediate, in which case ti ∈ 2S × (C ∪ {succ, fail}).

• RB = {rb1, . . . , rbn}, with rbi ⊆ C is the set of red blocks, states where the execution
cannot stay forever.

A list of transitions T (c) is associated to each state c. Each transition determines the
behavior that should be satisfied if we move from c to T (c). The order of the list represents
the preference among these transitions. It is important to have such order among transitions
because it will allow us to distinguish between “main” tasks that we need to achieve from
recovery tasks we need to achieve only if the main task cannot be achieved.

The transitions of a search automaton are either normal or immediate. The former
transitions correspond to performing an action in the plan. The latter ones describe updates
in the search state, which do not correspond to performing an action.18

The normal transitions are defined by a condition on the states of the planning do-
main and by a list of target search states. Each target search state is marked either by
always or some. Let p be a partial state assignment. State s satisfies a normal transition
(p, ((c′1, k

′
1), . . . , (c

′
n, k

′
n))), with k

′
i ∈ {always, some}, if it satisfies condition p, and if there

is some action a from s such that:

• all the next states reachable from s when performing action a are compatible with
some of the target search states, and

• for each target search state marked some, there is a compatible next state.

When a target search state is marked with some, it means that there should be always at
least one next state that satisfies a condition. It is used in the case of safe cyclic solutions,
in which we have to guarantee that from each state we should reach a given goal.

17We intentionally call the set of states of the search automaton C, like the set of contexts of the context-
dependent plans in Definition 5.20. Indeed, the states of the search automaton correspond to the contexts
of the plan that is generated by the algorithm described in Section 5.7.4.

18Immediate transitions resemble ϵ-transitions of classical automata theory. An ϵ-transition allows an
automaton to change its state spontaneously, that is without consuming an input symbol [285].
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Figure 5.11: Search automaton for safe acyclic solutions.

The immediate transitions are defined by both a condition and by a target search state.
A state satisfies an immediate transition (p, c′) if it satisfies condition p and if it is compatible
with the target state c′. Special target search states succ and fail are used to represent
success and failure: all states are compatible with success, while no state is compatible with
failure.

The red blocks of a search automaton represent sets of search states where the execution
cannot stay forever. Typically, a red block consists of the set of search states in which the
execution is trying to achieve a given condition, as in the case of a reachability goal. If an
execution persists inside such a set of search states, then the condition is never reached,
which is not acceptable for a reachability goal. In the search automaton, a red block is used
to represent the fact that any valid execution should eventually leave these search states.

We now describe the search automata that are automatically constructed from tasks.
Rather than providing the formal definition of the search automata, we represent them
using a graphical notation. We start with the search automaton for a reachability goal p,
that is, a safe solution as defined in Section 5.2.3. We have to distinguish the case of cyclic
from acyclic solutions (see Definitions 5.10 and 5.11, respectively).

Let us start with acyclic solutions (see Figure 5.11). The search automaton has two
search states: c0 (the initial state) and c1. There are two transitions leaving state c1.
The first one, guarded by condition p, is a success transition that corresponds to the cases
where p holds in the current domain state. The second transition, guarded by condition
¬p, represents the case in which p does not hold in the current state, and therefore, to
achieve goal p in a safe acyclic way, we have to ensure that the goal can be achieved from
all the next states. We recall that this is the condition for the plannig algorithm that will
be devised in the next section (Section 5.7.4). We remark that the second transition is a
normal transition because it requires performing an action in the plan; the first transition,
instead, is immediate. In the diagrams, we distinguish the two kinds of transitions by using
thin arrows for the immediate ones and thick arrows for the normal ones. A domain state is
compatible with state c1 only if it satisfies in a safe acyclic way goal p, that is, if condition
p holds in the current state (first transition from c1) or if the goal will be reachable in all
the next states (second transition from c1).

According to the semantics of safe acyclic solutions, it is not possible for the search
to stay in state c1 forever, as this corresponds to the case in which condition p is never
reached. That is, set {c1} is a red block of the search automaton. In the diagrams, states
that are in a red block are marked in grey. State c0 takes into account that it is not always
possible to ensure that condition p will be eventually reached, and that if this is not the
case, then p cannot be satisfied in a safe acyclic way, and therefore the search fails. The
precedence order among the two transitions from state c0, represented by the small circular
dotted arrow between them, guarantees that the transition leading to a failure is followed
only if it is not possible to satisfy the constraints of state c1.

We provide now the search automaton for safe cyclic solutions (see Figure 5.12). The
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Figure 5.12: Search automaton for safe cyclic solutions.

difference with respect to the search automaton for safe acyclic solutions is in the transition
from c1 guarded by condition ¬p. In this case we do not require that the goal holds from
all the next states, but only from some of them. Therefore, the transition has two possible
targets, namely states c1 (corresponding to the next states were we expect to achieve the
safe cyclic solution for p) and c0 (for the other next states). The semantics of safe cyclic
solutions requires that there should be always at least one next state that satisfies the
definition of safe cyclic solution for goal p; that is, target c1 of the transition is marked
by some in the search automaton. This “non-emptiness” requirement is represented in the
diagram with the mark some on the arrow leading back to c1. The preferred transition from
state c0 is the one that leads to c1. This ensures that the algorithm will try to find a safe
cyclic solution whenever possible.
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c1c0

Figure 5.13: Search automaton for primitive actions.

Figure 5.13 shows the simple search automaton for the primitive action a ∈ A corre-
sponding to a command. The transition from the state c1 guarantees that a domain state
is acceptable only if the next state is achieved by performing action a, that is, only if the
next state is reachable by performing action a.

The search automaton for the sequence t1; t2 is shown in Figure 5.14 The initial state

fail
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At2success
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Figure 5.14: Search automaton for the sequence t1; t2.



of the compound automaton coincides with the initial state of automaton At1 for t1, and
the transitions that leave At1 with success are redirected to the initial state of At2 , the
automaton for t2. The search automaton for the conditional task if p then t1 else t2 is in
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¬

Figure 5.15: Search automaton for conditional task if p then t1 else t2.

Figure 5.15. The context c0 immediately moves the acting to the initial context of one of the
search automata for the tasks t1 or t2 according to the current domain state, i.e. whether
the property p holds in the current domain state or not.

The search automaton for the while loop while p do t1 is in Figure 5.16. The context c0

succ

succ

c0 p

  p

At1
fail

fail
c0 At1

¬

Figure 5.16: Search automaton for loop task while p do t1.

has two immediate transitions guarded by the conditions p and ¬p. The former leads to the
initial context of the automaton for t1, i.e., the body of the cycle, and the latter leads to
the success of the compound automaton. The successful transitions of the automaton for t1
return back to context c0, but the failure transition for t1 falsifies the compound automaton.
The context c0 is marked as a red block. It guaranties that the loop is finite.

Figure 5.17 shows the simple search automaton for test p. All transitions are immediate,
because action performing is not required. The automaton only checks that the current
domain state satisfies formula p.

Figure 5.18 shows the search automaton for the failure-handling construct if t1 fails then t2.
The search automaton is defined similarly to that for sequences t1; t2. The difference is that
in this case, the transitions that leave At1 (the search automaton for t1) with failure are
redirected to the initial state of At2 .
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Figure 5.17: Search automaton for test point test p.
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Figure 5.18: Search automaton for failure-handling task if t1 fails then t2.

5.7.4 Planning Based on Search Automata

As stated in the previous section, the search automata that we have generated in the
previous section are used to guide the search of the planning algorithm that we present
in this section. The algorithm is guaranteed to find solution plans if a solution exists. It
terminates with failure otherwise. The algorithm works on sets of states. For this reason,
it is specially suited for symbolic model checking techniques (see Section 5.4).

Algorithm 5.17 is the main procedure for generating plan π. It takes in input a non-
deterministic planning domain Σ, a set of initial states S0, and a task t as defined in
Section 5.7.1. It works in three main steps. In the first step, build automaton constructs the
search automaton as defined in Section 5.7.3. The states in the resulting automaton are the
contexts of the generated context-dependent plan π that is being built (see Definition 5.20),
and the transitions represent the possible evolutions of the contexts. In the second step,
compute associated states explores the planning domain and associates a set of states of the
planning domain to each state in the search automaton. Intuitively, these are the states for
which a plan exists from the given context. In the third step, synthesize-plan constructs a
plan by exploiting the information on the states associated to the context.

Once the search automaton is built by the function build automaton, the planning algo-
rithm proceeds by associating to each context in the search automaton a set of states in the
planning domain. The association is built by compute associated states, see Algorithm 5.18.
The algorithm starts with an optimistic association, which assigns all the states in the
planning domain (S is the set in Σ = (S,A, γ)) to each context (line (i)). The algorithm
computes the so-called Green-Block of contexts (see line (ii)), which is the set of contexts

Plan-with-search-automata(Σ, S0, t)
automaton← build automaton(Σ, S0, t)
AssociatedStates = compute associated states(Σ, S0, t, automaton)
π = synthesize-plan(automaton,AssociatedStates)
return π

Algorithm 5.17: Planning based on search automata



compute associated states(Σ, S0, t, automaton)
foreach c ∈ automaton.C do assoc(c)← S (i)
Green-Block← {c ∈ C such that ∀rbi ∈ RB c ̸∈ rbi} (ii)
Blocks← {Green-Block} ∪RB
while ∃b ∈ Blocks such that a fixed point is not reached do (iii)

if b ∈ RB then for each c ∈ b do assoc(c)← ∅ (iv)
while ∃c ∈ b such that c needs update do (v)

assoc(c)← update-ctxt(automaton, assoc, c) (vi)
return assoc

Algorithm 5.18: Associating states to contexts.

that are not contained in any red block (see Section 5.7.3 and Definition 5.22). We need
indeed to distinguish contexts in the green block from those in red blocks because the search
should eventually leave a context in a red block, whereas this is not required for contexts
in the green block.

The association is then iteratively refined. At any iteration of the loop (lines (iii)–(vi)),
a block of context is chosen, and the corresponding associations are updated. Those states
are removed from the association, from which the algorithm discovers that the tasks in the
context are not satisfiable. The algorithm terminates when a fixed point is reached, that
is, whenever no further refinement of the association is possible: in this case, the while
condition at line (iii) evaluates to false for each b ∈ Blocks and the guard of the while loop
fails.

The chosen block of contexts may be either one of the red blocks or the green block.
In case the green block is chosen, the refinement step must guarantee that all the states
associated to the contexts are “safe,” that is, that they never lead to contexts where the
goal can no longer be achieved. This refinement (lines (v)–(vi)) is obtained by choosing
a context in the green block and by “refreshing” the corresponding set of states (function
update-ctxt). Once a fixed point is reached and all the refresh steps on the contexts in b do
not change the association (i.e., no context in b needs updates), the loop at lines (v)–(vi) is
left, and another block is chosen.

In the case of red blocks, the refinement needs to guarantee not only that the states
in the association are “safe” but also that the goal is eventually resolved, that is, that the
contexts in the red block are eventually left. To this purpose, the sets of states associated
to the red block contexts are initially emptied (line (iv)). Then, iteratively, one of the
red-block contexts is chosen, and its association is updated (lines (v))-(vi)). In this way, a
least fixed point is computed for the states associated to the red block.

The core step of compute associated states is function update-ctxt. It takes in input the
search automaton (C, c0, T,RB), the current association of states assoc, that is, a function
assoc : C → 2S , and a context c ∈ C and returns the new set of states in S to be associated
to context c. It is defined as follows:

update-ctxt(automaton, assoc, c) =
{s ∈ S | ∃trans ∈ T (c) such that s ∈ trans-assoc(automaton, trans, assoc)}.

According to this definition, a state s is compatible with a search state c if it satisfies the
conditions of some transition t from that search state. If trans = (p, c′) is an immediate
transition, then:

trans-assoc(automaton, trans, assoc) = {s ∈ S | s |= p and s ∈ assoc(c′)},

where we assume that assoc(fail) = ∅ and assoc(succ) = S. That is, in the case of an
immediate transition, we require that s satisfies property p and that it is compatible with
the new search state c′ according to the current association assoc.



If trans = (p, ((c′1, k
′
1), . . . , (c

′
n, k

′
n)) is a normal transition, then:

trans-assoc(automaton, trans, assoc) =
{s ∈ S | s |= p and ∃a ∈ Applicable(s) such that
(s, a) ∈ gen-preimage((assoc(c′1), k

′
1), . . . , (assoc(c

′
n), k

′
n))}

where:
gen-preimage((S1, k1), . . . , (Sn, kn)) =
{(s, a) | ∃S′

1 ⊆ S1 . . . S′
k ⊆ Sk such that

γ(s, a) = S′
1 ∪ . . . ∪ S′

k and
S′
i ∩ S′

j = ∅ if i ̸= j and S′
i ̸= ∅ if ki = some}

Also in the case of normal transitions, trans-assoc requires that s satisfies property p. More-
over, it requires that there is some action a such that the next states γ(s, a) satisfy the
following conditions:

• all the next states are compatible with some of the target search states, according to
association assoc; and

• some next state is compatible with each target search state marked as some.

These two conditions are enforced by requiring that the state-action pair (s, a) appears in
the generalized preimage of the sets of states assoc(c′i) associated by assoc to the target
search states c′i.

It is now possible to explain in more detail the iterative refinement at lines (iii)–(vi) in
Algorithm 5.18. Recall that in the iterative refinement loop, the following conditions are
enforced:

• (C1) a domain state s is associated to a search state c only if s can satisfy the
condition described by some transition of c;

• (C2) actions from a given state s cannot be performed if they stay forever inside a
red block.

In each step of the iterative refinement, either a search state in the green block is selected
and the corresponding set of domain states is refined according to (C1); or a red block is
selected and all the sets of domain states associated to its search states are refined according
to (C2). The refinement algorithm terminates when no further refinement step is possible,
that is, when a fixed point is reached.

Function update-ctxt(automaton, assoc, c) is used in the refinement steps corresponding
to (C1) as well as in the refinement steps corresponding to (C2). In the former case, the
refinement step simply updates assoc(c) to the value of update-ctxt(automaton, assoc, c).
In the latter case, the refinement should guarantee that any valid execution eventually
leaves the search states in the selected red block rbi. To this purpose, the empty set
of domain states is initially associated to the search states in the red block; then, itera-
tively, one of the search states c ∈ rbi is chosen, and its association assoc(c) is updated to
update-ctxt(automaton, assoc, c). These updates terminate when a fixed point is reached,
that is, when assoc(c) = update-ctxt(automaton, assoc, c) for each c ∈ rbi. In this way, a
least fixed point is computed, which guarantees that a domain state is associated to a search
state in the red block only if there is a plan from that domain state that leaves the red
block in a finite number of actions.

Finally, extract plan extracts a plan by using the information about the associated do-
main states to each search state. Indeed, once a stable association assoc from search states
to sets of domain states is built for a search automaton, a plan can be easily obtained. The
contexts for the plan correspond to the states of the search automaton. The information
necessary to define functions act and ctxt is implicitly computed during the execution of the
refinement steps. Indeed, function trans-assoc defines the possible actions a = act(s, c) to
be performed in the state-context pair (s, c), namely the actions that satisfy the constraints
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Figure 5.19: Nondeterministic model for an open-door method.

of one of the normal transitions of the search automaton. Moreover, function gen-preimage
defines the next acting context ctxt(s, c, s′) for any possible next state s′ ∈ γ(s, a).

5.8 Acting with Input/Output Automata

In this section we introduce a different kind of nondeterministic model to represent refine-
ments at the acting level. It is based on the notion of input/output automata and allows
us to model refinements with a distributed approach.

Example 5.23. Consider Example 3.4 of opening a door. For simplicity, here we consider
the case in which the door is not locked. The robot does not know whether the door can
be opened by pulling, pushing or sliding the door. Moreover, we assume the robot has no
reliable way to detect in advance how the door should be opened. The open-door action is
refined in a single refinement method the model of which is partly shown in Figure 5.19. For
the sake of simplicity, the acting states are simply labeled instead of giving a full definition
of their state variables as in Example 3.4. In states s2, s4, and s6 the door has been opened
by pushing, pulling, and sliding it, respectively. When in s1, if the robot tries to pull the
door but the door is still closed, we then go to state s3. When in s3, if the robot tries to
push the door but the door is still closed, we then go to state s5. We assume that if we
are in state s6, the door can be opened by sliding it. In this simple example, we assume
that after a failing attempt to open the door the robot can retry, possibly with different
parameters for the commands, such as increased forces.

5.8.1 Input/Output Automata

In Example 5.23, we suppose we have a robot that is not able to recognize (e.g., by artificial
vision capabilities) the way to open the door. The robot therefore tries to open the door
by pulling, then by pushing, and finally by sliding the door. Suppose now that, rather
than equipping the robot with such capability, doors are able to interact with the robot,
for example, by answering to its requests and informing about the way in which they can
be opened.19 In some way, we “distribute the intelligence” in the environment. The task
for the robot becomes much simpler, and it can be described in the next example.

Example 5.24. In Figure 5.20, the robot gets the door’s type, for example, by sending a
request to the door, which replies with information about the way the door can be opened.
Notice that differently from the model in Figure 5.19 for Example 5.23, now we have three

19Automated doors are widely used, but there can be situations in which using an RFID stick is preferable
to changing the door.



different kinds of transitions in the nondeterministic model: commands (grasp, pull, push,
slide, and move), inputs that are received by the robot (pulling, pushing, and sliding), and
outputs that are sent by the robot (door type).
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Figure 5.20: Input/output automaton for an open-door method.

As introduced informally in Example 5.24, the idea is to specify bodies of methods as
input/output automata, the main feature of which is to model components that interact
with each other through inputs and outputs. This is the main representational shift with
respect to the usual acting/sensing representation. Input/output automata allow for mod-
eling distributed systems where each automaton is a component that interacts with other
components through inputs and outputs. They make it possible to simplify the design
process by abstracting away the details of their internal representation.

Formally, input/output automata are very similar to state transition systems described
in Chapter 2 and planning domains described in this chapter, with the following differences.
Input/output automata can evolve to new states by receiving inputs from other automata
and sending outputs to other automata. Moreover, they can evolve with internal transitions
without sending outputs and receiving inputs. Internal transitions represent commands that
are sent to the execution platform,20 as they have been introduced in the definition of RAE
methods in Chapter 3.

Definition 5.25. (Input/Output Automaton) An input/output automaton is A =
(S, S0, I, O,C, γ), where

• S is a finite set of states;

• S0 ⊆ S is the set of possible initial states in which the automaton can start;

• I is the set of inputs, O is the set of outputs, and C is a set of commands, with I, O,
and C disjoint sets;

• γ : S × (I ∪O ∪ C)→ 2S is the nondeterministic21 state transition function.

The distinction between inputs and outputs is a main characteristics of input/output
automata. The intended meaning is that outputs are under the full control of the automaton,

20In most automata formalizations, the symbol τ is used to denote internal transitions, which are called
τ -transitions. In our representation, internal transitions are triggered by commands.

21Commands can be modeled with nondeterministic actions (see, e.g., the sense(door) command in Fig-
ure 5.21). One way to “move” the nondeterminism outside of the automaton is to send an output to another
automaton and wait for different kinds of inputs. However, this does not eliminate the need to reason about
nondeterminism because the automaton does not know a priori which input it will receive.



that is, the automaton can decide when and which output to send. In contrast, inputs are
not under its control. If and when they are received, which input is received from other
automata cannot be determined by the automaton receiving inputs. An automaton can
wait for the reception of an input, but whether it will receive it, and when it will receive it
is not under its control.

The automaton can determine when to perform an internal transition, that is, to execute
a command. However, notice that such transition can end up in different states. This allows
us to model the execution of commands that are sent to the execution platform without
knowing a priori the result of execution.

In simple cases like the one in Figure 5.20, the input/output automaton can be reduced
to a simple nondeterministic state transition system, simply by replacing the sequences of
outputs and inputs with a nondeterministic action, for instance, get-door-kind that leads
to three possible states. In this case, we can apply any of the techniques described in the
previous sections, either offline or online (e.g., determinization, symbolic model checking,
lookahead), to generate a policy or a context-dependent plan π that acts with deliberation.

The different possible evolutions of an input output automaton can be represented by
its set of possible runs.

Definition 5.26. (Run of input/output automaton) A run of an input/output au-
tomaton A = (S, S0, I, O,C, γ) is a sequence s0, a0, s1, a1, . . . such that s0 ∈ S0, ai ∈
I ∪O ∪ C, and si+1 ∈ γ(si, ai).

A run may be either finite or infinite.

5.8.2 Control Automata

An input/output automaton can behave in different ways depending on the inputs it re-
ceives. For instance, the automaton in Figure 5.20 opens the door either by pushing, pulling,
or sliding the door, on the basis of the input it receives. Some other system can get the in-
formation on how the door can be opened, for example, a different module of the robot with
sensing capabilities, or a software that can access a centralized database with information
about the doors in the building, or, in a truly distributed environment, a door equipped
with the ability to interact with the robot. Such information must be sent as an input to
the input/output automaton of the robot.

The idea therefore is to have a controller or control automaton, that is, an automaton
that interacts with input/output automata by reading their outputs and sending them
inputs in order to control them to reach some desired states.22 A control automaton Ac for
an input/output automaton A is an input/output automaton whose inputs are the outputs
of A and whose outputs are the inputs of A. Indeed, Ac controls A by interacting with A,
i.e., by receiving in inputs the outputs of A and sending outputs that are inputs of A.

Definition 5.27. (Control Automaton) Let A = (S, S0, I, O,C, γ) be an input/output
automaton. A control cutomaton forA is an input/output automatonAc = (Sc, S

0
c , O, I, Cc, γc).

Notice that in the definition the inputs I and the outputs O are exchanged in the two
automata A and Ac.

Example 5.28. Figure 5.21 shows a control automaton for the I/O automaton in Fig-
ure 5.20. Notice that the inputs and outputs of the automaton in Figure 5.21 are the
outputs and inputs of the automaton in Figure 5.20, respectively. The control automaton
receives a request about the door type (input door type), determines the door type with the

22We cannot control an input/output automaton with a policy because a policy cannot interact with the
automaton.
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Figure 5.21: Input/Output (I/O) automaton to control the robot I/O automaton.

command sense(door), and sends the proper input to the controlled automaton. The infor-
mation acquisition about the door type can be done in different ways. The nondeterministic
command sense(door) can activate a module of an “intelligent” door that replies to requests
by the method of the robot, or sense(door) can be a request to a centralized database that
may have a priori the information about the door, or sense(door) might activate a module
of the robot that has some perception capabilities.

5.8.3 Automated Synthesis of Control Automata

We can specify the control automata by hand by means of a proper programming language.
Controllers can be designed and implemented manually offline once for all. It is interest-
ing, however, to generate control automata automatically, either offline (at design time)
or at run-time. Indeed, such automated synthesis, when feasible, can provide important
advantages. In realistic cases, the manual specification of controllers can be difficult, time-
consuming, and error prone. Moreover, in most highly dynamic domains, it is difficult if not
impossible to predict all possible cases and implement a fixed controller that can deal with
all of them. Synthesis of controllers at run-time can provide a way to act with deliberation
taking into account the current situation and context.

In the rest of this section, we formalize the problem of generating a control automaton
that interacts with an input/output automaton A and satisfies some desired goal, represent-
ing the objective the controller has to reach. We will see that this problem can be solved
by planning in nondeterministic domains.

The synthesis problem has two inputs: the automaton A to be controlled and a goal
to be achieved. Indeed the control automaton, independently of whether it is defined
manually or synthesized automatically, is always thought with a goal in mind. For instance,
the automaton in Example 5.28 has been defined with the requirement in mind to open
the door in the right way. In the automaton in Figure 5.20, it means to end up in state
s9. Notice that such automaton just represents the nominal case. If it receives a wrong
input, for example, to pull a door that should be pushed, then the move command will fail.
Consider the following example.

Example 5.29. In Figure 5.22, a method of the robot checks whether it is close enough to
the door (command sensedistance) and sends outputs accordingly. If it is far, it can receive
the input either to wait or to move (state s3). Let us suppose the goal is to make the
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Figure 5.22: Input/output automaton for approaching a door.

automaton reach state s5. It is clear that a control automaton that receives the input far
from the automaton in Figure 5.22 and sends output wait does not satisfies the goal, while
the one that sends the sequence of outputs move and then grasp does.

Notice that we may have a control automaton that never makes the controlled automaton
reach state s5, or that do it only in one of the two cases in which the robot is close or far,
or that do it in both cases. All of this resembles the idea of unsafe and safe (cyclic and
acyclic) solutions.

The synthesis problem is therefore the problem of generating a control automaton Ac

that interacts with an input/output automaton A to satisfy some goal g. In this section,
we restrict to reachability goals.23 We define now the automaton describing the behaviors
of A when controlled by a control automaton Ac , that is, the controlled system Ac ▷A.

Definition 5.30. (Controlled System) Let A = (S, S0, I, O,C, γ) be an input/output
automaton. Let Ac = (Sc, S

0
c , , O, I, Cc, γc) be a control automaton for A. Let s, s′ ∈ S,

sc, s
′
c ∈ Sc, c ∈ C, and cc ∈ Cc. The controlled system Ac ▷ A, describing the behavior of

A when controlled by Ac, is defined as: Ac ▷A = (Sc × S, S0
c × S0, I, O,C▷, γ▷), where:

• ⟨s′c, s⟩ ∈ γ▷(⟨sc, s⟩, cc) if s′c ∈ γc(sc, cc),
• ⟨sc, s′⟩ ∈ γ▷(⟨sc, s⟩, c) if s′ ∈ γ(s, c),
• for any i ∈ I from Ac to A,
⟨s′c, s′⟩ ∈ γ▷(⟨sc, s⟩, i) if s′c ∈ γc(sc, i) and s′ ∈ γ(s, i),

• for any o ∈ O from A to Ac,
⟨s′c, s′⟩ ∈ γ▷(⟨sc, s⟩, o) if s′c ∈ γc(sc, o) and s′ ∈ γ(s, o).

The set of states of the controlled system are obtained by the Cartesian product of the
states of A and those of Ac. In Definition 5.30, the first two items specify that the states
of the controlled system evolve according to the internal evolutions due to the execution
of both commands of Ac (first item) and of commands of A (second item). The third and
fourth items regard the evolutions that depend on inputs and outputs. In this case, the
state of the controlled system ⟨sc, s⟩ evolves by taking into account the evolutions of both
A and Ac.

23Along the lines described in Chapter 2, goal g is a partial variable assignment to state variables
xi = vi, . . . , xk = vk, for each xi, . . . , xk ∈ X, with each of them having values in their range:
vi ∈ Range(xi), . . . , vk ∈ Range(xk).



A remark is in order. We need to rule out controllers that can get trapped in deadlocks.
In other words, we need to rule out the case in which an automaton sends outputs that
the other automaton is not able to receive. If an automaton sends an output, then the
other automaton must be able to consume it, either immediately or after executing internal
commands that lead to a state where the input is consumed. In other words, an automaton
A in a state s must be able to receive as one of its inputs i ∈ I the output o′ ∈ O′ of another
automaton A′, or for all the possible executions of commands c ∈ C of automaton A, there
exists a successor of s where o′ can be received as an input i.

Given this notion, we define intuitively the notion of a deadlock-free controller for a
controlled input/output automaton. It is a control automaton such that all of its outputs
can be received by the controlled automaton, and vice versa, all the outputs of the controlled
automaton can be received by the controller.24

Informally, the synthesis problem is the problem of generating a control automaton Ac

such that the controlled system Ac ▷ A satisfies a goal g, that is, we have to synthesize
Ac that interacts with A by making A reach some desired state. In other words, a control
automaton Ac is a solution for a goal g if its every run of the controlled system Ac▷A ends
up in a state where g holds.

Definition 5.31. (Satisfiability). Let g be a partial state variable assignment xi =
vi, . . . , xk = vk, for each xi, . . . , xk ∈ X, and each vi ∈ Range(xi), . . . , vk ∈ Range(xk). Let
A be an input/output automaton. A satisfies g, denoted with A |= g, if

• there exists no infinite run25 of A, and

• every final state s of A satisfies g.

We can now define when a control automaton is a solution for an input/output automa-
ton with respect to a goal, that is, when it controls the automaton satisfying our desired
requirement.

Definition 5.32. (Solution Control Automaton). A control automaton Ac is a
solution for the goal g and an input/output automaton A, if the controlled system Ac▷A |= g
and Ac is a deadlock-free controller for A.

5.8.4 Synthesis of Control Automata by Planning

In the following, we discuss informally how the problem of the automated synthesis of a
controller can be solved by planning with nondeterministic domain models.

Consider the automaton in Figure 5.22. We want to generate a controller Ac with
the goal that the controlled automaton A reaches state s5. In order to map the synthesis
problem to a planning problem, we must consider the fact that A models a domain that
may be only partially observable by Ac. That is, at execution time, Ac generally has no way
to find out what A’s current state is,26 For instance, if A is the input/output automaton
for approaching the door in Figure 5.22, a controller Ac that interacts with A has no access
to the values of A’s internal variables, and can only deduce their values from the messages
it receives. Ac cannot know whether or not A has executed the command sensedistance in
Figure 5.22, that is, whether A is still in state s0 (the state before executing the command)
or in one of s1 or s2, the two states after the command has been executed. This uncertainty
disappears only when one of the two outputs (far or close) is sent by A and received by the
controller Ac.

24See Exercise 5.12.
25See Definition 5.26 for the definition of run of an automaton
26There might be applications in which the controller Ac might have access to the state of the controlled

automaton A. However, in general, the advantage of a representation based on input/output automata is
to hide or abstract away the details of the internal operations.
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Figure 5.23: Abstracted system for the I/O automaton in Figure 5.22.

We take into account this uncertainty by considering evolutions of the controlled system
Ac ▷ A in terms of sets of states rather than states, each of them containing all the states
where the controlled system could be. We have therefore to deal with sets of states rather
than single states. This is a way to deal with partial observability while still making use of
algorithms that work in fully observable domains (see the discussion and historical remark
section of this chapter, Section 5.9).

The initial set of states is updated whenever A performs an observable input or output
transition. If B ⊆ S is the current set of states and an action io ∈ I ∪ O is observed,
then the new set B′ = evolve(B, io) is defined as follows: s ∈ evolve(B, io) if and only if,
there is some state s′ reachable from B by performing a sequence of commands, such that
s ∈ γ(s′, io). That is, in defining evolve(B, io), we first consider every evolution of states in
B by the commands in C, and then, from every state reachable in this way, their evolution
caused by io.

Under the assumption that the execution of commands terminate, that is, that com-
mands cannot be trapped in loops, we can define an Abstracted System whose states are
sets of states of the automaton and whose evolutions are over sets of states.

Definition 5.33. (Abstracted System) Let A = (S, S0, I, O,C, γ) be an automaton.
The corresponding abstracted system is ΣB = (SB, S

0
B, I, O, γB), where:

• SB are the sets of states of A reachable from the set of possible initial states S0,

• S0
B = {S0},

• if evolve(B, a) = B′ ̸= ∅ for some a ∈ I ∪O, then B′ ∈ γB(B, a).

An abstracted system is an input/output automaton with a single initial state and no com-
mands. To define a synthesis problem in terms of a planning problem in nondeterministic
domains, we need to transform an automaton A = (S, S0, I, O,C, γ) into a nondeterministic
domain D. To do this transformation, we first transform the automaton into its correspond-
ing abstracted system. This is necessary to handle partial observability and apply the plan
generation algorithms we have defined in this chapter for fully observable nondeterministic
domain models.

Example 5.34. In Figure 5.23, we show the abstracted system for the controlled automaton
in Figure 5.22. States s0, s1, and s2 generate the set of states B1 = {s0, s1, s2} because there
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Figure 5.24: Nondeterministic planning domain for the I/O automaton in Figure 5.22.

is no way for the controller to distinguish them until it receives either input far or input
close by the controlled automaton. We have B3 = {s3}, B4 = {s4}, and B5 = {s5}.

Given the generated abstracted system, output actions of the controlled automaton
are those that cause nondeterminism. We therefore move output actions from transitions
into the states of the domain and replace output transitions with nondeterministic internal
transitions.

Example 5.35. In Figure 5.24, we show the nondeterministic planning domain for the
automaton in Figure 5.23. We have moved the output far in state B3 and the output
close in state B4, and transformed the two (deterministic) output transitions into one
nondeterministic internal transition. Now we have a nondeterministic planning domain
as defined in Section 5.2: Σ = (S,A, γ), with states S = {B1, B3, B4, B5}, and actions
A = {farclose,wait,move, grasp}, where farclose is nondeterministic. The policy

π(B1) = farclose
π(B3) = move
π(B4) = grasp

is a safe acyclic solution for the planning problem P = (Σ, B1, B5), where B1 is the initial
state and B5 is the goal state. From π we can easily construct the control automaton Ac

that controls A in Figure 5.22 and satisfies the reachability goal s5.

The synthesis problem can thus be solved by generating a nondeterministic domain
and by planning for a safe, possibly acyclic, solution (see Definitions 5.8 and 5.11) by
generating a policy π that is guaranteed to reach the goal independently of the outcomes
of nondeterministic actions that are due to commands and output actions of automata A.

This means that we can automate the synthesis by using algorithms that we have il-
lustrated in this chapter for planning with nondeterministic domain models and that can
find safe (acyclic) solutions, for example, planning with And/Or search (see Section 5.3)
planning by symbolic model checking (see Section 5.4), and planning by determinization
(see Section 5.5).

5.8.5 Acting by Interacting with Multiple Automata

In the previous section, we did not exploit the real advantage of the distributed and asyn-
chronous nature of input/output automata. Indeed, Example 5.24 may include two in-
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Figure 5.25: Robot and door interacting input/output automata.

put/output automata, one for the method of the robot and one for the door. The two
automata interact by sending/receiving inputs/outputs, and this interaction must be con-
trolled at the acting level. The main characteristic of a model based on input/output
automata is that a complex model can be obtained as the “composition” of much simpler
components, thus providing the following advantages:

• the ability to simplify the design process, starting from simple components whose
composition defines a model of a complex system;

• the ability to model distributed domains naturally, that is, domains where we have
different components with their own behaviors;

• the ability to model naturally dynamic environments when different components join
or leave the environment;

• the composition of different components can be localized, that is, each component can
get composed only with the components that it needs to interact with, thus simplifying
significantly the design task, and

• for each component, we can specify how other components need to interact with the
component itself, abstracting away the details of their internal operations.

We continue with our example of opening a door, but we reduce the tasks that can be
performed by the robot while we enrich the autonomy capabilities of the doors. Consider
indeed two active devices that interact with the environment, a navigation robot able to
move but without any manipulation capabilities, and an active door, which is able to open
and close itself on request. This scenario is presented in Example 5.36

Example 5.36. In Figure 5.25, the door and the robot are modeled as two input/output
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automata. The door receives a request to open (the input I-open). It then activates its
engines to open (the command cmd-open). The command may either succeed or fail, and the
door sends outputs accordingly (O-succes-open or O-fail-open). If the command succeeds,
then the door waits for two possible inputs, one indicating that the door can be closed
(because, e.g., the robot passed successfully), that is, the input I-done, or that there is a
problem and the door should stop with failure, that is, I-cancel. The robot has a similar
input/output automaton: it waits for an input to move (I-move), then it moves (cmd-move).
If the operation succeeds, then it waits for an input stating either that everything is fine (I-
done) and it can stop (cmd-stop) or that a failure from the environment occurred (I-cancel).

Notice that with this model, the robot and any other actor in the environment do
not even need to know whether the door is a sliding door or a door that can be opened by
pulling/pushing, because this is hidden in the command cmd-open of the door input/output
automaton. This abstraction mechanism is one of the advantages of a model based on
multiple input/output automata.

Synthesis of Controllers of Multiple Automata

Given a model with two or more input/output automata, we generalize the idea presented
for controlling a single automaton, that is, synthesize a controller, represented by a plan π
(see Definition 5.20) that interacts with the different input/output automata and satisfies
some goal. Consider the following example.

Example 5.37. Figure 5.26 shows an input/output automaton representing a controller
that makes the robot and the door interact in a proper way. It requests that the door open,
and if the request succeeds, it then requests the robot to move. If the moving operation
also succeeds, it then asks the door and the robot to finish the job, that is, the robot should
stop and the door should close.

In the rest of this section, we formalize the problem of generating a controller represented
by a plan π that interacts with a set of input/output automata A1, . . . , An and satisfies some
desired goal. The problem has two inputs:

• A finite set of automata A1, . . . , An. This set can be dynamic and can be determined
at run-time. It can be a representation of the current methods for the tasks to be
performed.

• A requirement g that is defined as a partial state variable assignment in the acting
state space of each automaton Ai: xi = vi, . . . , xk = vk, for each xi, . . . , xk ∈ X, and
each vi ∈ Range(xi), . . . , vk ∈ Range(xk). The requirement can be either given at
design time, or it can be generated at run time (see Section 7.2)



Informally, we want to generate a controller Ac that interacts with A1, . . . , An in such a way
to make the automata A1, . . . , An to reach some states where the requirement g is satisfied.
We introduce first the product of the automata A1, . . . , An:

A∥ = A1∥ . . . ∥An

Such product is a representation of all the possible evolutions of automata A1, . . . , An,
without any control by Ac.

We formally define the product of two automata A1 and A2, which models the fact that
the two automata may evolve independently. In the following definition, we assume that
the two automata do not send messages to each other, that is, the inputs of A1 cannot be
outputs of A2 and vice versa. This is a reasonable assumption in our case, where we suppose
that each available automaton A1, . . . , An interacts only with the controller Ac that we have
to generate. The assumption can, however, be dropped by modifying in a suitable way the
definition of product.

Definition 5.38. (Product of Input/Output Automata) LetA1 = (S1, S
0
1 , I1, O1, C1, γ1)

and A2 = (S2, S
0
2 , I2, O2, C2, γ2) be two automata with (I1 ∪O1 ∪C1)∩ (I1 ∪O1 ∪C1) = ∅.

The product of A1 and A2 is A1∥A2 = (S, S0, I1 ∪ I2, O1 ∪O2, C1 ∪ C2, γ), where:

• S = S1 × S2,
• S0 = S0

1 × S0
2 ,

• ⟨s′1, s2⟩ ∈ γ(⟨s1, s2⟩, a) if γ1(s1, a) = s′1, and

• ⟨s1, s′2⟩ ∈ γ(⟨s1, s2⟩, a) if γ2(s2, a) = s′2

The automaton A∥ = A1∥ . . . ∥An represents all the possible ways in which automata
A1, . . . , An can evolve without any control. We can therefore define the automaton describ-
ing the behaviors of A∥ when controlled by a controller Ac that interacts with A1, . . . , An,
that is, the controlled system Ac ▷A∥, simply by recasting the definition of controlled sys-
tem (see Definition 5.30) by replacing the single automaton A with A∥. We can therefore
apply all the considerations, definitions, and algorithms that we have discussed for the case
of a single automaton.

5.9 Discussion and Historical Remarks

5.9.1 Comparison among Different Approachess

The main advantage of determinization techniques with respect to other approaches is the
possibility of exploiting fast algorithms for finding solutions that are not guaranteed to
achieve the goal but just may lead to the goal, that is, unsafe solutions. Indeed, finding an
unsafe solution in Σ can be done by finding a sequential plan in Σd. Then the sequence of
actions can be easily transformed into a policy. Fast classical planners can then be used to
find efficiently a solution which is unsafe for the nondeterministic model. Determinization
techniques tend to work effectively when nondeterminism is limited and localized, whereas
their performances can decrease when nondeterminism is high (many possible different
outcomes of several actions) and in the case nondeterminism cannot be easily reconducted
to exceptions of the nominal case. For these reasons, several techniques have been proposed
to improve the performances when there is a high level of nondeterminisms, from conjunctive
abstraction (a technique to compress states in a similar way to symbolic model checking)
to techniques that exploit state relevance (see Section 5.9.2). With such improvements,
determinization techniques have been proven to be competitive with, and in certain cases
to outperform, both techniques based on And/Or search and techniques based on symbolic
model checking. Finally, determinization techniques have mainly focused until now on safe
cyclic planning and extensions to safe acyclic planning.



The basic idea underlying symbolic model checking techniques is to work on sets. Rou-
tines for symbolic model checking work on sets of states and on transitions from sets of
states through sets of actions, rather than on single states and single state transitions. Also
policies are computed and managed as sets of state-action pairs.

The symbolic model checking approach is indeed advantageous when we have a high
degree of nondeterminism, that is, the set of initial states is large and several actions
have many possibly different outcomes. Indeed, in these cases, dealing with a large set of
initial states or a large set of outcomes of an action may have even a simpler and more
compact symbolic representation than a small set. The symbolic approach may instead
be outperformed by other techniques, for example, determinization techniques, when the
degree of uncertainty is lower, for example, in the initial state or in the action outcomes.

Online approaches are effective techniques to deal with large state spaces and highly
dynamic environments. In non-safely explorable domains, both MinMax LRTA* and FS-
Replan can be trapped in (indirect) dead ends and are not guaranteed to terminate. The
work in [62] describes how to generate a partial plan and interleave planning and acting in
partially observable nondeterministic domains by symbolic model checking. Even though
it is in general impossible to guarantee that a goal state will be reached, such approach
guarantees that the planning/acting loop always terminates: either the goal is reached or
it is recognized that a state has been reached from which there is no chance to find a safe
acyclic solution, and the loop terminates.

5.9.2 Historical Remarks

Nondeterministic domain models are considered unavoidable in several areas of research.
Some examples include computer-aided verification, model checking, control theory, and
game theory.

For planning in nondeterministic domains, domains, some important characteristics of
the domain include:

• The degree of observability: null observability (which is called conformant planning),
and either full or partial observability (the case of contingent or conditional planning).

• the kind of goals: reachability goals, and (temporally) extended goals.

Various techniques have been devised to deal with these domain characteristics. The idea
of planning in nondeterministic domains was first addressed in the 1980s. The first at-
tempts to deal with nondeterminism were based on some pioneering work on conditional
planning by Warren [594], Peot and Smith [472], Pryor and Collins [494]. This work was
based on extensions to plan-space planning by extending classical planning operators (see
Section 2.7.1) to have several mutually exclusive sets of outcomes.

More recently, techniques that were originally devised for classical planning in determin-
istic domains have been extended to deal with nondeterministic domains. Planning graph
techniques [73] have been extended to deal with conformant planning [546] and some limited
form of partial observability [598]. Planning as satisfiability [321] has been extended to deal
with nondeterministic domains in [107, 106, 192, 233].

Different approaches have addressed the problem of planning with nondeterministic
models in a theorem proving setting, such as techniques based on situation calculus [197]
and the Golog Language [377, 415], which have also been devised for the conformant plan-
ning problem. Planning based on Quantified Boolean Formulas (QBF) (see Section 5.4.2)
has addressed the problem of conformant planning and contingent planning under partial
observability [509, 512, 511]. According to this approach, a bounded planning problem,
that is, a planning problem where the search is restricted to plans of maximum length n,
is reformulated as a QBF formula. QBF formulas are not encoded with BDDs as in Sec-
tion 5.4, instead a QBF solver is used to generate a plan. This approach can tackle several
different conditional planning problems. In QBF planning, like in planning as satisfiability,



it is impossible to decide the nonexistence of a solution plan.

The idea of planning by using explicit state model checking techniques has been around
since the work by Kabanza [303] and SimPlan, a planner that addresses the problem of
planning under full observability for temporally extended goals expressed in (an extension
of) Linear Temporal Logic (LTL) [177]. The idea of planning as model checking was first
introduced in [116, 235]. Planning for safe acyclic solutions was first proposed in [122], and
planning for safe cyclic solutions was first proposed in [121] and then revised in [135]. A full
formal account and an extensive experimental evaluation of the symbolic model checking
approach has been presented in [120]. The framework has been extended to deal with partial
observability [60] and with extended goals [482, 480, 134]. [529] extended the approach to
deal with preferences. All the results described in the works cited have been implemented
in the Model Based Planner (MBP) [58].

There have been various proposals along this line. The work by Jensen and Veloso [296]
exploits the idea of planning via symbolic model checking as a starting point for the work on
the UMOP planner. Jensen and Veloso have extended the framework to deal with contingent
events in their proposal for adversarial planning [298]. They have also provided a novel
algorithm for strong (safe acyclic) and strong cyclic (safe cyclic) planning which performs
heuristic based guided OBDD-based search for nondeterministic domains [297]. Kissmann et
al. [330] proposed a symbolic planner based on BDDs for safe cyclic and acyclic solutions.
The planner is based on a translation of the nondeterministic planning problem into a
two-player game, where actions can be selected by the planner and by the environment.
The Yoyo planner [361, 362] does hierarchical planning in nondeterministic domains by
combining an HTN-based mechanism for constraining the search and a Binary Decision
Diagram (BDD) representation for reasoning about sets of states and state transitions.

BDDs have also been exploited in classical planners (see [568] for one of the first reports
about BDD-based planners for classical planning in deterministic domains). Among them,
MIPS encodes PDDL planning problems into BDDs, see [169, 170] and showed remarkable
results in the AIPS’00 planning competition for deterministic planning domains as well as in
the ICAPS’14 planning competition [172]. More recently, techniques based on BDDs have
proved very competitive for classical planning, see, for example, [167, 171]. For a recent
survey, see [173]. The performance of planners that make use of BDDs may depend heavily
on the choice of variable ordering (see Section 5.4.5). A state-variable representation can
be of help in the choice of the variable ordering, mainly for two reasons: it can reduce the
number of variables required in the BDD encoding and can lead to a variable ordering where
closely related propositions are grouped together, which is critical to good performance of
BDD exploration.

Other approaches are related to model checking techniques. Bacchus and Kabanza [27]
use explicit-state model checking to embed control strategies expressed in LTL in TLPlan.
The work of Robert Goldman and David Musliner [239, 238, 240] presents a method where
model checking with timed automata is used to verify that generated plans meet timing
constraints.

Recent work on planning for cyclic safe solutions in fully observable nondeterminis-
tic domains (FOND) has focused on determinization techniques. This approach was first
proposed in [363] with the NDP planner. A complete formal account and extensive exper-
imental evaluation is presented in [9]. The new planner NDP2 finds cyclic safe solutions
(strong-cyclic solutions) by using a classical planner (FF). NDP2 makes use of a procedure
that rewrites the original planning problem to an abstract planning problem, thus improving
performances. NDP2 is compared with the MBP planner. The work in [9] shows how the
performances of the two planners depend on the amount of nondeterminism in the planning
domain, how the NPD2 can use effectively its abstraction mechanisms, and whether the
domain contains dead ends.

A lot of interesting work has been proposed along the lines of NDP. The work in [404]
proposes a planner based on the And/Or search algorithm LAO* and the pattern database



heuristics to guide LAO* toward goal states. In [208], the FIP planner builds on the
idea of NDP and shows how such technique can solve all of the problems presented in the
international planning competition in 2008. Furthermore, FIP improves its performance by
avoiding reexploration of states that have been already encountered during the search (this
idea is called state reuse). The work in [434], implemented in the PRP planner, devises a
technique to focus on relevant aspects of states for generating safe cyclic solutions. Such
technique manages to improve significantly the performance of the planner. Another study
[433] extends the work to conditional effects.

In [504, 138], the synthesis of controllers from a set of components is accomplished by
planning for safe acyclic solutions through model checking techniques. The work in [505]
combines symbolic model-checking techniques and forward heuristic search.

Bonet and Geffner [80, 81, 84] have introduced the idea of planning in belief space
(i.e., the space of sets of states) using heuristic forward search. Brafman and Hoffman [95]
address the conformant planning problem by using SAT to reason about the effects of an
action sequence and heuristic search based on FF relaxation techniques [279]. They extend
the technique to deal with contingent planning in [278]. Partially observable contingent
planning is further addressed in [398], a work that interleaves conformant planning with
sensing actions and uses a landmark-based heuristic for selecting the next sensing action,
together with a projection method that uses classical planning to solve the intermediate
conformant planning problems. Another work [88] studies the complexity of belief tracking
for planning with sensing both in the case of deterministic actions and uncertainty in the
initial state as well as in the case of nondeterminstic actions.

A notable work on interleaving planning and execution in nondeterministic domains is
presented in [343, 342, 341]. These authors propose different techniques based on real-time
heuristic search. Such algorithms are based on distance heuristics in the search space. [341]
proposes the MinMax Learning Real Time A* presented in this chapter (see Algorithm 5.16):
the learning mechanism can be amortized over several planning runs. On one hand, these
techniques allow for dealing with large planning domains that cannot be addressed by offline
algorithms. On the other hand, they work on the assumption of “safely explorable” domains,
that is, domains that do not contain dead ends.

FS-Replan can be the basis for extensions in probabilistic planning that take into ac-
count probability distributions, see Chapter 6, algorithm RFF. Vice versa, some algorithms
devised for probabilistic planning can be used in nondeterministic domains without taking
into account the probabilistic distribution. This is the case of algorithms based on sparse
sampling lookahead (see Chapter 6, algorithm SLATE).

The work in [62] proposes a different technique based on symbolic model checking for
partially observable domains, which guarantees termination in non-safely-explorable do-
mains, still not guaranteeing to reach the goal in the unlucky case a dead end is reached.
The FS-Replan Algorithm presented in this chapter is based on the FF-Replan algorithm
presented in [617].

The work in [530] focuses on fully observable domains and shows a technique that is able
to interleave planning and execution in a very general and efficient way by using symbolic
model checking techniques and by expressing goals that contain procedural statements
(executable actions and plans) and declarative goals (formulas over state variables).

The techniques presented in this chapter for planning with input/output automata are
based on the work on planning with asynchronous processes, which have has been first
proposed in [484] and then formalized and extensively evaluated in [63]. Such techniques
have been extended to deal with service oriented applications in [100], and the related
work on adaptation inspired by a Harbor Operation Management (HOM) facility for the
sea port of Bremen, Germany, originally presented in [75, 100]. Techniques for planning
in nondeterministic domain models have been used to interleave reasoning about processes
and ontology reasoning [481].

The technique for the synthesis of controllers presented in this chapter shares some ideas



with work on the automata-based synthesis of controllers (see, e.g., [486, 487, 488, 574, 323,
357, 358, 573]).

In Section 5.8.4 we dealt with the problem of planning under partial observability by
encoding in different states the different possible values of variables that cannot be observed.
Work in planning under partial observability has been done in the framework of planning
via symbolic model checking [61, 62, 59], real-time heuristic search [341, 343], and heuristic
search [398].

5.10 Exercises

5.1. Can all (memoryless) policies be written as contingent plans, that is, plans with con-
ditional tests? Vice versa? Explain the answer with some examples.

5.2. Consider Figure 5.27.

Figure 5.27: A nondeterministic state-transition system.

(a) Give an example of an unsafe solution π1, a cyclic safe solution π2 and an acyclic
safe solution π3 to the problem of moving from s1 to s5, if one exists. Draw their
reachability graphs, circling the leaves.

(b) Suppose the initial state was s2 instead of s1. Are π1, π2, and π3 solutions? If so,
what kinds?

5.3. Prove that a policy π is an unsafe solution iff ∃s ∈ leaves(s0, π) | s ̸∈ Sg ∨ ∃s ∈
γ̂(s0, π) | leaves(s, π) = ∅

5.4. Consider Definition 5.10 and Definition 5.11. Write definitions of safe cyclic and acyclic
solutions that reach the goal and then continue looping inside the set of goal states, and
definitions of solutions that traverse infinitely often the set of goal states. More formally,
write definitions of safe cyclic and acyclic solutions π such that PerformPolicy(π) (see the
acting procedure in Algorithm 5.1) reaches the goal and then loops forever with the condition
that PerformPolicy(π) is guaranteed to loop inside the set of goal states. Write the same
definition but with the condition that PerformPolicy(π) is guaranteed to traverse the set of
goal states infinitely many often.

5.5. Provide a definition of a “worst-case optimal” safe acyclic solution, that is, a solution
that results in a path with the minimal longest distance from the goal. Rewrite algorithms



Objects: B = Items ∪ Machines ∪ Booleans ∪ Statuses ∪ Availability 
Items = {dishes, clothes},  
Machines = {dw,cw} (i.e., dishwasher and clothes washer),  
Booleans = {T, F},               
Statuses = {ready, filling, running},  
Availability = {free, inuse} 
 

State variables (where i ∈ Items and m ∈ Machines): 
clean(i) ∈ Booleans,  status(m) ∈ Statuses,  water ∈ Availability 
 

Initial state and goal: 
s0 = {clean(dishes)=F, clean(clothes)=F, loc(dishes)=dw, loc(clothes)=cw, 	

		status(dw)=ready, status(cw)=ready, water=free} 
g = {clean(dishes)=T, clean(clothes)=T} 
 

Action templates (where i ∈ Items and m ∈ Machines): 
run(m) 

Pre: status(m)=filling	
Eff: status(m)=running, water=free	

finish(m,i) 
Pre: status(m)=running,	loc(i)=m 
Eff: status(m)=ready, clean(i)=T	

start(m) 
Pre: status(m)=ready, water=free	
Eff: status(m)=filling, water=inuse	

Figure 5.28: A planning domain in which there are two devices that use water: a washing
machine and a dishwasher. Because of water pressure problems, only one device can use
water at a time.

for finding safe acyclic solutions (see Algorithm 5.4) by replacing the nondeterministic choice
and guaranteeing that the solution is worst-case optimal.

5.6. Write a deterministic algorithm for Find-Safe-Solution and Find-Acyclic-Solution, see
Algorithm 5.3 and Algorithm 5.4.

5.7. Figure 5.28 is a domain model for a washing problem. To make the domain non-
deterministic, suppose we assume that sometimes the start action may either succeed
or fail. If it fails, it will not change the state. The run and finish actions are guar-
anteed to succeed. Also, say that the set of goal states Sg are all the states where
{clean(clothes)=T, clean(dishes)=T} are satisfied.

(a) Draw the state-transition system. (Hint: It can be rather large. To make it easier to
draw, do not give names to the states, and use abbreviated names for actions.)

(b) Trace the execution of Find-Solution on this problem by drawing the And/Or search
tree. The nondeterministic choices are left to the reader.

(c) Do the same for Find-Safe-Solution.

(d) Suppose A and Ad represent the set of actions in the nondeterministic model and the
determinized model, respectively. Compute |A| and |Ad|.

(e) Write down a plan πd from the initial state to a goal state using the determinized
model.



(f) Let us suppose that πd is returned by the first call to Forward-search in FS-Replan. Fur-
thermore, suppose that the second start action in πd fails during execution.27 Explain
what FS-Replan does at this point.

5.8. Prove that an acyclic safe solution π to the problem P = (Σ, s0, Sg) satisfies the
condition

(∀s ∈ γ̂(s0, π)(leaves(s, π) ∩ Sg ̸= ∅)) ⇐⇒ leaves(s0, π) ⊆ Sg.

5.9. Notice that Find-Acyclic-Solution-by-MinMax ignores the possibility of multiple paths
to the same state. If it comes to a state s again along a different path, it does exactly the
same search below s that it did before. Modify Find-Acyclic-Solution-by-MinMax such that
it avoids reperforming the same search in already visited states by storing remembering the
already visited states and storing the obtained solutions.

5.10. Determinization techniques rely on a transformation of nondeterministic actions into
a sets of deterministic actions. Write a definition of a procedure to transform a nondeter-
ministic domain into a deterministic one. Notice that this operation is complicated by the
fact that we have to take into account that in different states, the same action can lead to a
set of different states. Therefore, if the set of states has exponential size with respect to the
number of state variables, then this operation would generate exponentially many actions.

5.11. The algorithm for planning for safe solutions by symbolic model checking presented in
this chapter (see Algorithm 5.7) can find either safe cyclic or safe acyclic solutions. Modify
the algorithm such that it finds a safe acyclic solution, and only if one does not exist, does
it search for a safe cyclic solution.

5.12. Consider the definition of controlled system: Definition 5.30. A control automaton
Ac may be not adequate to control an automaton A∥. Indeed, we need to guarantee that,
whenever Ac sends an output, A∥ is able to receive it as an input, and vice versa. A
controller that satisfies such condition is called a deadlock-free controller. Provide a formal
definition of a deadlock-free controller. Suggestion: see the paper [484] where automata are
defined without commands but with τ -actions.

27There should be two start actions, one each for dishwasher and clothes washer. Assume that the second
one fails.



Chapter 6

Deliberation with Probabilistic
Models

In this chapter, we explore various approaches for using probabilistic models to handle
the uncertainty and nondeterminism in planning and acting problems. These approaches
are mostly based on dynamic programming optimization methods for Markov decision pro-
cesses. We explain the basic principles and develop heuristic search algorithms for stochastic
shortest-path problems. We also propose several sampling algorithms for online probabilis-
tic planning and discuss how to augment with probabilistic models refinement methods for
acting. The chapter also discusses the critical issue of specifying a domain with probabilistic
models.

Our motivations for using probabilistic models, and our main assumptions, are briefly
introduced next. Section 6.2 defines stochastic shortest-path problems and basic approaches
for solving them. Different heuristic search algorithms for these problems are presented and
analyzed in Section 6.3. Online probabilistic planning approaches are covered in Section 6.4.
Refinement methods for acting with probabilistic models are presented in Section 6.5. Sec-
tions 6.6 and 6.7 are devoted to factored representations and domain modeling issues with
probabilistic models, respectively. The main references are given in the discussion and
historical remarks Section 6.8. The chapter ends with exercises.

6.1 Introduction

Some of the motivations for deliberation with probabilistic models are similar to those intro-
duced in Chapter 5 for addressing nondeterminism: the future is never entirely predictable,
models are necessarily incomplete, and, even in predictable environments, complete de-
terministic models are often too complex and costly to develop. In addition, probabilistic
planning considers that the possible outcomes of an action are not equally likely. Sometimes,
one is able to estimate the likelihood of each outcome, relying for example on statistics of
past observations. Probabilistic planning addresses those cases in which it is desirable to
seek plans optimized with respect to the estimated likelihood of the effects of their actions.

The usual formal model of probabilistic planning is that of Markov decision processes
(MDPs). An MDP is a nondeterministic state-transition system together with a probability
distribution and a cost distribution. The probability distribution defines how likely it is to
get to a state s′ when an action a is performed in a state s.

A probabilistic state-transition system is said to be Markovian if the probability distri-
bution of the next state depends only on the current state and not on the sequence of states
that preceded it. Moreover, the system is said to be stationary when the probability distri-
butions remain invariant over time. Markovian and stationary properties are not intrinsic
features of the world but are properties of its model. It is possible to take into account
dependence on the past within a Markovian description by defining a “state” that includes
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the current configuration of the world, as well as some information about how the system
has reached that configuration. For example, if the past two values of a state variable xt
are significant for characterizing future states, one extends the description of the “current”
state with two additional state variables xt−1 and xt−2. One may also add ad hoc state
variables to handle dependence on time within a stationary model.

We restrict ourselves to stationary Markovian systems. We focus this chapter on stochas-
tic shortest-path problems (SSPs). SSPs generalize the familiar shortest-path problems in
graphs to probabilistic And/Or graphs. SSPs are quite natural for expressing probabilistic
planning problems. They are also more general than MDP models.

6.2 Stochastic Shortest-Path Problems

This section introduces the main definitions, concepts and techniques needed for addressing
probabilistic planning and acting problems.

6.2.1 Main Definitions

Definition 6.1. A probabilistic planning domain is a tuple Σ = (S,A, γ,Pr, cost) where:

• S and A are finite sets of states and actions, respectively;

• γ : S × A → 2S is the state transition function; it corresponds to the following
stationary Markovian probability distribution;

• Pr(s′|s, a) is the probability of reaching s′ ∈ γ(s, a) when action a takes place in s; it
is such that Pr(s′|s, a) ̸= 0 if and only if s′ ∈ γ(s, a); and

• cost : S ×A→ R+ is a cost function: cost(s, a) is the cost of a in s.

We follow the notation introduced in Section 5.2.3:1

• A policy is a function π : S′ → A, with S′ ⊆ S, such that for every s ∈ S′, π(s) ∈
Applicable(s). Thus Dom(π) = S′.

• γ̂(s, π) is the set composed of s and all its descendants reachable by π, that is, the
transitive closure of γ with π.

• Graph(s, π) is the graph induced by π whose nodes are the set of states γ̂(s, π). It is
a cyclic graph rooted at s.

• leaves(s, π) is the set of tip states in this graph, that is, states in γ̂(s, π) that are not
in the domain of π, and hence have no successors with π.

Definition 6.2. A stochastic shortest-path (SSP) problem for the planning domain Σ is a
triple (Σ, s0, Sg), where s0 ∈ S is the initial state and Sg ⊆ S is a set of goal states.

Definition 6.3. A solution to the SSP problem (Σ, s0, Sg) is a policy π : S′ → A such that
s0 ∈ S′ and leaves(s0, π) ∩ Sg ̸= ∅. The solution is said to be closed if and only if every
state reachable from s0 by π is either in the domain of π, is a goal or has no applicable
actions, that is, ∀s ∈ γ̂(s0, π), (s ∈ Dom(π)) ∨ (s ∈ Sg) ∨Applicable(s) = ∅.

In other words, a closed solution π must provide applicable actions, if there are any, to
s0 and to its all descendants reachable by π, and have at least one path in Graph(s0, π) that
reaches a goal state. Note that π is a partial function, not necessarily defined everywhere
in S (Dom(π) ⊆ S). We are chiefly interested in closed partial policies, which are defined
over the entire γ̂(s0, π), except at goal states and states that have no applicable action. As
usual in planning, goals are considered to be terminal states requiring no further action.

1To remain consistent with Chapter 5, we depart slightly from the classical definitions and notations of
the MDP planning literature; differences are discussed in Section 6.8.



Example 6.4. Here is a simple example, inspired from casino coin machines called one-
armed bandits. This domain has three state variables x, y, and z, ranging over the set
{a, b, c}. The domain has nine states: {x = a, y = a, z = a} . . . {x = c, y = c, z = c},
which are abbreviated as S = {(aaa), (aab), . . . , (ccc)}. There are three actions: pull left,
pull right, and pull both arms simultaneously, denoted respectively Left, Right, and Both.
If the three state variables are distinct, then the three actions are applicable. If x ̸= y = z,
only Left is applicable. If x = y ̸= z, only Right is applicable. If x = z ̸= y, only Both is
applicable. Finally, when the three variables are equal no action is applicable. Here is a
possible specification of Left (each outcome is prefixed by its corresponding probability):

Left:
pre: (x ̸= y)
eff: (13): {x← a}

(13): {x← b}
(13): {x← c}

Similarly, when applicable, Right randomly changes z; Both randomly changes y. We assume
these changes to be uniformly distributed. Figure 6.1 gives part of the state space of
this domain corresponding to the problem of going from s0 = (abc) to a goal state in
Sg = {(bbb), (ccc)}. Note that every action in this domain may possibly leave the state
unchanged, that is, ∀s, a, s ∈ γ(s, a). Note also that the state space of this domain is not
fully connected: once two variables are made equal, there is no action to change them.
Consequently, states (acb), (bac), (bca), (cab) and (cba) are not reachable from (abc).

2

(abc)

(bbc) (cbc) (aac)(acc) (aba) (abb)

(bba) (cac)

(ccc) (aaa)

(aab)(bcc) (aca) (cbb)

(bbb)

Left
Both

Right

Right

Right

Right

Right

Left

Left

Left

Left

Both

Both

Both

Both

Figure 6.1: Part of the state space for the problem in Example 6.4.

A solution to the problem in Figure 6.2 is, for instance,

π(abc) = Left, π(bbc) = π(bba) = Right, π(cbc) = π(cac) = Both.

Here, π is defined over Dom(π) = {s0, (bbc), (cbc), (bba), (cac)}, and γ̂(s0, π) = Dom(π) ∪ Sg.
Figure 6.2 gives the Graph(s0, π) for that solution.
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(abc)

(bbc) (cbc)

(bba) (cac)

(ccc)(bbb)

Left

Right

Right

Both

Both

Figure 6.2: A safe solution for Example 6.4 and its Graph(s0, π).

6.2.2 Safe and Unsafe Policies

Let π be a solution to the problem (Σ, s0, Sg). For the rest of this chapter we require all
solutions to be closed. Algorithm 6.1 is a simple procedure for acting with a policy π, by
performing in each state s the action given by π(s) until reaching a goal or a state that has
no applicable action.2

Run-Policy(Σ, s0, Sg, π)
s← s0
while s /∈ Sg and Applicable(s) ̸= ∅ do

perform action π(s)
s← observe resulting state

Algorithm 6.1: A simple procedure to run a policy.

Let σ = ⟨s0, s1, . . . , sh⟩ be a sequence of states followed by this procedure in some
run of policy π that reaches a goal, that is, sh ∈ Sg. σ is called a history ; it is a path
in Graph(s0, π) from s0 to Sg. For a given π there can be an exponential number of
such histories. The cost of σ is the total sum of the cost of actions along the history
σ, that is: cost(σ) =

∑h−1
i=0 cost(si, π(si)). The probability of following the history σ is

Pr(σ) =
∏h−1

i=0 Pr(si+1|si, π(si)). Note that σ may not be a simple path: it may contain
loops, that is, sj = si for some j > i. But because actions are nondeterministic, a loop
does not necessarily prevent the procedure from eventually reaching a goal: the action π(si)
that led to an already visited state may get out of the loop when executed again at step j.
However, a solution policy may also get trapped forever in a loop, or it may reach a nongoal
leaf. Hence Run-Policy may not terminate and reach a goal. Planning algorithms for SSPs
will preferably seek solutions that offer some guarantee of reaching a goal.

Example 6.5. For the policy in Figure 6.2, the history σ = ⟨s0, (cbc), (cac), (cbc), (cbc), (ccc)⟩
reaches eventually a goal despite visiting the same state three times.

Let Prl(Sg|s, π) be the probability of reaching a goal from a state s by following pol-
icy π for up to l steps: Prl(Sg|s, π) =

∑
σ Pr(σ), over all σ ∈ {⟨s, s1, . . . , sh⟩ | si+1 ∈

2Section 6.5 further details how to “perform action π(s)” in probabilistic models.



γ(si, π(si)), sh ∈ Sg, h ≤ l}. Let Pr(Sg|s, π) = liml→∞ Prl(Sg|s, π). With this notation, it
follows that:

• if π is a solution to the problem (Σ, s0, Sg) then Pr(Sg|s0, π) > 0; and

• a goal is reachable from a state s with policy π if and only if Pr(Sg|s, π) > 0.

Definition 6.6. A solution π to the SSP problem (Σ, s0, Sg) is said to be safe if and only
if Pr(Sg|s0, π) = 1. If 0 < Pr(Sg|s0, π) < 1 then policy π is an unsafe solution.3

A policy π is safe if and only if ∀s ∈ γ̂(s0, π) there is a path from s to a goal. With a
safe policy, procedure Run-Policy(Σ, s0, Sg, π) always reaches a goal.4 However, the number
of steps needed to reach the goal is not bounded a priori. Such a bound would require a
safe acyclic policy (see Section 6.7.5). With an unsafe policy, Run-Policy may or may not
terminate; if it does terminate, it may reach either a goal or a state with no applicable
action.

It is useful to extend the concept of safe solutions from policies to states:

Definition 6.7. A state s is safe if and only if ∃π such that Pr(Sg|s, π) = 1; s is unsafe if
and only if ∀π 0 < Pr(Sg|s, π) < 1; s is a dead end if and only if ∀π Pr(Sg|s, π) = 0. An
SSP problem (Σ, s0, Sg) is said to be safe when s0 is safe.

A state s is safe if and only if there exists a policy π such that for every s′ ∈ γ̂(s, π) there
is a path from s′ to a goal. Note that policy π is a safe solution of (Σ, s0, Sg) if and only if
∀s ∈ γ̂(s0, π), s is safe. Conversely, s is unsafe if and only if it has a dead end descendant
for every policy: ∀π ∃s′ ∈ γ̂(s, π) s′ is a dead end. If a state s is a dead end, then there is
no solution to the problem (Σ, s, Sg).

A state that has no applicable action is a dead end, but so is a state from which every
policy is trapped forever in a loop or leads only to other dead ends. The former are called
explicit dead ends; the latter are implicit dead ends.

Example 6.8. In Figure 6.1, the state (aaa) is an explicit dead end, the states (aac), (aab), (aba),
and (aca) are implicit dead ends, the states (bbb) and (ccc) are goals, and all of the other
states are safe. Any policy starting in the safe state s0 with either action Both or Right is
unsafe because it leads to dead ends. The policy given in Figure 6.2 is safe.

Explicit dead ends are easy to detect: in such a state, Run-Policy(Σ, s0, Sg, π) finds that
Applicable(s) = ∅ and terminates unsuccessfully. Implicit dead ends create difficulties for
many algorithms, as we discuss later. Figure 6.3 summarizes the four types of states with
respect to goal reachability.

(Σ,s,Sg) has a solution
Yes No

Applicable(s)=∅
Yes No

∃𝜋 that always reaches a goal
Yes No

safe unsafe explicit dead-ends is: implicit dead-end

Figure 6.3: Partition of the set of states with respect to solutions.

A domain has no dead end if and only if every state in S is safe. A domain has no
reachable dead end if and only if every state reachable from s0 by any policy is safe. These

3The literature often refers to safe and unsafe solutions as proper and improper solutions. Here we keep
the terminology introduced in Chapter 5.

4In this chapter, “always” is synonymous to a probability of occurrence equal to one.



desirable cases are difficult to detect in advance. A problem has a safe solution when
the domain dead ends are avoidable: there is a π such that γ̂(s0, π) avoids dead ends.
Example 6.5 illustrates a domain where dead ends are avoidable. Planning algorithms
will seek to avoid dead ends, searching for safe solutions. If the domain has at least one
unavoidable dead end reachable from s0, then s0 is unsafe. In that case, one may accept
an unsafe solution whose probability of reaching a goal is maximal. The trade-off between
cost and probability of reaching the goal is discussed in Section 6.7.3.

In summary, an SSP problem (Σ, s0, Sg) can be such that (i) it has a solution, possibly
unsafe; (ii) it has a safe solution, its possible dead ends are avoidable; (iii) it has no
reachable dead end; or (iv) it has no dead end. These four cases are in increasing order of
restriction. We’ll start by assuming to be in the most restricted case and relax it afterwards.

6.2.3 Optimality Principle of Dynamic Programming

As mentioned in the introduction, probabilistic planning is generally an optimization pro-
cess. Planning algorithms search for a plan that is optimal with respect to some optimization
criteria for the probability and cost parameters of the problem. Let us discuss the usual
optimization criteria and the building blocks of this optimization process. Throughout this
section, we restrict ourselves to SSP problems without dead ends.

Let V π : Dom(π) → R+ be a value function giving the expected sum of the cost of
the actions obtained by following a safe solution π (which necessarily exists, given our
assumption) from a state s to a goal:

V π(s) = E[
∑
i

cost(si, π(si))], (6.1)

where the expected value is over all histories σ ∈ {⟨s, s1 . . . , sh⟩ | si+1 ∈ γ(si, π(si)), sh ∈
Sg}.

V π(s) is the expected cost for running the procedure Run-Policy(Σ, s, Sg, π) from s until
termination. It is the total cost of following a history σ from s to Sg, averaged over all such
histories in Graph(s, π):

V π(s) =
∑
σ

Pr(σ) cost(σ), (6.2)

where cost(σ) =
∑

i cost(si, π(si)) and Pr(σ) =
∏

i Pr(si+1|si, π(si)).
The number of steps needed to reach a goal with a safe solution is not bounded a

priori. Consequently, the expected sum in Equation 6.1 is over an unbounded number of
terms. However, because π is safe, then the probability of reaching a goal is 1, hence V π(s)
is necessarily finite. Note that when π is unsafe the expected sum of action costs until
reaching a goal is not well-defined: on a history σ on which Run-Policy(Σ, s, Sg, π) does not
terminate, the sum in Equation 6.2 grows to infinity.

It is possible to prove that V π(s) is given by the following recursive equation (see
Exercise 6.2):

V π(s) =

{
0 if s ∈ Sg,
cost(s, π(s)) +

∑
s′∈γ(s,π(s)) Pr(s

′|s, π(s))V π(s′) otherwise.
(6.3)

The value function V π plays a critical role in solving SSPs: it makes it possible to rank
policies according to their expected total cost, to use optimization techniques for seeking a
safe optimal policy, and, as we will see later, to heuristically focus the search on a part of
the search space.

A policy π′ dominates a policy π if and only if V π′
(s) ≤ V π(s) for every state for which

both π and π′ are defined. An optimal policy is a policy π∗ that dominates all other policies.
It has a minimal expected cost over all possible policies: V ∗(s) = minπ V

π(s). Under our



assumption of probabilistic planning in a domain without dead ends, π∗ exists and is unique.

The optimality principle extends Equation 6.3 to compute V ∗:

V ∗(s) =

{
0 if s ∈ Sg,
mina{cost(s, a) +

∑
s′∈γ(s,a) Pr(s

′|s, a)V ∗(s′)} otherwise.
(6.4)

The optimal policy π∗ is easily derived from V ∗:

π∗(s) = argmina{cost(s, a) +
∑

s′∈γ(s,a)

Pr(s′|s, a)V ∗(s′)}. (6.5)

Let π be an arbitrary safe solution, and V π be as defined in Equation 6.3. Let us define:

Qπ(s, a) = cost(s, a) +
∑

s′∈γ(s,a)

Pr(s′|s, a)V π(s′). (6.6)

Qπ(s, a) is called the cost-to-go: it is the sum of the immediate cost of a in s plus the
following expected cost of the successors in γ(s, a), as estimated by V π.

Given a policy π, we can compute the corresponding V π from which we define a greedy
policy π′, which chooses in each state the action that minimizes the cost-to-go, as estimated
by V π:

π′(s) = argmina{Qπ(s, a)}. (6.7)

In case of ties in the preceding minimum relation, we assume that π′ keeps the value of π,
that is, when mina{Qπ(s, a)} = V π(s) then π′(s) = π(s).

Proposition 6.9. When π is a safe solution, then policy π′ from Equation 6.7 is safe and
dominates π, that is: ∀s V π′

(s) ≤ V π(s). Further, if π is not optimal, then there is at least
one state s for which V π′

(s) < V π(s).

Starting with an initial safe policy, we can repeatedly apply Proposition 6.9 to keep
improving from one policy to the next. This process converges because there is a finite
number of distinct policies and each iteration brings a strict improvement in at least one
state, unless already optimal. This is implemented in algorithm Policy Iteration, detailed
next.

6.2.4 Policy Iteration

Policy Iteration (PI, Algorithm 6.2), starts with an initial policy π0, for example, π0(s) =
argmina{cost(s, a)}. It iterates over improvements of the current policy. At each iteration,
it computes the value function V π(s) for the current π in every state s (step (i)). It
then improves π with the greedy policy for the newly found V π (step (ii)). Possible ties
in argmin are broken by giving preference to the current π. The algorithm stops when
reaching a fixed point where π remains unchanged over two iterations.

PI(Σ, π0)
π ← π0
loop until reaching a fixed point

compute {V π(s) | s ∈ S} (i)
for every s ∈ S \ Sg do
π(s)← argmina{cost(s, a) +

∑
s′∈γ(s,a) Pr(s

′|s, a)V π(s′)} (ii)

Algorithm 6.2: Policy Iteration algorithm.

There are two ways of computing V π for current π. The direct method is to solve
Equation 6.3 considered over the entire S as a system of n linear equations, where n = |S|,



the n unknown variables being the values of V π(s). There is a solution to this n linear
equations if and only if the current π is safe. The value function V π for the current π can
be computed using classical linear calculs methods, such as Gaussian elimination.

The second method for finding V π is iterative. It consist in computing the following
series of value functions:

Vi(s) = cost(s, π(s)) +
∑

s′∈γ(s,π(s))

Pr(s′|s, π(s))Vi−1(s
′). (6.8)

It can be shown that, for any initial V0, if π is safe, then this series converges asymptotically
to a fixed point equal to V π. In practice, one stops when maxs |Vi(s) − Vi−1(s)| is small
enough; Vi is then taken as an estimate of V π (more about this in the next section).

Algorithm PI, when initialized with a safe policy, strictly improves in each iteration the
current policy over the previous one, until reaching π∗. In a domain that has no dead ends,
there exists a safe π0. All successive policies are also safe and monotonically decreasing for
the dominance relation order. In other words, if the successive policies defined by PI are
π0, π1, . . . , πk, . . . , π

∗ then ∀s V ∗(s) ≤ . . . ≤ V πk(s) ≤ . . . ≤ V π1(s) ≤ V π0(s). Because there
is a finite number of distinct policies, algorithm PI with a safe π0 converges to an optimal
policy in a finite number of iterations.

The requirement that π0 is safe is easily met for domains without dead ends. However,
this strong assumption is difficult to meet in practice. It makes PI difficult to generalize
to domains with dead ends. Algorithm Value Iteration, detailed next, also makes this
assumption, but it can be generalized with heuristic search techniques to handle dead ends;
it is often more efficient in practice than PI.

6.2.5 Value Iteration

Earlier, we defined Qπ and the greedy policy π′ with respect to the value function V π of
a policy π. However, the same equations 6.6 and 6.7 can be applied to any value function
V : S → R+. This gives a cost-to-go QV (s, a) = cost(s, a) +

∑
s′∈γ(s,a) Pr(s

′|s, a)V (s′) and

a greedy policy for V , π(s) = argmina{QV (s, a)}.5 From V , a new value function can be
computed with the following equation:

V ′(s) = min
a
{cost(s, a) +

∑
s′∈γ(s,a)

Pr(s′|s, a)V (s′)}. (6.9)

V ′ is the minimum cost-to-go in s when the value of the successors is estimated by V .
Dynamic programming consists in applying Equation 6.9 repeatedly, using V ′ as an estimate
for computing another cost-to-go QV ′

and another value function mina{QV ′
(s, a)}. This is

implemented in the algorithm Value Iteration (Algorithm 6.3).

VI starts with an arbitrary heuristic function V0, which estimates the expected cost of
reaching a goal from s. An easily computed heuristic is, for example, V0(s) = 0 when s ∈ Sg,
and V0(s) = mina{cost(s, a)} otherwise. The algorithm iterates over improvements of the
current value function by performing repeated updates using Equation 6.9. An update at an
iteration propagates to V ′(s) changes in V (s′) from the previous iteration for the successors
s′ ∈ γ(s, a). This is pursued until a fixed point is reached. A fixed point is a full iteration
over S where V ′(s) remains identical to V (s) for all s. The returned solution π is the greedy
policy for the final V .

Algorithm 6.3 is the synchronous version of Value Iteration. It implements a stage-by-
stage sequence of updates where the updates at an iteration are based on values of V from
the previous iteration.

5The greedy policy for V is sometimes denoted πV . In the remainder of this chapter, we simply denote
π the greedy policy for the current V , unless otherwise specified.



VI(Σ, V0)
V ← V0
loop until until reaching a fixed point

for every s ∈ S \ Sg do
V ′(s)← mina{cost(s, a) +

∑
s′∈γ(s,a) Pr(s

′|s, a)V (s′)}
V ← V ′

π(s)← argmina{cost(s, a) +
∑

s′∈γ(s,a) Pr(s
′|s, a)V (s′)}

Algorithm 6.3: Synchronous Value Iteration algorithm. V0 is implemented as a function,
computed once in every state; V , V ′ and π are lookup tables.

An alternative is the asynchronous Value Iteration (Algorithm 6.4). There, V (s) stands
for the current value function for s at some stage of the algorithm. It is initialized as V0
then repeatedly updated. An update of V (s) takes into account values of successors of s
and may affect the ancestors of s within that same iteration over S. In the pseudocode,
a local update step in s is performed by the Bellman-Update procedure (Algorithm 6.5),
which iterates over a ∈ Applicable(s) to compute Q(s, a) and its minimum as V (s). Several
algorithms in this chapter use Bellman-Update. Throughout this chapter, we assume that
ties in argmina{Q(s, a)}, if any, are broken in favor of the previous value of π(s) and in a
systematic way (for example, lexical order of action names).

VI(Σ, V0)
V ← V0
loop until reaching a fixed point

for every s ∈ S \ Sg do
Bellman-Update(s)

Algorithm 6.4: Asynchronous Value Iteration algorithm.

Bellman-Update(s)
for every a ∈ Applicable(s) do
Q(s, a)← cost(s, a) +

∑
s′∈γ(s,a) Pr(s

′|s, a)V (s′)

V (s)← mina{Q(s, a)}
π(s)← argmina{Q(s, a)}

Algorithm 6.5: The Bellman update procedure computes V (s) as in Equation 6.9, and π(s)
as the greedy policy for V . Q can be implemented as a local data structure, π and V as
internal data structures of algorithms using this procedure.

At any point of Value Iteration, either synchronous or asynchronous, an update of a state
makes its ancestors no longer meeting the equation V (s) = mina{cost(s, a) +

∑
s′∈γ(s,a) Pr(s

′|s, a)V (s′)}.
A change in V (s′), for any successor s′ of s (including when s is its own successor), requires
an update of s. This is pursued until a fixed point is reached.

The termination condition of the outer loop of VI checks that such a fixed point has
been reached, that is, a full iteration over S without a change in V . At the fixed point,
every state s meets Equation 6.3, that is: ∀s V (s) = V π(s) for current π(s).

In previous section, we emphasized that because there is a finite number of policies, it
make sense to stop PI when the fixed point is reached. Here, there is an infinite number
of value functions; the precise fixed point is an asymptotic limit. Hence, VI stops when a
fixed point is approximately reached, within some acceptable margin of error. This can be
assessed by the amount of change in the value of V (s) during its update in Bellman-Update.
This amplitude of change is called the residual of a state:



Definition 6.10. The residual of a state s with respect to V is
residual(s) = |V (s)−mina{cost(s, a)+

∑
s′∈γ(s,a) Pr(s

′|s, a)V (s′)}|. The global residual over
S is residual = maxs∈S{residual(s)}.

At each iteration of VI, residual(s) is computed before each update with respect to the
values of V at the previous iteration. The termination condition of VI with a margin of
error set to a small parameter η > 0 is: residual ≤ η. Note, however, that with such a
termination condition, the value of V (s) at the last iteration is not identical to V π(s) for
current π(s), as illustrated next.
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Figure 6.4: A very simple domain.

Example 6.11. Consider the very simple domain in Figure 6.4. Σ has three states,
s0, s1, and the goal g, and two actions a and b. Action a leads in one step to g with prob-
ability p; it loops back on s0 with probability 1 − p. Action b is deterministic. Assume
cost(a) = 10, cost(b) = 100 and p = .2. Σ has two solutions, denoted πa and πb. Their
values are:
V πa(s0) = cost(a)

∑
i=0,∞(1− p)i = cost(a)

p = 50 and
V πb(s0) = 2× cost(b) = 200. Hence π∗ = πa.

Let us run VI (say, the synchronous version) on this simple domain assuming V0(s) = 0
in every state. After the first iteration V1(s0) = 10 and V1(s1) = 100. In the following
iterations, Vi(s0) = 10+ .8×Vi−1(s0), and Vi(s1) remains unchanged. The successive values
of V in s0 are: 18, 24.4, 29.52, 33.62, 36.89, 39.51, 41.61, 43.29, 44.63, 45.71, 46.56, and so
on, which converges asymptotically to 50.

With η = 10−4, VI stops after 53 iterations with solution πa and V (s0) = 49.9996. With
η = 10−3, 10−2 and 10−1, termination is reached after 43, 32, and 22 iterations, respectively.
With a larger value of η, say, η = 5, termination is reached after just 5 iterations with
V (s0) = 33.62 (at this point: residual(s0) = 33.62 − 29.52 < η). Note that at termination
V (s0) ̸= V πa(s0) for the found solution πa. We’ll see next how to bound the difference
V π(s0)− V (s0).

Properties of Bellman updates. The iterative dynamic programming updates corre-
sponding to Equation 6.9 have several interesting properties, which are conveniently stated
with the following notation. Let (BV ) be a value function corresponding to a Bellman
update of V over S, that is, ∀s (BV )(s) = mina{QV (s, a)}. Successive updates are denoted
as: (BkV ) = (B(Bk−1V )), with (B0V ) = V .

Proposition 6.12. For any two value functions V1 and V2 such that ∀s V1(s) ≤ V2(s), we
have: ∀s (BkV1)(s) ≤ (BkV2)(s) for k = 1, 2, . . ..

In particular, if a function V0 is such that V0(s) ≤ (BV0)(s), then a series of Bellman
updates is monotonically non decreasing, in other words: ∀s V0(s) ≤ (BV0)(s) ≤ . . . ≤
(BkV0)(s) ≤ (Bk+1V0)(s) ≤ . . ..

Proposition 6.13. In a domain without dead end, the series of Bellman updates starting
at any value function V0 converges asymptoticaly to the optimal cost function V ∗, that is,
∀s limk→∞(BkV0)(s) = V ∗(s).



Convergence and complexity of VI. For an SSP problem without dead ends and for
any value function V0, VI terminates. Each inner loop iteration runs in time O(|A| × |S|)
(assuming |γ(s, a)| to be upper bounded by some constant), and the number of iterations
required to reach the termination condition residual ≤ η is finite and can be bounded under
some appropriate assumptions.

Proposition 6.14. For and SSP problem without dead ends, VI reaches the termination
condition residual ≤ η in a finite number of iterations.

Regardless of the value function V0, VI converges asymptotically to the optimum:

Proposition 6.15. At termination of VI with residual ≤ η in an SSP problem without dead
ends, the value V is such that ∀s ∈ S limη→0 V (s) = V ∗(s).

More precisely, it is possible to prove that at termination with V and π (the greedy
policy for V ), the following bound holds:

∀s |V (s)− V ∗(s)| ≤ η ×max{Φ∗(s),Φπ(s)}, (6.10)

where Φ∗(s) and Φπ(s) are the expected number of steps to reach a goal from s by following
π∗ and π respectively. However, this bound is difficult to compute in the general case.

More interesting properties can be established when VI uses a heuristic function V0 that
is admissible or monotone.

Definition 6.16. V0 is an admissible heuristic function if and only if ∀s V0(s) ≤ V ∗(s). V0
is a monotone heuristic function if and only if ∀s V0(s) ≤ mina{Q(s, a)}.

Proposition 6.17. If V0 is an admissible heuristic function, then at any iteration of VI,
the value function V remains admissible. At termination with residual ≤ η, the found value
V and policy π meet the following bounds: ∀s V (s) ≤ V ∗(s) ≤ V (s) + η × Φπ(s) and
V (s) ≤ V π(s) ≤ V (s) + η × Φπ(s).

Given π, Φπ(s0), the expected number of steps to reach a goal from s0 following π is
computed by solving the n linear equations:

Φπ(s) =

{
0 if s ∈ g,
1 +

∑
s′∈γ(s,π(s)) Pr(s

′|s, π(s))Φπ(s′) otherwise.
(6.11)

Note the similarity between Equation 6.3 and Equation 6.11: the expected number of steps
to a goal is simply V π with unit costs. Note also that the bound η×Φπ(s0) can be arbitrarily
large.

VI does not guarantee a solution whose difference with the optimum is bounded in
advance. This difference is bounded a posteriori. The bounds in Proposition 6.17 entail
0 ≤ V π(s) − V ∗(s) ≤ V π(s) − V (s) ≤ η × Φπ(s). However, a guaranteed approximation
procedure is easily defined using VI with an admissible heuristic. Such a procedure is
illustrated in Algorithm 6.6.

Procedure GAP with an admissible heuristic returns a solution π guaranteed to be within
ϵ of the optimum, that is, V π(s0) − V ∗(s0) ≤ ϵ. It repeatedly runs VI (with V from the
previous iteration) using decreasing value of η until the desired bound ϵ is reached. GAP
underlines the distinct role of η, the margin of error for the fixed point, and ϵ the upper
bound of the difference to the optimum.

Example 6.18. Going back to the simple domain in Example 6.11, assume we want a
solution no further than ϵ = .1 from the optimum. Starting with η = 5, VI finds the
solution πa after 5 iterations. Equation 6.11 for solution πa gives Φπa(s0) = 5. VI is called
again with the previous V and η = .02; it stops after 23 iterations with the same solution
and V (s0) = 49.938. This solution is within at most .1 of π∗. Note that V (s0) is also
guaranteed to be within .1 of V πa(s0).



GAP(V0, ϵ)
V ← V0; initialize η > 0 arbitrarily
loop

run VI(Σ, V )
compute Φπ(s0) for the found solution π
if η × Φπ(s0) ≤ ϵ then return
else η ← min{ϵ/Φπ(s0), η/2}

Algorithm 6.6: A guaranteed approximation procedure for VI.

At termination of VI, V π(s0) for the found solution π is unknown. It is bounded with:
V (s0) ≤ V π(s0) ≤ V (s0) + η × Φπ(s0). It is possible to compute V π, as explained in
Section 6.2.4, either by solving Equation 6.3 as a system of the n linear equations or by
repeated updates as in Equation 6.8 until the residual is less than an accepted margin.

Finally, when the heuristic function is both admissible and monotone, then the number
of iterations needed to reach termination is easily bounded. Indeed, when V0 is monotone,
then V0 ≤ (BV0) by definition, hence the remark following Proposition 6.12 applies. V (s)
cannot decrease throughout Bellman updates, and it remains monotone. Each iteration of
VI increases the value of V (s) for some s by at least η, and does not decrease V for any
state. This entails the following bound on the number of iterations:

Proposition 6.19. The number of iterations needed by VI to reach the termination condi-
tion residual ≤ η with an admissible and monotone heuristic is bounded by 1/η

∑
S [V

∗(s)−
V0(s)].

In summary, VI performs a bounded number of iterations, each of polynomial complexity
in |S|. VI looks as a quite efficient and scalable planning algorithm. Unfortunately, the
state space in planning is exponential in the size of the input data: |S| in the order of mk,
where k is the number of ground state variables and m is the size of their range. Practical
considerations are further discussed in Section 6.7.6.
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Figure 6.5: Connectivity graph of a simple environment.



Example 6.20. Consider a robot servicing an environment that has six locations l0, l1, . . . , l5,
which are connected as defined by the undirected graph of Figure 6.5. Traversing an edge
has a cost and a nondeterministic outcome: the tentative traversal of a temporarily busy
road has no effect. For example, when in location l0 the robot takes the action move(l0, l1);
with a probability .5 the action brings the robot to l1, but if the road is busy the robot
remains in l0; in both cases the action costs 2. Edges are labelled by their traversal cost
and probability of success.

In a realistic application, the robot would know (for example, from sensors in the en-
vironment) when an edge is busy and for how long. Let us assume that the robot knows
about a busy edge only when trying to traverse it; a trial gives no information about the
possible outcome of the next trial. Finding an optimal policy for traversing between two
locations can be modeled as a simple SSP that has as many states as locations. A state
for a location l has as many actions as outgoing edges from l; each action has two possible
outcomes: reaching the adjacent edge or staying in l.

Table 6.1: V (l) after the first three and last three iterations of VI on the domain of Fig-
ure 6.5.

iteration l0 l1 l2 l3 l4

1 2.00 2.00 2.00 3.60 5.00

2 4.00 4.00 5.28 5.92 7.50

3 6.00 7.00 7.79 8.78 8.75

10 19.52 21.86 21.16 19.76 9.99

11 19.75 22.18 21.93 19.88 10.00

12 19.87 22.34 22.29 19.94 10.00

Let us run Value Iteration on this simple domain for going from l0 to l5. With V0 = 0
and η = .5, VI terminates after 12 iterations (see Table 6.1 which gives V (l) for the
first three and last three iterations). It finds the following policy: π(l0)=move(l0, l4),
π(l4)=move(l4, l5), π(l1)=move(l0, l4), π(l2)=move(l0, l4), π(l3)=move(l0, l4). π corresponds
to the path ⟨l0, l4, l5⟩. Its cost is V π(l0) = 20, which is easily computed from V π(l4) = 5/.5
and V π(l0) = (5 + .5× V π(l4))/.5. Note that at termination V (l0) = 19.87 ̸= V π(l0). The
residual after iteration 12 is 22.29− 21.93 = .36 < η.

Let us change the cost of the edge (l0, l4) to 10. The cost of the previous policy is now
30; it is no longer optimal. VI terminates (with the same η) after 13 iterations with a policy
corresponding to the path ⟨l0, l1, l3, l5⟩; its cost is 26.5.

VI versus PI. The reader has noticed the formal similarities between VI and PI: the two
algorithms rely on repeated updates until reaching a fixed point. Their differences are worth
being underlined:

• PI approaches V ∗ from above, while VI approaches the optimum from below. Hence
the importance of starting with an admissible heuristic for the latter. PI does not
require a heuristic but a safe initial π0. However, heuristics, when available, can bring
a significant efficiency gain.

• PI computes V π for the current and final solution π, while VI relies on an approximate
V of the value V π of the greedy policy π.

• PI reaches exactly its fixed point while a margin of error has to be set for VI, allowing
for the flexibility illustrated in procedure GAP.

Note, however, that when PI relies on the iterative method of Equation 6.8 for computing
V π the two algorithms can be quite close.



Extensions of VI. Algorithm VI allows for several improvements and optimizations, such
as ordering S according to a dynamic priority scheme, or partitioning S into acyclic com-
ponents. The latter point is motivated by the fact that VI can be made to converge with
just one outer loop iteration on acyclic And/Or graphs.

A variant of VI, called Backward Value Iteration, focuses VI by performing updates in
reverse order, starting from the set of goal states, and updating only along the current
greedy policy (instead of a Bellman update over all applicable actions). A symmetrical
variant, Forward Value Iteration, performs the outer loop iteration on subsets of S, starting
from s0 and its immediate successors, then their successors, and so on.

More generally, asynchronous VI does not need to update all states at each iteration. It
can be specified as follows: pick up a state s and update it. As long as the pick up is fair,
that is, no state is left indefinitely non updated, the algorithm converges to the optimum.
This opens the way to an important extension of VI for domains that have safe solutions
but also dead ends. For that, two main issues need to be tackled:

• do not require termination with a fixed point for every state in S because this is
needed only for the safe states in γ̂(s0, π) and because there may not be a fixed point
for unsafe states; and

• make sure that the values V (s) for unsafe states keep growing strictly such as to drive
the search towards safe policies.

These issues are developed next with heuristic search algorithms.

6.3 Heuristic Search Algorithms

Heuristic search algorithms exploit the guidance of an initial value function V0 to focus an
SSP planning problem on a small part of the search space. Before getting in the specifics
of a few algorithms, let us explain their commonalities on the basis of the following search
schema.

6.3.1 A General Heuristic Search Schema

The main idea of heuristic search algorithms is to explore a focused part of the search space
and to perform Bellman updates within this focused part, instead of over the entire S. This
explored part of the search space starts with {s0} and is incrementally expanded. Let the
Envelope be the set of states that have been generated at some point by a search algorithm.
The Envelope is partitioned into:

(i) goal states, for which V (s) = 0,

(ii) fringe states, whose successors are still unknown; for a fringe state π(s) is not yet
defined and V (s) = V0(s),

(iii) interior states, whose successors are already in the Envelope.

Expanding a fringe state smeans finding its successors and definingQ(s, a) = cost(s, a)+∑
s′∈γ(s,a) Pr(s

′|s, a)V (s′), V (s) = mina{Q(s, a)}, and the greedy policy for current V , which
is π(s) = argmina{Q(s, a)}. Updating an interior state s means performing a Bellman
update on s. When a descendant s′ of s gets expanded or updated, V (s′) changes, which
makes V (s) no longer equal to mina{Q(s, a)} and requires updating s.

Let us define the useful notions of open and solved states with respect to η, a given
margin of error.

Definition 6.21. A state s ∈ Envelope is open when s is either a fringe or an interior state
such that residual(s) = |V (s)−mina{Q(s, a)}| > η.

Definition 6.22. A state s ∈ Envelope is solved when the current γ̂(s, π) has no open
state; in other words, s is solved when ∀s′ ∈ γ̂(s, π) either s′ ∈ Sg or residual(s′) ≤ η.



Recall that γ̂(s, π) includes s and the states in the Envelope reachable from s by cur-
rent π. It defines Graph(s, π), the current solution graph starting from s. Throughout
Section 6.3, π is the greedy policy for current V ; it changes after an update. Hence γ̂(s, π)
and Graph(s, π) are defined dynamically.

Most heuristic search algorithms use the preceding notions and are based on different
instantiations of a general schema called Find&Revise (Algorithm 6.7), which repeatedly
performs a Find step followed by a Revise step.

Find&Revise(Σ, s0, Sg, V0)
until s0 is solved do

choose an open state s in γ̂(s0, π) (i) Find
expand or update s (ii) Revise

Algorithm 6.7: Find&Revise schema. The specifics of the Find and the Revise steps depend
on the particular algorithm instantiating this schema.

The Find step is a traversal of the current γ̂(s0, π) for finding and choosing an open
state s. This Find step has to be systematic: no state in γ̂(s0, π) should be left open forever
without being chosen for revision.

The Revise step updates an interior state whose residual > η or expands a fringe state.
Revising a state can change current π and hence γ̂(s0, π). At any point, either a state s is
open, or s has an open descendant (whose revision will later make s open), or s is solved.
In the latter case, γ̂(s, π) does not change anymore.

Find&Revise iterates until s0 is solved, that is, there is no open state in γ̂(s0, π). With an
admissible heuristic function, Find&Revise converges to a solution which is asymptotically
optimal with respect to η. More precisely, if the SSP problem has no dead ends, and if V0
is an admissible heuristic, then Find&Revise with a systematic Find step has the following
properties, inherited from VI:

• the algorithm terminates with a safe solution,

• V (s) remains admissible for all states in the Envelope,

• the returned solution is asymptotically optimal with respect to η; its difference with
V ∗ is bounded by: V ∗(s0)−V (s0) ≤ η×Φπ(s0), where Φπ is given by Equation 6.11,
and

• if V0 is admissible and monotone then the number of iterations is bounded by 1/η
∑

S [V
∗(s)−

V0(s)].

Dealing with dead ends. As discussed earlier, Dynamic Programing algorithms are
limited to domains without dead ends, whereas heuristic search algorithms can overcome
this limitation. First, only reachable dead ends can be of concern to an algorithm focused
on the part of the state space reachable from s0. Further, it is possible to show that
all the preceding properties of Find&Revise still hold for domains with safe solutions that
have reachable dead ends, implicit or explicit, as long as for every dead end s, V (s) grows
indefinitely over successive updates. Let us explain why this is the case:

• Assume that V grows indefinitely for dead ends, then ∀s unsafe and ∀π, V π(s) also
grows indefinitely; this is entailed from Definition 6.7 because an unsafe state has at
least a dead end descendant for any policy and because all costs are strictly positive.

• With a systematic Find, successive Bellman updates will make at some point: V (s′) <
V (s′′) for two sibling states where s′ is safe and s′′ unsafe. Consequently, if s is safe,
the minimization mina{Q(s, a)} will rule out unsafe policies.



• Finally, Find&Revise does not iterate over the entire state space but only over the
current γ̂(s0, π). Because we are assuming s0 to be safe, γ̂(s0, π) will contain at some
point only safe states over which the convergence to a goal is granted.

Consider a domain with a safe solution that has implicit dead ends but no explicit dead
end, that is, ∀s Applicable(s) ̸= ∅. There, a dead end is a state from which every action
leads to an infinite loop never reaching a goal. In such a domain, Equation 6.1 ensures
that V (s) will grow indefinitely when s is a dead end. Indeed, V (s) is the expected sum of
strictly positive costs over sequences of successors of s that grow to infinite length without
reaching a goal.

For a domain with explicit dead ends, such as Example 6.4, our previous definition
makes V possibly undefined at unsafe states. We can extend the definition by adding a
third clause in Equation 6.3, stating simply: V (s) =∞ if Applicable(s) = ∅. Alternatively,
we can keep all the definitions as introduced so far and extend the specification of a domain
with a dummy action, adeadend, applicable only in states that have no other applicable
action; adeadend is such as γ(s, adeadend) = {s} and cost(s, adeadend) = constant> 0. This
straightforward trick brings us back to the case of solely implicit dead ends: V (s) grows
unbounded when s is a dead end.

Note that these considerations about dead ends do not apply to algorithm VI, which iter-
ates over the entire set S, hence cannot converge with unsafe states because there is no fixed
point for implicit dead ends (reachable or not). Heuristic search algorithms implementing
a Find&Revise schema can find a near-optimal partial policy by focusing on γ̂(s0, π), which
contains only safe states when s0 is safe.

Find&Revise opens a number of design choices for the instantiation of the Find and the
Revise steps and for other practical implementation issues regarding the possible memo-
rization of the envelope and other needed data structure. Find&Revise can be instantiated
in different ways, for example:

• with a best-first search, as in algorithms AO∗, LAO∗, and their extensions (Sec-
tion 6.3.2);

• with a depth-first and iterative deepening search, as in HDP, LDFS, and their exten-
sions (Sections 6.3.3 and 6.3.4); and

• with a stochastic simulation search, as in RTDP, LRTDP, and their extensions (Sec-
tion 6.4.3).

These algorithms inherit the preceding properties Find&Revise. They have additional
characteristics, adapted to different application features. In the remainder of this chap-
ter, we present some of them, assuming to have SSP problems where s0 is safe and V0 is
admissible.

6.3.2 Best-First Search

In deterministic planning, best-first search is illustrated with the A∗ algorithm for finding
optimal paths in graphs. In SSPs, best-first search relies on a generalization of A∗ for finding
optimal graphs in And/Or graphs. This generalization corresponds to two algorithms: AO∗

and LAO∗. AO∗ is limited to acyclic And/Or graphs, while LAO∗ handles cyclic search
spaces. Both algorithms iterate over two steps, which will be detailed shortly:

(i) traverse γ̂(s0, π), the current best solution graph, starting at s0; find a fringe state
s ∈ γ̂(s0, π); expand s; and

(ii) update the search space starting from s.

The main difference between the two algorithms is in step (ii). When the search space
is acyclic, AO∗ is able to update the search space in a bottom-up stage-by-stage process



focused on the current best policy. When the search space and the solution graph can be
cyclic, LAO∗ has to combine best-first search with a Dynamic Programming update.

AO∗ (Σ, s0, g, V0)
Envelope ← {s0}
while γ̂(s0, π) has fringe states do

traverse γ̂(s0, π) and select a fringe state s ∈ γ̂(s0, π) (i)
for all a ∈ Applicable(s) and s′ ∈ γ(s, a) do

if s′ is not already in Envelope then do
add s′ to Envelope
V (s′)← V0(s

′)
AO-Update(s) (ii)

Algorithm 6.8: AO∗, best-first search algorithm for acyclic domains. Replacing step (ii) by
a call to LAO-Update(s) gives LAO∗.

Starting at s0, each iteration of AO∗ (Algorithm 6.8) extracts the current best solution
graph by doing a forward traversal along current π. In each branch, the traversal stops
when it reaches a goal or a fringe state. The selection of which fringe state to expand is
arbitrary. This choice does not change the convergence properties of the algorithm but
may affect its efficiency. The expansion of a state s changes generally V (s). This requires
updating s and all its ancestors in the envelope

AO-Update(s)
Z ← {s}
while Z ̸= ∅ do

select s ∈ Z such that Z ∩ γ̂(s, π) = {s}
remove s from Z
Bellman-Update(s)
Z ← Z ∪ {s′ ∈ Envelope | s ∈ γ(s′, π(s′))}

Algorithm 6.9: Bottom-up update for AO∗.

AO-Update (Algorithm 6.9) implements this update in a bottom-up stage-by-stage pro-
cedure, from the current state s up to s0. The set of states that need to be updated consists
of all ancestors of s from which s is reachable along current π. Note that this set is not
strictly included in current γ̂(s0, π). It is generated incrementally as the set Z of predeces-
sors of s along current π. Bellman update is applied to each state in Z whose descendants
along current π are not in Z. Because the search space is acyclic, this implies that the
update of a state takes into account all its known updated descendants, and has to be
performed just once. The update of s redefines π(s) and V (s). The predecessors of s along
π are added to Z.

A few additional steps are needed in this pseudocode for handling dead ends. The
dummy action adeadend, discussed earlier, introduces cycles; this is not what we want here.
In the acyclic case, the only dead ends are explicit, that is, states not in Sg with no applicable
action. This is directly detected when such a state is selected as a fringe for expansion; that
state is labelled as a dead end. In AO-Update, for a state s that has a dead end successor
in γ(s, π(s)), the action corresponding to π(s) is removed from Applicable(s); if s has no
other applicable action then s is in turn labeled a dead end, otherwise Bellman-Update(s)
is performed, which redefines π(s).

AO∗ on an acyclic search space terminates with a solution. When V0 is admissible, V (s)
remains admissible; at termination the found solution π is optimal and V (s0) is its cost.
We finally note that an efficient implementation of AO∗ may require a few incremental



bookkeeping and simplifications. One consists in changing Z after the update of s only
if V (s) has changed. Another is to label solved states to avoid revisiting them. Because
the space is acyclic, a state s is solved if it is either a goal or if all the successors of s in
γ(s, π(s)) after an update are solved.
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Figure 6.6: Example of an acyclic search space.

Example 6.23. Consider the domain in Figure 6.6, which has 17 states, s0 to s16 and three
actions a, b, and c. Connectors are labeled by the action name and cost; we assume uniform
probability distributions. Let us take V0(s) = mina{cost(s, a)} and Sg = {s12, s15, s16}.

AO∗ terminates after 10 iterations, which are summarized in Table 6.2. In the first
iteration, V (s0) = min{5 + 2+4

2 , 19 + 15, 12 + 5+9
2 } = 8. In the second iteration, V (s1) =

min{7.5, 24.5, 7}; the update changes V (s0), but not π(s0). Similarly after s2 is expanded.
When s6 is expanded, the updates changes π(s2), π(s1), and π(s0). The latter changes again
successively after s3, s4, and s9 are expanded π(s0) = c. π(s2) changes after s11 then s13 are
expanded. After the last iteration, the update π(s0) = π(s1) = π(s2) = π(s5) = π(s11) = a
and π(s4) = b; the corresponding solution graph has no fringe state; its cost is V (s0) =
26.25.

Only 10 states in this domain are expanded: the interior states s7, s8, s10, and s14 are
not expanded. The algorithm performs in total 31 Bellman updates. In comparison, Value
Iteration terminates after five iterations corresponding to 5 × 17 calls to Bellman-Update.
With a more informed heuristic, the search would have been more focused (see Section 6.3.5
and Section 6.3.5).

Let us now discuss best first search for a cyclic search space, for which updates cannot
be based on a bottom-up stage-by-stage procedure. LAO∗ handle this general case. It
corresponds to Algorithm 6.8 where step (ii) is replaced by a call to LAO-Update(s). The



Table 6.2: Iterations of AO∗ on the example of Figure 6.6: expanded state, sequence of
updated states, value, and policy in s0 after the update.

s V (s) π(s) Updated states π(s2) π(s1) π(s0) V (s0)

s0 8 a a 8

s1 7 c s0 c a 10.5

s2 9 b s0 b c a 13

s6 25 a s2, s1, s0 a a c 19

s3 11.5 b s0 a a a 21.75

s4 6 b s1, s0 a a c 22.25

s9 21.5 a s3, s0 a a a 22.5

s5 7 a s1, s0 a a a 23.5

s11 10 a s4, s5, s2, s1, s0 b a a 25.75

s13 47.5 a s6, s2, s1, s0 a a a 26.25

latter (Algorithm 6.10) performs a VI-like series of repeated updates that are limited to the
states on which the expansion of s may have an effect. This is the set Z of s and all its
ancestors along current π. Again, Z is not limited to γ̂(s0, π).

LAO-Update(s)
Z ← {s} ∪ {s′ ∈ Envelope | s ∈ γ̂(s′, π)}
iterate until termination condition
∀s ∈ Z do

Bellman-Update(s)

Algorithm 6.10: A “VI-like” update for LAO∗.

LAO-Update is akin to an asyncronous VI focused by current π. However, an update may
change current π, which may introduce new fringe states. Consequently, the termination
condition of LAO-Update is the following: either an update introduces new fringe states in
γ̂(s0, π) or the residual ≤ η over all updated states.

The preceding pseudo-code terminates with a solution but no guarantee of its optimality.
However, if the heuristic V0 is admissible, then the bounds of Proposition 6.17 apply. A
procedure such as GAP (Algorithm 6.6) can be used to find a solution with a guaranteed
approximation.

Explicit dead ends can be handled with the dummy action adeadend and the management
of loops. If the current π is unsafe then the updates will necessarily change that current
policy, as discussed in the previous section. When there is no dead end, it is possible
to implement LAO-Update using a Policy Iteration procedure, but this was not found as
efficient as the VI-like procedure presented here.

LAO∗ is an instance of the Find&Revise schema (see Exercise 6.10). On an SSP problem
with a safe solution and an admissible heuristic V0, LAO

∗ is guaranteed to terminate and
to return a safe and asymptotically optimal solution.

The main heuristic function for driving LAO∗ is V0 (see Section 6.3.5). Several additional
heuristics have been proposed for selecting a fringe state in current γ̂(s0, π) to be expanded.
Examples include choosing the fringe state whose estimated probability of being reached
from s0 is the highest, or the one with the lowest V (s). These secondary heuristics do
not change the efficiency of LAO∗ significantly. A strategy of delayed updates and multiple
expansions was found to be more effective. The idea here is to expand in each iteration
several fringe states in γ̂(s0, π) before calling LAO-Update on the union of their predecessors
in γ̂(s0, π). Indeed, an expansion is a much simpler step than an update by LAO-Update.



It is beneficial to perform updates less frequently and on more expanded solution graphs.

ILAO∗ (Σ, s0, g, V0)
Envelope ← {s0}
while γ̂(s0, π) has fringe states do

for each s visited in a depth-first post-order traversal of γ̂(s0, π) do
unless s has already been visited in this traversal do

if s is a fringe then expand s
Bellman-Update(s)

perform VI on γ̂(s0, π) until termination condition

Algorithm 6.11: ILAO∗, a variant of LAO∗, a best-first search algorithm for cyclic domains.

A variant of LAO∗ (Algorithm 6.11) takes this idea to the extreme. It expands all
fringe states and updates all states met in a post-order traversal of current γ̂(s0, π) (the
traversal marks states already visited to avoid getting into a loop). It then calls VI on
γ̂(s0, π) with the termination condition discussed earlier. The while loop is pursued unless
VI terminates with residual ≤ η. Again, a procedure like GAP is needed to provided a
guaranteed approximation.

Like AO∗, LAO∗ can be improved by labelling solved states. This will be illustrated next
with depth-first search.

6.3.3 Depth-First Search

A direct instance of the Find&Revise schema is given by the HDP algorithm (for Heuristic
Dynamic Programming). HDP performs the Find step by a depth-first traversal of the cur-
rent solution graph γ̂(s0, π) until finding an open state, which is then revised. Furthermore,
HDP uses this depth-first traversal for finding and labeling solved states: if s is solved, the
entire graph γ̂(s, π) is solved and does not need to be searched anymore.

The identification of solved states relies on the notion of strongly connected components
of a graph. HDP uses an adapted version of Tarjan’s algorithm for detecting these compo-
nents (see Appendix B and Algorithm B.1). The graph of interest here is γ̂(s0, π). Let C
be a strongly connected component of this graph. Let us define a component C as being
solved when every state s ∈ C is solved.

Proposition 6.24. A strongly connected component C of the current graph γ̂(s0, π) is
solved if and only if C has no open state and every other component C ′ reachable from a
state in C is solved.

Proof. The proof follows from the fact that the strongly connected components of a graph
define a partition of its vertices into a DAG (see Appendix B). If C meets the conditions
of the proposition, then ∀s ∈ C γ̂(s, π) has no open state, hence s is solved.

HDP(s)
if s ∈ Sg then label s solved
if s is solved then return false
else if (residual(s) > η) ∨ Solved-SCC(s, false) then do

Bellman-Update(s)
return true

Algorithm 6.12: A heuristic depth-first search algorithm for SSPs.

HDP (Algorithm 6.12) is indirectly recursive through a call to Solved-SCC, a slightly
modified version of Tarjan’s algorithm. HDP labels goal states and stops at any solved



state. It updates an open state, or it calls Solved-SCC on a state s whose residual ≤ η to
check whether this state and its descendant in the current solution graph are solved and to
label them. Note that the disjunction produces a recursive call only when its first clause is
false. HDP and Solved-SCC returns a binary value that is true if and only if s or one of its
descendants has been updated.

Procedure Solved-SCC (Algorithm 6.13) finds strongly connected components and labels
them as solved if they meet the conditions of Proposition 6.24. It is very close to Tarjan’s
algorithm. It has a second argument that stands for a binary flag, true when s or one of its
descendant has been updated. Its differences with the original algorithm are the following.
In step (i) the recursion is through calls to HDP, while maintaining the updated flag. In
step (ii), the test for a strongly connected component is performed only if no update took
place below s. When the conjunction holds, then s and all states below s in the depth-
first traversal tree make a strongly connected component C and are not open. Further, all
strongly connected components reachable from these states have already been labeled as
solved. Hence, states in C are solved (see details in Appendix B).

Solved-SCC(s, updated)
index(s)←low(s)← i
i← i+ 1
push(s,stack)
for all s′ ∈ γ(s, π(s)) do

if index(s′) is undefined than do
updated← HDP(s′) ∨ updated (i)
low(s)← min{low(s), low(s′}

else if s′ is in stack then low(s)← min{low(s), low(s′}
if (¬ updated) ∧ (index(s)=low(s)) then do (ii)

repeat
s′ ← pop(stack)
label s′ solved

until s′ = s
return updated

Algorithm 6.13: Procedure for labelling strongly connected components.

Procedure HDP is repeatedly called on s0 until it returns false, that is, until s0 is
solved. Appropriate reinitialization of the data structures needed by Tarjan algorithm
(i ← 0, stack ← ∅ and index undefined for states in the Envelope) have to be performed
before each call to HDP(s0). Finally, for the sake of simplicity, this pseudocode does not
differentiate a fringe state from other open states: expansion of fringe states (over all its
successors for all applicable actions) is simply performed in HDP as an update step.

HDP inherits of the properties of Find&Revise: with an admissible heuristic V0, it con-
verges asymptotically with η to the optimal solution; when V0 is also monotone, its com-
plexity is bounded by 1/η

∑
S [V

∗(s)− V0(s)].

6.3.4 Iterative Deepening Search

While best-first search for SSPs relied on a generalization of A∗ to And/Or graphs, iterative
deepening search relies on an extension of the IDA∗ algorithm.

IDA∗ (Iterative Deepening A∗) proceeds by repeated depth-first, heuristically guided
explorations of a deterministic search space. Each iteration goes deeper than the previous
one and, possibly, improves the heuristic estimates. Iterations are pursued until finding an
optimal path. The extension of IDA∗ to And/Or graphs is called LDFS; it also performs
repeated depth-first traversals where each traversal defines a graph instead of a path.



LDFSa(s)
if s ∈ Sg then label s solved
if s is solved return true
updated ← true
iterate over a ∈ Applicable(s) and while (updated) (i)

if |V (s)− [cost(s, a) +
∑

s′∈γ(s,a) Pr(s
′|s, a)V (s′)]| ≤ η then do (ii)

updated ← false
for each s′ ∈ γ(s, a) do (iii)

updated← LDFSa(s
′) ∨ updated

if updated then Bellman-Update(s)
else do
π(s)← a
label s solved

return updated

Algorithm 6.14: Algorithm LDFSa.

We first present a simpler version of LDFS called LDFSa (Algorithm 6.14), which handles
only acyclic SSPs. LDFSa does a recursive depth-first traversal of the current γ̂(s0, π). A
traversal expands fringe states, updates open states, and labels as solved states that do not,
and will not in the future, require updating. LDFSa(s0) is called repeatedly until it returns
s0 as solved.

In an acyclic SSP, a state s is solved when either it is a goal or when its residual(s) ≤ η
and all its successors in γ(s, π) are solved. This is expressed in line (ii) for the current
action a of iteration (i).

Iteration (i) skips actions that do not meet the preceding inequality. It proceeds re-
cursively on successor states for an action a that meets this inequality. If these recursions
returns false for all the successors in γ(s, a), then updated=false at the end of the inner
loop (iii); iteration (i) stops and s is labeled as solved. If no action in s meets inequality
(ii) or if the recursion returns true on some descendant, then s is updated. This update is
propagated back in the sequence of recursive calls through the returned value of updated.
This leads to updating the predecessors of s, improving their values V (s).

Due to the test on the updated flag, (i) does not run over all applicable actions; hence
LDFSa performs partial expansions of fringe states. However, when a state is updated, all its
applicable actions have been tried in (i). Furthermore, the updates are also back-propagated
partially, only within the current solution graph. Finally, states labeled as solved will not
be explored in future traversals.

LDFS extends LDFSa to SSPs with cyclic safe solutions. This is done by handling cycles
in a depth-first traversal, as seen in HDP. Cycles are tested along each depth-first traversal
by checking that no state is visited twice. Recognizing solved states for cyclic solutions
is performed by integrating to LDFS a book-keeping mechanism similar to the Solved-SCC
procedure presented in the previous section. This integration is, however, less direct than
with HDP.

Let us outline how LDFS compares to HDP. A recursion in HDP proceeds along a single
action, which is π(s), the current best one. LDFS examines all a ∈ Applicable(s) until it
finds an action a that meets the condition (ii) of Algorithm 6.14, and such that there is no
s′ ∈ γ(s, a), which is updated in a recursive call. At this point, updated=false: iteration (i)
stops. If no such action exists, then residual(s) > η and both procedures LDFS and HDP
perform a normal Bellman-update. Partial empirical tests show that LDFS is generally, but
not systematically, faster than HDP.

LDFS is an instance of the Find&Revise schema. It inherits its convergence and complex-
ity properties, including the bound on the number of trials when used with an admissible



and monotone heuristic.

6.3.5 Heuristics and Search Control

As for all search problems, heuristics play a critical role in scaling up probabilistic planning
algorithms. Domain-specific heuristics and control knowledge draw from a priori infor-
mation that is not explicit in the formal representation of the domain. For example, in
a stochastic navigation problem where traversal properties of the map are uncertain (for
example, as in the Canadian Traveller Problem [455]), the usual Euclidian distance can
provide a lower bound of the cost from a state to the goal. Domain-specific heuristics can
be very informative, but it can be difficult to acquire them from domain experts, estimate
their parameters, and prove their properties. Domain-independent heuristics do not re-
quire additional knowledge specification but are often less informative. A good strategy is
to combine both, relying more and more on domain-specific heuristics when they can be
acquired and tuned. Let us discuss here a few domain-independent heuristics and how to
make use of a priori control knowledge.

Heuristics. A straightforward simplification of Equation 6.4 gives:

V0(s) =

{
0 if s ∈ g,
mina{cost(s, a)} otherwise.

V0 is admissible and monotone. When |Applicable(s)| and |γ(s, a)| are small, one may
perform a Bellman update in s and use the following function V1 instead of V0:

V1(s) =

{
0 if s ∈ g,
mina{cost(s, a) +

∑
s′∈γ(s,a) Pr(s

′|s, a)V0(s′)} otherwise.

V1 is admissible and monotone. So is the simpler variant heuristic V ′
1(s) = mina{cost(s, a)+

mins′∈γ(s,a) V0(s
′)} for non-goal states, because mins′∈γ(s,a) V0(s

′) ≤
∑

s′∈γ(s,a) Pr(s
′|s, a)V0(s′).

More informed heuristics rely on a relaxation of the search space. A widely used relax-
ation is the so-called determinization, which transforms each probabilistic action into a few
deterministic ones (as seen in Section 5.5).

We can map a nondeterministic domain Σ = (S,A, γ) into a deterministic one Σd =
(S,Ad, γd) with the following property: ∀s ∈ S, a ∈ A, s′ ∈ γ(s, a), ∃a′ ∈ Ad with
s′ = γd(s, a

′) and cost(s, a′) = cost(s, a). In other words, Σd contains a deterministic
action for each nondeterministic outcome of an action in Σ. This is the all-outcomes de-
terminization, as opposed to the most-probable outcomes determinization. In the latter, Ad

contains deterministic actions only for states s′ ∈ γ(s, a) such that Pr(s′|s, a) is above some
threshold. For SSPs in factorized representation, it is straightforward to obtain Σd from Σ.

Let h∗(s) be the cost of an optimal path from s to a goal in the all-outcomes deter-
minization Σd, with h

∗(s) = ∞ when s is a dead end, implicit or explicit. It is simple to
prove that h∗ is an admissible and monotone heuristic for Σ. But h∗ can be computationally
expensive, in particular for detecting implicit dead ends. Fortunately, heuristics for Σd are
also useful for Σ.

Proposition 6.25. Every admissible heuristic for Σd is admissible for Σ.

Proof. Let σ = ⟨s, s1, . . . , sg⟩ be an optimal path in Σd from s to a goal; its cost is h∗(s).
Clearly σ is also a possible sequence of state in Σ from s to a goal with a non null probability.
No other such a history has a strictly lower cost than h∗(s). Hence, h∗(s) is a lower bound
on V ∗(s), the expected optimal cost over all such histories. Let h(s) be any admissible
heuristics for Σd: h(s) ≤ h∗(s) ≤ V ∗(s).



Hence, the techniques discussed in Section 2.3 for defining admissible heuristics, such
as hmax, are applicable in probabilistic domains. Further, informative but non admissi-
ble heuristics in deterministic domains, such as hadd, have also been found informative in
probabilistic domains when transposed from Σd to Σ.

Control knowledge in probabilistic planning. The idea here is to express a domain
specific knowledge, which allows us to focus the search in each state s on a subset of
applicable actions in s. Let us denote this subset: Focus(s,K) ⊆ Applicable(s), where
K is the control knowledge applicable in s. Convenient approaches allow to compute K
incrementally, for example, with a function Progress such that K′ ← Progress(s, a,K). In
control formula methods, K is a set of control formula, Focus(s,K) are the applicable actions
that meet these formula, and Progress allows to compute the Focus for a successor of s and
a. In HTN, K is the current task network, Focus(s,K) are first primitive actions in totally
ordered decompositions of K, and Progress(s, a,K) is the next step in the decomposition of
K. A forward search deterministic planning algorithm embeds one of these approaches to
focus the possible choices of the next action, hence reducing its branching factor.

Two ingredients are needed to transpose these approaches to probabilistic planning:
(i) a forward-search algorithm, and (ii) a representation and techniques for computing
Focus(s,K) and Progress(s, a,K) for nondeterministic actions. The latter can be obtained
from Σd, the determinized version of a domain. Regarding the former, we already mentioned
a Forward Value Iteration variant of VI; most instances of the Find&Revise schema, including
best-first and depth-first, perform a forward search. These control methods can even be
applied to online and anytime lookahead algorithms discussed in the next section. They
can be very powerful in speeding up a search, but they evidently reduce its convergence
(for example, to safe and optimal solution) with respect to the actions that remain in the
Focus subset.

6.4 Online Probabilistic Approaches

In probabilistic domains, as in many other cases, the methodology of finding a complete plan
then acting according to that plan is often not feasible nor desirable. It is not feasible for
complexity reasons in large domains, that is, a few dozens ground state variables. Even with
good heuristics, algorithms seen in Section 6.3 cannot always address large domains, unless
the designer is able to carefully engineer and decompose the domain. Even memorizing a
safe policy as a table lookup in a large domain is by itself challenging to current techniques
(that is, decision diagrams and symbolic representations). However, a large policy contains
necessarily many states that have a very low a priori probability of being reached, for
example, lower than the probability of unexpected events not modeled in Σ. These highly
improbable states may not justify being searched, unless they are highly critical. They can
be further explored if they are reached or become likely to be reached while acting.

Furthermore, even when heuristic planning techniques do scale up, acting is usually
time-constrained. A trade-off between the quality of a solution and its computing time if
often desirable, for example, there is no need to improve the quality of an approximate
solution if the cost of finding this improvement exceeds its benefits. Such a trade-off can
be achieved with an online anytime algorithm that computes a rough solution quickly and
improves it when given more time.

Finally, the domain model is seldom precise and complete enough to allow for reliable
long-term plans. Shorter lookaheads with progressive reassessments of the context are often
more robust. This is often implemented in a receding horizon scheme, which consists in
planning for h steps towards the goal, performing one or a few actions according to the
found plan, then replanning further.

This section presents a few techniques that perform online lookaheads and permit to



interleave planning and acting in probabilistic domains. These techniques are based on a
general schema, discussed next.

6.4.1 Lookahead Methods

Lookahead methods allow an actor to progressively elaborate its deliberation while acting,
using a procedure such as Run-Lookahead, Algorithm 6.15. Instead of using an a priori de-
fined policy, this procedure calls a bounded lookahead planning step. Procedure Lookahead
searches for a partial plan rooted at s. It computes partially π, at least in s, and returns
the corresponding action. A context-dependent vector of parameters θ gives bounds for the
lookahead search. For example, θ may specify the depth of the lookahead, its maximum
processing time, or a real-time interruption mechanism corresponding to an acting dead-
line. The simple pseudo-code below can be extended when Lookahead fails by retrying with
another θ.

Run-Lookahead(Σ, s0, Sg)
s← s0
while s /∈ Sg and Applicable(s) ̸= ∅ do
a←Lookahead(s, θ)
if a = failure then return failure
else do

perform action a
s← observe resulting state

Algorithm 6.15: Acting with the guidance of lookahead search.

Generative model. The comparison of Run-Lookahead with Run-Policy (Algorithm 6.1)
shows that their sole difference is in the substitution of π(s) in the latter by a call to
Lookahead in the former. Both require in general further refinement to apply an action (see
Section 6.5). Working with a progressively generated policy, defined when and where it is
needed, makes it possible to address the concerns mentioned earlier of interleaving planning
and acting, while dealing with complexity and partial domain knowledge.

Further, a full definition of γ(s, a) for all a ∈ Applicable(s) is not necessary to a partial
exploration. Several partial exploration techniques rely on sampling methods. They search
only one or a few random outcomes in γ(s, a) over a few actions in Applicable(s).

Definition 6.26. A generative sampling model of a domain Σ = (S,A, γ,Pr, cost) is a
stochastic function, denoted Sample: S ×A→ S, where Sample(s, a) is a state s′ randomly
drawn in γ(s, a) according to the distribution Pr(s′|s, a).

In addition to s′, Sample may also return the cost of the transition from s to s′. A
planning algorithm interfaced with such a Sample function does not need a priori estimates
of the probability and cost distributions of a domain Σ. A domain simulator is generally
the way to implement the function Sample.

Approaches and properties of Lookahead. One possible option is to memorize the
search space explored progressively: each call to Lookahead relies on knowledge acquired
from previous calls; its outcome augments this knowledge. As an alternatie to this memory-
based approach, a memoryless strategy would start with a fresh look at the domain in each
call to Lookahead. The choice between the two options depends on how stationary the
domain is, how often an actor may reuse its past knowledge, how easy it is to maintain this
knowledge, and how this can help improve the behavior.



The advantages of partial lookahead come naturally with a drawback, which is the lack of
a guarantee on the optimality and safety of the solution. Indeed, it is not possible in general
to choose π(s) with a bounded lookahead while being sure that it is optimal, and, if the
domain has dead ends, that there is no dead end descendant in γ̂(s, π). Finding whether
a state s is unsafe may require in the worst case a full exploration of the search space
starting at s. In the bounded lookahead approach, optimality and safety are replaced by a
requirement of bounds on the distance to the optimum and on the probability of reaching
the goal. In the memory-based approaches, one may also seek asymptotic convergence to
safe and/or optimal solutions.

Three approaches to the design of a Lookahead procedure are presented next:

• domain determinization and replanning with deterministic search,

• stochastic simulation, and

• sparse sampling and Monte Carlo planning techniques.

The last two approaches are interfaced with a generative sampling model of Σ using a Sample
function: they do not need a priori specification of probability and cost distributions. The
third one is also memoryless; it is typically used in a receding horizon scheme. However,
many algorithms implementing these approaches can be used for offline planning as well
as in the online interleaved planning and acting framework presented here: their control
parameters allow for a continuum from the computation of a greedy policy computed at
each state to a full exploration and definition of π(s0).

6.4.2 Lookahead with Deterministic Search

In Section 5.6.2, we introduced FS-Replan, a lookahead algorithm using repeated determin-
istic planning. The approach simply generates a path πd from the current state to a goal
for the all-outcomes determinized domain using some deterministic planner, then it acts
using πd until reaching a state s that is not in the domain of πd. At that point FS-Replan
generates a new deterministic plan starting at s.

This approach can also be applied to probabilistic domains. Note, however, that FS-
Replan does not cope adequately with dead ends: even if the deterministic planner is com-
plete and finds a path to the goal when there is one, executing that path may lead along a
nondeterministic branch to an unsafe state.

RFF (Algorithm 6.16) relies, as FS-Replan does, on a deterministic planner, called Det-
Plan, to find in Σd an acyclic path from a state to a goal. Procedure Det-Plan returns
such a path as a policy. RFF improves over FS-Replan by memorizing previously generated
deterministic paths and extending them for states that have a high reachability probability.
RFF can be used as an offline planner as well as an online Lookahead procedure, possibly
with additional control parameters.

RFF(Σ, s0, Sg, θ)
π ← Det-Plan(Σd, s0, Sg)
while ∃s ∈ γ̂(s0, π) such that

s /∈ Sg ∧ π(s) is undefined ∧Pr(s|s0, π) ≥ θ then do
π ← π ∪ Det-Plan(Σd, s, Sg ∪ Targets(π, s))

Algorithm 6.16: A determinization planning algorithm.

RRF initializes the policy π with the pairs (state, action) corresponding to a deterministic
plan from s0 to a goal, then it extends π. It looks for a fringe state along a nondeterministic
branch of that policy, that is, a state s reachable from s0 with current π that is not a goal
and for which π is undefined. If the probability of reaching s is above some threshold θ,
RFF extends π with another deterministic path from s to a goal or to another state already



in the domain of π. The set of additional goals given to Det-Plan, denoted Targets(π, s),
can be the already computed Dom(π) or any subset of it. If the entire Dom(π) is too large,
the overhead of using it in Det-Plan can be larger than the benefit of reusing paths already
planned in π. A trade-off reduces Targets(π, s) to k states already in the domain of π. These
can be taken randomly in Dom(π) or chosen according to some easily computed criterion.

Computing Pr(s|s0, π) can be time-consuming (a search and a sum over all paths from
s0 to s with π). This probability can be estimated by sampling. A number of paths starting
at s0 following π are sampled; this allows estimation of the frequency of reaching non-goal
states that are not in the domain of π. RFF terminates when this frequency is lower than
θ.

Algorithm 6.16 requires (as FS-Replan does) a domain without reachable dead ends.
However, RFF can be extended to domains with avoidable dead ends, that is, where s0
is safe. This is achieved by introducing a backtrack point in a state s which is either an
explicit deadend or for which Det-Plan fails. That state is marked as unsafe; a new search
starting from its predecessor s′ is attempted to change π(s′) and avoid the previously failed
action.

RFF algorithm does not attempt to find an optimal or near optimal solution. However,
the offline version of RFF finds a probabilistically safe solution, in the sense that the prob-
ability of reaching a state not in the domain of π, either safe or unsafe, is upper bounded
by θ.

6.4.3 Stochastic Simulation Techniques

The techniques in this section use a generative sampling model of the domain Σ through a
function Sample. The idea is to run simulated walks from s0 to a goal along best current
actions by sampling one outcome for each action. Algorithms implementing this idea are
inspired from LRTA∗ [349]. They can be implemented as offline planners as well as online
Lookahead procedures.

One such algorithm, called RTDP, runs a series of simulated trials starting at s0. A trial
performs a Bellman update on the current state, then it proceeds to a randomly selected
successor state along the current action π(s), that is, from s to some random s′ ∈ γ(s, π(s)).
A trial finishes when reaching a goal. The series of trials is pursued until either the residual
condition is met, which reveals near convergence, as in Find&Revise, or the amount of time
for planning is over. At that point, the best action in s0 is returned. With these assumptions
RTDP is an anytime algorithm.

If a goal is reachable from every state in the search space and if the heuristic V0 is
admissible then every trial reaches a goal in a finite number of steps and improves the values
of the visited states over the previous values. Hence, RTDP converges asymptotically to
V ∗, but not in a bounded number of trials. Note that these assumptions are stronger than
the existence of a safe policy.

Algorithm 6.17, LRTDP (for Labelled RTDP), improves over RTDP by explicitly checking
and labeling solved states. LRTDP avoids visiting solved states twice. It calls LTRDP-
Trial(s0) repeatedly until planning time is over or s0 is solved. A trial is a simulated walk
along current best actions, which stops when reaching a solved state. A state s visited along
a trial is pushed in a stack visited; when needed, it is expanded and Bellman updated. The
trial is pursued on a randomly generated successor of s: the procedure Sample(s, a) returns
a state in γ(s, π(s)) randomly drawn according to the distribution Pr(s′|s, π(s)).

The states visited along a trial are checked in LIFO order using the procedure Check-
Solved (Algorithm 6.18) to label them as solved or to update them. Check-Solved(s) searches
through γ̂(s, π) looking for a state whose residual is greater than the error margin η. If it
does not find such a state (flag = true), then there is no open state in γ̂(s, π). In that case
it labels as solved s and its descendants in γ̂(s, π) (kept in the closed list). Otherwise, there
are open states in γ̂(s, π). The procedure does not explore further down the successors of



LRTDP(Σ, s0, g, V0)
until s0 is solved or planning time is over do

LRTDP-Trial(s0)

LRTDP-Trial(s)
visited← empty stack
while s is unsolved do

push(s, visited)
Bellman-Update(s)
s← Sample(s, π(s))

s←pop(visited)
while Check-Solved(s) is true and visited is not empty do
s←pop(visited)

Algorithm 6.17: Algorithm LRTDP.

Check-Solved(s)
flag ← true
open← closed← empty stack
if s is unsolved then push(s, open)
while open is not empty do
s← pop(open)
push(s, closed)
if |V (s)−Q(s, π(s))| > η then flag ← false
else for all s′ ∈ γ(s, π(s)) do

if s′ is unsolved and s′ /∈ open ∪ closed
then push(s′, open)

if flag= true then do
for all s′ ∈ closed label s′ as solved (i)

else do
while closed is not empty do
s← pop(closed)
Bellman-Update(s)

return flag

Algorithm 6.18: Procedure to check and label solve states for LRTDP.

an open state (the residual of which is larger than η), but it continues on its siblings.

When all the descendants of s whose residual is less or equal to η have been examined
(in that case open = ∅), the procedure tests the resulting flag. If s is not yet solved (that
is, flag = false), a Bellman update is performed on all states collected in closed. Cycles in
the Envelope are taken care of (with the test s′ /∈ open∪ closed): the search is not pursued
down on successor states that have already been met. The complexity of Check-Solved(s)
is linear in the size of the Envelope, which may be exponential in the size of the problem
description.

Note that by definition, goal states are solved; hence the test “s is unsolved” in the two
preceding procedures checks the explicit labeling performed by Check-Solved (labeling step)
as well as the goal condition.

If a goal is reachable from every state and V0 is admissible, then LRTDP-Trial always
terminates in a finite number of steps. Furthermore, if the heuristic V0 is admissible and
monotone, then the successive values of V with Bellmann updates are nondecreasing. Under
these assumptions, each call to Check-Solved(s) either labels s as solved or increases the value
of some of its successors by at least η while decreasing the value of none. This leads to the



same complexity bound as VI:

Proposition 6.27. LRTDP with an admissible and monotone heuristic on a problem where
a goal is reachable from every state converges in a number of trials bounded by 1/η

∑
S [V

∗(s)−
V0(s)].

This bound is mainly of theoretical interest. Of more practical value is the anytime
property of LRTDP: the algorithm produces a good solution that it can improve if given
more time or in successive calls in Run-Lookahead. Because Sample returns states according
to their probability distribution, the algorithm converges on (that is, solves) frequent states
faster than on less probable ones. As an offline planner (that is, repeated trials until s0 is
solved), its practical performances are comparable to those of the other heuristic algorithms
presented earlier.

6.4.4 Sparse Sampling and Monte Carlo Search

This section also relies on a generative sampling model of the domain Σ through a function
Sample. The stochastic simulation approach of the previous section can be extended and
used in many ways, in particular with the bounded walks and sampling strategies discussed
here.

Let π0 be an arbitrary policy that is used at initialization, for example, π0(s) is the
greedy policy, locally computed when needed, π0(s) = argminaQ

V0(s, a) for some heuristic
V0. If the actor has no time for planning, then π0(s) is the default action. If it can afford
some lookahead, then an easy way of improving π0 in s is the following.

Monte Carlo Rollout. Let us use the Sample procedure to simulate a bounded walk of
h steps whose first step is an action a and the remaining h−1 steps follow the initial policy
π0. Let σ

h
π0
(s, a) = ⟨s, s1, s2, . . . , sh⟩ be the sequence of states visited during this walk, with

s1 ∈ γ(s, a) and si+1 ∈ γ(si, π0(si)). This history σhπ0
(s, a) is called a rollout for a in s with

π0. The sum of the costs of this rollout is:

Qh
π0
(s, a) = cost(s, a) + V0(sh) +

h−1∑
i=1

cost(si, π0(si)) , over si in σ
h
π0
(s, a).

Let us perform a rollout for every action applicable in s, as depicted in Figure 6.7(a), and
let us define a new policy:

π(s) = argminaQ
h
π0
(s, a).

The simple argument used for Proposition 6.9 applies here: policy π dominates the base
policy π0.

The multiple rollout approach performs k similar simulated walks of h steps for each
action a applicable in s. (see Figure 6.7(b)). It then averages their costs to assess Qh

π0
(s, a).

This approach is probabilistically approximately correct, that is, it provides a probabilistically
safe solution (not guaranteed to be safe) whose distance to the optimum is bounded. It
requires a number of calls to Sample equal to |Applicable(s)| × k × h.

Sparse Sampling. The sparse sampling technique performs bounded multiple rollouts in
s and in each of its descendants reached by these rollouts. It is illustrated by the procedure
SLATE (Algorithm 6.19).

SLATE builds recursively a tree in which nodes are states; arcs correspond to transitions
to successor states, which are randomly sampled. Two parameters h and k bound the tree,
respectively in depth and sampling width (see Figure 6.8). At depth h, a leaf of the tree
gets as a value a heuristic estimate given by V0. In an interior state s and for each action a
applicable in s, k successors are randomly sampled. The average of their estimated values
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Figure 6.7: (a) Single Monte Carlo rollout; (b) Multiple rollout.

SLATE(s, h, k)
if h = 0 then return V0(s)
if s ∈ Sg then return 0
for each a ∈ Applicable(s) do

samples ← ∅
repeat k times

samples← samples ∪ Sample(Σ, s, a)
Q(s, a)← cost(s, a) + 1

k

∑
s′∈samples SLATE(s

′, h− 1, k)

π(s)← argmina{Q(s, a)}
return Q(s, π(s))

Algorithm 6.19: Sampling lookahead Tree to Estimate.

is used to compute recursively the cost-to-go Q(a, s). The minimum over all actions in
Applicable(s) gives π(s) and V (s), as in Bellman-Update.

Assuming that a goal is reachable from every state, SLATE has the following properties:

• It defines a near-optimal policy: the difference |V (s) − V ∗(s)| can be bounded as a
function of h and k.

• It runs in a worst-case complexity independent of |S|, in O((αk)h), where α =
max |Applicable(s)|.

• As a Monte Carlo rollout, it does not require probability distribution parameters:
calls to Sample(Σ, s, a) return states in γ(s, a) distributed according the Pr(s′|s, a),
which allows to estimate Q(s, a).

Note the differences between SLATE and the multiple rollouts approach: the latter
is polynomial in h, but its approximation is probabilistic. SLATE provides a guaranteed
approximation, but it is exponential in h. More precisely, SLATE returns a solution whose
distance to the optimal policy is upper bounded |V (s)− V ∗(s)| < ϵ ; it runs in O(ϵlogϵ).

A few improvements can be brought to this procedure. One may reduce the sampling
rate with the depth of the state: the deeper is a state, the less influence it has on the cost-
to-go of the root. Further, samples can implemented as a set with counters on its elements
such as to perform a single recursive call on a successor s′ of s that is sampled more than
once. Note that the sampling width k can be chosen independently of |γ(s, a)|. However,
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Figure 6.8: Sparse sampling tree of procedure SLATE.

when k > |γ(s, a)|, further simplifications can be introduced, in particular for deterministic
actions. Finally, it is easy to refine SLATE into an anytime algorithm: an iterative deepening
scheme with caching increases the horizon h until acting time (see Exercise 6.16).

UCT and Monte Carlo Tree Search. SLATE has an important limitation: it has no
sampling strategy. All actions in Applicable(s) are looped through and explored in the same
way. A sampling strategy would allow to further explore a promising action and would prune
out rapidly inferior options, but no action should be left untried. A sampling strategy seeks
a trade-off between the number of times an action a has been sampled in s and the value
Q(s, a). This trade-off is used to guarantee with high probability an approximate solution
while minimizing the search.

UCT(s, h)
if s ∈ Sg then return 0
if h = 0 then return V0(s)
if s /∈ Envelope then do

add s to Envelope
n(s)← 0
for all a ∈ Applicable(s) do
Q(s, a)← 0; n(s, a)← 0

Untried← {a ∈ Applicable(s) | n(s, a) = 0}
if Untried ̸= ∅ then ã← Choose(Untried)

else ã← argmina∈Applicable(s){Q(s, a)− C × [log(n(s))/n(s, a)]
1
2 }

s′ ← Sample(Σ, s, ã)
cost-rollout← cost(s, ã) + UCT(s′, h− 1)
Q(s, ã)← [n(s, ã)×Q(s, ã) + cost-rollout]/(1 + n(s, ã))
n(s)← n(s) + 1
n(s, ã)← n(s, ã) + 1
return cost-rollout

Algorithm 6.20: A recursive UCT procedure.

UCT, Algorithm 6.20, is a Monte Carlo Tree Search technique that builds up such a
sampling strategy. Like SLATE, UCT expands, to a bounded depth, a tree rooted at the



current node. However, it develops this tree in a non-uniform way. At an interior node of
the tree in a state s, it selects a trial action ã with the strategy described subsequently. It
samples a successor s′ of s along ã. It estimates the value of s′, and it uses this estimate to
update Q(s, ã); it also updates the predecessors of s up to the root node, by averaging over
all previously sampled successors in γ(s, ã), as is done in SLATE. The estimate of s′ is done
by a recursive call to UCT on s′ with the cumulative cost of the rollout below s′.

UCT is called repeatedly on a current state s until time has run out. When this happens,
the solution policy in s is given, as in other algorithms, by π(s) = argminaQ(s, a). This
process is repeated on the state observed after performing the action π(s). UCT can be
stopped anytime.

The strategy for selecting trial actions is a trade-off between actions that need further
exploration and actions that appear as promising. A trial action ã in a state s is selected
as follows:

• If there is an action that has not been tried in s, then Choose(Untried) chooses ã as
any such action;

• if all actions have been tried in s, then the trial action is given by ã← argmina{Q(s, a)−
C × [log(n(s))/n(s, a)]1/2}, where n(s, a) is the number of time a has been sampled
in s, n(s) is the total number of samples in that state, and C > 0 is a constant.

The constant C fixes the relative weight of exploration of less sampled actions (when
C is high) to exploitation of promising actions (C low). Its empirical tuning significantly
affects the performance of UCT.

It was shown that the preceding selection strategy minimizes the number of times a
suboptimal action is sampled. UCT can also be proved to converge asymptotically to the
optimal solution.

All approaches described in this Section 6.4.4 can be implemented as memoryless pro-
cedures (in the sense discussed in Section 6.4.1). They are typically used in a receding
horizon Run-Lookahead schema. This simplifies the implementation of the planner, in par-
ticular when the lookahead bounds are not uniform and have to be adapted to the context.
This has another important advantage that we have not discussed up to now: the capability
to generate non-stationary policies, possibly stochastic. Indeed, an actor may find it desir-
able to apply a different action on its second visit to s than on its first. For finite horizon
problems in particular, non-stationary policies can be shown to outperform stationary ones.

6.5 Acting with Probabilistic Models

The considerations discussed earlier (Sections 3.4, 4.5 and 5.7) apply also to probabilistic
domains. In some applications, it is possible to act deliberately using procedures Run-Policy
or Run-Lookahead by relying on a synthesized policy generated offline or with the online
techniques we just saw. However, in most cases, the step “perform action a” in these
procedures is not a primitive command; it requires further context dependent deliberation
and refinement. In other applications, there is no planning per se (the plan is given, or
planning impossible); all the deliberation is at the acting level, possibly with probabilistic
models.

6.5.1 Using Deterministic Methods to Refine Policy Steps

Here we assume that the actor has a policy (a priori defined, or synthesized offline or online),
and that the actor’s refinement models are deterministic at the acting level. This makes
sense when planning has to consider various probabilistic contingencies and events, but
acting in each given context is based on the specifics of that context, as observed at acting
time, and on deterministic models.



Acting in this case can rely on the techniques developed in Chapter 3. Deterministic
refinement methods can be expressed, as seen earlier, and used by an engine such as RAE to
refine each action π(s) into the commands appropriate for the current context. The looka-
head for the choice of refinement methods is also deterministic and based on a procedure
such as SeRPE.

A few extensions to deterministic methods for acting can be desirable when combined
with probabilistic models for planning. Among these, in particular, are the following:

• Acting according to the equivalent of a stochastic policy when needed. For example,
when a refined action π(s) is performed and leads back to the state s, this action may
be performed again with a different refinement. It may even make sense to switch in
s to some action other than π(s).

• Specifying in methods ways to monitor the transition from s to a state in γ(s, π(s)):
because γ is not deterministic, it may not be obvious to decide when current action
π(s) has terminated and which state in γ(s, π(s)) is its outcome.

Note, however, that the preceding features in deterministic refinement methods can be
desirable for acting even when planning does not use probabilistic models.

6.5.2 Acting with Probabilistic Methods

Here we consider the more interesting case in which acting relies on probabilistic models.
As underlined earlier, sensing-actuation loops and retrials are very common at the acting
level (see Example 3.4). The refinement methods introduced earlier embed mechanisms
for expressing rich control structures to adapt acting to the diversity of the environment.
Probabilistic models can be even more convenient for addressing this need, in particular
when coupled with learning techniques to acquire the models.

It is natural to combine refinement methods with probabilistic models. We defined a
refinement method as a triple m = (role, precondition, body). Here, we specify the body of
a method as an SSP problem for a probabilistic model Σ = (S,A, γ,Pr, cost), where A is
the set of commands for that specific methods and S is the acting state space. Refining an
action with a probabilistic method m reduces to two problems:

(i) finding a policy π rooted at the current acting state ξ and

(ii) running π with procedures Run-Policy or Run-Lookahead.

Clearly (i) is a planning problem to which the techniques seen earlier in this chapter
are applicable. Here, S is the acting space, and A is the command space. For problem
(ii), the step “perform action π(s)” in Run-Policy or Run-Lookahead is replaced by “trigger
command π(s),” which is directly executable by the execution platform.

If the probability and cost distributions can be acquired offline and are stable, and if
the computational time remains compatible with acting constraints, planning algorithms
of Section 6.3 can be used to compute an optimal or near optimal policy. However, these
conditions will not often be met. The online lookahead techniques of Section 6.4 are usually
more adapted to acting with probabilistic models. This is particularly the case when a gen-
erative sampling model can be designed. Sampling techniques of the previous section, when
combined with informed heuristics V0, are able to drive efficiently lookahead techniques.
A Sample stochastic function basically allows one to run, to a controlled depth, several
simulations for choosing the next best command to pursue the refinement of an action.

Example 6.28. Consider Example 3.4 of opening a door. We can specify the corresponding
action with a single refinement method, the model of which is partly pictured in Figure 6.9.
For the sake of simplicity, the acting states are simply labeled instead of a full definition
of their state variables, as described in Example 3.4. For example, s2 corresponds to the
case in which a door is closed; in s3, it is cracked; locked and blocked are two failure cases,
while open is the goal state. Furthermore, the figure does not give all applicable actions in



a state, for example, there are several grasps in s2 and s3 (left or right hand, on “T” shaped
or spherical handle) and several turns in s4. Parameter values are also not shown.
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Figure 6.9: Probabilistic model for an open-door method.

Recall that an acting engine not only has to refine actions into commands but also to
react to events. Probabilistic models and techniques are also relevant when the role of a
method is an event instead of a task. Probabilistic methods can be convenient for specifying
reactions to unexpected events.

A natural extension of sampling techniques to guide a refinement acting engine is in
reinforcement learning approaches (see Section 7.3). These have been found more useful
and feasible at the low level of acting in focused situations then at the level of learning
abstract complex tasks. They can be adapted for learning acting refinement methods.

6.6 Representations of Probabilistic Models

The modeling stage of a domain is always critical, in particular with probabilistic models.
It requires good representations. The extreme case is a “flat” representation of an SSP
using a single state variable s that ranges over S. Such a representation requires the
explicit definition of the entire state space, a requirement that is rarely feasible. Structured
representations are exponentially more compact. They allow for the implicit definition of
the ingredients of a domain through a collection of objects, parametrized state variables,
and operators, together with a dense specification of probability and cost distributions,
policies, and value function.

6.6.1 Probabilistic Precondition-Effect Operators

Probabilistic precondition-effect operators are a direct extension of deterministic precondition-
effect operators where the set γ(s, a) and the distribution Pr(s′|s, a) are explicitly given as
possible effects of planning operators, the instances of which are ground actions. Let us
illustrate this representation through a few instances of a domain with increasingly more
elaborate examples.

Example 6.29. Consider a simple service robot domain, called PAMp, with one robot
rbt and four locations {pier1, pier2, exit1, exit2}. At each location, there are containers
of different types. The robot can move between locations; it can take a container from a
location and put it in a location. The motion is deterministic, and the four locations are
pairwise adjacent. Actions take and put are constrained by the activity in the corresponding
location: if it is busy, these actions fail to achieve their intended effect and do nothing. A
location becomes or ceases to be busy randomly with probability p. We model this as an



exogenous event, switch(l), that switches the busy attribute of location l. We assume at this
stage to have a full knowledge of the state of the world. This simple domain is modeled
with the following state variables:

• loc(r) ∈ {pier1, pier2, exit1, exit2}: location of robot r;

• ctrs(l, τ) ∈ {0, 1, . . . , k}: number of containers in location l of some type τ ; we assume
τ ∈ {red,blue};

• load(r) ∈ {red, blue, empty}: type of the container on robot r if any; and

• busy(l) ∈ Boolen.

A typical problem in PAMp is to move red containers from any of the piers to exit1 and blue
ones to exit2.

Even a domain as simple as PAMp can have a huge state space (up to 4× 8k+1× 3× 42,
that is, 1.6 × 1012 for k = 10), forbidding an explicit enumeration or a drawing such as
Figure 6.1. An adequate specification of the actions in the previous example has to take
into account their effects as well as the effects of concurrent exogenous events. Indeed,
recall that nondeterminism accounts for the possible outcomes of an action a when the
world is static, but also for events that may happen in the world while a is taking place
and have an impact on the effects of a. Hence, γ(s, a) represents the set of possible states
corresponding to the joint effects of a and concurrent exogenous events. When the |γ(s, a)|
are not too loarge, probabilistic precondition-effect operators, illustrated next, can be a
convenient representation.

Example 6.30. In PAMp the deterministic effect of action move has to be combined with
the effects of events switch(l) in any of the four locations. These random events are assumed
to be independent. Hence in total |γ(s,move)| = 24. Action move can be written as follow:

move(r : Robots; l,m, l1, l2, l3, l4 : Locations)
pre : loc(r) = l, l1 ̸= l2 ̸= l3 ̸= l4
eff : p0 : loc(r)← m

p1 : loc(r)← m, busy(l1)← ¬busy(l1)
p2 : loc(r)← m, busy(l1)← ¬busy(l1), busy(l2)← ¬busy(l2)
p3 : loc(r)← m, busy(l1)← ¬busy(l1), busy(l2)← ¬busy(l2),

busy(l3)← ¬busy(l3)
p4 : loc(r)← m, busy(l1)← ¬busy(l1), busy(l2)← ¬busy(l2),

busy(l3)← ¬busy(l3), busy(l4)← ¬busy(l4)

pi is the probability that i switch events occur, for i = 0 to 4, that is, p0 = (1 − p)4, p1 =
p × (1 − p)3, p2 = p2 × (1 − p)2, p3 = p3 × (1 − p), and p4 = p4. Note that there are four
possible instances with probability p1, six instances with p2 and four instances to p3, giving:
p0 + 4× p1 + 6× p2 + 4× p3 + p4 = 1.

The take action is similarly specified: when the robot location l is not busy and contains
at least one container of the requested type c, then take may either lead to a state where l is
busy with no other effect, or it may achieve its effects of a container of type τ being loaded
and ctrs(l,c) being reduced by one. For each of these two cases, additional switch events
may occur in any of the three other locations. This is similar for action Put (see Exercises
6.17 and 6.18).

To summarize, the probabilistic precondition-effect operators have preconditions and
effects, as the deterministic operators, but they have as many alternative sets of effects as
possible outcomes. Each alternative effect field is specified with a probability value, which
can be a function of the operator’s parameters.



6.6.2 Dynamic Bayesian Networks

Parameterized probabilistic precondition-effect operators can be quite expressive, but they
require going through all the alternative joint effects of an action and possible exogenous
events and computing their probability. In many cases, it is not easy to factor out a large
γ(s, a) into a few alternative effects, as illustrated earlier. This representation quickly meets
its limits.

Example 6.31. PAMq is a more realistic version of the PAMp domain. It takes into account
the arrival of containers of different types in one of the two piers and their departure from
one of the two exit locations, but it ignores the ship unloading and truck loading operations.
The arrival and departure of containers and their types are considered as exogenous events.
Locations have a maximum capacity of K containers of each type, K being a constant
parameter. When an exit location reaches its maximum capacity for some type then the
robot cannot put additional containers of that type. When a pier is full, no arrival event of
the corresponding type is possible. In addition to the move, take, and put actions and the
switch event seen earlier, we now have two additional events:

• arrival(l): at each state transition, if a pier l is not full and the robot is not at l then
one container may arrive at l with probability q; further, 60% of arrivals in pier1 are
red containers, and 80% are blue in pier2;

• departure(l) : if the robot is not at an exit location l and there are containers there,
then there is a probability q′ that a container may depart from l; only red containers
depart from exit1 and only blue ones depart from exit2.

A typical task for the robot in domain PAMq is to move all red containers to exit1 and all
blue ones to exit2.

With only three exogenous events as in PAMq, the joint effects of action and events
become complex: the size and intricacy of γ(s, a) reaches a point where the specification
of precondition-effect operators is not easy (see Exercise 6.19). Bayesian networks is the
appropriate representation for expressing conditional distributions on random variables.
It offers powerful techniques for reasoning on these distributions. A Bayesian network is a
convenient way for specifying a joint probability function to a collection of random variables.
It is a DAG where nodes are the random variables associated to a priori or conditional
probability distributions. An edge between two random variables x and y expresses a
conditional probability dependance of y with respect to x. Dynamic Bayesian networks
(DBNs) extend the static representation to handle different stages in time of the same
variables. They are particularly convenient in our case for expressing probabilistic state
transitions from s to γ(s, a), with a focus on the state variables relevant for the action a
and the events that may take place concurrently with a. This is illustrated in the following
example.

Example 6.32. Figure 6.10 represents the DBN characterizing action take in PAMq do-
main. It shows the state variables that condition or are affected by take and the events
switch, arrival and departure. If x is a state variable of state s, we denote x′ that same state
variable in s′ ∈ γ(s, a). Here, we extend slightly the ground representation with param-
eterized random variables, for example, busy(l) is a Boolean random variable true when
location l is busy. Note that variable loc(r) conditions take but is not affected by the action
and events: it appears only in the left side of the DBN.

A DBN specifies conditional probability tables that give the distribution over the values
of a variable as a function of the values of its predecessors. Figure 6.10 illustrates such a
table for the simple case of variable busy(l) that has a single predecessor. Note that p in
this table varies in general with l.

When a variable in a DBN has m ground predecessors that range over k values, the
conditional probability table is of size km. This can quickly become a bottleneck for the
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Figure 6.10: A DBN for action take in the domain PAMq.

specification of a DBN. Fortunately, in well-structured domains, conditional probably tables
can be given in a factorized form as decision trees. These decision trees are also convenient
for expressing constraints between instances of the parametrized state variables in the net-
work.
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Figure 6.11: Conditional probability trees for the ctrs state variables for the action take
combined with the possible events switch, arrival, and departure: (a) accounts for the arrival
of a container at a pier location, (b) for a departure at an exit location, and (c) for a
container being taken by the robot.

Example 6.33. Figure 6.11 gives the conditional probabilities for the ctrs variables in
the DBN of Figure 6.10. The leaves of each tree give the probability that the number
of containers of some type at some location increases or decreases by one container (the
probability that this number remains unchanged is the complement to 1). To simplify the
picture, we take p = .05 and q = q′ = .15. Tree (a) accounts for the possible arrival of a
container of some type at a pier location: if the location is full (ctrs(l1, τ1) =K) or if the
robot is in that location (loc(r) = l1), then no container arrival is possible, otherwise there



is a probability of .15× .6 for the arrival of a red container at pier1, and so on. Similarly, tree
(b) accounts for the departure of a container at an exit location. Tree (c) gives the proper
effect of action take: the probability that ctrs changes is conditioned by the five ancestor
variables of that node in the DBN.

In Example 6.31, the interactions between exogenous events and actions are quite sim-
ple: events are independent and have almost no interference with the robot actions. In
applications with more complex probabilistic interferences between the effects of actions
and possible events, the DBN representation is especially needed. It is also convenient for
the modeling of sensing actions, where sensor models must be used to relate sensed features
to values of state variables.

busy(l) busy’(l)

load(r) load’(r)

pos(c) pos’(c)

hue(c)

loc(r)

ctrs(l) ctrs’(l)

Figure 6.12: DBN for action take in domain PAMo.

Example 6.34. Consider PAMo, a variant of the previous domain where the robot does not
have full knowledge of the state of the world. It still knows the exact number of containers in
each location, but it does not know their types. However, it has a perceive action: when the
robot is sensing a container c, perceive(c) gives the value of an observable feature, denoted
hue(c), which is conditionally dependent on the container’s type. To model this domain,
we keep the state variables loc(r), load(r), and busy(l) as earlier; ctrs(l) is now the total
number of containers in l. We further introduce the following variables:

• type(c) ∈ {red, blue}: type of container c,

• pos(c) ∈ {pier1, pier2, exit1, exit2, rbt}: location of container c, and

• hue(c) ∈{a, b, c, d, unknown}: the observed feature of c.

Action perceive(c) can be modeled as requiring the robot to be at the same location as
c and hue(c) to be unknown; its effect is to change the value of hue(c) to a, b, c, or d.
Furthermore, the sensor model gives a conditional probability table of type(c) given hue(c)
(Figure 6.13(a)). Action take(r, l, c) is now conditioned by two additional variables pos(c),
which should be identical to loc(r), and hue(c) that should be not unknown. Figure 6.12
gives a DBN for that action. A conditional probability tree for Prob[load’(r)=red] is in
Figure 6.13(b). It takes into account the probability of the location becoming busy (.95),
as well as the probability of looking at a red container when its observed feature has some
value. Prob[load’(r)=blue] is the complement to one of the numbers in the last four leaves;
it is equal to zero in the other leaves where Prob[load’(r)=empty]=1.

The previous example illustrates two important representation issues:
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Figure 6.13: (a) Conditional probability table for the type of a container given its observed
feature; (b) conditional probability trees for load’(r)=red.

• An observed feature informs probabilistically about the value of a non-observable
variable. A non-observable variable (type(c) in the example) is replaced by a state
variable that can be observed (here hue(c)) and to which the probabilistic planning
and acting models and techniques apply normally.

• The effects of a sensing action can be required (for example, the precondition that
hue(c) ̸= unknown) and planned for, as with any other state transformation action.

6.7 Domain Modeling and Practical Issues

Factored representations, such as those of the previous section, augment the expressiveness
but do not reduce the difficulties of modeling a probabilistic domain. Numerous design
choices remain open. Some of them require alternative models or extensions to the SSP
model discussed so far.

This section briefly surveys some of the issues involved in designing and structuring
probabilistic domains with the SSP and alternative models. It discusses some practical
considerations for solving them with the techniques previously introduced.

6.7.1 Sources of Nondeterminism

The sources of nondeterminism that one chooses to model in Σ are a critical issue. The
usual consideration of nominal effects versus erroneous effects of an action might not be the
most relevant in practice. For example, the classical benchmark of navigating in a grid or
a topological model of an environment where a move action can lead to other nodes than
the intended ones is often unrealistic: it does not take into account the necessary recursive
refinement of each action into lower level steps until reaching closed-loop controlled motion
and localization. Further, very rare events, such as component failures leading to non-
modeled effects, have to be dealt with using specific approaches such as diagnosis and
recovery.



Most important sources of nondeterminism are observation actions and exogenous events.
Observations related to a particular state variable x can be modeled as actions applicable in
some states and associated with a priori and conditional distributions over possible values
of x (for example, Prob[type|hue] in Example 6.34). Observation actions that inform on
x change the distribution of its values. Conditional distributions of state variables given
observations can be obtained from probabilistic models of sensors.

Exogenous events and the proper dynamics of the environment are often difficult to
model deterministically as predictable events. When their possible effects interfere weakly
with those of deliberate actions, events can also be modeled as probability distributions over
possible effects. For example, when a container arrives while the robot is going somewhere,
this may change the rest of its plan, but it does not always interfere with its navigation. A
closed road might affect the navigation. It is possible to model events as random variables
whose values affect the outcome of an action. The DBN representation of actions can
handle that directly (see Example 6.31). Conditional expressions have to be added to the
probabilistic precondition-effect representation to take into account a posteriori probabilities
given the observed events.

6.7.2 Sparse Probabilistic Domains

In some applications, nondeterminism is naturally limited to parts of the domain. This is
the case, for example, when most of the environment is known but a few areas are partially
unknown, or when only observation and information-gathering actions are nondeterministic,
while all other actions have a unique predictable outcomes. In these cases, it is worthwhile
to combine deterministic models with probabilistic ones.

Incremental-compression-and-search(Σ, s0, Sg)
while there is an unsolved state s in current γ̂(s0, π)

search for an optimal path from s to a goal
until a nondeterministic action a

compress this path to a single nondeterministic step π(s)← a
revise with Bellman-Update

Algorithm 6.21: Compression framework for sparse probabilistic domains.

A possible approach for planning with deterministic and nondeterministic actions can
be the following. Assume that while planning from a current state s to a goal, the algorithm
finds at some point a sequence ⟨(s, a1), (s2, a2), . . . , (sk−1, ak−1), (sk, a)⟩ such that actions
a1 through ak−1 are deterministic, but a is nondeterministic. It is possible to compress this
sequence to a single nondeterministic step (s, a), the cost of which is the sum of cost of the
k steps and the outcome γ(s, a) of which is the outcome of the last step. This idea can be
implemented as sketched in Algorithm 6.21. Its advantage is to focus the costly processing
on a small part of the search space.

The notion of sparse probabilistic domains can be extended further to cases in which
|γ(s, a)| < k and Applicable(s) < m for some small constants k andm. Sampling techniques
such as the SLATE procedure (Algorithm 6.19) are particularly useful in these cases.

6.7.3 Goals and Objectives

Models of probabilistic domains other than the SSP model discussed so far can be more
adapted to a given application. Let us briefly discuss few of them.

Process-oriented problems. In this class of problems, there is no goal. The objective
of the actor is to optimize its behavior over an infinite horizon. This is meaningful for
applications related to the control of a process, for example, a robot in charge of keeping an



office space clean and tidy, or a system maintaining a power supply unit in best functioning
condition. A solution for a process-oriented problem is an optimal policy that runs “forever,”
that is, as long as this policy does not prescribe an emergency stop action or does not reach
a failure state.

Process-oriented problems are often addressed by considering the criteria of the expected
sum of amortized cost over an infinite horizon: Equation 6.1 is changed into V π(s0) =
E[

∑∞
i=0 δ

i × cost(si, π(si))] where 0 < δ < 1. Mathematically, the amortization factor is
needed for the convergence of this sum. However, it is less obvious to justify and pickup a
value for δ from the specifics of an application. The literature often refers to a comparison
with financial applications in which costs are amortized over some horizon. But this rather
shallow metaphor does not give a convincing rational for amortized cost, beyond the con-
venience of summing over an infinite horizon. Often, the average cost per step is a more
relevant criteria.

Dynamic programming techniques (Section 6.2) work well for process-oriented problems
when the state space remains of a size small enough to be enumerated. For larger problems,
one has either to use online receding horizon techniques (Section 6.4) or to decompose
and hierarchize the problem into smaller tractable sub-problems, as discussed in the next
section.

Goal-oriented problems. This is the class of problems studied in this chapter where
goals are given explicitly. One may address these problems using either a satisficing ap-
proach, or an optimizing approach with different criteria than the one considered so far.

A possible satisficing approach can be obtained as a particular case of optimizing with
unit costs: one minimizes the expected distance to the goal, which usually leads to good
heuristics for finding it.

Instead of the expected sum of the cost of actions leading to a goal, an alternative objec-
tive function is the average cost per step. More interesting is the criterion that maximizes
the probability of reaching a goal, a very meaningful concern in practice. With such a crite-
rion, further discussed susequently, one does not need to assume before hand the existence
of a safe policy becausee one optimizes over the entire set of policies.

Finally, let us mention that goal-oriented problem are sometime specified with a set of
possible initial states. This case can be handled by adding a conventional s0 with a single
applicable action leading to any of the real initial states of the problem.

Other optimization criteria. In addition to action costs, one can be interested in taking
into account rewards for reaching particular states. In the simplest case in which rewards
replaces costs, one switches from a minimization problem to a maximization problem. The
more general case is equivalent to considering the cost as a function f(s, a, s′) of three
arguments: the origin state s, the action in s, and the destination state s′. A straightforward
approximation consists in taking cost(s, a) =

∑
s′∈γ(s,a) Pr(s

′|s, a)f(s, a, s′).
The main issue with a general cost model is to accept cost ranging over R, instead of R+,

as assumed so far. SSP problems with costs over R are often addressed with an additional
assumption: V (s) is infinite for every unsafe state s. As seen earlier, this property is
granted with strictly positive costs, but it is difficult to grant it when designing a domain
with real costs. One has to check that every cycle not containing a goal has positive cost.
The Find&Revise schema and other heuristic search algorithms have to be extended to
properly handle dead ends involving loops with negative or null costs. This was done for
the Generalized SSP (GSSP) model Kolobov et al. [347]. For process-oriented problems,
dynamic programming works with amortized cost over R, again for domains of manageable
size.

Maximizing the probability of reaching a goal. In many applications, one is more
concerned about the probability of reaching a goal than about the expected cost of a policy.



This is particularly the case when s0 is unsafe.

One way of addressing this criteria is to take a reward maximization approach in which
every transition (s, a) has a reward of 0 except of transitions leading to a goal, which have
a reward of 1. In such a model, the expected value of a policy π is exactly the probability
Pr(Sg|s0, π) of reaching a goal from s0 by following π. Dynamic programming techniques
can be used to find a policy π∗ maximizing this criteria. The Find&Revise extension for the
GSSP model, referred to earlier, can handle this criteria without iterating over the entire
state space. The Stochastic safest and shortest-path problems (S3P) of Teichteil-Königsbuch
[563] go further by considering a dual optimization criterion: among policies that have a
maximal probability of reaching a goal, find one whose expected cost to the goal is minimal
(only goal-reaching paths are taken into account in this expected cost).

In some applications, a low-cost solution with an acceptable probability of reaching the
goal can be preferred to a high cost and high probability policy. Approaches may either
look for acceptable trade-offs or optimize over all policies above some probability threshold.

6.7.4 Domain Decomposition and Hierarchization

The expressiveness of factored representations for probabilistic problems allows for a dense
specification of a domain that corresponds to a huge state space, often not directly tractable
with available techniques. Ideally a domain may exhibit enough structure allowing to reduce
it to tractable subdomains. Modeling a domain using factored representation can be very
helpful in exhibiting this structure of the problem. Two related principles for exploiting
the structure of a domain are abstraction and decomposition. Let us briefly introduce some
approaches.

Abstraction methods. Abstraction consists in defining a partition of S into clusters. A
cluster is a subset of states that are close enough to be considered indistinguishable with
respect to some characteristics, such as to be processed jointly as a single abstract state, for
example, they may be attributed the same value of V (s) or π(s). The original problem is
solved with respect to abstract states that are these clusters, the solution of which is then
possibly refined within each abstract state. Abstraction is the complement of refinement.

A popular form of abstraction is based on focusing a cluster on some relevant state
variables and ignoring the other variables, considered as less relevant. The conditional
probability trees in Section 6.6.2 illustrate the idea: the state variables that are not part
of any tree are non relevant. Often the irrelevant variables at one stage can be important
at some other stage of the problem: the abstraction is not uniform. Furthermore, one may
have to resort to approximation to find enough structure in a problem: variables that affect
slightly the decision-making process (for example, V (s)) are abstracted away.

Another abstraction approach extends model minimization techniques for computing
minimal models of finite-state machines.6 One starts with an a priori partition of S into
clusters, for example, subset of states having (approximately) the same V0. A cluster is
split when its states have different probability transitions to states in the same or other
clusters. When all clusters are homogenous with respect to state transitions, then the
problem consisting of these clusters, considered as abstract states, is equivalent to the
original problem. The effort in model reduction is paid off by solving a smaller problem.
This is particularly the case when the clusters and the value function are represented in a
factored form, as state variable formulas (see the references and discussion in Section 6.8.6).

Symbolic algorithms (as in Section 5.4) develop this idea further with the use of algebraic
decision diagrams (ADD). An ADD generalizes a decision tree to a rooted acyclic graph
whose nodes are state variables, branches are possible values of the corresponding variables,
and leaves are sets of states. An ADD represents a function whose values label its leaves.

6For any given finite state machine M , there is a machine M ′, minimal in the number of states, which is
equivalent to M , that is, recognizes the same language.



For example, an ADD can encode the function V (s) in which all the states corresponding to
a leaf have the same value. Similarly, one can represent Pr(s′|s, a) and cost(s, a) as ADDs.
When the structure of the problem can be mapped into compressed ADDs — a condition
not easily satisfied — then fast operations on ADDs allow to perform efficiently Belmann
updates on the entire S, or on the relevant part of it. Symbolic VI and Symbolic LAO∗ make
use of ADDs, together with approximation techniques, to efficiently solve well-structured
problems.

Decomposition methods. The idea is to decompose the original problem into indepen-
dent or loosely coupled subproblems that are solved independently. Their solutions are
recomposed together to get the solution of the global problem. For example, serial de-
composition addresses the original task as a sequence of subtasks whose solutions will be
sequentially run.

The notion of closed subsets of states is convenient for decomposing a domain. C ⊆ S
is closed if there is no transition from a state in C to a state outside of C. It is a maximal
closed subset if it does not have a proper subset that is also closed. For process-oriented
problems, an optimal policy can be constructed independently for each maximal closed
subset without bothering with the rest of the domain. A maximal closed subset C can be
viewed as an independent subprocess. Once reached, the system stays in this subprocess
forever. C can be collapsed to a single absorbing state, at which point, other closed subsets
can be found.

The kernel decomposition method implements this idea with more flexibility. The set
S is decomposed into blocks, with possible transitions between blocks through a few states
for each block. These states permitting block transitions are called the kernel of the do-
main. Starting with some initial V0 for the kernel states, optimal policies are computed
independently for each block, allowing one to update the values of the kernel and iterate
until updates are negligible.

Finally, let us mention that abstraction and decomposition are also used for comput-
ing heuristics and control knowledge to guide or focus a global search. There is a large
overlap between abstraction or decomposition methods and the techniques discussed in
Section 6.3.5.

6.7.5 Probabilistic Versus Nondeterministic Approaches

In Chapter 5 and Chapter 6, we studied two types of nondeterministic models, with and
without probabilities. These models have several similarities but also differences. Let us
discuss which of the two approaches to choose when faced with a practical problem where
nondeterminism requires modeling and can be expressed explicitly.

An obvious remark is that probabilistic models without costs and probability parameters
correspond to nondeterministic models. These parameters enrich the description of a do-
main and allow for choosing a solution according to some optimization criterion. However,
estimating costs and probabilities adds a significant burden to the modeling step. There
are domains in which modeling transitions with costs and probabilities is difficult in prac-
tice, for example, when not enough statistical data are available. Probabilistic approaches
may also lead a modeler to hide qualitative preferences and constraints through arbitrary
quantitative measures.

But there is more to it than just adding or removing parameters from one model to get
the other, as illustrated in the following example.

Example 6.35. Consider the simplistic domain in Figure 6.14 that has two policies πa and
πb. πa(s0) = a; a leads to a goal with probability p in one step, or it loops back on s0.
πb starts with action b which has a few possible outcomes, all of them lead to a goal after
several steps without loops, that is, Graph(s0, πb) is acyclic, all its leaves are goal states and



its paths to goals are of length ≤ k. Both πa and πb are safe policies; πa is cyclic, whereas
πb is acyclic. The value of πa is Va = cost(a)

∑
i=0,∞(1 − p)i = cost(a)

p . The value Vb of πb
is the weighted sum of the cost of the paths of Graph(s0, πb).
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Figure 6.14: A simple domain for comparing features of probabilistic and nondeterministic
models.

In this example, the probabilistic approach compares Va to Vb and chooses the policy
with the minimum expected cost. If cost(a)/p < Vb, then πa is preferred to πb, because πb
is a more expensive solution in average. However, πb is preferable in the worst case because
it guarantees reaching a goal in a bounded number of steps.

The nondeterministic approach does not handle probabilities and expected costs, but it
distinguishes qualitatively acyclic from cyclic solutions. There are applications in which an
acyclic solution like πb is clearly preferable whatever the values of the parameters are. This
is particularly the case when these parameters are unknown or difficult to estimate. This
is also the case for safety critical applications in which worst case is more meaningful than
average cost.

Finally, nondeterministic approaches may potentially scale up better than probabilistic
ones, because the former allow for a higher level of factorization, for example, with an
efficient use of symbolic representations.

To summarize, probabilistic approaches require parameters but are able to make fine
choices on the basis of average case considerations; they allow choosing among unsafe so-
lutions when optimizing the probability to reach a goal. Nondeterministic approaches do
not need parameters and their costly estimation step, they select solutions according to a
qualitative criteria, and they may scale up better.

6.7.6 Practical Considerations

Several considerations have to be taken into account for using the algorithms presented in
this chapter and their variants, among which:

• the size of S,

• the possible existence of dead ends,

• the accuracy of the probability and cost parameters,

• the amortization trade-off between the use of an approximate solution and the com-
putational cost of its improvement, and

• the degree of nondeterminism of the domain.

The parameters of a model are always estimated with some margin of error. There
is no need to seek an exact optimal solution with respect to imprecise parameters. An
approximate solution whose degree of optimality matches the accuracy of the cost and
probability parameters is sufficient.

The amortization trade-off takes into account how many times a suboptimal solution
will be used for acting. It compares the corresponding loss in the cost of actions to the cost



of further refining a suboptimal solution. For example, in a receding horizon approach in
which π is used just once and recomputed at every stage, a suboptimal solution is often
sufficient, whereas for a process-oriented problem the same policy is used for a long time
and may require careful optimization.

The degree of nondeterminism can be appreciated by the size of |γ(s, a)| and how over-
lapping are the sets γ(s, a), over applicable actions in s. In sparse probabilistic planning
problems, γ(s, a) is a small set. Possibly, most actions are deterministic but of a few that
have a couple of nondeterministic outcomes, as discussed in Section 6.7.2. Other algorithms
such as Busoniu et al. [102] are adapted to sparse probabilistic problems.

When S is of a small enough size to be entirely explicited and maintained in the memory
of the planning computer (typically on the order of few mega states), then VI is an easily
implemented and practical algorithm. For reasonably small values of η (in the order of
10−3), often VI converges in a few dozen iterations and is more efficient than PI. Depending
on the amortization trade-off, the user may not even bother to compute Φπ and rely on
a heuristic value of the error parameter η. There are even cases in which VI may be used
online, for example, on a receding horizon schema: for |S| in the order of few thousands
states, the running time of VI is on the order of a few milliseconds. This may happen in
small domains and in well-engineered state spaces.

Most planning problems do not allow for an explicit enumeration of their entire state
space. Realistically, a few dozen parametrized state variables, that is, a few hundred ground
state variables, may be needed for modeling a realistic domain. The corresponding state
space is on the order of dk, where k is the number of ground state variables and d is the
size of their domain. In many practical cases k is so large (that is, a few hundred) that
iterating over S is not feasible. Options in such a case are to use focused search algorithms
that explore a small part of the search space as seen in Section 6.3, to refine the model, to
decompose the planning problem into feasible subproblems, and to use domain configurable
control knowledge to reduce sharply the branching factor of a problem and allow for a
significant scaling up, as discussed in Section 6.3.5.

6.8 Discussion and Historical Remarks

6.8.1 Foundations

Sequential decision making under uncertainty benefits from a long line of work in mathemat-
ics, starting with Andrei Markov in the 19th century, who initiated the theory of stochastic
processes, now called Markov processes. The field developed extensively in the early 1960s
with contributions from control theory, operations research and computer science. The
book Dynamic Programming by Bellman [49] opened the way to numerous developments,
detailed into influential monographs, for example, Derman [150], Bertsekas [64], Puterman
[495] and Bertsekas and Tsitsiklis [65].

Many of the early developments were focused on process-oriented problems (Section 6.7.3).
Goal-oriented problems were also defined quite early: the analysis of Bertsekas and Tsit-
siklis [66], who coined the name SSP, traces back their origin to Eaton and Zadeh [165].
However, their development is in many aspects more recent and remains active within the
artificial intelligence and automated planning communities, as illustrated with numerous
articles and books, for example, Buffet and Sigaud [101], Mausam and Kolobov [406].

6.8.2 SSP Models

The Markov Decision Process (MDP) class of problems grew up into a profusion of extended
models and special cases, notably SSP and POMDP.7 We focused this chapter on the

7Plus many other models, for example, SMDP, MOMDP, CoMDP, MMDP, SIMDP, MDPIP, HMDP,
HDMDP, GSSP, S3P, DSSP, POSB-MDP, NEG-MDP, MAXPROB-MDP MDP-IP, TiMDP, CPTP, Dec-



SSP model for two reasons: (i) it is a simple and quite natural model for goal-oriented
probabilistic planning problems, and (ii) it is more general than the MDP model. Regarding
the latter point, Bertsekas [64] demonstrates that the SSP model includes as special cases
the discounted infinite horizon as well as the finite horizon MDP models. The propositions
in Section 6.2 are also demonstrated in this book.

SSPs are defined in the literature with a few variations related to how the so-called
connectivity assumption and the positive cycle assumption are expressed. The first is defined
either by assuming that every state is safe or that s0 is safe. This amounts to requiring
either that there is no dead end in the domain or that existing dead ends are avoidable with
a safe policy starting at s0. The second assumption is equivalent to requiring that every
cycle not containing the goal has positive costs. These two assumptions should preferably
be expressed as conditions that are easily testable at the specification stage of the domain.
For example, demanding that every unsafe policy has infinite cost is less restrictive than
constraining all costs to be positive, but it is also less easy to verify.

A more general approach is to allow for real costs and use algorithms able to check
and avoid dead ends, as in the amortized-cost approach of Teichteil-Königsbuch et al. [566],
or in the GSSP model of Kolobov et al. [347]. This model accounts for maximizing the
probability of reaching the goal, which is an important criterion, also addressed by other
means in Puterman [495] and Teichteil-Königsbuch et al. [565]. The approaches of Kolobov
et al. [346] and Teichteil-Königsbuch [563] for the S3P model goes one step further with
a dual optimization criterion combining a search for a minimal cost policy among policies
with the maximum probability of reaching a goal.

6.8.3 Partially Observable Models

The model of Partially Observable Markov Decision Process (POMDP) provides an impor-
tant generalization regarding the epistemic condition of an actor, that is, what it knows
about the state it is in. The SSP and MDP models assume that after each state transi-
tion the actor knows which state s it has reached; it then proceeds with the action π(s)
appropriate for s. The POMDP model considers that the actor does not know its current
state, but it knows about the value of some observation variable o. It also has a probability
distribution Pr(o|s, a) of observing o after running action a in s. This gives it a probability
distribution of possible states it might be in, called the current actor’s belief : b(s|a, o).
It has been demonstrated by Ȧström [24] that the last observation o does not summarize
the past execution, but the last belief does. Hence, a POMDP planning problem can be
addressed as an MDP problem in the belief space. One starts with an initial belief b0
(distribution for initial states) and computes a policy that gives for every belief point b an
action π(b), leading to a goal also expressed in the belief space.

Several approaches generalizing Dynamic Programming or Heuristic Search methods to
POMDPs have been proposed, for example, Kaelbling et al. [304] and Smith and Simmons
[550]. Policy search methods for parametrized POMDPs policies are studied in Ng and
Jordan [451]. Approximate methods that focuses Bellman updates on a few belief points
(called point-based methods) are surveyed in Shani et al. [528]; they are compared to an
extension of RTDP in Bonet and Geffner [86]. Online algorithms for POMDPs are surveyed
in Ross et al. [514]. A Monto Carlo sampling approach is proposed by Silver and Veness
[536]. Several interesting POMDP applications have been developed, for example in robotics
by Pineau et al. [478], Foka and Trahanias [200] and Guez and Pineau [249]. However, the
POMDP developer faces several difficulties, among which:

• Tremendous complexity: a discretized belief point corresponds to a subset of states;
hence the belief space is in O(2|S|). Because |S| is already exponential in the number
of state variables, sophisticated algorithms and heuristics do not scale up very far.

MDP, Dec-SIMDP, Dec-POMDP, MPOMDP, POIPSG, and COM-MTDP.



Significant modeling effort is required for decomposing a domain into small loosely
coupled problems amenable to a solution. For example, the approach of Pineau et al.
[478], even though it is applied to a small state space (less than 600 states), requires
a clever hierarchization technique to achieve a solution.

• A strong assumption (not always highlighted in the POMDP literature): a policy from
beliefs to actions requires the action π(b) to be applicable in every state s compatible
with a belief b. It is not always the case that the intersection of Applicable(s) for every
s compatible with b is meaningful. Sometimes, one would like to be able to choose an
action that is feasible in a subset of π(b) on the basis of states likelihood, for example,
as in the assumption-based planning for partially observable nondeterministic domains
of Albore and Bertoli [7].

• The partial observability model of POMDP is quite restrictive and often unrealistic. It
should be called the invisible state MDP model because it does not consider any part
of s as being observable. An actor that distinguishes between invisible and observable
state variables and dynamically decomposes the latter into visible and hidden variables
(as discussed in Section 1.3.2) should handle them differently in its deliberation, in
particular to reduce the uncertainty about the states it will face during its planed
course of action. Such a partial observability approach is pursued for example with
the MOMDP models of Ong et al. [461] and Araya-Lopez et al. [22], which consider
that the set of states is the Cartesian product of a set of visible states and a set of
hidden ones.

• Finally, observability issues requires a specific handling of observation actions. One
does not observe at every step all observable variables. One observes only what
is relevant for the current stage of the task at hand; irrelevant unknown variables
are ignored. Further, it is not a single observation step; it can be a succession of
observations until reducing the uncertainty to a level consistent with what’s at stake.
These observation actions have a cost and need to be planned for. This is for example
illustrated in the HiPPo systems of Sridharan et al. [553] for a robotics manipulation
task.

6.8.4 Other Extended MDP Models

So far, we referred to probabilistic models with timeless state transitions. Many applica-
tions require explicit time, durations, concurrency, and synchronization concepts. A simple
MDP extension adds time in the state representation, for example, time as an additional
state variable. In this direct extension, timeless MDP techniques can be used to handle
actions with deterministic durations and goals with deadlines, but this model cannot han-
dle concurrent actions. The Semi-Markov Decision Process (SMDP) model of Howard [287]
and Forestier and Varaiya [201] extends this simple temporal MDP model with probabilis-
tic integer durations. The Time-dependent MDP (TiMDP) model of Boyan and Littman
[94] considers distribution of continuous relative or absolute time durations. Concurrent
MDPs of Mausam and Weld [409] extend the timeless MDP model to handle concurrent
steps of unit duration, where each transition is a subset of actions. The Generalized SMDP
model of Younes and Simmons [622] combines semi-Markov models with concurrency and
asynchronous events. Algorithms for these models have been proposed by several authors,
notably Mausam and Weld [407], Little et al. [387] and Mausam and Weld [408]. It is
interesting to note that SMDPs provide a foundation to reinforcement learning approaches
of Parr and Russell [463], Andre and Russell [20], Marthi et al. [403] and Fernández and
Veloso [191].

Another important extension is related to continuous and hybrid state space and action
space. The hybrid state space combines discrete and continuous state variables (see Sec-
tion 7.4). The latter have been addressed with severable discretization techniques such as



adaptive approximation by Munos and Moore [435], piecewise constant or linear approxi-
mation by Feng et al. [187], and parametric function approximation by Liu and Koenig [389]
and Kveton et al. [367]. Linear Programming approaches for hybrid state spaces have been
proposed by several authors, for example, Guestrin et al. [247]. Heuristic search techniques
have been extended to hybrid cases, for example, the HAO∗ algorithm of Meuleau et al.
[418].

Finally, there are several extensions of the stationary and deterministic policy models on
which we focused this chapter. A stochastic policy maps states into probability distributions
over actions. A non-stationary policy evolve with time, that is, it is a mapping of state
and time into either actions when it is deterministic, or into probability distributions over
actions when the policy is both stochastic and non-stationary. In some cases, such as in finite
horizon problems, a non-stationary policy can be better than a stationary one, for example,
π(s) is not the same action when visiting s the first time then on the nth visit. However,
extending the state representation (with variables representing the context) is often easier
than handling general non-stationary stochastic models, for which fewer algorithms and
computational results are known (for example, [525]).

6.8.5 Algorithms and Heuristics

The Dynamic Programming foundations and main algorithms go back to the early work
already cited of Bellman, Bertsekas, Putermann, and Tsitsiklis. More recent studies dis-
closed additional properties of the VI algorithm, for example, Bonet [79] for complexity
results with positive costs and lower bound heuristics, and Hansen [252] for sub-optimality
bounds. Several extension and improved VI algorithms have been proposed, for example,
with a prioritized control in Andre et al. [19], with a focus mechanism in Ferguson and
Stentz [190], McMahan and Gordon [416] and Wingate and Seppi [607], or with a backward
order of updates from goals back along a greedy policy in Dai and Hansen [133].

Policy Search methods (not the be confused with Policy Iteration algorithm) deal with
parametrized policies πθ and perform a local search in the parameter space of θ (for example,
gradient descent). The survey of Deisenroth et al. [147] covers in particular their use for
continuous space domains and reinforcement learning problems.

Hansen and Zilberstein [253] developed the LAO∗ algorithm as an extension of AO∗ of
Nilsson [458]. The Find&Revise schema was proposed by Bonet and Geffner [82], who also
developed several instantiation of this schema into heuristic search algorithms such as HDP
[82], LRTDP [83] and LDFS [85]. A few other heuristic algorithms are presented in their
recent textbook [216, chap. 6 & 7]. RTDP has been introduced by Barto et al. [45]. The
domain-configurable control technique presented in Section 6.3.5 was developed by Kuter
and Nau [360].

The FF-Replan planner has been developed by Yoon et al. [617] in the context of the
International Planning Competition. A critical analysis of its replanning technique appears
in Little and Thiébaux [388] together with a characterization of “probabilistically interesting
problems.” These problems have dead ends and safe solutions. To take the latter into
account, Yoon et al. [618] proposed an online receding horizon planner, called FF-Hindsight,
which relies on estimates through averaging and sampling over possible determinizations
with a fixed lookahead. The RFF algorithm has been proposed by Teichteil-Königsbuch
et al. [564]; it has been generalized to hybrid MDPs with continuous state variables [562].

The SLATE procedure is due to Kearns et al. [324]. UCT was proposed by Kocsis and
Szepesvári [338]. An AO∗ version of it is described in Bonet and Geffner [87]. UCT is based
on Monte Carlo Tree Search techniques that were developed with success for games such
as Go by Gelly and Silver [218]. UCT was implemented into a few MDP planners such as
PROST by Keller and Eyerich [326]. An extension of UCT addressing POMDPs is studied
by Silver and Veness [536].

Several authors have exploited determinization techniques in probabilistic planning,



for example, Boutilier et al. [91] for pruning unnecessary Bellman update, Karabaev and
Skvortsova [312] for performing Graphplan like reachabilitiy analysis, Bonet and Geffner
[84] for computing heuristics for the mGPT planner, and Teichteil-Königsbuch et al. [566]
also for computing heuristics. Proposition 6.25 is demonstrated in the latter reference.

For many planners, implicit dead ends can lead to inefficiency or even to non termina-
tion (for example, as in RTDP and LRTDP). Dead ends can be detected, but unreliably,
through heuristics. They are more safely avoided through the unbounded growth of the
value function V , as in Find&Revise instances and other variants, for example, Kolobov and
Weld [348] and Teichteil-Königsbuch et al. [566], but this can be quite expensive. Kolobov
et al. [345] propose an explanation-based learning technique to acquire clauses that soundly
characterizes dead ends. These clauses are easily detected when states are represented
as conjunction of literals. They are found through a bottom-up greedy search and further
tested to avoid false positives. This technique can be usefully integrated into the generalized
Find&Revise schema proposed for the GSSP model of Kolobov et al. [347].

6.8.6 Factored and Hierarchical MDPs

The survey of Boutilier et al. [92] presents a comprehensive overview of factored represen-
tations in probabilistic planning and analysis of their respective merits and problems. The
probabilistic operators representation is a direct extension of the deterministic and nonde-
terministic operators; it is used in particular in the PPDDL language of Younes and Littman
[619]. Bayesian Networks are extensively covered in the textbook of Koller and Friedman
[344]. Their use for representing actions has been introduced in Dean and Kanazawa [142].
The RDDL language of Sanner [523] is a compact representation integrating DBNs and
influence diagrams. Dynamic programming techniques for factored MDPs are studied by
Boutilier et al. [93]. Guestrin et al. [248] developed elaborate approximation techniques for
MDPs represented with DBNs. Their use of approximate value function represented as a
linear combination of basis functions on a small subset of the domain variables demonstrates
impressive scalability.

Symbolic techniques with binary and algebraic decision diagrams have also been used
in probabilistic planning, for example, Hoey et al. [274] developed a symbolic VI algorithm
in the SPUDD planner, Feng et al. [189] used these techniques in an RDTP algorithm,
Feng and Hansen [188] proposed a symbolic LAO∗, and Mausam et al. [405] extended the
nondeterministic MBP planner to MDPs.

Several algorithms have been proposed to take advantage of the structure of a proba-
bilistic planning problem. This is the case, for example, for hierarchical MDPs of the HiAO∗

algorithm of Meuleau and Brafman [419]. Different methods can be used to hierarchize a
domain, for example, the methods of Givan et al. [236]. The model minimization techniques
have been studied in Dean et al. [141]. A kernel decomposition approach has been developed
in Dean and Lin [143]. Hauskrecht et al. [262] propose approximate solutions to large MDPs
with macro actions, that is, local policies defined in particular regions of the state space.
The approach of Barry et al. [41] and their DetH∗ algorithm [42] clusters a state space into
aggregates of closely connected states, then it uses a combination of determinization at the
higher level and VI at the lower level of a hierarchical MDP.

Sparse probabilistic domains have been studied in particular by Busoniu et al. [102] and
Likhachev et al. [385]. The path compression technique of Algorithm 6.21 is detailed in the
latter reference.

6.9 Exercises

6.1. In the domain of Example 6.4, consider a policy π such that π(s0) = Both. Is π a safe
policy when s0 is either (acb), (bca) or (cba)? Is it safe when s0 is (bac) or (cab)?



6.2. Prove that the recursive Equation 6.3 follows from the definition of V π(s) in Equa-
tion 6.1.

6.3. Prove that a policy π∗ that meets Equation 6.5 is optimal.

6.4. Consider the domain Σ in Example 6.4.

(a) Extend Σ with a fourth action denoted All, which is applicable only in the state (aaa)
and flips randomly the three variables at once. Does the corresponding state space
have dead ends ? If not, run algorithm VI on this example, assuming uniform cost
and probability distributions.

(b) Extend Σ by having the three state variables range over {1, 2, . . . ,m}, such that
actions Left, Right, and Both are as defined initially; action All is applicable only to a
state of the form (i, i, i) where i is even; it flips randomly the three variables. Assume
s0 = (1, 2, 3) and goals are of the form (i, i, i) where i is odd. Run VI on this extended
example and analyze its performance with respect to m.
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Figure 6.15: An SSP problem with five states and four actions a, b, c, and d; only action a
is nondeterministic, with the probabilities shown in the figure; the cost of a and b is 1, the
cost of c and d is 100; the initial state is s1; the goal is s5.

6.5. Run algorithm PI on the problem of Figure 6.15 starting from the following policy:
π0(s1) = π0(s2) = a, π0(s3) = b, π0(s4) = c.

(a) Compute V π0(s) for the four non-goal states.

(b) What is the greedy policy of V π0?

(c) Iterate on the above two steps until reaching a fixed point.

6.6. Run VI on the problem of Figure 6.15 with η = .5 and the following heuristics:

(a) V0(s) = 0 in every state.

(b) V0(s1) = V0(s2) = 1 and V0(s) = 100 for the two other states.

6.7. In the problem of Figure 6.15, add a self loop as a nondeterministic effect for actions
b, c, and d; that is, add s in γ(s, a) for these three actions wherever applicable. Assume
that the corresponding distributions are uniform. Solve the two previous exercises on this
modified problem.



6.8. Run AO∗ on the domain of Figure 6.6 with the heuristics V1 of Section 6.3.5.

6.9. Modify the domain of Figure 6.6 by making the state s12 an explicit dead end instead
of a goal; run AO∗ with the heuristics V0 and V1 of Section 6.3.5.

6.10. Prove that algorithm LAO∗ is an instance of the Find&Revise schema.

6.11. Modify the domain of Figure 6.6 by changing γ(s9, a) = {s3, s8} and making the
state s15 an explicit dead end instead of a goal. Run LAO∗ and ILAO∗ on this problem and
compare their computation steps.

6.12. Run FF-Replan on the problem of Figure 6.15, using a Forward--Search algorithm that
always returns the least-cost path to a goal state. What is the probability that FF-Replan
will reach the goal?

6.13. Run RFF on the problem of Figure 6.15 with θ = 0.7. Suppose the Det--Plan sub-
routine calls the same Forward--Search algorithm as in the previous exercise, and turns the
plan into a policy. What is π after one iteration of the “while” loop?

6.14. Prove that algorithm FF-Replan (Section 6.4.2) is complete when using a complete
Det-Plan deterministic planner.

6.15. Run Algorithm 6.21 on the problem of Figure 6.15; compare with the computations
of RFF on the same problem.

6.16. Specify the SLATE procedure (Algorithm 6.19) as an anytime algorithm implement-
ing an incremental backup at each increase of the depth h. Implement and test on a few
domains.

6.17. Write the probabilistic precondition-effect operators for the take and put actions of
the domain PAMp (Example 6.30). How many ground actions are there is this domain?

6.18. Implement and run algorithm VI for a few problem instances of the domain PAMp.
Up to how many containers does your implementation scales up?

6.19. For the domain in Example 6.31, analyze the interactions between the arrival, de-
parture, and switch events with the action take and put. Compute the sets γ(s, take) and
γ(s, put) for different states s.

6.20. Analyze a generalized PAMq domain where the arrival and departure of containers can
take place even in the robot location. Define conditional probability trees for the variable
ctrs.



Chapter 7

Other Deliberation Functions

As discussed in Section 1.3, there is more to deliberation than planning and acting. This
point is particularly clear in robotics, as shown in the survey by Ingrand and Ghallab [293].1

Here, we briefly cover a few deliberation functions, other than planning and acting, that
may be needed by an actor. We discuss in Section 7.1 deliberation on sensing tasks: how
to model them and control them to recognize the state of the world and detect objects,
events, and activities in the environment that are relevant to the actor, for and while
performing its own actions. Section 7.2 is about monitoring and goal reasoning, that is,
detecting and interpreting discrepancies between predictions and observations, anticipating
what needs be monitored, controlling monitoring actions, and assessing the relevance of
commitments and goals from observed evolutions, failures, and opportunities. Learning
and model acquisition techniques in planning and acting are surveyed in Section 7.3; we
cover in particular reinforcement learning and learning from demonstration approaches.

This chapter surveys also approaches for handling hybrid models that have continuous
and discrete components (Section 7.4), which are needed in domains where part of the
dynamics is naturally expressed with continuous differential equations. We finally devote
Section 7.5 to representations for expressing ontologies, which can be essential for modeling
a domain; we discuss their use in planning and acting.

7.1 Perceiving

Deliberation is mostly needed for an actor facing a diversity of situations in an open en-
vironment. Such an actor generally has partial knowledge about the initial state of world
and its possible evolution. It needs to be able to perceive what is relevant for its activity
and to deliberate about its perception, while acting and perceiving.

Reasoning on perception leads to several problems, among which for example those of:

• Reliability: how reliable are sensing and information gathering actions? What verifi-
cation and confirmation steps are needed to confirm that the sensed value of a state
variable is correct? How to assess the distribution of values if uncertainty is explicitly
modeled?

• Observability: how to acquire information about non observable state variables from
the observable ones? How to balance costly observations with approximate estimates?

• Persistence: How long can one assume that a state variable keeps its previous value
as long as new observations do no contradict it?

Furthermore, there are numerous additional sensing problems for a physical actor to reason
on and determine how to handle its sensors (how and where to use a sensor, how to process
and qualify given data), as well as to perform information-gathering actions through com-

1The material of some sections in this chapter is based on that survey.
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munication with and query of information sources. Handling sensors changes perception
reasoning problems considerably.

The details of these problems are beyond the scope of this short overview section. In the
following, we’ll mention a few approaches to (i) planning and acting with information gath-
ering actions, (ii) planning sensing actions, (iii) anchoring and signal-to-symbol matching
problems, and (iv) recognizing plans and situations.

7.1.1 Planning and Acting with Information Gathering

As already discussed, the closed-world assumption (that is, the assumption that facts not
explicitly stated are false)2 is too restrictive. A deliberative actor lives in an open world. It
has to handle partially specified instances of a domain (for example, as seen with timelines)
and extend its knowledge when needed. In particular it needs the following capabilities:

• Plan with respect to domain objects and properties that are unknown when plan-
ning starts but that can be discovered at acting time through planned information-
gathering actions. New facts resulting from these actions will be used to further refine
the rest of the plan.

• Query databases for facts the actor needs specifically to address a given planning
problem and query knowledge bases for additional models of its environment that are
relevant to the task at hand.

Planning with information gathering is studied by several authors using conditional
planning approaches, as in the PKS system of Petrick and Bacchus [474]. The continual
planning approach of Brenner and Nebel [96] in MAPL postpones part of the planning
process. It introduces information-gathering actions which will later allow development of
the missing parts of the plan. The planner uses assertions that abstract actions to be refined
after information-gathering. The approach is well adapted to dynamic environments where
planning for subgoals that depend on yet unknown states can be delayed until the required
information is available through properly planned information gathering actions.

Acquiring additional data and models at planning time is inspired from semantic Web
functionalities. For example, the ObjectEval system of Samadi et al. [519] acquires from the
Web statistics about possible locations of objects of different classes. It uses them in a utility
function for finding and delivering objects in an office environment. Other approaches use
Description Logic (DL), a fragment of first-order logic, to handle statements about objects,
properties, relations, and their instances with inference algorithms for querying large stores
of data and models over the Web [26]. Most implementations rely on OWL, the standard
Web Ontology Language. OWL handles an open-world representation where facts can be
true, false, or unknown. This point is further developed in Section 7.5.3.

7.1.2 Planning to Perceive

An information-gathering action may not be a directly executable command. It may require
using sensor models to decide where to put a sensor, how to use it, and how to best acquire
the needed information. Planning to perceive is concerned with integrating the selection of
viewpoints and sensor modalities to the other activities of an actor. It is very important
in robotics. It relies on extensive work on the sensor placement problem, which is usually
addressed as a search for the next best viewpoint for solving specific sensing tasks, such as
modeling an environment or recognizing an object. An illustration is given in the approach
of Laporte and Arbel [371].

The integrated sensor placement and task planning problem is sometimes addressed
with POMDPs, for example, by Pineau et al. [479] and Prentice and Roy [493]. The
HiPPo system of Sridharan et al. [553] offers a good illustration of sensor placement for the

2Alternatively, facts not entailed from explicit statements are assumed to be false.



recognition of objects on a table, as typically required in a manipulation task. A hierarchical
POMDP technique is used to have a computationally tractable problem, although limited
in perception tasks and domain sized (a few regions of interest).

An alternative and more scalable approach for synthesizing an observation plan within
a navigation task is proposed in Velez et al. [576]. This work seeks to detect and map
objects of interest while reaching a destination. It uses a Bayesian approach that corre-
lates measurements from subsequent observations to improve object detection; detours are
weighed against motion cost to produce robust observation plans using a receding horizon
sampling scheme. The approach was tested in an indoor environment for recognizing doors
and windows.

7.1.3 Symbol Anchoring

Deliberation reasons about objects in the environment through their symbolic attributes
and through relations linking these symbols. Observing handles perceptual data and signals.
It is essential that the abstract description of the former and the data of the latter agree
when referring to the same reality. Anchoring is the problem of creating and maintaining
over time a correspondence between symbols and sensor data that refer to the same physical
object. It can be seen as a particular case of the symbol grounding problem, which deals
with broad categories, for example, any “door” as opposed to, say, door-2.

Coradeschi and Saffiotti [129] propose achieving anchoring by establishing and keeping
a link called an anchor between the perceptual system and the symbol system, together
with a signature that estimates some of the attributes of the object it refers to. The anchor
is based on a model that relates relations and attributes to perceptual features and their
values.

Establishing an anchor corresponds to a pattern recognition problem, where the chal-
lenge is to handle the uncertainty of sensor data and the ambiguity of models, a challenge
dealt with, for example, by maintaining multiple hypotheses. Karlsson et al. [314], for exam-
ple, handle ambiguous anchors with a conditional planner, called PTL, exploring a space of
belief states, representing the incomplete and uncertain knowledge due to partial matching
between symbolic properties and observed perceptual features. The approach distinguishes
between definite symbolic descriptions, which are matched with a single object, and indef-
inite descriptions. Actions have causal effects that change object properties. Observations
can change the partition of a belief state into several new hypotheses.

Anchoring raises additional problems, such as which anchors to establish, and when and
how. Anchors are needed in principle for all objects relevant to the actor’s activity. Often,
these objects cannot be defined extensionally (by specifying a list of objects). They must
be defined by their properties in a context-dependent way. Object recognition is required
not only to label specifically queried objects, but also to create new anchors relevant to the
task.

Tracking anchors is another issue, i.e., taking into account object properties that persist
across time or evolve in a predictable way. Predictions are needed to check that new
observations are consistent with the anchor and that the updated anchor still satisfies the
object’s properties. Finally reacquiring an anchor when an object is re-observed after some
time is a mixture of finding and tracking; if the object moves, it can be quite complex to
account consistently for its behavior.

The DyKnow system of Heintz et al. [264] illustrates several of the preceding capabilities.
It offers a comprehensive perception reasoning architecture integrating different sources of
information, with hybrid symbolic and numeric data at different levels of abstraction, with
bottom-up and top-down processing, managing uncertainty, and reasoning on explicit mod-
els of its content. It has been integrated with the planning, acting, and monitoring system
of Doherty et al. [157] and demonstrated for the control of UAV rescue and traffic surveil-
lance missions. In the latter, a typical anchoring task consists of recognizing a particular



vehicle, tracking its motion despite occlusions, and re-establishing the anchor when the
vehicle reappears (for example, after a period in a tunnel).

7.1.4 Event and Situation Recognition

The dynamics of the environment is an essential source of information for an actor, as we
just saw in the anchor tracking and re-acquiring problems. It needs to be interpreted: what
an observed sequence of changes means, what can be predicted next from past evolutions.
These issues are essential for interacting with other actors, to understand their intensions
and behavior, for example, for tutoring a robot to perform complex tasks (Argall et al.
[23]), or in surveillance applications (Hongeng et al. [283] and Fusier et al. [209]).

The survey of Krüger et al. [354] covers an extensive list of contributions to action and
plan recognition. These deal with (i) human action recognition, (ii) general activity recog-
nition, and (iii) plan recognition. The former two types of processing provide input to the
latter. Most surveyed approaches rely on signal processing and plan recognition techniques.
The former use filtering approaches, Markov Chains, and Hidden Markov Models (HMM,
for example, Rabiner and Juang [500]). They have been successfully applied to movement
tracking and gesture recognition by Wu and Huang [610] and Moeslund et al. [424]. The
latter rely on the deterministic planning approaches of Kautz and Allen [319], Ramirez
and Geffner [503], or the probabilistic approach of Geib and Goldman [217], as well as the
parsing techniques of Pynadath and Wellman [497].

Most plan recognition approaches assume as input a sequence of symbolic actions. This
assumption is hard to meet in practice. Usually actions are sensed through their effects on
the environment. The recognition of actions from their effects depends strongly on the plan
level. Decomposing the problem into recognizing actions then recognizing plans from these
actions is fragile. More robust approaches have to start from the observation of changes.

Chronicle recognition techniques can be relevant to this problem. As defined in Chap-
ter 4, a chronicle is a model for a collection of possible scenarios. It describes classes
of events, persistence assertions, non-occurrence assertions, and temporal constraints. A
ground instance of a chronicle can be formalized as a nondeterministic timed automata.
Beyond planning operators, chronicles can be used to describe situations and plans and rec-
ognize their occurrences from observations. The approach proposed by Ghallab [225] and
Dousson et al. [161] is able to monitor a stream of observed events and recognize, on the
fly, instances of modeled chronicles that match this stream. The recognition is efficiently
performed by maintaining incrementally a tree of hypotheses for each partially recognized
chronicle instance. These trees are updated or pruned as new events are observed or time
advances. It has been demonstrated in robotics surveillance tasks. Recent development
by Dousson and Le Maigat [162] have introduced hierarchization and the focus on rare
events

The chronicle approach offers an interesting link between planning and observing. The
SAM system of Pecora et al. [466] is a good illustration of such a link in the development
of a system providing assistance to an elderly person. It uses a chronicle-like representation
(timelines with interval algebra) offering online recognition, planning, and execution with
multiple hypotheses tracking over weeks.

7.2 Monitoring and Goal Reasoning

We argued in Chapter 1 that acting deliberately requires predicting continually what may
come next. In open, variable, and dynamic environments, an actor should not be confident
that its predictions are always going to occur. Performing actions in a blind open-loop
manner would be brittle and lead frequently to failure. A deliberative actor needs a closed-
loop feedback, allowing it to correct its actions when there is a discrepancy between its
predictions and its observations. This is the role of monitoring.



More precisely, monitoring is in charge of (i) detecting discrepancies between predictions
and observations, (ii) diagnosing their possible causes, and (iii) taking first recovery actions.

Monitoring has a broad scope, ranging from monitoring the low-level execution platform
to the high-level reasoning on the appropriate goals for pursuing the actor’s objectives
and mission. Indeed, discrepancies between predictions and observations can be caused
by platform errors and failures, for example, malfunctioning sensors or actuators or buggy
commands. They can also be produced by unexpected events and environment contingencies
that make the chosen refinement of current action or the chosen plan inappropriate. Finally,
the actor has to keep its goals in perspective and monitor that they remain not only feasible
but also relevant. In the remainder of this section, we discuss successively these three levels
of monitoring.

7.2.1 Platform Monitoring

A physical actor has necessarily to monitor its platform and adapt its actions to the func-
tioning status of its sensory-motor capabilities.3 Low-level monitoring may be needed even
when the execution platform is solely computational. One may argue that this monitoring
is a platform dependent issue, which is not a component of deliberate acting. This is in
part true. However, we already saw that deliberation has to rely on models of the actor’s
platform, including when the platform evolves. Further, deliberation techniques can be
very relevant for performing platform monitoring functions. Let us briefly survey a few
approaches.

The techniques for monitoring physical sensory-motor platforms often rely on signal
filtering and parameter identification methods for fault detection and identification, and
statistical and pattern recognition methods for diagnosis (see the survey of Pettersson [475]).
More of interest to deliberation are the model-based diagnosis techniques. These usually
take as input a triple (System description, Components, Observation) where the first term
is a model of the platform, the second a finite list of its components, the third is an assertion
inconsistent with the model expressing the observed fault. The diagnosis task is to find a
minimum subset of components whose possible failure explains the observation. The recent
framework of Baier et al. [31] formulates a model-based diagnosis problem as a planning
problem with information gathering and reasoning on change.

Model-based techniques are well illustrated in a comprehensive monitoring, diagnosis,
and recovery system called Livingstone for an earth observation spacecraft developed by
Muscettola et al. [439] and Bernard:2000wy. Livingstone relies on the approach of qualitative
model-based diagnosis of Williams and Nayak [605]. The spacecraft is modeled as a collection
of components, for example, thrust valves. Each component is described by a graph whose
nodes correspond to normal functioning states or to failure states of that component, for
example, a valve is closed, open, or stuck. Edges are either nominal transition commands
or exogenous transition failures. The latter are labeled by transition probabilities; the
former are associated with transition costs and preconditions of the commands. A node is
associated with a set of finite domain constraints describing the component’s properties in
that state, for example, when the valve is closed, inflow = 0 and outflow = 0. The dynamics
of each component is constrained such that, at any time, exactly one nominal transition
is enabled but zero or more failure transitions are possible. Models of all components
are compositionally assembled into a system where concurrent transitions compatible with
the constraints and preconditions may take place. The entire model is compiled into a
temporal propositional logic formula, which is queried through a specific solver (with a
truth-maintenance and a conflict-directed best-first search). Two query modes are used: (i)
diagnosis, which finds the most likely transitions consistent with the observation, and (ii)
recovery, which finds the least cost commands that restore the system into a nominal state.
This monitoring system is well integrated with the spacecraft acting system. It computes a

3This level of monitoring is sometime referred to as fault detection, identification and recovery (FDIR).



focused sequence of recovery commands that meets additional constraints specified by the
acting system.

Livingstone and other similar model-based diagnosis systems are focused on the moni-
toring on the execution platform itself.4 Monitoring the actor’s interactions with a dynamic
environment (for example, in searching for an object and bringing it to a user) requires other
techniques, which are discussed next.

7.2.2 Action and Plan Monitoring

Monitoring the causal structure of a plan. The synthesis of a plan provides a col-
lection of actions, organized as a sequence, a partial order, a chronicle, or a policy. It also
provides an important information for monitoring the progress of the plan, which is the
causal structure of the plan. Basically, this causal structure says which effects of an action
a are predicted to support which preconditions of an action a′, constrained to come after
a.

We have already discussed the causal structure of a plan in previous chapters, through
the notion of causal links in a partial plan (Definition 2.30 in Section 2.5), or the notion
of causally supported assertions in a timeline (Definition 4.9 in Section 4.2). Let us briefly
discuss its use for monitoring in the simple case of sequential plans.

Let π = ⟨a1, . . . , ai, . . . , ak⟩ be a sequential plan to be monitored for achieving a goal
g. Let us use the regression of a goal through an action (see Equation 2.14) to define the
sequence of intermediate goals associated with π as:

G = ⟨g0, g1, . . . , gi, . . . , gk+1⟩, with
gi = γ−1(gi+1, ai) for 1 ≤ i ≤ k, gk+1 = g, and g0 = ∅.

In other words, action ak can be performed in a state s and achieves g only if s supports
gk. Similarly, the subsequence ⟨ak−1, ak⟩ can be performed in a state s′ and achieves g only
if s′ supports gk−1. The entire plan π is applicable and achieves g only in a state that
supports g1.
G is easily defined from π and can be used to monitor the progress of π with the simple

procedure in Algorithm 7.1. This procedure searches G in reverse order, looking for the first
gi, which is supported by current state. It then performs action ai. The goal is achieved
when the current state supports gk+1 = g. If the only supported intermediate goal is g0 = ∅
(trivially supported by every state), then the plan π has failed.

Progress-Plan(π,G)
loop
ξ ← observed current state
i← maxj{0 ≤ j ≤ k + 1 | ξ supports gj}
if i = k + 1 then return success
if i = 0 then return failure
else perform action ai

Algorithm 7.1: A simple monitoring of the progression of a plan

Note that the procedure Progress-Plan does not follow π sequentially. It “jumps” to the
action closest to the goal that allow to progress toward g. It may also go back and repeat
several times previously performed actions until the effects required by an intermediate goal
are achieved.

Example 7.1. Consider a service robot for which a planner produces the following sequen-
tial plan: π = ⟨move(door), open(door), move(table), pickup(tray), move(sink), putdown(tray,

4They can be qualified as proprioceptive monitoring approaches.



sink), pickup(medic), move(chest), putdown(medic,chest) ⟩. π says to move to door and open
it because the robot cannot open it while holding the tray. When starting this plan the
robot may observe that, despite its initial model of the environment, the door is already
open. Progress-Plan would skip the first two actions and proceed with the move(table).
Later on, after picking up the medic if the robot observes that it gripper is empty, it would
repeat the pickup action.

The intermediate goals in the sequence G are not independent. They can be organized
such as to reduce the computational effort for finding the largest i such that ξ support
gi. The corresponding data structure is a tabular representation of a causal graph called a
triangle table. It has been proposed together with the preceding procedure by Fikes [195]
in Planex, an early monitoring and execution system associated with the Strips planner.

Progress-Plan alone is limited and remains at an abstract and simple level of monitoring.
It has to be augmented with the monitoring of the commands refining the actions in π, with
diagnosis of possible problems (that is, why the state observed after performing ai does not
support gi+1) and the control of repeated actions on the basis of this diagnosis (for example,
when does it make sense to repeat a pickup action).

Monitoring the invariants of a plan. An invariant of a state transition system is a
condition that holds in every state of the system. For a planning problem (Σ, s0, g), an
invariant characterizes the set of reachable states of the problem. A state that violates the
invariant cannot be reached from s0 with the actions described in Σ. In other words, if φ
is an invariant of (Σ, s0, g), then for any plan π and any state s ∈ γ̂(s0, π), s supports φ.
Going back to Example 7.1, if the robot has no action to lock or unlock the door, and if the
door is initially unlocked, then door-status(door)=unlocked is an invariant of this domain.
Note that the world invariant qualifies here a particular model of the world, not the world
itself; monitoring violation of the invariant allows to detect discrepancies with respect to
that model.

Invariants of a planning problem can be synthesized automatically, as shown for example
by Kelleher and Cohn [325] or Rintanen [510]. Several authors have used invariants to speed
up planning algorithms, for example, Fox and Long [202]. However, at the acting level, we
know that the assumption of a static environment does not hold: there can be other state
transitions than those due to the actor’s actions. For example, the door of Example 7.1
may become locked, this violating a plan that requires opening that door. The actor has to
monitor that the current state supports the invariants relevant to its plan.

However, the invariants of a planning problem are often not sufficient for the purpose of
monitoring. Many of the invariants entailed from (Σ, s0, g) express syntactical dependencies
between the variables of the problem, for example, a locked door is necessarily closed;
it cannot be open.5 Often, an actor has to monitor specific conditions that express the
appropriate context in which its activity can be performed. For example, the robot has to
monitor the status of its battery: if the charge level is below a threshold, than at most τ
units of time are available in normal functioning before plugging at a recharge station. Such
conditions cannot be deduced from the specification of (Σ, s0, g); they have to be expressed
specifically as monitoring rules.

A simple approach, proposed by Fraser et al. [206], considers an extended planning
problem as a tuple (Σ, s0, g, φ), where φ is a condition, expressed formally in the same way
as the preconditions of actions. Condition φ is a requirement for planning: π is a solution
to the problem if every state s ∈ γ̂(s0, π) supports φ. It is also a requirement for acting:
the actor has to monitor at acting time that every state observed while performing a plan
π supports φ. A violation of this condition, due to any exogenous event or malfunction,
means a failure of the plan. It allows quite early detection of infeasible goals or actions,

5The use of multivalued state variables reduces these dependencies, when compared with the use of
predicates, but it does not eliminate them.



even if the following actions in the plan appear to be applicable and produce their expected
effects.

Several authors have developed elaborate versions of the preceding idea with monitor-
ing rules, in some logical or temporal formalism, associated to sensing and recovery actions
together with efficient incremental evaluation algorithms at acting time. For example, the
approach of Fichtner et al. [194] relies on the fluent calculus of Sandewall [521] with actions
described by normal and abnormal preconditions. The former are the usual preconditions;
the latter are assumed away by the planner as default; they are used as a possible expla-
nation of a failure. For example, delivery of an object to a person may fail with abnormal
preconditions of the object being lost or the person not being traceable. Abnormal effects
are similarly specified. Discrepancies between expectations and observations are handled
by a prioritized nonmonotonic default logic and entail that default assumptions no longer
hold. These explanations are ranked using relative likelihood, when available. The system
is able to handle incomplete world models and observation updates received while acting or
on demand from the monitoring system through specific sensory actions.

Ben Lamine and Kabanza [50] propose an interesting variant where Linear Temporal
Logic formulas are used to express goals as well as correctness statements and execution
progress conditions. A trace of the execution, observed and predicted at planning time, is
incrementally checked for satisfied and violated LTL formulas. For that, a delayed formula
progression technique evaluates at each state the set of pending formulas; it returns the set
of formulas that has to be satisfied by any remaining trace. The same technique is used both
for planning (with additional precondition-effect operators and some search mechanism) and
for monitoring.

The approach of Bouguerra et al. [90] uses domain knowledge expressed in description
logic to derive expectations of the effects of actions in a plan to be monitored during
execution. A first-order query language allows online matching of these expectations against
observations. The parameters of action refer to world objects that have derived properties.
These properties are checked to be either consistent or inconsistent with observations. Their
consistency may be undetermined, triggering observation actions. An interesting extension
handles flexible monitoring with probabilistic models, akin to Bayesian belief update. It
relies on probabilistic plans with nondeterministic actions as well as on probabilistic sensing
models.

Finally, let us mentioned the comprehensive approach of Doherty et al. [157], which
relies on a Temporal Action Logics formalism of Kvarnström and Doherty [365], for spec-
ifying operators and domain knowledge. Formal specifications of global constraints and
dependencies, together with planning operators and control rules, are used by the planner
to control and prune the search. Monitoring formulas are generated from the descriptive
models of planning operators (preconditions, effects, and temporal constraints) and from
the complete synthesized plan, for example, constraints on the persistence of causal links.
This automated synthesis of monitoring formulas is not systematic but selective, on the
basis of hand-programmed conditions of what needs to be monitored and what does not.
Additional monitoring formulas are also specified by the designer in the same expressive
temporal logic formalism. For example, a UAV (the application domain of Doherty et al.
[157]) should have its winch retracted when its speed is above a given threshold; it can
exceed its continuous maximum power by a factor of η for up to τ units of time if this is
followed by normal power usage for a period of at least τ ′. The system produces plans with
concurrent and durative actions together with conditions to be monitored during execution.
These conditions are evaluated online using formula progression techniques. When actions
do not achieve their desired results, or when some other conditions fail, recovery via a plan
repair phase is triggered.

Integrating monitoring with operational models of actions. The previous exam-
ples of monitoring rules for a UAV express conditions on the normal functioning of the



execution platform and its environment; they allow detection of deviations from the re-
quired specifications. Such a detection is naturally integrated to operational models of
actions with the refinement methods introduced earlier. Furthermore, detections of a mal-
function or a deviation may trigger events to which are associated refinement methods for
taking first corrective actions specific to the context.

Most of the acting systems discussed in Section 3.5.1, such as PRS, RAP, or TCA, have
been used for action refinement and reaction to events as well as for monitoring. Most
implementations using these systems integrate specific methods or part of such methods, to
handle monitoring functions.

Refinement methods introduced in Chapter 3 are adequate for expressing monitoring
activities; RAE procedure can be used for triggering observation and commands required
for monitoring.

7.2.3 Goal Reasoning

A deliberative actor has to keep its goals in perspective to make sure that they remain fea-
sible and relevant to its long-term objectives or mission. When needed, it has to synthesize
alternate goals. Goal reasoning is a monitoring function at the highest level; it continuously
checks for unexpected events that may interfere with current goals.

Goal reasoning has been deployed in a few experiments. Let us mention briefly some of
them. The Mission Manager in the DS1 spacecraft experiment of Muscettola et al. [439] and
Bernard et al. [52] offers a goal reasoning capability. It analyses the progress of the mission
and determines which goals should be satisfied for the next planning window (one to two
weeks). The selected goals are passed to the planner, together with constraints that need
to be satisfied at waypoints identified by the Mission Manager (for example, the amount of
energy left in the batteries should be above a threshold at the end of the planning phase).

There is an analogous manager in the CPEF system of Myers [440], used in the simu-
lation of operational deployments; this manager provides appropriate goals to the planner
and controls the generation of plans. For a similar class of applications, the ARTUE sys-
tem of Molineaux et al. [427] detects discrepancies when executing a plan. It generates
an explanation, possibly produces a new goal, and manages possible conflict between goals
currently under consideration. It uses decision theory techniques to decide which goal to
choose. The approach proposes an original explanation system, which uses Assumption-
based Truth Maintenance techniques to find the possible explanation of the observed facts.
In Powell et al. [492], the authors extend ARTUE with a facility for teaching the system
new goal selection rules.

Another example is the Plan Management Agent of Pollack and Horty [490] for handling
personal calendars and workflow systems. This system addresses the following functions:

• Commitment management: commits to a plan already produced, and avoids new
plans that conflict with the existing ones.

• Alternative assessment: decides which of the possible alternative goals and plans
should be kept or discarded.

• Plan control: decides when and how to generate a plan.

• Coordination with other agents: takes into account others’ commitments and the cost
of decisions involving their plans.

That system relies on temporal and causal reasoning. It is able to plan with partial com-
mitments that can be further refined later.

Finally let us mention a class of approaches, called Goal Driven Autonomy (GDA) for
reasoning about possibly conflicting goals and synthesizing new ones. These approaches
are surveyed by Hawes [263] and Vattam et al. [575]. The former surveys a number of
architectures supporting goal reasoning in intelligent systems. The latter reviews more



than 80 contributions on various techniques for goal monitoring, goal formulation, and goal
management, organized within a comprehensive goal reasoning analysis framework.

7.3 Learning and Model Acquisition

Recall that methods for automated planning and acting rely on two types of action models:
operational and descriptive. The acquisition of these models, as for any other kind of
models to be used automatically, is a challenging bottleneck. Machine learning techniques,
especially statistical techniques, have progressed significantly. Some of these techniques are
relevant for the acquisition of planning and acting models, in particular learning operational
models of actions. Indeed, operational models are at a lower level, more detailed, and often
more domain-specific than descriptive models. They are more difficult to specify by hand.

Consequently, this section is mostly devoted to learning operational models for acting.
We briefly introduce and survey methods for reinforcement learning (Section 7.3.1) and
learning from demonstration (Section 7.3.2). A short discussion of approaches for learning
descriptive models and domain specific heuristics for planning concludes the section.

7.3.1 Reinforcement Learning

Reinforcement learning methods aim at improving the performance of an actor by direct
interaction with the world. They are based on statistics of trials and errors on past expe-
riences. The actor learns how to perform a task by maximizing the long-term perceived
benefit of its actions. There is no teacher providing examples of good behaviors in certain
situations or advice about how to choose actions. The only feedback given to the actor at
each step is a scalar: the reward associated with the action it has performed. As long as the
actor has not tried all feasible actions in all encountered situations, it will not be sure that
it uses the best ones. Reinforcement learning has to solve the compromise of exploration
versus exploitation: the actor must make the most of what it already knows to maximize
the benefit of its actions for the task at hand; to find the best actions, it must explore
options it does not know enough about.

To introduce our notations, consider the elementary case in which a single action a ∈
{a1, . . . , an} is sufficient to perform the task at hand. Let ri(a) > 0 be the reward received
after running action a at the ith time. We can estimate the quality Q(a) of action a that
has been executed ka times by its average reward:

Q(a) =

{
q0 if ka = 0,
1
ka

∑ka
i=1 ri(a) othersise.

(7.1)

An equivalent formulation maintains Q by incremental updates:

Q(a)← Q(a) + α[rka(a)−Q(a)],with α =
1

ka
. (7.2)

When ka →∞ for all a, the choice of the action that maximizes the reward is given by
argmaxa{Q(a)}. However, as long as the exploration of alternatives has not been sufficient,
the actor must try actions other than the estimated best one, according to various heuristics.
We can define a function Selecta{Q(a)} that favors the current best action and allows for
exploring alternatives by various methods such as:

• choose action argmaxa{Q(a)} with probability (1 − ϵ) and a randomly drawn action
other argmaxa{Q(a)} with probability ϵ, where ϵ is decreasing with experience; and

• choose an action according to a probabilistic sampling distribution, for example, with

Boltzmann sampling, according to a probability distribution given by e
Q(a)
τ , where τ

is decreasing with experience.



When the environment is stationary, the update of Q(a) in Equation 7.2 after performing
action a becomes increasingly weak with big ka. If the environment is not stationary, we
can keep α < 1 constant. Note also that the initialization value q0 fosters exploration if q0
is high with respect to other rewards. For example, if q0 = rmax, the maximum reward,
never-tried actions will be systemically preferred.

With these basics notions, let us now consider the interesting case where the task at hand
requires a sequence of several actions, each interfering with the following ones, influencing
the overall success and the sum of rewards. The framework generally used is that of Markov
decision processes, as seen in Chapter 6. The actor seeks to learn an optimal policy that
maximizes the expected sum of rewards.

One approach is to learn the MDP model and then to apply the planning techniques
seen earlier (with rewards instead of costs, and maximization instead of minimization) to
find the optimal policy and then use it. Learning a model means collecting enough statistics
through an exploratory phase to estimate the probability distributions Pr(s′|s, a) and the
rewards r(s, a). This direct approach requires a costly exploratory phase to acquire the
model. It is often better to start performing the task at hand, given what is known, while
continuing to learn, that is, to combine the two phases of acquiring a model and finding the
best action for the current model.

Q-learning
loop
a← Selecta{Q(s, a)}
apply action a
observe resulting reward r(s, a) and next state s′

Q(s, a)← Q(s, a) + α[r(s, a) + maxa′{Q(s′, a′)} −Q(s, a)] (i)
s← s′

until termination condition

Algorithm 7.2: Q-learning, a reinforcement learning algorithm.

The Q-learning algorithm, Algorithm 7.2, meets this objective while avoiding the need
to build the MDP model explicitly. Using the notations introduced in the previous chapter,
Equation 6.6 can be reformulated as:

Q(s, a) = r(s, a) +
∑

s′∈γ(s,a)

P (s′|s, a)max
a′
{Q(s′, a′)}.

The basic idea of Q-learning is to perform an incremental update of Q(s, a), similar to
Equation 7.2. This update (ligne (i) in the algorithm) does not use the unknown probability
parameters of the model, but the value of Q in a successor state s′, as observed in current
step of the trial.

Q-learning is called for each trial of the task at hand. The termination condition is the
achievement of the task or a failure of the trial. Values of Q(s, a) are initialized arbitrar-
ily; they are global variables characterizing the task. The function Selecta{Q(s, a)} favors
argmaxa{Q(s, a)} while allowing for the exploration of non maximal action with a frequency
decreasing with experience. The parameter α ∈ [0, 1] is set empirically. When α is close
to 1, Q follows the last observed values by weighting down previous experiences of a in s;
when it is close to zero, previous experiences count more and Q does not change much; α
can be set as decreasing with the number of instances (s, a) encountered.

It is possible to prove under reasonable assumptions the asymptotic convergence of
Q-learning algorithm to optimal policies. In practice, however, this convergence is very
slow in the number of trials. For physical actions, experiments are much more costly than
the computational complexity. Simulated experiments can be a critical component in the
implementation of a reinforcement learning approach.



There are several variants of the Q-learning algorithm. One of them, known as SARSA
(for State, Action, Reward, State, Action), takes into account a sequence of two steps
(s, a, s′, a′) before updating the estimated quality of a in s byQ(s, a)← Q(s, a) + α[R(s, a) +Q(s′, a′)−Q(s, a)].
Other algorithms proceed by updating the value function V (s) rather then the function
Q(s, a). Updates are performed over triplet (s, a, s′) in a similar way: V (s)← V (s) + α[r(s, a) + V (s′)− V (s)].
This algorithm, called TD(0), is generalized as the TD(λ) algorithm, which performs updates
over all states, with a weighting depending on the frequency of meeting each state.

Another approach, illustrated by the DYNA algorithm, combines learning with planning.
One maintains and updates estimates of the probability and reward parameters Pr(s′|s, a)
and r(s, a). At each step of a trial two updates are performed taking into account new
estimates: a Q-learning update at current s and a, and a Value-Iteration type of update
for other (state, action) pairs chosen randomly or according to some priority rule. Here,
experience allows estimation of the model and the current policy. The estimated model in
turn allows the improvement of the policy. Each step is more computationally expensive
than in Q-Learning, but the convergence occurs more rapidly in the number of trials.

The preceding approaches lack an important property in learning: the capability to
generalize. When reaching a state s that has not been met before, an actor should be
able to draw from its past experience with other states “similar” in some sense to s. The
extension of Q-learning to continuous state and action spaces allows very naturally for such
a property: when using a metric space, it is reasonable to assume that nearby states,
according to the metric of the space, have close estimate values V (s) or Q(s, a), and hence,
can benefit from similar actions.

The parametric version of Q-learning implements such an approach. Here S and A are
represented as two vectors of continuous state and control variables. Let θ = (θ1, . . . , θn)
be a vector of parameters. We assume that Q(s, a) can be approximated parametrically
as a function Qθ(s, a) parametrized by θ. An a priori class of functions is taken, for ex-
ample, linear functions of state and control variables. Learning amounts to estimating the
parameters θ of this model. Q-Learning is as described earlier, except that the update (i)
does not change values in a table but the parameters of Qθ(s, a). The process generally
involves minimizing the mean squared error of Q with respect to Q∗; the latter is estimated
at each iteration by the last observed update. The gradient algorithm gives the following
formulation:

θ ← θ + α[r(s, a) + max
a′
{Qθ(s

′, a′)} −Qθ(s, a)]
∂Qθ(s, a)

∂θ
. (7.3)

This expression replaces (i) in Q-learning for each parameter θi. A similar formulation can
be obtained for the estimate of Vθ in variant of Q-learning.

The parametric version of reinforcement learning has been more successful than the
discrete version. It has been used with success in robotics, in demonstrations such as
stabilizing an inverse pendulum, and in playing darts and simple ball games [473].

One of the main problem of reinforcement learning (continuous or discrete) is in the
definition rewards. Indeed, the previous algorithms indicates, rather improperly, “observe
reward r(s, a).” Rewards are seldom observable, even when the states are. One must provide
the means to estimate the rewards from what is observable. Sometimes a function r(s, a)
is easy to specify, for example, the deviation from equilibrium for a stabilization task, or
the deviation from the target for a tracking task. But often this is difficult. For example,
it is unclear what can be the rewards of primitive actions in the tasks of driving a car, or
cooking an elaborate recipe.

This difficulty leads to the inverse reinforcement learning problem [3]. It can be formu-
lated as follows: given the optimal policy provided by a teacher in a few demonstrations,
what is the corresponding reward function that generates this policy.

In the unrealistic ideal case of an explicit finite MDP where π∗(s) is known everywhere,
Q(s, a) is easily expressed as a function of the unknown values of r(s, a); we want Q(s, a)



to be maximal for a = π∗(s). This formulation is under-specified: it has many solutions
that are of not much interest. It can be extended with an additional criterion, for example,
maximize the expression:

∑
s[Q(s, π∗(s))−maxa̸=π∗(s)Q(s, a)], that is, the distance to the

next best action. The problem can be solved by linear programming.
The formulation makes sense in parametric approaches in which the teacher’s demon-

strations can be generalized. One defines rewards as a parametrized function rθ(s, a) of state
and control variables (for example, a linear function) and seeks to estimate its parameters
by requiring that it meets the teacher’s actions in demonstrated states. This estimation
problem is solved by a combination of quadratic programming (an additional criterion is
also needed) and dynamic programming.

As the reader has certainly noticed, inverse reinforcement learning is akin to learning
from demonstration, discussed next.

7.3.2 Learning from Demonstrations, Advice and Partial Programs

As underlined earlier, the definition of reward functions necessary to reinforcement learning
is far from obvious. Moreover, it is rare to have a fully observable Markov state space,
as demanded in the MDP formulation. It is possible to make a state space Markovian,
but this requires significant engineering and adds generally unobservable components. The
complexity of learning and planning techniques in partially observable MDP is prohibitive.
Moreover, the experimental complexity in number of trials is much more expensive than
the computational complexity. Reinforcement learning requires a very large number of
experiments to converge. Finally, it is common that the task to learn cannot be treated as
a simple sequence of pairs (state, action); it requires a plan or a control structure, such as
repeating subsequences of actions until a certain condition is reached. For these reasons,
learning from demonstration is a good alternative when the actor can benefit from the
demonstrations of a teacher.

In learning from demonstration, a teacher gives to the actor the appropriate actions in
well-chosen settings. This allows the teacher to control the learning process and gradually
focus learning on the most difficult part of the task. The learner generalizes from the teacher
demonstrations and learns the required behavior, for example, as a policy in simple cases,
or as a mapping from sensory states to elaborate plans in the general case.

Learning from demonstration involves an important issue related to the form of the
teacher’s demonstrations. These may range from specifications in a formal representation
or a programming language adapted to the learner, to actual actions of the teacher in the
environment using the teacher’s own sensory-motor capabilities that the learner observes
through its proper platform.

Learning from specifications. The former case can be set in the MDP framework. In
passive imitation, for example, the teacher provides its demonstrations as a set of sequences
{σ1, . . . , σm}, each sequence σ = ⟨s1, a1, s2, a2, . . .⟩ encodes an actual demonstration of the
teacher performing an instance of the task to learn. The learner synthesizes a policy on the
basis of these demonstrations and from additional interactions with the environment with
cost and/or reward feedback. In active imitation, the learner is further able to query the
teacher, when needed, about what to do in some state s, that is, what is the desirable value
of π(s). Each query has a cost that needs to be taken into account in the overall learning
process. In a variant, called advice taking, the learner can query which of two sequences
σi or σj the teacher recommends as the best. Here the learner has to synthesize (that is,
to plan) the most informative sequences for its learning process, given the cost of queries.
Research in these issues is active (for example, [606, 302]), but so far has been applied
mostly in academic benchmarks such as those of the Reinforcement Learning Competition
(for example, balance a vertical pole or maintain equilibrium on a bicycle).6

6http://rlcompetition.org

http://rlcompetition.org


The partial programming framework offers a quite powerful approach for learning from
specifications. The formulation is more general than the above imitation approaches. It
relies on Semi-Markov Decision Processes (SMDP, see Section 6.8.4) and hierarchical non-
deterministic finite-state machines. The latter are specified by the teacher as partial pro-
grams, with the usual programming constructs augmented with open choice steps, where
the best actions remain to be learned. These specifications constrain the class of policies
that can be learned using an extended SMDP Q-learning technique. The partial program-
ming framework can yield to a significant speed-up in the number of experiments with
respect to unguided reinforcement learning, as demonstrated in benchmark problems (for
example, the “taxi” domain of [152] with navigation in a grid to mimic loading and un-
loading randomly distributed passengers to their destinations). Few partial programming
languages and systems have been proposed (for example, Alisp [20, 463] or A2BL [540]) and
demonstrated in simulations and video games. The framework seems to be well adapted to
the partial specification of acting methods, where operational models are further acquired
through learning.

Learning from the teacher’s own actions. When the demonstrations take place as
actual actions of the teacher in the environment, using the teacher’s own sensory-motor
capabilities, complex additional issues arise. To learn, the actor must establish a double
mapping:

• a sensory mapping to interpret the observed demonstrations of the teacher, and

• an actuation mapping to transpose the demonstrated actions to its own capabilities.

This double mapping is difficult. It often limits learning from demonstration and requires
the teacher to use some pedagogy, that is, to understand at a low level how the learner
might be able to follow the teacher demonstrations and to map them into its capabilities.
Imagine, for example, teaching a robot how to open various types of doors, or how to cook
an elaborate recipe. Teaching would be more successful if the demonstrations are limited
to elementary grasping and manipulation actions close to those feasible by the robot (and
avoid actions such as tasting that the robot cannot perform).

Most of the work on learning from a teacher’s actions has tried to avoid the issues of
understanding and transposing the demonstrations. For example in robotics, quite often
the demonstrations take place, through various means, in the robot’s sensory-motor space.
This form of learning through teleoperation, where the teacher acts directly in the actuators
and proprioceptive sensor spaces of the robot, is quite successful (see [535, 473] and the
survey of [23]), including for quite complex tasks such as helicopter acrobatics [2, 124].

A more ambitious approach would take into account at a higher level the need to un-
derstand and transpose the teacher’s demonstrations. Learning should aim at acquiring a
mapping from particular sensory states to plans. These can be obtained by plan recognition
methods (for example,[217, 497, 503]). The learner than develops its own plans, taking into
account its specific capabilities, to achieve the effects of the teacher’s demonstrations. De-
velopments along similar approaches are being investigated (for example, [453, 516]). They
cover potentially a more general class of behaviors that can be demonstrated by the teacher
and acquired by the learner (for example, iterative actions). They also allow for extended
generalization because they foster acquisition of basic principles and rely on the learner’s
planning capabilities. They are finally more natural and easier for the teacher, because the
teacher’s actions are interpreted in terms of their intended effects on the environment rather
than in a sequence of their low-level commands.

7.3.3 Acquiring Descriptive Models and Heuristics

The acquisition of descriptive models of actions has naturally been addressed as a knowl-
edge engineering issue. A few early planners developed into rich environments supporting



the designer or the end-user for producing and maintaining complex plans. Good examples
of these environments are O-Plan2 [560] and SIPE-2 [600, 601]. There is today an active
community that organizes regular workshops, called Knowledge Engineering for Planning
and Scheduling (KEPS), and a competition (ICKEPS). It has developed knowledge engi-
neering methods and tools supporting, for example, the specification of requirements (e.g.,
with UML-type approaches); the modeling and reuse of planning knowledge; the analysis,
graphic representation, and verification of a domain; or the metrics analysis and interactive
modification of synthesized plans. Two recent surveys of the field [572, 527] list about a
dozen software environments for knowledge engineering in planning. Many of these environ-
ments are devoted to classical planning, relying on the PDDL language and its extensions
(for example, itSIMPLE [571] or VIZ [588]). A few tools have been proposed for planning
with HTN approaches (for example, GIPO [541] or JABBAH [242]) or timeline-oriented
approaches (for example, EUROPA [36] or KEEN [53]). Knowledge engineering for nonde-
terministic or probabilistic models, or for the integration of operational models and acting
methods remains to be developed.

Many machine learning techniques have been proposed in planning. The surveys of
[626, 299] analyze a wide spectrum of approaches ranging from decision trees, inductive
logic, and explanation-based learning, to classification methods, Bayesien learning, and
neural nets. These techniques have been used to learn domain-specific heuristics [616, 612,
158], control knowledge and macro actions [450, 125, 115]. For example, the approach of
de la Rosa and McIlraith [139] relies on inductive logic programming techniques to learn
from training examples useful state variables and domain specific control rules in Linear
Temporal Logic to guide a forward search state-space planner such as TLPlan [27]. Learning
techniques have also been used to improve the quality of plans with respect to cost, success
rate [397, 556], or user’s preferences [16]. Learning planning operators and domain models
from plan examples and solution traces has been addressed with logic-based techniques,
for example, in classical planning [615, 592, 625] and HTN planning [624, 282]. Learning
probabilistic planning operators with techniques complementary to those of Section 7.3.1
has also been investigated, for example, in [460, 464].

7.4 Hybrid Models

In Section 1.2.3, we mentioned the need to consider discontinuities in the interaction of an
actor with the environment (for example, the different phases in a grasp action), as well
the need for modeling continuous evolutions within each phase (for example, the motion
of a robot arm while turning a door handle). Discontinuous transitions between different
phases can be modeled using discrete state variables, while continuous evolutions within
each phase can be modeled with continuous variables. Models with both discrete and
continuous variables are called hybrid models.

Consider, for instance, a bouncing ball, teh dynamics of which can be modeled with two
phases, falling down and jumping up, with a clear discontinuity in the speed of the ball. A
walking robot is another example; its movement at each half step is a continuous evolution.
A thermostat can be modeled with a simple hybrid model, which evolves between a heat-
ing and a cooling phase, and controls the continuous increasing/decreasing temperature of
the environment. Similarly, an airplane controller can switch among different phases with
different continuous behaviors (e.g., taxiing, taking off, landing, and cruising) and their
required controls. In each phase, its dynamic can be represented with the continuous laws
of flight dynamics. Most complex systems, like intelligent cruise control in cars or aircraft
autopilot systems can be properly modeled with hybrid models too.

In hybrid models, discrete state variables describe how a system switches from one
phase to another, while continuous state variables describe the system dynamics within a
given discrete phase. Discrete state variable evolutions can be modeled, for example, by
finite state automata, while continuous variable evolutions can be modeled by differential



equations. The switching between discrete phases is usually determined by some conditions
on the value of continuous variables in the current phase.

In the rest of this section, we first provide a brief introduction to hybrid automata, that
is, a way to formalize hybrid models (Section 7.4.1); we then introduce hybrid automata with
inputs and outputs (Section 7.4.2), a representation that provides the ability to do planning
and acting with hybrid models. We then review some current techniques for planning and
acting with hybrid models: planning as model checking (Section 7.4.3) and flow tubes
(Section 7.4.4). We conclude the section with a note about how planning and acting with
hybrid models can be approximated by discretizing continuous variables (Section 7.4.5).

7.4.1 Hybrid Automata

In this section, we provide a brief introduction to hybrid automata, a kind of formal models
for hybrid systems. A hybrid automaton is a formal model with both discrete and continuous
variables. The definition that follows is partly taken and adapted from [273].

Definition 7.2. (Hybrid Automaton)A hybrid automaton is a tupleH = (X,G, Init, Inv, F low, Jump),
where

• X = {x1, . . . , xn} is a finite set of continuous variables w.r.t. time, ranging over real
values (each xi ∈ R). Ẋ is the set {ẋ1, . . . , ẋn} where ẋi stands for the first derivative
of xi w.r.t. time.

• G is a finite directed graph (V,E), called the Control Graph. Each vi ∈ V is called a
Control Mode, each eij = (vi, vj) ∈ E is called a Control Switch.

• Init(vi) ⊆ Rn is a set of initial values of X for each control mode vi ∈ V . It is a
condition over the variables in X.

• Inv(vi) ⊆ Rn is an invariant for each control mode vi ∈ V . It is a condition over the
variables in X.

• Flow(vi) represents the continuous change of variables in X for each control mode
vi ∈ V . It is a condition over the variables in X and Ẋ.

• Jump(eij) represents the guard that triggers a control switch eij = (vi, vj). It is a
condition over X; when it is satisfied, it switches the control from mode vi to mode
vj

A control automaton H has a finite set of control modes V and can switch from one
control mode to another one according to the control switches in E. The control graph
G = (V,E) is the discrete component of the control automaton H. In each control mode
vi, continuous change is modeled through the evolution of continuous variables in X. The
invariant Inv(vi) states a condition over variables in X that is satisfied whenever H is in
control mode vi. Flow(vi) describes how continuous variables change while H is in control
mode vi. Jump(eij = (vi, vj)) is a condition over the continuous variables that determines
when the control mode should switch from vi to vj .

7

Example 7.3. A thermostat can be modeled with the hybrid automaton in Figure 7.1.
It has a single variable T representing the temperature: X = {T}. The thermostat can
be in two control modes, heater on or heater off. G = {V,E}, where V = {on, off},
E = {(on, off), (off, on)}. We suppose that initially the heater is off and the temperature
is 20 Celsius: Init(off) ≜ T = 20. The heater remains off if the temperature is above 18
degrees Celsius: Inv(off) ≜ T ≥ 18. When the heater is off, the temperature falls according
to the flow condition Flow(off) ≜ Ṫ = −0.1T . The heater may turn on as soon as the
temperature falls below 19 degrees: Jump((off, on)) ≜ T < 19. Because Inv(off) ≜ T ≥ 18,
at the latest the heater will go on when the temperature falls to 18 degrees. When the

7This interpretation of a guard is different from usual interpretations in planning [76].
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Figure 7.1: Hybrid automaton for a thermostat.

heater is on, the temperature rises according to Flow(on) ≜ Ṫ = 5 − 0.1T . The heater
continues to heat while the temperature is below 22 degrees Celsius: Inv(on) ≜ T ≤ 22. It
turns off when the temperature is higher than 21 degrees: Jump((on, off)) ≜ T > 21.

The intended meaning of the Jump condition is that the switch takes place nondeter-
ministically for any value that satisfies the control switch condition Jump. For instance,
suppose that the variable x changes value in a control mode vi by starting from a negative
value and by increasing monotonically, and suppose that the control switch Jump((vi, vj))
is x ≥ 0. The switch can happen when x has any positive value, and not necessarily when
x = 0. However, we should notice that the actual condition for the switch is determined
both by the control switch condition Jump((vi, vj)) and by the inviariant condition Inv(vi).
For instance, if Inv(vi) is x ≤ 1, then the switch will take place nondeterministically when
x satisfies the condition 0 ≤ x < 1, that is, at the latest when x rises to value 1. We can
easily impose a deterministic switch, for instance, in our example, with Jump((vi, vj)) = 0,
or with Jump((vi, vj)) ≥ 0 and Inv(vi) < 0.

Example 7.4. In this example, we consider an automatic battery charging station that
has to charge two plants, depending on whether the level of the battery of each plant gets
below two threshold values, l1 and l2 for the two plants p1 and p2, respectively. We suppose
that the charging system charges at a constant rate e, for only one plant at a time; it can
switch from one to the other instantaneously. We suppose that plant p1 and p2 consume
energy with rate e1 and e2, respectively. The objective of the charging station is to keep
the charge of each plant above the threshold values. The corresponding hybrid automaton
is depicted in Figure 7.2.

The level of the each plant battery charges is described by two continuous variables:
X = {c1, c2}, for each plant p1 and p2, respectively. The charging station can be on
two control modes, charging one plant or the other. G = {V,E}, where V = {p1, p2},
E = {(p1, p2), (p2, p1)}. We suppose that initially the station is charging plant p1, and
both plants have charges above their threshold: Init(p1) ≜ c1 ≥ l1 and c2 ≥ l2 . While
charging one of the two plants, the charge of the other one should be above the threshold:
Inv(p1) ≜ c2 ≥ l2 and Inv(p2) ≜ c1 ≥ l1. While a plant is charged at rate e, its charge level
increases linearly by e, but we have to take into account that it also consumes energy at its
rate (the plant is supposed to work while it is charged). We also have to take into account
that the other plant is consuming energy at its own rate: Flow(p1) ≜ ċ1 = e− e1 and ċ2 =
−e2, while Flow(p2) ≜ ċ2 = e− e2 and ċ1 = −e1. The station switches from one mode to
another when the opposite battery gets below its own threshold: Jump((p1, p2)) ≜ c2 ≤ l2
and Jump((p2, p1)) ≜ c1 ≤ l1.

The behaviour of the systems described in this section can be formalized as hybrid
automata. As intuitively described in the previous examples, such behavior results in con-
tinuous change (flows) and discrete change (jumps). Hybrid automata are specifically suited
for the verification of hybrid models. Different verification tasks have been studied, such as
the reachability problem, that is, whether a set of states can be reached from an initial set
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Figure 7.2: A charging station for two plants.

of states, a basic task for the verification of safety and liveness requirements. In general,
these verification tasks are undecidable. See [273] for a formal account including complexity
results about the verification of properties of hybrid automata.

7.4.2 Input/Output Hybrid Automata

To show how an actor can do planning and acting with hybrid models, we introduce in-
put/output (I/O) hybrid automata, that is, hybrid automata where discrete and continuous
variables are distinguished into input and output variables, and input variables are distin-
guished into controllable and uncontrollable variables.

To define I/O hybrid automata, let us first notice that the discrete component of an
hybrid automaton can be described with discrete state variables. The set of control modes
V (see Definition 7.2) can be represented with a set of discrete variables Y = {y1, . . . , ym}
ranging over discrete values. Each complete assignment to variables y1, . . . , ym corresponds
to a control mode vi ∈ V . This is similar to a state variable representation of a set of states
in Section 2.1.2.

Given the two sets X and Y of continuous and discrete variables, the definition of an I/O
hybrid automaton extends Definition 7.2 by distinguishing (discrete and continuous) input
variables from output variables: X = Xin ∪Xout and Y = Yin ∪ Yout, where Xin ∩Xout = ∅
and Yin ∩ Yout = ∅.

Moreover, discrete and continuous input variables are distinguished into controllable and
uncontrollable variables: Xin = Xc

in ∪Xu
in and Yin = Y c

in ∪ Y u
in, where X

c
in ∩Xu

in = ∅ and
Y c
in ∩ Y u

in = ∅.

The idea is that a component of an actor can interact with a system modeled as an
I/O hybrid automaton by determining the discrete/continuous controllable input variables
of the system. The actor can perceive its status through the discrete/continuous output
variables of the system. An actor can therefore assign values to the controllable inputs,
whereas this is not possible for uncontrollable variables, the value of which is determined
by the environment. Uncontrollable variables obey to dynamics that cannot typically be
modeled. They can represent external forces, the result of exogenous events, actions of
other agents, or noise in sensing the external environment.

In a conceptual model of an actor (see Figure 1.1), commands change the values of
discrete and continuous controllable input variables, while percepts affect discrete and con-
tinuous output variables. The model can evolve through changes in both controllable and
uncontrollable variables. The actor can be seen as a reactive systems that iteratively per-
ceives the output variables in Xout and Yout and reacts by determining the value of control-
lable input variables in Xc

in and Y c
in.

An actor can plan for and perform actions that change the control mode of the hybrid
automaton by assigning values to (some of) the variables in Y c

in and in Xc
in. We might

represent actions that change the values of discrete variables in Y c
in with purely discrete

models, like those presented in previous chapters. For instance, planning to determine the



control mode of the hybrid system could be done with a planning domain Σ = (S,A, γ),
where states in S correspond to control modes in V represented with discrete variables in Y ,
and γ can be the transition function of deterministic models (Chapter 2), nondeterministic
models (Chapter 5), or probabilistic models (Chapter 6).8

However, the actor must take into account that the model allows for continuous variables
X, like in the acting part of the hierarchical representation of Chapter 3. The actor needs
also to determine which are the continuous variables in input to the system modeled with an
hybrid automaton, i.e, the variables in Xc

in. Moreover, the actor has to deal with (discrete
and continuous) uncontrollable variables, which may determine an uncontrollable switch of
the control mode, that is, Y u and Xu. The effects of uncontrollable discrete variables in
Y u can be modeled with nondeterministic domain models as in Chapter 5.

For all the reasons mentioned so far, planning and acting with hybrid models is much
more complex than with purely discrete models.9

Example 7.5. Consider Example 7.4. The two control modes p1 and p2 can be represented
by a discrete controllable input variable: Y c

in = {p}, that can range over two values p1 and
p2. Let us now modify the example: the charging station, rather than charging the plants
at a constant rate e, can choose to charge plants at different rates between zero and a
maximum rate emax. This can be modeled with a continuous controllable input variable
x whose value is in R and in the interval (0, emax]: Ẋc

in = {e}. Moreover, the two plants
consume energy at a rate that depends on the load of tasks that they have to perform, and
this load is not under the actor’s control: we have therefore two continuous uncontrollable
input variables e1 and e2: X

u
in = {e1, e2}. Finally, the current charge of the two plants can

be perceived by the actor: Xout = {c1, c2}. The goal is to keep the charge of each plant
above the two threshold values l1 for plant p1 and l2 for plant p2.

Let us now briefly introduce some techniques for planning and acting with hybrid models.

7.4.3 Planning as Model Checking

The idea is to use existing model checkers for hybrid automata (see, for example, [273]) to
do planning with hybrid models in the case of reachability goals. A goal in a hybrid model
is defined as a condition on the continuous variables in X and as a subset of the set of
control modes V (see Definition 7.2).

In hybrid model checking it is possible to represent a hybrid planning domain by en-
coding actions that have effects over discrete and continuous variables. For instance, we
can have an additional state variable that represents the action that is performed (see, for
example, [77]). Given a goal, we can define its complement, that is, the set of control
modes that are not in the set of control modes of the goal and the negation of the goal
conditions on the continuous state variables in X. We can then search exhaustively (by
model checking) whether the complement of the goal is satisfied. This amounts to verifying
what in model checking literature is called a safety property, that is, verifying whether the
complement of the goal is always satisfied. A safety property can be expressed in temporal
logic, for example, LTL or CTL, extended with conditions over continuous variables, see
[273]. If the property is satisfied, then no plan that satisfies the original hybrid planning
problem exists. If the property is not satisfied, it means that there is a plan. In this latter
case, model checkers return an error trace, called a counter example, which in our case is a
solution plan that reaches our original goal.

This approach reduces the planning problem to a verification problem. Two problems
must, however, be taken into account. First, in general, reachability is not decidable with
hybrid automata. Indeed, the number of possible values of continuous variables can be

8If not all the variables in Y are observable in all situations, then we may need techniques that deal with
partial observability; see Chapter 5.

9Even model checking is in general undecidable with hybrid models.



infinite, and the condition over continuous variables and their derivatives can be of any kind.
There are classes of hybrid automata that are decidable. One of them is rectangular hybrid
automata [273]. A hybrid automaton is rectangular if the flow conditions are independent
of the control modes and the variables are pairwise independent.10 In each control mode
of a rectangular automaton, the first derivative of each variable is given a range of possible
values, and that range does not change with control switches. With each control switch of
a rectangular automaton, the value of each variable is either left unchanged, or changed
nondeterministically to a new value within a given range of possibilities. The behaviors of
the variables are decoupled because the ranges of possible values and derivative values for
one variable cannot depend on the value or derivative value of another variable.

The second problem we have to take into account is the following. If we have nonde-
terminism in the switch mode, then the solution is not guaranteed to be a safe (cyclic or
acyclic) solution, according to Definition 5.8. If we assume that all discrete and continuous
transitions are deterministic, then the problem reduces to find a sequential plan.

One example along this direction is the work in [77, 76], whose idea is to start from a
language for describing planning domains with both discrete and continuous variables, to
give semantics in terms of hybrid automata and then apply existing model checkers to find
a solution. [77, 76] start from the PDDL+ planning language [204]. PDDL+ allows for
the definition of models with discrete and continuous variables. Continuous dynamics is
modeled through processes and exogenous events, which model dynamics that are initiated
by the environment.

In PDDL+, the discrete component of an hybrid system is described by a set of propo-
sitions, while the continuous component is modeled with a vector of real variables. Discrete
transitions are described through preconditions and effects. Preconditions are conjunctions
of propositions and numeric constraints over the continuous variables. Events are repre-
sented with preconditions that, when fired, trigger the event. Processes are active as long
as their preconditions are true and describe the continuous change of continuous variables.
PDDL+ allows for durative actions that have preconditions and effects as conjunctions on
propositional variables as well as constraints on continuous variable; they have precondi-
tions that should hold when the action starts, during its execution, and at the end of the
action.

PDDL+ planning domains have therefore some similarities with hybrid automata. [77,
76] exploit the close relationship of the PDDL+ semantics with hybrid automata. They
provide a semantics of PDDL+ in terms of hybrid automata, even if PDDL+ assumptions
raise some semantic issues. Among them, the PDDL+ “ϵ-separation assumption” states
that no two actions are allowed to simultaneously occur if they update common variables
(mutex actions). Plans have to meet the ϵ-separation condition, that is, interfering actions
must be separated by at least a time interval of length ϵ. Indeed this problem is related to
the PDDL2.1 model of temporal problems [203], whose model of durative actions does not
allow for concurrency unless ϵ-separation is assumed.

A further difference between PDDL+ and hybrid automata is the semantics of events. A
number of assumptions is made about events and processes, but the most relevant difference
with hybrid automata is that events and processes start as soon as their preconditions
become satisfied, while in hybrid automata transitions might happen at any time when the
Jump condition is satisfied and the invariants are not satisfied (see Section 7.4.1).

In [77], a first translation from PDDL+ to hybrid automata is defined which does not
take into account the different semantics of events. Because transitions are allowed to
happen at any time when a condition is satisfied, then the model checker may not find a plan
in the case in which a plan does exist with the restricted PDDL+ semantics, that is, with
events that are triggered as soon as preconditions are true. For this reason, the approach
is not complete, that is, it may not find a plan when a plan does exist. Such approach can

10This is a rather strong requirement.



instead be used to prove the non existence of a plan. The approach is complete when there
are no events.

In [76], the authors propose an exact translation of PDDL+ into hybrid automata that
mimics the semantics of PDDL+ events. The translation guarantees that traces in the
obtained hybrid automata correspond to sequential plans in the original planning domain
in the case of linear hybrid automata and can handle hybrid automata with affine dynamics
with an over-approximation that can be made arbitrarily precise.

7.4.4 Flow Tubes

Flow tubes represent a set of trajectories of continuous variables with common character-
istics that connect two regions. The underlying idea is that a flow tube is a bounding
envelope of different possible evolutions of one or a few continuous variable that obey some
constraints. Flow tubes can represent the preconditions and the effects of actions over con-
tinuous variables. They can be used to do planning with hybrid models. Let us illustrate
the intuitive idea of flow tubes with a simple example.

t

x

x(t1)min

x(t1)max

x(t2)min

x(t2)max

t1 t2

Figure 7.3: A linear flow tube.

Example 7.6. Figure 7.3 shows a simple flow tube for a continuous variable x that evolves
over time t. The intended meaning of the flow tube is that if the value of variable x is in
[x(t1)min, x(t1)max] at time t1, then it is predicted that the value of x at time t2 will be
in [x(t2)min, x(t2)max], and that x between these two time points will remain in the drawn
trapezium.

The interval of initial possible values [x(t1)min, x(t1)max] of x is called the initial region,
and interval [x(t2)min, x(t2)max] is the final region. The flow tube depicted in Figure 7.3
connects the initial region [x(t1)min, x(t1)max] to the final region [x(t2)min, x(t2)max].

The idea is that an action a can modify the continuous variable x according to the
law described by the flow tube. We can express preconditions of action a with regions of
continuous variables (interval of values of x in our example) where the action is applicable,
and postconditions with the resulting final region in a given duration (for example, after
the interval t2 − t1 in our example).

Figure 7.3 shows a simple linear flow tube that can be represented with a linear equation
in the variables x and ẋ, assuming that ẋ is constant.

x(t2)min = x(t1)min + ẋ(t2 − t1)
x(t2)max = x(t1)max + ẋ(t2 − t1)

Conditions Init, Inv, and Flow of hybrid automata (Definition 7.2) could be used to
represent flow tubes. For instance, let us suppose that in a node vi variable x can evolve as



described by the flow tube in Figure 7.3. We have that Init(vi) is a condition that contraints
the values of x between x(t1)min and x(t1)max; Flow(vi) and Inv(vi) should represent the
bundle of lines from any x with value between x(t1)min and x(t1)max to a point between
x(t2)min and x(t2)max. Flow(vi) and Inv(vi) should constrain the bundle to remain in the
flow tube envelop.

Flow tubes can be more complex than the one shown in Figure 7.3, like that in the next
example.

t

x1

x2

e1

e2

Figure 7.4: A flow tube.

Example 7.7. Figure 7.4 shows a flow tube of two variables x1 and x2, which evolve over
time t. The intended meaning of the flow tube is that if the value of variables x1 and x2
at time t1 is in ellipse e1, then it is predicted that the value of x1 and x2 at time t2 will be
in ellipse e2, and that x1 and x2 between these two time points will remain in the drawn
envelope.

The most notable example of planning with hybrid models based on flow tube is the
work in [380]. The idea is based on the notion of a hybrid planning graph: a planning graph
[73] is used to represent the effects of actions over discrete variables, while flow tubes are
used to represent the effects over continuous variables. Hybrid planning graphs are encoded
as an extension of mixed integer programming (linear/nonlinear), which represents discrete
elements with logic prositions.

The planning domain is described through a set of hybrid actions, each of which has
preconditions, effects, continuous evolution dynamics, and a duration. Preconditions can
be continuous or discrete. A continuous precondition is a conjunction of (in)equalities over
state variables, and a discrete precondition is a conjunction of propositions. Effects are
both discrete facts, represented by a conjunction of propositions, and the continuous effect
of the action.

Conceptually, the difference with respect to planning in discrete state transition system
is that instead of looking for a path in a graph, planning searches for a path through
connected flow tubes (see Figure 7.5). Flow tubes are connected by finding an intersection
between the final region of a flow tube (the effects of an actions over continuous variables)
and the preconditions of a subsequent action (represented as well as a region of the flow
tube). Connection conditions guarantee that all valid plans are included in the graph.
However, the condition is not sound, meaning that not all plans in the graph are valid. A
further step encodes the hybrid flow graph as a mixed integer program, which makes sure
that the output plan is valid and optimal.

In the case of complex flow tubes that cannot be represented with linear equations,
various approximation methods can be used. Hofmann and Williams [281] use a polyhedral
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Figure 7.5: Planning with flow tubes.

approximation, which approximates the tubes as slices of polyhedra for each time step.
Kurzhanskiy and Varaiya [359] use an ellipsoidal calculus for approximation that has proven
highly efficient. The work of Li and Williams [380] makes use of and extends planning graphs
with flow tubes. However, we believe the work is especially interesting because the ideas
underlying flow tubes could be used in general with any state-space planner.

7.4.5 Discretization Techniques

Discretization techniques discretize the continuous variables of the hybrid model, and apply
techniques suited to discrete models, like those described in the rest of this book. How-
ever, finding a suitable discretization is an important and critical issue: it can affect the
plan generation speed, the precision of the solution and, sometimes even more critical, its
correctness; that is, a plan that achieves a goal in the discretized model may not achieve a
goal in the corresponding hybrid model.

A discretized problem is an approximation of the original problem, and it can of course
induce errors. When continuous variables are discretized, while the system evolves, their
real value can be different from what is foreseen. It is possible to prove that, given an
error threshold, there always exists a discretization that allows to generate solution plans,
which when mapped to the original hybrid model, have an approximation error below that
threshold. It is possible to use a fixed discretization or to generate approximate solutions
and then to perform a validation step to understand whether the approximate solution
is acceptable and, in case it is not, to reiterate the process by refining the discretization.
This process is similar to the guaranteed approximation procedure GAP for Value Iteration
(Algorithm 6.6).

Löhr et al. [390] adopt a discretization approach. A temporal numeric planning task is
defined with a set of state variables, which is partitioned into discrete and continuous state
variables. The initial state is given by an assignment over all variables and the set of goal
states is defined by a partial state assignment. Durative actions are represented with pre-
conditions and effects over both continuous and discrete state variables. Preconditions and
effects of durative actions specify conditions before, during, and after the action duration.
An action is represented with a triple (C,E, δ), where C is a condition, E are the effects,
and δ is the duration of a. A condition C is a triple of partial variable assignments over dis-
crete variables, representing the start conditions before the action, the persistent conditions
during the action, and the end conditions after action. E is a tuple with start effects and
end effects, δ represents the duration of the action. The start and the end effects are finite
sets of conditional effects (c, e). The effects condition c is again a triple of start, persistent,
and end conditions, and e is an effect that assigns a value to a continuous variable. This



approach handles time with the durative action model of PDDL2.1 [204] (see the discussion
in Section 4.6).

For solving the generated planning tasks, the approach described in [390] makes use
of the Temporal Fast Downward planner (TFD) [185]. While in [390] the assumption is
that the estimated state is the actual state, [391] extends the approach to uncertain state
information thus providing the ability to deal with noisy sensors and imperfect actuators.

The work of Della Penna et al. [148] proposes an iterative discretization approach based
on explicit-state model checking techniques for the generation of universal plans. The idea
is to start with a coarse discretization, and refine the discretization until the discretized
solution is valid against the hybrid model according to a desired error threshold. The
planner, UPMurphy, asks the user for the definition of a discretization granularity. It then
creates the discretized model and performs a breadth-first reachability analysis. The idea
is to use a model checker to perform an exhaustive search for a sequence of states leading
to a goal state and collect all the sequences instead of the first one. This approach allows
UPMurphy to generate universal plans. To apply explicit model checking on a finite number
of states, UPMurphy fixes a finite temporal horizon that requires each plan to reach the
goal in at most a given number of actions.

The approach can lead to a state explosion in the case a coarse discretization is required.

7.5 Ontologies for Planning and Acting

Research in automated planning and research in ontologies and related semantic represen-
tations have been pursued along distinct and separated research agenda. Despite this, there
are several important intersection, and connections among them.

Ontologies can be used to describe the elements of a planning domain, that is, rela-
tions among objects of a planning domain, but also relations among actions, tasks, plans,
and goals. Description Logic (DL) is a well studied family of approaches devised for such
reasoning.

In the rest of this section, we first provide a brief and informal introduction to ontologies
and DL (Section 7.5.1). We then discuss their relations and possible usage for planning and
acting (Section 7.5.2). We finally conclude with a discussion on the need for research in
semantic mapping in hierarchical representations for planning and acting (Section 7.5.4).

7.5.1 Ontologies and Description Logic

An ontology is informally defined as “an explicit specification of a conceptualization” [246],
where a “conceptualization” is a definition of concepts, their relationships and properties.
This definition is used as an abstract model of some aspects of the world. Concepts are
typically classes, individuals (that is, members of a class), attributes (for example, properties
of classes and members of classes), and relationships (for example, relations among class
members). The definitions of concepts provide a semantics description, that is, information
about their meaning, including constraints they must obey. Ontologies are an “explicit
specification” in the sense that the model should be specified in some formal unambiguous
language, making it processable in an automated way by a computer. An ontology consists
of:

• A set C of concepts (or class) and a set R of binary relations.

• A hierarchy H in which concepts and relations are hierarchically related by a sub-
sumption relation ⊑ (a partial ordering): if c1 and c2 are concepts, then c1 ⊑ c2 means
that c1 is a subclass of c2. Similarly for relations: r1 ⊑ r2 means that relation r1 is
a subclass of relation r2. Members of a subclass inherit the properties of their parent
class.



• A set A of ontology axioms that describe and provide constraints over concepts and
relations.

For instance, in Example 2.3, we have robots that are subclasses of vehicles, containers
that are subclasses of objects that can be transported, and so on.

Description Logic (DL) [26] is a family of formal knowledge representation languages
suited for representing ontologies and for reasoning about them. The DL family languages
differ in expressivity and computational complexity of the reasoning algorithms for each
language. In general, a DL language can express definitions of classes and relations (see
also [231] for a brief introduction to DL). Class definitions can include disjunction and
negation as well as constraints on the relations to other classes. A relation between a class
(its domain) and another class (its range) can be constrained in cardinality and type. A class
can be defined as a subclass of another class. Similarly, relations can also be given definitions
and therefore have subclasses as well. Class partitions can be defined by specifying a set of
subclasses that represent the partitions and can be exhaustive if all instances of the class
belong to some partition and disjoint if there is no overlap in the subclasses. A class can
be denoted as a primitive class and not given a definition, and in that case, their subclasses
and instances must be explicitly indicated.

Description logic reasoning systems use these definitions to automatically organize class
descriptions in a taxonomic hierarchy and automatically classify instances into classes whose
definitions are satisfied by the features of the instance. Specifically, description logic rea-
soners provide the following main mechanisms:

• class subsumption, where a class c1 subsumes another class c2 if its definition includes
a superset of the instances included in c2;

• instance recognition, where an instance belongs to a class if the instance’s features
(roles and role values) satisfy the definition of the class;

• consistency checking, that is, mechanisms to detect inconsistent definitions; and

• inheritance inference, that is, the automated inheritances of properties by members
of subclasses.

7.5.2 Ontologies and Planning

A first obvious use of ontologies for planning is for the description of objects in the planning
domain. A planning domain model describes how actions change the state of the world, and
this is done through state variables that change values. Each state variable represents a
specific object of the domain and has an intended semantics. In the examples of this book,
we refer to objects such as robots, rooms, doors, containers, and cars. A representation of
a planning domain should take into account relations (for example, hierarchical relations)
among different classes of objects, and their instances. For instance, it is clear in Exam-
ple 3.4 that sliding door, pushing door, and pulling door are subclasses of the door class.
This use of ontologies is a way to represent rigid relations (see Section 2.1.2). Ontologies
can represent such relations among (classes of) objects of the domain, on which reasoning
(for example, with DL) can be an important component for solving planning problems.

Reasoning can be performed using ontologies that describe the objects of the plan-
ning domain, but also ontologies about actions, tasks, plans, and goals. For instance, DL
subsumption mechanism can be used to automatically infer class-subclass subsumption re-
lations as well as classify instances into classes based on their definitions. DL descriptions
of domain objects, actions, plans, and goals, as well as DL reasoning capabilities can be
exploited during plan generation, plan recognition, or plan evaluation. As clearly described
in the survey paper by Gil [231], some of the reasoning capabilities of DL have been investi-
gated within the Knowledge Representation and Reasoning community, but they have not
been incorporated within state of the art planning algorithms. In [231], four main uses of



description logic are advocated, namely ontologies about:

• objects, to reason about different types objects in the domain;

• actions, to reason about action types at different levels of abstraction;

• plans, to reason about plan subsumption; and

• goals, to reason about relations among different goals.

7.5.3 Planning and Acting Based on Description Logic

There has actually been work using ontologies and DL in planning, starting from [136],
which exploits the correspondence between dynamic logic and description logic to represent
actions, including sensing actions. Moreover, planning and ontologies have been used in
several approaches to composition of semantic Web services, most of them based on the
Web Ontology Language (OWL), and OWL-S (OWL for Services), which is a language for
implementing the DL formalism (see, for example, [542, 364, 415, 552]). The basic idea of
all these approaches is to use planning over domains that are described with ontology-based
languages. A different approach is proposed in [481], where the idea is instead to keep
separate and to use different formalisms for the description of actions and the ontological
descriptions of objects, and to link them through semantic annotations. This approach pro-
vides the ability to exploit simple reasoning mechanisms at the ontological level, integrated
with effective reasoning mechanisms for planning for Web services.

DL and other knowledge representation techniques have also been integrated with plan-
ning techniques and applied to the field of robotics (see, for example, [137]), including the
work based in GOLOG [378, 376]. A recent approach along this line is proposed by Har-
tanto and Hertzberg [256], where the planning domain as well as HTN planning concepts
are represented in DL. Resoning in DL is then used to generate concise versions of each in-
dividual planning problem for the HTN planner, where irrelevant aspects are filtered away.
On the basis of this idea, the work in [25] deals in some way with the problem of planning
and acting by adapting plans to changes in the environment. This work is a preliminary
proposal toward the objective to build actors that can recover from failures both during
planning and execution by finding alternative objects to be used in their plans to achieve
their goals and by taking advantage of opportunities that can arise at run-time. This is
done by using the concept of “functional affordance,” which describes in DL what an object
is used for. The notion of “conceptual space” is used to measure the similarity among
different objects that, through the description of their affordances, can be used in place
of unavailable objects during both planning and acting. For instance, in case a plan fails
because of a missing object, the actor can reason (possibly at run-time) about possible
substitutes and thus recover from failure. State variable types are modeled as classes in an
ontology, and OWL-based reasoning mechanisms can be used to infer affordance properties
on the hierarchical classes of objects. For instance, in our Example 3.4, the class “sliding
door” would inherit every affordance property by the superclass “door,” for example, the
property that it is used for moving from one room to another one. In [25], the authors also
propose learning new functional affordances of objects through experience.

The Open Robot Ontology (ORO) system of Lemaignan et al. [375] had a broader
motivation than improving the performance of a planner; it aimed at extending the robot’s
knowledge base. ORO is built with the same OWL representation and reasoner as the
previous systems. It offers queries and updates of a knowledge base about the environment.

The RoboEarth and KnowRob projects [590, 567] aim at allowing actors having different
platforms to share and reuse knowledge over the network for the purpose of performing new
tasks. An OWL open source library stores shared models of objects, environments (for
example, maps and object locations), and descriptive models of actions together with their
relations and properties in a general ontology. Each actor is able to query and update this
database and adapt its models.



7.5.4 Semantic Mapping for Hierarchical Representations

Ontology reasoning, and in general reasoning about the semantics of different objects, ac-
tions, tasks, and goals, is an important topic of research for planning and acting. In the
hierarchical representation described in Chapter 3, intuitively, tasks are refined from one
level to a lower, more detailed level. Such representation is based on the idea that at differ-
ent levels we have different and possibly heterogeneous representations of objects (through
possibly different kinds of state variables), actions, and tasks. Therefore the semantics of
objects, actions, and tasks should be given considering the relations between different levels,
that is, a mapping of state variables, actions, and tasks from one level to another one.

State variables and actions at one level should be mapped to state variables and actions
at a different level. In most cases, the mapping from a level to a lower more detailed level
is a one-to-many mapping. Consider the case of state variables. A value of a state variable
corresponds to possibly many different values of a state variable at a lower - more detailed
level. For example, the position of a robot defined by the state variable pos(r) ranges over
a set of locations such as room1, corridor, and room2. It is mapped at the path planning
level to coordinates (x, y, θ) in local reference frames of room1, corridor, and room2. On the
other way around, the mapping from the value of a state variable to a higher level should be
many to one, and therefore a value at the lower level should correspond to just one value at
the higher level. Therefore the “mapping down” of values from higher levels to lower levels
is a nondeterministic mapping, because it can result in many possible different values, while
the “mapping up” is deterministic.

In the examples just mentioned, we have a state variable with some values that are
mapped down to a state variable with more possible values. Further, at a lower level we
may need more state variables. For example, we may need to add at a lower level a variable
about the configuration of the robot gripper. In this case, not only do we have a one-to-
many mapping over values of variables, but we may have variables at a lower level that do
not have a mapping up at a higher level.
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Figure 7.6: Open door: semantic mapping of state variables and actions.

Similar considerations arise for the mapping of actions from one level to another. In



Example 3.4, the open-door action is refined to several different actions at a lower level, and
such actions can be combined in different ways: move-close, grasp, turn, and so on. Even in
this case, the “mapping down” is nondeterministic, while the mapping up is deterministic.
These ideas are depicted in Figure 7.6 as an example related to open-door.

Finally, we should recall that, even if the hypothesis that mapping down is nondeter-
ministic and mapping up is deterministic is reasonable in several cases, this may not be
always true. At a higher level, we can consider parameters that are not considered at a
lower level. As a simple example, consider the case in which at the level of the topological
map we may add information about dangerous, or crowded rooms, where the robot should
avoid to pass through. Some of the variables at the higher levels do not need to be mapped
at the lower levels.



Chapter 8

Concluding Remarks

In this book, we have studied computational reasoning principles and mechanisms to support
choosing and performing actions. Here are some observations about the current status of
work on those topics.

Extensive work has been done on automated planning, ranging from classical planning
techniques to extended approaches dealing with temporal, hierarchical, nondeterministic,
and probabilistic models. The field has progressed tremendously, and a strong community
of scientists is continually producing new results, technology, and tools.

Issues related to acting have also attracted much attention, and the state of the art is
broad and rich, but it is quite fragmented. The relationships among different approaches
have not yet been studied in depth, and a unifying and formal account of acting is not
available in the same way as it is in the field of automated planning.

Furthermore, the problems of how to generate plans and how to perform synthesized
actions have been mainly studied separately, and a better understanding is needed of the
relationships between planning and acting. One of the usual assumptions in research on
planning is that actions are directly executable, and this assumption is used even in the
work on interleaving online planning and execution. In most cases, however, acting cannot
be reduced to the direct execution of atomic commands that have been chosen by a planner.
Significant deliberation is needed for an actor to perform what is planned.

In this book, we have addressed the state of the art from a unifying perspective. We
have presented techniques for doing planning with deterministic, hierarchical, temporal,
nondeterministic, and probabilistic models and have discussed approaches for reacting to
events and refining actions into executable commands. In doing this, we have distinguished
between two kinds of models:

• Descriptive models of actions specify the actor’s “know what.” They describe which
state or set of possible states may result from performing an action. They are used
by the actor to reason about which actions may achieve its objectives.

• Operational models of actions specify the actor’s “know how.” They describe how to
perform an action, that is, what commands to execute in the current context and how
to organize them in order to achieve the action’s intended effects. The actor relies on
operational models to perform the actions that it has decided to perform.

While planning techniques use descriptive models, deliberation for acting needs opera-
tional models. These models go beyond the descriptive preconditions-and-effects represen-
tation; they organize action refinement within rich control structures. We have proposed
refinement methods as a first step toward the integration of planning and acting for acting
effectively in the real world.

Significant research is needed regarding this integration. First, deliberation may use var-
ious planning techniques, including a flexible mix of general purpose and domain-dependent
techniques. Second, deliberative acting may be done in different yet well-integrated state
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and actions spaces. Relations and mappings among such heterogeneous representations
should be addressed systematically. Third, although we distinguished in each chapter be-
tween the part dedicated to planning and the one dedicated to acting, and between descrip-
tive models and operational models, realistic applications most often need a flexible mix of
planning and acting.

Finally, other deliberation functions – monitoring, reasoning about goals, reasoning
about sensing and information-gathering actions, learning and acquiring deliberation mod-
els while acting, reasoning with semantics and ontology based representations, reasoning
with hybrid models – are only briefly covered in the last chapter. They should be tightly
integrated with planning and acting techniques.

The take-home message from this book is twofold. Extensive work has been done on
planning and acting. The work on their integration is promising and strongly motivated,
but still fragmented. This book has attempted to cover a relevant part of it in a unified
view. Many research problems in automated deliberation remain open. We hope the reader
will find this book helpful for addressing them.



Appendix A

Search Algorithms

This appendix provides background information about several of the search algorithms
used in this book. These are nondeterministic state-space search (Section A.1) and And/Or
search (Section A.2).

A.1 Nondeterministic State-Space Search

Many of the planning algorithms in this book have been presented as nondeterministic
search algorithms and can be described as instances of Algorithm A.1, Nondeterministic-
Search. In most implementations of these algorithms, line (iii) corresponds to trying several
members of R sequentially in a trial-and-error fashion. The “nondeterministically choose”
command is an abstraction that lets us ignore the precise order in which those values are
tried. This enables us to discuss properties that are shared by a wide variety of algorithms
that search the same space of partial solutions, even though those algorithms may visit
different nodes of that space in different orders.

There are several theoretical models of nondeterministic choice that are more-or-less
equivalent mathematically [212, 462, 130]. The one that is most relevant for our purposes
is the nondeterministic Turing machine model, which works roughly as follows.

Let ψ(P ) be a process produced by calling Nondeterministic-Search on a search problem

Nondeterministic-Search(P ) // iterative version
π ← an initial partial solution for P
while π is not a solution for P do (i)
R← {candidate refinements of π} (ii)
if R = ∅ then return failure
nondeterministically choose r ∈ R (iii)
π ← refine(π, r)

return π

Nondeterministic-Search(P, π) // recursive version
if π is a solution for P then return π (i)
R← {candidate refinements of π} (ii)
if R = ∅ then return failure
nondeterministically choose r ∈ R (iii)
π ← refine(π, r)
return Nondeterministic-Search(P, π)

Algorithm A.1: Equivalent iterative and recursive versions of a generic nondeterministic
search algorithm. The arguments include the search problem P and (in the recursive version)
a partial solution π, the initial value of which should be the empty plan.
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Figure A.1: Search tree for Nondeterministic-Search. Each branch represents one of the
possible refinements.

Deterministic-Search(P )
π ← initial partial solution
Π← {π}
while Π ̸= ∅ do

select π ∈ Π (i)
remove π from Π
if π is a solution for P then return π
R← {candidate refinements for π}
for every r ∈ R do
π ← refine(π, r)
add π′ to Π

return failure

Algorithm A.2: A deterministic counterpart to Nondeterministic-Search. Depending on how
π is selected in line (i), the algorithm can do a depth-first search, breadth-first search, or
best-first search.

P . Whenever this process reaches line (iii), it replaces ψ(P ) with |R| copies of ψ(P ) running
in parallel: one copy for each r ∈ R. Each process corresponds to a different execution
trace of ψ(P ), and each execution trace follows one of the paths in ψ(P )’s search tree (see
Figure A.1). Each execution trace that terminates will either return failure or return a
purported answer to P .

Two desirable properties for a search algorithm ψ are soundness and completeness,
which are defined as follows:

• ψ is sound over a set of search problems P if for every P ∈ P and every execution
trace of ψ(P ), if the trace terminates and returns a value π ̸= failure, then π is a
solution for P . This will happen if the solution test in line (i) is sound.

• ψ is complete over P if for every P ∈ P, if P is solvable then at least one execution
trace of ψ(P ) will return a solution for P . This will happen if each set of candidate
refinements in line (ii) are complete, that is, if it includes all of the possible refinements
for π.

In deterministic implementations of nondeterministic search, the nondeterministic choice
is replaced with a way to decide which nodes of the search tree to visit, and in what order.
The simplest case is depth-first backtracking, which we can get from the recursive version of



Nondeterministic-Search by making a nearly trivial modification: change the nondetermin-
istic choice to a loop over the elements of R. For this reason, the nondeterministic choice
points in nondeterministic search algorithms are sometimes called backtracking points.

Deterministic-Search, Algorithm A.2, is a general deterministic search algorithm. De-
pending on the node-selection strategy, that is, the technique for selecting π in line (i),
we can get a depth-first search, breadth-first search, or a best-first search. Furthermore,
by making some modifications to the pseudocode, we can get a greedy search, A* search,
branch-and-bound search, or iterative-deepening search (see Chapter 2 for some examples).

Earlier we said that Nondeterministic-Search is sound and complete if its solution test
is sound and its sets of candidate refinements are complete (i.e., each set includes all of
the possible refinements). Under the same conditions, Deterministic-Search is sound, but
whether it is complete depends on the node-selection strategy. For example, with breadth-
first node selection it will be complete, but not with depth-first node selection unless the
search space is finite. Although completeness is a desirable property, other considerations
can often be more important: for example, the memory requirement usually is exponentially
larger for a breadth-first search than for a depth-first search.
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Figure A.2: And/Or search tree. Or-nodes correspond to calls to Or-Branch in Figure A.2,
and the edges below each or-node correspond to members of R. And-nodes correspond to
calls to And-Branch, and the edges below each and-node correspond to subproblems of π.

A.2 And/Or Search

In addition to choosing among alternative refinements, some search algorithms involve de-
composing a problem P into a set of subproblems P1, . . . , Pn whose solutions will provide
a solution for P . Such algorithms can be described as instances of a nondeterministic And-
Or-Search algorithm, Algorithm A.3. The search space for this algorithm is an And/Or tree
such as that in Figure A.2.

We will not include a deterministic version of And-Or-Search here because the details
are somewhat complicated and generally depend on the nature of the problem domain. One
of the complications arises from the fact that unlike line (i) of And-Or-Search, line (ii) is



And-Or-Search(P )
return Or-Branch(P )

Or-Branch(P )
R← {candidate refinements for P}
if R = ∅ then return failure
nondeterministically choose r ∈ R (i)
π ← refine(P, r)
return And-Branch(P, π)

And-Branch(P, π)
if π is a solution for P then return π
{P1, . . . , Pn} ← {unsolved subproblems in π}
for every Pi ∈ {P1, . . . , Pn} do (ii)
πi ← Or-Branch(Pi)
if πi = failure then return failure

if π1, . . . , πn are not compatible then return failure
incorporate π1, . . . , πn into π
return π

Algorithm A.3: A generic nondeterministic And/Or search algorithm.

not a backtracking point. The subproblems P1, . . . , Pn must all be solved to solve P , and
not every combination of solutions will be compatible. For example, if P1 and P2 are “find
a container c and bring it to location l” and “put all of the books at location l into c,” a
solution to P1 is useful for solving P2 only if the container c is large enough to contain all
of the books.



Appendix B

Strongly Connected Components
of a Graph

Let G = (V,E) be a directed graph. A strongly connected component of G is a subset C
of V such that every vertex of C is reachable from every other vertex of C. The relation ∼
on vertices can be defined as follows: v ∼ v′ iff either v = v′ or v is reachable from v′ and
v′ is reachable from v. It is an equivalence relation on V . It partitions V into equivalence
classes, each being a strongly connected component of G. Furthermore, the set of strongly
connected components of G is a directed acyclic graph that has an edge from C to C ′ when
there is a vertex in C ′ reachable from a vertex in C.

Tarjan’s algorithm [558] finds in a single depth-first traversal of G its strongly connected
components. Each vertex is visited just once. Hence the traversal organizes G as a spanning
forest. Some subtrees of this forest are the strongly connected components of G. During
the traversal, the algorithm associates two integers to each new vertex v it meets:

• index(v): the order in which v is met in the traversal, and

• low(v) = min{index(v′)|v′ reachable from v}
It is shown that index(v)=low(v) if and only if v and all its successors in a traversal subtree
are a strongly connected component of G.

Tarjan(v)
index(v)←low(v)← i
i← i+ 1
push(v,stack)
for all v′ adjacent to v do

if index(v′) is undefined than do
Tarjan(v′)
low(v)← min{low(v), low(v′}

else if v′ is in stack then low(v)← min{low(v), low(v′}
if index(v)=low(v) then do

start a new component C ← ∅
repeat
w ← pop(stack) ; C ← C ∪ {w}

until w = v

Algorithm B.1: Tarjan’s algorithm for finding strongly connected components of a graph.

This is implemented in Algorithm B.1 as a recursive procedure with a stack mechanism.
At the end of a recursion on a vertex v, if the condition index(v)=low(v) holds, then v and
all the vertices above v in the stack (i.e., those below v in the depth-first traversal tree)
constitute a strongly connected component of G.
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With the appropriate initialization (i← 0, stack← ∅ and index undefined everywhere),
Tarjan(v) is called once for every v ∈ V such that index(v) is undefined. The algorithm run
in 0(|V |+ |E|). It finds all the strongly connected components of G in the reverse order of
the topological sort of the DAG formed by the components, that is, if (C,C ′) is an edge of
this DAG, then C ′ will be found before C.
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[522] Sandewall, E. and Rönnquist, R. (1986). A representation of action structures. In Proc. AAAI,
pages 89–97.

[523] Sanner, S. (2010). Relational dynamic influence diagram language (RDDL): Language de-
scription. Technical report, NICTA.

[524] Santana, P. H. R. Q. A. and Williams, B. C. (2014). Chance-constrained consistency for
probabilistic temporal plan networks. In Proc. ICAPS.

[525] Scherrer, B. and Lesner, B. (2012). On the use of non-stationary policies for stationary infinite-
horizon Markov decision processes. In Adv. in Neural Information Processing Syst. (Proc. NIPS),
pages 1826–1834.

[526] Schultz, D. G. and Melsa, J. L. (1967). State functions and linear control systems. McGraw-
Hill.

[527] Shah, M., Chrpa, L., Jimoh, F., Kitchin, D., McCluskey, T., Parkinson, S., and Vallati, M.
(2013). Knowledge engineering tools in planning: State-of-the-art and future challenges. In ICAPS
Knowledge Engg. for Planning and Scheduling (KEPS), pages 53–60.

[528] Shani, G., Pineau, J., and Kaplow, R. (2012). A survey of point-based POMDP solvers. J.
Autonomous Agents and Multi-Agent Syst., pages 1–51.

[529] Shaparau, D., Pistore, M., and Traverso, P. (2006). Contingent planning with goal preferences.
In Proc. AAAI, pages 927–935.

[530] Shaparau, D., Pistore, M., and Traverso, P. (2008). Fusing procedural and declarative planning
goals for nondeterministic domains. In Proc. AAAI, pages 983–990.



[531] Shivashankar, V., Alford, R., Kuter, U., and Nau, D. (2013). The GoDeL planning system:
A more perfect union of domain-independent and hierarchical planning. In Proc. IJCAI, pages
2380–2386.

[532] Shoahm, Y. and McDermott, D. (1988). Problems in formal temporal reasoning. Artificial
Intelligence, 36:49–61.

[533] Shoenfield, J. R. (1967). Mathematical Logic. Academic Press.

[534] Shoham, Y. (1987). Temporal logic in AI: semantical and ontological considerations. Artificial
Intelligence, 33:89–104.

[535] Sigaud, O. and Peters, J. (2010). From Motor Learning to Interaction Learning in Robots,
volume 264 of Studies in Computational Intelligence. Springer.

[536] Silver, D. and Veness, J. (2010). Monte-Carlo planning in large POMDPs. In Adv. in Neural
Information Processing Syst. (Proc. NIPS).

[537] Simmons, R. (1992). Concurrent planning and execution for autonomous robots. IEEE Control
Systems, 12(1):46–50.

[538] Simmons, R. (1994). Structured control for autonomous robots. IEEE Trans. Robotics and
Automation, 10(1):34–43.

[539] Simmons, R. and Apfelbaum, D. (1998). A task description language for robot control. In
IEEE/RSJ Intl. Conf. on Intelligent Robots and Syst. (IROS), pages 1931–1937.

[540] Simpkins, C., Bhat, S., Isbell, Jr., C., and Mateas, M. (2008). Towards adaptive programming:
integrating reinforcement learning into a programming language. In Proc. ACM SIGPLAN Conf.
on Object-Oriented Progr. Syst., Lang., and Applications (OOPSLA), pages 603–614. ACM.

[541] Simpson, R. M., Kitchin, D. E., and McCluskey, T. (2007). Planning domain definition using
GIPO. The Knowledge Engineering Review, 22(2):117–134.

[542] Sirin, E., Parsia, B., Wu, D., Hendler, J., and Nau, D. S. (2004). HTN planning for Web
service composition using SHOP2. J. Web Semant. (JWS), 1(4):377–396.

[543] Smith, D. E., Frank, J., and Cushing, W. (2008). The ANML language. ICAPS Wksp. on
Knowledge Engg. for Planning and Scheduling (KEPS).

[544] Smith, D. E., Frank, J., and Jónsson, A. K. (2000). Bridging the gap between planning and
scheduling. The Knowledge Engineering Review, 15(1):47–83.

[545] Smith, D. E. and Weld, D. (1999a). Temporal planning with mutual exclusion reasoning. In
Proc. IJCAI.

[546] Smith, D. E. and Weld, D. S. (1998). Conformant Graphplan. In Proc. AAAI, pages 889–896.

[547] Smith, D. E. and Weld, D. S. (1999b). Temporal planning with mutual exclusion reasoning.
In Proc. IJCAI, pages 326–337.

[548] Smith, S. J. J., Hebbar, K., Nau, D. S., and Minis, I. (1997). Integrating electrical and
mechanical design and process planning. In Mantyla, M., Finger, S., and Tomiyama, T., editors,
Knowledge Intensive CAD, pages 269–288. Chapman and Hall.

[549] Smith, S. J. J., Nau, D. S., and Throop, T. (1998). Computer bridge: A big win for AI
planning. AI Magazine, 19(2):93–105.

[550] Smith, T. and Simmons, R. (2004). Heuristic search value iteration for POMDPs. In Proc.
Conf. on Uncertainty in AI (UAI).

[551] Sohrabi, S., Baier, J. A., and McIlraith, S. A. (2009). Htn planning with preferences. In Proc.
IJCAI, pages 1790–1797.



[552] Sohrabi, S. and McIlraith, S. A. (2010). Preference-based web service composition: A middle
ground between execution and search. In Proc. Intl. Semantic Web Conf. (ISWC), pages 713–729.
Springer.

[553] Sridharan, M., Wyatt, J. L., and Dearden, R. (2008). HiPPo: Hierarchical POMDPs for
planning information processing and sensing actions on a robot. In Proc. ICAPS, pages 346–354.

[554] Srivastava, B. (2000). Realplan: Decoupling causal and resource reasoning in planning. In
Proc. AAAI, pages 812–818.

[555] Stedl, J. and Williams, B. (2005). A fast incremental dynamic controllability algorithm. In
Proc. ICAPS Wksp. on Plan Execution.

[556] Stulp, F. and Beetz, M. (2008). Refining the execution of abstract actions with learned action
models. J. Artificial Intelligence Research, 32(1):487–523.

[557] Taha, H. A. (1975). Integer Programming: Theory, Applications, and Computations. Academic
Press.

[558] Tarjan, R. E. (1972). Depth-first search and linear graph algorithms. SIAM J. Computing,
1(2):146–160.

[559] Tate, A. (1977). Generating project networks. In Proc. IJCAI, pages 888–893.

[560] Tate, A., Drabble, B., and Kirby, R. (1994). O-Plan2: An Architecture for Command, Planning
and Control. Morgan-Kaufmann.
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