ACTING, PLANNING,
AND LEARNING

Malik Ghallab
LAAS-CNRS, University of Toulouse, France

Dana Nau
University of Maryland, USA

Paolo Traverso
FBK, Trento, Italy

This material will be published by Cambridge University Press as
Acting, Planning, and Learning by Malik Ghallab, Dana Nau, and Paolo Traverso.
This pre-publication version is free to view and download for personal use only.
Not for redistribution, resale, or use in derivative works.
© 2024 by Malik Ghallab, Dana Nau, and Paolo Traverso.

October 9, 2024

To Janette, Lise, Elena, and to all our family members

who remained supportive during a long project
that consumed much of our time and attention.

Contents

Foreword
Preface
About the Authors

1

Introduction

1.1 Architecture and Components of an Actor
1.2 Descriptive and Operational Models of Actions
1.3 Responsible Research on Autonomous Actors

Deterministic State-Transition Systems

Deterministic Representation and Acting

2.1 Motivating Example Lo
2.2 State-Transition Systems oo e e e
2.3 State-Variable Representation,
2.4 Classical Representation
2.5 Computational Complexity
2.6 Acting e e e
2.7 Discussion and Bibliographic Notes
2.8 EXErcises e e

Planning with Deterministic Models

3.1 Forward State-Space Search
3.2 HeuristicFunctions L0000
33 BackwardSearch o000
34 Plan-Space Planning oo
35 RepairingPlans o oo
3.6 Discussion and Bibliographic Notes
37 EXErciseso e e e

Learning Deterministic Models

4.1 Learning Heuristics
4.2 Learning Action Specifications Lo
4.3 Discussion and Bibliographic Notes
44 EXerciseso e e

Hierarchical Task Networks

HTN Representation and Planning

5.1 Totally Ordered Tasks
5.2 Partially Ordered Tasks
5.3 Hybrid HTN/Classical Planning
5.4 Heuristics, Expressivity, Complexity

Free pre-publication, for personal use only. To be published by Cambridge University Press.

viii

xiii

[c BN N

11

13
13
14
17
22
24
25
29
31

34
34
41
51
54
60
61
66

71
71
75
86
92

9

10

5.5 Refinement of Abstract Actions
5.6 Discussion and Bibliographic Notes
57 EXEICISES . . . v v v v e e e e e e e e e e e e e e e

Acting with HTNs

6.1 Reactive HTN Acting
6.2 Acting with an Online HTN Planner
6.3 Discussion and Bibliographic Notes
6.4 EXercises e e

Learning HTN Methods

7.1 Learning Methods from Examples
7.2 Learning Methods fromPlans
7.3 PlanningtoLearno o
7.4 Discussion and Bibliographic Notes
7.5 EXErCiSes« o o e e e e e

Probabilistic Models

Probabilistic Representation and Acting

8.1 Basic MDP Representation
8.2 Structured Probabilistic Representations
8.3 Modeling a Probabilistic Domain
8.4 Acting with Probabilistic Models
8.5 Discussion and Bibliographic Notes
8.6 Exercises e e

Planning with Probabilistic Models

9.1 Dynamic Programming Algorithms
9.2 Heuristic Search Algorithms
9.3 Heuristics and Search-Control Knowledge
9.4 Linear Programming Approaches
9.5 Online Probabilistic Approaches
9.6 Discussion and BibliographicNotes
9.7 ' EXErCiSes« v i i e e e e e

Reinforcement Learning

10.1 Principlesof RL
10.2 Tabular Value-Based RL
10.3 Parametric Value-Based RL
10.4 Neural Parametric Function Approximators
10.5 Deep Value-Based RL,
10.6 Policy-BasedRLo L.
10.7 Aided Reinforcement Learning
10.8 Acting, Planning and Reinforcement Learning
10.9 Discussion and Bibliographic Notes
10.10 EXercises v v v i i e e

122
123
123
127
129

131
131
137
140
140
142

145

146
146
153
161
166
168
171

173
173
184
194
199
207
218
222

IV Nondeterministic Models

11 Acting with Nondeterministic Models

11.1
11.2
11.3
11.4
11.5
11.6

State Transition Systemso
Automatao e e e e e e e e e e e e
Behavior Trees L. e
PetriNets o o e e e e e e e e
Discussion and Bibliographic Notes
EXercises e e e e e e

12 Planning with Nondeterministic Models

12.1
12.2
12.3
12.4
12.5
12.6
12.7

And/Or Graph Search oo
Determinization Techniques
Planning via Symbolic Model Checking
Synthesis of Automatao Lo
Generating Behavior Trees
Discussion and Bibliographic Notes
Exerciseso e

13 Learning Nondeterministic Models

13.1
13.2
13.3
13.4

Nondeterministic Action Schema
Offline Action Learning
Discussion and BibliographicNotes
Exercises

V Hierarchical Refinement Models

14 Acting with Hierarchical Refinement

14.1
14.2
14.3
14.4
14.5

Representation Lo
Refinement Acting Engine
Extending the Refinement Acting Engine
Discussion and BibliographicNotes
Exerciseso e

15 Hierarchical Refinement Planning

15.1
15.2
15.3
15.4
15.5

Refinement Planning Domains and Problems
Utility Criteria and Optimal Approach
An MCTS Planning Algorithm
Discussion and Bibliographical Notes
Exercises e

16 Learning Hierarchical Refinement Models

16.1
16.2
16.3
16.4

Learning to guide RAEand UPOM
Learning Hierarchical Refinement Methods
Discussion and BibliographicNotes
Exercises

268

271
271
278
287
291
300
301

305
305
309
313
323
326
330
336

338
338
339
341
341

342

343
343
349
352
357
359

362
362
363
366
371
372

vi

VI Temporal Models

17 Temporal Representation and Planning

17.1
17.2
17.3
17.4
17.5

Temporal Representation
A Hybrid Temporal Planner
Constraint Managemento
Discussion and Bibliographic Notes
Exercises e

18 Acting with Temporal Controllability

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8

Controllable Temporal Networks
A Dispatching Algorithmo
Acting without Temporal Refinement
A Temporal Refinement Acting Engine
An MCTS Temporal Planner
Integrating Planning and Acting
Discussion and Bibliographic Notes
Exercises Lo e

19 Learning for Temporal Acting and Planning

19.1
19.2
19.3
19.4

Learning Heuristics for Temporal Planning
Learning Temporal Models
Discussion and BibliographicNotes
EXercises e e e e

VIl Motion and Manipulation Models in Robotics

20 Motion and Manipulation Actions

20.1
20.2
20.3
20.4
20.5
20.6

Robots
Motion e e e e e e e e e e e e e e
Navigation o v it e e e e e e e e e e e e e
Manipulation L. e e e e
Discussion and BibliographicNotes
Exercises e e e e e e e e e

21 Task and Motion Planning

21.1
21.2
21.3
21.4
21.5

Motion Planningo
Manipulation planning Lo oo
Task, Motion and Manipulation Planning
Discussion and Bibliographic Notes
Exerciseso e

22 Learning for Movement Actions

22.1
222
22.3
224

Learning Sensory-Motor Skills
Learning for Task and Motion Planning
Discussion and BibliographicNotes
Exercises

383

385
385
397
403
407
410

413
413
419
420
423
426
429
429
431

432
432
433
437
439

440

442
442
444
465
472
476
476

478
478
490
496
509
517

vii

VIII Other Topics and Perspectives 528
23 Large Language Models for Acting and Planning 529
23.1 Principlesof LLMS ot 529
232 LLMs in Acting, Planning and Learning 533
24 Perceiving, Monitoring and Goal Reasoning 539
24.1 Perceiving and Information Gathering 539
242 MONItOring . . « v v v v v e e e e e e e e e e e e 544
243 GoalReasoning Lo e 549
Appendices 550
A Graphs and Search 551
A.1 Nondeterministic State-Space Search 551
A2 And/OrSearch 554
A.3 Strongly Connected Components of a Graph 554
B Other Mathematical Background 556
B.l Metricsand distanceso 556
B.2 Vectors and matrices o e e 556
B.3 Derivative and Gradiento 558
List of Algorithms 559
Bibliographic Abbreviations 563
Bibliography 565

Index 600

Foreword

Over the past decade, Artificial Intelligence (Al) has made remarkable breakthroughs,
particularly in the realm of deep learning and foundation models —sub-symbolic ma-
chine learning approaches that leverages deep neural networks with hundreds of
billions parameters. These models are often called black boxes as their human inter-
pretation and understanding is very limited. This technology has been instrumental in
enhancing interaction, perception, and natural language processing, sometimes even
surpassing human capabilities. As a result, some researchers have begun to equate
Al with deep learning and foundation models. However, I believe this is a significant
misconception.

Al encompasses far more than just sub-symbolic machine learning; it includes
symbolic (i.e., human-understandable) modeling, search algorithms, and reasoning
techniques - all vital aspects of human intelligence that extend beyond machine
learning, and can potentially utilize it to enhance algorithm performance and model
accuracy.

Planning and acting are intrinsic human abilities. Even young children naturally
plan and act, learning from the consequences of their actions in an environment
and refining their skills as they grow. Machines have not yet reached human-level
proficiency in planning and acting, as well as in their integration with learning, leaving
considerable room for advancement and improvements in autonomous intelligent
systems.

This book serves as a crucial milestone in the study of planning, acting, and learning,
exploring how these intelligent features can be effectively combined and integrated to
improve the performance of intelligent systems. The authors, Malik Ghallab, Dana
Nau, and Paolo Traverso, are three outstanding scientists and researchers who have
achieved significant recognition and visibility within the Al international scientific
community. This is the third book they have written on the subject: the first focused
on planning, while the second explored the interaction between acting and planning.
This third book marks an important step forward by also addressing the intersection
of acting, planning, and learning. It discusses Deterministic State-Transitions, Hier-
archical Task Networks, Probabilistic, Non-deterministic, Hierarchical-Refinement,
and Temporal Models, while also considering Robotic Motion and Manipulation. Ad-
ditionally, it explores the emerging capabilities of Large Language Models and how
they can be applied in this field, a very recent and relevant topic at the intersection
between sub-symbolic and symbolic Al

The book is not only a valuable reference for scientists working in the area but
also serves as a textbook for graduate students, offering a clear, comprehensive,
and well-organized catalogue of techniques and algorithms for domain modeling,
plan construction, and execution, as well as the integration of learning in all these

viii

Free pre-publication, for personal use only. To be published by Cambridge University Press.

activities. I have no doubt that I will recommend it in my courses and use it as a
personal reference.

Prof. Michela Milano
University of Bologna

Preface

For an agent to act intelligently, three essential cognitive functions are acting, planning,
and learning. This book is about ways to automate and integrate them. It is a successor
to our previous books on automated planning [410] and on combining planning and
acting [411]. It includes research advances that have occurred since those books were
published.

This book covers several types of models, approaches, and algorithms—
deterministic, probabilistic, hierarchical, nondeterministic, temporal, and spatial—
and discusses how to use them for acting, planning and learning. The published
literature on these topics is huge and covers several disconnected areas, not all of
which can be covered in a single book. Thus our choice of material was motivated by
putting the integration of acting, planning and learning at the forefront.

The book comprises 24 chapters. After Chapter 1, the Introduction, the other
chapters are organized into eight parts. The first seven focus on the following rep-
resentational models, with each part containing chapters on acting, planning, and
learning with the given model:

» Part [uses a “classical” deterministic state-transition model, represented using
state variables. Several of the concepts in this chapter are used throughout the
book.

e Part II adds hierarchical task networks (HTNs) to the state-transition model in
Part I.

* Parts III and IV extend the state-transition model in Part I to include, respec-
tively, probabilities and nondeterminism.

e Part V describes a hierarchical refinement approach that builds on the HTN
concepts in Part II and the probabilistic model in Part III.

* Part VI models time and concurrency using a chronicle representation.

* Part VII introduces models of robotic motion and manipulation and their com-
bination with more abstract tasks.

Finally, Part VIII includes two chapters on some other important topics that are not
within our main focus: large language models, and sensing, monitoring, and goal
reasoning.

Using This Book

This book is intended both as an information source for scientists and professionals
and as a graduate-level textbook. In most of the chapters, the references are postponed
to a discussion section at the end of the chapter. Most of the discussion sections are

Free pre-publication, for personal use only. To be published by Cambridge University Press.

xi

I. Deterministic Il. Hierarchical
Models Task Networks
Chapter.1. > 3 > 5
Introduction L ’ \ / \
pemmmm T & 4

;!

-CEE -y
=

. i IV. V. / VI VI
Probabilistic | :' Nondeterministic Hierarchical |/ Temporal Motion and
Models ./ Models Refinement N\ Models Manipulation
8"/ ! 11 Models . S q7 Models in
l i / \ 144~ ’/l Robotics
! 20
9 P12 13 / | , 18 |
| - |
. 21
10 “l VIII. Other l
\ ' Topics and
\ \ . 22
R ' Perspectives

-———xep ST

Figure 1. Dependencies among chapters. Each gray box represents one of the book’s
parts, and the numbers within each part refer to chapters. A solid line means that some
(though often not all) of the information in one chapter is needed to understand another
chapter. A dashed line means that the information is not required but may be helpful.

followed by sets of exercises. We will make lecture slides and other auxiliary materials
available online.!

In the pseudocode for our algorithms, all variables are local unless declared global.
We assume readers are familiar with the basic concepts of algorithms and data struc-
tures at the level of an undergraduate-level computer science curriculum. Two ap-
pendices provide information about some mathematical and technical topics that go
beyond this background.

In addition to providing a coherent synthesis of the state of the art, this book contains
a substantial amount of new material, most of which is presented in comprehensive
detail consistent with textbook use. Some sections contain new material that has not
yet been implemented and empirically assessed, to provide an invitation for further
research.

The study of this book may follow several paths, depending on the reader’s needs
and familiarity with the material. Figure 1 shows which chapters depend on which
others. We hope this will help readers and teachers plan a fruitful journey through
the book.

Acknowledgments

We are thankful to Sylvie Thiébaux at LAAS-CNRS, Toulouse, and the Australian
National University, and Marcel Steinmetz at LAAS-CNRS, for contributing to Sec-

1hllp://www.laas.fr/planning

http://www.laas.fr/planning

xii

tion 9.3 and writing Section 9.4. We are grateful to Michela Milano at the University
of Bologna, for writing the Foreword.

We thank several friends and colleagues for their valuable feedback on parts of
this book. These include Pascal Bercher, Janette Cardoso, Mark ‘“Mak” Roberts,
Luciano Serafini, Oliviero Stock, Fabio Pianesi, Bernardo Magnini, Sylvie Thiébaux,
and Silvano Dal Zilio. Dana Nau thanks the students who took a course from a rough
draft of this book. Paolo Traverso owes special thanks to Luciano Serafini for his
contributions to the chapters on learning deterministic and nondeterministic action
schema.

We acknowledge the support of our respective organizations, which provided the
support and facilities that helped to make this work possible: LAAS-CNRS and the
University of Toulouse, France, the University of Maryland, and FBK in Trento, Italy.
Dana Nau thanks ONR, NRL, AFRL, and AFOSR for their support of his work.
Malik Ghallab and Paolo Traverso acknowledge support from the AIPlan4EU project
(Grant agreement ID: 101016442), and Paolo Traverso acknowledges support from
the Future Al Research project (FAIR, PE0O0000013) under the NRRP MUR program
funded by the NextGenerationEU.

The authors declares that no sentence or figure of this book were produced with
the help of a generative Al software. They have no conflict of interest regarding the
presented methods and techniques, nor with any person or company deploying their
machine implementations.

About the Authors

Malik Ghallab is Directeur de Recherche Emeritus at CNRS and the University of
Toulouse. His research is focused on Al and Robotics. He contributed to topics
such as knowledge representation and reasoning, planning, and learning of skills and
models of behaviors. He (co-)authored over 200 scientific papers and several books.
He taught Al at several universities in France and abroad, and advised 32 PhDs. He
led several Al research programs in France, was director of LAAS-CNRS and CTO
of INRIA. He is involved in initiatives regarding socially responsible research in Al
and computational sciences. He is a EurAl Fellow, and Docteur Honoris Causa of the
University of Link&ping, Sweden.

Dana Nau is a Professor Emeritus at the University of Maryland, in the Computer
Science Department and the Institute for Systems Research. He has more than 400
refereed technical publications. Some of his accomplishments include the discovery
of “pathological” game trees in which looking farther ahead produces worse decisions,
the game-playing algorithm used in the program that won the 1997 world computer
bridge championship, applications of Al planning in automated manufacturing, Al
planning systems such as SHOP, SHOP2, Pyhop, and GTPyhop, and evolutionary
game-theoretic studies of factors that affect human behavioral norms. He is an AAAI
Fellow, ACM Fellow, and AAAS Fellow.

Paolo Traverso is the Director of Strategic Planning at Fondazione Bruno Kessler
(FBK), Trento, Italy. His main research interests are in automated planning and
learning under uncertainty. He directed the FBK ICT Research Center from 2007
to 2020, a center of more than 400 people. In 2017, he was appointed Chair of
the Strategic Committee of EIT Digital. Since 2019, he has been a member of the
Scientific Advisory Board of DFKI. He served as a member of the Board of Directors
of AIXIA and of the National Lab on Al and Intelligent Systems. Since 2023, he has
been the leader of the National Project on Integrative Al of “FAIR - Future Artificial
Intelligence Research”. He is the author and co-author of more than one hundred
scientific articles. He is an EurAl Fellow, AAIA Fellow, and AIIA Fellow.

Free pre-publication, for personal use only. To be published by Cambridge University Press.

xiii

1 Introduction

The ability to act autonomously in the environment is a key feature of intelligence. An
Al acting system, for short an actor, is a computational artifact capable of autonomous
operation in its environment. It can be a software system, such as a web-based service
agent, or a robot embodied with sensory-motor devices. Actors require essential
cognitive functions without which intelligence is hardly conceivable, and this book
focuses on the functions of acting, planning, and learning:

* Acting is more than just the sensory-motor execution of low-level commands.
There always is a need to decide how to perform each task, given the context,
and adapt online to changes in the environment.

* Planning involves choosing and organizing actions that can achieve a task or a
goal. It usually involves reasoning on abstract models of a repertoire of actions
the actor may perform.

» Learning is critical for acquiring knowledge about actions’ actual effects, which
actions to perform when, and how to perform and plan them. Conversely, acting
and planning can be used to aid learning.

Combining these cognitive functions will be very important for the future of Al. To
explain why, we briefly summarize some recent developments in Al research.

During the past few decades, Al has produced numerous success stories. However,
most of them were costly, requiring huge development, modeling and adaptation to
their respective domains. They also tended to be brittle and narrow, with capabilities
that were difficult to extend.! For many years, Al learning systems lacked a capability
to adapt, generalize, and transfer to other domains. These adaptation capabilities,
essential to intelligence, are beginning to be reached in two primary areas: data
interpretation and data generation.”

* Data interpretation. Multi-layered neural networks have extended known prin-
ciples to provide robust universal approximation classifiers. Moreover, they
have incidentally provided, at several abstraction levels, representation features
adapted to specific training data. For decades, the field of pattern recognition
has devoted significant effort to design representation features characterizing
the data at hand. These features are now given for free as latent variables
in the successive hidden layers of a neural net. They result from scalable
training procedures, thanks to improvements in hardware performances and
architectures. Al for data interpretation is no longer costly and narrow. It is

! An example is the Watson system [356], the impressive champion of the Jeopardy Q/A game, which
was transposed to the medical domain, but not successfully deployed despite huge investments.
2This oversimplifies a rich story. See, for example, [725, 758].

Free pre-publication, for personal use only. To be published by Cambridge University Press.

2 1 Introduction

widely deployed for the analysis of all kind of multi-modal data in numerous
demanding applications, from astronomy to health and education.

* Data generation. Also here the principles have been known for a while: learn
an adequate distribution for a domain, and sample from it for a given con-
text. Generative sampling and prediction of the next term in a sequence have
benefited from the progress in multi-layered networks in performances and ar-
chitectures. The recent multi-head attention transformer architecture of Large
Language Models, and their extensions in Multimodal Foundation Models,
have led to impressive performance in natural language processing and image
generation tasks. They also demonstrate emergent but still fragile capabilities
in other unexpected common-sense and reasoning tasks. Scalable Al tools for
generating texts, images, videos, and sounds are now widely deployed.

From data to actions. This, we believe, is the next big, two-sided challenge for the
field. On the one hand, Al has to pursue and leverage on its successful achievements
in order to transform current techniques for acting and planning into easily learned
and scalable approaches. An actor should be able to extensively and efficiently learn
how to act and how to plan. It should also be able to act and plan in order to better
learn and adapt to its environment and mission. On the other hand, the challenge is to
“put acting into AL.” For example, the successful data interpretation and generation
methods require numerous actions, such as to gather and select training data, choose
meta-parameters, etc. These should be part of the actions learned, planned for and
performed by the autonomous agent.

In two previous books, we wrote about automated planning [410] and about com-
bining planning and acting [411]. The interactions among the acting, planning, and
learning functions open essential perspectives for addressing the next big Al chal-
lenge. We hope through this book to contribute to the education and training of
researchers and practitioners tackling this challenge.

The rest of this chapter is organized as follows. Section 1.1 presents a conceptual
view of an Al actor, its architecture, and main components. Section 1.2 introduces the
types of models needed for the design of an actor. Section 1.3 expresses our concerns
and recommendations about important ethical issues associated with autonomous
actors. The outline and organization of the book are detailed in the preface.

1.1 Architecture and Components of an Actor

This section introduces the main components and organization of a deliberative actor.
It first presents a simplified, conceptual of view an actor’s architecture. It then
discusses the acting, planning, and learning functions and their interplay.

1.1.1 Architecture

The methods discussed in this book are relevant both for software actors and for actors
embodied with sensory-motor devices. The latter are further detailed in Part VII on

1.1 Architecture and Components of an Actor 3

motion and manipulation. A simplified view of an actor distinguishes two main parts:
a deliberation part and an execution platform (see Figure 1.1).

The execution platform informs the actor about its environment and its current state.
It transforms its commands into actuations that perform its actions (e.g., movements of
alimb or of a virtual character). The platform of an embodied actor assembles sensors,
actuators and signal processing functions. The actor has to control its platform (e.g.,
where to put and how to use its sensors and actuators). Hence, it needs a model of
the platform’s capabilities and limitations.

The deliberation functions are used to choose what to do and how to do it to
achieve the actor’s mission, how to react to changes in the environment, and how
to interact with other actors, including humans. We focus the book on the acting,
planning, and learning functions. Other functions, namely perceiving, monitoring
and goal reasoning, are briefly covers in Chapter 24. Communication, adaptation to,
and interaction with other actors are also important. They are not developed per se,
but Chapter 23 introduces Large Language Models and discusses their possible use
as deliberation functions.

Actor

Main deliberation functions

Objectives
<

Users and
—> Other Actors

Pllaris Mesgsages

Commands

\ Percepts

Execution platform
N

Actuations |, | Signals

External World

Figure 1.1. Conceptual architecture of an actor.

The architecture depicted in Figure 1.1 is a simplified conceptual schema that can
be adapted to different classes of environments and actors. It presents the actor as
centralized system, while it can also be distributed. More importantly there are two
essential features, implicit in this figure:

* Hierarchical processing within and across functions. From abstract tasks to de-
tailed actuations, a hierarchy of methods reduce the complexity of deliberation,
and integrate heterogeneous representations and models.

* Continual online closed-loop adaptation. The actor predicts what is expected,
monitors what is taking place, reacts to events, extends, updates, and repairs its
plan, and possibly revises its goals on the basis of its perception and deliberation.

These organizational principles provide a guideline to be adapted to different classes

4 1 Introduction

of environments and actors, about which the various parts of the book make different
assumptions. Let us now discuss the main components of this architecture.

1.1.2 Planning

Planning is about what to do. It relies on a predictive model to foresee what may
happen if some actions are performed, and a search over alternative options. It seeks
to synthesize a plan, i.e., an organized set of actions that may lead, according to
predictions, to a desired goal.

Planning problems vary in the kinds of actions, predictive models and desired
plans. In some cases, specialized planning methods can be used with specific prob-
lem representations. For instance, motion planning synthesizes a kinematic and
dynamic trajectory for moving a device; perception planning generates sensing and
interpretation actions to sense the world, recognize or model an object or a scene.

In many cases, there are commonalities to various planning problems. Domain-
independent planning tries to grasp these commonalities with abstract models.
Domain-independent planners reason about actions by representing them uniformly
as state-transformation operators over widely applicable representations of states as
relations among objects.

Domain-independent and specialized planning are complementary. In a hierar-
chically organized actor, an abstract level can be tackled with domain-independent
techniques, whereas lower levels may require specialized techniques. The integration
of domain-independent and specialized planners raises several challenges, which are
exemplified by the integrated task and motion planning problems in Part VII.

1.1.3 Acting

Acting is about how to do chosen actions while reacting, in a closed loop, to the
observed context in which the activity takes place. An action is considered as a task
to be progressively refined, given the current context, into more primitive actions and
concrete commands. Whereas planning is a search over predicted states, acting is
a continual assessment of the current observed state, and a consequent adaptation.
Acting requires reacting to unexpected changes and exogenous events, which are
independent from the actor’s activity. It also requires a correct mapping between
what is perceived and actuated and what is reasoned about for acting.

The techniques used in planning and acting can be compared as follows. Planning is
organized as an open-loop search, a look-ahead process based on predictions. Acting
is a closed-loop process, with feedback from observed effects and events used as input
for subsequent decisions. Domain-independent planners can be developed to take
advantage of commonalities among different forms of planning problems, but this is
less true for acting systems, which require specific methods.

1.1.4 Interleaving Acting and Planning

Relationships between acting and planning are more complex than a simple linear
sequence (plan, act). Seeking a complete plan before starting to act is not always

1.1 Architecture and Components of an Actor 5

feasible, desirable or needed. It is feasible when the environment is predictable and
well modeled, as in a manufacturing production line. It is needed in domains with
high costs or risks, or when actions are not reversible. In such domains, one often has
to engineer the environment to reduce diversity as much as possible beyond what is
modeled and can be predicted.

In open, dynamic domains with exogenous events that are difficult to model and
fully predict, plans are expected to fail. They cannot be carried out blindly until the
end. Plan modification and replanning are part of a global closed-loop process for
acting. Replanning is normal and should be embedded in the design of an actor.
Metaphorically, planning sheds light on the road ahead, but does not lay an iron rail
all the way to the goal.

The interplay between acting and planning can be organized in many ways, de-
pending on how easy it is to plan, how predictable and dynamic the environment is,
and how costly or risky the actions are. A general paradigm is the receding-horizon
model of interleaved planning and acting. It consists of repeating the two following
two steps until the goal is reached:

1. Plan from the current state toward the goal, but not necessarily all the way to
the goal, stopping at an arbitrary cutoff point called the planning horizon.

2. Perform one or more actions of the synthesized plan. Observe the current state
and decide whether further planning is needed.

A receding-horizon scheme can have various instantiations. Options depend, for
example, on the planning horizon, on what triggers replanning, on the number of
actions performed after a planning stage, and whether planning can be interrupted.
Furthermore, the planning and acting procedures can be run either sequentially, or
in parallel with synchronization. A receding-horizon approach can scale up to large
state spaces, and can redirect the planning in a closed loop according to the results of
acting. But it may also lead to situations from which the goal cannot be reached.

Depending on the planning horizon, the actor may execute each action as soon as
it is planned or wait until a dynamically chosen planning horizon is reached. One
should expect the observed state to differ from the predicted one, and to evolve even
if no action is executed. This may invalidate a plan and require replanning.

Interleaving acting and planning remains relevant if the planner synthesizes alter-
native courses of action for different contingencies (see Parts III and IV). It may not
be worthwhile or even feasible to plan for all possible contingencies, or the planner
may not know in advance what all of them are.

Several instances of the receding-horizon scheme will be illustrated throughout the
book, including anytime approaches.

1.1.5 Learning

Learning is a very broad notion that includes many cognitive capabilities. An actor
learns if it improves its performance with more autonomy and versatility, including
ways to perform new tasks, and adaptation to new or changing environments. Learn-
ing may rely on the actor’s experiences, instructions from a tutor, and/or data and
knowledge gathered from external sources.

6 1 Introduction

Learning alleviates the costly efforts of programming an actor and specifying its
environment. Even when such programming can be performed, it can hardly cover
all the situations the actor may face, so adaptation by learning provides a significant
advantage. Furthermore, learning allows an actor to acquire skills for which the
designer may not have formalized knowledge or are difficult to program.?

An actor may want to learn a reactive function giving how to act in each situation
and context, without further need of reasoning. Alternatively, it may want to learn
models with which to reason for acting and planning. The former, called end-to-end
learning, produces a reactive program that can be effective and efficient, and possibly
amenable to continual adaptation; but it is usually a “black box” function, difficult to
explain, verify or validate. The latter, in contrast, aims at acquiring explicit models
that are predictive but not executable; they can support analysis and explanation.

For example, a robot collaborating with a human should be proved safe to its users.
To be accepted as a co-worker, it should also be able to explain what it is doing
and remain intelligible. End-to-end learning may be less adequate in that regard.
However, it can be very useful for acquiring low-level reactive sensory-motor skills,
e.g., for grasping and manipulation, with additional mechanisms for verification and
validation. It can also be very useful for acquiring domain-dependent search heuristics
for more efficient planning and acting.

1.1.6 Integrating Acting, Planning, and Learning

Acting, planning, and learning are connected in many different ways, seldom limited
to a simple sequence (learn, plan, act). There is learning to plan and learning to act,
but there is also acting to learn, and planning to learn. Let us mention a few possible
interplays among these three functions.

An actor learns by acting. It may have the leisure to act for the sole purpose
of learning. Possibly it may simulate its training actions to learn at an affordable
cost. However, it is always desirable for an actor to keep learning while pursuing its
activities, so it can improve and better adapt to a changing environment whose learned
models need to be updated. Learning can be done when the actor fails, or when it can
benefit from additional advice or knowledge.

An actor or its user may reason about better ways to learn—for example, by
planning how to find states and activities that may be useful for learning. For example,
curriculum learning targets a progressive and rationally organized learning program,
or a well organized training database [112], as would be elaborated by an educator.
Learning to learn, or meta-learning seeks to improve learning.

Often, an actor engaged in its tasks as well as in learning will have to find a tradeoff
between learning more versus advancing in its task. This is the exploration versus
exploitation tradeoff. An actor without much knowledge may favor exploration, while
an expert actor may prefer to exploit known behaviors.

The planning-to-learn paradigm is important in this book. A learner can provide
models and control knowledge, such as heuristics, to an online planning-acting duo.

3These are related to the notion facit knowledge, e.g., how to recognize a face or ride a bicycle, as
opposed to explicit knowledge, such as scientific facts and models [576].

1.2 Descriptive and Operational Models of Actions 7

Conversely, a planner can synthesize a number of random cases of problems and solu-
tions to feed to a learner’s training database. Planning can be used to create curricula
for curriculum learning. In a continual-learning scheme, the actor’s experiences are
fed back to the original planner for use in additional training to improve what has been
learned. These interactions, partially depicted in Figure 1.2, may possibly require
different planners and interactions with a simulator as well as with the real world.

Simulator

— Training U P Planning
Planning —gr;—1 Leaming | Models U Fivure 1.2. Inferact
igure 1.2. Interactions

v&\ among acting, planning,
Acting and learning.

External World

In some cases, a learner’s output can be directly used for acting without additional
planning. In these cases, the learner may synthesize from a training database a policy
for reactive acting. This can be effective for focused and specialized functions, such
as the sensory-motor control of a device. However, adaptation to a broad diversity of
tasks and environments requires planning, hence it also requires learning for better
planning, and possibly planning for learning as in the previous paragraph.

1.2 Descriptive and Operational Models of Actions

The book presents different models for acting, planning, and learning, starting from
the simplest deterministic state-transition systems, to temporal, probabilistic and
nondeterministic cases. The formal representations used for expressing these models
will be introduced when needed. Most of the chapters use discrete models, except for
Part VII which uses continuous models of motion and manipulation.

Actors’ models of actions can be classified into two types:

* Descriptive models specify what effects an action may have and when it is
feasible. Descriptive models, also called causal models, are relations from the
precondition to the effects of an action. The actor uses these models during
planning, to reason about what actions may achieve the actor’s objectives.

* Operational models specify how to perform an action: what commands to
execute in the current context, and how to organize them to achieve the action’s
intended effects. The actor uses these models during acting, to perform the
actions that it has decided to perform.

Descriptive models are more abstract than operational models. They tend to ignore
details, and focus on the main effects needed to decide about the eventual use of an

8 1 Introduction

action. For example, if you plan to take a book from a bookshelf, at planning time
you usually are not concerned with the available space around the book to insert your
fingers and extract the book. A descriptive model of an action abstracts away these
details to focus on higher-level concerns, such as which shelf the book is in, whether
it is within your reach, and whether you have a free hand with which to take it.

There are several reasons why these idealized abstract models are useful for plan-
ning. First, it is difficult to develop very detailed descriptive models. Second, these
models may require information that is unknown during planning. Third, reasoning
with detailed models is computationally very complex. Planners often need to search
over many different combinations of actions, and if such a planner uses operational
(rather than descriptive) models for this search, it may run very slowly.

Operational models of how to perform actions cannot do with the simplifications
allowed in descriptive models. To pick up a book in a shelf, you will need to determine
precisely where the book is located, whether you need to remove an obstacle to reach
the book, which positions of your hand and fingers give a feasible grasp, and which
sequences of precise motions and manipulations will allow you to perform the action.

Furthermore, operational models may need to include ways to respond to exogenous
events, that is, events that occur because of external factors beyond the actor’s control.
For example, someone might be standing in front of the bookshelf, or the stool you
intended to use to reach the book on a high shelf might be missing, or a potentially
huge number of other possibilities might interfere with your plan.

In principle, descriptive models can take into account the uncertainty caused by
exogenous events (see Parts III and IV). However, exogenous events are often ignored
in descriptive models because it is impractical to try to model all of the possible
joint effects of actions and exogenous events, or to plan in advance for all of the
contingencies. In operational models, however, the need to handle exogenous events
is much more compelling. Operational models must have ways to respond to such
events if they happen, because they can interfere with the achievement of an action.
In the bookshelf example, you might need to ask someone to move out of the way, or
you might have to stand on a chair instead of the missing stool.

Finally, an actor’s hierarchical organization and continual online processing can
be integrated in these two types of models. We may have a hierarchy of operational
models, sketching how to perform abstract tasks, and giving more detailed recipes
for primitive actions. Similarly, we may have a hierarchy of descriptive models,
from abstract tasks down to the effects of commands executable by the platform.
Furthermore, deliberation may perform a continual and interleaved processing of
operational models and descriptive models at different levels of the hierarchy. The
book illustrates instances of these hierarchical models.

1.3 Responsible Research on Autonomous Actors
Autonomous deliberative actors are scientifically and technically challenging for Al

They are also ethically very challenging. We, and all contributors to Al, hold a
particular responsibility regarding ethical issues. However, since no chapter of this

1.3 Responsible Research on Autonomous Actors 9

book is devoted to ethics, we felt important to clarify here our position and concern,
particularly regarding actor-centered Al.

Discussions of the ethics of Al are very active, with numerous publications, com-
mittees and recommendations (see for example [405, 176, 335, 1109]). Most of these
discussions deal with data-centered ethical concerns, such as biases, privacy, fairness,
transparency, trustworthiness, or ownership. They have been triggered by the signifi-
cant Al advances in data interpretation and data generation. They are certainly very
important. They need to be pursued and implemented into regulations (beyond the
RGPD), institutions (e.g., data trusts) and active monitoring processes.

These data-centered ethical concerns are more focused on individuals than embrac-
ing broader social considerations, such as social cohesion, values, and democratic
organization, which are becoming even more critical with the development of au-
tonomous acting systems. Actor-related ethical issues may have more vital impacts
on humanity—but they have not been as widely studied, possibly because of a less
advanced state of the art.

Some of the actor-centered ethical issues are related to a possible automation
of many human activities, including rewarding qualified professional and creative
jobs. Such a trend, in particular if fast and widespread, would create economic
problems about employment, inequalities and social wealth sharing. It would entail a
questioning of our role in and value to society, and hence to ourself. Feeling socially
superfluous, because machines might do most of what many people can do, may lead
to significant human and social turmoil. It may cause infringements on human dignity.

Human interactions have already changed with social networks. They are fast
changing with conversational agents becoming language-fluent and apparently knowl-
edgeable. They will further change with the advent of autonomous actors that have
not only the capabilities described earlier, but also have capable sensory-motor skills,
detailed knowledge of a person, and can nudge or prod her with respect to dubious
utility criteria. This prospect raises the risk of reduced autonomy and infringements
on human freedom and agency.

Autonomous actors may possibly amplify inequalities and further tilt the power
imbalance between human groups and nations. Leaders may be more likely to
engage in conflicts if they can do so with no risks to their soldiers. Weaponized
actors are a very serious concern. Despite a call from many scientists to ban lethal
autonomous weapons [378], now supported by the UN and other organizations, there
is unfortunately for the moment no international agreement on these matters. Strong
opposition from most powerful nations remains.

Autonomous actors may also be beneficial to our well-being and health, for example
as long-life empathic, serviceable and trustable companions. We need to remain
proactively engaged towards these ends, but we must also keep in mind that the
individual acceptance of a technology (even as a widespread market) is not equivalent
to its social acceptance or acceptability. The latter must include, among other things,
long-term effects, social cohesion and values, and environmental impacts.

Neither the best outcome nor the worst one are the most probable. However,
our current social organization, and the profit-and-power motive for much of its
development, do not lean naturally towards the best. To avoid the worst, we need to

10 1 Introduction

be well aware of the risks and be proactive in mitigating them.

A possible ambition is to seek machines aligned with human values [966, 232].
However, it is unclear whether it is feasible to have machines behaving with and
enforcing our values, if their understanding of those values comes from our specifica-
tions or from observation of our inconsistent behaviors.* It is even more questionable
whether we could put the risks of fast deployment on hold until we are able to have
all of our Al machines human-aligned.

A more questionable option is to seek machines capable of moral choices. Machines
do not have intrinsic motivations, desires, nor feelings with respect to which moral
choices are meaningful. The so-called “ethics by design” can be quite misleading:
techniques cannot solve everything, including our ethical choices and responsibili-
ties. We certainly must improve and implement verification and validation methods
towards provable trustworthiness, under appropriate assumptions. However, the re-
sponsibilities for designing, using, and allowing the deployment of Al actors remain
ours. Researchers should not only be concerned with how Al should not be used for
harmful purposes, but also with how it can be used to promote positive values and
counteract antidemocratic and deceptive practices.

It is well known that technology is ambivalent, with both good and ugly faces.’
Everyone in society is, to some degree, responsible for harmful technical deployments.
Scientists hold particular responsibilities because they can investigate and foresee long
term risks, and search for mitigating means. They can disseminate knowledge and be
active in social debates about these risks. For that, we believe, they have to remain
cautiously optimistic. This optimism is justified by the numerous expressions of
risk-related concerns published by Al scientists and developers, and their calls for
effective oversight and open independent verifications. It is also justified by some
more advanced regulations (for example, the recently approved European Al Act). We
recommend our responsible reader to remain actively vigilant.

4 After centuries of moral effort, we have been able to state some of these values in documents such as
the Universal Declaration of Human Rights. However, these rights are routinely violated and we are
still unable to enforce them.

3 Hephaestus, the Greek god of technology, is described as a limping deity.

Part |

Deterministic State-Transition Systems

... we must examine the nature of actions,
namely how we ought to do them . . .

Atristotle, Nichomachean Ethics,
circa 330 BCE

Any model of an actor and its environment is necessarily an imperfect approxi-
mation that must incorporate trade-offs among several competing criteria: accuracy,
computational performance, and understandability to users. This part of the book
uses a highly simplified model that incorporates the following set of restrictive as-
sumptions:

1. Finite, static world. There are a finite set of possible states and a finite set
of possible actions. The world changes from one state to another only when
the actor performs an action. If the actor does not act, then the current state
remains unchanged. This precludes the possibility of actions by other actors or
exogenous events that are not due to any actor.

2. Deterministic actions. The outcome of performing an action a in a state s
is determined solely by a and s, and the actor can predict this outcome with
certainty. This excludes the possibility of accidents or execution errors, as well
as nondeterministic actions, such as rolling a pair of dice.

3. Full observability. The actor always knows the current state of the world.®

4. No explicit time, no concurrency. There is no explicit model of time (e.g., when
to start performing an action, how long a state or action should last, or how to
perform other actions concurrently).” There is just a discrete sequence of states
and actions.

61t has sometimes been argued that if the initial state is known, then determinism assures that the
current state can always be inferred. That’s nearly correct, but it also requires the actor to have perfect
recall of the sequence of actions it has performed.

TThis does not prohibit one from encoding time-related information (e.g., timestamps) into the states
and the actions’ preconditions and effects. However, to represent and reason about actions that have
temporal durations, a more sophisticated representation is often needed (see Chapter 17).

Free pre-publication, for personal use only. To be published by Cambridge University Press.

11

12

These assumptions are used far more frequently in planning than in acting, and are
often called the classical planning assumptions. An environment that satisfies them is
called a deterministic state-transition system (for short, just a state-transition system)
or a classical planning domain.

One consequence of these assumptions is that the actions in a state-transition system
are necessarily more abstract than the actor’s sensory-motor commands. A classical-
planning model of an “open door” action may simply assert that the door is now
open instead of closed, but a robot that opens a door will need to use sensory-motor
commands that do not satisfy the classical-planning assumptions:

classical action:
sensory-motor /l‘»

commands:

identify move close | [grasp| |turn |maintain| |move back| |ungrasp|

type of door| | to knob knob | [knob

Figure 1.1. A classical action, and non-classical commands that implement it.

Because few (if any) real-world environments satisfy all of the classical planning
assumptions, deterministic state-transition models may introduce errors into an actor’s
deliberations. However, such models can still be desirable despite this problem. They
usually are much simpler to construct and use than other kinds of domain models,
and there are techniques for predicting some of the errors in advance so that an actor
can change the plan to avoid them. Any remaining errors may be acceptable if they
are infrequent and do not have severe consequences.

This part is organized as follows. Chapter 2 presents the state-variable represen-
tation that we will use, describes how it relates to several other representations, and
then presents several acting algorithms. Chapter 3 presents and classifies several
planning algorithms and related techniques, and Chapter 4 describes some ways to
learn state-variable representations.

2 Deterministic Representation and
Acting

This chapter is about representing state-transition systems and using them in acting.
Section 2.2 gives formal definitions of state-transition systems and planning problems,
and a simple acting algorithm. Section 2.3 describes state-variable representations of
state-transition-systems, and Section 2.6 describes several acting procedures that use
this representation. Section 2.4 describes classical representation, an alternative to
state-variable representation that is often used in the planning literature.

2.1 Motivating Example

Most of the examples in this chapter will involve Dock-Worker Robots (DWR) domains.
These are highly simplified “toy” versions of harbor and warehouse systems like the
one in Figure 2.1. Depending on the example, the objects may include ships, cranes,
loading docks, piles of containers, robot vehicles, roads, and delivery gates.

Example 2.1. Figure 2.2 shows a simple DWR domain that is a running example in
this chapter. There are two robots, three loading docks, three containers, and three
piles (stacks of containers). The domain has sfates, each of which is a configuration

Figure 2.1. A container terminal in Barcelona.

Free pre-publication, for personal use only. To be published by Cambridge University Press.

13

14 2 Deterministic Representation and Acting

d3
Figure 2.2. Running example: a sim-
r2 (3] 2 ple DWR domain.
OO |99 p
42 83

of the objects (as in the figure), and actions that cause transitions from one state to
another. O

The next section is rather abstract, but we will return to this example in Section 2.3.

2.2 State-Transition Systems
Definition 2.2.! A state-transition system, or classical planning domain, is a tuple
X =(S,A,y,cost) or X =(S,A,7y), 2.1

where

e S and A are the finite sets of states and actions,

e y:SXA — S, the state-transition function, is a partial function (that is, its
domain is a subset of S x A) telling what state will be produced if the actor
executes action a in state s. The set of applicable actions in s is’

Applicable(s) = {a € A | y(s, a) is defined}. 2.2)

s cost : A — [0,00), the cost function,® is a partial function having the same
domain as y. It may represent monetary cost, time, or some other numeric
quantity that one might want to minimize. In the second form of Equation 2.1, in
which the cost function is not given explicitly, cost(a) = 1 foreverya € A. O

2.2.1 Plans

In order to act purposefully, an actor will need some notion of what actions it needs
to perform. In a deterministic state-transition model, this will be a plan: a finite
sequence of actions

m=A{ay,...,dn). (2.3)

The length of x is |n| = n, and the cost of 7 is the sum of the action costs:

n

cost(m) = Z cost(a;). 2.4)

i=1

IDefinitions, examples, and theorems are all numbered in the same numerical sequence. Algorithms
and equations, however, are in separate sequences.

2Section 8.1 will change Equation 2.2 to model actions that have multiple possible outcomes.

3This definition prevents the cost from depending on s. See Remark 2.6 for a discussion of this
restriction and some cases in which it can be lifted.

2.2 State-Transition Systems 15

As a special case, () is the empty plan, which contains no actions. Its length and cost
are both 0.

A subplan n’ of is a (contiguous) subsequence* (a;,...,a j) of . As spe-
cial cases, the subplans {ai,...,a;) and {(a;,...,a,) are a prefix and suffix of «,
respectively.’

Here is some notation for concatenation of plans and actions. If 7 = {(ay,...,a,)
and " = (a},...,a,,) are plans and a is an action, then

mea={at,...,a,,ay;
a-m={a,ay,...,dn);
, Y) (2.5)
m-n' ={ag,...,ap, a4, ..., a,);
- {)=-m=nm.

The state-transition function y can easily be extended to include plans, by letting
v(s,) be the state produced by starting at s and applying the actions in 7 in the order
that they are given, if all of them are applicable. More specifically:

* The empty plan () is applicable in every state s, and y (s, ()) = s.
e If m = a-n’, where a is applicable in s and 7’ is applicable in y(s, a), then 7 is
applicable in s and

y(s,m) = y(y(s,a),n"). (2.6)

It immediately follows that if a plan 7 = (aj,as, ..., a,) is applicable in a state s,
then it produces a sequence of states (s, 51, - . . , S5 such that

Sl =7(SO,al)’ 52 =7(Sl,a2)’] Si’l ='}’(si—man)- (27)

In this case, the transitive closure of & on s is the path

—~ <S0,S],...,S >’ ifﬂ:<a1’a29""an>7
¥(s0,7) = R (2.8)
(s0), it 7= ().

From the usual definitions of the length and cost of a path, we get

[¥ (50, m)| = |7; (2.9)
cost(y(so, m)) = cost(r). (2.10)

2.2.2 Planning Problems

A classical planning problem is a triple

P =(Z,s0,Sg), (2.11)

4We use “subsequence” to mean a contiguous subsequence. This is consistent with our previous books
[410, 411], but differs from the terminology in some other subfields of computer science [35, 258].

5This terminology is common in the Al planning literature, but it differs from ordinary English usage,
in which a prefix or suffix would be something added to x, not part of r itself.

16 2 Deterministic Representation and Acting

Run-Plan(Z, xr)
while True do

1 s < observe current state
if 7 = () then

2 L return success
a — pop(r)

3 if a ¢ Applicable(s) then return failure
perform action a

Algorithm 2.1. Run-Plan, a simple procedure to run a plan.

where X is a state-transition system, s is a state called the initial state, and Sy is a set
of states called goal states. A solution for P is any plan 7= = {ay,...,a,) such that
v(s0,) € Sg. The solution 7 is minimal if no subsequence of x is also a solution,
shortest if there is no solution 7’ such that |7’| < |x|, and optimal if

cost(mr) = min{cost(n’) | n’ is a solution for P}. (2.12)
Example 2.3. Suppose a planning problem P has three solution plans:

m ={ay); nty = {az, as, as, as); n3 = (az,as,ap).

If each action’s cost is 1, then 7y is a minimal, shortest, and cost-optimal solution,
my is a minimal solution but is neither shortest nor cost-optimal, and 73 is neither
minimal nor shortest nor cost-optimal. O

2.2.3 Acting with a Plan

Algorithm 2.1, Run-Plan, is a simple procedure for running a plan. If 7 is applicable in
the initial observed state,® then ideally it will produce the sequence of states 7 (sq, 77),
and Run-Plan will return success. However, recall from Part I that X is not necessarily
a perfect model of the actor’s environment. Execution errors or unpredicted exogenous
events may sometimes cause Run-Plan to encounter states in which the next action of
7 is not applicable, in which case Line 3 will return failure.

Run-Plan can be adapted to test whether 7 has achieved a desired goal S, by adding
Sg to its argument list and adding the following line before Line 2:

if s ¢ S, then return failure

Section 2.6 will discuss some ways for an actor to recover from failures, either
by re-executing parts of 7 or acquiring a new solution plan. Chapter 3 will discuss
several algorithms to produce solution plans.

6Although we call this the observed state, it is more likely to be an abstraction of the state that the actor
observes, with various low-level details omitted that are irrelevant for planning.

2.3 State-Variable Representation 17

2.3 State-Variable Representation

In Section 2.2, states were an abstract set S = {sg, $1,..., . Explicit enumeration
of § can often be quite large; even trivially simple examples such as Figure 2.2 can
have hundreds or thousands of states. Furthermore, names such as sg, 51, . .. tell us
nothing about the states’ internal structure.

To represent complex domains, we will want a more expressive representation that
gives information about relationships among objects in the actor’s environment. For
example, to describe the state shown in Figure 2.2—which will be a running example
in this section—we might want to write

loc(r1) = d1 (2.13)

to mean that robot r1’s location is d1.

|symbo| | |container |

INZARA

[robot| [dock] nil T F di d2 d3 p1 p2 p3

N

r2 di d2 d3

r

Figure 2.3. A type hierarchy for the objects in Figure 2.2. Boxed words are types, other
words are objects.

In Equation 2.13, d1 and r1 are called objects or object constants. We will organize
objects into sets and subsets using a type hierarchy. For example, Figure 2.3 is a type
hierarchy for our running example, and it corresponds to the following sets of objects:

Objects = Positions U Containers U Piles U Symbols;
Positions = Robots U Docks U {nil};
H =3 Symbols = {T,F,nil}; Containers = {c1,c2,c3}; (2.14)
Piles = {p1, p2, p3}; Robots = {r1,r2};
Docks = {d1,d2,d3}.

With a slight abuse in terminology, we not distinguish between types and and the
corresponding sets of constants. For example, we will call H a type hierarchy.

We will have typed variables called object variables. In our running example, an
object variable r of type robot has Range(r) = Robots (or less formally, r € Robots).

A domain usually has a set of rigid properties that do not change over time, such
as its topology and connectivity. In our running example, robots and containers can
be moved around, but the locations of piles and docks are rigid. To represent such
properties we will define rigid relations over the types. In our running example, the

18 2 Deterministic Representation and Acting

rigid relations are adjacent C Docks x Docks, a symmetric relation telling which pairs
of loading docks have roads between them, and at C Piles X Docks, which gives each
pile’s location:

adjacent = {(d1,d2), (d2,d1), (d2,d3), (d3,d2), (d3,d1), (d1,d3)};
at = {(p1,d1), (p2,d2), (p3,d2)}.

Properties of the domain that change over time, possibly under the effect of the
actor’s activity, we will describe using functional terms called state variables.” State
variables have zero or more arguments, each of which may be either an object or an
object variable. Each state variables is typed; for example, loc(r1) € Docks.

2.3.1 Representing States

In each state, every ground state variable has a value that we will represent as an
assignment, written as an equation similar to Equation 2.13, which assigns to loc(r1)
the value d1. We also will find it useful to refer to lifted assignments, e.g., loc(r1) = [,
where r and [are object variables to be instantiated later (see Definition 2.5).

Here are the state variables. Their parameter types are r € Robots, d € Docks, ¢ €
Containers, p € Piles.

* cargo(r) € Containers U {nil} is either the container that r is carrying, or nil if
r is not carrying anything. Each robot can hold at most one container.

* loc(r) € Docks is the loading dock where r is located.

 occupied(d) € {T,F}is T if there is a robot at d, and F otherwise. At most one
robot can be at each loading dock.

* pile(c) € Piles U {nil} is the pile that ¢ is in, or nil if ¢ is not in a pile.

* pos(c) € Robots U Piles U {nil} is ¢’s position, which may be a robot, another
container if ¢ is in a pile, or nil if ¢ is at the bottom of a pile.

* top(p) € Containers U {nil} is the container at the top of p, with top(p) = nil if
p is empty.

Example 2.4. The following total assignment is the state shown in Figure 2.2:

so = {cargo(r1) =nil, cargo(r2) =nil,
loc(r1) =d1, loc(r2) =d2,
occupied(d1) =T, occupied(d2) =T, occupied(d3) =F,
pile(c1) =pf, pile(c2) =pf, pile(c3) =p2,
pos(c1) =c2, pos(c2) =nil, pos(c3) =nil,
top(p1) =ct, top(p2) =c3, top(p3) =nil}. O
Usually some total assignments are nonsensical in the domain that the state variables

are intended to represent. In our running example, it is nonsensical to have a state
in which both pos(c1) = r1 and cargo(r1) = F. In principle, one could exclude such

TThe terms state variable and fluent are considered synonymous [967]. However, in much of the
published literature, fluents have only Boolean values, and state variables have no parameters. We
use a more flexible representation that includes both parameters and non-Boolean values.

2.3 State-Variable Representation 19

things from the set of states S by writing a set of constraints that every state must
satisfy. However, we will instead will leave these “unreal” states in S, and enforce
the constraints implicitly by writing actions that always map real states to other real
states (see Section 2.3.3).

Definition 2.5. The following terminology is borrowed loosely from first-order logic:

* An atom (short for atomic formula) or positive literal is either a rigid-relation
assertion rel(zy,...,2,), Or a state-variable assignment x(zi,...,Zu—1) = Zn,
where rel or x is the name of the relation or state variable, and z1, ..., z, are
objects or object variables.

* A negated atom or negative literal is an atom with a negation sign in front of
it, such as —rel(zy, ..., z,) or = x(21, ..., 2n—1) =2Zn. We usually will write the
latter as x(z1,...,2n-1) # Zn-

* Let e be any syntactic expression that contains literals. Then e is ground if it
contains no object variables, lifted if it contains object variables but no objects,
and partially instantiated if it includes both objects and object variables.

e If z is an object variable in e, then instantiating z means replacing z
with either an object in Range(z), or another object variable z’ such that
Range(z’) C Range(z). Instantiating e means instantiating zero or more of
the object variables in e. The resulting expression is an instance of e. O

Remark 2.6. Although state variables and rigid relations may have arguments that
are object constants or object variables, we do not—for now—allow the arguments to
be other state variables, as in an expression such as at(p1, loc(r1)).® This restriction,
and the restriction in Definition 2.2 that the cost function cannot depend on s, are
needed to accommodate the requirements of some, but not all, of the algorithms in
Parts I, II, and VI. Cases in which these restrictions can be relaxed or discarded are
discussed in Sections 2.7.2 and 3.6.7 and the first paragraph of Chapter 5. O

2.3.2 Action Schemas and Actions

Definition 2.7. Given a type hierarchy H, an action schema (or action template) is a
tuple

a = (head(a), pre(a), eff(@), cost(a)) or «a = (head(a), pre(a), eff(a)),

where:

* head(a) is an expression of the form name(z, . .., zx), where name is a name
and (z1, ..., zx) is alist of zero or more object variables that are «’s parameters.
So that name will uniquely identify @, no other action can have the same name.

e pre(a) = {p1,...,Pm} is a set of zero or more preconditions, each of which is
a literal. Within each literal p;, every argument must be either an object or one
of the parameters z1, .. ., Zk.

8Were it not for this restriction, the definition of instantiation in Definition 2.5 would also allow
substituting a state variable x for an object variable z if Range(x) C Range(z).

20 2 Deterministic Representation and Acting

e eff(a) = {x1=v1,...,x,=v,} is a set of zero or more effects, each of which
is a state-variable assignment for a different state variable. In each effect, the
assigned value v; must be either an object or one of zy, . . ., Z¢.

* cost(a) is a positive number denoting the cost of applying actions that are
instances of @. If it is omitted from the schema, it defaults to 1.

* Every parameter and state variable in « has a range that is one of the sets in H.

Notation and terminology. To emphasize that each effect x; =v; changes a state
variable’s value, we usually will instead write it as x; < v;. Furthermore, we usually
will write « in the following pseudocode format, omitting the last line if ¢ = 1:

name(z1, 22, - . ., 2k)
pre: pi,...,Pm
eff: xj —vi,...,x, < v,
cost: ¢

We will often refer to a by writing just its name, and to instances of a by writing
just their heads, as in the following two examples. Such references are unambiguous
because a’s name is unique and its only variables are its parameters. O

Example 2.8. Continuing Example 2.1, here are three action schemas, where ¢ €
Containers, ¢’ € Containers U {nil}, d,d’ € Docks, p € Piles, and r € Robots:

take(r,c,c’, p,d) // ¥ takes c off of p
pre: at(p, d), cargo(r) =nil, loc(r) =d, pos(c) =c’, top(p) =c¢
eff: cargo(r) « c, pile(c) < nil, pos(c) « r, top(p) « ¢’

put(r,c,c’, p,d) // r puts ¢ onto p
pre: at(p,d), pos(c)=r, loc(r)=d, top(p) =c’
eff: cargo(r) < nil, pile(¢) « p, pos(c) < ¢’, top(p) < ¢

move(r,d,d") // r moves from d to d’
pre: adjacent(d, d’), loc(r) =d, occupied(d’) =F
eff: loc(r) « d’, occupied(d) < F, occupied(d’) < T

In take and put, one might be tempted to replace the preconditions at(p,d) and
loc(r) = d with a single precondition at(p, loc(r)). In other situations, one might want
to put computational formulas in the preconditions and effects of action schemas. The
restriction in Remark 2.6 prevents these things, but later in the book we will discuss
cases where the restriction can be relaxed. O

Let a be ground instance of an action schema, that is, a is an expression produced
by substituting object variables for all of the action schema’s parameters. If a is a
ground instance of an action schema and eff(a) assigns at most one value to each state
variable, then a represents an action. If a state s satisfies pre(a), then a is applicable
in s, and applying it produces the following state:

v(s,a) = {an assignment x = w for each effect x < w in eff(a)} U {every

2.3 State-Variable Representation 21

assignment x = w in s such that eff(a) does not assign a value to x}. (2.15)
Thus for every assignment x =v in s,

x=w if eff(a) contains x < w for some w,

v(s, a) contains .
x=v otherwise.
If a isn’t applicable in s, then y (s, a) is undefined.

Example 2.9. Let A be the set of action schemas in Example 2.8, and let a; =
take(r1,c1,c2,p1,d1). Then

pre(a;) = {at(p1,d1), cargo(r1) =nil, loc(r1) =d1, pos(c1) =c2, top(p1) =c1};
eff(a;) = {cargo(r1) «c1, pile(c1) <« nil, pos(c1) «r1,top(p1) < c2}.

It follows that a; is applicable to the state so in Example 2.4. The state y(sq, a;) is
shown in Figure 2.4. It is identical to sy except for the following changes:

cargo(r1) =ci, pile(c1) =nil, pos(c1) =r1, top(p1) =c2. O

Figure 2.4. The state y(so, a1),
where 5o and @ are as in Example 2.9.

2.3.3 Representing Planning Problems

In Section 2.2 we defined planning problems using a set of goal states . To represent
Se we will use a set of ground literals g called a goal formula, with S, being the set
of all states that satisfy g, thatis, S ={s € S| s | g}’

For notational convenience, we will usually write a call to a planning algorithm as

Planner(X, so,g) or Planner(Z, so,Sy),

where Planner is the name of the planning algorithm and (Z, so, g) or (Z, so, Sg) is
the planning problem. However, as we explained at the start of Section 2.3, what
the planner needs is not an exhaustive list of everything in X, but instead a compact
representation with which it can quickly compute the parts of X that it needs. In most
cases, the following information is sufficient:

* a type hierarchy H,
* aset R of rigid relations,

9Obviously this places some limitations on what states can be in S g- A widely used work-around is to
add state variables to the domain to make it easier to represent important sets of states. An example
is the cargo state variable in Example 2.8.

22 2 Deterministic Representation and Acting

* aset X of state variables, including specifications of their ranges,
¢ aset A of action schemas,

¢ an initial state s,

* agoal formula g.

More specifically:

Definition 2.10. (H, R, X, A) is a state-variable representation of a state-transition
system X = (S, A, y, cost) in which S contains all total assignments of the state vari-
ables, A is the set of all actions represented by the action schemas in A, and y is given
by Equation 2.15. Similarly, (H, R, X, A, so, g) is a state-variable representation of
the planning problem P = (Z, 59, g).

Terminology. When using a state-variable representation for 2, we will sometimes
call X a state-variable planning domain. In this case, X is lifted if both X and ‘A are
lifted, and ground if both X and A are ground. O

In a state-variable representation, some of the total assignments in S may be nonsen-
sical. For example, let (H, R, X, A) be the state-variable representation developed in
Examples 2.1 and 2.8. In the environment that (H, R, X, A) is intended to represent,
it would be nonsensical to have a state in which both cargo(r1) =c1 and loc(c1) =d3.
The representation allows such states, but none of them can ever be reached from
states such as the one in Figure 2.2.

In principle, one could formulate constraints to exclude nonsensical states from S.
However, if the initial state s and the action schemas in A are defined properly, then
no plan that begins at so will ever produce a nonsensical state. Thus such constraints
generally are unnecessary. In the Al planning literature, most of the classical-planning
formulations do not use constraints on states.

2.4 Classical Representation

Classical representation'’ is an alternative to state-variable representation that has
been widely used in the literature on automated planning. It differs from state-
variable representation primarily in the following respects. All atoms have a name-
and-arguments syntax, with no ‘=" or ‘=’ symbols. Each state s is represented as the
set of all atoms that are true in s, hence any atom not in this set is false in s. Each
planning operator (the classical version of an action schema) has preconditions and
effects that contain atoms and negated atoms.

Figure 2.5 shows state-variable and classical representations of a simple DWR
planning problem. In pedagogical examples like the one in the figure, there usually are
no type declarations in the classical-planning domain, depending instead on the actions
to produce sensible values for the variables. However, computer implementations of
these examples usually do include type declarations (see Section 2.4.1).

10This is also sometimes called “STRIPS representation” because it is similar (though not identical) to
the representation used in the STRIPS planning system [359, 856].

2.4 Classical Representation

loc2

(a) Initial state sq

take(r, c, 1)

pre: loc(r,1), pos(c,), —loaded(r)

eff: pos(c,1), —pos(c, r), loaded(r)
put(r,c,1)

pre: loc(r,1), pos(c,r)

eff: pos(c,1), —pos(c, r), —loaded(r)
move(r, [, m)

pre: loc(r, 1)

eff: loc(r,m), —loc(r, 1)

so = {loc(r1,loc1), loc(r2,loc2),
pos(c1,loct), pos(c2,r2),
loaded(r2) }

g = {pos(c1,loc2)}

(b) Classical representation

23

Types:
Robots = {r1,r2},
Locs = {loc1,loc2},

Containers = {c1,c2},
Booleans = {T,F}

r € Robots; ¢ € Containers; [,m € Locs;
loc(r) € Locs;
pos(c) € Locs U Robots;
loaded(r) € Booleans

take(r, c,1)

pre: loc(r) =1, pos(c) =1, loaded(r) =F

eff: pos(c) «r,loaded(r) « T
put(r,c,I)

pre: loc(r) =1, pos(c)=r

eff: pos(c) <, loaded(r) «—F
move(r, [, m)

pre: loc(r) =1

eff: loc(r) «m

so = {loc(r1) =loc1, loc(r2) = loc2,
pos(c1) =loc1, pos(c2) =r2,
loaded(r1) =F, loaded(r2) =T}

g = {pos(c1) =loc2}

(c) State-variable representation

Figure 2.5. State-variable and classical representations of a simple planning problem. It
is similar to Example 2.8, but with the following differences: there are no piles, containers
cannot be stacked on each other, and both robots may be at the same location.

Instead of a list of positive and negative effects, classical planning operators some-
times are written with lists of atoms to add and delete from the current state. For
example, in the take operator in Figure 2.5(b), the ‘eff:’ line may be replaced with

add: loaded(r), pos(c, 1)
del: pos(c,r)

Classical and state-variable representations have equivalent expressive power. Each

can be translated into the other with at most a polynomial increase in the size of the
representation. Because of this, the computational complexity results in Section 2.5
are independent of whether the planning problems are represented in classical or
state-variable representation.

2.4.1 PDDL Example

PDDL, the Planning Domain Definition Language, is based on classical representation
but uses a LISP-like syntax. As an example, Figure 2.6 shows a PDDL version of
the planning problem in Figure 2.5. The purpose of the requirements clause at the
beginning of the domain definition is to specify what capabilities a planning system

(requirements

(define (domain example-domain)

:negative-preconditions)

(:action take

:parameters (?r ?1 ?c)

2 Deterministic Representation and Acting

(:action move
:parameters (?r ?1 ?m)
:precondition
(and (loc ?r ?1)
(adjacent ?1 ?m))
reffect

:precondition (and (not (loc ?r ?1))
(and (loc ?r ?1) (loc ?r ?m))))
(loc ?c 71)
(not (loaded ?r)))
:effect (define (problem example-prob)
(and (not (loc ?c ?1)) (:domain example-domain))
(loc ?c ?r) (:init

(loaded ?r)))

(:raction put

(adjacent locl loc2)
(adjacent loc2 1locl)

:parameters (?r ?1 ?c) (loc cl1 1locl)
:precondition (loc c2 r2)
(and (loc ?r ?71) (loc rl1 locl)
(loc ?c ?r)) (loc r2 loc2)
:effect (:goal (loc cl1 1loc2)))
(and (loc ?c ?71)
(not (loc ?c ?r))
(not (loaded ?r))))

Figure 2.6. PDDL representation of the classical planning problem in Figure 2.5.

Figure 2.7. Complexity of classical planning problems.

Is P lifted Is X fixed Complexity of Complexity of

or ground? in advance? PLAN EXISTENCE PLAN LENGTH
lifted no EXPSPACE-complete = NEXPTIME-complete
ground no PSPACE-complete PSPACE-complete
lifted yes PSPACE PSPACE

ground yes Constant time Constant time

will need. Here, it specifies that the planner must be able to reason about negative
preconditions such as (not (loaded ?r)) in the take operator.

The domain definition in Figure 2.6 does not include a type hierarchy like the one
in Figure 2.5(b). However, PDDL provides an option for specifying one, by including
:typing in the requirements clause. PDDL also includes ways to write axioms
for inferring properties that are not stated explicitly, preferences on which goals to
achieve, elementary numeric operations, certain kinds of temporal constraints and
deterministic exogenous events. For tutorial expositions of these and other features,
see [481].

2.5 Computational Complexity

Computational complexity results are normally given for decision problems, where
each decision problem is an infinite set questions that have yes/no answers. Here two

2.6 Acting 25

decision problems in which P may be any state-variable planning problem:

* PLAN EXISTENCE: does P have a solution?
* PLAN LENGTH: does P have a solution of length < k?

Figure 2.7 shows how the computational complexity of each decision problem P
depends on whether the problem is lifted or ground, and whether the planning domain
is given in the planner’s input or fixed in advance (thus allowing a domain-specific
planner to be used). Section 2.7.1 provides additional information.

The lower computational complexity values when P is ground do not mean that
grounding a decision problem will make it easier to solve. Computational complexity
is relative to the size of the problem representation, which is much larger for the
grounded version of a problem than the lifted version, so grounding a problem makes
makes its computational complexity smaller even though the amount of computation
to solve it remains roughly the same.

Although these complexity results may look intimidating, they are worst-case
results. There are many planning domains in which the time complexity is much lower
(for example, many are polynomial in the average case, and some are polynomial even
in the worst case). Furthermore, there are planning algorithms (such as variations of
GBFS in Section 3.1.6) that can often find near-optimal solutions very quickly.

Because of those considerations, it might be more useful to think of the complexity
results as indications of the expressivity of state-variable representation. Despite all
of its restrictions, it is capable of expressing problems that are very hard to solve.

2.6 Acting

Suppose an actor calls a planning algorithm on a planning problem P = (X, 59, Sg),
and the planner returns a solution plan 7. If ¥ were a perfect model of the environment,
7 would be guaranteed to produce the state y(sg, 7). However, because it is very
unlikely that ¥ will model the environment perfectly, unexpected outcomes might
occur. These may be caused, for example, by problems with the actor’s execution
platform, incorrect information in the actor’s model of the world, or exogenous events.
In such situations, an actor can sometimes react by selectively choosing which parts
of 7 to execute, as described in the next section. In other cases, the actor may need to
call a planner to get a new plan, as discussed in Section 2.6.2.

2.6.1 Reactive Plan Execution

Sometimes an actor can react to unexpected events during plan execution by repeatedly
choosing which parts of 7 to execute—for example, by re-executing some actions or
skipping some actions. Algorithm 2.2, Reactive-Execution, is a procedure to do this.
In the for loop at Line 2, it searches for a suffix {q;, ..., a,) of & that can achieve g
from the current state s. It returns failure if the search is unsuccessful, and otherwise
it executes a;, gets the new current state, and repeats the search. The for loop at
Line 2 is inefficient because it recomputes many of the same state transitions at each
iteration of the loop, but Exercise 2.5 looks at some ways to speed it up.

26 2 Deterministic Representation and Acting

Reactive-Execution(Z, 7, g)
let {ai,...,a,) be the actions in 7
1 while True do
s < observe current state
if s = g then return success

a <« nil
2 for i < ndown to 1 do
if y(s,(a;,...,an)) = g then
a <— a;

exit the for loop

if a = nil then return failure
| perform a

Algorithm 2.2. Reactive-Execution is an acting procedure that selects and exe-
cutes parts of a plan 7, repeating until it either achieves a goal g or fails.

Reactive-Execution can react very quickly in situations where parts of n are still
capable of achieving the goal. In other situations, it may be necessary for the actor to
acquire a new or modified plan. We now will discuss some acting procedures that do
this by calling a planner that can be used online.

2.6.2 Acting with Lookahead

Run-Lookahead(Z, g)
while True do
s «— observed current state
if s | g then return success
< Lookahead(%, s, g)
if 7 = failure then return failure
a « pop-first-action(mr) // remove and return n’s first action
trigger the execution of a

Algorithm 2.3. Run-Lookahead, which replans before each action.

This section discusses two procedures based on the receding-horizon approach
described in Section 1.1.4. Both procedures use an online planning algorithm, Looka-
head, that is not required to return an entire solution plan. The plan may go part of
the way to a goal state, or may even be a single action. Section 2.6.3 will discuss
some ways to modify the planning algorithms in Chapter 3 to do this.

The first procedure is Algorithm 2.3, Run-Lookahead. Until it reaches a goal state,
it repeatedly calls Lookahead to get a plan, performs the first action of the plan,
and calls Lookahead again. This can be useful if the environment often changes

2.6 Acting 27

unpredictably in ways that can cause plans to fail, because it immediately detects
such changes and replans. However, it might be impractical if Lookahead has a large
running time, and it might be unnecessary if plan failures are infrequent.

Run-Lazy-Lookahead(Z, g)
()
while True do
s < observed state
if s |= g then return success

1 if 7 = () or Simulate(X, s, g,) = failure then
2 < Lookahead(Z, s, g)
if 7 = failure then return failure

a « pop-first-action(mr) // remove and return r’s first action
perform a

Algorithm 2.4. Run-Lazy-Lookahead, which replans only when necessary.

The second procedure is Algorithm 2.3, Run-Lazy-Lookahead. Repeatedly, it gets
a plan 7 from Lookahead and executes m until either it reaches a goal and exits, or 7
ends, or Simulate, a plan simulator, says the rest of & will not work properly.

The purpose of Simulate is to detect potential future problems before they occur. A
simple Simulate program could return success if y(s,) = g and failure otherwise.
To detect more subtle problems, Simulate could instead do a more detailed test such
as a physics-based simulation.

Compared to Run-Lookahead, Run-Lazy-Lookahead eliminates the overhead of
planning at every step and replaces it with the overhead of running Simulate at every
step. If Simulate is not too complicated, this will probably reduce the total overhead
since it evaluates a single plan rather than a large space of plans. However, a potential
advantage of Run-Lookahead is that it can respond to exogenous changes that make
a better plan available, such as an unexpected opportunity to take a faster route to a
destination or get a higher score in a game.

Both Run-Lookahead and Run-Lazy-Lookahead interleave acting and planning. It
is also possible to write procedures in which the acting and planning processes run
concurrently. This is more complicated because of the need to coordinate the two
processes, but it can be useful in rapidly changing environments.

2.6.3 Interacting with an Online Planner

We emphasized earlier that Lookahead should be an online planner: the actor may
call it frequently to get updated plans, and it may need to produce plans quickly so
that the actor doesn’t have to make long pauses between actions. However, most of
the planning algorithms to be discussed in Chapter 3 are designed to run offline: they
return only when they have found a solution plan or verified that no solution exists.
In rapidly changing environments, the soundness of such planners can no longer be
guaranteed: by the time that the planner returns a plan, changes to the environment

28 2 Deterministic Representation and Acting

may already have invalidated it. To use such a planner online, one may want to
modify the planner or how the actor interacts with it. We now discuss some possible
modifications.

Subgoaling. One way that the actor can reduce the amount of time used by the
planner is to call it on smaller planning problems. Instead of giving a planner the
ultimate goal g, the actor may instead give the planner a subgoal that needs to be
achieved in order to achieve g. Once the subgoal has been achieved, the actor may
formulate its next subgoal and call the planner again.

In practical settings, formulating these subgoals is usually done in a domain-specific
manner. However, one possible domain-independent approach may be to compute an
ordered set of landmarks (see Section 3.2.3) and choose the earliest one as a subgoal.

Limited-horizon planning. Recall that in the receding-horizon technique, the plan-
ner starts at the current state and searches until it either reaches a goal or exceeds
the planning horizon, then it returns the best solution or partial solution it has found.
Several of the planning algorithms in Chapter 3 can be modified to do this.

The term partial solution is somewhat misleading because there is no guarantee
that the plan will actually lead the actor toward a goal. However, even a complete
solution plan will not always enable an actor to reach the goal, because the actor may
encounter problems that are not in the planner’s domain model.

Sampling. In a sampling search, the planner uses a modified version of greedy
search (Section 3.1.2) in which the node selection is randomized. The choice can
be purely random, or it can be weighted according to a heuristic evaluation (see
Chapter 3). The modified algorithm can do this several times to generate multiple
solutions, and either return the one that looks best or return the n best solutions so
that the actor can evaluate them further. The UCT and UPOM algorithms in Chapters
9 and 15 use this technique.

2.6.4 Acting with Plan Repair

When an actor runs into problems while executing a plan &7, sometimes it is preferable
to repair m instead of calling Lookahead to get a new one. This can reduce the runtime
needed for planning, and can also improve the plan’s stability, that is, the amount of
the original plan n that is retained in the repaired plan. While executing , the actor
might have made commitments to other actors that would be difficult to cancel, or
may have obtained resources that are needed later in 7 and are important not to waste.
Plan stability can also be important for human interaction, as users may be confused
if an actor makes radical changes to & in response to trivial problems.

To modify Run-Lazy-Lookahead to try to repair plans, Line 2 can be replaced with

7 < Lookahead-Repair(Z, s, g, n)

where Lookahead-Repair should attempt to repair 7, and return a new plan only if its
repair attempts fail. Section 3.5 discusses some possible plan-repair algorithms.

2.7 Discussion and Bibliographic Notes 29

2.7 Discussion and Bibliographic Notes

2.7.1 Classical and State-Variable Representations

Although problem representations based on state variables have long been used in
control-system design [440, 992, 305] and operations research [1075, 7, 519], their
use in automated-planning research came much later [69, 71, 391]. Instead, most
automated-planning research has used representation and reasoning techniques de-
rived from mathematical logic. This began with the early work on GPS [843] and the
situation calculus [771] and continued with the STRIPS planning system [359] and the
classical representation described in Section 2.4 [856, 883, 715, 410, 967]. Classical
representation is sometimes called STRIPS representation, but it is somewhat simpler
than the representation used in the STRIPS planner [359].

In classical and state-variable planning domains, it is possible to encode (rather
awkwardly) arithmetic relations among finite sets of numbers [481]. State-variable
representations can be extended to include real numeric state variables, but this incurs
a sharp increase in computational complexity [489].

The PDDL representation language was first published in 1998 [409] for use in the
AIPS-98 planning competition [735], the first of a long series of International Planning
Competitions.!! The language has gone through several updates and extensions, but
has remained static since 2008. For an excellent exposition of its features, see [481].

The complexity results in Section 2.5, and several other related results, are proved in
[329]. The proofs are stated using classical representation, but can easily be translated
to state-variable representation.

Ground representations. A classical representation is ground if it contains no un-
ground atoms. With this restriction, the planning operators have no parameters; hence
each planning operator represents just a single action. Ground classical representa-
tions usually are called propositional representations [194], because the ground atoms
can be rewritten as propositional variables.

Every classical representation can be translated into an equivalent propositional
representation by replacing each planning operator with all of its ground instances
(all of the actions that it represents), but this incurs a combinatorial explosion in
the size of the representation. If a planning operator has p parameters and each
parameter has v possible values, then there are v” ground instances. In a ground
classical representation, each instance must be written explicitly, thus increasing the
size of the representation by a multiplicative factor of vP.

A ground state-variable representation is one in which all of the state variables are
ground. Each ground state variable can be rewritten as a state variable that has no ar-
guments (like an ordinary mathematical variable) [71, 490, 941]. Every state-variable
representation can be translated into an equivalent ground state-variable representa-
tion, with a combinatorial explosion like the one in the classical-to-propositional
conversion. If an action schema has p parameters and each parameter has v possible
values, then the ground representation is larger by a factor of v,

Hgee https://www.icaps-conference.org/competitions/

https://www.icaps-conference.org/competitions/

30 2 Deterministic Representation and Acting

The propositional and ground state-variable representation schemes are both
PSPACE-equivalent [193, 70]. They can represent exactly the same set of planning
problems as classical and state-variable representations; but as we just discussed, they
may require exponentially more space to do so. This lowers the complexity class
because computational complexity is expressed as a function of the size of the input.

In a previous work [410, Section 2.5.4], we claimed that propositional and ground
state-variable representations could each be converted into the other with at most a
linear increase in size, but that claim was only partially correct. Propositional actions
can be converted to ground state-variable actions with at most a linear increase in
size, using a procedure similar to the one we used to convert planning operators to
action schemas. For converting in the reverse direction, the worst-case increase in
size is polynomial but superlinear.'?

The literature contains several examples of cases in which the problem representa-
tion and the computation of heuristic functions can be done more easily with ground
state variables than with propositions [491, 941]. Helmert [490, Section 1.3] advances
a number of arguments for considering ground state-variable representations superior
to propositional representations.

2.7.2 Generalized Domain Models

If we ignore Remark 2.6, state-variable representation can be generalized to let states
be arbitrary data structures, and an action schema’s preconditions, effects, and cost
be arbitrary computable functions operating on those data structures. Analogous
generalizations can be made to the classical representation in Section 2.4 by allowing a
predicate’s arguments to be functional terms whose values are calculated procedurally
rather than inferred logically [481]. Such generalizations make some kinds of planning
algorithms and search heuristics inapplicable (see Section 3.6.7), but can make the
domain models applicable to a much larger variety of application domains,

There are several other ways to generalize the action models in Section 2.3.2, such
as explicit models of time requirements or multiple possible outcomes. Parts III, IV,
V, and VI discuss several such generalizations.

2.7.3 Online Planning

The automated planning literature started very early to address the problems of inte-
grating a planner in the acting loop of an agent. Concomitant to the seminal paper
on STRIPS [359], Fikes [358] proposed a program called Planex for monitoring the
execution of a plan and revising planning when needed, and our Reactive-Execution
algorithm is inspired by the “triangle table” data structure used in that work. Nu-
merous contributions followed (e.g., [36, 464, 1024, 1125, 909, 826, 177]). As we

12We believe it is a multiplicative factor in the interval [Igv, v], where v is the maximum size of any
state variable’s range. The lower bound, Ig v, follows from the observation that if there are n state
variables, then representing the states may require n 1g v propositions, with commensurate increases
in the size of the planning operators. The upper bound, v, follows from the existence of a con-
version procedure that replaces each action’s effect x(cy, . . ., ¢,) < d with the following set of literals:
{px(ct,...,cn,d)}U{=x(cy,...,cn,d’) | d’ € Range(x(cq,...,cn)) \{d}}.

2.8 Exercises 31

remarked at the beginning of Section 2.6.3, a limitation of all these works is that their
soundness cannot be guaranteed if the environment changes too rapidly [62].

Problems involving integration of classical planning algorithms into the control
architecture of specific systems, such as spacecraft, robots, or Web services, have
been extensively studied. However, many of these contributions have assumed, as we
did tacitly in Section 2.6, that the plans generated by the planning algorithms were
directly executable, an assumption that is often unrealistic. Part V will discuss the
integration of planning and acting with refinement of actions into commands, and
ways to react to events.

The receding-horizon technique has been widely used in control theory, specifically
in model-predictive control. The survey by Garcia et al. [380] traces its implemen-
tation back to the early sixties. The general idea is to use a predictive model to
anticipate over a given horizon the response of a system to some control and to select
the control such that the response has some desired characteristics. Optimal control
seeks a response that optimizes a criterion. The use of these techniques together with
task planning has been explored by Dean and Wellman [285].

Subgoaling has been used in the design of several problem-solving and search
algorithms (e.g., [671, 641]). It is especially useful if the goals are serialized, that is,
ordered in a sequence such that each one can be achieved without negating the ones
that were previously achieved. A set of goals is serializable if they can be serialized
[641],'3 and serializable goals can be further classified as trivially serializable (for
example, goals that are fully independent) and laboriously serializable [86].

In practical applications, subgoaling often involves domain-specific techniques.
For example, the video game Killzone 2 [1137, 214] does subgoal planning with the
planner running several times per second, concurrently with acting, for short-term
objectives such as “get to shelter” for its computerized opponents.

Sampling techniques are widely used for handling stochastic models of uncertainty
and nondeterminism (see Part III).

2.8 Exercises

2.1. Let P} = (Z,50,g1) and P, = (%, 50, g2) be two classical planning problems
with the same planning domain and initial state. Let 7; = {(ay,...,a,) and 7 =
(b1,...,by) be solutions for P and P,, respectively. Let 7 = (ay, b1, ...,an, by).

(a) If & is applicable in sy, then is it a solution for P;? For P,? Why or why not?

(b) E; be the set of all state variables in eff(ay), ..., eff(a,), and E; be the set of
all state variables in eff(by), ..., eff(b,). If E; N E; = &, then is & applicable
in 59?7 Why or why not?

(c) Let P; be the set of all state variables that occur in pre(ay),...,pre(a,),
and P, be the set of all state variables that occur in the preconditions of
pre(bi),...,pre(by,). If PyN Py, =@ and E; N E; = &, then is & applicable in
so? Is it a solution for P{? For P,? Why or why not?

I3For example, Figure 2.8 is a nonserializable planning problem called the Sussman anomaly [1145].

32
pickup(x)
pre: loc(x) =table, top(x) =nil,
holding = nil
eff: loc(x) « hand, holding < x
putdown(x)

pre: holding=x
eff: loc(x) « table, holding « nil

unstack(x, y)
pre: loc(x) =y, top(x) =nil,

2 Deterministic Representation and Acting

Objects = Blocks U {hand, table, nil}
Blocks = {a,b,c}

S
e

so = {top(a) =c, top(b) =nil,

holding = nil top(c) = nil, holding = nil,
eff: loc(x) « hand, top(y) « nil, loc(a) =table, loc(b) =table,
holding < x loc(c) =a}
stack(x, y)

pre: holding = x, top(y) = nil
eff: loc(x) « y, top(y) « x,
holding < nil

g = {loc(a) =b,loc(b) =c}

(a) action schemas, where x, y € Blocks (b) objects, initial state, and goal

Figure 2.8. A blocks-world planning domain and a planning problem.

2.2. Give a classical planning problem P; and a solution &y for P; such that m; is
minimal but not shortest. Give a classical planning problem P, and a solution 7, for
P; such that 7, is acyclic but not minimal.

2.3. Let X = (S, A, y) be the state-transition system represented by H, R X, and A
in Examples 2.1 and 2.8.

(a) How many states are in S? How many actions are in A? Briefly describe them.
(b) Let S’ be the set of all states reachable from sy, that is,

S" = {y(s0,n) | m is a plan that is applicable in s¢}.

How many states are in S’? Give an example of a state in S that is not in S’.
(¢) Do the states in S all have sensible meanings? Do the states in S’?
(d) Let P = (Z, so,), where sq is as in Example 2.1 and g = {pos(c1) =d2}. Give
a shortest solution for P. Give a solution that is minimal but not shortest. How
many minimal solutions are there?

2.4. The blocks world is a well-known classical planning domain'# in which a set of

cubical blocks, Blocks = {a,b,c, ...}, are arranged in stacks of varying size on an
infinitely large table, table. To move the blocks, there is a robot hand, hand, that can
hold at most one block at a time.

Figure 2.8(a) gives the action schemas. For each block x, loc(x) is x’s location,
which may be table, hand, or another block; and top(x) is the block (if any) that is on
x, with top(x) = nil if nothing is on x. Finally, holding tells what block the robot hand
is holding, with holding = nil if the hand is empty.

14More accurately, because the number of blocks may vary, it is a set of planning domains.

2.8 Exercises 33

(a) Why are there four action schemas rather than just two?

(b) Is the state variable holding really needed? Why or why not?

(c) In the planning problem in Figure 2.8(b), how many states satisfy g?

(d) Give necessary and sufficient conditions for a set of blocks-world atoms to be
a state.

(e) Is every blocks world planning problem solvable? Why or why not?

2.5. This exercise involves the for loop at Line 2 of Reactive-Execution.

(a) Give the loop’s big-O time complexity as a function of n and k, where n is the
number of actions in &, and k is the maximum number of preconditions and
effects of each action in 7.

(b) The for loop can be made much faster by using a table that relates each action’s
preconditions to effects of previous actions and the initial state, and relates each
action’s effects to the preconditions of subsequent actions and the goal. Write
such a data structure, rewrite the for loop to use it, and analyze the resulting
time complexity.

2.6. Suppose an actor starts in state sg of the planning problem shown in Figure 2.5,
using Run-Lazy-Lookahead with a Lookahead algorithm that always returns the short-
est possible solution plan. The first call to Lookahead returns

= {take(r1,c1,loc1), move(r1,loc1,loc2), put(ri,c1,loc2)}.

(a) Suppose that after the actor has performed take(ri,cl,locl) and
move(r1,loc1,loc2), monitoring reveals that c1 fell off of the robot and is still
back at loc1. Tell what will happen, step by step. Assume that Lookahead(P)
will always return the best solution for P.

(b) Repeat part (a) assuming that ¢1 will fall off of the robot every time it performs
move(ri,loc1,loc2).

(c) Repeat part (a) using Run-Lookahead.

(d) Suppose that after the actor has performed take(r1,c1,loc1), monitoring reveals
that r1’s wheels have stopped working, hence r1 cannot move from loc1. What
should the actor do to recover? How would you modify Run-Lazy-Lookahead
and Run-Lookahead to accomplish this?

2.7. Consider the planning domain in Examples 2.1 and 2.8.

(a) Rewrite the planning domain using classical representation.
(b) Rewrite it in PDDL.

3 Planning with Deterministic Models

Section 1.1.2 introduced the idea of domain-independent planning algorithms.
Domain-independent classical-planning algorithms, which are the subject of this
chapter, were until recently the most widely studied class of Al planning algorithms.

This chapter is organized as follows. Section 3.1 classifies and describes a variety
of forward-search planning algorithms, and Section 3.2 provides some heuristics to
guide such algorithms. Sections 3.3 and 3.4 describe backward search and plan-space
planning algorithms. Section 3.6 provides discussion and bibliographic notes, and
Section 3.7 contains exercises.

3.1 Forward State-Space Search

Forward-Search(Z, sg, g)
s —s0;)
while s |~ g do
if Applicable(s) = @ then return failure
1 nondeterministically choose a € Applicable(s)
s —vy(s,a); m—m-a
return

Algorithm 3.1. Forward-Search, a schema for forward state-space search.

Given a planning problem P = (Z, s, g), many classical planning algorithms search
forward from the initial state s to try to construct a sequence of actions that reaches a
state in §,. Algorithm 3.1, Forward-Search, is a procedural schema for a wide variety
of such algorithms. In Line 1, the idea is to try various actions a € Applicable(s)
until we find one that we like, and the “nondeterministically choose” command is an
abstraction that allows us to ignore the precise order in which to try them. This lets us
describe properties of all algorithms that search the same search space, irrespective
of the order in which they visit the nodes. For more details of such nondeterministic
algorithms, see Appendix A.

The search space for a planning problem P = (X, 59, g) is a graph containing every
path that Forward-Search(Z, s, g) can generate, that is, all paths that start at sg and do
not continue beyond goal states. We will use the following terminology and notation:

* To keep the presentation simple, we will write each node as a pair v = (7, s),
where 7 is a plan and s = y(sg,). In practical implementations, however, v
will usually include other information such as its depth, cost, and pointers to

34
Free pre-publication, for personal use only. To be published by Cambridge University Press.

3.1 Forward State-Space Search 35

parent and child nodes. Most implementations will not store & explicitly in v,
but instead will calculate it by tracing the “parent” pointers from v back to the
initial node.

* The initial or starting node is the pair ((), so), where () is the empty plan and
s is the initial state.

e If v = (7, s) isanode and a € A is applicable in s, then the node (7-a, y(s, a))
is a child of v. To expand a node v means to generate all of its children.

* A successor or descendant of a node v is any child of v or, recursively, a
successor of any child of v. An ancestor of v is any node v’ such that v is a
successor of v'.

* The depth of anode v = (n, s) is the length of the path (s, 7r), or equivalently,
the length of . The search space’s height is the length of the longest acyclic path
that starts at the initial node. Its maximum branching factor is the maximum
number of children of any node.

¢ The cost of anode v = (r, s) is cost(v) = cost(r).

Forward-Search-Det(Z, 59, g)
Frontier — {({), s0)} // (), s0) is the initial node
Expanded — @
while Frontier # & do

1 select a node (m, s) € Frontier
remove (7, s) from Frontier and add it to Expanded
2 if s satisfies g then return x
Children « {(m-a,y(s,a)) | a € A is applicable in s}
3 prune (i.e., select and remove) 0 or more nodes from Children, Frontier,
and Expanded
4 Frontier « Frontier U Children

return failure

Algorithm 3.2. Forward-Search-Det, a deterministic version of Forward-Search.

Algorithm 3.2, Forward-Search-Det, is a deterministic version of Forward-Search
in which Frontier is a set of nodes that are candidates to be visited, and Expanded is a
set of nodes that have already been visited. During each loop iteration, the algorithm
selects a node, generates its children, prunes some unpromising nodes, and updates
Frontier to include the remaining children. Many forward-search planning algorithms
can be described as versions of Forward-Search-Det by specifying how they select
nodes in Line 1 and prune nodes in Line 3.

In many forward-search algorithms, the pruning step (Line 3 of Forward-Search-
Det) often includes a cycle-checking step:

Remove from Children every node v = (x, s) for which an ancestor of v
has the same state s.

In classical planning problems (and any other planning problems in which the state
space is finite), cycle checking guarantees that the search will always terminate.

36 3 Planning with Deterministic Models

3.1.1 Breadth-First and Depth-First Search

Breadth-first search can be written as a version of Forward-Search-Det with selection
and pruning as follows:

* Node selection. Select anode v = (r, s) € Children that minimizes the length
of m. If there are several such nodes, some possible tie-breaking rules are to
choose the leftmost node or to choose a node that minimizes cost(r), h(s), or
f).

e Pruning. Remove from Children and Frontier every node (m,s) such that
Expanded contains a node (n, s”) such that s’ = s. This keeps the algorithm
from expanding s more than once.

In classical planning problems, breadth-first search will always terminate and will
return a solution if one exists. The solution will be shortest but not necessarily
cost-optimal.

Because breadth-first search keeps only one path to each node, its worst-case
memory requirement is O (]S]), where |S| is the number of nodes in the search space.
Its worst-case running time is O (b|S|), where b is the maximum branching factor.

Depth-first search is usually written as a recursive algorithm, but it can be rewritten
to run iteratively as a version of Forward-Search-Det In classical planning problems,
it will always terminate and will return a solution if one exists, but the solution will
not necessarily be shortest or cost-optimal.

Depth-first search only needs to remember the nodes along the current path and the
children of those nodes, so the worst-case memory requirement is O (bl), where b is
the maximum branching factor and / is the height of the search space. However, the
worst-case running time is O (b'), which can be much worse than O(|S|) if there are
many paths from sy to each state.

3.1.2 Greedy Search

Greedy search is a depth-first search with no backtracking:

¢ Node selection. Select a node (r, s) € Children that minimizes h(s).
* Pruning. First, do cycle checking. Then assign Frontier < &, so that Line 4
of Forward-Search-Det will be the same as assigning Frontier « Children.

The search follows a single path, and prunes all nodes not on that path. Itis guaranteed
to terminate on classical planning problems, but it is not guaranteed to return an
optimal solution or even a solution at all. Its worst-case running time is O (bl) and its
the worst-case memory requirement is O (I), where [is the height of the search space
and b is the maximum branching factor.

3.1.3 Uniform-Cost Search

Uniform-cost (or least-cost first) search is somewhat like breadth-first search, but it
does node selection and pruning using the accumulated cost of each node:

¢ Node selection. Select a node (r, s) € Children that minimizes cost(r).

3.1 Forward State-Space Search 37

e Pruning. Remove from Children and Frontier every node (m,s) such that
Expanded contains anode (7, s). In classical planning problems (and any other
problems in which all costs are nonnegative), it can be proved that cost(n’) <
cost(7), so this step ensures that the algorithm only keeps the least costly path
to each node.

In classical planning problems, the search is guaranteed to terminate and to return an
optimal solution. Like breadth-first search, its worst-case running time and memory
requirement are O (b|S|) and O(|S]), respectively.

3.1.4 Using a Heuristic Function

Most forward-search planning algorithms attempt to find a solution without exploring
the entire search space, which in the worst case can be exponentially large.! To make
informed guesses about which parts of the search space are more likely to lead to
solutions, node selection (Line 1 of Forward-Search-Det) often involves a heuristic
function h : S — R that returns an estimate of 4" (s), which is the minimum cost of
getting from s to a goal state:

h(s) ~ h*(s) = min{cost(r) | v(s, w) satisfies g}. (3.1)

As a special case, we require that 2(s) = 0 whenever s satisfies g. In Section 3.2 we
will discuss some ways to compute heuristic functions.

Given anode v = (7, s5), some forward-search algorithms will use 4 to compute an
estimate f(v) of the minimum cost of any solution plan that begins with 7:>

f(v) =cost(m) + h(s) = f*(v), (3.2)
where

f*(v) = min{cost(n-7") | y(so, m-7") satisfies g}. (3.3)

If 0 < h(s) < h*(s) for every s € S, then h is admissible, from which the following
properties follow immediately:

e f(v) < f*(v), ie., f(v) is a lower bound on the cost of every solution that
begins with 7;
* If s is a goal state, then h(s) = 0 and f(v) = cost(n).

3.1.5 A”

A*, Algorithm 3.3, is similar to uniform-cost search but it uses a heuristic function
for node selection. This makes A*’s pruning more complicated. If a node in Children
has the same state as one in Expanded or Frontier, it compares their costs and keeps
only the least costly one.

Here are some of A*’s properties:

I The worst-case computational complexity is EXPSPACE-equivalent (see Section 3.6), although the
complexity of a specific planning domain usually is much less.

2In many presentations of heuristic search, f(v) is written as f(s), but that causes ambiguity if there
is more than one plan 7 such that y(sg, 7) = 5. Making f a function of v avoids that difficulty.

38 3 Planning with Deterministic Models

A*(Z, 50,2)
Use Forward-Search-Det with node selection and pruning as follows:

e Node selection. In Line 1, select a node v € Children that minimizes
f(v) (defined in Equation 3.2).

* Pruning. In Line 3, for each node (7, s) € Children, if there is a node
(n’,s") € Frontier U Expanded such that s = s, then keep whichever
of (7, s) and (n’, s”) has lower cost,” and prune the other one and its
descendants.

“If both nodes have the same cost, a typical tie-breaking rule is to keep the oldest one.

Algorithm 3.3. The A* algorithm.

* Termination, completeness, and optimality. On any classical planning problem,
A* will terminate and return a solution if one exists. If / is admissible, then this
solution will be optimal.

» Epsilon-optimality. If h is e-admissible (i.e., if there is an € > 0 such that
0 < h(s) < h*(s) + € for every s € §), then the solution returned by A* will be
within € of optimal.

e Monotonicity. If h(s) < cost(y(s,a)) + h(y(s,a)) for every state s and ap-
plicable action a, then # is said to be monotone or consistent. In this case,
f(v) < f(v') for every child v' of a node v, from which it can be shown that
A* will never prune any nodes from Expanded, and will expand no state more
than once.

 Informedness. Let h; and h, be admissible heuristic functions such that 4,
dominates® hy, i.e., 0 < hi(s) < ha(s) < h*(s) for every s € S. Then A*
will never expand more nodes* with 4, than with £, and in most cases, it will
expand fewer nodes with &, than with A;.

A*’s primary drawback is its space requirement: it needs to store every state that it
visits. Like uniform-cost search, A*’s worst-case running time and memory require-
ment are O (b|S|) and O(]S|). However, with a good heuristic function, A*’s running
time and memory requirement are usually much smaller.

3.1.6 Greedy Best-First Search

For classical planning problems where nonoptimal solutions are acceptable, the most
frequently used search algorithm is Greedy Best-First Search (GBFS), which works
as follows:

Like hill climbing, GBFS continues to expand nodes along its current path as long
as that path looks promising. But like A*, GBFS stores every state that it visits. Hence

3Dominance has often been described by saying that “hy is more informed than hq,” but that phrase is
awkward because /) always dominates itself.

4This assumes that when A* chooses among nodes that have the same f-value, it always uses the same
tie-breaking rule.

3.1 Forward State-Space Search 39

GBFS(Z, 50, 2)
Use Forward-Search-Det with node selection and pruning as follows:

* Node selection. In Line 1, select a node (rr, s) € Frontier that mini-
mizes A(s).

* Pruning. In Line 3, pruning should at least include cycle checking. In
other cases where a node in (7, s) € Children has the same state s as
some other node, one could prune one of the nodes arbitrarily, prune
the higher-cost node, or do no pruning.?

%The rationale for no pruning is that with a good heuristic function, GBFS is unlikely to
select both nodes for expansion.

Algorithm 3.4. GBFS, greedy best-first search.

it can easily switch to a different path if the current path dead-ends or ceases to look
promising.

Like A*, GBFS’s worst-case running time and memory requirement are O (b|S|) and
O(]S]). Unlike A*, GBFS is not guaranteed to return optimal solutions; but in most
cases, it will explore far fewer paths than A* and find solutions much more quickly.

DFBB(Z, s9, g)
return (DFBB1(Z, (so, {)), g, failure, c0))

DFBB1(Z, v, g, 7, c*)
(m,8) «—v
if s E g and cost(x) < ¢* then
1 L ¢ —cost(n); nF —nm
2 elseif f(v) < c¢* then
Children « {(r-a,y(s,a)) | a € A is applicable in s}
foreach v € Children do
L (c*,n*) « DFBB1(Z, v, g, 7", c*)

return (c*, %)

Algorithm 3.5. DFBB, depth-first branch and bound.

3.1.7 Depth-First Branch and Bound

Depth-first branch and bound, DFBB, is a modified version of depth-first search. If
the heuristic function f in Line 2 is admissible, it will return a least-cost solution if a
solution exists. In the initial recursive call, v = (sq, {)) is the root node. The variables
m* and c¢* are the least costly solution seen so far and its cost, which are updated in
Line 1 each time a solution is found. Line 2 expands v only if f(v) < ¢*, which
can prune large parts of the search space if ¢* is small. When the recursive calls are

40 3 Planning with Deterministic Models

finished, DFBB returns the pair (7%, ¢*).

DFBB has the same termination, completeness, and optimality properties as A*.
The only nodes in its recursion stack are the nodes in the current path and their sibling
nodes, so its memory requirement is usually much lower than A*’s. However, like
depth-first search, if there are many paths to a state it may revisit the state many times,
which can make its running time much worse than A*’s. In the worst case, its running
time and memory requirement are O (b') and O (bl), the same as for depth-first search.

IDS(Z, 50, g)
for k — 1to co do
do a depth-first search of (Z, s¢, g), backtracking at all nodes of depth k
if the search found a solution then return it
if the search generated no nodes of depth k then return failure

Algorithm 3.6. IDS, iterative-deepening search.

3.1.8 Iterative Deepening

Several forward-search algorithms wrap a depth-first search inside an iterative loop.
One of the best known is iterative-deepening search (IDS), Algorithm 3.6. On classical
planning problems, its termination, completeness, and optimality properties are the
same as for breadth-first search. Its primary advantage over breadth-first search is
that its worst-case memory requirement is only O(bd), where d is the depth of the
solution returned if there is one, or the height of the search space otherwise. If the
number of nodes at each depth k grows exponentially with &, then IDS’s worst-case
running time is O (h¢), which can be substantially worse than breadth-first search if
there are many paths to each state.

IDA*(Z, 59, &)
c—0
while True do
do a depth-first search of (X, s9, g), backtracking whenever f(v) > ¢
if the search found a solution then return it
if the search did not generate an f(v) > c¢ then return failure
¢ « the smallest f(v) > ¢ where backtracking occurred

Algorithm 3.7. IDA*, iterative-deepening A*.

A closely related algorithm, iferative-deeping A* (Algorithm 3.7), uses a cost
bound rather than a depth bound. On classical planning problems, IDA*’s termination,
completeness, and optimality properties are the same as those of A*, and its worst-
case memory requirement is O(bl), where [is the height of the search space. If
the number of nodes grows exponentially with ¢ (which usually is true in classical

3.2 Heuristic Functions 41

planning problems but less likely to be true in nonclassical ones), then IDA*’s worst-
case running time is O (b%), where d is either the depth of the solution found by IDA*,
or the height of the search space if there is no solution. This can be substantially
worse than A*’s running time if there are many paths to each state.

3.1.9 Choosing a Forward-Search Algorithm

It is difficult to give any hard-and-fast rules for choosing among the forward-search
algorithms presented here, but here are some rough guidelines.

If the solution must be optimal (or within € of optimal) and one has a good heuristic
function that is admissible (or e-admissible, respectively), then an A*-like algorithm
is a good choice if the state space is small enough to store every node in main memory.
If the state space is too large to hold in main memory, then an algorithm such as DFBB
or IDA* may be worth trying, but there may be problems with excessive running time
if the state space has many paths to each state.

If a nonoptimal solution is acceptable and a good heuristic function is available,
often the best choice is to develop a planning algorithm that uses either GBFS or
one that weights A more heavily than g. There are no guarantees as to GBFS’s
performance, but with a good heuristic function it usually works quite well.

For integration of planning into acting, an important question is how to turn any of
these algorithms into online algorithms. This is discussed further in Chapter 3.

3.2 Heuristic Functions

Recall from Section 3.1.4 that a heuristic function 4 computes an estimate of i*(s),
and 4 is admissible if 0 < A(s) < h*(s) for every state s.

The simplest possible heuristic function is 4(s) = 0 for every s. This is admissible
and is trivial to compute, but provides no useful information. Usually we will want a
better estimate of A*. If it can be computed in a polynomial amount of time and can
provide an exponential reduction in the number of nodes examined by the planning
algorithm, this makes the computational effort worthwhile.

The best-known way to produce heuristic functions is relaxation. To relax a
planning domain X = (S, A,vy,cost) and planning problem P = (Z,so,g) is to
change them by making actions more widely applicable and introducing additional
states, actions, plans, and goals. This produces a relaxed planning domain X’ =
(87, A’,y’, cost) and planning problem P” = (X', 5, g) having the following property:
if 7 is any solution for P, then P’ has a solution 7’ such that cost(n’) < cost(r).

Given an algorithm for solving planning problems in X', we can use it to create a
heuristic function for P that works as follows: given a state s € S, use the algorithm
to solve (X', s, g’), and return the cost of the solution. If the algorithm always finds
optimal solutions, then the heuristic function will be admissible.

Example 3.1. Figure 3.1 depicts a road network that connects a set of locations, each
represented by a pair of coordinates. Let us say that two locations are adjacent if
there is a road between them. Suppose a robot can move from a location (x, y) to an

42 3 Planning with Deterministic Models

Figure 3.1. A network of locations con-
nected by roads.

d1 d2

Figure 3.2. Initial state and goal for Example 3.2.

adjacent location (x’, y") at a cost equal to the distance from (x,y) to (x’,y"). The
road network and the movement actions can be represented as a planning domain in
which each state s, , is represented by the (x, y) coordinates of the robot’s current
location.

Suppose we want to plan a sequence of move actions to move the robot from (x, y)
to location (6, 1) at the minimum possible cost. One possible heuristic function is the
Euclidean distance,

Bsry) = \(x=6)2+ (y — 12, (3.4)

which is the length of an optimal solution for a relaxed problem in which the actor is
not constrained to follow roads. This is a lower bound on the cost of every route to
location (6, 1), so & is admissible. O

The preceding heuristic function is domain-specific, but there are many domain-
independent heuristic functions that can be used in any classical planning domain.
The following subsections describe a few of them.

Although the planning algorithms earlier in this chapter did not require any partic-
ular domain representation, the heuristic functions do. We will use the state-variable
representation described in Section 2.3, and we will use the following planning prob-
lem as a running example.

Example 3.2. Figure 3.2 shows a planning problem P = (X, 59, g), in a simplified
version of the planning domain in Example 2.1. The objects include one robot r1, one

3.2 Heuristic Functions 43

container c1, three docks d1, d2, d3, no piles, and the constant nil. There are no rigid
relations. The state variables are cargo(r1), loc(c1), and loc(r1), with

Range(cargo(r1)) = {c1, nil};
Range(loc(c1)) = {d1,d2,d3,r1};
Range(loc(c1)) = {d1,d2,d3}.

Here are the action schemas and their parameter ranges:

take(r, c,1) move(r,d, e)
pre: cargo(r) =nil, loc(c) =1, loc(r) =1 pre: loc(r)=d
eff: cargo(r) «c, loc(c) «r eff: loc(r) «e
cost: 1 cost: 1
put(r,c, 1) Range(c) = {c1};
pre: cargo(r)=c, loc(r)=1 Range(d) = Range(e) = {d1,d2,d3};
eff: cargo(r) < nil, loc(c) « I Range(l) = {d1,d2,d3,r1};
cost: 1 Range(r) = {r1}.

P’s initial state and goal are

5o = {loc(r1) =d3, cargo(r1) =nil, loc(c1) =d1};
g = {loc(r1) =d3, loc(c1) =r1}.

In 59, the applicable actions are a; = move(r1,d3,d1) and a» = move(r1,d3,d2). Let

s1 =7v(s0,a1) = {loc(r1) =d1, cargo(r1) =nil, loc(c1) =d1},
52 = y(s9,az) = {loc(r1) =d2, cargo(r1) =nil, loc(c1) =d1}.

If we run GBFS on P, then in Line 1 of Forward-Search-Det, GBFS will choose
between a; and ap by evaluating 4 (s1) and %(s2). The following subsections describe
several possibilities for what & might be. O

3.2.1 Delete-Relaxation Heuristics

Several heuristic functions are based on the notion of delete-relaxation, in which
applying an action never removes old atoms from a state, but simply adds new ones.

If a state s includes an atom x =v and an applicable action a has an effect x « w,
then the delete-relaxed result of applying a will be a “state” y* (s, a) that includes
both x =v and x =w. We will make the following definitions:

* A relaxed state (or r-state, for short) is any set § of ground atoms that contains
at least one occurrence of every state variable x € X. It follows that every state
is also an r-state.

* A relaxed state § r-satisfies a set of literals g if S contains a subset s C § that
satisfies g.

* An action a is r-applicable in an r-state § if § r-satisfies pre(a). In this case, the
resulting r-state is

Y (5,a) =8 U y(s,a). (3.5)

44 3 Planning with Deterministic Models

* By extension, a plan & = {ay, ..., ay) is r-applicable in an r-state § if there are
r-states §q, ..., S, such that
A + /A A + /A A + /A
$1=y"(So,a1), S2=y"(S1,a2), ..., §n =7 (Sn-1,an).

In this case, y* (8o, 1) = §,,.
* A plan r is a relaxed solution for a planning problem P = (X, s, g) if y*(s0,)
r-satisfies g. Thus the cost of the optimal relaxed solution is

A* (s, g) = min{cost(n) | y* (s, 7) r-satisfies g}.
For a planning problem P = (X, 59, g), the optimal relaxed solution heuristic is
h*(s) = A*(s, g).

Example 3.3. Let P be the planning problem in Example 3.2. Let § =
v*(s9, move(r1,d3,d1)) and §, = y*(§,take(r1,c1,d1)). Then

81 = {loc(r1) =d1,loc(r1) =d3, cargo(r1) =nil, loc(c1) =d1};
87 = {loc(r1) =d1, loc(r1) =d3, cargo(r1) =nil, cargo(r1) =c1,
loc(c1) =d1,loc(cl)=r1}.

Because §; r-satisfies g, the plan 7 = (move(r1,d3,d1),take(r1,c1,d1)) is a relaxed
solution for P. There are no shorter relaxed solutions, so 4" (s) = A*(sq, g). m]

Every ordinary solution for P is also a relaxed solution for P, so h*(s) < h*(s) for
every s. Thus h* is admissible, so it can be used with A* to find an optimal solution for
P. However, h* is expensive to compute: the problem of finding an optimal relaxed
solution for a planning problem P is NP-hard.’

3.2.2 Relaxed Planning Graph Heuristics

We now describe an approximation to 4" that is easier to compute. It is based on the
fact that if A is a set of actions that are all r-applicable in a relaxed state §, then they
will produce the following r-state regardless of the order in which they are applied:

y*(5,A) = § U U eff(a). (3.6)
aceA

HFF, Algorithm 3.8, starts at an initial r-state §o = s, and uses Equation 3.6 to
generate a sequence of successively larger r-states and sets of r-applicable actions,

S0, A1,81,A2,8 ...,

until it generates an r-state that r-satisfies g. From this sequence, HFF extracts a
relaxed solution and returns its cost. In Line 2, if the sequence has converged to an
r-state that does not r-satisfy g, then the planning problem has no solution.

3The problem is NP-complete when P is ground [133], hence is at least NP-hard when P is lifted.

3.2 Heuristic Functions 45

HFF(Z, s, g)
So=3s8; Ag =9
1 for k < 1 by 1 until a subset of §; r-satisfies g do
Ay < {all actions that are r-applicable in §z_}
Sk — v (Sk-1, Ak)
2 if §; = §x_1 then return oo / (2, s, g) has no solution
8k g
3 fori < k downto1do
arbitrarily choose a minimal set of actions d; C A; such that y*(5;, d;)
satisfies g;
gi-1 « (§i —eff(a;)) U pre(d;)
4 T« <d1,d2,. ..,dk>
return > {cost(a) | a is an action in 7}

Algorithm 3.8. HFF, which computes the Fast-Forward heuristic.

Atoms in S Actions in 4,: Atoms in §,:
loc(r1) =d1 ?move(ﬁ ,d1,d2)——loc(r1) = d2
loc(c1) =d1 \move(r1 ,d1,d3)—Iloc(r1) = d3
cargo(r1) = nil——take(r1,c1,d1) loc(c1)=r1

\cargo(r1) =cl

1 . loc(c1) =d1
ifmm 50" loc(r1) = di
cargo(r1) = nil

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.3. Computation of HFF(X, 51, g) = 2. The solid lines indicate the actions’ pre-
conditions and effects. The elements of gy, @;, and g; are shown in boldface.

The Fast-Forward heuristic® is
hTF(s) = the value returned by HFF. (3.7

The definition of A'F is ambiguous, because the returned value may vary depending
on HFF’s choices of dy,dg-1,...,d; in the loop at Line 3. Furthermore, because
there is no guarantee that these choices are the optimal ones, /' is not admissible.
The running time for HFF is nontrivial, but it is polynomial in the total number of
actions and ground atoms in the planning domain.
Example 3.4. In Example 3.2, suppose GBFS’s heuristic function is #F. To compute
h¥¥(s1), HFF begins with §y = s, and computes A; and §; in the loop at Line 1.
Figure 3.3 illustrates the computation: the lines to the left of each action show which
atoms in §y satisfy its preconditions, and the lines to the right of each action show
which atoms in §; are its effects. For the loop at Line 3, HFF begins with §; = g and

6The name comes from the FF planner in which this heuristic was introduced; see Section 3.6.5.

46 3 Planning with Deterministic Models

Atoms in §,:
Actionsin A,: ;o
t from §: 1
move(r1,d3 dz)\loc(ﬂ)
Atoms in §: Actions in4,: Atoms in$;:/ move(r1,d1,d2) Ioc(c1)=

loc(r1) = dz/move(r1 d2,d3)—Iloc(r1) = d3 move(r1,d3,d1) cargo(r)
loc(c1) = d1\move(r1 d2,d1)—loc(r1) = d1—move(r1,d1,d3)\: Sloc(r1) = d1
cargo(r1) = nil G- N—move(r1,d2,d1) 7!99([1):93”1
3 0 Ioc(c1) d1 \move(r1 ,d2,d3)” _cargo(r1) = c1
+—take(r1,¢1,d1)Z_jo¢(c1) = r1

Figure 3.4. Computation of HFF(X, 55, g) = 3. The atoms and actions in each §; and d;
are shown in boldface, and the solid lines indicate their preconditions and effects.

computes d; and go; these sets are shown in boldface in Figure 3.3. In Line 4, the
relaxed solution is

& ={dy) = {({move(r1,d1,d3),take(r1,c1,d1)}).

Thus HFF returns A (s;) = cost(#) = 2

Figure 3.4 is a similar illustration of HFF’s computation of A (s,). For the loop
at Line 1, HFF begins with §p = s, and computes the sets Ay, §1, A», and §». For the
loop at Line 3, HFF begins with g, = g and computes d,, €1, d1, and gy, which are
shown in boldface in Figure 3.4. In Line 4, the relaxed solution is

& ={dy,d>) = ({move(r1,d2,d1)}, {move(r1,di, d3), take(r1,c1,d1)}),

so HFF returns hFF (s,) = cost(#) =

Thus A (s1) < hFF(s,), so GBFS will choose to expand s next. O

The graph structures in Figures 3.3 and 3.4 are called relaxed planning graphs.

Improving HFF. If s is the current state and A is the set of applicable actions,
then it is not very efficient to call HFF(y(s, a)) once for each @ € A. The calls to
HFF are likely to produce planning graphs that have a large amount of overlap, thus
incurring a lot of repeated effort. Second, there may be many actions that will not
appear in any non-redundant solution plan, and calling HFF on them is wasted effort.
The same result can be produced more efficiently as follows. First, call HFF(s) to
produce a single planning graph G. Second, prune from A all non-helpful actions,
that is, actions that do not appear in any relaxed solution. Third, for each non-pruned
action a € A, extract from G a relaxed solution and At value for y(s,a). Similar
approaches can be devised for the heuristic functions in the following sections.

3.2.3 Landmark Heuristics

Let P = (Z, s, g) be a planning problem, and ¢ = p; V... V p,, be a disjunction of
literals. Then ¢ is a disjunctive landmark for P if every solution for P produces a state

3.2 Heuristic Functions 47

RPG-Landmarks(Z, s, g)
Queue « (all literals in g); Examined «— &
while Queue # () do

¢ «— pop(Queue)

1 if ¢ ¢ Examined and s [~ ¢ then

// Step 1: get an action landmark

2 R « {a | eff(a) includes a literal in ¢}

// Step 2: get a smaller action landmark
3 f() — S
for k < 1 by 1 until §; = §,_; do
Ay < {a € A\ R | ais r-applicable in §x_;}
L Sk — v (Sk-1, Ak)
5 N < {a € R | a is r-applicable in § }
if N = @ then return failure

// Step 3: get disjunctive landmarks

6 @ « {every disjunction ¢’ of < 4 preconditions of actions in N
such that every a € N has at least one precondition in ¢’}
7 append to Queue every ¢’ € ® that isn’t subsumed by another
member of ®
add ¢ to Examined

return Examined

Algorithm 3.9. RPG-Landmarks, an algorithm to find disjunctive landmarks by
using relaxed planning graphs.

in which ¢ is true. The problem of deciding whether an arbitrary ¢ is a disjunctive
landmark is PSPACE-complete, but that is a worst-case result. There are several
polynomial-time algorithms for discovering some (though not necessarily all) of a
problem’s disjunctive landmarks.

Algorithm 3.9, RPG-Landmarks, uses relaxed planning graphs to look for dis-
junctive landmarks, starting with the goals in g and going backward toward sq. It
maintains a queue of landmarks to examine. In each iteration of its while loop, it
takes a landmark ¢ from the queue and performs the following steps to look for other
landmarks that precede ¢:

Step 1: get an action landmark. At Line 2, all plans that achieve ¢ from s must
contain one or more actions in R. Thus R is an action landmark for ¢.

Step 2: get a smaller action landmark. When the relaxed-planning-graph compu-
tation at lines 3—4 finishes, §; includes every atom that is achievable without
using R. Thus at Line 5, N C R includes every action in R that can be made
executable without using R. The other actions in R cannot be made executable
without using N, so N is another action landmark. If N = & then (%, s, g) is
unsolvable; otherwise RPG-Landmarks continues to the next step.

48 3 Planning with Deterministic Models

Step 3: get disjunctive landmarks. 1f we take one precondition from each action in
N, then the disjunction of these preconditions is a landmark that precedes ¢.
Rather than computing all such landmarks (which would cause a combinatorial
explosion), Line 6 lets ® be the set of all such landmarks that contain 4 or fewer
literals. Line 7 adds to the queue the ones that the others don’t subsume.

After its queue is exhausted, RPG-Landmarks returns the landmarks that it found.
Although it is more complicated than HFF, its running time is still polynomial. The
RPG Landmark heuristic is

IR (s) = the number of landmarks returned by RPG-Landmarks(Z, s, g). (3.8)

This is a relatively simple landmark heuristic, and there are many ways to improve it
(see Section 3.6.5). Furthermore, planning algorithms can be made to perform better
by considering the order in which to try to achieve landmarks. For example, a solution
plan will need to achieve every landmark ¢’ in Line 7 before achieving ¢.

Example 3.5. As before, consider the planning problem (X, s, g) in Example 3.2.
To compute hRY(sy), we call RPG-Landmarks(X,s;,g). Every solution for
(%, 51, g) must include a state in which cargo(r1) = c1, and this is the only land-
mark that RPG-Landmarks will return. It will not return loc(r1) = d1, which is
already true in s;. Thus ARV (s1) = 1.
For the planning problem (X, 52, g), RPG-Landmarks will return two landmarks:
cargo(s1) = c1 and loc(r1) = d1. Thus ARV (sy) = 2. O

3.2.4 Max-Cost and Additive Cost Heuristics

The max-cost of a set of literals g = {/1, ..., [} is defined recursively as the largest
max-cost of each literal /;. Each [/;’s max-cost is the minimum, over all actions a that
can produce /;, of a’s cost plus the max-cost of pre(a). Here are the equations:

A" (s, g) = rPax A" (s, 1;);

Amax(s’ ll) — O, lf ll G S, (39)
min{A™*(s,a) | a € A and [; € eff(a)}, otherwise;
A" (s, a) = cost(a) + A" (s, pre(a)).

In a planning problem P = (X, sq, &), the max-cost heuristic is
W (s5) = A (s, g). (3.10)

As shown in the following example, the computation of /™** can be visualized as an
And/Or search going backward from g.

Example 3.6. In Example 3.2, suppose GBFS’s heuristic function is A™**, Figure 3.5
shows the computation of 2™ (s;) = 1 and A™*(s) = 2. Because h™*(s;) <
h™¥(s,), GBFS will choose s1. O

3.2 Heuristic Functions 49

g = {loc(r1)=d3, loc(c1)=r1}

hmax(Sl) — A“"“X(Sl,g) =max(1,1)=1
max

Ioc(r1)=d3mm(1’(> =1 loc(c1)=r1

(0)y+1>1 0+1=1

min(1,(>1),(>1)) = 1

0+1=1
(>0)+1 > 1
move(r1,d2,d3) take(r1,c1,d1) (>0)+1\> 1

: : take(r1
move(r1,d1,d3) Ioc([;:e), i PIe ax(0.0,0) = 0 ake(r ‘,cs,dS)
pre: =
loc(r1)=d1 take(r1,¢2,d2) >0
cargo(r1)=nil loc(c1)=d1
>0 >0
0 ‘ o loc(r)=dt ‘ 0
truein s, truein s, 0 frueins,
trueins,
g = {loc(r1)=d3, loc(c1)=r1}
hmaX(Sz) — AmaX(Sz»g) — max(1,2) =9
max
loc(r1)=d3 . —
() min(1,(>1)) = 1 loc(c1)=r1 (2, (-2),2)) = 2
(>0)+1>1 0+1=1 1+1=2

1)+l >2
move(r1,d2,d3) take(r1,c1,d1) 1) +1\>2

move(r1,d1,d3) pre: P ax(0,1,0) = 1 take(r1,c3,d3)
pre: loc(r1)=d2 o ‘
loc(r1)=d1 max take(r1,c2,d2) >
cargo(r1)=nil loc(c1)=d1 ‘ -
0 loc(r1)=d1
>0 true in s,
0 ‘ 0+1=1 |0
move(r1,d2,d1)
pre:
loc(r1)=d2
true in s, 0 l true in s,
true in s,

Figure 3.5. Computation of A™* (s}, g) and h™**(s2, g). The max and min operations in
Equation 3.9 are shown as And-branches and Or-branches, respectively.

At the beginning of Section 3.2, we said that most heuristics are derived by relax-
ation. The A™** heuristic can be described as the cost of an optimal solution to a
relaxed problem in which a goal (i.e., a set of literals such as g or the preconditions of
an action) can be reached by achieving just one of the goal’s literals, namely, the one
that is the most expensive to achieve. It can also be described as a delete-relaxation
heuristic and as a landmark heuristic (see Section 3.6.5).

Although A™* is admissible, it is not very informative. A closely related heuristic,
the additive cost heuristic, is not admissible but generally works better in practice.
It is similar to 2™ but adds the costs of each set of literals rather than taking their

50 3 Planning with Deterministic Models

g = {loc(r1)=d3, loc(c1)=r1}

hdd(s) = AMd(5 @) = 1+1 =2

add

loc(r1)=d3

min(1,(>1)) =1 loc(c1)=r1

0+1=1
take(r1,c1,d1)

>0)+1>1
move(r1,d2,d3)

0+1=1

min(1,(>1),(>1)) = 1

0)+1 > 1

take(r1,c3,d3)

GONL> 1 >0

take(r1,c2,d2)

>0

min(2,(>2),(>2)) = 2

move(ri,d1,d3) pre: P 0+0+0=0
pre: loc(r1)=d2
loc(r1)=d1 cargo(r1)=nil loc(c1)=d1
. >0 l o loc(r1)=d1 ‘ 0
true in s, true in s, . 0 true in s,
true in s,
g = {loc(r1)=d3, loc(c1)=r1}
hdd(s,) = A5,) = 142 =3
add
loc(r1)=d3 _
min((>1),1) = 1 loc(c1)=r1
1+1=2

0+1=1

0)+1> 1

move(r1,d2,d3) take(r1,c1,d1)

move(r1,d1,d3) pre: Preo1+0=1
pre: loc(r1)=d2 2 dd
loc(r1)=d1 cargo(r1)=nil loc(c1)=d1
0 loc(r1)=d1
>0 true in s, 0 0+1=1 |0
move(r1,d2,d1)
pre:
loc(r1)=d2
true in s, 0 l true in s,
true in s,

N >2

G+ >2

take(r1,c3,d3)

>]

take(r1,c2,d2)

>1

Figure 3.6. Computation of 7%(s;,g) and h*¥(s,,g). The Y. and min operations in
Equations 3.12 and 3.13 are shown as And-branches and Or-branches, respectively.

maximum. It is defined as

hadd(s) — Aadd(S,g),
where

(s,) =) A L):

lieg

07
Aadd(s’ li) —) dd
min{A*“(s,a) | [; € eff(a)},

(3.11)
(3.12)
if [; € s,
i (3.13)
otherwise;

3.3 Backward Search 51

AYM(s, a) = cost(a) + A*(s, pre(a)). (3.14)

hadd

As shown in the following example, the computation of can be visualized as

an And/Or search nearly identical to the one for A™*.

Example 3.7. In Example 3.2, suppose GBFS’s heuristic function is 4%, Figure 3.6
shows the computation of h*4(s;) = 2 and h*4(s,) = 3. Because h*d(s;) <
h*4d(s,), GBFS will choose s.

To see that 424 is not admissible, notice that if a single action a could achieve
both loc(r1)=d3 and loc(c1)=r1, then h24(g) would be higher than 4*(g), because 424
would count a’s cost twice. O

Both 2™ and 424 have the same time complexity, which (like HFF) is polynomial
in the total number of actions and ground atoms in the planning domain.

3.3 Backward Search

This section describes an algorithm that does a state-space search going backward
from a goal g. To begin, we will need to define the conditions that make an action a
useful as the last step of a plan to achieve g:

Definition 3.8. An action a is consistent with a set of literals g if it satisfies the first
two of the following restrictions, and relevant for g if it satisfies all three of them:’

1. a makes no condition in g false: For every literal x #v (or x =v) in g, eff(a)
does not contain x < v (or respectively, x < v’ for some v’ # v).

2. adoes not require any condition in g to be false: For every literal x # v (or x =v)
in g that is not affected by eff(a), pre(a) does not contain x = v (or respectively,
x =’ for some v’ # v).

3. a makes at least one condition in g true: For at least one literal x =v (or x # v)
in g, eff(a) contains x « v (or respectively, x < v’ for some v # v’). m]

We can now define ¥~ (g, a) to be the conditions that must hold in every state s
such that y(s,a) [g. If a is consistent with g, then

vy g, a) = pre(a) U {x=v in g | eff(a) doesn’t contain x « v}

U {x#vin g | eff(a) doesn’t contain x < v’ for any v’ # v}, (3.15)
and if a isn’t consistent with g then y~!(g, a) is undefined. By extension, we let

g, if & is empty,
vy Y (y~Yg,n’),a), ifm=a- 7" and a is consistent with y (g, 7").
(3.16)

y g,) = {

TWhen testing for relevance, backward-search algorithms sometimes omit one or both of the consistency
restrictions. This simplifies the implementation, at the risk of misclassifying some actions as relevant
that cannot be the last step of a plan to achieve g. For an example, see Line 2 of RPG-Landmarks.

52 3 Planning with Deterministic Models

As a special case, suppose g = @. In this case, Equation 3.15 reduces to y~! (3, a) =
pre(a), and Equation 3.16 gives the conditions that a state must satisfy for 7 to be
applicable. Thus we define

pre(n) =y~ (@, 7). (3.17)
Backward-Search(Z, s, go)
1 g —go me()
while s |~ ¢ do
2 A’ « {a | ais relevant for g}
if A’ = & then return failure
3 nondeterministically choose a € A’
4+ | g7 (g0
T—an
return ()

Algorithm 3.10. Backward-Search planning algorithm. In each loop iteration, ©
is a plan that can achieve g from any state that satisfies g.

We now are ready to present Backward-Search. It is similar to Forward-Search
except that it goes backward from the goal instead of forward from the initial state.
We can incorporate cycle checking into it by adding the line

Solvable — {g}
after Line 1, and the following lines after Line 4:

if g € Solvable then return failure
Solvable «— Solvable U {g}

A more powerful form of cycle checking is to replace the preceding two lines with
the following subsumption test:

if 3¢’ € Solvable s.t. g’ C g then return failure
Solvable < Solvable U {g}

Here, each g’ € Solvable represents a set of states from which 7 or one of its suffixes
can reach gg. If these “solvable” states include every state that a -7 can solve, then
it is useless to continue searching beyond a- . For any solution that ends with a -7,
another branch of the search space will contain a shorter solution that omits a.

Example 3.9. Suppose we augment Backward-Search to incorporate cycle checking
and call it on the planning problem in Example 3.2. The first time through the loop,

g « {cargo(r1) =ct,loc(r1) =d3},
A’ «— {move(r1,d1,d3), move(r1, d2,d3), take(r1,c1,d3)}.

3.3 Backward Search 53

In Line 3, suppose Backward-Search chooses move(r1, d1,d3). Then

g « v (g, move(r1,d1,d3)) = {loc(r1) =d1, cargo(r1) =c1};
7« {move(r1,di1,d3));
Solvable «— {{cargo(r1) =c1,loc(r1) =d3}, {loc(r1) =d1, cargo(r1) =c1}}.

In the second loop iteration,
A’ «— {move(r1,d2,d1), move(r1,d3,d1), take(r1,c1,d1)}.

Let us consider two of the possible choices at Line 3:

1. If Backward-Search chooses move(ri, d3,d1), then

g — v~ !(g, move(r1,d3,d1)) = {loc(r1) =d3, cargo(r1) =c1};
7« (move(r1,d3,d1), move(ri,d1,d3));

g € Solvable, so Backward-Search returns failure.
2. If Backward-Search chooses take(r1, c1,d1), then

g« y‘l(g,take(r1,c1,d1)) = {loc(r1) =d1, cargo(r1) =nil};
7« (take(r1,c1,d1), move(r1,d1,d3));
Solvable «— {{cargo(r1) =c1,loc(r1) =d3}, {loc(r1) =d1, cargo(r1) =c1},
{loc(r1) =d1, cargo(r1) =nil}}.

If Backward-Search chooses move(r1,d1,d3) in the third loop iteration, then
at the start of the fourth loop iteration it will return

7« (move(r1,d1,d3), take(r1,c1,d1), move(r1,d1,d3)). O

To choose among actions in A’, Backward-Search can use many of the same
heuristic functions described in Section 3.2, but with the following modification:
rather than using them to estimate the cost of getting from the current state to the goal,
what should be estimated is the cost of getting from s to y~! (g, a).

Often an action schema o may have multiple instances that are relevant for g,
leading to a combinatorial explosion in the size of Backward-Search’s search space.
This problem can be alleviated by writing a Lifted-Backward-Search algorithm that
leaves some of a’s parameters uninstantiated. However, the details are complicated
and we will omit them.®

8To find partially instantiated actions that satisfy a single atom in g, one could use a simple match-
ing algorithm similar to Algorithm 5.6. However, Lifted-Backward-Search needs to find partially-
instantiated actions that satisfy one or more literals in g, which requires a unification algorithm. See
[967, Section 9.2.1] for an explanation and [535] for an algorithm.

54 3 Planning with Deterministic Models

3.4 Plan-Space Planning

Plan-space planning has some similarities to backward search, but it formulates plan-
ning as a constraint satisfaction problem and uses constraint-satisfaction techniques
to produce solutions that are more flexible than linear sequences of ground actions.
For example, it can produce plans in which the actions are partially ordered, along
with a guarantee that every total ordering that is compatible with this partial ordering
will be a solution plan.

Such flexibility allows some of the ordering decisions to be postponed until the
plan is being executed, at which time the actor may have a better idea about which
ordering will work best. Furthermore, the techniques used for plan-space planning
are a first step toward planning concurrent execution of temporal actions, a topic that
we will develop further in Part VI.

3.4.1 Definitions

Plan-space planning involves making repeated modifications to a plan in which the
actions are both partially ordered and partially instantiated, as defined below.
A partially ordered plan is a triple

7= (V,E,act), (3.18)

where V and E are the nodes and edges of an acyclic digraph and act is a function
that maps each node v € V into an action, act(v), so that actions may occur more
than once. The edges in E represent ordering constraints on the nodes, and we define
v <v"ifv # v and (V, E) contains a path from v to v’. Thus 7 represents a partially
ordered multiset in which act is the labeling function.
If vyi,...,v, is any ordering of the nodes such that i < j whenever v; < v;, then
the plan
n’ = {act(vy),...,act(v,)) (3.19)

is a total ordering of m. A partially ordered solution for a planning problem P is a
partially ordered plan & such that every total ordering of x is a solution for P.

Definition 3.10. A partial plan is a 4-tuple
7= (V,E,act,C), (3.20)

where (V, E, act) is a partially ordered plan as in Equation 3.18, except that for each
v € V, the action act(v) may be unground. C is a set of constraints, each of which is
one of the following:

* An inequality constraint is an expression z # z’, where z is an object variable,
and 7’ is either an object variable or a constant.
* A causal link is an expression of the form

Vi = V2, (3.21)

3.4 Plan-Space Planning 55

loc(r) = d2 loc(r1) =d1
occupied(d) = nil «o0ccupied(d2) = nil
‘a] = move(r,d2,d) . a, = move(r1,di ,d2)|
loc(r) = d loc(r1) = d2
occupied(d2) = nil”’ occupied(d1) = nil
occupied(d) = r occupied(d2) = r1

Figure 3.7. A partial plan that contains a causal link. Each action’s preconditions and
effects are shown near its upper left corner and lower right corner, respectively.

where v1 and v, are nodes, v < v, the effects of act(vy) include x « b, and the
preconditions of act(v;) include either x = b or a literal x # b’ for some b’ # b.
The causal link’s purpose is to assert that act(v;) is the action that establishes
the given precondition of act(v;). If a node v3 such that v; < v3 < v; has an
effect x < ¢ for some ¢, then v3 violates the causal link, even if t = b.° O

Example 3.11. Let X be a planning domain in which Objects = Robots U Docks,
where Robots = {r1,r2} and Docks = {d1,d2,d3}. There are no rigid relations, and
one action schema, where r € Robots and d, d’ € Docks:

move(r,d,d")
pre: loc(r) =d, occupied(d”) = nil
eff: loc(r) « d’, occupied(d’)=r

Let 7 = (V, E, act, C) be the following partial plan:

V = {vi, v},
E={(vi,n)},
act(vy) = move(r,d2, d),
act(vy) = move(rl, dt, d2,
€ = fy, PR =

The plan is shown in Figure 3.7, with the edge in E represented by a solid arrow and
the causal link represented by a dashed arrow. O

A partial plan 7 = (V, E, act, C) is inconsistent in each of the following situations:
if (V, E) contains a cycle, if C contains a self-contradictory inequality constraint (e.g.,
y # y), if there is a violated causal link, or if an action act(v) has an illegal argument.
Otherwise r is consistent.

Definition 3.12. A partial solution for a planning problem P = (X, s, g) is a partial
plan 7 = (V, E, act, @) in which sg and g are represented by dummy actions agy and
ag that are not instances of action schemas in A. Their sole purpose is to represent
so and g in a way that is easy for PSP to work with. More specifically,

9The reason for calling this a violation when ¢ = b is to ensure PSP (which will be defined in the next
section) performs a systematic search [770, 572], that is, it does not generate the same partial plan
several times in different parts of the search space. This reduces the size of PSP’s search space.

56 3 Planning with Deterministic Models

* V contains nodes vy and v, such that act(vo) = ag and act(ve) = ag;

* ag has pre(ag) = @ and eff(ag) = so;

* ag has pre(a,) = g and eff(a,) = @

* the ordering constraints in E must be such that vo < v < v, for every node
v & {vo,vg}. O

PSP(Z,)
while Flaws(n) # @ do
1 arbitrarily select f € Flaws ()
R « {all feasible resolvers for f}
if R = @ then return failure
2 nondeterministically choose p € R
3 modify 7 by applying p to it
return ()

Algorithm 3.11. PSP, a plan-space planning algorithm. If the partial plan =
represents a solvable planning problem in the planning domain X, then at least
one of PSP’s nondeterministic traces will return a solution plan.

3.4.2 Planning Algorithm

Algorithm 3.11, PSP, takes as input a planning domain X and a partial solution &
that represents a planning problem P = (X, 5o, g). To try to solve P, PSP repeatedly
looks for flaws in 7 and applies resolvers to remove the flaws.

In PSP, Flaws(n) is the set of all flaws in 7. There are two kinds of flaws: open
goals and threats. These are described next, along with their resolvers.

Open goals. If a node v € V has a precondition p € pre(act(v)) for which there is
no causal link, then p is an open goal. There are two kinds of resolvers for this flaw:

e Use an action already in . Suppose & contains a node v’ such that v £ v” and
act(v") has an effect e that can be unified with p, that is, e and p can be made
syntactically identical by instantiating some of the object variables in 7. Then

’

the flaw can be resolved by unifying e and p, adding a causal link v’ s vin
which ¢’ is the unified expression, and adding (v’, v) to E so that v’ < v.

* Use a new action. Let a be an action schema and a be a standardization of
a, that is, a copy of @ in which object variables are renamed to avoid name
conflicts with the object variables in 7.!° If eff(a) includes an effect e such that
p is an instance of e, then the flaw can be resolved by adding to 7 a new node v’
with act(v’) = a, instantiating variables of a to make e match p, adding a causal

link v -2 v, and adding edges (vo, v’) and (v, v) to E so that vy < v’ < v.

10This is analogous to standardization in logical inference (see [967, Section 9.2.1]).

3.4 Plan-Space Planning 57

S0 8

Figure 3.8. Initial state and goal for Example 3.13.

Threats. Let v, = v, be any causal link in 7, and v € V be any node such that
v £ vy and vp £ v (that is, v may come between v| and v;). Suppose act(v) has an
effect x” « ¢ such that the state variable x” can be unified with x. Then v is a threat to
the causal link. There are three kinds of resolvers for such a threat:

e Make v < v{ by adding (v, v{) to E.
e Make v, < v by adding (v, v) to E.
¢ Add to C an inequality constraint that prevents x and x” from unifying.

Example 3.13. Let X be the planning domain in Example 3.11, and consider the
planning problem P = (%, 5o, g), where

so = {loc(r1) =d1, loc(r2) =d2,
occupied(d1) =r1, occupied(d2) =r2, occupied(d3) =nil};
g = {loc(r1) =d2, loc(r2) =d1}.

Figure 3.8 shows s¢ and g, and Figure 3.9 shows the initial partial plan. Figures
3.10-3.13 show some snapshots of one of PSP’s nondeterministic execution traces.
Solid arrows represent edges in E, dashed arrows represent causal links, and thick
dot-dashed arrows represent threats. O

Like Forward-Search and Backward-Search, PSP is sound and complete; but unlike
them, it may often have infinite paths in its search space. Thus it is not guaranteed to
terminate on unsolvable problems.

3.4.3 Search Heuristics

Several of the choices that PSP must make during its search are very similar to
the choices that a backtracking search algorithm makes in order to solve constraint-
satisfaction problems (CSPs); for example, see [967]. Consequently, some of the
heuristics to guide CSP algorithms can be translated into heuristics to guide PSP:

* Because all of the flaws must eventually be resolved, flaw selection in Line 1 of
PSP is not a nondeterministic choice. However, the order in which PSP selects
the flaws can affect the size of the search space generated by PSP’s nondeter-
ministic choices in Line 2. Flaw selection is analogous to variable ordering in
CSPs, and the Minimum Remaining Values heuristic for CSPs (choose the vari-
able with the fewest remaining values) is analogous to a PSP heuristic called
Fewest Alternatives First: select the flaw with the fewest resolvers.

58 3 Planning with Deterministic Models

loc(r1) = d1
loc(r2) =d2
occupied(d3) = nil
occupied(d1) =r1
occupied(d2) =r2

Figure 3.9. The initial partial plan. The dummy actions ag and a, represent sy and g.
There are two open-goal flaws: a,’s preconditions loc(r1) = d2 and loc(r2) = d1.

loc(r1) =d

occupied(d2) = nil

»la, = move(r1,d,d2)
loc(r1) = d2---.__ >
occupied(d) = nil N----- »loc(r1) = d2
occupied(d2) = r1 <z*loc(r2) = di

loc(r1) = di

|ocg2; =d2 occupied(d1) = nil
occupied(d3) = nil loc(r2) =d’
occupied(d1) =r1 a, =| mO\zle(_ri:l_’T_)-—)
occupied(d2) =r2 oc(r2) =

occupied(d’) = nil
occupied(d1) =r2

Figure 3.10. Resolving a,’s open-goal flaws. For loc(r1) = d2, PSP adds action a; and a
causal link. For loc(r2) = d1, PSP adds action a; and another causal link. This adds four

new open-goal flaws: the preconditions of a; and a;.

_wloc(r1) =d1
_woccupied(d2) = nil

- a, = move(r1,d1,d2)
loc(r1) =d2---.___°
occupied(d1) = nil Ng----- >loc(r1) = d2
occupied(d2) = r1 vloc(r2) = d1

-

@ y : ‘\\ —> ag

loc(r1) =d1"~ = ~Tr—-—>< - LT T —'

loc(r2) = d2 loc(r) = d2 Y occupied(d1) = nil ">~

occupied(d3) = nil \ occupied(d") = nil . | loc(r2) =d' Y

occupied(d1) =r1 a, = move(r,d2,d")() a, = move(r2,d'd1) /,"

occupied(d2) = r2 loc(r) =d"—-—-—" loc(r2) =d1------ .
occupied(d2) = nil” occupied(d) = nil
occupied(d") = r occupied(d1) =r2

Figure 3.11. Resolving a;’s open-goal flaws. For loc(r1) = d, PSP instantiates d to d1 and
adds a causal link from ay. For occupied(d2) = nil, PSP adds action a3 and a causal link.
The new action causes two threats, shown as dashed-dotted lines.

3.4 Plan-Space Planning 59

__-wloc(r1) =d1
/" _eoccupied(d2) = nil
4 a, = move(r1,d1,d2)
loc(r1) =d2---.__]
occupied(d1) = nils | T~o----- »>loc(r1) =d2
occupied(d2) = r1 vloc(r2) = di

—> d

loc(r1) =d1°
loc(r2) = d2
occupied(d3) = nil
occupied(d1) =r1

" occupied(d1) = nil N
waloc(r2) =d'
a, = move(r2,d'd1)

loc(r2) = d2
occupied(d') = nil
a, = move(r2,d2,d")

occupied(d2) = r2 loc(r2) =d' -~ g loc(r2) =di1-—---- ’
occupied(d2) = nil” occupied(d’) = nil
occupied(d') =r2 occupied(d1) =r2

Figure 3.12. Resolving a;’s open-goal flaws. For occupied(d1) = nil, PSP adds a causal
link from a;. For loc(r2) = d’, PSP adds a causal link from a3, where it instantiates r to r2
and d” to d’. These changes also resolve the two threats.

__-wloc(r1) =d1
" _woccupied(d2) = nil
’ a, = move(r1,d1,d2)
loc(r1) =d2---.__]
occupied(d1) = nils | T----- »>loc(r1) =d2
occupied(d2) = r1 vloc(r2) =d1

a, - - - —> d,
loc(r1) = d1” N

loc(r2) = d2-----X:- “$occupied(d) = nil T\~
occupied(d3) = nil~¥®occupied(d3) = nil wloc(r2) =d3

occupied(d1) =r1 a, = move(r2,d2,d3) a, = move(r2,d3,d1)

occupied(d2) =r2 loc(r2) = d3------ i loc(r2) =d1------ .
occupied(d2) = nil” occupied(d3) = nil
occupied(d3) =r2 occupied(d1) =r2

Figure 3.13. Resolving a3’s open-goal flaws. For loc(r2) = d2, PSP adds a causal link from
ap. For occupied(d3) = nil, PSP instantiates d’ to d3 and adds a causal link from ag. There
are no further flaws, so this is a partially-ordered solution.

* Resolver selection in Line 2 of PSP is analogous to value ordering in CSPs.
The Least Constraining Value heuristic for CSPs is to choose the value that
rules out the fewest values for the other variables. One might want to translate
this into a “least-constraining resolver” heuristic for PSP: choose the resolver
that rules out the fewest resolvers for the other flaws. Unfortunately, this ignores
an important difference between plan-space planning and CSPs.

In a CSP, the number of variables is ordinarily fixed in advance, the search
space is finite, and all solutions are at the same depth. In PSP, the least-
constraining resolver may introduce a new action. This may occur arbitrarily
many times, and each occurrence is analogous to introducing new variables

60 3 Planning with Deterministic Models

(and new constraints) into a CSP: it increases the size of the search space.

One way to fix this problem might be to look first for resolvers that do not
introduce open goals—and if there are several such resolvers, then to choose
the one that rules out the fewest resolvers for the other flaws.

Although these heuristics can help speed PSP’s search, implementations of PSP
tend to run much more slowly than the fastest state-space planners. Generally the latter
are GBFS algorithms that are guided by heuristics like the ones in Section 3.2, and there
are several impediments to developing an analogous version of PSP. Because plan
spaces have no explicit states, the heuristics in Section 3.2 are not directly applicable,
nor is it clear how to develop similar plan-space heuristics. Even if such heuristics
were available, a depth-first implementation of PSP would be problematic because
plan spaces generally are infinite. Thus for solving classical planning problems such
as the ones in the International Planning Competitions, most automated-planning
researchers have abandoned PSP in favor of forward-search algorithms.

On the other hand, the hybrid-planning algorithms in Sections 5.3 and 17.2 are
based on PSP. They are much easier to understand if one first understands PSP.

3.5 Repairing Plans

Plan repair can provide advantages over generating new plans from scratch, both in
terms of the runtime needed for planning and the plan’s stability, that is, the amount of
the original plan 7 that is retained in the repaired plan. As discussed in Section 2.6.4,
plan stability may be important if the actor needs to coordinate with other actors that
are depending on 7, avoid wasting resources that were acquired for use later in 7, or
avoid making changes that may be confusing to human users.

Incremental-Repair(Z, s, g,)
while True do
1 1’ « Lookahead(X, s,y (g, m))
if 7/ # failure then return =’ -
if 7 = () then return failure
a « pop(rm)

Algorithm 3.12. Incremental-Repair tries to retain n’s largest possible suffix.

Incremental-Repair attempts to repair 7 in a way that retains the largest possible
suffix of . First it looks for a plan 7’ such that 7’ -7 | g. If that succeeds, it returns
n’ -7, Otherwise it removes the first action from 7 and tries again, proceeding in this
manner until either it succeeds or none of r is left.

Line 1 of Incremental-Repair uses an extended definition of y~! (see Equation 3.15)
that includes plans. If 7 is a plan, then y~!(g,) is the condition that a state s must

3.6 Discussion and Bibliographic Notes 61

satisfy to ensure that y (s, 7) E g. More formally,

g, if 1= (),
y g m) ={y ' (y Y (g,a),n"), ifn=n"-aforsomen’ anda, (3.22)
undefined, otherwise.

Incremental-Repair is a simple algorithm that provides no guarantee of finding the
best way to repair 7. Other approaches to plan repair are discussed in Section 3.6.9.

3.6 Discussion and Bibliographic Notes

3.6.1 Nondeterministic Algorithms

Many of the planning algorithms in this book will be presented as nondeterministic
search algorithms, like the Forward-Search algorithm at the beginning of this chapter.
Line 1 of Forward-Search corresponds to trying several members of R sequentially
in a trial-and-error fashion. The command “nondeterministically choose” is an
abstraction that lets us ignore the precise order in which those values are tried. This
lets us discuss properties that are shared by a wide variety of algorithms that search
the same space of partial solutions, even though those algorithms may visit different
nodes of that space in different orders. Initially these were just called nondeterministic
algorithms [366, 246], but this kind of nondeterminism later came to be called angelic,
as distinguished from demonic and erratic nondeterminism [115].

3.6.2 Search Algorithms

Heuristic functions that estimated the distance to the goal were first developed in
the mid-1960s [842, 721, 304], and the A* algorithm was developed a few years later
[471,472]. The e-optimality result for A* is from [908]. A huge amount of subsequent
work has been done on A* and other heuristic search algorithms. There are tutorial
introductions to some of these algorithms [856, 967]. Our definition of problem
relaxation in Section 3.2 is based on [877], which provides a comprehensive analysis
of a large number of algorithms and techniques.

Branch-and-bound algorithms have been widely used in combinatorial optimization
problems [813]. DFBB (Section 3.1.7) is the best-known version, but most forward-
search algorithms (including, for example, A*) can be formulated as special cases of
branch-and-bound [532, 831].

GBFS, which has been used in many classical planning algorithms [490, 392], was
first introduced in [304] under a different name. Several enhancements to GBFS have
been developed, such as combining it with local search [1187]. GBFS, and several
other algorithms that find approximately optimal solutions, can be adapted to run in
an “anytime mode” in which the algorithm does not stop at the first solution it finds,
but instead continues to look for better and better solutions as time permits [468].

Prior to GBFS, the name “greedy best-first search” was used in [156] for a planning
algorithm similar to the weighted A* algorithm in [908]. These algorithms use a

62 3 Planning with Deterministic Models

heuristic function of the form g + wh or (1 — w)g + wh, where w > 1 is a weight
that gives 4 more influence than g. Such a weighting scheme has worked well in the
LAMA planner [941].

Heuristic search algorithms can sometimes encounter “heuristic plateaus” that all
look the same from the point of view of the heuristic function [373, 507]. To escape
such plateaus, the well-known FF algorithm does a breadth-first search [509]. A more
recent technique is a width-k search, which prunes all states except those in which at
least k literals have become true for the first time along the current path [722].

In game-tree search programs for games such as chess and checkers, the acting
procedure is similar to Run-Lookahead with the Lookahead subroutine being like a
time-limited version of depth-first iterative deepening (Section 3.1.8) and the depth-
first search being a variant of the well-known alpha-beta algorithm [619, 856, 967].

IDA* [640] and other iterative-deepening algorithms are a special case of node-
regeneration algorithms that retract nodes to save space and regenerate them later if
they need to examine them again. There are several other such algorithms [642, 415].

3.6.3 Planning Graphs

A planning graph is similar to HFF’s relaxed planning graphs (see Figures 3.3 and 3.4),
but it also includes various mutex (i.e., mutual exclusion) conditions: for example,
two actions are mutex if they change the same state variable to different values.
Rather than including all r-applicable actions, each Ay only includes the ones whose
preconditions are not mutex in 5. A good tutorial account of this appears in [1162].

Planning graphs were first used in the Graphplan algorithm [146], which does
an iterative-deepening search to generate successively larger r-states. For each r-
state §x such that the atoms of g are non-mutex in §i, Graphplan does a backward
search to look for a relaxed solution 7 such that the actions in each &; are non-
mutex. Such a 7 is often called a parallel plan or layered plan, and it is a partially
ordered solution (although not necessarily an optimal one). In any solvable planning
problem, a sufficiently large planning graph will contain a solution, hence Graphplan
is complete. Furthermore, because Graphplan’s backward search is restricted to the
planning graph, it usually can solve classical planning problems much faster than
planners based on Backward-Search or PSP [1162].

Graphplan inspired much follow-up research on planning-graph techniques. Some
of them extend planning graphs in various nonclassical directions, such as conformant
planning [1034], sensing [1165], temporal planning [1035, 400, 733], resources
[624, 625, 1049], probabilities [145], soft constraints [791], and distributed planning
[545]. Others have combined planning graphs with other techniques for use on
classical-planning problems. The STAN planner [732] uses a combination of efficient
planning-graph implementation and domain analysis. LPG [399] does a stochastic
local search on a network of the actions in the planning graph.

3.6.4 Translating Planning Problems into Other Problems

The BlackBox planner [591] can translate a planning problem or a planning graph
into a satisfiability problem and search for a solution using a satisfiability solver. The

3.6 Discussion and Bibliographic Notes 63

basic idea is, for n = 1,2..., to take the problem of finding a plan of length n,
rewrite it as a satisfiability formula f,,, and try to solve f,. If the planning problem
is solvable, then f,, will be solvable for sufficiently large n. Subsequent work on
planning as satisfiability has included new translation algorithms [529, 949, 8], and
planning-specific heuristics for variable selection in satisfiability problems [948].

There are related approaches that translate planning problems into constraint-
satisfaction problems [298, 91, 92] or integer-programming problems [1113]; see
[829] for an overview.

3.6.5 Heuristic Functions

The /%4 and h™® heuristics in Section 3.2.4 were first used in the HSP planning
system [156]. They were highly influential because they disproved a long-held as-
sumption that good heuristic functions needed to be domain-specific. HSP performed
excellently in the 1998 planning competition, the first of a planning-competition
series!! that has sparked much research on domain-independent planning heuristics.

Most domain-independent heuristics can be classified roughly as delete-relaxation
heuristics, landmark heuristics, critical-path heuristics, and abstraction heuristics
[492]. The next several paragraphs discuss each of these. There also are heuristic
functions that combine multiple heuristic estimates [957].

Delete-Relaxation Heuristics. Delete-relaxation and the 4+ and AT heuristics (see

Section 3.2.1) were pioneered primarily by Hoffmann [509], and the name 4fF derives
from its use in the FF planning system [507]. However, instead of using 4'F in the
way that we described, FF did something closer to the improvements described at
the end of Section 3.2.2. Delete-relaxation can also be used to describe the 424
and 2™ heuristics: ™ is the optimal parallel solution (see Section 3.6.3) for the
delete-relaxed problem [493, 133].

The causal-graph heuristic [490] involves analyzing the planning domain’s causal
structure using a directed graph in which the nodes are the planning domain’s state
variables, and the edges represent dependencies among the state variables. Although
it is not immediately obvious that this is a delete-relaxation heuristic, there is a
delete-relaxation heuristic that includes it and 4249 as special cases [493].

Landmark Heuristics. The early work on landmarks [913] was hugely influential,
inspiring a great deal of additional work on the subject. The landmark heuristic
that we described in Section 3.2.3 is relatively simple, and there are many ways to
improve it. The problems of determining whether a fact is a landmark, or whether
one landmark must precede another, are PSPACE-complete [510]. However, there are
several polynomial-time criteria that are sufficient (but not necessary) to guarantee
that a fact is a landmark or that one landmark must proceed another. Some of the
better-known approaches involve relaxed planning graphs [510], domain transition
graphs [942, 941], hitting sets [165], and cyclic dependencies [189].

Hgee https://www.icaps-conference.org/competitions/.

https://www.icaps-conference.org/competitions/

64 3 Planning with Deterministic Models

The h™2* heuristic can also be described as a landmark heuristic [492]. An enhanced
version, KM€ i still admissible and gives close approximations to A* [492]. It
has been generalized to planning problems in which actions have conditional effects
[958]. Landmark heuristics have also been developed for temporal [S87] and numeric
[983] planning problems.

Critical-Path Heuristics. Thereisaset {h" | m = 1,2, ...} of admissible heuristic
functions based loosely on critical paths (an important concept in project scheduling).
Each A" approximates the cost of achieving a goal g by the cost of achieving the most
costly subset of size m [476, 478]. The computation is exponential in mz, but runs in
polynomial time for any fixed m.

Abstraction Heuristics. An abstraction of a planning domain X is a y-preserving
homomorphism from X onto a smaller planning domain X’. For each planning
problem P = (Z, s, g), this defines a corresponding abstraction P’ = (¥, s, g’). If
¢* is the cost of an optimal solution to a planning problem, then ¢*(P’) < ¢*(P). If
¥’ is simple enough that we can compute ¢*(P’) for every planning problem P’ in ¥’,
then the function A(s) = ¢*(¥’, s’, g’) is an admissible heuristic for P.

The best-known such abstraction is pattern database abstraction [263, 319]. The
pattern is a subset X’ of the state variables in X, and the mapping from X to ¥’ is
done by removing all literals that have state variables not in X’. The pattern database
is a table that gives ¢*(P’) for every planning problem P’ in X’. There are algorithms
to decide what to include in X’ [479, 495], but unfortunately the size of the pattern
database and the cost of computing each entry both grow exponentially with X’. This
can be alleviated [320, 79] using symbolic representation techniques such as BDDs
(Section 12.3.4), but X’ still needs to be kept small [496]. The database provides no
information about variables not in X’, so this limits the informedness of /.

Awareness of this limitation has led to research on other criteria for aggregating
sets of states in X into individual states in ¥£’, including merge-and-shrink abstraction
[494, 496] and structural-pattern abstraction [589], as well as ways to improve the
heuristic’s informedness by composing several different abstractions [588, 496, 994].

3.6.6 Plan-Space Planning

The two earliest plan-space planners, NOAH [969] and NONLIN [1079], combined
plan-space search with HTN task refinement (see Chapter 5). Plan-space planning
was initially called nonlinear planning, reflecting some debate over whether “linear”
planning referred to the structure of the planner’s current set of actions (a sequence
instead of a partial order) or to its search strategy that addresses one goal after the
previous one has been completely solved.

The SNLP algorithm [770] introduced the concept of systematic search, in which
a plan-space planner generates each partial plan at most once [572]. The footnote at
the end of Definition 3.10 discusses systematic search in PSP. The UCPOP planner
[883, 87, 1163] extended SNLP to handle some extensions to the classical domain
representation, including conditional effects and universally quantified effects [879,

3.6 Discussion and Bibliographic Notes 65

880]. Several other extensions have also been studied, such as incomplete information
and sensing actions [886, 334, 429] and some kinds of extended goals [1164, 77].
Work on planning performance in plan-space planning has included studies of
search control and pruning [397], commitment strategies [793, 794, 1213], state
space versus plan space [1123], and domain features [618].
The general formulation of domain-independent planning in [578, 573] takes into
account most of the preceding issues.

3.6.7 Generalized Domain Models

In Section 2.7.2 we discussed the possibility of generalizing the state-variable rep-
resentation in Section 2.3 to allow actions to do arbitrary computations on states
represented as arbitrary data structures. With such modifications, the forward-search
algorithms in Section 3.1 will still work correctly [856, 654, 521], but they will not be
able to use the domain-independent heuristic functions in Section 3.2, because those
heuristics work by manipulating the syntactic elements of state-variable and classical
representations. Instead, domain-specific heuristic functions will be needed.

One way to generalize the action model while still allowing domain-independent
heuristics is to write each action as a combination of two parts—a “classical” part
that uses a classical or state-variable representation and a “nonclassical” part that uses
some other kind of representation—and write separate algorithms to reason about the
classical and nonclassical parts. This approach has been used to combine classical
planning and integer programming [480]. There is also a “planning modulo theories”
approach [447] that was inspired by prior work on SAT modulo theories [852, 88].

For a planning system to work well, its domain and problem descriptions may need
to be carefully engineered and fine-tuned for particular domains and problems. This
can require an expert understanding of both the domain and the planning language
[481]. An ongoing series of workshops focuses on ways to alleviate the task of
knowledge engineering for planning. The 33rd such workshop was in 2023.!2

3.6.8 Planning with Abstraction

In the Al planning literature, planning with abstraction usually has meant a relaxation
process in which an abstract planning problem P’ = (X', s, g’) is formed from a
classical planning problem P = (X, s¢, g) by removing some atoms and the literals that
contain them [969, 617, 1199, 424]. If a planner finds a solution 7’ = (a’l, ..., a,) for
P’, then for each i, let a; be the action whose abstraction is a;. Then we can constrain
the search for a solution to P by treating pre(a)), . . ., pre(ay,) like landmarks:

find a solution 7 for Py = (Z, so, pre(ay)),
find a solution 7| for Py = (Z, s1, pre(az)), where s; = y(sg, 70),
find a solution 7, for P,y = (¥, 5,1, pre(a,)), where s,—1 = y(sp-2, Ty-2),

find a solution 7, for P, = (%, 5,1, &), where s, = Y(Sp—1, Tn-1).

125ee https://icaps23.icaps-conference.org/program/workshops/keps/.

https://icaps23.icaps-conference.org/program/workshops/keps/

66 3 Planning with Deterministic Models

If a condition called the downward refinement property [68] holds, then g, . . ., 7, will
be guaranteed to exist, and their concatenation will be a solution for P. Planning with
abstraction typically is done at multiple levels: use an abstraction P”’ to constrain the
search for solving P’; use an abstraction P””’ to constrain the search for solving P’’; and
so forth. Such abstraction hierarchies have been extensively studied [85, 617, 1199].

In the abstract planning problem P’, each state or action represents an equivalence
class of states or actions in P. These equivalence classes were induced by the removal
of atoms, but there are other ways to create equivalence classes with analogous
properties and use them for planning with abstraction [754, 755].

Often the downward refinement property is not satisfied, and in such cases planning
with abstraction is not guaranteed to work. However, abstracted planning problems
can also be used to provide heuristic functions to guide the search for a solution to the
unabstracted problem (see the abstraction heuristics part of Section 3.6.5).

3.6.9 Plan Repair

The term “plan stability” was introduced in [371], which used a modified version of
the LPG planner [400] to show that plan repair could produce corrected plans more
quickly and with fewer revisions than replanning from scratch. The term “minimal
perturbation” was used synonymously in [266], which pointed out the importance of
commitments to other agents.

There has been much classical planning research on the problem of plan adaptation,
that is, taking a solution for one problem and modifying it to get a solution for another
[465, 836, 63, 400, 820]. Because plan repair is a special case of plan adaptation,
most of these algorithms can be used for plan repair. Fewer classical-planning works
have focused on plan repair per se; one exception is the POPR plan-repair algorithm
for plan-space plans [1114].

Work has also been done on plan repair in non-classical domains. There are
domain-specific algorithms for a variety of domains [971, 1027, 463, 825, 706], and
Section 2.6.4 will discuss plan-repair algorithms for HTN planning.

3.7 Exercises

3.1. Prove that in any solvable classical planning problem, at least one execution trace
of Forward-Search will return a shortest solution. Do the same for Backward-Search.

3.2. Under what conditions will GBFS switch to a different path if its current path is
not a dead end?

3.3. In the blocks-world planning problem in Exercise 2.4, let b be any block, and
suppose its current location is loc(b) = [for some /. We will say that b needs to
be moved if either the goal formula includes an atom loc(b) = [’ such that I’ # [,
or there is a block below b that needs to be moved. Consider the heuristic function
h(s) = nm(s) — om(s), where

nm(s) = the number of blocks that need to be moved;

3.7 Exercises 67

so = {loc(a) = b, loc(b) = table, loc(c) = table, E
clear(a) =T, clear(b) =F, clear(c) =T}, H n
g = {loc(a) =b, loc(b) = c} so b g

Figure 3.14. Initial state and goal for the planning problem in Exercise 3.3.

om(s) = the number of blocks that are at most two moves away from a
location where they won’t need to be moved.

Using &, suppose we run GBFS on the planning problem in Figure 3.14. Draw the
search tree that GBFS will produce. For each node in the tree, just draw the state,
rather than writing it mathematically. Next to each state, write its / value.

take(r, c, 1)
pre: loc(r) =1, pos(c) =1,
cargo(r) =nil 50:

eff: cargo(r) « ¢, pos(c) «r

put(r, c,1)
pre: loc(r) =1, pos(c)=r
eff: cargo(r) « nil, pos(c) </

so = {loc(r1) =loc1, loc(r2) =loc2,
move(r, [, m)

pre: loc(r) =1
eff: loc(r) «m

cargo(r1) =nil, cargo(r2) =nil,
pos(c1) =loc1, pos(c2) =loc2},

where r € Robots, |,m € Locations, g = {pos(c1) =loc2, pos(c2) =loc2}
c € Containers

Figure 3.15. Planning problem for Exercise 3.4.

3.4. Figure 3.15 shows a planning problem involving two robots whose actions are
controlled by a single actor. Unlike some of our previous examples, it is possible for
both robots to occupy the same location.

(a) If we run Forward-Search on this problem, how many iterations will the shortest
execution traces have, and what plans will they return? For one of them, give
the sequence of states and actions in the execution trace.

(b) If we run Backward-Search on this problem, how many iterations will the
shortest execution traces have, and what plans will they return? For one of
them, give the sequence of goals and actions in the execution trace.

(c) Compute A (s).

(d) In HFF, suppose that instead of exiting the loop at the first value of k such that
S r-satisfies g, we instead keep iterating the loop. At what value of k will |§|
reach its maximum? At what value of k will |Ag| reach its maximum?

68 3 Planning with Deterministic Models

(e) Compute hRE(sp).
(f) Compute 429 (s0) and ™ (sp).

3.5. Write pseudocode for the improved version of HFF that was described in the last
paragraph of Section 3.2.2. Describe a similar improved version of RPG-Landmarks,
and write pseudocode for it.

3.6. What might be an effective way to use hFF, ARL, h2dd and h™3 with Backward-
Search?

3.7. In the discussion of RPG-Landmarks, we remarked that a solution plan will need
to achieve every landmark ¢’ in Line 7 before achieving the landmark ¢.

(a) Modify RPG-Landmarks to make Examined a partially ordered set that uses the
order in which the landmarks will need to be achieved.

(b) Describe a planning algorithm that uses the partially ordered set in part (a) to
solve a planning problem by solving a sequence of subproblems.

3.8. Consider the planning problem in Figure 2.8(b). At s¢, suppose GBFS needs to
choose between the actions a; = unstack(c,a) and a, = pickup(b). Let s1 = v (s, a1)
and s, = y(s9,a2). Compute each of the following pairs of heuristic values, and tell
whether or not they will produce the best choice:

(a) K (s1) and AFF(s7). (b) hR(s1) and ARY(s7).
(c) h*9(s)) and h*4d(s,). (d) h™™*(s;) and A™(s,).

3.9. Here is a state-variable version of the problem of swapping the values of two vari-
ables. The ontology of typed objects is Objects = Variables U Numbers, Variables =
{foo, bar, baz}; and Numbers = {0, 1,2, 3,4,5}. There is one action schema:

assign(xy,xo, n)
pre: value(x;)=n
eff: value(x;) «n

where x|, x, € Variables and n € Numbers. The initial state and goal are

so = {value(foo) = 1, value(bar) = 5, value(baz) = 0};
g = {value(foo) =5, value(bar) = 1}.

At 59, suppose GBFS needs to choose between the actions a; = assign(baz,foo,1) and
a, = assign(foo,bar,5). Let s = y(sg,a1) and 52 = y(s9, a2). Compute each of the
following pairs of heuristic values, and tell whether they will produce the best choice:

(a) hF¥(s1) and AFF (s). (b) hRE(s1) and ARE(s,).
(c) h*4(sy) and h*4(sy). (d) h™*(s1) and A™(s,).

3.10. For the planning problem in Exercise 3.9, let & be the partial plan in Figure 3.16.

(a) In m, how many threats are there? What are they? What are their resolvers?

3.7 Exercises 69

_wvalue(bar)=5

/ a, = assign(foo,bar,5)
value(foo)=5-\- - » value(foo)=5
w»value(bar)=1

|
|
|
|
[
1

value(foo)=1 value(x)=1
value(bar)=5~ a, = assign(bar,x,1)
value(baz)=0 value(bar)=1’/

Figure 3.16. Partial plan for Exercise 3.10.

(b) Can PSP generate n? If so, describe an execution trace that will produce it. If
no, explain why not.

(c) In PSP’s search space, how many immediate successors does 7 have?

(d) How many solution plans can PSP produce from 7?

(e) How many of the preceding solution plans are minimal?

(f) Trace the operation of PSP on 7. Follow whichever of PSP’s execution traces
finds the shortest plan.

/yhold=nil loc(a)=table
I clear(x)=T _ _—cec-c---- + clear(a)=T clear(b)=T
\ loc(x)=a / ,whold=x hold=nil % hold=a

unstack(x,a)F

putdown(x)|—>|pickup(a)H—>|stack(a,b)

\ clear(@a)=T-’ ; hold=nil hold=a- - hold=nil
\ hold= x-~" clear(x)=T loc(a)=hand loc(a)=b-
\ loc(x)=hand loc(x)=table clear(b)=F ,

start

hold=nil~~ hold=nil
loc(a)=table _ wloc(b)=table ,---w»hold=b
loc(b)=table-~ """ clear(b)=T -~ clear(q)=T /
loc(c)=a ,// T /,
clear(a)=F /’/ hold=b--~"~ ! loc(b)=c-~~
clear(b)=T~"~ loc(b)=hand v hold=nil

- clear(c)=F

clear(c)=T-------------------7°"

Figure 3.17. Partial plan for Exercise 3.11.

3.11. Repeat Exercise 3.10 using the planning problem in Figure 2.8(b) and the partial
plan in Figure 3.17.

3.12. Let x be a partially ordered solution for a planning problem P = (X, 59, g).

(a) Write a simple modification of Run-Lazy-Lookahead to execute 7.

(b) Suppose your procedure is executing m, and let 7’ be the part of 7 that it has
not yet executed. Suppose an unanticipated event invalidates some of the total

70 3 Planning with Deterministic Models

orderings of 7’ (i.e., not all of them will still achieve g). Write an algorithm to
choose a total ordering of 7’ that still achieves g, if one exists.

3.13. If r = {ai,...,ay) is a solution for a planning problem P, other orderings of
the actions in 7 may also be solutions for P.

(a) Write an algorithm to turn r into a partially ordered solution.

(b) Are there cases in which your algorithm will find a partially ordered solution
that PSP will miss? Are there cases in which PSP will find a partially ordered
solution that your algorithm will miss? Explain.

4 Learning Deterministic Models

In this chapter we focus on two key topics for learning with deterministic models:
learning heuristics that can speed up the search for a solution plan and the automated
synthesis of the model itself.

In Section 4.1, we deal with the problem of learning heuristics that allow us to
explore parts of the search space that are more likely to lead to solutions. Indeed,
heuristic functions (see Section 3.2) have been demonstrated to play a key practical role
in finding (optimal) plans and allowing plan generation algorithms to scale up to large
state spaces. Heuristic functions can be of two different kinds: Domain independent
heuristics that can be applied to any deterministic model, and domain dependent
heuristics that exploit the specific structure and knowledge about the domain. Here
we provide some basic techniques that, when applied to a given domain, learn domain
(and problem) dependent heuristics.

In Section 4.2, we address the problem of learning a deterministic model, and we
focus on learning action schemas (see Section 2.3.2). Indeed, acting and planning
requires the specification of planning domains through action schemas, i.e., a lifted
representation of actions with their preconditions and effects. The automated learning
of action schemas is widely recognised as a key and compelling challenge to overcome
the difficulties of specifying actions, which is often a time consuming and error-prone
task. We discuss two main approaches to learning action schema: offline learning
from a given set of traces (i.e., sequences alternating actions and states) and online
learning, i.e., learning by applying actions step by step. We show how some basic
routines for offline learning can be re-used for online learning. We also discuss some
algorithms that use planning to learn the model online.

4.1 Learning Heuristics

We have introduced heuristic functions in Chapter 3 (see Section 3.2): a heuristic
function & computes an estimate of the minimum cost /*(s) of getting from s to a goal
state. If the cost is uniform or not specified, it computes an estimate of the minimum
distance from a state to the goal. Heuristic functions have been demonstrated to play a
key practical role in finding (optimal) plans and allowing plan generation algorithms
to scale up to large state spaces. Heuristic functions can be of two different kinds:

* Domain independent heuristics are general, they can be applied to any de-
terministic model. Sections 3.2.1, 3.2.3, and 3.2.4 define three main domain
independent heuristics that have been proven experimentally to be effective in
several different deterministic models.

Free pre-publication, for personal use only. To be published by Cambridge University Press.

71

72 4 Learning Deterministic Models

* Domain dependent heuristics can be more effective than domain independent
heuristics, since they exploit the specific structure and knowledge about the
domain. However, they are less general, they can work just in the case of a
specific deterministic model, and defining them may be not obvious, sometimes
requiring to elicit knowledge from domain experts.

While domain dependent heuristics may be difficult to define by hand, they can
be learned automatically, e.g., through running a simulator. A good strategy can
be therefore to combine both approaches, e.g., refining and improving the heuristic
function by learning a domain dependent heuristic starting from a domain independent
one.

An interesting idea is to devise a domain independent learning technique” that,
when applied to a given domain, learns a domain dependent heuristics (Section 4.1.1).
Such a learning technique applies in general, independently of the initial heuristic it
starts from: given the constraint that the heuristic is zero in the goal states, h(s) =
0Vs € Sg, we can assign an arbitrary value to 4 in all non-goal states. Alternatively,
we can easy the task of learning domain dependent heuristics by initializing the
value of & with any kind of “good” domain independent heuristic, e.g., those defined
in Sections 3.2.1, 3.2.3, and 3.2.4. There is a bunch of work on learning domain
independent heuristics. We discuss this work in Section 4.3.

4.1.1 Learning domain dependent heuristics

Section 4.1.1 presents LRTA* (Learning Real Time A*), which interleaves planning,
learning the heuristic, and acting. LRTA* needs repeated trials to converge to optimal
solutions. Next, Section 4.1.1 presents a general schema that automatically repeats
the learning of /4 until it finds an e-optimal solution. The learned heuristic £ isn’t just
domain-dependent, it’s problem-dependent.

Learning Real Time A*

LRTA*, Algorithm 4.1, interleaves searching, acting and learning an heuristic. During
search, until the goal is reached, in each state s, LRTA* finds the action a that minimizes
Q(s, a), i.e., the estimated distance from s to the goal by taking into account the cost
of applying a in s and the heuristic of the next state s’ obtained by applying a. LRTA*
updates the heuristic in s with the cost of applying a plus the heuristic in the next state

s’

If the goal is reachable from the initial state sg, then LRTA* is guaranteed to reach
the goal. Because LRTA* does a greedy best-first search (see Section 3.1.6), a single
run of LRTA* does not guarantee an optimal plan. However, if % is admissible, then
repeated runs of LRTA* will eventually converge to an optimal plan. A “good” initial
ho (see e.g., Section 3.2) speeds up the convergence.!

ILRTA* generalizes well to planning with probabilistic models (see Section 9.5.3).

4.1 Learning Heuristics 73

LRTA*(X, 50, Sg, ho)
Initialize the current state and the empty plan: s < s9; 71 < ()
Initialize the heuristic: h(s) « ho(s) for all states of =
while s ¢ S, do
foreach a € Applicable(s) do
| Q(s,a) « cost(s,a) + h(y(s,a))
h(s) < ming{Q(s,a)}
a « argmin, {Q(s,a)}
T Tm-a
L s < y(s,a)

Algorithm 4.1. Learning Real Time A*.

Learning e-optimal heuristics

In this section, we present algorithms that learn heuristics that allow for e-optimal
solutions in one single run. Like LRTA*, they learn heuristics by interleaving search
with updating of 4. The main difference is that they keep memory of all visited states,
and update % not only in the current state but in all the visited states. This provides
the ability to change plan if we are not on a path to an optimal solution. Intuitively,
the condition for reaching an optimal solution is that the update of / is lower than €.

We start by introducing some notions that allow us to keep trace of all visited states
along different paths generated during the search by our algorithms. We let Fringe be
the set of fringe states, which have been generated but not yet expanded; and Interior
be the set of interior states, which have been expanded.®> We let Envelope be the
set of states that have been generated at some point by a search algorithm, that is,
Envelope = Interior U Fringe.

The idea is to learn & in a state s € Fringe in a similar way to LRTA*, that
is, by expanding s € Fringe and finding its successor state y(s,a) for all actions
a € Applicable(s), and updating i (s) with the value obtained from the most promising
action at s, that is, the action in Applicable(s) that minimizes the distance to the goal.

After a state s € Fringe is expanded, it becomes an interior state, i.e., s € Interior.
Since we aim at e-optimal solutions, also the A (s) of interior states must be updated
with the value obtained from the most promising action at s. Each time /(s) changes,
each state that leads to s (that is, each s’ such that s = y(s’, a)) will need its heuristic
function &(s’) updated, because its most promising action may have changed.

Algorithm 4.2 is a general schema® for an algorithm that interleaves the application
of actions in Fringe (the expand phase) with the updating of & in expanded and
interior states (the update phase). The learning is performed starting from a given

2The main ideas presented in this section come from the application of value iteration (see Sec-
tion 9.1.3). Here we have the specific case of value iteration for deterministic models.

3This is similar to Algorithm 3.2 in Section 3.1, in which Frontier is a set of nodes (7, s) in which s
has been generated but not yet expanded, and Expanded is a set of nodes (7, s) in which s has already
been visited. Fringe is the set of states in Frontier, and Interior is the set of states in Expanded.

4Algorithm 4.2 is an adaptation to deterministic domains of Algorithm 9.6 in Section 9.2.

74 4 Learning Deterministic Models

initial heuristic function hg(s) = O for all s that are goal states, h(s) > O for all the
other states. The learned heuristic is problem-dependent, because it depends on the
goal to be achieved.

Expand&Update (X, so, Sy, ho)
initialize h with hg, open and fringe states with sg, and 7 with the empty
plan
until s is solved do
1 select an open state s in y (s,)
if s is a fringe state then expand s
else
L]’l(S) — minaEApplicable(s) [COSt(S’ a) + h(’)/(s’ Cl))]
T argminaeApplicable(s) [COSt(S, Cl) + h(')/(s, a))]

Algorithm 4.2. Expand&Update schema.

Recall that (s, 7r) is the transitive closure of a plan 7 on a state s, i.e., the sequence
of states generated by plan 7 from s (see Equation 2.8). We define solved and open
states as follows:

* A state s € Envelope is open if it is not a goal state and either it is a fringe state
or it is an interior state such that residual(s) = |h(s) — min,{Q(s,a)}| > €.
Thus a non-goal state s € Envelope is open if (s € Fringe) V (s € Interior A
residual(s) > €).

A state s € Envelope is solved if the current y(s,) has no open states, that is,
if Vs” € ¥ (s, mr) either s” € S, or residual(s’) < e.

The selection of an open state (line 1) must ensure that no state in ¥ (o, 7) remains
open indefinitely without being chosen for revision. Moreover, the expansion of a
fringe state (Line 2) generates more than one new fringe state, it is intended to apply
all applicable actions to the current state s and to add them to Fringe. These are two
main differences with respect to LRTA*, where (i) just one fringe state is generated at
each run, thus precluding the possibility to take alternative paths to the goal, and (ii)
open states that are not fringe states and that do not lead to the minimal cost (distance)
to the goal are not updated with a new value of 4 and a new plan. All of this is needed
to generate e-optimal solutions in one run.

The expansion of a fringe state changes the current plan 7 and hence y(sg, 7). At
any point, either a state s is open, or s is expanded in an open fringe state (whose
update will later make s open - Line 3), or s is solved. In the latter case, ¥ (s, 7r) does
not change anymore. Algorithm 4.2 iterates until sq is solved, that is, there is no open
state in ¥ (so, 7). With an admissible heuristic function, Algorithm 4.2 converges to
a solution which is asymptotically optimal with respect to €.

4.2 Learning Action Specifications 75

4.2 Learning Action Specifications

Acting and planning with (deterministic) models require the specification of actions
thorough their preconditions and effects. However, the manual specification of actions
is often an inaccurate, time-consuming, and error-prone task. Moreover, most often,
it is impossible to specify a complete and correct model of the world. Finally, most
of the times a model needs to be updated and adapted to a changing environment.

The automated learning of action specifications is widely recognised as a key and
compelling challenge to overcome these difficulties. To ensure the generality and re-
usability of the specification of actions, preconditions and effects are represented with
lifted action schemas (see Section 2.3.2), which are independent from the specific set
of objects involved in each planning domain.

Intuitively, the automated learning of action specifications is achieved by an actor
that applies actions in the environment or through a simulator. The actor learns action
specifications by observing the result of action applications.

The assumption that the actor does not know the model is similar to what happens in
reinforcement learning in the case of probabilistic models (see Chapter 10). Howeyver,
here the problem is different. The goal is not to learn a plan or a policy. The goal is
to learn the deterministic model, i.e., the (lifted) specification of actions through their
preconditions and effects.

In this chapter, we consider two different kinds of problems and approaches to
learning actions:

* Learning actions offline by analyzing a given and fixed set of traces, i.e., a set
of sequences alternating actions and states resulting from their application.

* Learning actions online, i.e., step by step by choosing an action to apply in
the current state, observing the result, and iteratively choosing and applying an
action in the reached state.

We will study the problem of learning action schemas in the case of full observ-
ability, i.e., when an actor has access to the value of all state variables in each state.
See Section 4.3 for a discussion on the problem of learning actions from observations
in which the value of some state variable is unknown, and/or some of the executed
actions might be missing.

The structure of the remaining chapter is as follows. In Section 4.2.1, we address
the problem of learning actions offline: we start from the hypotheses that all actions
in the trace are applicable. We then drop such assumption, allowing for inapplicable
actions in the trace, a key step for extending the learning algorithm in the case of
learning action models online. Indeed, in the online case, the actor chooses actions
to be applied step by step and it cannot know whether actions are applicable.

In Section 4.2.2, we address the problem of learning actions online, i.e., the case in
which an actor applies actions in the current observed state and observes the results of
such applications. Before addressing the online learning action problem, we consider
first the case of “learning by queries”. In this scenario, the actor chooses a state and
an action and gets the result of applying such action in such state. The intuition is
to query a platform that acts as an oracle and replies to the query with the results

76 4 Learning Deterministic Models

of action applications. We introduce here an important concept that is essential for
addressing the online learning problem: the notion of informative state-action pair.
Intuitively, a state and an action are informative when the application of that action
in that state allows the actor to learn something new about preconditions and effects.
This notion is important since a learning algorithm can guide the application of actions
to informative states. Moreover, the algorithm can know if there is anything more to
learn, or if it should terminate its task.

Once we have provided such basic concepts and routines, we address the problem
of learning actions online. Differently from learning by queries, in this case the
actor can not choose states arbitrarily at each step, but it must chose actions from
the current state. This is a much more realistic hypotheses than the assumption in
learning by query, since it mimics what happens in learning by acting in the real world,
and it deals with the problem of learning dynamically by the application of actions
in an unknown environment. Also in this case, the actor exploits the key notion of
informative state-action pair by looking for states where it can apply actions that allow
for learning something new. We devise an approach where the actor plans for reaching
an informative state where to apply an action in the current model. The application
of actions in the generated plan may fail, since the actor generates plans with an
incomplete and imperfect model, however the actor can learn also from failures.

4.2.1 Offline Action Learning

We recall the definition of (lifted) state variable, (lifted) assignment, and action
schemas (or action template) given in Section 2.3. (Ground) state variables are expres-
sions of the form x(cy, ..., c,), also written x(c), where cy, ..., ¢, are constants de-
noting typed objects. Lifted state Variables are expressions of the form x(zy, ..., z,),
also written x(z), where x is a state variable name and zy, . . ., z, are parameters of
given types. (Ground) assignments are expressions of the form x(cy,...,c,) = Cnt1,
where x is a state-variable name and cy, ..., ¢y, cyt1 are constants denoting typed
objects. Lifted assignments are expressions of the form x(zy, . .., 2,) = Zn+1, Where x
is a state-variable name and zy, . . ., Z,, Zn+] are parameters.

We recall the definition of action schema (see Definition 2.7 in Section 2.3.2):
a(zi,...,2k), also written a(z), is the head of an action schema with a the action
name and zp,...,z; a list parameters. We write a(cy,...,cg) (also written a(c))
as the head of an action grounded with the constants cyp,...,cx in place of the
parameters zi,...,2x. We call a(cy,...,cr) (also written a(c)) a ground action
name. Preconditions and effects are sets of lifted assignments.

We extend the notion of lifted state variable and lifted assignment by allowing for
a set of special constants which contains special symbols that denote constant values
that are generally used in any planning domain. For instance, we suppose we have two
special constants true and false of type Bool that denote the Boolean values “true” and
“false”. Indeed, in the case of Boolean state variables, we prefer to use the notation
x(c) = true and x(c) = false rather than x(¢) and —x(c), since this will allow us to use
a uniform representation for Boolean and non-Boolean state variables in the learning
algorithms.

4.2 Learning Action Specifications 77

The input to the problem of learning actions offline is a set of finite traces. A trace is
asequence sg, dj, S1,ds, - - - , dn, Sp+1 Of alternating states and action names with their
grounded parameters. The set of traces can be broken into a set 7" of transitions of the
form (s, a(c),s’).> Given a set of transitions T (or equivalently a set of traces), we
want to learn the preconditions and effects (sets of lifted assignments) of the actions
that appear in 7.6

We will start our approach to learning action schemas based on some simple rules
that are valid for ground assignments and actions.” Let pre(a(c)) and eff(a(c))
be the preconditions and effects of pre(a(z)) and eff(a(z)), resp., grounded with
constants ¢ (i.e., obtained by replacing parameters z with constants ¢ of the proper
type). Let (s,a(c),s’) € T be a transition, where s and s’ are states, and a(c) is a
ground action. Given a ground transition (s, a(c), s”), the following rules state when
a ground assignment x(c¢) = ¢ can be a ground precondition or a ground effect of a
ground action name:

1. If x(¢) =c¢ ¢ s, then x(c¢) = ¢ ¢ pre(a(c))
2. Ifx(c) =c ¢ s, thenx(c) = ¢ ¢ eff(a(c))
3. Ifx(¢) =c € s’ \ s, then x(c¢) = c € eff(a(c))

From these simple rules we can define the upper and lower bounds of grounded
preconditions and effects, given a set of transitions (traces) 7.

ocpre(ae)c (] s 4.1)
(s,a(c),s’)eT

s"\'s Ceff(a(c)) C ﬂ s’ 4.2)
(s,a(c),s’)eT (s,a(c),s’)eT

Equation 4.1 holds since a ground assignment cannot be a precondition if it is not
in every state s where the action a(c) is applied, and therefore only assignments that
are in all the states where action a(c¢) is applied may be preconditions of a(c¢). On
the other hand, the fact that a state variable has been observed in a state of the trace,
does not necessarily means that it is a precondition. It may be even the case that
action a(c) has no precondition at all, and therefore the lower bound of pre(a(c)) is
the empty set.

Equation 4.2 states that an assignment cannot be an effect if it is not in all the states
resulting from the application of an action. On the other hand, all the state variables
that have an assignment that in the resulting state s’ is different from the one in the
original state s are necessarily effects, and this is an upper bound for eff(a(c)).

SIndeed, the order of transitions in the trace does not influence the learning task. This is true in the
cased of full observability, in which there are not hidden state variables, i.e., the actor has access to
the value of all state variables in all states. In Section 4.3, we will briefly discuss works that deal with
partial traces with hidden state variables, where the order of transitions in a trace is important.

6With abuse of notation, we use T both for the trace and the set of transitions given in input to the
learning problem.

7In the literature, these rules are called the Safe Action Model (SAM) rules.

78 4 Learning Deterministic Models

Given these simple considerations, we can devise a first simple algorithm for
computing the lifted preconditions and effects from a set of transitions. Let 7 be a
set of transitions (s,a(c),s’). Let s(¢) denote the set of ground assignments in s
that contain only constants in ¢. s(z) is the result of the replacement of each ¢; in ¢
with z;. Algorithm 4.3 simply exploits the ideas underlying rules in Equation 4.1 and
Equation 4.2.

Action-Offline-Learning-Simple(T)
for a action name that appears in 7 do
L pre(a(z)) < Ns.a(e).syer $(2)
eff(a(2)) < Ucs,a(e),sner §'(2) \ s(2)

Algorithm 4.3. Simple Action Offline Learning.

Example 4.1. In this example, we consider the following trace: a robot is loaded,
then it moves to a target location where it gets unloaded, and finally the robot moves
back to the original location. The corresponding trace is the following:

T = (sp,load(r1), s, move(ri, 1,12), s», unload(r1), s3, move(ri,12,11), s4), where
so = {loaded(r1) = false, pos(r1) =1},
s1 = {loaded(r1) = true, pos(r1) =11},
5o = {loaded(r1) = true, pos(r1) = 12},
s3 = {loaded(r1) = false, pos(r1) = 12}
s4 = {loaded(r1) = false, pos(r1) = 11}

Algorithm 4.3 computes the following action schema:

load(r) unload(r) move(r,1,1")
pre : loaded(r) = false pre : loaded(r) = true pre : pos(r) =1
eff : loaded(r) = true eff : loaded(r) = false eff : pos(r) =1

This example gives an intuition of the fact that Algorithm 4.3 learns preconditions
that may be preconditions but are not guaranteed to be preconditions. Indeed, if the
trace would have stopped at state s3, we would have had loaded(r) = true in the
preconditions of move(r,[,1’), i.e., Algorithm 4.3 would have learned that a robot
can be moved from one location to another one only when it is loaded. O

Notice that, as clearly stated by Equation 4.1, the preconditions pre(a(z)) computed
by Algorithm 4.3 are not necessarily preconditions. In the following, we will indicate
with the notation pre,(a(z)) the fact the lifted assignments in pre,(a(z)) might be
preconditions, but are not guaranteed to be preconditions. We say they are potential
preconditions. ~ We call the preconditions that are guaranteed to be preconditions,
certain preconditions, and we write pre,(a(z)). On the contrary, Algorithm 4.3
computes in eff(a(z)) all the certain effects (we write them as effi(a(z))) that are

4.2 Learning Action Specifications 79

Action-Offline-Learning?!(T)
for a action name that appears in 7 do
pre?(a(zD — m(s,a(c),s’)eT S(Z)
effi(a(z)) « Us,ace),syer 5(2) \ s(z)
eff7(a(z)) — ﬂ(s,a(c),s’)eT S,(Z)

Algorithm 4.4. Action Offline Learning with potential and certain preconditions
and effects.

guaranteed to be effects, but not the potential effects, that we write as eff;(a(z))) .
In Algorithm 4.4, we refine the simple Algorithm 4.3 for offline learning taking into
account the difference between potential and certain preconditions and effects.

Example 4.2. Consider example Example 4.1. Algorithm 4.4 gives the following
results:

pre,(load(r)) = {loaded(r) = false}

eff\(load(r)) = {loaded(r) = true}

effy(load(r)) = {loaded(r) = true}

pre,(unload(r)) = {loaded(r) = true}
eff)(load(r)) = {loaded(r) = false}
eff\ (load(r)) = {loaded(r) = false}

pres(move(r,1,1")) = {pos(r) =1}
effi(move(r,1,1’)) = {pos(r) = 1"}
effo(move(r,1,1’)) = {pos(r) = 1"}

Notice that we could eliminate the potential effects that are also certain. O

We then address the interesting case in which we have a trace that includes non-
applicable actions, i.e., actions that may fail. Indeed we should have the possibility
to learn also from failure, and this will be important for on-line learning, since in the
online case we cannot be guaranteed that the selected actions are applicable in the
current state.

Let T be a set of triples (s,a(c),s’), where s is a state, a(c) is an action name
grounded with constants ¢, ..., ¢, and s’ is either a state or failure.

The result of Algorithm 4.5 is a quadruple of (pre,, pre,, effy, eff1). Notice that
Algorithm 4.5 introduces disjunctions in the preconditions, which are not allowed in
the classical formulation of action schemas. We have that :

1. For any x1(z) = 21 V -+ V x,(2) = z, € pre,(a(z)), there is an i such that
xi(z) = z;i € pre(a(z));

2. pre(a(z)) C preq(a(z))

3. effi(a(z)) C eff(a(z)) C eff2(a(z))

Algorithm 4.5 has an important advantage with respect previous algorithms! By
dealing with failures it can compute certain preconditions, i.e., preconditions that are
actually needed to apply the action. This is impossible without dealing with failure.

80 4 Learning Deterministic Models

Action-Offline-Learning-with-Failure(T")
1 for a action name that appears in 7 do
2 | pres(a(z) = N s(2)

(s,a(e),s’)eT
s’# failure

3| prey(a(z) « ol)LfJ_l : T\/(prev(a(z)) \ 5(2))
4 fora # B € pre,’(a(z’)) do
L if @ = B then

L remove £ from pre, (a)

6 effi(a(z)) « U s'(2)\s(z)
(s,a(c),s’)eT
s’ #failure

7 | eff(az) « N 5(z)
(s,a(c),s’)eT
s’ +# failure

Algorithm 4.5. Offline Action Learning with actions that may fail.

Example 4.3. This example is a simple extension of Example 4.1, where we start
by unloading an unloaded robot, an action that is not applicable. In this example
we suppose that the failing action leaves the situation unchanged, i.e., we stay in
the original state. We add to the transitions that can be extracted from the trace in
Example 4.1, the following transition:

(59 = {loaded(r1) = false, pos(r1) = 11}, unload(r1), failure)
Algorithm 4.5 gives the following results:

pre,(load(r)) = {loaded(r) = false}
pre,(load(r)) = @

eff)(load(r)) = {loaded(r) = true}
effy(load(r)) = {loaded(r) = true}

pre,(unload(r)) = {loaded(r) = true}
pre, (unload(r)) = {loaded(r) = true}
eff) (unload(r)) = {loaded(r) = false}
effy (unload(r)) = {loaded(r) = false}

pre,(move(r,1,1")) = {pos(r) =1}
pre,(move(r,l,l")) = @

eff;(move(r,1,1")) = {pos(r) = 1"}
effy(move(r,1,1”)) = {pos(r) = I’}

Notice how dealing with action application failures allows us to determine certain
preconditions. o

4.2 Learning Action Specifications 81

The learning algorithms presented so far in this section are based on the idea to
compute the preconditions and effects of an action a(¢) by analysing all the transitions
of the same action a(c) in 7. A different approach is to select a transition (in a trace)
and to incrementally update the preconditions and effects. This alternative approach
is particularly interesting, since it will allow us to provide the basic routines for online
action learning. Indeed in online learning (Section 4.2.2), we must incrementally
select an action an analyse the transition resulting from the action application.

The incremental offline algorithms Algorithm 4.6, Algorithm 4.7, and Algo-
rithm 4.8 are the incremental version of the offline algorithms Algorithm 4.3, Al-
gorithm 4.4, and Algorithm 4.5.

Action-Incremental-Learning-Simple(T’)
for a action name that appears in T do
pre(a(z)) < U
eff(a(z)) « @
while 7 # @ do
choose (s,a(c),s’) eT
pre(a(z)) « pre(a(z)) N s(z)
eff(a(z)) « eff(a(z)) Us'(2) \ s(2)
| T —Tn(s,a(c),s’)

Algorithm 4.6. A simple algorithm for Incremental Action Learning.

Action-Incremental-Learning?!(T")
for a action name that appears in T do
prey(a(z)) < U

| eff2(a(z)) < effi(a(z)) — @

while 7 # & do
choose (s,a(c),s’) eT
pre;(a(z)) < preqy(a(z)) N s(z)
effi(a(z)) « effi(a(z)) U s'(z) \ s(z)
eff2(a(z)) « eff2(a(z)) U s'(2)

L T < Tn{(s,a(c),s)}

Algorithm 4.7. Incremental Action Learning with potential and certain precon-
ditions and effects.

82 4 Learning Deterministic Models

Action-Incremental-Learning-with-Failure(T')
for a action name that appears in 7 do
pre;(a(z)) « effz(a(z)) < U

| prey(a(z)) «effi(a(z)) « @

while 7 # & do

choose (s,a(c),s’) €T

if s’ # failure then
pre,(a(z)) « pre(a(z)) N s(z)
effi(a(z)) « effi(a(z)) Us'(z) \ s(z)
effy(a(z)) « eff2(a(z)) Ns'(2)

else if there is no S € pre,(a(z)) s.t. B = \V(pre,(a(z) \ s(z)) then
| prey(a(z)) « pre,(a(z)) U{V(pre,(a(z)) \ s(2)))}
L T < Tn{(s,a(c),s)}

Algorithm 4.8. Incremental Action Learning with actions that may fail

4.2.2 Online Action Learning

While in offline learning we assume a set of transitions is given in input to the
learning algorithms, online action learning algorithms do not have a set of transitions
in input, but they must build the set of transitions by selecting actions to be applied
incrementally.

We start by defining a basic building block for online learning, i.e., learning from
the application of a ground action name. Algorithm 4.9 takes in input a state s, a
ground action name a(c), and a set of previously computed preconditions pre(a(z))
and effects eff(a(z)) of action a(z). It applies the action to the state s and stores the
result in s”, which might be a state if the action succeeds or failure if it fails. Notice
that the part of Algorithm 4.9 computing the preconditions and effects of the action
application is the same as in the incremental Algorithm 4.8.

Learn-by-action-application(s, a(c), pre(a(z)), eff(a(z))
s’ « apply action a(c) to state s
if s” # failure then
pre;(a(z)) « pre(a(z)) N s(z)
effi(a(z)) « effi(a(z)) U s'(z) \ s(z)
eff2(a(z)) « eff2(a(z)) Ns'(2)

else if there is no S € pre,(a(z)) s.t. B = V(pre,(a(z) \ s(z)) then
| pre,(a(z)) « pre,(a(z)) U {V (pre,(a(z)) \ 5(z)))}

Algorithm 4.9. Learning by action application.

We can now define a first version of an online algorithm, where learning is per-
formed by applying an action in a given state. We suppose we can freely select the

4.2 Learning Action Specifications 83

Naive-Learning-Actions-by-Queries(state variable and action names, C)
for each action name a do
pre,(a(z)) « effr(a(z)) < U (the universal set)
L pre,(a(z)) « effi(a(z)) « @
for all pairs (s,a(c)) do
| Learn-by-action-application(s, a(c), pre(a(z)), eff(a(z))

Algorithm 4.10. A naive version of Action Learning by Queries.

Learning-Actions-by-Queries(state variable and action names, C)
for each action name a do
pre,(a(z)) « effy(a(z)) « U (the universal set)
L pre,(a(z)) — eff(a(z)) — @
while there exists an informative state-action pair (s, a(c)) do
| Learn-by-action-application(s, a(c), pre(a(z)), eff(a(z))

Algorithm 4.11. Action Learning by Queries.

state where to apply the action (without knowing whether it will succeed or fail). It
is like we can query an oracle, or a system simulating the real environment, which
answers to the query with the result of the application of the selected action to the
selected state. We call this approach ”learning by query”.

Algorithm 4.10 takes as input a set of state variable names, a set of action names,
and a set of constants C. It represents a naive version of online learning by query in the
sense that blindly applies all possible ground actions to all possible states. There is no
attempt to select a pair action-state that could provide useful information to learn the
preconditions and effects. It does not exploit the real advantage of the online approach,
i.e., the fact that we can choose the action to apply in a given state, and therefore we
can choose an informative state-action pair, i.e. a state and a ground action that
allow the actor to learn preconditions and effects that have not been learned yet. The
intuition is that, during the learning process, a state-action pair is informative when
the application of the action to the state provides some further useful information,
thus allowing us to learn something more with respect to what we have learned so far.

During the learning process, a state-action pair (s, a(c)) is informative if all the
certain ground preconditions pre,(a(c)) hold in s, and at least one among the potential
preconditions pre,(a(c)) or one among the potential effects eff>(a(c)) does not hold
in s.

Intuitively, a state is informative for a given action if all the certain preconditions
of the action hold in the state so that we have a chance to apply the action; at least one
potential precondition/effect does not hold, so that we can understand whether it is a
certain precondition/effect or it is not a precondition/effect at all.

Given the notion of informative state-action pair, we can define Algorithm 4.11
that learns by querying the results of applying actions to states that allow learning

84 4 Learning Deterministic Models

something more, until no further informative state-action pair exists.

We are now going to drop a basic assumption underlying the approach in Algo-
rithm 4.11 to online learning by querying the results of applying a given action in a
given state. In the new scenario, we cannot select any state and query for the results
of applying an action in that state. We can instead sense the current state, and we can
then select an action to be applied in the current state. If the action succeeds, we get
to the state resulting from the application of the action. If the action fails, we get to
a state possibly different from the foreseen state. It maybe the same original state in
which we have applied the action, or another state, but we suppose we can go on with
the learning process.

Online-Action-Learning(state variable and action names, C)
for each action name a do
pre,(a(z)) « effy(a(z)) « U (the universal set)
L pre,(a(z)) « effi(a(z)) « @

plan 7 « ()
s < observe the current state
while True do
if 7 = () then
1 7 < a plan that leads from s to an informative (s’, a(c))
if 7 = nil then
| return (no informative pair state action is reachable from s)
me—mn-a(c)

a(c) « pop(r)

Learn-by-action-application(s, a(c), pre(a(z)), eff(a(z))
if the application fails then 7= « ()

L s « observe the current state

Algorithm 4.12. Online Learning of Action Models.

Algorithm 4.12 takes in input a set of state variable names, a set of action names, and
a set of constants C. It exploits the notion of informative state-action pair. However, it
cannot freely select an informative state-action pair, like in the query based approach
(Algorithm 4.11). It has to try to reach a state s where it can apply the action a(c)
such that (s, a(c)) is an informative state-action pair. Planning at Line 1 is performed
in a model with all the potential and certain preconditions that have been computed
at the moment. If no plan for an informative state-action pair exists, then from the
current state there is no reachable state such that we have an informative state-action
pair. This means there is nothing more we can learn, and the Algorithm 4.12 returns.
If a plan exists, then we add to the current plan the action a(c¢) of the informative
state-action pair, and we call the subroutine learning by applying the first action in the
plan to the current state (Algorithm 4.9). If the application fails, we plan again for a
different state where we have an informative state-action pair. If the action succeeds,
we go on by applying the next action in the plan. Notice that, if we are so lucky that

4.2 Learning Action Specifications 85

all actions in the plan are applicable, then the plan becomes empty, and we start by
planning again to reach a next state where we have an informative state-action pair.

Notice a further difference of Algorithm 4.12 with learning by query (Algo-
rithm 4.10 and Algorithm 4.11): the former constructs automatically a single trace of
action applications that may fail, while learning by query constructs a set of transitions
that are not necessarily connected in a trace.

Algorithm 4.12 is an example of “planning to learn”, in the sense that it plans to
try to reach an informative state-action pair. In spite of the fact that it plans in an
incomplete or even incorrect model, and the applications of actions of the generated
plans can fail, it uses planning to try to reach a state where we can apply an action
and learn new preconditions and effects. The main difference w.r.t. the “planning
to learn” paradigm depicted in Figure 1.2 is that learning and planning are tightly
integrated, since while we learn, we plan to learn from each single action application,
rather than collecting a set of training examples.

4.2.3 Comparing Offline and Online

Offline learning is the most common approach in research literature. The underlying
idea is that we have a log of plan executions, the corresponding traces or the cor-
respondng set of transitions, and from that log we learn what we can. Notice that
the offline learning algorithms presented in Section 4.2.1 guarantee to learn precon-
ditions and effects in the lower and upper bound defined by rules Equation 4.1 and
Equation 4.2. They are correct and complete with respect to the input trace, in the
intuitive sense that they do not learn an effect that is not an effect of an action and
they do not eliminate a precondition that is a precondition of the action. However,
what they can learn is limited to the specific set of transitions given in input. If the
set of transitions does not provide all the useful information, there is nothing offline
learning can do.

Online action learning is a different approach where we learn incrementally step by
step by applying actions in some states. Intuitively, the two algorithms that learn by
querying (Algorithm 4.10 and Algorithm 4.11) are correct and complete in a stronger
sense than the correctness and completeness guaranteed by offline algorithms. Indeed
they can query all possible state-action pairs and learn only and all the preconditions
and the effects that are actually preconditions and effects of an action. This in theory.
In practice, most often, the space of state-action pairs is huge, and cannot be explored
exhaustively.

The online algorithm that drops the assumption of freely selecting a state to apply
an action (Algorithm 4.12), and has instead to sense the current state and select an
action to apply in that state, does not guarantee to reach all the possible states of the
state space, like “learning by querying” does. Indeed, it depends on which is the
initial state that is sensed, since there might be states that are unreachable from such
state. Moreover, some actions might not be reversed (simple dead end), or it may
end up in a complex dead end (i.e., a state that leads to a loop that does not allow the
algorithm to get out of that loop). Algorithm 4.12 guarantees to learn all and only
the preconditions and effects with respect the reachable states in the case of safely

86 4 Learning Deterministic Models

explorable models (there are no irreversible actions or loops without a possibility to
exit from the loop), i.e., it learns everything it can learn in a model with only the
reachable states from the initial sensed state.

In spite of the fact that learning by query algorithms have the possibility to explore
the whole space of state-action pairs, Algorithm 4.12 that senses the current state
and that can apply actions only in the current state is much more interesting. On the
one hand, it pursues a more difficult approach, due to the fact that it “cannot jump
arbitrarily from one state to another”; it can only apply actions in the current state
where the actor is. As a consequence, it can fry to reach an informative state-action
pair by planning, but there is no guarantee to reach it since the model that has been
learned so far can be incomplete and incorrect.

On the other hand, it works in a scenario that is much more realistic, where it
is possible to learn from applications of actions in a real environment, and can be
used to incrementally and dynamically learn in a (partially) unknown environment.
The choice of the action to apply is an important step. We can indeed interleave
a learning phase with an exploration phase that selects the actions to apply. We
could use different heuristics for the exploration phase in the style of what is done
in reinforcement learning for probabilistic domains, see Chapter 10. However, such
techniques do not exploit the idea of informative states, and therefore they are not
devoted to generate informative traces, i.e. traces leading to informative states. It is
true that, since we do not know whether actions are applicable, in the case of online
learning by planning (Algorithm 4.12), we are not guaranteed to reach an informative
state, but the important point is that we can try to get there and learn also from failure.
In this way, we can guarantee that we get to all informative states that are reachable.

4.3 Discussion and Bibliographic Notes

Since the seminal work on learning for planning in deterministic domains [360, 203,
1124, 421, 1124, 1126, 580, 331, 574], and the first approaches to learning action
models by integrating learning, planning, and execution [382], research in learning
for planning has addressed different kinds of problems. For instance, the work
in [247] focuses on learning action-sequences as macro-actions to use them as an
heuristic during search; [579] introduces the notion of explanation based learning,
which involves using prior knowledge to explain why training examples have given
some labels, and uses this explanation to guide the learning. In [1206], a model-lite
approach is proposed to do planning, where a planner is supposed to work with an
incomplete model and using a probabilistic approach to learn and update the model.
See [1236, 556] for general reviews of machine learning for planning.

In the following sections we focus on recent work on learning heuristics (Sec-
tion 4.3.1) and learning action specifications (Section 4.3.2).

4.3.1 Learning Heuristics

In Section 4.1, have shown a way to learn domain dependent heuristics using tech-
niques based on value iteration (see Section 9.1.3 in Chapter 9) and adapting them

4.3 Discussion and Bibliographic Notes 87

to deterministic models. Algorithm 4.1 (LRTA*) has been devised in [639]. There
has been indeed a lot of work on learning heuristics or value functions to control the
search (see, e.g., [174, 1225, 191]).

Recent works have addressed the task of improving domain independent heuristics
by exploiting the notion of relaxed-plan for STRIPS domains. The works in [1207,
1210] use machine learning to improve given domain independent heuristics. They
use linear regression to learn the difference between the actual distance-to-go and the
estimate given by a relaxed-plan heuristic. Each feature in the feature space for linear
regression is an integer valued function of the state, the goal, and the set of actions.
The feature space strongly correlates with the length of the shortest plan to the goal,
and improves the heuristic w.r.t. the one purely based on relaxed plans, which ignores
delete-lists and often underestimates the distance to the goal. The work in [1196]
builds on [1207] by incorporating ideas from structural prediction and exploiting
the power of discriminative machine learning approaches. The learning method
discriminates between “good” and “bad” states rather than attempting to precisely
model the distance to the goal. It takes into account the actual search performance of
the heuristic during the learning phase by iteratively updating the heuristic in response
to observed search errors.

Greedy heuristic search performance in several combinatorial search domains are
investigated in [1179]. Their results suggest that heuristics that exhibit strong corre-
lation with the distance-to-go are less likely to produce large local minima. The work
in [1180] makes use of the Kendall rank correlation coefficient to select a pattern
database. The work in [385] improves heuristics in a greedy best-first search ex-
ploiting the ordering of states induced by the original heuristics rather than ordinary
least-squares regression.

While most of the works based on relaxed plans improve existing heuristics, the
approach presented in [1006] learns domain independent heuristics from scratch. It
is based on a deep learning recurrent encode-decode neural network based on hyper-
graph networks, i.e., a generalization of graph networks to hyper-graphs, induced by
the delete-relaxation relaxed plans. The work in [222] extends the results in [1006]
with grounded and lifted graph representations of planning tasks suitable for learning
domain-independent heuristics, learning in this way heuristics that allow planners to
solve large problems. Other recent works make use deep learning techniques. For
instance, [972] combines multiple heuristics values by using a neural network whose
features are the different available heuristics. In a different approach, [49] generates
a sequence of heuristics from a given weak heuristic and a set of unsolved training
instances. The training instances that can be solved using the weak heuristic provide
training examples for a learning algorithm that produces a heuristic that is expected
to be stronger than the weak heuristic. If the weak heuristic cannot solve any of
the given instances, random walks create a sequence of successively more difficult
training instances starting with ones that are guaranteed to be solvable by the weak
heuristic. The process is then repeated, producing a sequence of heuristics until a
sufficiently strong heuristic is produced.

The work in [1093] proposes an interesting and effective approach that learns
heuristics online, during search, without requiring expensive pre-training. The works

88 4 Learning Deterministic Models

in [346, 730] use imitation learning to generalize neural networks heuristics over
the states in the state space of the given instance. In [347], heuristics are learned
from scratch using states as the neural network input, Generalized heuristics can be
learned in the absence of symbolic action models using deep neural networks that
utilize an input predicate vocabulary but are agnostic to object names and quantities
[585]. Potential heuristics are introduced in [912]. They represent heuristics as a
linear combination of state features, whose evaluation is performed by summing the
weights of all features that are true in a state. The computational complexity of
potential heuristic synthesis for satisficing planning in studied in [497]. The work
shows that the problem of synthesizing a dead-end avoiding potential heuristic is
PSPACE-complete and thus as hard as planning.

The learning of heuristics for classical planning is an active field of research, and
a workshop on Heuristics and Search for Domain-independent Planning (HSDIP) is
dedicated every year at the main conference on planning (ICAPS).

4.3.2 Learning Action Specifications

Several works have addressed the task of learning action specifications and have
provided important results from different perspectives and according to different as-
sumptions. We structure this section by discussing existing work in learning action
preconditions and effects according to the offline and the online approach (Sec-
tion 4.3.2 and Section 4.3.2, respectively). We conclude the section by discussing
some first attempts to learn deterministic action specifications from continuous per-
ceptions (Section 4.3.2).

Offline approaches

A lot of research has been done on learning action specifications offline. The rules in
Equation 4.1 and Equation 4.2, which specify the lower and upper bounds for ground
preconditions and effects, and which provide the basis for the offline algorithms
presented in Section 4.2.1, are called SAM (Safe Action Model) rules. They have
been first introduced in [1057]. This work addresses the problem of learning ground
preconditions and effects for safe model free planning, a planning problem whose
input are state atomic variables, initial and final state, and traces. This work has
been extended to the problem of learning lifted preconditions and effects in the
case of fluents (Boolean state variables) in [563]. Further extensions can deal with
probabilities [562], with numeric action models [808], and in a multi agent setting
[807]. The aforementioned works address the problem of learning action specificatons
in the case of full observability.

Further offline approaches address the problem with different assumptions on the
observability of states and actions. ARMs [1200] learns sTrips action models from a
set of successfully observed plans, without observing intermediate states, and making
use of a Max-sAT solver. sLAF [37] learns action models with universal quantifiers
in effects, with partial observability of states, and making use of a sAT solver. LaAMP
[1232] learns action models with quantifiers and logical implication, under the hy-
pothesis of partial observability, and using Markov logic networks. In [814], the

4.3 Discussion and Bibliographic Notes 89

authors learn action models with noisy and incomplete observations of states, and
from successful and failing executions of actions. AMAN [1233] learns STRIPS action
models from plan traces without observing states and from plans whose actions have
a probability of being observed incorrectly (noisy actions). The work in [844] pro-
poses a genetic algorithm to learn macro-actions (with negative preconditions) given
a domain and action sequences. LocM?2 [262] learns from action sequences without
any information about states, neither the initial nor the final state. The approach does
not require to know the predicates of the planning domain. The rFama system [18]
learns sTRrIPS action models from examples by transforming the learning task into a
classical planning task. The approach works with different kinds of inputs, from a set
of plans to just a pair of initial and final states, without intermediate actions or states.
Moreover, it accepts in input partially specified action models. The also provides an
extensive and detailed comparison and classification of state of the art approaches
to offline action model learning. The work in [672] proposes a technique based on
probabilistic inference to learn action specifications from plan traces that are obtained
by observing the environment states through noisy sensors.

The works in [164, 954] provide a framework for learning first-order symbolic
representations from plain graphs, i.e., state transition systems generated by the
execution of plans. While most of the works in offline learning action models assume
that the actor gets input traces in the appropriate symbolic representation, a major
distinguishing characteristic of this work is that the action model is learned from non-
symbolic data, such as graphs representing the state transition system generated by the
applications of actions. Moreover, the authors do not assume knowledge of the action
schemas, predicate symbols, or objects. In particular, they learn action specifications
that produce state-space graphs isomorphic to the input ones, by encoding the learning
problem as a SAT problem. While in [164] the input graphs are assumed to be
complete and without noise, in [954] these assumptions are relaxed by exploiting a
more efficient encoding of the learning problem in answer set programming. Graph
Neural Networks are exploited as a solver to learn generalized policies in [1053].
The work in [15] provides a general framework that, given in input a state transitions
system, is able to synthesize different target languages for action specification, such
as the synthesis of STRIPS action models, or the update rule of a cellular automaton.
Given a set of examples of state-transitions, represented as (pre-state, action, post-
state) tuples, the actor synthesizes a structured program that, when executed on a
given pre-state, outputs its associated post-state. The synthesis method implements
a combinatorial search in the space of well-structured terminating programs that can
be built using a Random-Access Machine (RAM). In [1077], the authors propose an
approach to learn type-generalized actions that can transfer to a variety of different
and unknown situations and entities.

There are also works addressing the problem of learning action specifications by
using natural language processing. For instance, the work in [14] proposes to use
a neurosymbolic approach based on Logical Neural Networks, where neurons have
meanings in weighted real-valued logic, to learn lifted logical operator models in
PDDL through neuro-symbolic Inductive Logic Programming.

Most of the aforementioned approaches relax the assumption of full observability,

90 4 Learning Deterministic Models

they can deal with state variables whose value may be not accessible (hidden) in some
states, and some of them deal even with noisy states and noisy actions. All of them
assume that the actions to be executed is given in input with plan traces, and therefore
do not deal with the problem of guiding the exploration phase towards informative
applications of actions.

Online approaches

Since the seminal work on online learning of operators [421, 1153], and the first
approaches to learning action models by integrating learning, planning, and execu-
tion [382], recent approaches have addressed the problem of online and incremental
learning of action models. 3SG [211] is an online algorithm that learns probabilistic
action models with conditional effects and deals with action failures, sensory noise,
and incomplete information.

In [1191], the authors describe an instance-based online method for learning action
models in relational domains. The work is extended to deal with both discrete
and continuous action models in [1192, 1193]. The works in [952, 951] propose
a technique based on relational reinforcement learning to learn deterministic action
models, and [953] extends the approach to deal with nondeterministic actions.

oLAM [674] learns lifted action models (expressed in PpDL) under the the assumption
of perfect (non-noisy) full observability of actions and the states reached by the
agent. oLaM learns action models online, incrementally during the execution of
plans, by combining and interleaving the activity of learning action preconditions
and effects with an exploration phase that selects which plan to execute. Its main
distinguishing characteristic is the ability to generate online informative traces, an
important advantage w.r.t. all the offline approaches. oLam generates informative
traces by searching for informative states. Indeed, the idea of informative state-action
pair presented in Section 4.2.2 has been inspired and adapted from [674]. While in
Section 4.2.2 we deal with state variables, the work in [674] is limited to Boolean
state variables. The oLam online learning algorithm has been proved to be correct
and complete for reachable states.

The work in [443] addresses the problem of repairing action specifications that are
incomplete or incorrect. It uses automated planning to repair errors in the specification
of actions that render the planning task unsolvable. This work focuses on missing
action effects, which can compromise the task’s solvability.

The work on planning by reinforcement learning (RL) [1070] (see Chapter 10),
shares some similarities with the online approaches to learning action models, since
both approaches learn action models online by applying actions in a simulated en-
vironment or by actually acting in a real world environment. However, both model
based and model free RL focuses on learning policies for probabilistic models rather
than action models for deterministic domains. Moreover, RL generates policies for
state transition systems, where states and actions are atomic and ground. The work on
action model learning deals with the different problem to learn lifted preconditions
and effects, that can define the behaviour of actions in general, in different states.
Finally, the work presented in this chapter does not require the definition of a reward

4.3 Discussion and Bibliographic Notes 91

function, a task that can be difficult and not natural in some cases.

Learning actions from continuous perceptions

The approach described in this Chapter is based on the assumption that perceptions
are mapped directly into the value of state variables. In both the offline and the online
approach, we assume that the actor gets the results of the application of an action in
the appropriate symbolic representation.

However, in many applications, there is a huge gap between real perceptions and the
symbolic abstract representation in state variables. Most often, an actor perceives the
world and acts in it through sensors and actuators that work with data in a continuous
space, typically represented with variables on real numbers.® For instance, a robot
does not perceive directly the fact that it is in a given room/state, instead it perceives,
e.g., to be in a position of the building through sensors like odometers or images from
its RGB camera.

It is part of the cognitive capability of the actor to fill the gap between these two
different levels of abstractions. For this reason, it is important to study and devise
approaches that address the problem of learning how to map perceptions and observa-
tions represented with continuous variables into abstract models, in our case abstract
deterministic symbolic models. While the problem of designing and implementing a
mapping from continuous variables representing perceptions to abstract representa-
tions has been studied extensively, the problem of learning an abstract representation
from continuous perceptions, as well the problem of learning the mapping between
continuous perceptions and abstract representations, is far from obvious and it is de-
serving more and more research. For this reason, in the following, we discuss some
recent and different approaches to learning deterministic models from continuous
perceptions in the environment.

Causal INFOGAN [657] learns discrete or continuous models from high dimensional
sequential observations with the objective to generate an execution trace in the high
dimensional space. LATPLAN [58, 57] takes in input pairs of high dimensional raw
data (e.g., images) corresponding to transitions. It takes an offline approach. In a first
phase, a State Autoencoder learns a mapping between raw data and abstract states,
represented as vectors of binary state variables. In the second phase, LATPLAN learns
a transition function from the state pairs obtained by applying the mapping learned in
the first phase to the training pairs. Planning is finally applied to the learned model.
LaTtPLAN has been shown experimentally to work with high dimensional data like
images. In [714], the authors propose a framework that learns action models from
parsed images given in a language used to describe 2D objects. The approach does
not require to know the predicates of the planning domain.

In [637], STRIPS models are constructed by learning the Boolean atoms of the
preconditions and effects of actions. The basic assumption is that a continuous model
of the world is available, and that it is possible to know a fixed set-theoretic mapping
from the continuous model to the deterministic classical planning domain.

8Even [164, 954], which try to learn action specification from execution graphs, do not deal with
perceptions in a continuous space.

92 4 Learning Deterministic Models

PAL [996] is based on a framework to learn a deterministic state transition system
from observations of continuous variables through a perception function estimating
the likelihood of being in a given state of the transition system. In [673], the idea
is extended with a PDDL-based deterministic symbolic model that guides the explo-
ration of the environment to learn the state transition system online and to scale up to
large state spaces. OGgamus [675] learns online the grounding of PDDL deterministic
models by exploring unknown environments, mapping sensory data into symbolic
states, and extending the signature of the symbolic model with new constants repre-
senting new objects discovered online in the environment. In [198], a state transition
system is learned incrementally in an unknown environment. The learned model is
reused for tackling the object goal navigation task. Each state is an abstraction of
perceptions from high-dimensional sensory data (e.g., RGB-D images). A “planning
for learning” approach (see Figure 1.2) is proposed in [676], where symbolic planning
in a PDDL representation is used to train automatically a neural network for learning
object properties by continuously collectomg training data obtained by exploring the
environment. This work is extended in [677] by learning the PDDL preconditions
under which the agent can perceive correctly an object property. The quality of the
prediction of a deep neural network is evaluated by identifying, via clustering, which
are the circumstances in which the predictions are correct with a certain level of
confidence. In [1183], an end-to-end framework learns probabilistic state predictions
from sequences of image-action pairs and infers lifted action schema.

A complementary approach is pursued in works that plan and learn directly in a
continuous space, see e.g., [5], [797], [243]. These approaches do not require an
abstract discrete model of the world. Such approaches are very suited to address some
tasks, e.g., moving arobot arm to a desired position or performing some manipulations.
However, in several situations, it is conceptually appropriate and practically efficient
to learn an abstract discrete and deterministic model where planning is much easier
and efficient to perform.

Approaches based on Large Language Models (LLMs) (see Chapter 23) constitute a
potential new trend that in the future could be related to learning action specifications
(see, e.g, [865])

The issues dealt by the above mentioned works on learning actions from contin-
uous perceptions have also been addresses extensively and in depth by the robotics
community, which has addressed the general problem of dealing with actuators that
have to perform actions and sensors that perform perceptions in the real world (see,
Part VII).

4.4 Exercises

4.1. Refine and implement the schema presented in Section 4.1.1, Algorithm 4.2.

4.2. Given a set of transitions (s, a, s’), and a relaxed plan heuristic /g how would
you train a neural network to learn a better heuristic?

4.3. Rewrite the algorithms in Section 4.2.1 and Section 4.2.2 in the case all state
variables are Boolean.

4.4 Exercises 93

4.4. How would you extend the algorithms in Section 4.2.1 and Section 4.2.2 in the
case some of the state variable values are hidden in some states?

4.5. How would you extend the algorithms in Section 4.2.1 and Section 4.2.2 in the
case some of the state variable values are noisy, i.e., they do not provide a correct
value for sensors?

Part Il

Hierarchical Task Networks

Though this be madness, yet there is method in’t.

William Shakespeare, Hamlet, circa 1600

Hierarchical Task Network (HTN) planning and acting operates at multiple levels
of abstraction. Given a network of fasks that are activities to perform, the actor
or planner refines’ them into smaller and smaller tasks, proceeding until it finds
executable actions. For the simple DWR domain in Figure 2.2, the following figure
shows one way this might be done:

retrieve(c3)

obtain(c3,d2) deliver(c3,d1)

|move(r2,d3)| |move(r1 ,d2)| |take(r1 ,c3,p2)| |move(r1 ,d1)| |take(r1 ,03,p1)|

Figure I1.1. Refinement of tasks into smaller tasks.

The refinement process is guided by HTN methods, each of which specifies a way
to refine a task into subtasks. Some tasks may have several applicable methods, each
of which proposes a different refinement, in which case the actor or planner may need
to try several different refinements to find the best one for the problem at hand.

By specifying standard ways to perform tasks, HTN methods can implement not
just the end-state constraints used in classical planning, but also constraints on a
plan’s trajectory that are difficult to encode as classical actions—as may occur in
batch recipes, medical procedures, standard operating procedures, and the like. Fur-
thermore, by focusing the search on specific ways to solve a problem, HTN methods
can reduce the size of a planner’s or actor’s search space.

9Most of the HTN planning literature calls this decomposing the tasks, but we call it refining for
consistency with the rest of this book.

94

Free pre-publication, for personal use only. To be published by Cambridge University Press.

95

In complicated applications, significant effort may be needed to ensure that the
HTN methods are correct and complete. Of course, similar effort may be needed to
develop classical representations of complicated application domains [481].

This part is organized as follows. Chapter 5 is about representing HTN methods
and using them for planning. Chapter 6 describes a reactive HTN acting procedure,
some ways for an actor to use HTN planning algorithms, and some ways to recover
when problems occur during plan execution. Chapter 7 describes some algorithms
for learning HTN methods from example plan traces.

Later, in Parts VI and V of the book, some of the HTN concepts will be generalized
to represent and reason about probabilistic action outcomes or temporal durations.

5 HTN Representation and Planning

This chapter is about representing HTN planning domains and solving HTN planning
problems. Because HTN representation formalisms add HTN tasks and methods to
classical domain models, several of the formal definitions require the same restrictions
as in Part I. Most practical HTN implementations, however, loosen or drop several of
these restrictions, such as the ones discussed in Remark 2.6.

This chapter is organized as follows. Section 5.1 is about ways to represent and solve
planning problems in which there is a totally ordered sequence of tasks to accomplish.
Section 5.2 generalizes these to allow partially ordered tasks. Section 5.3 describes
ways to combine classical planning and HTN planning. Section 5.4 briefly discusses
heuristic functions, expressivity, and computational complexity.

5.1 Totally Ordered Tasks

This section is about total-order HTN planning, which deals with totally ordered
sequences of tasks. We will use the definitions of action schemas, object variables,
and goal formulas in Chapter 3, and add definitions of tasks and methods.

Definition 5.1. A task is any of the following syntactic entities:

1. A primitive task is an instance (either ground or unground) of an action schema.
2. A compound task is a term of the form name(zy, ..., zx), where name is a

symbol called the task’s name, and each z; is an object or an object variable.
3. A goal task is a classical goal formula, that is, a set of literals.

Compound tasks and goal tasks are also called nonprimitive tasks. O

Definition 5.2. A rotal-order HTN method is a tuple
m = (head(m), task(m), pre(m), subtasks(m)) 5.1

where:

* head(m) is a syntactic expression of the form name(z, . . ., zx), where name is
a symbol called m’s name and (zy, . . ., zx) is a list of zero or more parameters.

* task(m) is a nonprimitive task. This is the task for which m is relevant, and
depending on its type, m is either a compound-task method or goal method.

 pre(m) is a set of zero or more literals that are called m’s preconditions.

* subtasks(m) is a sequence of zero or more tasks that are called m’s subtasks.

e If m is a goal method, then to ensure that m will accomplish task(m), the last

element of subtasks(m) must be either task(m) or a primitive task a such that
eff(a) [task(m).

96

Free pre-publication, for personal use only. To be published by Cambridge University Press.

5.1 Totally Ordered Tasks 97

* The parameters in head(m) are not required to be object variables; they may
also be object constants and state variables.! However, every object variable
that occurs anywhere in m must also occur somewhere in head(m). O

Notation and terminology: Rather than writing methods as tuples, we usually will
use the following pseudocode format:

name(z1,22, ..., 2k)

task: ¢
pre: pi,....Pm
sub: f1,...,t,

which says that head(m) = name(zy, ..., zx), task(m) = t, pre(m) = {p1,..., Pm}>
and subtasks(m) = {t1,...,t,}.

Example 5.3. Let X be the classical planning domain in Example 2.1, and consider the
goal task {pile(c) = p}. Here is a method for this task. Its parameters are r € Robots;
d € Docks; ¢, ¢’ € Containers; and p € Piles:

m1-put-in-pile(r, ¢, p, d)
task: {pile(c¢)=p}
pre: at(p, d), pile(c) # p, cargo(r) =nil
sub: get-container(r, ¢), navigate(r, d), put(r, ¢, top(p), p, d)

The preconditions require that pile p is at loading dock d, container c¢ isn’t already
part of p, and robot r isn’t carrying anything.

The first two tasks in the subtask list are compound, and Example 5.4 will give
methods for them. The last subtask is an instance” of the put action in Example 2.8,
and its effects include pile(c) = p. This satisfies the requirement in Definition 5.2 for
the last subtask of a goal method. O

5.1.1 Total-Order HTN Planning Domains

A total-order HTN planning domain is a tuple
2 = (ZC’M)v (52)

where X is a classical planning domain in state-variable representation, and M is a
set of total-order HTN methods subject to the following restrictions: every m € M
has a unique name, every parameter of m is an object variable, and every argument
of task(m) is an object variable.

Because every object variable in m is a parameter of m, it follows that every instance
of m can be unambiguously identified by its head. Thus when referring to an instance
of m, we will usually will write just its head rather than the entire method.

IThis is to allow m to be an instance of another method. Later, Equation 5.2 will require that in HTN
domain definitions, the methods’ parameters all are variables.

2Some HTN formalisms would not allow top(p) to appear in the subtask’s argument list. To satisfy
such a restriction, we can replace top(p) with a new variable ¢’, and give the method an additional
precondition ¢’ = top(p). Similar changes can be made to the other methods in this chapter.

98 5 HTN Representation and Planning

| d3

% 2 Figure 5.1. The state sy in Equa-
rlj 7 ic3 y,, tions.e6.

OO p

d2 &3

We let

Ground(M) = {all ground instances of methods in M}. (5.3)

A ground method m is applicable in a state s if s | pre(m). Furthermore, m is
relevant for a task ¢ if either 7 is a compound task and task(m) = ¢, or ¢ is a goal task
and task(m) = r. We let

Methods(s,t, M) = {m € Ground(M) | m is applicable in s and relevant for ¢}.
(5.4)

If ¢ is a goal task, then
Actions(s,t) = {a € Applicable(s) | y(s,a) [t}. (5.5

Example 5.4. Let X. be a classical planning domain in which the objects, rigid
relations, and states are the same as in Example 2.1 except that there is only one robot,
r1, and the actions are the ground instances of the action schemas in Example 2.8.
Figure 5.1 shows the following state:

so = {cargo(r1) =nil, loc(r1) =df,
occupied(d1) =T, occupied(d2)=F, occupied(d3)=F,
pile(c1) =p1, pile(c2) =p2, pile(c3) =p2, (5.6)
pos(c1) =nil, pos(c2) =c3, pos(c3) =nil,
top(p1) =ci, top(p2) =c2, top(p3) =nil}.

The total-order HTN planning domain is £ = (X;, M), where M contains eight
methods. They have the following parameters with the following ranges: r € Robots;
¢ € Containers; d,d’ € Docks; p, p’ € Piles.

The first method in M is m1-put-in-pile from Example 5.3. Next are two methods
for m1-put-in-pile’s subtask get-container:

m1-get-container(r, ¢) m2-get-container(r, ¢, p, d)
task: get-container(r, ¢) task: get-container(r, c)
pre: cargo(r)=c pre: cargo(r) =nil, pile(c) =p, at(p, d)
sub: // no subtasks sub: navigate(r, d), uncover(c),

take(r, ¢, pos(c), p, d)

The method m1-get-container is for the case where r is already carrying ¢ and thus
nothing needs to be done. In m2-get-container, the first precondition makes it appli-
cable only if 7 is not carrying anything, and its other two preconditions ensure that p
and d have the correct values. Its uncover and navigate subtasks are described in the

5.1 Totally Ordered Tasks 99

following paragraphs, and the take is one of the actions in Example 2.8. There are no
methods for cases where r is carrying something other than c.
Next are two methods for uncover(c), the task of removing all containers above c:

m1-uncover(c) m2-uncover(r,c, p,c’, p’, d)
task: uncover(c) task: uncover(c)
pre: top(pile(c)) =c¢ pre: pile(c) =p,top(p)=c’,c’#¢c, (1)
sub: // no subtasks at(p,d),at(p’,d),p+p’,)
loc(r) =d, cargo(r) = nil 3)

sub: take(r, c’,pos(c’), p,d),

pUt(r’ C” top(p/)’ p/’ d)’
uncover(c)

The method m1-uncover is for the case where nothing needs to be done because ¢
is at the top of its pile. In m2-uncover, the three lines of preconditions require that
(1) ¢ is in a pile p but not at the top of p, (2) both p and another pile p’ are at the
same loading dock d, and (3) r is at d and isn’t carrying anything. The subtasks are
to move r to d, remove the topmost container above ¢, and call the task uncover(c)
recursively. The recursive calls will remove the rest of the containers above c.

Finally, there are three methods for navigate(r, d), the task of moving r to d. We
include them for illustrative purposes, but we do not recommend using them unless
the planning domain is quite small, because they can produce a huge search space. A
domain-specific heuristic function could be used to avoid most of the search space,
but in most practical applications one would instead use a route-planning algorithm.
Here are the three methods:

m1-navigate(r, d) m2-navigate(r, d’, d)
task: navigate(r, d) task: navigate(r, d)
pre: loc(r)=d pre: adjacent(d’, d), loc(r)=d’
sub: // no subtasks sub: move(r,d’,d)

m3-navigate(r, d’, d)
task: navigate(r, d)
pre: loc(r) # d, —adjacent(loc(r), d), adjacent(loc(r), d”)
sub: move(r,loc(r),d’), // primitive task
navigate(r, d) // compound task

If r is already at d, m1-navigate is applicable and does nothing. If r’s location is
adjacent to d, m2-navigate moves r to d using the action move in Example 2.8. If r’s
location is not adjacent to d, then m3-navigate moves r to another dock d’ and calls
navigate recursively to try to get from d’ to d.

Thus the methods in M are m1-put-in-pile, m1-get-container, m2-get-container,
m1-uncover, m2-uncover, mi-navigate, m2-navigate, and m3-navigate. |

IfX = (£, M) is a total-order HTN planning domain and (O, R, X, A) is the state-
variable representation of X., then the tasks in ¥ include task(m) for every ground

method m in M, every set of literals in %, and every instance of the action schemas
in A.

100 5 HTN Representation and Planning

Example 5.5. In Example 5.4, all instances of put-in-pile(c, p), uncover(c), and
navigate(r, d) are compound tasks. The goal tasks include all sets of literals
in ., hence include m1-put-in-pile’s goal task {pile(c)=p}. All instances of
take(r, c,c’, p,d), put(r,c,c’, p,d), and move(r, d, d’) are primitive tasks. O

5.1.2 Total-Order HTN Planning Problems

Definition 5.6. A rotal-order HTN planning problem is a tuple P = (X, 59, T), where
Y = (¢, M) is a total-order HTN planning domain, s¢ is P’s initial state, and T is a
sequence of ground tasks.

Solutions for P are defined inductively as follows. If 7" is empty, then the empty
plan () is a solution for P. Otherwise, let ¢ be the first task of 7, so that T = ¢-T’
where T” is a (possibly empty) sequence of tasks. Then:

1. If ¢ is an action in Applicable(so), then for every solution x for the problem
(2, y(so,1),T’), the plan ¢ - xr is a solution for P.

2. If t is a compound task or goal task and m € Methods(sg,t, M), then every
solution for the problem (X, s¢, subtasks(m)-T”) is also a solution for P.

3. If ¢ is a goal task and a € Actions(so, 1), then® for every solution 7 for the
problem (X, y(s9,a),T”), the plan a - 7 is a solution for P.

4. If t is a goal task and s¢ |= t, then every solution for the problem (X, 59, T”) is
also a solution for P.]

Example 5.7. Let £ and sg be as in Example 5.4, and suppose we want to move
container ¢1 to pile p2. The goal task is {pile(c1) = p2}, so the planning problem is

P = (Z, so, {({pile(c1) = p2})), (5.7)
which has one solution:
m = (take(r1,c1,c2,p1,d1), move(rl,di,d2), put(r1,ci,c3, p2,d2)).

Figure 5.2 is a refinement tree (see next paragraph) that shows the derivation of 7. O

Definition 5.8. Let 7 be a solution for a total-order HTN planning problem P =
(%, 50,T). A refinement tree for r is a tree in which each node is a tuple

v = (label(v), content(v), parent(v), Children(v)),

where label(v) is a unique identifier, content(v) is a ground task or ground method,
parent(v) is v’s parent, and Children(v) is a sequence of children. As a special case,
the root node has content(v) = root and parent(v) = nil.

The nodes are organized as follows:

¢ Root node. 1If content(v) = root, then for each ¢; in T, v has a child v; with
content(v;) = t;. Notice that if T is empty then v has no children.

3The requirement that a € Actions(sg,t) prevents arbitrary action sequences from being solutions,
unlike in classical planning.

5.1 Totally Ordered Tasks 101

root

goal task t|
{pi|e(C1|)=p2)}

method m,
m1-put-in-pile(r1,c1,p1,d1,p2,d2)

compound task t, compound task t, action a
get-container(r1,c1) navigate(r1,d2) put(r1,c1,c3,p2,d2)
method m, method m;
m2-get-container(r1,c1,p1,d1) m2-navigate(r1,d2)
compound task t, compound task ts action a, action a,
navigate(r1,d1) uncover(c1) take(r1,c1,nil,p1,d1) move(r1,d1,d2)
method m, method ms
m1-navigate(r1,d1) m1-uncover(c1)
(no children) (no children)

Figure 5.2. A refinement tree (see Definition 5.8) for the plan x in Example 5.7. At each
node, the first line gives the kind of node and its label, and the second line is the node’s
content.

* Action nodes. If content(v) is a primitive task (hence an action, because v is
ground), then v has no children.

* Compound-task nodes. 1f content(v) is a compound task and m is the ground
methods that refined it, then v has one child v’, with content(v') = m.

* Goal-task nodes. 1f content(v) is a goal task and m is the ground method
or action that refined it, then v has one child v/, with content(v') = m. If
content(v) wasn’t refined because it was already true in the current state, then
v has no children.

* Method nodes. 1f content(v) is a ground method m, then for each task ¢#; in
subtasks(m), v has a child v; with content(v;) = t;. Note that if subtasks(m) is
empty then v has no children.

Ifr ={ai,...,a,),thenay,...,a, will be the contents of the tree’s action nodes in
left-to-right order. O

5.1.3 Total-Order HTN Planning Algorithms

Algorithm 5.1, TO-HTN-Forward, is a nondeterministic total-order HTN planning
algorithm based on Definition 5.6. In Line 1, it calls the subroutine HTN-Get-
Candidates to get a set M of candidate ground methods and actions for the first

102 5 HTN Representation and Planning

TO-HTN-Forward(Z., M, 5,T)
if 7 is empty then return ()
t « the first element of T; T’ « the rest of T
1 M <« HTN-Get-Candidates(Z., M, s, 1)
if M = & then return failure
nondeterministically choose m € M
switch m do
2 case /m is an action do
7 < TO-HTN-Forward(Z., M, y(s,m),T”)
if 7 # failure then return m -z
else return failure

3 case m is a ground method do
| return TO-HTN-Forward(Z., M, s, subtasks(m)-T")

HTN-Get-Candidates(Z., M, s, t)
switch 7 do
4 case ¢ is an action do
if 7 is applicable in s then M « {a}
else M — &

5 case t is a compound task do M «— Methods(s, t, M)
ase 7 is a goal task do

M «— Methods(s,t, M) U Actions(s, t)

7 if s E¢then M «— M U {null}

=)
(<)

rgturn M

Algorithm 5.1. TO-HTN-Forward, which plans for totally-ordered tasks.

element t of 7. The subroutine’s cases correspond to the if parts of Definition 5.6’s
numbered clauses:

* Line 4 corresponds to clause 1, in which ¢ is an action. If ¢ is applicable in s,
then it is put into M.

* Line 5 corresponds to clause 2, in which task(7) is a compound task. In this
case, the ground methods that are both relevant and applicable are put into M.

* Line 6 corresponds to clauses 2, 3, and 4, in which task(7) is a compound task.
For each applicable clause, the candidates it produces are put into M.

* Line 5 corresponds to item 4, in which ¢ is already true. To implement this
case, null is a dummy method with no preconditions and no subtasks.*

Once it has M, TO-HTN-Forward nondeterministically chooses an element of M and

4Line 7 is written to ensure that when s | ¢, TO-HTN-Forward will consider both empty and nonempty
plans for achieving ¢, because a nonempty plan might have side-effects that are needed later in 7.
However, if the HTN methods in X are well-written then such situations should not occur. In this
case, TO-HTN-Forward’s search space can be reduced by changing Line 7 to M « {null}.

5.1 Totally Ordered Tasks 103

calls itself recursively in lines 2 and 3, which correspond to the “then” parts of
Definition 5.6’s numbered clauses.

TO-HTN-Forward can be proved sound and complete by induction (see Exercise 5.5).
If (£, s,T) is a solvable total-order HTN planning problem and 7 is the empty plan,
then at least one of TO-HTN-Forward’s nondeterministic traces will return a solution
plan.

Algorithm 5.2, TO-HTN-Forward-Det, is a deterministic version of TO-HTN-
Forward. Its Frontier, Children, and Expanded sets are like the ones in Forward-
Search-Det, but each node is a triple (77, s, T) in which 7 is a plan, s = y(sg, 7), and T
is a sequence of tasks. Line 2 produces the same effect as line 7 of TO-HTN-Forward.

Algorithm 5.3, TO-HTN-Forward-RT, is a modified version of TO-HTN-Forward
that makes a subtree for each ¢+ € T and returns a refinement tree like the one in
Figure 5.2. It should be called with parent = nil. Its subroutine RT-Make-Node is for
making new nodes and adding them to the tree. In Line 1, the if test excludes special
cases in which a new node isn’t needed.

TO-HTN-Forward-Det(Z., M, s¢, Tp)
Frontier «— {({), s0,To)} //{initial node}
Expanded «— &
while Frontier # & do
1 selectanode v = (m, s,T) € Frontier
remove v from Frontier and add it to Expanded
if 7 = () then return 7
t « the first element of T; T’ « the rest of T
switch ¢ do
case ¢ is an action do
if 7 is applicable in s then Children «— {(x-t,y(s,t),T")}
else Children «— @

case ¢ is a compound task do
L Children « {(n, s, subtasks(m)-T") | m € Methods(s,t, M)}

case f is a goal task do
Children <« {(r-a,y(s,a),T’) | a € Actions(s,t)}
U {(m, s, subtasks(m)-T’) | m € Methods(s,t, M)}
2 if s = 7 then Children <« Children U {(r,s,T’)}

prune O or more nodes from Children, Frontier and Expanded
Frontier « Frontier U Children

return failure

Algorithm 5.2. TO-HTN-Forward-Det, a deterministic version of TO-HTN-
Forward.

104 5 HTN Representation and Planning

TO-HTN-Forward-RT (2., M, s, T, parent)
if parent = nil then parent «— RT-Make-Node(root, nil)
foreachr € T do
v <« RT-Make-Node(t, parent)
M «— HTN-Get-Candidates(Z., M, s, 1)
if M = & then return failure
1 if 7 is not an action and ¢ # null then v «— RT-Make-Node(m, v)
nondeterministically choose m € M
if m is a ground method then
if TO-HTN-Forward-RT(Z., M, s, subtasks(m), v) = failure then
L | return failure

else if m is an action then s <« y(s,1)

return parent

RT-Make-Node (task-or-method, parent)
| « anew label that depends on task-or-method
v « anew node (I, task-or-method, parent, {))
if parent # nil then append v to Children(parent)
return v

Algorithm 5.3. TO-HTN-Forward-RT, which returns a refinement tree. It should
be called with parent = nil. The subroutine HTN-Get-Candidates is the same as
in TO-HTN-Forward.

5.1.4 Serially Solvable Planning Problems

A total-order HTN planner’s search space can be greatly reduced if its planning
problem P = (Z, so, T) is serially solvable, a condition that is defined inductively as
follows. If T = () then P is serially solvable. If T # (), then let 7 be the first element
of T,sothat T = ¢-T’ for some 7’. Then P is serially solvable if for every plan 7 that
solves (X, sg, (t)), the planning problem (X, y(sg, 7), T’) is serially solvable.

Example 5.9. The planning problem in Example 5.4 is serially solvable. O

If P = (%, 59, (t1, ..., 1)) is serially solvable, then whenever TO-HTN-Forward-Det
finds a plan ; to accomplish #1, it can prune all of the other paths in its search space,
because P is guaranteed to have a solution that starts with ;. Applying this argument
repeatedly, each time it find plans for 5, . . ., #,, it can prune all of the other paths in
its search space. Algorithm 5.4, TO-HTN-Serial, is an algorithm that works this way.

If a planning problem is not serially solvable, a planner may still be able to prune
large parts of its search space if parts of the problem are serially solvable.

5.2 Partially Ordered Tasks

Sometimes it is undesirable to specify a total order on a set of tasks. If several possible
orderings are acceptable, then we might want to specify a partial ordering and let the

5.2 Partially Ordered Tasks 105

planner decide which total ordering to use. To represent partially ordered tasks, we
define a partially ordered task network to be a pair

T =(T, <), (5.8)

where T is a set of task nodes and < is a partial ordering of T. Each task node is a pair
7 = (label(t), task(7)), where task(7) is a task and label(7) is a unique identifier.
Thus a task may occur in 7 more than once with different labels.

In this section, “task network” will mean a partially ordered task network.

A partial-order HTN method is a tuple

m = (head(m), task(m), pre(m), subtasks(m), <,,,), 5.9

where head(m), task(m), and pre(m) are as in Equation 5.1, and (subtasks(m), <;,)
is a task network. We normally will write partial-order HTN methods as pseudocode
instead of tuples; Example 5.10 will give several examples.

5.2.1 Planning Domains and Problems

A partial-order HTN planning domain is a pair

2= (Z, M), (5.10)

TO-HTN-Serial(Z., M, 5,T)
)
while 7 # () do
t « the first element of T; T <« the rest of T
if ¢ is an action then
if ¢ is not applicable in s then return failure
s —y(s,t); me—m-t

else if 7 is a goal task and Actions(s,t) # & then
arbitrarily select a € Actions(s, t)
| s« v(s,a); m—m-a

else

M «— Methods(s,t, M)

if M = @ then return failure

nondeterministically choose m € M

7’ < TO-HTN-Serial (X, M, s, subtasks(m))

if 77 = failure then return failure
se—y(s,n'), ne—m-n’

return o

Algorithm 5.4. An algorithm for serially solvable total-order HTN planning prob-
lems.

106 5 HTN Representation and Planning

where 2. = (S, A, y, cost) is a classical planning domain and M is a set of partial-
order HTN methods.

Total-order HTN planning can be viewed as a special case of partial-order HTN
planning, because total-order HTN methods can be translated into equivalent partial-
order HTN methods in linear time. For a total-order HTN method with subtasks
f1, ...y, the corresponding partial-order HTN method has a label /; for each ¢;, with
ordering constraints [| < I, < ... <[,.

E'

pl

Figure 5.3. A DWR example in which cranes are at loading docks, not on robots.

Example 5.10. Let X; be the DWR domain shown in Figure 5.3, in which the cranes
are at loading docks, not on robots. The rigid relations and state variables in X are
like the ones in Example 2.1, but with three differences. First, if k is a crane, then
at(k, d) means that k is attached to loading dock d. Second, there is a new state
variable holding(k) whose value is either a container c if k is holding ¢, or nil if k is
empty. Third, the range of pos(c) is Cranes U Piles U nil.

The action schemas for X, include move from Example 2.8, and also the following:

unstack(k,c,c’, p,d) // take container c from pile p
pre: at(k, d), at(p, d), holding(k) =nil, pos(c) =¢’, top(p) =c¢
eff: holding(k) <« ¢, pos(c) « k, pile(c) < nil, top(p) « ¢’

stack(k, c,c’, p,d) // put container c onto pile p
pre: at(k, d), at(p, d), holding(k) =c, top(p) « ¢’
eff: holding(k) < nil, pos(c) =c’, pile(c¢) « p, top(p) =c¢

unload(k, c,r,d) // take container c from robot r
pre: at(k, d), holding(k)=c, loc(r)=d
eff: cargo(r) « ¢, pos(c) « r, holding(k) « nil

load(k,c,r,d) // put container c onto robot r
pre: at(k, d), holding(k) =nil, loc(r) =d, cargo(r) =c
eff: pos(c) « k, holding(k) < ¢, cargo(r) « nil

In the partial-order HTN domain, put-on-robot(c, r) is the task of putting container
¢ onto robot r. Here is a method to do this when r is empty, c is at the top of a pile p,
and an empty crane is available. The method’s partial-ordering constraints say that
navigate and unstack may be done in either order, but both must be done before load.

5.2 Partially Ordered Tasks 107

m1-put-on-robot(k, ¢, ¢’,r,d, p)
task: put-on-robot(c,r)
pre: cargo(r) = nil,top(p) = ¢, at(p, d),
attached(k, d), holding(k) = nil

sub: (11, navigate(r, d)), // compound task
(t2, unstack(k, ¢, c’, p,d)), // action
(t3,load(k, c,r,d)) // action

<: t1 <13, t2<13

The navigate task has two methods that are adaptations of the ones in Example 5.4:

m1-navigate(r, d) m2-navigate(r, d’, d)
task: navigate(r, d) task: navigate(r, d)
pre: loc(r)=d pre: adjacent(d’, d), loc(r)=d’
sub: // none sub: (11, move(r,d’, d))
<: // none <: // none
The partial-order HTN planning domain is ¥ = (X, M), where M =
{m1-put-on-robot, m1-navigate, m2-navigate}. O

Here are some basic operations on ground task networks.” Let 7] = (T, <1) and
T = (T, <2) be ground task networks that have no labels in common. Then:
¢ The union of 77 and 75 is 71 U T = (T1 U T», <1 U <»).
* If 7 is a task node in 77, the task network produced by removing T from 771 is

Ti\ {7} = (T}, <)), (5.11)

where 7] = T1 \ {r}, and <] is the restriction of <; to 7.

e Let m = (head(m), task(m), pre(m), subtasks(m), <,;,) be a ground method
that is relevant for 7. Then the task network produced from 77 by refining T
with m is

refine(71,7,m) = (T] U subtasks(m), <] U <z U <p,), (5.12)

where 7| and <] are as in Equation 5.11, <; is a partial ordering that constrains
the nodes of Tl’ that were before (or after) T to be before (or after, respectively)
the nodes of subtasks(m). Formally, for every 7| € T] and 7,, € subtasks(m),
if 71 <y T then 71 <; 15, and if T <; 7 then 7,,, <, T1.

A partial-order HTN planning problem is a tuple
P=(Z,50,7), (5.13)

where X is a partial-order HTN planning domain, sq is the initial state, and 7 is a
ground task network.

Solutions to partial-order HTN planning problems can be defined in two ways. In
the following definition, they are ordinary (totally ordered) plans. An alternative is to
allow the plans to be partially ordered.

5These operations can be generalized to unground task networks and methods, by renaming object
variables so that 77, 77, and m have no variable names in common.

108 5 HTN Representation and Planning

root root
task t;, task t,,
put-on-robot(c1,r1) put-on-robot(c1,r1)
method m| method m,,
m1-put-on-robot(c1,r1) m1-put-on-robot(c1,r1)

task t,,
navigate(r1,d2)

action a3
load(k2,c1,r1,d2)

task t,,
navigate(r1,d2)

action a,, action a,, action a,,
unstack(k2,c1,c2,p2,d2) unstack(k2,c1,c2,p2,d2) load(k2,c1,r1,d2)
method m |, method m,,
m2-navigate(r1,d2) m2-navigate(r1,d2)
action ay; action a,,
move(ri,d1,d2) move(ri,d1,d2)
(a) refinement tree for 4 (b) refinement tree for

Figure 5.4. Refinement trees for Example 5.12. At each node, the first line tells what
kind of node and gives its label, and the second line is the node’s content.

Definition 5.11. A solution for a partial-order HTN planning problem P = (X, sg, 7)
is defined inductively as follows. If 7~ is empty, then () is a solution for P. If 7~ is not
empty, then let 7 be any task node in 7~ that has no predecessors in 7, let ¢ = task(7),
andlet 7/ =7 \ {r}. Then:

1. If ¢ is an action in Applicable(sy), then for every solution 7 for the problem
(%, v(s0,1),7"), the plan ¢ - 7 is a solution for P.

2. If ¢ is a goal task or compound task and m € Methods(so,t, M), then every
solution for the problem (X, sq, refine(7, T, m)) is also a solution for P.

3. Iftis a goal task and a € Actions(s, t), then for every solution 7 for the problem
(%, v(s0,a),T"), the plan a - is a solution for P.

4. If t is a goal task and s |= t, then every solution for the problem (X, sg, 7) is
also a solution for P. O

If 7 is a solution for P, then the definition of a refinement tree for r is the same as
Definition 5.8, with 7~ substituted for 7.

Example 5.12. Let X be as in Example 5.10, so be as in Figure 5.3, and 7 = (7, <),
where T = {put-on-robot(c1,r1)} and < is empty. Then P = (X, 59,7) has two
solutions, which are identical except for the ordering of the first two actions:

1 = move(ri,d1,d2), unstack(k2,c1,c2,p2,d2), load(k2,c1,r1,d2),

n = unstack(k2,c1,c2,p2,d2), move(r1,d1,d2), load(k2,c1,r1,d2).

Figure 5.4 shows refinement trees for both of them.]

5.2 Partially Ordered Tasks 109

PO-HTN-Forward(2., M, s, T)
if 7 is empty then return ()

1 nondeterministically choose a node 7 in 7 that has no predecessors in 7~
foreach 7’ in 7~ that has no predecessors in 7 do

2 L if 7/ # 7 then add ordering constraints to 7 to make 7 < 7’

t « task(7)
M «— HTN-Get-Candidates(X., M, s, 1)
if M # o then
nondeterministically choose m € M
if m is an action then
7 < PO-HTN-Forward(Z., M, y(s,a), T \ {t})
L if © # failure then return a -7

else if m is a ground method then
| return PO-HTN-Forward(Z¢, M, s, refine(7", T, m))

return failure

Algorithm 5.5. A planning algorithm for partially-ordered tasks. The subroutine
HTN-Get-Candidates is the same as in TO-HTN-Forward.

5.2.2 Partial-Order HTN Planning

Algorithm 5.5, PO-HTN-Forward, is a straightforward implementation of Defini-
tion 5.11. In the definition, ¢ = task(7) is always the first task in the solution. Lines
1-2 of the algorithm choose this task and ensure that it will come first. The rest of the
algorithm uses Equations 5.11 and 5.12 for removal and refinement of nodes in 7,
but otherwise is nearly identical to TO-HTN-Forward. A partial-order HTN version
of TO-HTN-Forward-RT can also be written.

PO-HTN-Forward can be proved sound and complete by induction. If a partial-
order HTN planning problem (Z, s, 7") has at least one solution, then at least one of
PO-HTN-Forward’s nondeterministic traces will return a solution.

5.2.3 Plan-Space partial-order HTN Planning

We now describe a plan-space planning algorithm for partial-order HTN problems. It
is identical to PSP, Algorithm 3.11, except that it has an additional parameter, the set
of methods M. However, there are changes to some of the definitions of the entities
that PSP manipulates. More specifically:

1. The definitions of partially-ordered plans and solutions are unchanged.

2. A partial plan is a 4-tuple 7 = (V, E, act, C) as in Equation 3.20, but with two
changes. First, in each node v, act(v) may be either a primitive task (an action)
or a nonprimitive task. Second, in Equation 3.21, act(v,) may be either an
action, or a goal task that contains x=b or x # b’.

3. Except for the new definition of a partial plan, partial solutions are the same as
in Definition 3.12.

110 5 HTN Representation and Planning

Relevant-Methods(M, 7)

M —

foreach m € M such that task(m) and task(7) have the same name and
same number of arguments do

m’ « a copy of m

rename the variables in m’ to avoid name conflicts with 7

let yi,..., Yy, be the parameters of task(m”)

fori=1,...,ndo

in m’, replace each occurrence of y; with the i’th argument of
L task(7)

add m’ to M

Algorithm 5.6. Relevant-Methods, which finds a set of methods that are relevant
for 7 and have no name conflicts. Depending on 7, the methods may be either
ground or unground.

4. A partial plan may have three kinds of flaws. In addition to the open goals and
threats defined in Section 3.4.2, 7 has a compound-task flaw at every node v
such that act(v) is an unrefined compound task. A resolver for this flaw is a
relevant method m that has no name conflicts with the variables in 7. Such
an m can be found using Relevant-Methods(M, 7), Algorithm 5.6. The flaw
can be resolved by replacing v with a sequence of nodes vy < ... < vg, where
act(vg) is the goal task pre(m), and act(vy), ..., act(vy) are the subtasks of m.

5. For open-goal flaws, the “establish p by adding a new action” resolver is not
allowed. Instead, p must be established using an action in 7. We will loosen
this restriction in Section 5.3.

If P = (Z,50,7) is a partial-order HTN planning problem, then the following
partial solution 7p = (V, E, act, C) represents P:

* V includes a node vy in which act(vg) = ap is a dummy action for sy as
in Equation 3.20. For each task node v € 7, V includes a node v, with
act(v;) = task(r).

* For each node 7 in 7 that has no predecessors, E includes an edge (v, v.).
For each precedence constraint 7 < 7/ in 7, E includes an edge (v, V).

e C=0.

With the preceding changes, if P is a solvable partial-order HTN planning problem
and we call PSP(Z, 7p), then one or more of its nondeterministic execution traces
will return a solution.

5.3 Hybrid HTN/Classical Planning

Because the solutions to an HTN planning problem depend on M, an HTN planner
may return failure in some situations where a classical planner would return a solution.

5.3 Hybrid HTN/Classical Planning 111

In some cases, this failure may be deliberate. HTN methods can often be a convenient
way to encode restrictions that would be more difficult to write as classical action
preconditions. For example, if a shuttle bus is supposed to follow a certain route from
a to b, then one might write HTN methods that can only produce that route, regardless
of whether there are other routes from a to b.

In other cases, the failure might be unintentional. In complicated environments,
the methods in M might not be sufficiently comprehensive to cover every situation
that may occur—either because the domain author failed to consider some edge cases,
or because the domain author preferred to use a hybrid planning approach, that is, to
write HTN methods for some of the domain and let the planner use other planning
techniques elsewhere.

Hybrid planning is sometimes called fask insertion, the idea being that the planner
can modify the task network by inserting tasks that are not subtasks of anything
already in the network. We now give several examples.

if M = @ then
L M «— Applicable(s) U {m € Ground(M) | m is applicable in s}

Algorithm 5.7. Hybrid-planning pseudocode to insert into HTN-Get-Candidates,
just after Line 7.

Hybrid forward search. In TO-HTN-Forward and PO-HTN-Forward, inserting a
new task into T or 7 is roughly equivalent to inserting an action or ground method
that is relevant for the task. One possibility is to do this whenever a planning problem
would otherwise be unsolvable. For example, the pseudocode in Algorithm 5.7 will
modify TO-HTN-Forward and PO-HTN-Forward to add all applicable actions and
ground methods to M when it is empty, instead of returning failure. If the modified
algorithms are called with M = &, they will behave like Forward-Search.

if M = & then
Landmarks «— RPG-Landmarks(Z, s, g)
M — Ug erandmarks Actions(s, g") U Methods(s, g’, M)

if M = @ then
L M — Applicable(s) U {m € Ground(M) | m is applicable in s}

Algorithm 5.8. Pseudocode for landmark-based hybrid planning, to insert into
HTN-Get-Candidates just after Line 7.

We may prefer to add to M only some of the applicable actions and methods, such
as the ones that are relevant for some landmarks (defined in Section 3.2.3). If this set
is empty, we then can try adding all applicable actions and methods. The pseudocode
in Algorithm 5.8 will make TO-HTN-Forward and PO-HTN-Forward do this.

112 5 HTN Representation and Planning

Hybrid plan-space planning. A naive way to get hybrid planning would be to mod-
ify the partial-order HTN version of PSP (see Section 5.2.3) to nondeterministically
choose, at each iteration of the while loop, either to execute lines 1-3 or add to 7 a
nondeterministically chosen task r. However, without any constraints on ¢, this would
work very poorly: there would be an immense state space with a huge branching
factor.

Here is a hybrid-planning version of PSP that is much more focused. We take the
classical PSP algorithm in Section 3.4 and make all of the changes in Section 5.2.3
with one exception: we omit item 5, that is, we allow the “establish p by adding a new
action” resolver to be used. This gives the algorithm all of the plan-space planning
capabilities in Section 3.4. We also add the following resolver for open goals, so that
the algorithm can use goal methods to resolve them:

o Establish p using a goal method. Let p be an open goal, and m be a standard-
ized® goal method such that p is an instance of task(m). Then the following
modification to 7 is a resolver for p:

Add to 7 a new node v’ with act(v’) = m, instantiate variables of m

to make task(m) match p, add a causal link v’ 2, v, and add edges
(vo,v’) and (v, v) to E so that vg < v/ < v.

5.4 Heuristics, Expressivity, Complexity

Here are brief discussions of heuristic functions, expressivity, and computational
complexity for HTN planning.

Heuristic functions. Section 3.1.4 described how to use heuristic functions for
node selection in classical planning algorithms, and heuristic functions similarly can
be used for node selection in TO-HTN-Forward-Det and PO-HTN-Forward. It would
not work well to take the heuristic functions in Section 3.2 and use them directly,
but there are ways to translate them into heuristic functions for HTN planning. The
details of those translations are rather complicated.

Heuristic functions can also be developed using a data structure called a task de-
composition graph, an And/Or graph that is like a union of all the possible refinement
trees for the planning problem. There is a root node similar to the one in a refinement
tree. For each ground task ¢, there is an Or-node whose children are all of the appli-
cable ground methods relevant for ¢. For each ground method, there is an And-node
whose children are the subtasks. The graph can be created once when the planning
domain is defined, and searched whenever heuristic values are needed. We omit the
details of these approaches, but Section 5.6.3 cites relevant publications.

Expressivity. partial-order HTN planning is more expressive than total-order HTN
planning, which is more expressive than classical planning. The details of the proof

OThat is, the object variables in m have been renamed to avoid name conflicts.

5.5 Refinement of Abstract Actions 113

depend on the theory of formal languages, but the basic idea is as follows. partial-
order HTN planning has equivalent expressive power to context-sensitive languages:
each partial-order HTN planning problem’s set of solutions corresponds to a context-
sensitive language, and vice versa. Similarly, total-order HTN planning has equivalent
expressive power to context-free languages, and classical planning has equivalent
expressive power to regular languages. There are context-sensitive languages that are
not context-free, and context-free languages that are not regular languages.

Several subsets of total-order HTN planning can be translated to classical planning.
Total-order HTN planning can also be translated into propositional logic. These
translation techniques have been used as a basis for efficient total-order HTN planners
(see Section 5.6.1).

Computational complexity. Undecidable problems can be encoded as total-order
HTN planning problems, and thus also as partial-order HTN planning problems.
Again we will skip the details of the proof, but it involves taking a well-known undecid-
able problem—whether two context-free languages have a nonempty intersection—
and encoding it as a total-order HTN planning problem.

Hybrid total-order HTN/classical planning is EXPSPACE-complete, and hybrid
partial-order HTN/classical planning is 2-NEXPTIME-complete. These complex-
ity results are intermediate between the complexity of classical planning and HTN
planning.

As in Section 2.5, these are worst-case results. In many planning domains the time
complexity is much lower: many are polynomial in the average case, and some are
polynomial even in the worst case.

5.5 Refinement of Abstract Actions

Another variant of HTN planning is to refine abstract actions. Like tasks, these are
complex activities that need to be accomplished, but they have preconditions and
effects somewhat like those of the non-abstract actions in Section 2.3.2.

5.5.1 Representation

We will represent abstract actions as ground instances of abstract-action (AA)
schemas, where each such schema is a triple @ = (head(a), pre(a), eff(a)). Al-
though AA schemas and abstract actions may appear syntactically identical to
their non-abstract counterparts, their semantics is different. In an abstract action
a = (head(a), pre(a), eff(a)),

* head(a) is a task to be refined,

¢ pre(a) is a precondition that must be true when the task begins,

¢ the “effect” eff(a) is similar to a goal: it is a condition that must be true when
the task finishes.

Given a state s that satisfies pre(a), a planner will try to refine a into a plan 7 such
that y (s, n) = eff(a).

114 5 HTN Representation and Planning

For simplicity of presentation, we will focus on sets of abstract actions that are
totally ordered. A total-order AA method is a tuple

m = (head(m), task(m), pre(m), subtasks(m), eff(m)), (5.14)

such that

* head(m), task(m), and pre(m) are as in Definition 5.2.

* subtasks(m) is a sequence of actions. Each action may be lifted, ground, or
partially instantiated, and may be either abstract or non-abstract.

* eff(m) is a condition that must be true after completion of subtasks ().

A ground method m is relevant for an abstract action a if task(m) = head(a) and
eff(m) [eff(a). By analogy to Equation 5.4, if g is a set of literals, a is an abstract
action and M is a set of total-order AA methods, then

Methods(g,a, M) = {m € Ground(M) | g |= pre(m) and m is relevant for a}.
(5.15)

A total-order AA planning domain is a triple £ = (2., A, M), where X; is a
classical planning domain, A is a set of abstract actions, and M is a set of AA
methods. An abstract plan is a sequence of actions, each of which may be either
abstract or non-abstract. A fotal-order AA planning problem is a tuple P = (X, sg, A),
where X is a total-order AA planning domain, sq is an initial state, and A is an abstract
plan.

A solution for a total-order AA planning problem P = (X, sg, A) is a non-abstract
plan that is defined inductively as follows. If A = (), then A itself is a solution for P.
Otherwise, let a be the first action in A, so that A = a- A’ for some A’. Then:

1. If a is non-abstract and is applicable in sg, then for every solution & for
(Z,v(s0,a),A"), the plan a - is a solution for P.

2. If a is abstract and m € Methods(s,a, M), then every solution for
(X, so, subtasks(m)-A’) is also a solution for P.

If A is a non-abstract plan, it follows from the definition that if A is applicable in sg
then A is P’s only solution, and otherwise P has no solution.

5.5.2 Adaptations of HTN Algorithms

It is straightforward to write total-order AA adaptations of the planning algorithms
in Sections 5.1, 5.2, and 5.3 and the heuristic functions in Section 5.4. In Algorithm
5.9, which is based on TO-HTN-Forward, ¥ = (X, A, M) is the planning domain
and P = (X, 59, A) is the planning problem. If P is solvable, then at least one of the
nondeterministic traces will return a solution. Otherwise they all will return failure.

By analogy to Section 5.1.4, serial solvability of P is defined recursively as follows.
If A = () then P is serially solvable. Otherwise, let a be the first element of A, so
that A = a- A’ for some A’. Then P is serially solvable if for every plan 7 that solves
(%, 50, {(a)), the planning problem (X, y(sg,), A’) is serially solvable. TO-HTN-
Serial can easily be modified to produce a TO-AA-Serial algorithm for serially-solvable
total-order AA planning problems.

5.5 Refinement of Abstract Actions 115

TO-AA-Forward(Z, A, M, s, A)
if A is empty then return ()
a < the first element of A; A’ <« the rest of A
if a is abstract then
1 M « Methods(s,a, M)
if M # & then
nondeterministically choose m € M
L return TO-AA-Forward(Z., A, M, s, subtasks(m)-A")

else if a is applicable in s then
7« TO-AA-Forward(Z., A, M, y(s,a), A’)
if 7 # failure then return a -7

return failure

Algorithm 5.9. TO-AA-Forward, an AA adaptation of TO-HTN-Forward.

5.5.3 Angelic Refinement

A total-order AA domain X = (Z., M), is downward refinable if for every abstract
action a in X and every state s that satisfies pre(a), Methods(s, a, M) is nonempty.
In other words, whenever s |= pre(a) there is at least one m € Ground(M) such that

task(m) = head(a), s Fpre(m), and eff(m) [eff(a).

In a downward-refinable total-order AA domain, an abstract plan A is angelically
refinable if A is empty, if A contains a single action, or if A is a sequence of n actions
A ={ay,ay, ...,a,) such that

eff(ay) E pre(az), eff(ay) Fpre(as), ..., eff(ay—1) [pre(an).
If A is angelically refinable then we define

{pre(a), if a is the first action in A,
pre(A) = .
a, if A= ().

A planning problem P = (X, sg, A) is angelically solvable if A is angelically refin-
able and sg |= pre(A). Obviously, most total-order AA planning problems are not
angelically solvable—but the ones that are can be solved very quickly.

If P is angelically solvable then it is serially solvable, so it can be solved by the
TO-AA-Serial algorithm mentioned at the end of Section 5.5.2. However, it also can
be solved more simply using Algorithm 5.10, TO-AA-Angelic.

TO-AA-Angelic is similar to TO-HTN-Serial and TO-AA-Serial, but it omits several
of the failure tests and makes a deterministic rather than nondeterministic choice.
For angelically solvable planning problems, it will always return solutions, and for
unsolvable problems it will always return failure. For planning problems that are
solvable but not angelically solvable, it might or might not return solutions.

116 5 HTN Representation and Planning

TO-AA-Angelic(Z., M, s, A)

T ()

while A # () do
1 a < the first action in A; A « the rest of A
if a is abstract then
2 arbitrarily select any m € Methods(s,a, M)
7’ « TO-AA-Angelic(X, M, s, subtasks(m))
se—vy(s,n'); me—m-1’

else if a is applicable in s then
L s —vy(s,a); m—nm-a

else return failure

return o

Algorithm 5.10. TO-AA-Angelic, a planner for angelically refinable domains.

We have only defined angelic refinability and solvability for total-order AA planning
domains. However, it is possible to write similar definitions for total-order HTN
planning domains, and a TO-HTN-Angelic algorithm similar to TO-AA-Angelic.

5.6 Discussion and Bibliographic Notes

5.6.1 General Background

The first HTN planning systems began to be developed in the mid-1970s [970, 1079].
They did plan-space HTN planning in a manner somewhat like the algorithm in
Section 5.2.3, but with several other elaborate features [1172, 264]. There also was
work that used planning-graph techniques to make plan-space HTN planning more
efficient [737, 736].

In addition to preconditions, some plan-space HTN planners allowed methods to
have filter conditions [327]. These look syntactically like preconditions—but instead
of treating them as goals to achieve, the planner would not use a method if its filter
conditions were not true. However, determining the correct state in which to evaluate
filter conditions is a complicated issue [327], and most current HTN planners do not
use them (an exception is [682]).

In an effort to simplify HTN planning, several HTN planners used forward-search
instead of plan-space planning, and removed various of the complicating features of
the early HTN planners, including filter conditions and goal tasks [832, 833, 410]. This
simplified model of HTN planning became highly influential. Later research efforts,
having lost track of goal tasks as a part of HTN planning, re-invented them under the
name of goal-network planning [1009, 1010]. Because our HTN formulation includes
goal tasks (see Section 5.1), it has a version of goal-network planning as a special
case. TO-HTN-Forward and PO-HTN-Forward are based loosely on the SHOP [832],
SHOP?2 [833], and GDP [1009] algorithms.

5.6 Discussion and Bibliographic Notes 117

Several other HTN planning techniques involve translating HTN planning problems
into some other format. For some restricted classes of HTN planning, planning
problems can be translated into classical planning problems and solved using classical
planners [24, 512]. Another approach is to translate HTN planning problems into
satisfiability problems, and construct plans using a satisfiability solver [107, 108, 105,
989]. This uses a version of iterative deepening: it bounds the length of the solution
and uses the satisfiability solver to see whether there’s a solution of that length—and if
not, then it increases the bound and tries again. HTN instances can also be compiled
into programs in a conventional programming language [534, 747]. This can, for
example, allow optimizations to minimize backtracking [747].

An HTN planner performed quite well in the 2002 International Planning Competi-
tion [734], but HTN planners were not involved in subsequent competitions until 2020.
The 2020 International Planning Competition focused entirely on HTN planning, and
stimulated research on several new HTN planners, including several of the ones cited
in the preceding paragraphs. Our formulation of partial-order HTN planning is based
loosely on the HDDL language that was developed for the competition [515].

5.6.2 Formal Models

Theoretical models for HTN planning began to be developed in the early 1990s
[1198, 577]. Subsequent theoretical investigations have produced formal semantics
for plan-space [327] and forward-search [430] HTN planning, a provably correct
planning algorithm [328], and analyses of the complexity and expressivity of HTN
planning [330, 513] and hybrid HTN/classical planning [27].

Our presentation of HTN planning algorithms has focused primarily on forward
search and plan-space search, but those are not the only possibilities. A formal model
of HTN search spaces [26] has shown that because they have a more complex structure
than classical search spaces, there is a wider variety of possible ways to search them,
including some possibilities for which no planning algorithms have yet been written.

5.6.3 Heuristic Functions

The complex refinement structure of HTN planning domains makes it more difficult to
develop heuristic functions than in classical planning. One approach is to translate the
HTN planning problem into a classical planning problem for which classical planning
heuristics can be used: [28] does this for a subset of HTN planning problems in which
the method calls are tail-recursive, and [514] does it by encoding a relaxed version of
the HTN planning problem as a classical planning problem. There also are ways to
adapt classical heuristics for use in HTN planning [514].

In [114], task decomposition graphs are used as the basis for an admissible HTN
heuristic. Task decomposition graphs have also been used to develop heuristic func-
tions for hybrid HTN/classical planning [113].

118 5 HTN Representation and Planning

5.6.4 Hybrid HTN/Classical Planning

Some of the early work on HTN planning used a hybrid approach that combined HTN
planning with classical plan-space planning [328, 581], and this approach was also
used in several subsequent works [737, 736, 144, 113, 324]. Hybrid HTN/classical
planning is roughly equivalent to HTN planning with task insertion, in which arbitrary
tasks may be inserted into the task network [396]. Inserting a task into a task network
is equivalent to inserting the task’s methods and actions as we did in Algorithm 5.7.
Section 5.3 mentioned the possibility of using a landmark computation such as
RPG-Landmarks to identify goals that match PO-HTN-Forward’s goal methods. The
GoDelL planner [1010] used this approach. If GoDelL encountered a goal for which
there is an applicable method then it would use the method, and otherwise it would
invoke a landmark-based forward search. During each episode of landmark generation,
GoDelL treated the landmarks as intermediate goals, and reverted to HTN planning
whenever it encountered a landmark for which there was an applicable method.
Another approach to hybrid planning is to run a classical planner and an HTN
planner as two separate subroutines, with the HTN planner passing control to the
classical planner whenever it encounters a task for which no methods have been
defined, and the classical planner passing control to the HTN planner whenever it
encounters an “action” that matches an HTN method [402]. A similar effect has been
achieved by compiling a set of HTN methods (subject to certain restrictions) into a
set of classical “actions” whose names, preconditions, and effects encode the steps
involved in applying the methods, and using these actions in a classical planner [24].

5.6.5 Planning with Abstract Actions

In Section 5.5.3, downward refinability of a planning domain is an HTN version of
the downward refinement property in Section 3.6.8. Angelic refinability of a plan is
related to angelic nondeterminism in the theory of programming [115, 148], where
an angelically nondeterministic “choose” command is assumed to make a successful
choice if one exists.” In top-down program design, one can first write a high-level
algorithm that contains a “choose,” and then replace the “choose” with deterministic
code for making the best choice. That is how we wrote the TO-AA-Angelic algorithm.
TO-AA-Angelic was inspired by the Angelic-Search algorithm in [967, Section
11.4], but there is a key difference: unlike TO-AA-Angelic, which always refines the
first action in A before refining the rest of A, Angelic-Search may refine the actions of
A in any order. To illustrate a difficulty that this causes, let us suppose that A = a; - as,
where both a; and a, are abstract, and suppose we want to refine a; before a;. If M
is the set of relevant methods for a5, then it is unclear which m € M to choose. If we
make the wrong choice, then the refined problem P’ = (X, s¢, a| - subtasks(m)) might
not be solvable. The discussion of Angelic-Search includes some clever ways to deal
with this problem by matching sets of refinements of a; with sets of refinements of
a;. However, the details are complicated and are not always feasible to implement.

7The nondeterministically choose command in our pseudocode algorithms is very similar; see Sec-
tion A.1 for details.

5.7 Exercises 119

5.6.6 Extensions and Applications

In HTN planners based on forward search, it is easy to allow arbitrary computational
formulas in the methods and action schemas. Several total-order HTN planners
[832, 1009, 830], and a few partial-order HTN planners [833,433], work this way. This
makes it possible to use application-specific data structures. Extensions have also been
developed for Horn-clause inference [833], temporally-extended preferences [1043],
temporal planning (TemPlan in Chapter 17), probabilistic environments (UPOM in
Chapter 15), and coordination of multi-agent systems [697].

Such extensions, along with the ability of HTN methods to represent “standard
operating procedures” [1170], have helped to make HTN planners useful in a vari-
ety of applications. Some examples include scheduling [1171], logistics and cri-
sis management [265, 1080, 144], spacecraft planning and scheduling [1, 332],
equipment configuration [13], manufacturing process planning [1039], evacuation
planning [821], real-time tracking [520], composition of web services [1031, 1042]
and information streams [1044], requirements engineering [1043], computer games
[1040, 504, 214, 784, 840], and robotics [809, 566, 1059, 277, 143].

One difficulty in developing HTN-planning applications is that the domain au-
thor needs to write and debug a potentially complex set of domain-specific HTN
methods [575]. A potential way to alleviate this problem is to learn HTN methods
automatically. Chapter 7 describes some of the research on that topic.

5.6.7 Other Topics

Plan verification. HTN plan verification consists of two closely-related problems:

* Given an HTN planning problem P = (X, sg,T) and a plan 7, is 7 a solution
for P?

* Given an HTN planning domain X and a plan n, does there exist a planning
problem P = (X, 5o, T) such that r is a solution for P?

If ¥ were a classical planning domain, then both problems could be solved in low-
order polynomial time by evaluating y (so, 7). However, verification of HTN planning
problems is much more complicated because of the need to check whether m can be
produced by HTN refinement.

One approach to HTN plan verification is to translate the planning problem into a
Boolean formula that is satisfiable if and only if 7 is a solution for P [106]. Another
is to translate 2 into an attribute grammar and check whether 7 can be parsed as a
solution for P [94, 95].8 A third approach is to translate the verification problem into
an HTN planning problem that can be solved by an HTN planner [517].

5.7 Exercises

5.1. In Example 5.4, rewrite m2-get-container to eliminate the parameter p by replac-
ing it with pile(c).

8 An extended version of this approach can try to correct a plan by deleting actions from it [96].

120 5 HTN Representation and Planning

5.2. Modify the following methods to satisfy the restrictions given in Remark 2.6:
m2-uncover in Example 5.4, m3-navigate in Example 5.4, and m1-put-on-robot in
Example 5.10.

5.3. Write methods for some situations that m2-get-container in Example 5.4 doesn’t
handle, such as the case where cargo(r) is neither nil nor c.

5.4. Characterize the situations that the uncover methods in Example 5.4 don’t handle.
Write methods to handle those cases.

5.5. Prove that TO-HTN-Forward is sound and complete. Do the same for PO-HTN-
Forward.

5.6. Write total-order HTN methods for the usual recursive formulation of the Towers
of Hanoi problem. Using your methods, is the problem serially solvable? Why or
why not?

5.7. In Example 5.10, write an m2-put-on-robot method for the case where c is not at
the top of its pile.

5.8. In Example 5.10, write an m-remove-from-robot method in which a crane removes
a container from a robot and puts it onto a designated pile. If this is available, then
does it change the number of solution plans in Example 5.127 Why or why not?

5.9. In Example 5.10, write methods for put-on-robot(c, r) for these cases: (a) k is
empty but r is not; (b) r is empty but £ is not; (c) neither r nor k is empty.

5.10. Write a partial-order HTN planning algorithm similar to TO-HTN-Forward-RT.

5.11. Professor Prune claims that any partial-order HTN method can be translated
into an equivalent set of methods with totally ordered subtasks. Here is his argument:

Let m = (head(m),task(m), pre(m), subtasks(m), <,,) be the partial-
order HTN method, and let <y, ..., <g be all of the total orderings that
satisfy <,,. Fori = 1,...,k, let m; = (head(m), task(m), pre(m), <;).
Then my, ..., my can produce every totally ordered solution plan that m
can produce.

To show that Professor Prune is wrong, write a partial-order HTN method m that can
produce a solution plan that none of m, . .., my can produce.’

5.12. Definition 5.11 defined partial-order HTN solution plans to be totally ordered.
Write a definition of a partially ordered solution plan, and modify PO-HTN-Forward
to find such solutions.

5.13. In Section 3.4.2, there were two open-goal resolvers: one that uses an action
already in 7, and one that adds a new action to 7.

(a) Why does Section 5.2.3 use only one of those resolvers?

9Thanks to Pascal Bercher for inspiring this exercise.

5.7 Exercises 121

(b) In Section 5.3 there is an open-goal resolver that uses a goal method. Why
aren’t there two such resolvers, like there are for actions?

5.14. Prove thatif If P = ((Z., M), so, A) is a solvable total-order AA planning prob-
lem, then at least one of the nondeterministic traces of TO-AA-Forward(Z., M, sg, A)
will return a solution plan, and otherwise all of the traces will return failure.

5.15. Write total-order AA adaptations of one or more of the following algorithms:
TO-HTN-Forward-Det, TO-HTN-Forward-RT, TO-HTN-Serial, PO-HTN-Forward, the
hybrid planning algorithms in Section 5.3, and the heuristic functions in Section 5.4.

5.16. Prove that if P is an angelically solvable planning problem, it is serially solvable.

5.17. Prove that if P is an angelically solvable planning problem, TO-AA-Angelic will
find a solution for P.

5.18. Analyze the time complexity of TO-AA-Angelic.

5.19. In a downward-refinable planning domain, consider solvable planning problems
that are not angelically solvable.

(a) Give an example of such a problem.
(b) Will TO-AA-Angelic always (or ever) solve such problems? Why or why not?

5.20. Write definitions of downward refinability, angelic refinability, and angelic
solvability for total-order HTN planning domains. Write a TO-HTN-Angelic algorithm
similar to TO-AA-Angelic.

6 Acting with HTNs

This chapter discusses how to use HTN domain models during acting. One of the
biggest issues, of course, is that unlike an HTN domain model, the actor’s environment
is not necessarily deterministic or static: exogenous events and unanticipated action
outcomes can make the current state different from what an HTN model would
predict. Despite this, an HTN domain model can be a very useful way to provide
some of the actor’s know-how—the operational information discussed in Section 1.2.
HTN methods can provide instructions to the actor on how to perform complex tasks
without the overhead of searching through a large state space, how to avoid situations
where unanticipated events are likely to cause bad outcomes, and how to recover when
unanticipated events occur.

Section 6.1 describes a way to use HTN methods for purely reactive acting, and
some potential problems with this approach. Section 6.1 describes some simple ways
for an actor to use an HTN planner, replanning if problems occur. Section 6.2.1
describes ways to repair existing plans when unexpected events occur during acting.
Finally, Section 6.3 is the discussion and bibliographic remarks and Section 6.4 is the
exercises.

TO-HTN-Act(Z., M, T)

if 7 is empty then return success

t « the first element of T; T’ « the rest of T
1 § < observe current state

M «— HTN-Get-Candidates(Z., M, s, 1)
2 foreach m € M do

if m is a method then
L if TO-HTN-Act(Z., M, subtasks(m)-T’) = success then return

success

else if m is an action then
3 execute m
if m executed successfully then return TO-HTN-Act(XZ., M, T’)

return failure

Algorithm 6.1. TO-HTN-Act, a reactive HTN acting algorithm. The HTN-Get-
Candidates subroutine is the same as in Algorithm 5.1.

122
Free pre-publication, for personal use only. To be published by Cambridge University Press.

6.1 Reactive HTN Acting 123

6.1 Reactive HTN Acting

Algorithm 6.1, TO-HTN-Act, is a modified version of TO-HTN-Forward that uses HTN
methods for acting instead of planning. The modifications are as follows:

* Instead of taking s as an argument, TO-HTN-Act observes s in Line 1. Instead
of computing y in Line 3, TO-HTN-Act performs the action on its execution
platform. Instead of returning a plan, it returns either success or failure.

* The loop at Line 2 is a failure-recovery mechanism. If failure occurs when
using a chosen method m, TO-HTN-Act tries to reaccomplish 7 using other
methods in M. If all of the other methods fail, then it returns failure to the next
higher level in the recursion stack, which will try to reaccomplish the task that
had ¢ as a subtask. The approach is similar to backtracking, but not identical.
At each loop iteration after the first one, a true backtracking algorithm would
revert s to the value it had before the first loop iteration, but TO-HTN-Act cannot
time-travel back to a state in the past.

Similar modifications can be used to transform other planning algorithms in Chapter 5
into acting algorithms.

As written, TO-HTN-Act operates purely reactively. Instead of looping through
the methods in an arbitrary order in Line 2, it may perform better if it can make an
informed choice of which m € M to try first. One possibility is to use a heuristic
function. Another is for it to choose m by calling an online HTN planner that returns
the topmost method in its refinement tree (most of the planners in Chapter 5 can
easily be modified to do this). However, this can cause repeated duplication of effort
between TO-HTN-Act and the planner, increasing their time complexity.! The next
section discusses some acting algorithms that operate more efficiently.

6.2 Acting with an Online HTN Planner

Algorithms 6.2 and 6.3, HTN-Run-Lookahead and HTN-Run-Lazy-Lookahead, are
receding-horizon actors that get their plans from an HTN planner. They are mod-
ified versions of Run-Lookahead and Run-Lazy-Lookahead in Section 2.6.2. The
modifications are as follows:

* Y and 7 may be either a total-order HTN planning domain and sequence of tasks
as in Section 5.1, or a partial-order HTN planning domain and task network as
in Section 5.2. In either case, the planning problem is (X, s, 7°), where s is the
current state.

* Lookahead is an online HTN planner. This could be one of the planning
algorithms in Chapter 5, possibly modified to terminate its search early. For

I'Suppose TO-HTN-Act chooses m by calling an HTN planner M that returns a method, and let Tree be
the refinement tree for m. Then TO-HTN-Act’s recursive calls will be like a preorder traversal of Tree.
At each nonprimitive task 7, M will be called again and will redo its search of the subtree below ¢.
In the worst case, these unnecessary calls to M can increase the time complexity by a multiplicative
factor of n, where n is the number of nonprimitive tasks in Tree.

124 6 Acting with HTNs

example, in a receding-horizon approach, Lookahead could search to a cutoff
depth and return the best partial plan that it has seen so far.

e Since HTN planning does not necessarily have a goal state, the termination
criterion is whether Lookahead returns (). When implementing Lookahead,
one should ensure that it returns () only when nothing needs to be done.

* For simplicity of presentation, HTN-Run-Lazy-Lookahead does not call a Sim-
ulate subroutine. However, it can easily be modified to do so.

HTN-Run-Lookahead(Z, 7")
while True do
1 s <« observed current state
2 7 < Lookahead(Z, s, T")
if 7 = failure then return failure

3 if 7 = () then return success
a « pop(m) //remove and return ni’s first action
4 trigger execution of a

Algorithm 6.2. HTN-Run-Lookahead, which replans at each action.

HTN-Run-Lazy-Lookahead(Z, 7)
m— ()
while True do
if 7 = () then
1 s «— observed state
2 7 < Lookahead(Z, s, T")
if 7 = failure then return failure
3 if 7 = () then return success

a « pop(m) //remove and return n’s first action
trigger execution of a

Algorithm 6.3. HTN-Run-Lazy-Lookahead, which replans only when necessary.

HTN-Run-Lookahead and HTN-Run-Lazy-Lookahead can work well in some cases
and badly in others. Here are examples of both cases:

Example 6.1. In Example 5.7, consider P = (%, s¢, {put-in-pile(c1, p,))) as an acting
problem, with Lookahead = TO-HTN-Forward. Let us consider two cases: (i) if the
state-transition function’s predictions are completely accurate, so that the current state
after executing actions ay, ..., d, is always y(so, (a1, ..., an)); and (i) if there are
some failures or unexpected events but they do not make the problem unsolvable.

In case (i), here is what will happen if we use HTN-Run-Lazy-Lookahead:

¢ In the first loop iteration, 7 = () and s = s9. HTN-Run-Lazy-Lookahead calls

6.2 Acting with an Online HTN Planner 125

TO-HTN-Forward(Z, s, {put-in-pile(c1, p,))), which returns
= (take(r1,c1,c2,p1,d1), move(ri,d1,d2), put(ri,ci,c3,p2,d2)).

From 7, HTN-Run-Lazy-Lookahead pops and executes take(r1,c1,c2, p1,d1).
* Inthe 2nd and 3rd loop iterations, HTN-Run-Lazy-Lookahead pops and executes
move(r1,d1,d2) and put(r1, c1,c3, p2,d2). This leaves 7 = ().
* In the 4th loop iteration, HTN-Run-Lazy-Lookahead calls TO-HTN-Forward,
which returns 7 = (). HTN-Run-Lazy-Lookahead exits with success.

If we instead use HTN-Run-Lookahead, it also will execute the same actions and return
success, but it will call TO-HTN-Forward once before executing each action.

In case (ii), the task-list methods in X (see Example 5.4) are robust enough that
in most cases, both HTN-Run-Lazy-Lookahead and HTN-Run-Lookahead will recover
and finish successfully. O

Example 6.2. HTN-Run-Lookahead and HTN-Run-Lazy-Lookahead have more diffi-
culty with the planning problem in Example 5.12. As before, suppose Lookahead is
PO-HTN-Forward and it returns the following solution from Example 5.12,

my = unstack(k2,c1,c2,p2,d2), move(r1,d1,d2), load(k2,c1,r1,d2).

If no unexpected events occur during execution, then Run-Lazy-Lookahead will ex-
ecute m, to completion and return success, but Run-Lookahead will not. Run-
Lookahead will execute the unstack action, then call PO-HTN-Forward again, which
will fail because no methods are applicable when k2 is holding c1.

If execution failures occur that are not serious enough to make the problem un-
solvable, HTN-Run-Lazy-Lookahead will succeed in some cases and fail in others.
As an example of the latter, suppose a transient error causes move(r1,d1,d2) to fail
without changing the current state. Then HTN-Run-Lazy-Lookahead will call PO-
HTN-Forward again, which will fail because no methods are applicable when k2 is
holding c1. O

6.2.1 Acting with Plan Repair

When an actor executes a plan, execution errors or exogenous events may sometimes
cause it to fail. In Section 6.2, HTN-Run-Lookahead and HTN-Run-Lazy-Lookahead
recover from such failures by discarding the old plan and calling the planner again,
giving it the same task as before and the current observed state. However, as we
discussed in Section 3.5, there are several reasons why it may be preferable to repair
the original plan instead.

The plan-repair algorithm in Section 3.5 used a relatively simple heuristic for
deciding what parts of the plan to try to repair. In HTN planning domains, the planning
problem’s refinement structure can help decide what repairs to try. Algorithm 6.4,
HTN-Run-Repair, is a modified version of HTN-Run-Lazy-Lookahead that does this.

HTN-Run-Repair begins by calling Lookahead-RT, which may be any online planner
that returns a refinement tree, such as an online version of TO-HTN-Forward-RT.

126 6 Acting with HTNs

HTN-Run-Repair(Z, T)
s « observed state
tree <+ Lookahead-RT(Z,s,T)
if tree = failure then return failure
n <« the sequence of action nodes in tree
while True do
if 7 = () and tree has no unsolved nodes then return success
v « pop(m) //the first action node in
trigger execution of content(v)
if content(v) failed then
// repair the tree, and make v’ the next action node to perform
v' « HTN-Repair(Z, vy, v)
if v/ = failure then return failure
7« the sequence of action nodes starting at v’

Algorithm 6.4. HTN-Run-Repair, which repairs its plan if actions fail.

After Lookahead-RT returns, HTN-Run-Repair starts executing the actions in the
refinement tree’s action nodes. If it encounters a failure or the refinement tree ends, it
calls HTN-Repair, which may be any algorithm that repairs the part of the refinement
tree where the failure occurred and returns the node at which execution should resume
(Section 6.2.2 will discuss such algorithms). This process repeats until either HTN-
Run-Repair finishes successfully or a failure occurs that HTN-Repair cannot fix.

Example 6.3. Suppose we run HTN-Run-Repair on the planning problem in Exam-
ple 5.12, and Lookahead-RT returns the root of the refinement tree for m, in Fig-
ure 5.4. When HTN-Run-Repair tries to execute 75, suppose unstack(k2,c1,c2,p2,d2)
finishes correctly but move(r1,d1,d2) fails. = Then HTN-Run-Repair will call
HTN-Repair(Z, vy, v), where vq is the root node and v = (ay», move(ri,d1,d2)) is
the node where the failure occurred. Suppose HTN-Repair decides that the failure
was transient and the action should be tried again. Then HTN-Repair will return v
and HTN-Run-Repair will try to execute move(r1,d1,d2) again. If there are no further
problems, it will execute the rest of the refinement tree to completion. m]

6.2.2 Incremental Plan Repair

This section discusses some repair algorithms that can be used as HTN-Run-Repair’s
HTN-Repair algorithm.

Let Tree be a refinement tree, and v be a task node where a failure has occurred
during acting. Algorithm 6.5, Incremental-Repair, looks for a new plan for v that
will preserve applicability of the rest of Tree. If it cannot find one, then it calls itself
recursively on the next higher task node, to replan a larger part of Tree.

Incremental-Repair-2, Algorithm 6.6, is a finer-grained version of Incremental-
Repair. It first looks for a plan for v that will preserve applicability of the rest of Tree.

6.3 Discussion and Bibliographic Notes 127

HTN-Incremental-Repair (X, Tree, v)
Tpending <— the sequence of actions after v in Tree
s < observed current state
t « content(v)
Tree; «— Lookahead-RT(Z, s, (t)) // a new refinement tree for t
if Tree, # failure then
1 « the sequence of actions in Tree;’s leaf nodes
if 7Tpending s applicable in y (s, 1) then
v1 < the task node for ¢ in Tree;
varst <— the first action node in Tree;
in Tree, replace v with v;
return v // the action to execute next

else

if parent(v) is the root of Tree then return failure
v’ « the lowest ancestor of v that is a task node
| return Incremental-Repair (X, Tree, v’)

Algorithm 6.5. HTN-Incremental-Repair, which replans increasingly larger tasks.
At the failed task node v, it looks for a new plan 7; that preserves applicability
of the actions after v. If that fails, it calls itself recursively on the task node
above v.

If that fails, it tries to find a plan for both v and the next sibling node (if there is one)
that will preserve applicability of the rest of Tree. If that fails, it tries planning for v
and its next two siblings, and so forth until there are no more siblings. If that fails, it
calls itself recursively on the next higher task node, to replan a larger part of Tree.

If one of the preceding algorithms is HTN-Run-Repair’s HTN-Repair subroutine, it
can sometimes happen that HTN-Run-Repair repeatedly encounters a failure at some
node v, and HTN-Repair repeatedly returns the same repair that failed the previous
time. Sometimes this may be the right thing to do: if the repaired plan’s failure is
transient then one might want to keep trying until it succeeds. However, if the repaired
plan’s failure is inevitable then HTN-Repair should try a different repair. For the latter
case, Incremental-Repair and Incremental-Repair-2 can be modified to keep a list of
the repairs that they have already tried, and not try them again (see Exercise 6.6).

6.3 Discussion and Bibliographic Notes

Reactive acting. BDI (Belief-Desire-Intention) architectures are reactive systems
somewhat similar to the algorithms in Sections 6.1 and 6.2, but they differ with respect
to their representation of actions and methods [276, 100, 275]. Most BDI systems
will not replan, though there are a few exceptions [981, 1204]; and they will select
and execute an untried method when failure occurs.

The Icarus algorithm [681] learns hierarchical logic programs that are analogous to

128 6 Acting with HTNs

Incremental-Repair-2(Z, Tree, v)
s « observed current state
p <« parent(v)
(Vi,...,Vk) < Children(p)
i « the index of v in (vy,...,vg), sothat v = y;
for j —itokdo
Tpending <— the sequence of actions after v; in Tree
Tree; < Lookahead-RT(Z, s, (content(v;), . .., content(v;)))
if Tree, # failure then
1 « the sequence of actions in Tree;’s leaf nodes
if 7pending 1s applicable in y(s, 1) then
varst <— the first action node in Tree;
in Tree, replace v;, . . ., v; with Children(root(Treey))
return ve,g

else

if parent(v) is the root of Tree then return failure
vy’ « the lowest ancestor of v that is a task node
| return Incremental-Repair-2(Z, Tree, v')

Algorithm 6.6. Incremental-Repair-2, a finer-grained repair algorithm. It first
tries to replan v. If this fails, it tries repeatedly to replan v and some of its
siblings, increasing the number of siblings each time. If that fails, it calls itself
recursively on the task node above v.

HTN methods, and uses them for reactive acting. We discuss it further in Section 7.4.

Plan repair. In general, plan stability (see Section 3.5) can be accomplished more
effectively for HTN planning than for classical planning, by using the HTN plan
structure to localize the errors and failures, and using repair knowledge encoded into
the HTN methods [1170].

In plan-space HTN planning, SIPE [1169] used a collection of “replanning actions”
for repairing several kinds of errors. In PRIAR [577], validation graphs were used to
identify disruptions and make patches to plan-space plans. The repair algorithm in
[141] works by retracting the planning steps at the failure points, and then following
the previous generation process as closely as possible.

The simple approach used in our Incremental-Repair and Incremental-Repair-2
algorithms is similar to that in [1155, 80]. Repairs can be done more effectively by
reasoning about causal dependencies among actions, either analytically [64, 141, 436]
or using simulation techniques [1218].

In [516], plan repair is done by modifying the planning domain to incorporate
the observed outcome of an action failure, and recreating the refinement tree in the
modified domain. This approach is appealing theoretically, but it excludes some
intuitively plausible repairs that other repair algorithms can perform at higher levels

6.4 Exercises 129

of the refinement tree [432].

Some other approaches to plan repair include an HTN version of [141] gives a plan-
repair algorithm for HTN plan-space plans that is similar to the classical plan-space
repair algorithm in Section 5.2.2.

6.4 Exercises

Stack-Blocks(sg, g)
m)
while one or more blocks need to be moved do
C « {blocks that are clear and need to be moved}
M «— {blocks for which the goal location is either the table or a block
that doesn’t need to be moved}
if CNM # o then
L choose a block in C N M and move it to its goal location

else choose a block in C and move it to the table

return

Algorithm 6.7. Stack-Blocks, a blocks-world acting algorithm that finds near-
optimal solutions.

6.1. Consider blocks-world problems in which the initial state includes the atom
holding = nil, and the goal g is a set of loc atoms like those in Figure 2.8. Algorithm
6.7, Stack-Blocks, can find near-optimal solutions for such problems, where “optimal”
means the smallest number of actions. Here are some terms used in the pseudocode:

¢ A block b is clear if top(b) = nil.

* If the goal g contains an atom of the form loc(b) = ¢, then c is block b’s goal
location. Otherwise b has no goal location.

* A block b needs to be moved if either b has a goal location that differs from
its current location, or b’s current location is a block that needs to be moved.
Otherwise b doesn’t need to be moved.

Answer the following questions:

(a) What sequence of actions will Stack-Blocks produce for the planning problem
in Exercise 2.4(b)?

(b) Write a set of total-order HTN methods that encode Stack-Blocks. Assume
there is a function need-to-move(b) that returns True if b needs to be moved
and False otherwise, that you can use in the methods’ preconditions.

6.2. In Figure 2.8, suppose the first “move” action drops the block onto the table,
and all subsequent “move” actions operate correctly. For each of the following acting
algorithms, tell what sequence of actions will be performed using the methods you
wrote in Exercise 6.1.

130 6 Acting with HTNs

(a) HTN-Run-Lookahead, with Lookahead = TO-HTN-Forward.

(b) HTN-Run-Lazy-Lookahead, with Lookahead = TO-HTN-Forward.

(¢) HTN-Run-Repair, with Lookahead-RT = TO-HTN-Forward-RT and
HTN-Repair = Incremental-Repair.

(d) HTN-Run-Repair, with Lookahead-RT = TO-HTN-Forward-RT and
HTN-Repair = Incremental-Repair-2.

6.3. Repeat Exercise 6.2, but this time assume that for every block b, the first “move”
operation on b drops it onto the table, and all subsequent “move” operations on b
operate correctly.

6.4. In Exercise 6.2, suppose every “move’” operation drops the block onto the table.
For each of the four acting procedures in Exercise 6.2, will it eventually terminate or
will it keep trying to move blocks forever?

6.5. In Example 6.3, can situations occur where Incremental-Repair and Incremental-
Repair-2 will repeatedly return the same plan? If so, describe such a situation. If not,
then explain why not.

6.6. Modify Incremental-Repair and Incremental-Repair-2 so that at each node of the
refinement tree they will keep a list of the methods that they have already tried at that
node, and will not try those methods again if called again at that node.

6.7. Repeat parts (c¢) and (d) of Exercises 6.2-6.5 using the modified versions of
Incremental-Repair and Incremental-Repair-2 that you wrote in Exercise 6.6.

7 Learning HTN Methods

HTN planning algorithms require a set of HTN methods that provide knowledge about
potential problem-solving strategies. Typically these methods are written by a domain
expert, but this chapter is about some ways to learn HTN methods from examples.
For simplicity, we focus specifically on how to learn total-order HTN methods.

This chapter is organized as follows. Section 7.1 describes a learning-by-
demonstration problem in which a learner is given examples of plans to accomplish
various tasks, and the objective is to learn HTN methods. Section 7.2 describes a
more difficult version of the same problem: the examples consist only of plans, and
the learner needs to use other information to infer what tasks the plans accomplish.
Section 7.3 speculates briefly about prospects for a “planning-to-learn” approach in
which a learner generates its own examples using a classical planner.

7.1 Learning Methods from Examples

Given a specification of a classical planning domain, suppose we want to learn a set
of total-order HTN methods for various tasks from examples of how to accomplish
the tasks. These examples could be provided by a tutor, or could be produced by
observing a system in action, or if all of the tasks are goal tasks then the learner could
generate the examples using a classical planner. More specifically, we will define a
solution example to be a triple

e = (task(e), pre(e), plan(e)), (7.1

where pre(e) is a set of literals that a state s must satisfy for plan(e) to accomplish
task(e).! In this section we will define an algorithm to learn total-order HTN methods
from solution examples.

7.1.1 Preliminaries

Before presenting the algorithm, we first need some definitions.

To reason about solution examples, we will need to extend y to sets of literals.>
If 7 is a plan and L is a set of literals that satisfies pre(x), then 7 is applicable
in every state that satisfies L. If we call that set of states Sy, then we can define
v(Sp,m) ={y(s,m) | s € Sp}. It follows from Equation 2.15 that y (S, 7) is the set
of all states that satisfy the following set of literals:

UIn this definition, we could have used a single initial state instead of pre(e). However, pre(e) is more
general and will be useful in some of our computations.

2Some readers might find it helpful to think of this as an inverse of y
to which y can be applied.

~1, which produces a set of states

Free pre-publication, for personal use only. To be published by Cambridge University Press.

131

132 7 Learning HTN Methods

{an assignment x = w for each effect x < w in eff(a)} U {every

literal x =w or x # w in L such that eff(a) does not assign a value to x}. (7.2)

With some mild abuse of notation, we will call this set of states y(L,).
The learning algorithm will use an intermediate data structure that we will call a
method proposal, which is a tuple of the form

A = (task(A), pre(1), subtasks(1), plan(2)). (7.3)

Here, the intent is to describe a potential method—except for the method’s head, which
will be added later. The three elements task(4), pre(41), and plan(1)) are essentially
a solution example: plan(2) is a plan that is applicable and accomplishes task(A) in
any state that satisfies pre(1). The other element, subtasks(A1), gives the proposed
method’s subtasks. Thus the proposal is to create a method to refine task(1) into
subtasks(A1) in any state that satisfies pre(1), with a requirement that the algorithm
will need to create other methods that refine subtasks(1) into plan(A).

Example 7.1. From Example 5.7 and Figure 5.2 we can get several examples of
method proposals. The task is r; = {pile(c1) =p2}, and the plan to accomplish it is
the sequence of actions at the tree’s leaf nodes, 71 = {(ay, az, asz). Let

go=vy"(t1,m) (7.4)

as calculated in Exercise 7.1(a). Then ¢; can be accomplished in any state that satisfies
go. Here are three different sets of method proposals to achieve it:

1. Here is a method proposal to refine ¢ directly into 7y:

A1 = (t1, 8o, 1, 1). (7.5)

2. Here are method proposals to refine 7| into {3, t3, a3) as m does in Figure 5.2,
and to refine #; and #3 into a| and a,. We will not give the values of pre(a;) and
pre(az) here, but they can be calculated from the action schemas in Example 2.8.

A} = (t1, 80 (12, 13, a3), 1), (7.6)

Az = (12, pre(ar), {ar), {ar)), (1.7)

A3 = (13, pre(az), {az), (a2)). (7.8)

3. Here are method proposals for the refinements that m, . . ., m5 do in Figure 5.2.
The values of pre(m), . .., pre(ms) can be calculated from the action schemas

in Example 2.8 and the method definitions in Example 5.4.

A} = (11, pre(my), {t2, 13, a3), 1),

A, = (12, pre(ma), (t4, 15, ay), {ar)),

A3 = (13, pre(m3), (a2}, {a2)),

Ay = (14, pre(ma), 3, (),

As = (15, pre(ms), (), (). O

7.1 Learning Methods from Examples 133

Methods-from-Examples (X, E)
1 Proposals «— {(t,pre,n,x) | (t,pre,n) € E}
// Step 1: replace subplans with subtasks

2 foreach A € Proposals do
let (t1, ..., t,) be the sequence of tasks in subtasks(A)

3 while there is a 2’ € Proposals such that subtasks(A”) matches a
(contiguous) subsequence (t;,...,¢;) of (t1,...,t,) and
t1,...,t;—1 are actions and y(pre(Q), (t1,...,t;_1)) = pre(d’)

do

4 choose any such A’ arbitrarily

in subtasks(A), replace (t;, .. ., ;) with task(1")

// Step 2: lift the method proposals
5 Q « X.’s ontology of typed objects
6 foreach A € Proposals do
7 foreach constant symbol b in A that is not a special constant do
R « the set in € that contains b
Xp < anew variable name with Range(xp) = R
in A, substitute x; for every occurrence of b

// Step 3: remove subsumed method proposals, then convert proposals to methods
8 foreach A, 1" € Proposals do
L if A’ is an instance of A then remove A’ from Proposals

9 foreach A € Proposals do
head «— a new method name and a list of the object variables in A
M — MU (head, task(2), pre(1), subtasks(1))

return M

Algorithm 7.1. Methods-from-Examples, which learns methods from solution
examples. Line 3 requires a y function that has been extended to ground
preconditions (see Equation 7.1).

7.1.2 The Learning Algorithm

Algorithm 7.1, Methods-from-Examples, learns total-order HTN methods from a
domain X and a set E of solution examples. Its objective is to create a set of methods
M such that for every example (z, pre, r) and every state s that satisfies pre, 7 is a
solution for the planning problem ((Z., M), s, 1).

In Line 1, the algorithm initializes Proposals so that for each example in E there is
a method proposal like the one in Equation 7.5: each subtask list is itself the desired
solution. Although Proposals could be converted directly into a set of methods, they
would be unable to solve any planning problems other than the ones in E. To make
the methods more general, so the algorithm performs the following steps.

Step I: At Line 2, the algorithm modifies the methods to generate subtasks that
the other methods can accomplish. For each A, A’ € Proposals such that subtasks(1")

134 7 Learning HTN Methods

matches part of subtasks(4), the algorithm modifies A so that instead of generating
subtasks(A) directly, it will use task(1’) as an intermediate step.

Step 2: At Line 6, the algorithm makes the method proposals more general by
lifting them, that is, replacing object constants with variables.? This assumes that the
ontology Q in Line 5 includes a set of special constants that should not be lifted, such
as T, F, and nil.*

Step 3: Once the method proposals are lifted, some of them may subsume others.
At Line 8, the algorithm removes the subsumed ones from Proposals. At Line 9, it
converts the remaining ones into methods and adds them to M. Then it returns M.

Example 7.2. Continuing from Example 7.1, let us consider a call to
Methods-from-Examples(Z., {e1, €2, e3}), where

e1 = (11,80, m1), ex = (t2,pre(ai),{ai)), es=(t3,pre(az),{az)).

For these three examples, at Line 1 the algorithm generates the method proposals A,
A2, and A3 in Equations 7.5, 7.7, and 7.8, and puts them into Proposals.

Step 1 modifies 1, by replacing a; and a;, with , and t3, which makes 4, identical
to A} in Equation 7.6. Step 2 lifts the proposals by replacing r1, c1, ¢2, d1, d2, p1,
and p2 with r; € Robots, ci,cr € Containers, dy,d, € Docks, and p, pp € Piles.
Afterwards, Proposals contains:

A1 = (fo, 8o, (71, 2, a3), (41, 42, 43)),
Ay = (f1, pre(ay), (@r), (ar)),
A3 = (f2, pre(da), (@2), (d2)),
where
fo = {pile(c1) =p2}, 71 = get-container(ry, 1), > = navigate(ry, d»),

as = put(ry, c1,¢3, pa,da), dap =take(ry,ci,c2,p1,di), d =move(ry,dy,ds).

For brevity, the values of g¢, pre(d;), and pre(d;) are not shown here, but they can be
calculated from the action schemas and method definitions in Examples 2.8 and 5.4.

In Step 3, the loop at Line 8 does not change Proposals because no candidate
subsumes any of the others. The loop at Line 9 converts each A; into a method and
puts it into M. For example, it converts A3 to the following method (the method and
variable names may differ from those shown here):

mu3(ry, di, d>)
task: navigate(ry, d»)
pre: adjacent(d, d»),loc(r;) =d;, occupied(d,) = F
sub: move(ry,d;,d>)
This is like m2-navigate in Example 5.4, but with the additional precondition
occupied(d;) = F.
Finally, Methods-from-Examples returns M. O

3 An unresolved issue is how far to lift an object constant if the ontology Q organizes them into multiple
levels. For example, if c1 € Containers C Positions, then should c1 be replaced with a variable
whose range is Containers or one whose range is Positions?

4Section 4.2.1 will also use a set of special constants for this purpose.

7.1 Learning Methods from Examples 135

7.1.3 Properties of the Algorithm

Completeness. It is not hard to show that Methods-from-Examples is complete with
respect to E, that is, it will produce a set of methods M capable of solving all of the
planning problems in E. In other words, for each example (¢, pre, 7) € E and for
every state s that satisfies pre, 7 is a solution for the planning problem ((Z., M), s, 7).
The proof is by induction on the number of refinement steps.

In many cases, E may be just a subset of a much larger (and possibly infinite)
set of examples E’. In such cases, Methods-from-Examples is asymptotically com-
plete. Fori = 0,1,2,..., let E; be the set of all examples (¢, pre,) such that
length(nr) < i. Let M’ = |J; M;, where M; is the set of methods returned by
Methods-from-Examples(Z, E;). Then for every example (¢, pre, 7) € E’ and every
state s that satisfies pre, 7 is a solution for the planning problem ((X., M’), s,).

Complexity. Itiseasy to see that Methods-from-Examples has low-order polynomial
running time. The hardest parts of the computation are the nested loops at lines 2
and 9, which compare the subtask lists of every pair of proposals, for a total of O (p?)
comparisons where p is the number of proposals. Each comparison is a string-
matching problem that takes linear time in the length of the subtask lists, which is
O(n) where n = |r|. Thus the overall computational complexity is O (p?n).

Minimality. Methods-from-Examples satisfies the following minimality property.
At the end of Step 1, every proposal in Proposals has a minimal set of subtasks.
For each A € Proposals, subtasks(A) cannot be made smaller, because none of its
subsequences can be replaced with any of the tasks in {task(1") | A’ € Proposals}.
At the end of Step 2, when all of the method proposals are lifted, some of them may
now be able to produce parts of subtasks(A), so the minimality property no longer
holds. However, if we modify the algorithm to repeat the loop at Line 1 again after
the loop at Line 6 has finished, then the final set of method proposals—and thus the
set of methods returned by the algorithm—will again have minimal sets of subtasks.

Soundness. Given a set of examples E, if Methods-from-Examples(Z, E) returns
a set of methods M, then for every example ¢ € E and every planning problem
P = ((Z., M), s, task(e)) such that s satisfies pre(e), P is solvable. If this is our
definition of soundness, then Methods-from-Examples is sound.

However, suppose the examples in E were taken from an HTN planning domain
(2, M), and we want Methods-from-Examples to learn a set of methods M that is
equivalent to M’. Then we might want to require that for every s and 7', the planning
problems P = ((X., M), s,T) and P’ = ((Z., M’), 5, T) should have the same sets of
solutions. If that is our definition of soundness, then Methods-from-Examples is not
sound. To see why, recall that the methods in M are lifted. If some of the methods
in M’ are not lifted, then P may have more solutions than P’.

The problem here is not whether Methods-from-Examples is sound, it is that the
examples in E do not completely specify M’. The same set E could have been
generated by M’, or by the set M returned by Methods-from-Examples, or by some

136 7 Learning HTN Methods

other sets of methods. The learning algorithm cannot tell which, because it operates
offline with no way to generate additional examples.’

A possible fix for the problem might be to modify Methods-from-Examples to take
both positive and negative examples, the latter being examples of solutions that the
methods should never produce. With such a modification, a sufficiently large set of
examples might be able to make the algorithm converge to a unique set of methods.
However, this idea is quite speculative, and we know of no work on the topic.

Generality. In general, we would like the methods to be capable of solving many
more planning problems than the ones in E. In the previous paragraphs we pointed
out that it is difficult to specify what additional planning problems the methods in M
should be able to solve. The following paragraphs give examples of some cases in
which the methods in Example 7.2 can solve some planning problems not in E, and
an example of a case in which they cannot.

In the methods produced by Methods-from-Examples, all of the objects have been
replaced by object variables, so their ability to solve planning problems is unaffected
by changes to the objects’ names. It also is unaffected by changes to irrelevant domain
features. For example, the methods learned in Example 7.2 can still achieve #; if we
rename c1 and r1 to ¢17 and r28, or if we insert some additional containers under c3,
or if we add some piles to the loading docks.

Unfortunately, if we put one or more containers on top of c1 then the methods cn
no longer achieve 1, because M doesn’t contain the recursive m2-uncover method in
Example 5.4. If we add examples to E in which there are containers on c1, then the
algorithm will learn some methods to uncover c1, but it will not learn the recursion
step at the end of m2-uncover. It will only learn methods to remove the number
of containers in the examples. They will not be able to achieve ¢; if we put more
containers onto ¢1 than are present in the examples.

As a work-around, one could modify an HTN planner to call a classical planner
in such cases—but this would negate some of HTN planning’s advantages, such as
the ability for an HTN domain author to constrain the search space to make the
planner avoid undesirable solutions and exit quickly when no desirable solution can
be found. It would be more desirable to learn a simple set of methods that could
perform unlimited recursion. Section 7.4 discusses some work on this topic, but more
needs to be done.

Refinement trees. The set £ does not need to be restricted to contain just solution
examples. It may instead contain task refinements of the form

e = (task(e), pre(e), subtasks(e)), (7.9

where subtasks(e) is a list of subtasks. These might be taken from a refinement tree,
or might be provided by a human expert who has good ideas about what subtasks to
use.

SA similar problem with offline learning of action schemas in Section 4.2.1 is addressed by online
learning Section 4.3.

7.2 Learning Methods from Plans 137

compound task t, compound task t, action ay
get-container(r1,c1) navigate(r1,d2) put(r1,c1,c3,p2,d2)
method m, method my
m2-get-container(r1,c1,p1,d1) m2-navigate(r1,d2)
compound task t, compound task ts action a; action a,
navigate(r1,d1) uncover(c1) take(r1,c1,nil,p1,d1) move(r1,d1,d2)
method m, method ms
m1-navigate(r1,d1) m1-uncover(c1)
(no children) (no children)

Figure 7.1. Three subtrees of the refinement tree in Figure 5.2, with the missing part of
the refinement tree shown in gray.

If E includes all of the task refinements in a refinement tree, then this provides
some very specific information about what the method proposals should be, and in
this case Step 1 of Methods-from-Examples can be skipped entirely. For example, if E
contains all of the task refinements shown in Figure 5.2, then this tells the algorithm
to use the method proposals in part 3 of Example 7.1.

E might instead include just some of a solution tree’s task refinements. In Exam-
ple 7.2, if E were the task refinements shown in the three subtrees shown in Figure 7.1,
this would tell Methods-from-Examples to use the method proposals 1), A3, A4, and
As in part 3 of Example 7.1. If we also gave it the solution example e; = (¢, o, 71)
from Example 7.2, this would enable it to create A].

7.2 Learning Methods from Plans

Suppose we have a set of plans, an initial state for each plan, and some tasks for which
we would like to learn methods. As before, the plans could be provided by a tutor, or
produced by observing a system in action, or generated by the learner using a classical
planner. If we have an easy way to infer whether each task has been accomplished,
then we can create solution examples from which Methods-from-Examples can learn
methods. This section presents an algorithm for doing that.

As a way to infer whether each task has been accomplished, let us suppose that for
each task we have two annotations: one telling what conditions need to hold when
the task begins, and one telling what conditions need to hold when the task finishes.
For now we will assume that these annotations are provided by a human. However, it

138 7 Learning HTN Methods

would be desirable to have a way to create them automatically, and some preliminary
work has been done on this topic (this is discussed further in Section 7.4).
More specifically, an annotated task® is a triple T = (task(7), pre(7), eff(1)), where

* task(7) is a compound task or goal task;

* pre(7) is a set of literals called 7’s precondition, which should be true before
accomplishing 7;

 eff(7) is a set of literals that must be true immediately after T has been ac-
complished. Although we will call it 7’s “effects,” it is essentially a goal: any
successful refinement of T must produce a state in which eff(7) is true.

Algorithm 7.2, Methods-from-Plans, uses plans to learn methods for annotated
tasks. Its input includes a classical planning domain, a set of pairs of plans and their
initial states, and a set of annotated tasks. It works as follows.

Methods-from-Plans(Z., Pairs, T")

E—o
1 foreach pair (sg, 7) € Pairs do
2 (ai,...,an) & m; (50,...,5,) < y(so,7)
foreach annotated task 7 € 7~ do

foreach nonempty subplan (a;,...,a;) of = do
4 if s;_1 = pre(r) and s;_; £ eff(7) and s; |= eff(7) then
5 // The plan {a;, . . .,a;) accomplishes T

pre « pre(t) Uy~ (eff(1), (a;, .. ., aj))

6 add (task(7), pre,a;,...,a;)) to E
7 if 3s; € {s0,...,s,} such that s; |- pre(7) and s; | eff(7) then

// The empty plan accomplishes T

add (task(7), pre(r) Ueff(7),{)) to E

foreach 7,7’ in E do
L if 7’ is an instance of T then remove 7’ from E

=]

9 return Methods-from-Examples(Z,, E)

Algorithm 7.2. Methods-from-Plans, which learns methods for annotated tasks.

The outer loop at Line 1 iterates through each pair (sg, 7). From the initial state s
and the actions in 7, Line 2 calculates the sequence of states that the plan produces.

The nested loops at Line 3 compare each annotated task T with each nonempty
subplan of 7.7 If a subplan’s starting and ending states satisfy pre(r) and eff(7),
respectively, then Line 6 adds to E a solution example saying that the subplan accom-
plishes 7. If a state s; satisfies both pre(7) and eff(), then Line 7 adds to E a solution

6Syntactically, annotated tasks are identical to the abstract actions in Section 5.5.1. However, the
purpose here is not to define an abstract action, but instead to aid the learning algorithm by providing
information about what the desired HTN methods for task(7) should do.

7 As in the complexity analysis of Methods-from-Examples, it is not hard to see that the time complexity
is low-order polynomial.

7.2 Learning Methods from Plans 139

example saying that the empty plan accomplishes 7. This is for creating methods with
no subtasks, such as m1-get-container and m1-uncover in Example 5.4.

The loop at Line 8 removes from E any examples that are subsumed by others.
Finally, Line 9 calls Methods-from-Examples on E, and returns the resulting set of
methods.

Example 7.3. The following annotated tasks correspond to #1, 2, and ¢3 in Figure 5.2.

o= (t, {pile(c1) =p1}, {top(p2)=cl}),
7, = (get-container(ri,c1), {cargo(r1)=nil}, {cargo(ri)=c1}),
73 = (navigate(r1,d2), {loc(r1) =d1}, {loc(r1) =d2}).

Suppose we call Methods-from-Plans(Z, {(so, 71)}, {71, 72, T3}), where X, so, and
my are as in Examples 7.1 and 7.2.

In the first iteration of the loop at Line 3, 7 = 71, and the only subplan of x; that
satisfies Line 4 is 7r; itself. In Line 5,

pre = pre(7) Uy~ (eff(11), 11) = pre(7) Uy~ (t1, 1) = ¥y~ (11, m1) = go,

so Line 6 will add (¢1, go, /1) to E, which is the same as e; in Example 7.2.

In the second iteration of the loop, 7 = 7, and the subplans of & that accomplish
Ty are {a;) and {ay, as), so Line 6 will add to E the following two solution examples,
the first of which is the same as e, in Example 7.2:

(t2, pre(m2) Uy~ (eff(12), (a1)), (a1)) = (t2, pre(ar), {ar)),
(12, pre(r2) Uy~ H(eff(m2), (a1, a2)), (a1, a2)) = (12, pre(ar) U pre(az), (a1, az)).

In the third iteration of the loop, 7 = 73, and there are four subplans of m; that
accomplish m: (az), {ai,az), {az,as), and m;. Line 6 will add to E a solution
example for each of them.

From the seven examples, Methods-from-Examples will create seven methods.
Depending on what choices it makes in Line 4, these may or may not include the
methods in Example 7.2. Methods different from the ones in Example 7.2 are unlikely
to be very useful, and thus good heuristics are needed to guide the choices in Line 4.
Research is needed on this topic. O

If we know the task hierarchy in advance, then it can be used to optimize the learning,
by ordering the examples in E in a bottom-up fashion, starting with the bottom-level
tasks and going the top-level ones. This way, the methods learned for each task 7
can be learned from the methods already learned for its subtasks, constructing the
refinement tree as we go. As described at the end of Section 7.1.3 under the topic of
refinement trees, this would allow Step 1 of Methods-from-Examples to be skipped.
The same approach can be used even if we do not have E, provided that we have a
classical planner to generate plans for the annotated tasks.

140 7 Learning HTN Methods

7.3 Planning to Learn

In principle, the method-learning algorithms in this chapter could be used as part of
a planning-to-learn approach in which a learner uses the learning algorithms in the
previous sections, along with a classical planner from which to generate examples. The
idea would be to repeatedly create planning problems, use the planner to solve them,
give the planner’s solutions as input to the learning algorithm, and use the learning
algorithm’s output to decide what planning problems to generate next. The learner
could strategically call the planner on planning problems for which the solutions
would provide information about how to construct new methods, or information
about conditions under which one of its methods does or doesn’t work.

One way to do this would be to start with a set of annotated tasks. For an annotated
task 7 = (task(r), pre(t), eff(r)), the learner could call a classical planner on a
planning problem in which the initial state satisfies pre(7) and the goal is eff(7). The
resulting plan would then provide a solution example that could be given as input to
Methods-from-Plans. If Methods-from-Plans were modified to work incrementally,
then the learner could make strategic choices of which annotated tasks to use as input
to the classical planner, as discussed in the previous paragraph.

If no tasks were available to start from, another possibility would be to use a
landmark algorithm (see Section 3.2.3) to create planning problems, return a sequence
of landmarks for each planning problem, and use the landmarks to divide the classical
planner’s solutions into collections of examples to use as input to Methods-from-
Examples. In this case, the landmarks would constitute the tasks. This could be done
incrementally as described in the previous paragraph.

No work has yet been done on these approaches, and it is unclear how well either
of them would work in practice. One challenge would be how to guide the generation
of new planning problems to solve. Another would be how to prevent the generation
of a large number of methods of which very few are useful. If ways can be found
to address these challenges, a next step might be to build an actor that integrates the
operation of the learner, an acting algorithm, and an HTN planning algorithm.

7.4 Discussion and Bibliographic Notes

Learning total-order HTN methods. Most HTN method-learning algorithms are
for total-order HTN methods. The best-known of these is HTN-Maker [511]. In-
stead of making a set of examples like Methods-from-Plans does, HTN-Maker goes
directly into a computation to produce methods. It makes choices deterministically,
going backwards from the goal. Despite these differences, HTN-Maker provided the
inspiration for Methods-from-Plans.

CurricuLearn [710] is a modified version of HTN-Maker that learns from a curricu-
lum [112], a sequence of examples of increasing difficulty that guide the learner to
(in this case) first learn methods for small tasks, then larger methods that build on
the smaller ones. Methods-from-Examples was inspired by CurricuLearn, though the
algorithms themselves are different.

7.4 Discussion and Bibliographic Notes 141

Another approach [498] is to learn methods that contain task names without any
parameters for the tasks, and then add the parameters. To learn the methods, the author
uses a simplified version of HTN-Maker that ignores all of the action parameters,
together with a collection of preprocessing and postprocessing algorithms to optimize
the set of methods that are learned. To decide which parameters to add to the
methods, the author describes algorithms to generate a set of candidates and then use
MAX-SMT optimization to choose which parameters to use.

HTNLearn [1234] is designed to learn definitions of both methods and actions.
Its input includes plans that are augmented with a sequence of subtrees like those
in Figure 7.1, along with partial information about the intermediate states between
the leaf nodes of the refinement trees. By compiling statistics on the atoms in
the intermediate states, the algorithm creates weighted hypotheses about the actions
and methods. It feeds this information, along with various other constraints, into a
weighted MAX-SAT solver. The solver’s solution provides preconditions for each
method, and preconditions and effects for each action.

At the end of the “generality” topic in Section 7.1.3, we discussed the need for a
way to learn recursive methods. To date, two approaches have been proposed that can
do this in some situations [498, 710], but this is otherwise an open problem.

Near the beginning of Section 7.2, we mentioned the desirability of having an
algorithm to create task annotations automatically. One of the results in [710] is an
algorithm to create annotations from landmarks. It works well in several test cases,
but more work remains to be done on this topic.

Learning partial-order HTN methods. Learning partial-order HTN methods is
more complicated, but there are a few works on the topic.

The work described in [738] uses a technique called invariance analysis. Given a
classical planning domain and a problem in that domain, the idea is to first construct
one or more invariants, each of which is a set of atoms such that exactly one of the
atoms is true at every state in the domain. For each invariant, the algorithm constructs
an invariant graph showing the possible transitions from each atom to the others. For
example, if c1 is a container in a DWR problem, then the set of possible values of
pos(c1) is an invariant. Two of the possible transitions might be from pos(c1) = loct
to pos(c1) = r1, and vice versa. The learning algorithm uses paths in the invariant
graphs to construct methods for achieving desired values.

The MethodRefine algorithm [1186] is for situations where some of the methods’
bodies are incompletely specified, that is, they include some but not all of the subtasks
that are needed to solve a planning problem. The objective is to find what additional
subtasks are needed, and modify the method to include them. To do this, the authors
use a hybrid HTN/classical planner (see Section 5.3) to solve the planning problem,
and augment the methods to include the additional tasks that appear in the hybrid
planner’s solution.

Other related work. Icarus [681] learns hierarchical logic programs that are analo-
gous to HTN methods, and uses them for reactive acting. Its input includes a planning
problem, a set of primitive skills that are similar to actions, and a hierarchy of concepts

142 7 Learning HTN Methods

that are abstract conditions along with ways to infer whether those conditions hold.
Given a planning problem, it uses a variant of backward search to solve the problem.
When it recognizes places in its solution plan where the various concepts hold, it can
use those parts of the plan to form nonprimitive skills that are analogous to methods.

HPNL [680] includes a representation and a learning algorithm that improve on the
ones in Icarus, and a planner that uses them. The primary improvement is a way for
the methods to include information that conditions their applicability on what other
goals the planner needs to achieve.

7.5 Exercises

7.1. In the following calculations, use the action schemas in Example 2.8, the defini-
tion of y~! in Equation 3.15, and the method definitions in Example 5.4

(a) Calculate y~! (¢, 1) in Example 7.1.

(b) Calculate pre(my),...,pre(ms) in Example 7.1.
(¢) Calculate pre(d;), pre(ds), pre(ds), and &g in Example 7.2.

7.2. Prove that if g is a ground set of literals and y~'(g, a) is defined, then it is also
a ground set of literals. Hint: the proof is by induction on the length of 7.

7.3. Modify Methods-from-Examples to remove the requirement in Line 3 that
t1,...,t;—1 be actions. The modification is rather complicated, and will introduce a
lot of computational overhead. It involves the following steps:

* Modify TO-HTN-Forward to work on partial states.

e In Line 3, replace y(pre(Ad), {t1,...,t;—1) with y(pre(1), 7), where n is the
plan returned by TO-HTN-Forward(pre(A), {t1,...,ti-1)).

* To provide the methods that TO-HTN-Forward will need, use a copy of the loop
at Line 9 of Methods-from-Examples.

7.4. For choosing A" in Line 4 of Methods-from-Examples, some possible heuristics are
to choose a A’ that maximizes j, or i, or j — i, or some combination of them. Another
possibility is to choose a set of method proposals that produce non-overlapping
portions of sub, in a way that maximizes the total length of these portions. Compare
these heuristics on several examples. For each of them, try to come up with an
example in which it does better than the others.

7.5. In Example 7.2, write the methods that the algorithm produces from A; and A».

7.6. Let X be the simple DWR domain illustrated in in Figure 7.2. The loading dock
and crane do not have names. The ontology of typed objects is

Objects = Containers U Piles U Positions U Special,
Containers = {c1,c2,c3, c4,c5}; Piles = {p1, p2, p3};
Positions = Containers U {nil}; Special = {nil}.

7.5 Exercises 143

T T T

// ********** c1 / (ally c1 / c4 / **********
pl p2 P3 pl p2

S0 S1 52 53

Figure 7.2. Four states for Example 7.2.

There are two action schemas, where ¢ € Containers, ¢’ € Positions, p € Piles:

take(c, ¢/, p) /I take container c off of ¢’ in pile p
pre: holding =nil, pos(c) =¢’, top(p) =c
eff: holding < ¢, pos(c) « nil, pile(c) « nil, top(p) < ¢’

put(c,c’, p) /! put container c onto ¢’ in pile p
pre: holding =c, top(p) =¢’
eff: holding < nil, pos(c) « ¢/, pile(c) < p, top(p) < ¢

The state variables have the following ranges:

Range(pile(c)) = Piles U {nil};
Range(holding) = Range(pos(c)) = Range(top(p)) = Positions.

Let sq, 51, 52, and s3 be the states shown in Figure 7.2, and let

T = <>=

w1 = (take(c2,c1,p1), put(c2,c3,p2)),

m, = (take(c3,c2,p1), put(c3,c4,p2)) - 7y,
p

n3 = (take(c4,c3,p1), put(c4,nil,p2)) - 75.

Notice that y(s3, m0) = y(s2, 1) = y(s1,m2) = y(s0,73) = 53.
Suppose we call Methods-from-Examples(Z,, E), where

E = {(t,s3,m0), (1,52, 71), (£, 51, m2), (1, S0, 73) },

and where t = make-clear(c1, p1) is the task of removing the containers above c1 in
p1. Answer the following questions:

(a) What method proposals will be created in Line 1?

(b) What will the method proposals be at the end of the loop at Line 1?

(c) What will the lifted method proposals be at the end of the loop at Line 67
(d) In the loop at Line 8, what method proposals, if any, will be removed?
(e) What methods will be returned?

(f) How would your answers change if Special were empty?

7.7. Prove the completeness result in the first paragraph of Section 7.1.3.

144 7 Learning HTN Methods

7.8. Modify Methods-from-Examples to make it capable of taking as input the ex-
amples produced by Make-Examples in Example 7.3. Run the modified algorithm
by hand, to demonstrate that it will create seven methods as mentioned at the end of
Example 7.3.

Part Il

Probabilistic Models

One may even say, strictly speaking, that
almost all our knowledge is only probable.

Pierre-Simon de Laplace, Essai
philosophique sur les probabilités,
1814

The motivations for acting and planning with probabilistic models are about han-
dling uncertainty in a quantitative way, with optimal or near optimal decisions.

The future is never entirely and precisely predictable. Uncertainty can be due to
exogenous events in the environment, from nature and unmodeled actors, to noisy
sensing and information gathering actions, to possible failures and outcome of im-
precise or intrinsically nondeterministic actions (e.g., throwing a dice). Models are
necessarily incomplete. Knowledge about open environments is partial. Part of what
may happen can be only be modeled with uncertainty. Even in closed predictable
environments, complete deterministic models may be too complex to develop.®

This part of the book explores approaches for using probabilistic models to handle
the uncertainty and nondeterminism in acting, planning and learning. These ap-
proaches are based on optimization methods for Markov decision processes (MDP).

Chapter 8 explains the basic principles and representations for MDP problems,
starting with a simple flat representation, then considering a structured representation
with domain decomposition and hierarchization methods. It addresses the issues
of acting with and modeling a probabilistic domain. Chapter 9 is about planning
techniques with probabilistic domains. Dynamic programming, heuristic search,
linear programming, online and sampling algorithms for these problems are presented
and analyzed. Chapter 10 considers reinforcement learning for probabilistic models.

8For example, the kinetic theory of gazes in statistical physics aggregates deterministic laws of ele-
mentary particles as statistical models.

Free pre-publication, for personal use only. To be published by Cambridge University Press.

145

8 Probabilistic Representation and Acting

In probabilistic models, an action has several possible outcomes that are not equally
likely; their distribution can be estimated, relying for example on statistics of past
observations. The purpose is to act optimally with respect to an optimization criteria
of the estimated likelihood of action effects and their cost.

The usual formal probabilistic models are Markov decision processes (MDPs). An
MDP is a nondeterministic state-transition system with a probability distribution and
a cost distribution. The probability distribution defines how likely it is to get to a state
s’ when an action « is performed in a state s.

This chapter presents MDPs in the flat then the structured state-space representa-
tions. Section 8.3 covers modeling issues of a probabilistic domain with MDPs and
variants such as the Stochastic Shortest Path model (SSP) or the Constrained MDP
(C-MDP) model. Section 8.4 focuses on acting with MDPs. Partially Observable
MDPs and other extended models are discussed in Section 8.5.

8.1 Basic MDP Representation

This section introduces the main definitions and concepts needed for modeling a
probabilistic domain with a flat representation.

A probabilistic state-transition system is said to be Markovian if the probability
distribution of the next state depends only on the current state and not on the sequence
of states that preceded it. The system is said to be stationary when the probability
and the cost distributions remain invariant over time. '

Markovian and stationary properties are not intrinsic features of the world but are
properties of its model. It is possible to take into account the dependence on the past
within a Markovian description by defining an extended state that includes the current
configuration of the world, as well as information about how the system has reached
that configuration, as illustrated next.

Example 8.1. Consider a domain whose dynamic depends not only on the current
value of a state variable x,, but also on the past two values x,_; and x;_». Let us add
to the state space two state variables x; = x;_; and x;" = x;_». A model with the three
variables x, x’, x”’ is Markovian.

A similar idea can be used to handle time dependence to obtain a stationary model.
Consider a city traffic domain whose model varies over time, e.g., rush hours, day/night
time, days of the week. Adding a state variable ranging over these categories of traffic
levels leads to a stationary model. O

INote that a stationary system changes over time, but according to the same unvarying model.

146

Free pre-publication, for personal use only. To be published by Cambridge University Press.

8.1 Basic MDP Representation 147

A probabilistic state-transition system is observable when the actor can always
determine in which state it is. There are several families of observable stationary
Markovian models, some with slight variations, e.g., transition rewards instead of
costs). Other models consider significant extensions, such as partially observable
states, or concurrent and durative actions. We focus here on observable stationary
Markovian systems, and discuss extensions in Section 8.5.

8.1.1 Main Definitions

Definition 8.2. A probabilistic domain is a tuple X = (S, A, v, Pr, cost) where:

* S and A are finite sets of states and actions, respectively.

* ¥ :Sx A — 25 is the state transition function; the states s’ € (s, a) are dis-
tributed according to a probability distribution Pr(s’|s, a). The set of applicable
actions in a state s is denoted Applicable(s) = {a € Aly(s,a) £ @}.2

Pr(s’|s, a) is the probability of reaching s’ when action a takes place in s;
Pr(s’|s,a) # 0iff s’ € y(s,a).

e cost: SXAXS — R; cost(s,a,s’) is the cost of @ when reaching s’ from s.
The opposite of the cost is called the reward: r(s,a,s’) = —cost(s,a,s’). 0O

The actor wants to act in X following a plan expressed as a policy:

* A policy is a function 7 : §* — A, with §’ C §, such that for every s € §’,
n(s) € Applicable(s). Thus Domain(r) = §’.

e The transitive closure of s and m is the set of all states reachable from s
using 7. Mathematically, it is ¥ (s,) = So U S1 U ..., where Sy = {so} and
S; ={y(s,a) | s € S;_} foralli > 0.

» The reachability graph for s and 7 shows how the states in y(s,) can be
reached from s. Mathematically, it is a directed graph Graph(s,n) = (V,E),
where V = y(s,m) and & = {(s', ") | s € V,s” € y(s',n(5"))}).

e leaves(s,) = y(s,) \Domain(r) is the set of all states that have no successors
in Graph(s,).

Note that 7 is a partial function, possibly undefined in S\S’, even for states that may
have applicable actions.

An MDP problem for the domain X can be expressed as a triple (X, so, Sg), where
so € S\ S, is the initial state and S, C S is a set of goal states. The problem is to
reach a state in S, starting from s¢, while possibly optimizing a cost criteria.

Definition 8.3. A solution to an MDP problem (X, sg, Sg) isa policy 7 : §* — A such
that so € §” and leaves(so, 7) N S, # &. The solution is said to be closed if and only
if Vs € y(s0,), (s € Domain(m)) V (s € Sg) V Applicable(s) = @.]

In other words, every state reachable from sg by a closed solution r is either in
the domain of x, is a goal, or has no applicable action. A closed policy 7 provides
applicable actions, if there are any, to sg and to its all descendants reachable by ,

2Note the difference from Definition 2.2, in which v(s,a) is either a single state or undefined, and
from Equation 2.2.

148 8 Probabilistic Representation and Acting

and have at least one path in Graph(sg, 7) that reaches a goal state. It is defined over
the entire ¥ (so, 7), except at goal states and states that have no applicable action. As
usual, goals are considered to be ferminal states requiring no further action.

Example 8.4. Here is a simple example, inspired from casino coin machines called
one-armed bandits. This domain has three state variables x, y, and z, ranging over
the set {v,, vp,vc}. The domain has nine states: {x = v,y = vg,z2=v,}...{x =
Ve, Y = Ve, Z = V), Which are abbreviated as S = {(aaa), (aab), ..., (ccc)}. There
are three actions: pull left, pull right, and pull both arms simultaneously, denoted
respectively Left, Right, and Both. When the values of the three state variables are
distinct, then the three actions are applicable. If x # y = z, only Left is applicable.
If x = y # z, only Right is applicable. If x = z # y, only Both is applicable. When
the three variables have the same value no action is applicable. Here is a possible
specification of Left (each outcome is prefixed by its corresponding probability):

Left:

pre: (x #y)

eff: (%): {x vy}
(3): {x = vp}
(%) {x & v}

Similarly, when applicable, Right randomly changes z; Both randomly changes y. We
assume these changes to be uniformly distributed. Figure 8.1 gives part of the state
space of this domain corresponding to the problem of going from sg = (abc) to a
goal state in S, = {(bbb), (ccc)}. Note that every action in this domain may possibly
leave the state unchanged, that is, VsVa, s € y(s,a). Note also that the state space
of this domain is not fully connected: once two variables are made equal, there is no
action to change them. Consequently, states (ach), (bac), (bca), (cab) and (cba)
are not reachable from (abc).
A solution to the problem in Figure 8.2 is, for instance,

nm(abc) = Left,n(bbc) = n(bba) = Right, 7 (cbc) = n(cac) = Both.

Here, n is defined over Domain(n) = {sgo,(bbc), (cbc),(bba), (cac)}, and
¥(s0,) = Domain(r) U Sg. Figure 8.2 gives the Graph(so,) for that solution. O

Definition 8.3 is for goal reachability problems. In some domains, the actor does
not have specific goals. It may want to perform a task ending with some termination
action. Alternatively, it may want to keep acting optimally over an infinite horizon,
a case referred to as process maintenance problems. We focus on goal reachability
problems and discussed the other cases in Section 8.3.1.

8.1.2 Safe and Unsafe Policies

Let 7 be a closed solution to the problem (X, s¢, Sg). Run-Policy is a simple procedure
for acting with a policy 7, by performing in each state s the action given by 7 (s) until
reaching a goal or a state that has no applicable action.

8.1 Basic MDP Representation 149

(abc)

Figure 8.1. Part of the state space for the problem in Example 8.4.

(abc)

(bbc) (cbe)
Both

Figure 8.2. A safe solution for Example 8.4 and its Graph(so, 7); self-loops in every node
are implicit.

150 8 Probabilistic Representation and Acting

Run-Policy(Z, s, Sg,)
5« S0
while s ¢ S, and s € Domain(r) do
perform action 7 (s)
s « observe resulting state

Algorithm 8.1. Run-Policy, a simple procedure to run a closed solution policy.

Let o = (s0, 51, ..., Sp) be a finite sequence of states followed by this procedure in
some run of policy n that reaches a goal, that is, s, € Sg. o is called a history; itis a
path in Graph(so,) from sy to S,. For a given 7 there can be an infinite number of
finite histories. The cost of ¢ is the total sum of the cost of actions along the history

g.
h-1

cost(o) = Zcost(s,»,zr(s,»), siv1), foro = {sg,s1,...,5%).
i=0
The probability of following the history o is Pr(o | sg, 7) = Hf‘:_ol Pr(sic1|si, m(s;)).
Note that o- may not be a simple path: it may contain loops, that is, s; = s; for some
J > i. But because actions are nondeterministic, a loop does not necessarily prevent
the procedure from eventually reaching a goal: the action 7 (s;) that led to an already
visited state may get out of the loop when executed again at step j.

Example 8.5. For the policy in Figure 8.2, a history that reaches a goal despite visiting
the same state three times is o = (s¢, (¢bc), (cac), (cbc), (cbc), (ccc)) O

A policy may also get trapped forever in a loop, or it may reach a nongoal leaf.
Hence Run-Policy may not terminate or not reach a goal. The actor preferably
seeks solutions that offer some guarantee of reaching a goal. Let Pr'(S ¢|s,) be the
probability of reaching a goal from a state s by following policy 7 for at most / steps:
Prl(Sgls,ﬂ) =2, Pr(o), foro € {{(s,s1,...,5n) | six1 € y(si,7(s:)), 51 € Sg, h <
I}. Let Pr(Sgls, m) = limj—e0 Prl(Sg|s, 7). With this notation, it follows that:

* if 7 is a solution to the problem (Z, s, Sg) then Pr(Sg|so, 7) > 0;
* a goal is reachable from a state s with policy 7 if and only if Pr(Sg|s,) > 0;
e if s ¢ Domain(rm), then Pr(S, | s,7) is 1if s € Sq, and O otherwise.

Definition 8.6. A solution 7 to an MDP problem (Z, s, Sg) is safe if and only if
Vs € y(so,) there is a path from s to a goal. When 7 is safe Pr(Sq|so, 7) = 1. If
0 < Pr(Sq|so,) < 1 then 7 is an unsafe solution.? O

With a safe policy, procedure Run-Policy(Z, so, Sg, 7) always (i.e., with a probability
1) reaches a goal.

The number of steps needed to reach the goal is indefinite, i.e., finite but not bounded
a priori. Such a bound would require a safe acyclic policy (see Section 8.3.4). With

3 Another terminology refers to proper and improper for safe and unsafe solutions.

8.1 Basic MDP Representation 151

an unsafe policy, Run-Policy may or may not terminate; if it does terminate, it may
reach either a goal or a state with no applicable action.
It is useful to extend the safety concept from policies to states:

Definition 8.7. Safe, unsafe and dead end states are defined as follows:

* astate s is safe if and only if 3 such that Pr(Sgls, 7) = 1.

* s is unsafe if and only if 3 such that Pr(Sg|s,) > 0 and Vr, Pr(S,|s,) < 1,
or equivalently, (X, s, S¢) has an unsafe solution but no safe solution.

* sis adead end if and only if V7t Pr(Sgls,) = 0.

An MDP problem (Z, so, S,) is safe when sy is safe. O

A state s is safe if and only if there exists a policy 7 such that for every s’ € ¥ (s, 7)
there is a path from s’ to a goal. Note that a policy x is a safe solution of (X, 59, Sg)
if and only if Vs € y(so,), s is safe. Conversely, s is unsafe if and only if it has a
dead end descendant for every policy: Yz 3s” € ¥(s,m) s’ is a dead end. If a state s
is a dead end, then there is no solution to the problem (X, s, S,).

A state that has no applicable action is a dead end, but so is a state from which
every policy is trapped forever in a loop or leads only to other dead ends. The former
are called immediate dead ends; the latter are deep dead ends.

Example 8.8. In Figure 8.1, the state (aaa) is an immediate dead end, the states
(aac), (aab), (aba), and (aca) are deep dead ends, the states (bbb) and (ccc) are
goals, and all of the other states are safe. Any policy starting in the safe state sg with
either action Both or Right is unsafe because it leads to dead ends. The policy given
in Figure 8.2 is safe. O

(Z,s,Sg) has a solution

Yes. No
‘ 3z that always reaches a goal‘ Applicable(s)=J
Yes No
s is: safe unsafe ’explicit dead-end‘ ’implicit dead-end‘

Figure 8.3. Partition of the set of states with respect to solutions.

Explicit dead ends are easy to detect: in such a state, Run-Policy(Z, s¢, S, 7r) finds
that Applicable(s) = @ and terminates unsuccessfully. Implicit dead ends create
difficulties for many algorithms, including to Run-Policy that may not terminate.
Figure 8.3 summarizes the four types of states with respect to goal reachability.

A domain has no dead end if and only if every state in S is safe. A domain has no
reachable dead end if and only if every state reachable from sg by any policy is safe.
These desirable cases are difficult to check in advance. A problem has a safe solution
when the domain dead ends are avoidable: there is a & such that y(sg,) avoids dead
ends. Example 8.5 illustrates a domain where dead ends are avoidable. In solving an

152 8 Probabilistic Representation and Acting

MDP, one will seek to avoid dead ends, searching for safe solutions. If the domain
has an unavoidable dead end, reachable from s(, then sg is unsafe. In that case, one
may accept an unsafe solution whose probability of reaching a goal is maximal.

In summary, an MDP problem (X, 59, S¢) can be such that:

(i) it has no dead end;

(ii) it has no reachable dead end;
(iii) it has a safe solution, i.e., its possible dead ends are avoidable; or
(iv) it has a solution, possibly unsafe.

These four cases are in decreasing order of restriction.

8.1.3 Optimal Policies

The quality of a solution 7 depends on how safe it is, but also how good it is with
respect to an optimization criteria. The usual criteria uses the probability and cost
parameters of the problem and seeks a solution with minimal expected cost.

Let us assume an MDP problem (X, s, S,) that has a safe solution 7. Let us define
for a value function V™ : Domain(rr) — R which give the expected sum of the cost
of the actions obtained by following & from a state s to a goal:

V7(5) =B |) cost(si m(s), sia1) | (8.1)
i
where E is over all histories o~ € {(s,s1...,5z) | si+1 € ¥(5;,7(s;)),Sn € Sg}.
V7 (s) is the expected cost for running the procedure Run-Policy(Z, s, Sg, 7r) from
s until termination. It is the total cost of following a history o from s to S, averaged
over all such histories in Graph(s, rr):

V7(s) = > Pr(c) cost(o), (8.2)

where cost(o) = 3; cost(s;, w(s;), si+1) and Pr(o) = [1; Pr(sis1ls:, w(s:)).

Since 7 is assumed to be safe, the probability of reaching a goal is one; every o is
of indefinite length, i.e., h is finite but unbounded. Hence V™ (s) is necessarily finite.
Note for an unsafe policy the expected sum of action costs until reaching a goal is not
well-defined: on a history o on which Run-Policy(Z, s, S,,) does not terminate, the
sum in Equation 8.2 grows to infinity.

It is possible to prove that V7 (s) is given by the following recursive equation (see
Exercise 8.2):

0 if s € S,
V7*(s) = 8
Zsey(s,n(s)) Pr(s’|s, m(s)) [cost(s, w(s),s") + V7 (s")] otherwise.

(8.3)

A policy 7’ dominates a policy 7 if and only if V™ (5) < V7 (s) for every state
for which both 7 and n’ are defined. An optimal policy is a policy * that dom-
inates all other policies. It has a minimal expected cost over all possible policies:

8.2 Structured Probabilistic Representations 153

V*(s) = min, V™ (s). The optimality principle extends 8.3 to compute V* as the fixed
point of the following expression, called the Bellman equation:

. 0 if s € Sg,
Vils) =4 . , , . . (8.4)
ming{ Y ey (s,a) Pr(s’ls, a)[cost(s,a,s’) + V*(s’)] otherwise.

The optimal policy is directly derived from V*:

7 (s) =argmin Y Pr(s'|s, a)[cost(s, a,s") + V' (s')] (8.5)
a s’ey(s,a)

In a domain that has a safe solution, one or several optimal policies 7* exist. Their
value is given by the unique solution of the Bellman equation.

The value function V™ plays a critical role in solving MDP problems. It allows
ranking safe policies according to their expected total cost, and to use optimization
techniques for seeking a safe optimal or near optimal policy, using 8.4. V7 focuses the
search heuristically on a part of the search space, possibly away from avoidable dead
ends (see Chapter 9). When this is not feasible, one may accept an unsafe solution that
has a high probability of reaching a goal. A trade-off between cost and probability of
reaching the goal needs to be found (see Section 8.3.1).

8.2 Structured Probabilistic Representations

The modeling stage of a domain is always critical, in particular with probabilistic
models. It requires good representations. The previous section used a “flat” rep-
resentation, with a single state variable s that ranges over S. Such a representation
requires the explicit definition of the entire state space, a requirement that is rarely
feasible. Structured representations, also referred to as factored representations,* are
exponentially more compact. They allow for the implicit definition of the ingredients
of a domain through a collection of objects and parametrized state variables, as well as
operators with a compact specification of probability and cost distributions, policies,

and value function.

8.2.1 Probabilistic Precondition-Effect Operators

Probabilistic precondition-effect operators are a direct extension of deterministic ac-
tion schemas of Section 2.3.2. Here the set y(s, a) and the distribution Pr(s’|s, a)
are given as possible effects of an action schema, the instances of which are ground
actions. Let us illustrate this representation through a few instances of a domain with
increasingly more elaborate examples.

Example 8.9. Consider a simple service robot domain, called PAM,,, with one robot
rbt and four locations {pier1, pier2, exit1, exit2}. Ateach location, there are containers
of different types. The robot can move between locations; it can take a container from
a location and put it in a location. The motion is deterministic, and the four locations

4sometime in a narrower sense, with state variables without parameters.

154 8 Probabilistic Representation and Acting

are pairwise adjacent. Actions take and put are constrained by the activity in the
corresponding location: if it is busy, these actions fail to achieve their intended effect
and do nothing. A location becomes or ceases to be busy randomly with probability
p. We model this as an exogenous event, switch(/), that switches the busy attribute of
location /. We assume at this stage to have a full knowledge of the state of the world.
This simple domain is modeled with the following state variables:

* loc(r) € {pier1, pier2, exit1, exit2}: location of robot r;

e ctrs(l,7) € {0,1,...,k}: number of containers in location / of some type T;
we assume 7 € {red,blue};

* load(r) € {red, blue, empty}: type of the container on robot r if any; and

* busy(l) € Boolen.

A typical problem in PAM,, is to move red containers from any of the piers to exit1
and blue ones to exit2. O

Even a domain as simple as PAM,, can have a huge state space (in O (k") for I
locations), forbidding an explicit enumeration or a drawing such as Figure 8.1. An
adequate specification of the actions in the previous example has to take into account
their effects as well as the effects of concurrent exogenous events. Indeed, recall that
nondeterminism accounts for the possible outcomes of an action a when the world
is static, but also for events that may happen in the world while a is taking place,
or have an impact on the effects of a. Hence, y(s, a) represents the set of possible
states corresponding to the joint effects of a and concurrent exogenous events. The
latter may however concern state variables that are not among the arguments of a.
When the |y(s, a)| are not too large, probabilistic precondition-effect operators can
be a possible representation, with en extension for free variables to handle effects of
exogenous events, as illustrated next.

Example 8.10. In PAM,, the deterministic effect of action move has to be combined
with the random effects of events switch(/) in any of the four locations. Hence in total
|y (s, move)| = 2*. These random events are assumed to be independent and concern
free variables, beyond the parameters of the action. Action move can be written as
follow:

move(r : Robots; [, m : Locations)
free: l1,15,15,14 : Locations
pre : loc(r)=L11 £l #13# 14
eff: po: loc(r) «m
p1: loc(r) « m,busy(ly) « —busy(l;)
p2 . loc(r) « m,busy(l;) « —busy(ly),busy(ly) « —busy(l,)
p3: loc(r) « m,busy(ly) « —busy(l;),busy(l,) < —busy(l),
busy(/3) < —busy(/3)
pa: loc(r) « m,busy(l;) « —busy(ly),busy(ly) « —busy(l),
busy(/3) « —busy(/3), busy(ls) < —busy(ls)

[to Iy are free variables for the effects of random events; p; is the probability
that 7 switch events occur, for i = 0 to 4, that is, pg = (1 = p)*,p1 = p x (1 -

8.2 Structured Probabilistic Representations 155

2>, p2=p>x(1-p)2%p3=p>x(1-p),and ps = p*. Note that there are four
possible cases with probability p;, six cases with p; and four cases to p3, giving:
pPo+4Xpr+6Xpr+4Xp3+ps=1.

The take action is similarly specified: when the robot location [is not busy and
contains at least one container of the requested type c, then take may either lead to a
state where [is busy with no other effect, or it may achieve its effects of a container of
type 7 being loaded and ctrs(/,c) being reduced by one. For each of these two cases,
additional switch events may occur in any of the three other locations. This is similar
for action Put (see Exercise 8.6). |

To summarize, the probabilistic actions schemas have preconditions and effects, as
the deterministic schemas, but they have as many alternative sets of effects as possible
outcomes. Each alternative effect field is specified with a probability value, which
can be a function of the operator’s parameters.

8.2.2 Dynamic Bayesian Networks

Parameterized probabilistic precondition-effect operators can be expressive, but they
require going through all the alternative joint effects of an action and possible exoge-
nous events and computing their probability. In many cases, it is not easy to factor out
a large y (s, a) into a few alternative effects, as illustrated earlier. This representation
quickly meets its limits.

Example 8.11. PAM, is a more realistic version of the PAM,, domain. It takes
into account the arrival of containers of different types in one of the two piers and
their departure from one of the two exit locations, but it ignores the ship unloading
and truck loading operations. The arrival and departure of containers and their
types are considered as exogenous events. Locations have a maximum capacity of K
containers of each type, K being a constant parameter. When an exit location reaches
its maximum capacity for some type then the robot cannot put additional containers
of that type. When a pier is full, no arrival event of the corresponding type is possible.
In addition to the move, take, and put actions and the switch event seen earlier, we
now have two additional events:

* arrival(l): at each state transition, if a pier / is not full and the robot is not at /
then one container may arrive at / with probability g; further, 60% of arrivals
in pier1 are red containers, and 80% are blue in pier2;

 departure(l) : if the robot is not at an exit location / and there are containers
there, then there is a probability ¢’ that a container may depart from /; only red
containers depart from exit1 and only blue ones depart from exit2.

A typical task for the robot in domain PAM,, is to move all red containers to exit1 and
all blue ones to exit2. m]

With only three exogenous events as in PAM,, the joint effects of action and
events become complex: the size and intricacy of y(s, @) reaches a point where the
specification of precondition-effect operators is not easy (see Exercise 8.7).

156 8 Probabilistic Representation and Acting

Bayesian networks is an appropriate representation for expressing conditional dis-
tributions on random variables. It offers powerful techniques for reasoning on these
distributions. A Bayesian network is a DAG where nodes are random variables as-
sociated with a priori or conditional probability distributions. An edge between two
random variables x and y expresses a conditional probability dependance of y with
respect to x.

Dynamic Bayesian Networks (DBNs) extend the static representation to handle
different stages in time of the same variables. They are particularly convenient in our
case for expressing probabilistic state transitions from s to y (s, a), with a focus on the
state variables relevant for the action a and the exogenous events that may take place
concurrently with a. This is illustrated in the following example.

switch

ctrs(/,c)

ctrs(l,c)> 0

loc(r)=I

ctrs(/’,c”)

arrival
I’ e {pier1,pier2}, I'#l \
ctrs(l”,c”) departure >||ctrs (A

17 {exit1,exit2}, I"#l

ctrs’(l’,¢’)

Figure 8.4. A DBN for action take in the domain PAM,,.

Example 8.12. Figure 8.4 represents the DBN characterizing action take in PAM,
domain. It shows the state variables that condition or are affected by take and the
events switch, arrival and departure. If x is a state variable of state s, we denote x’ that
same state variable in s € y(s,a). Here, we extend a ground DBN representation
with parameterized random variables, with possible instantiation constraints. For
example, busy(/) is a Boolean random variable true when location [is busy. Note that
variable loc(r) conditions take but is not affected by the action and events: it appears
only in the left side of the DBN.

A DBN specifies conditional probability tables that give the distribution over the
values of a variable as a function of the values of its predecessors. Figure 8.4 illustrates
such a table for the simple case of variable busy(/) that has a single predecessor. Note
that p in this table varies in general with /. O

When a variable in a DBN has m ground predecessors that range over k values,
the conditional probability table is of size £"". This can quickly become a bottleneck

8.2 Structured Probabilistic Representations 157

for the specification of a DBN. Fortunately, in well-structured domains, conditional
probably tables can be given in a factorized form as decision trees. These decision trees
are also convenient for expressing constraints between instances of the parametrized
state variables in the network.

Prob[ctrs’(/;,)= ctrs(/1,T1)+1] Probl[ctrs’(l,,12)= ctrs(l2,12)-1] Prob[ctrs’(/,t)= ctrs(/,7)-1]

() (b) (©

Figure 8.5. Conditional probability trees for the ctrs state variables for the action take
combined with the possible events switch, arrival, and departure: (a) accounts for the
arrival of a container at a pier location, (b) for a departure at an exit location, and (c) for
a container being taken by the robot.

Example 8.13. Figure 8.5 gives the conditional probabilities for the ctrs variables in
the DBN of Figure 8.4. The leaves of each tree give the probability that the number
of containers of some type at some location increases or decreases by one container
(the probability that this number remains unchanged is the complement to 1). To
simplify the picture, we take p = .05 and ¢ = ¢’ = .15. Tree (a) accounts for the
possible arrival of a container of some type at a pier location: if the location is full
(ctrs(ly, 1) =K) or if the robot is in that location (loc(r) = [;), then no container
arrival is possible, otherwise there is a probability of .15 X .6 for the arrival of a
red container at pier1, and so on. Similarly, tree (b) accounts for the departure of
a container at an exit location. Tree (c) gives the proper effect of action take: the
probability that ctrs changes is conditioned by the five ancestor variables of that node
in the DBN. O

In Example 8.11, the interactions between exogenous events and actions are quite
simple: events are independent and have almost no interference with the robot actions.
In applications with more complex probabilistic interferences between the effects of
actions and possible events, the DBN representation is especially needed. It is also
convenient for the modeling of sensing actions, where sensor models must be used to
relate sensed features to values of state variables.

158 8 Probabilistic Representation and Acting

busy(/)

busy’(/)

|

ctrs’())

ctrs(l)

load(r)

pos(c) > pos’(c)

hue(c) /

Figure 8.6. Part of the DBN for action take in domain PAM,,.

Prob[load’(r)=red]

hue | Prob[type=red | hue]

al.05 nfire

2;5 unknown A\B\C d

dl.g5 .047[.095]|.807||.902]
(@) (b)

Figure 8.7. (a) Conditional probability table for the type of a container given its observed
feature; (b) conditional probability trees for load’(r)=red.

Example 8.14. Consider PAM,,, a variant of the previous domain where the robot
does not have full knowledge of the state of the world. It still knows the exact number
of containers in each location, but it does not know their types. However, it has a
perceive action: when the robot is sensing a container ¢, perceive(c) gives the value
of an observable feature, denoted hue(c), which is conditionally dependent on the
container’s type. To model this domain, we keep the state variables loc(r), load(r),
and busy(/) as earlier; ctrs(/) is now the total number of containers in /. We further

8.2 Structured Probabilistic Representations 159

introduce the following variables:

* type(c) € {red, blue}: type of container c,
* pos(c) € {pier1, pier2, exit1, exit2, rbt}: location of container ¢, and
* hue(c) €{a, b, ¢, d, unknown}: the observed feature of c.

Action perceive(c) can be modeled as requiring the robot to be at the same location
as ¢ and hue(c) to be unknown,; its effect is to change the value of hue(c) to a, b, c,
or d. Furthermore, the sensor model gives a conditional probability table of type(c)
given hue(c) (Figure 8.7(a)). Action take(r, [, ¢) is now conditioned by two additional
variables pos(c), which should be identical to loc(r), and hue(c) that should be not
unknown. Figure 8.6 gives a DBN for that action. A conditional probability tree for
Prob[load’(r)=red] is in Figure 8.7(b). It takes into account the probability of the
location becoming busy (.95), as well as the probability of looking at a red container
when its observed feature has some value. Prob[load’(r)=blue] is the complement to
one of the numbers in the last four leaves; it is equal to zero in the other leaves where
Prob[load’ (r)=empty]=1. O

The previous example illustrates two important representation issues:

* An observed feature informs probabilistically about the value of a non-
observable variable. A non-observable variable (type(c) in the example) is
replaced by a state variable that can be observed (here hue(c)) and to which the
probabilistic planning and acting models and techniques apply normally.

» The effects of a sensing action can be required (for example, the precondition
that hue(c) # unknown) and planned for, as with any other state transformation
action.

8.2.3 Domain Decomposition and Hierarchization

The expressiveness of structured representations for probabilistic problems allows for
a compact specification of a domain that has to a huge state space, often not directly
tractable with available techniques for finding a solution. In addition to a compact
representation, we would like to structure a domain into smaller tractable subdomains.
Two related principles can be used for that: abstraction and decomposition. Let us
briefly introduce some approaches.

Abstraction methods. Abstraction consists in defining a partition of S into clusters.
A cluster is a subset of states that are close enough to be considered indistinguishable
with respect to some characteristics, such as to be processed jointly as a single abstract
state. For example, these close states may be attributed the same policy 7 (s). The
original problem is solved with respect to abstract states that are these clusters, the
solution of which is then possibly refined within each abstract state. Abstraction is
the complement of refinement.

A popular form of abstraction is based on focusing a cluster on some relevant state
variables and ignoring the other variables, considered as less relevant. The conditional
probability trees in Section 8.2.2 illustrate the idea: the state variables that are not part

160 8 Probabilistic Representation and Acting

of any tree are irrelevant. Often the irrelevant variables at one stage can be important
at some other stage of the problem: the abstraction is not uniform. Furthermore, one
may have to resort to approximation to find enough structure in a problem: variables
that affect slightly the decision-making process (i.e., w(s)) are abstracted away.

Another abstraction approach extends model minimization techniques for comput-
ing minimal models of finite-state machines.”> One starts with an a priori partition of
S into clusters, for example, subset of states having (approximately) the same value
function V. A cluster is split when its states have different probability transitions to
states in the same or other clusters. When all clusters are homogenous with respect to
state transitions, then the problem consisting of these clusters, considered as abstract
states, is equivalent to the original problem. The effort in model reduction is paid
off by solving a smaller problem. This is particularly the case when the clusters and
the value function are represented in a factored form, as state variable formulas (see
Section 9.6.2).

Symbolic algorithms (as in Section 12.3) develop this idea further with the use
of algebraic decision diagrams (ADD). An ADD generalizes a decision tree into a
rooted acyclic graph whose nodes are state variables, branches are possible values
of the corresponding variables, and leaves are sets of states. An ADD represents a
function whose values label its leaves. For example, an ADD can encode the function
V(s) in which all the states corresponding to a leaf have the same value. Similarly, one
can represent Pr(s’|s, @) and cost(s, a) as ADDs. When the structure of the problem
can be mapped into compressed ADDs — a condition not easily satisfied — then fast
operations on ADDs allow more efficiently exploring S or on the relevant part of it
for finding a solution.

Decomposition methods. The idea is to decompose the original problem into inde-
pendent or loosely coupled subproblems that are solved independently. Their solutions
are recomposed together to get the solution of the global problem. For example, serial
decomposition addresses the original task as a sequence of subtasks whose solutions
will be sequentially run.

The notion of closed subsets of states is convenient for decomposing a domain.
C C S is closed if there is no transition from a state in C to a state outside of C. It is
a maximal closed subset if it does not have a proper subset that is also closed. If the
problem is not to reach a goal, but to control a process by acting as best as possible over
an infinite horizon (process-oriented problems), an optimal policy can be constructed
independently for each maximal closed subset without interfering with the rest of the
domain. A maximal closed subset C can be viewed as an independent subprocess.
Once reached, the system stays in this subprocess forever. C can be collapsed to a
single absorbing state, at which point, other closed subsets can be found.

The kernel decomposition method implements this idea with more flexibility. The
set S is decomposed into blocks, with possible transitions between blocks through
a few states for each block. These states permitting block transitions are called the
kernel of the domain. Starting with some initial value function V for the kernel states,

SFor any given finite state machine M, there is a machine M’, minimal in the number of states, which
is equivalent to M, i.e., which recognizes the same language.

8.3 Modeling a Probabilistic Domain 161

optimal policies are computed independently for each block, allowing one to update
the values of the kernel and iterate until updates are negligible.

Finally, let us mention that abstraction and decomposition are also used for com-
puting heuristics and control knowledge to guide or focus a global search. There
is a large overlap between abstraction or decomposition methods and the techniques
discussed in Section 9.3.

8.3 Modeling a Probabilistic Domain

In general, the horizon for an acting problem can be (i) bounded, i.e., acting stops
after at most a given number 4,4 of steps, (ii) indefinite, i.e., the horizon is finite but
not a priori bounded, or (iii) infinite. We discussed so far goal reachability MDPs that
have an indefinite horizon. This section considers other cases of indefinite horizon
and infinite ones, as well as issues regarding and actor’s objectives, criteria, and the
sources of nondeterminism it needs to model.

8.3.1 Objectives and Horizon

Let us distinguish two classes of problems corresponding to different types of horizon.

Process maintenance problems. Consider, for example, a robot whose sole func-
tion is to keep an office space clean and tidy, or a system controlling traffic lights and
seeking to minimize congestions, or an elevator controller and seeking to minimize
expected passengers time to their destination floors. This is the class of process
maintenance problems, which corresponds to continual tasks. Here the actor has no
specific goal state; its objective is to act optimally, over possibly an infinite horizon.
A process maintenance problem can be specified as an MDP, defined as in Defini-
tion 8.2. A solution to the problem is a policy that runs “forever,” that is, as long as
this policy does not prescribe an emergency exit action, or does not reach a state with
no applicable action. The notions of safe and unsafe states, linked to the probability
of reaching a goal, are no longer relevant as defined earlier, since there are no goals.
The notion of optimal policies remains essential, but with slightly different criteria:

e for a bounded horizon MDP: the criteria is as expressed in Equation 8.1, but
the expected sum is over all histories o~ of bounded length, i.e., |o-| < Ay for
an a priori given bound /4.

* for an infinite horizon MDP: the criteria is the expected sum of a discounted cost
over an infinite horizon for a given a discount factor 0 < ¢ < 1. Equation 8.1
is changed into V™ (s9) = E[X2 6" X cost(s;, w(s;))]; similarly, Equation 8.3
becomes V7 (s) = Xy ey (s, x(s)) Pr(s|s, m(s)) [cost(s, m(s), s") + 6 X V7 (s")].

Discounted cost MDP are more popular than bounded horizon ones for handling
process maintenance problem. The discount factor is mathematically needed for an
expected sum over an infinite horizon, but it leads to numerous drawbacks (discussed
later). One can argue that there is no infinite horizon in real-life problems. Moreover,
it is often easier to choose a bound /%, (e.g.,, the cost over one year for the traffic

162 8 Probabilistic Representation and Acting

controller, or until the next change in the street layout), than to choose a meaningful
and satisfactory discount factor d.

Goal reachability and episodic task problems. We discussed earlier goal reach-
ability MDP problems. Episodic task problems correspond to tasks that always
terminate at some point, e.g., when performing a termination action, after a finite but
unbounded number of steps. These two classes of problems are have an indefinite
horizon. It is possible to model an episodic task problem as a goal reachability prob-
lem, e.g., by annotating tasks (see Section 7.2) and adding to S, specific termination
states (including failure states).

Stochastic Shortest Path (SSP) problems is an important class of goal reachability
and episodic task problems. An SSP is a goal reachability MDP problem that has
a safe solution and, either (i) all costs are positive, or (ii) for every unsafe policy 7
there is an unsafe state s such that V7 (s) = co. These condition ensure finding a safe
solution and hence acting with termination. An SSP has an indefinite horizon.

SSP generalize the familiar shortest-path problems in graphs to probabilistic
And/Or graphs. SSP express naturally probabilistic planning and acting problems.
They are also quite general in the family of MDP models. In particular, it is possible
to prove that every bounded horizon MDP and every infinite horizon discounted cost
MDP problem can be restated into an equivalent SSP [131].

Goal reachability problems are sometime specified with a set of possible initial
states and a probability distribution over this set. This case can be handled by adding
a conventional so with a single applicable action leading with the same distribution
to one of initial states of the problem.

In some cases, an MDP can be addressed as satisficing problem, i.e., find any
safe solution. More often MDPs are taken as optimization problem for the minimal
expected cost or for other criteria, discussed next.

8.3.2 Criteria

Note that satisficing approach to a goal reachability MDP can be obtained as a
particular case of optimizing with unit costs: one minimizes the expected distance to
the goal, which usually leads to good heuristics for finding a solution.

Maximizing rewards. Instead of costs, one might be interested in taking into ac-
count action rewards for reaching particular states. Rewards are simply the opposite
of costs. One switches from minimization to maximization problems. SSPs with
rewards also require a safe solution and either strictly positive rewards or infinite
value function for unsafe state and policies.

In problems with possibly negative costs or reward (i.e, mixing bonuses and penal-
ties), the latter condition is hard to verify. One has to check that every cycle not
containing a goal has a strictly positive cost (or strictly negative reward). This is not
needed in a process maintenance problems with a discount factor allowing to handle
real costs or rewards that sum up over infinite terms to finite values.

8.3 Modeling a Probabilistic Domain 163

Scaling and shaping costs and rewards. It is easy to show from Equation 8.4 and
8.5 that an affine transformation of the cost function does not change the optimal
policy. In other words, given constants @ and S, the optimal policy is the same for the
two functions cost(s, a, s”) and cost’(s, a, s") = a cost(s, a, s") + .

A less immediate but more useful transformation is given by a property called the
shaping theorem. Let h : § — R be any function from the states to the reals. A cost
shaping is a transformation of the cost function with 4 given by:

cost’ (s, a,s”) = cost(s,a,s’) — h(s) + h(s").

The optimal policy remains unchanged with any cost shaping transformation. This
can be quite beneficial for learning an optimal policy when guided towards desirable
paths (see Chapter 10).

These properties of affine and shaping transformations apply to SSP with algebraic
costs or rewards, and to infinite horizon MDP with a discount factor, for which shaping
is expressed as cost(s, a, s") — h(s) + h(s’).

Minimizing the average cost per step. The expected average cost per step to the
goal is an alternative objective function. For this criteria, Equation 8.1 takes an
averaging factor of 1/h, where A is the length of history o-. However, the criteria may
prefer a longer high cost history to a short lower cost one (e.g., ¢’ /h’ < ¢/hif ¢’ =2c¢
and 4’ = 3h). Of course this cannot happen if each unit cost is not lower than 1.

Maximizing the probability of reaching a goal. In many applications, one is
more concerned about the probability of reaching a goal than about the expected
cost of a policy. This is particularly the case when s¢ is unsafe. With this criterion,
called MAX-PROB, one does not need to assume the existence of a safe policy, since
one optimizes over the entire set of policies, including unsafe ones. One way of
addressing this criteria is to take a reward maximization approach with the following

reward function:
1 ifsesS,,
r(s,a,s") = { 1S (8.6)

0 otherwise.

In such a model, the expected value of a policy r is exactly the probability Pr(Sg|so, 7)
of reaching a goal from s by following 7.

Discount factor. An infinite horizon MDP requires a discount factor 0 < § < 1, for
the convergence of the infinite sum V" (so) = E[X2, 5" x cost(s;, m(s;))]. It has been
demonstrated that in the limit when ¢ approaches one, the discounted cost criteria
approaches the average cost criteria over long horizon [131].

Discount factors seem an easy fix, including for problems with algebraic costs or
rewards. But they have many disadvantages:

* Solutions to a discounted MDP are very sensitive to a chosen value of §. In
robotics, for example, it has been noted that values lead to unstable control.®

6 According to the survey [622]“discounted formulations are frequently inadmissible in robot control”.

164 8 Probabilistic Representation and Acting

* The literature often refers to financial applications, interest rates or amortization
rates. Beyond finance, this does not give a convincing rational for discounts.

* Psychological arguments pointing that one is usually more sensitive to imme-
diate than to long term rewards or costs may be true. But this can be seen more
as a weakness, with possibly damaging effects, than a desirable feature to be
taken as a model.

* Since in practice there is no infinite horizon, it is not obvious to justify and
pickup a value for ¢ relevant to a given application. Discounting the future can
in many cases be myopic and reflect a greedy bias.

* Introducing a discount just to handle unsafe policies and states with algebraic
costs or rewards can be misleading towards such unsafe solutions.

In summary, discounts are seldom grounded in a practical meaning, they depreciate
the future, lead to sensitive and possibly instable solutions and are not strictly needed.
Throughout this book we avoid using discounted criteria.

8.3.3 Multiple Objectives

One might want to address multiple objectives and seek a compromise, e.g., between
goal satisfaction probability, energy consumption, and time to reach the goal. A
number of models aim at finding policies that provide an acceptable tradeoft between
multiple objectives.

The simplest is the constrained MDP (C-MDP) , which allows optimizing a primary
objective whilst keeping secondary objectives within given bounds. A C-MDP takes
the form of an MDP with a vector of cost functions cost = [costg, costy, . . ., costy]
and a vector of upper bounds & = [uy,...,ux]. A solution to a C-MDP is a policy 7
minimizing the expected primary cost V5 (so) (as in a regular MDP); in addition 7
complies with the constraint that each expected secondary cost lies below its respective
bound: VT (so) <u; Vie{l,... k}.

Importantly, optimal policies for C-MDPs may be stochastic, i.e. they may map a
state to a probability distribution over actions, as illustrated next.

Example 8.15. Consider an MDP with just an initial state and a goal state, and two
actions leading from sy to the goal: go-slow, which costs 2 units of fuel and 10 units of
time, and go-fast, which costs 10 units of fuel and 2 units of time. Fuel is the primary
cost, and one must reach the goal with at most 6 units of time on average. The only
deterministic policy satisfying the constraint is to apply go-fast, at a cost of 10 units
of fuel. The optimal stochastic policy however, applies go-fast and go-slow 50% of
the time each. It satisfies the constraint but costs only 6 units of fuel on average. O

Algorithms for solving C-MDPs can incorporate goal satisfaction probability sim-
ilarly as a cost function — either by maximizing it if it is the primary objective, or
by ensuring it exceeds a lower bound if it is a secondary objective. C-MDP capture
the bi-level optimization problem of finding a policy whose expected cost is mini-
mal, among those having the maximum probability of reaching the goal. In some
applications, a low-cost solution with an acceptable probability of reaching the goal is

8.3 Modeling a Probabilistic Domain 165

preferred to a high probability policy with a significantly higher cost. C-MDPs sup-
port this since they allow optimizing over all policies above a given goal-probability
threshold. However, other, more complex models are specifically designed to support
the exploration of trade-offs between these often conflicting objectives.

This is the case of multi-objective MDPs (MO-MDPs), which are a general MDP
model handling the optimisation of multiple objectives, represented by a vector of k
cost functions. MO-MDPs are useful when the best way to combine these objectives
into a single objective is unknown at planning time, when such a combination is
computationally too complex to handle, or when the aim of the decision process is to
help a user elicitate what an acceptable combination might be. An MO-MDP value
function becomes a vector V™ whose components represent the expectations of the re-
spective cost functions. A policy 7 dominates another policy 7’ iff \7L.” (s0) < \7[.”' (s0)
forl <i <k and \7J?r(so) < Vf,(so) for at least one j € {1,...,k}. A solution to
an MO-MDP is a Pareto coverage set of non-dominated stochastic policies, i.e. the
largest set of policies such that no one in the set is dominated by another policy in the
set. In practice since the Pareto coverage set is infinite, solution algorithms compute
the extreme points of its convex hull, which consist of deterministic policies. The
Pareto set of non-dominated stochastic policy is then implicitly given by the points
on the surface of the polyhedron defined by the convex hull.

8.3.4 Nondeterminism

The sources of nondeterminism that one chooses to model in ¥ and how they are
modeled are critical issues. Except for trivial cases, no predictive model is without
causes of uncertainty, but one may choose to ignore for good reasons some of them.
Uncertainty can be due to sensing and information gathering actions, to exogenous
events in the environment (i.e., the proper dynamic of the world and other unmodeled
actors), to possible failures and other intrinsically nondeterministic actions.

Sensing and information gathering actions. These are essential sources of nonde-
terminism. Sensing related to a particular state variable x can be modeled as actions
applicable in some states and associated with a priori and conditional distributions
over possible values of x (for example, Prob[type|hue] in Example 8.14). Sensing
actions that inform on x change the distribution of its values. Conditional distribu-
tions of state variables given observations can be obtained from probabilistic models
of sensors.

Exogenous events and the proper dynamics of the environment. These are gen-
erally difficult to model deterministically as predictable events. When their possible
effects interfere weakly with those of deliberate actions, events can be modeled as
probability distributions over possible effects. For example, in Example 8.9, a lo-
cation becomes or ceases to be busy because of some exogenous events, modeled
simply as probabilistic effects of a move action. It is possible to model events as
random variables whose values interfere with the outcome of an action. The DBN
representation of actions can handle that directly (see Example 8.11). Conditional

166 8 Probabilistic Representation and Acting

expressions have to be added to the probabilistic precondition-effect representation to
take into account posterior probabilities given observed events.

Failures and nondeterministic actions. Intrinsically nondeterministic actions,
such as throwing a dice or playing a casino machine (Example 8.4) are not generally
mixed up with other actions and are dealt with specifically. Failures need certainly
to be taken into account. However, the usual consideration of nominal effects versus
erroneous effects of an action might not be the most relevant in practice. For example,
the classical benchmark of navigating in a grid where a move action can lead to other
nodes than the intended ones is often unrealistic: it does not take into account the
necessary refinement of each action into lower level steps until reaching closed-loop
controlled motion and localization. Further, rare events, such as component failures
leading to non-modeled effects, are better handled with using specific approaches
such as diagnosis and recovery.

Sparse Probabilistic Domains The degree of nondeterminism can be appreciated
by the size of |y (s, a)| and how overlapping are the sets y (s, a), over applicable actions
in s. In sparse probabilistic planning problems, y (s, @) remains a small set. In some
cases, nondeterminism is limited to parts of the domain. Possibly, most actions are
deterministic except for a few that have just two outcomes: nominal and abnormal
effects. This is the case, for example, when most of the environment is known but a
few areas are partially unknown, or when only sensing actions are nondeterministic,
while all other actions have a unique predictable outcomes. In these cases, it is
worthwhile to combine deterministic actions with probabilistic ones, and appropriate
algorithm to each for finding a solution (see paragraph 9.5.2).

8.4 Acting with Probabilistic Models

8.4.1 Basic Acting Procedures

We introduced a very simple Run-Policy procedure (Algorithm 8.1) for acting using
a precomputed policy 7. When no policy is available and too complex to compute
online, lookahead methods allow an actor to progressively elaborate its deliberation
while acting, using a procedure such as MDP-Lookahead (Algorithm 8.2). This
procedure calls a bounded Lookahead step, which searches for a partial plan rooted at
s. Lookahead computes partially r, at least in s, and returns the corresponding action.
The parameter 6 sets bounds for the lookahead search. For example, 8 may specify the
depth of the lookahead, its maximum processing time, or use a real-time interruption
mechanism corresponding to an acting deadline. The simple pseudo-code below can
be extended when Lookahead fails by retrying with another 6.

The main difference between Run-Policy and MDP-Lookahead is the use of Looka-
head instead of 7 (s).

Working with a progressively generated policy, defined when and where it is needed,
makes it possible for MDP-Lookahead to interleave planning and acting, while dealing
with complexity and partial domain knowledge.

8.4 Acting with Probabilistic Models 167

MDP-Lookahead(Z, so, Sg)
5« 80
while s ¢ S, and Applicable(s) + @ do
1 a «—Lookahead (s, 0)
if a = failure then return failure
else
L perform action a
s « observe resulting state

Algorithm 8.2. MDP-Lookahead, acting with the guidance of lookahead search.

In most cases, the step “perform action a” in Run-Policy or MDP-Lookahead proce-
dures is not a primitive command. It requires further context dependent deliberation
and refinement, which are discussed next.

8.4.2 Refining Actions

Performing an action as specified in Run-Policy or in MDP-Lookahead is seldom an
atomic step. It requires refinement steps that may interfere with the current policy
or the lookahead procedure. In some cases the deterministic techniques discussed in
Part T and Part IT can be used for performing these refinements. For example, 7(s)
can be considered as an HTN task, refined in the context of s into a sequence of
primitives, to be performed sequentially until reaching some s’ € y (s, 7(s)). A few
extensions to deterministic methods for acting can be desirable when combined with
probabilistic models for planning. Among these, in particular, are the following:

* When a refined action n(s) is performed and leads back to the state s, this
action may be performed again with a different refinement. After a few trials,
one may also switch in s for 7() to some other applicable action a’ # 7 (s).
This is equivalent to following a stochastic policy when needed.

* The refinement of () may require primitives to monitor the transition from s
to a state in y (s, (s))

In general however refining probabilistic actions with deterministic techniques is
not satisfactory. Because of the nondeterminism, it is not obvious to decide when the
sequence in which 7(s) has been refined terminates and in which state of y (s, 7(s)).
One needs to follow such a sequence in a conditional manner, with context dependent
branches. Acting with such a class of refinement methods is very important; it will
be covered in Part V.

168 8 Probabilistic Representation and Acting

8.5 Discussion and Bibliographic Notes

8.5.1 Foundations

Sequential decision making under uncertainty benefits from a long line of work in
mathematics, starting with Andrei Markov in the 19th century, who initiated the
theory of stochastic processes, now called Markov processes. The field developed
extensively in the 1950s with contributions from optimal control, operations research
and computer science. The Dynamic Programming book [109] opened the way to
numerous developments, detailed into influential monographs, for example, [294,
130, 919, 131].

Many of the early developments were focused on process maintenance problems
(Section 8.3.1). Goal reachability problems were also defined quite early: the analysis
developed in [132], who coined the name SSP, traces back their origin to [317].
However, their development is in many aspects more recent and remains active within
the artificial intelligence and automated planning communities, as illustrated with
numerous articles and books, for example, [190, 764].

8.5.2 Stochastic Shortest Path Models and Constrained Models

The highly successful Markov Decision Process (MDP) class of models grew up
into many extended and special cases.” The Stochastic Shortest Path (SSP) model is
appealing for two reasons: (i) it is a simple and quite natural model for goal-oriented
probabilistic problems, and (ii) it is more general than many MDP models. As
demonstrated in [130] the SSP model includes as special cases the bounded horizon
and the discounted MDP models. The cost shaping property is due to [847].

SSP are defined in the literature with a few variations related to how the so-called
connectivity assumption and the positive cycle assumption are expressed. The first is
defined either by assuming that every state is safe or that sg is safe. This amounts
to requiring either that there is no dead end in the domain or that existing dead ends
are avoidable with a safe policy starting at sg. The second assumption is equivalent
to requiring that every cycle not containing the goal has positive costs. These two
assumptions should preferably be expressed as conditions that are easily testable at
the specification stage of the domain. For example, demanding that every unsafe
policy has infinite cost is less restrictive than constraining all costs to be positive, but
it is also less easy to verify. A general approach is to allow for real costs and use
algorithms able to check and avoid dead ends (see Chapter 9).

The Constrained MDP model (C-MDP) has been proposed in [34, 1102] to handle
a constrained optimization objective. A special case is the bi-level optimization
problem of finding a policy whose expected cost is minimal, among those having the
maximum probability of reaching the goal [1103]. A generalization is given with
the Multi-Objective MDPs model (MO-MDP) [1168, 959], which extends C-MDP to
Pareto optimization approaches.

TThese are, for example, C-MDP, MO-MDP, POMDP, MOMDP, CoMDP, MMDP, SIMDP, MDPIP,
HMDP, HDMDP, GSSP, S>P, DSSP, POSB-MDP, NEG-MDP, MAXPROB-MDP, MDP-IP, TiMDP,
CPTP, Dec-MDP, Dec-SIMDP, Dec-POMDP, MPOMDP, POIPSG, and COM-MTDP.

8.5 Discussion and Bibliographic Notes 169

8.5.3 Partially Observable Models

The model of Partially Observable Markov Decision Process (POMDP) provides an
important generalization regarding the epistemic condition of an actor, that is, what
it knows about the state it is in. The SSP and MDP models assume that after each
state transition the actor knows which state s it has reached; it then proceeds with the
action () appropriate for s. The POMDP model considers that the actor does not
know its current state. It knows about the value of some observation variable o € O
and two probability distributions: Pr(s’|s, a) for the transition from s to s” with a,
and Pr(o|s’, a) for observing o when reaching s’ with a. This gives a probability
distribution of possible states the actor might be in: b(s), called the actor’s belief, is
the probability of being at some stage in state s. Beliefs are updated with Bayes rules.
The belief of being in s” after doing « in s and observing o is:

Dses Pr(s’[s, a) Pr(ols’, a)b(s)
Pr(o|b, a)

where Pr(o|b,a) = 35 ycs Pr(s’|s,a) Pr(ols’, a)b(s).

It has been demonstrated that the last observation o does not summarize the past
execution, but the last belief does [59]. Hence, a POMDP problem can be addressed
as an MDP problem in the belief space, which is continuous. One starts with an initial
belief by (initial state distribution) and seeks an optimal policy that gives for every
belief point b an action 7(b), leading to a goal expressed in the belief space.

The value function is now a mapping from beliefs to real values; Bellman equation
8.4 is revised as:

V*(b) = main{z b(s')cost(s,a,s’) + Z Pr(o|b, a)V*(b(s'|a, 0))}

b(s’la,o0) =

Several approaches generalizing MDP techniques to POMDPs have been proposed
(see Section 9.6). They face significant difficulties, among which the following:

* A tremendous complexity if the belief space is discretized: each point corre-
sponds to a subset of states. Hence, a discretized belief space is in O(2!5]).
Since || is already exponential in the number of state variables, sophisticated
algorithms and heuristics do not scale up very well. Significant modeling effort
is required for decomposing a domain into small loosely coupled problems
amenable to a solution. For example, a clever hierarchization technique is
required for a small state space (about 600 states) to obtain a solution [897].

* A strong assumption (not always highlighted in the POMDP literature): a policy
from beliefs to actions requires the action 7(b) to be applicable in every state
s compatible with a belief b. It is not always the case that the intersection of
Applicable(s) over all states s compatible with b is meaningful. Sometimes,
one would like to be able to choose an action that is feasible in a subset of 7 (b)
on the basis of states likelihood, as for example in [23].

* A termination issue: expressing the goal in the belief space is unnatural. A
simple threshold on } ;s b(s) may not be sufficient. This is often an argument
in defense of infinite horizon discounted POMDP. But discounts in POMDP
can be avoided with termination actions in episodic tasks problems [466].

170 8 Probabilistic Representation and Acting

* The partial observability model of POMDP is restrictive. It does not consider
that part of s can be observable. An actor may distinguish between invisible
and observable state variables; the latter may be visible or hidden at some point.
One may act such as to observe observable variables needed for the activity,
and such as to reduce the uncertainty about the states it will be in its planned
course of action. Such a partial observability approach is pursued for example
with the MOMDP models [858, 48], which consider that the set of states is the
Cartesian product of a set of visible state variables and a set of hidden ones.

* Finally, observability issues requires a specific handling of observation actions.
The set O has to be structured. At some step one does not try to observe
all observable variables, but only those relevant for the current stage of the
task at hand; irrelevant unknown observables are ignored. Further, it is not a
single observation step; it can be a succession of observations until reducing
the uncertainty to a level consistent with what’s at stake. These observation
actions have a cost and need to be planned for. This is for example illustrated
in the HiPPo systems of [1048] for a robotics manipulation task.

We’ll come back to POMDP and MOMDP in the following chapter.

8.5.4 Domain Modeling and Languages

An overview of factored MDP representations with their merits and problems is given
in [170]. Their use for representing actions has been introduced in [280]. The
modeling language PPDDL [1212] extends PDDL to probabilistic operators.

The Relational Dynamic Influence Diagram Language (RDDL) [979] is a com-
pact representation integrating Dynamic Bayesian Networks and influence diagrams.
Bayesian Networks are covered in the textbook [628]. RDDL allows efficiently mod-
eling domains with exogenous events.

8.5.5 Extended MDP Models

We referred to probabilistic MDP models with timeless state transitions. Many appli-
cations require explicit time, durations, concurrency, and synchronization concepts.
A simple MDP extension adds time in the state representation, for example, time as an
additional state variable. In this direct extension, timeless MDP techniques can be used
to handle actions with deterministic durations and goals with deadlines. However,
this model cannot handle concurrent actions. The Semi-Markov Decision Process
(SMDP) model [522, 368] extends this simple temporal MDP model with probabilis-
tic integer durations. The Time-dependent MDP (TiMDP) model [173] considers
distribution of continuous relative or absolute time durations. Concurrent MDPs
extend the timeless MDP model to handle concurrent steps of unit duration, where
each transition is a subset of actions [767]. A Generalized SMDP model combines
semi-Markov models with concurrency and asynchronous events [1215]. Algorithms
for these models have been proposed by several authors, notably [765, 724, 766]. It is
interesting to note that SMDP provide a foundation to several reinforcement learning
approaches [870, 39, 756, 350].

8.6 Exercises 171

Possibilistic MDP transpose the Markov framework to cases where uncertainty
is due to a lack of knowledge handled with qualitative estimates [968]. In some
domains this was found to give better results than with probabilistic MDP [312]. A
hybrid framework where state transitions can be modeled as either possibilistic or
probabilistic, depending in the nature of actions and available information, has also
been proposed [101].

Another important extension is related to continuous and hybrid state space and
action space. The hybrid state space combines discrete and continuous state vari-
ables. The latter have been addressed with severable discretization techniques such
as adaptive approximation [819], piecewise constant or linear approximation [345],
and parametric function approximation [728, 662]. Linear Programming approaches
for hybrid state spaces have been proposed by several authors, for example, [453].
Heuristic search techniques have been extended to hybrid cases, for example, the
HAO™ algorithm [787].

Finally, there are several extensions of the stationary and deterministic policy
models. A stochastic policy maps states into probability distributions over actions. A
non-stationary policy evolve with time, that is, it is a mapping of state and time into
either actions when it is deterministic, or into probability distributions over actions
when the policy is both stochastic and non-stationary. In some cases, such as in finite
horizon problems, a non-stationary policy can be better than a stationary one, for
example, 71(s) is not the same action when visiting s the first time then on the n'"
visit. However, extending the state representation (with variables representing the
context) is often easier than handling general non-stationary stochastic models, for
which fewer algorithms and computational results are known (for example, [987]).

8.6 Exercises

8.1. Inthe SSP shown here, every action
has cost 1 except wait, which has cost
0. For each action with more than one
outcome, all outcomes are equally likely.

(a) How many different policies are there (excluding partial policies)? Explain.

(b) Write and solve a set of linear equations for the expected cost of the policy
7 ={(s0,a1), (s1,a2), (52,a3), (53, wait), (s4,as)}.

(c) Give an optimal policy 7*. Is there more than one such policy? What is V7 (s)
for each s?

8.2. Prove that the recursive Equation 8.3 follows from the definition of V" (s) in
Equation 8.1.

8.3. Prove that a policy 7* that meets Equation 8.5 is optimal.

8.4. In the domain of Example 8.4, consider a policy n such that 7(sg) = Both. Is
m a safe policy when sq is either (acbh), (bca) or (cba)? Is it safe when sq is (bac) or
(cab)?

172 8 Probabilistic Representation and Acting

8.5. Consider the domain X in Example 8.4.

(a) Extend X with a fourth action denoted All, which is applicable only in the state
(aaa) and flips randomly the three variables at once. Does the corresponding
state space have dead ends? If not, run algorithm VI on this example, assuming
uniform cost and probability distributions.

(b) Extend ¥ by having the three state variables range over {1,2,...,m}, such
that actions Left, Right, and Both are as defined initially; action All is applicable
only to a state of the form (7,i,7) where i is even; it flips randomly the three
variables. Assume so = (1,2,3) and goals are of the form (i,i,7) where i is
odd. Run VI on this extended example and analyze its performance with respect
tom.

8.6. Write the probabilistic precondition-effect operators for the take and put actions
of the domain PAM,, (Example 8.10). How many ground actions are there is this
domain?

8.7. For the domain in Example 8.11, analyze the interactions between the arrival,
departure, and switch events with the action take and put. Compute the sets y (s, take)
and y(s, put) for different states s.

8.8. Analyze a generalized PAM,, domain where the arrival and departure of contain-
ers can take place even in the robot location. Define conditional probability trees for
the variable ctrs.

8.9. Model an MDP system controlling a single elevator. Consider state variables
such as current-floor the elevator is in, pending-floors a list of floors demanded by
on board passengers, demanded-floors a list of floors of waiting passengers, period
characterize the time period in the day and week for the demand. An action move
takes the elevator to a next pending floor; updates its state variables for the passengers
getting out, those getting in with random destinations, and new random demand with
distributions depending on the period. It also updates the period according to a
particular distribution. Discuss the limitations of such a model.

9 Planning with Probabilistic Models

This chapter is about techniques for solving MDP problems. It presents planning
algorithms that seeks optimal or near optimal solution policies for a domain. Most
of the chapter is focused on indefinite horizon goal reachability domains that have
positive costs and a safe solution; they may have dead ends but those are avoidable.
This is a category of stochastic shortest path problems (see Section 8.3.1). Another
category of SSP problems allows real costs but requires the value function to be
infinite in any unsafe state. This assumption is difficult to grant when designing a
domain, whereas modeling with positive costs is easier.
The chapter is organized into four main sections:

* planning algorithms based on dynamic programming and the optimality prin-
ciple, i.e., policy iteration and value iteration and their extensions,

* heuristic search planning algorithms,

* linear programming approaches, capable of solving SSPs with constraints,

 online planning approaches with generative sampling models, mainly deter-
minization techniques and Monte Carlo Tree Search techniques.

9.1 Dynamic Programming Algorithms

Dynamic programming as been the first and main algorithmic approach for solving
MDP problems with an explicit state space in a flat representation. We assume here
strictly positive costs (i.e., in R*) and domains without dead end.

9.1.1 Optimality Principle

Recall from Section 8.1.3 that the value function V” is the expected sum of the cost
of the actions obtained by following a safe policy & from a state s to a goal. Since all
costs are in R*, V™ : Domain(n) — R*. We assume a domain without dead ends,
hence a safe policy exists. V7 is given by Equation 8.3:

0 ifs eS,,
V7™(s) = g
Zsrey(s,n(s)) Pr(s’]s, m(s))[cost(s, m(s),s") + V™ (s')] otherwise.

A policy 7’ dominates a policy n if and only if V™' (s5) < V7 (s) for every state for
which both 7 and n” are defined. An optimal policy ©* dominates all other policies.
It has a minimal expected cost over all possible policies: V*(s) = min, V™ (s). The
Bellman equation 8.4 gives recursively V* as:

Vi (s) 0 if s € S,
s) =
ming{ Xy ey (s,a) Pr(s’|s, a)[cost(s,a, s") + V*(s")] otherwise.

Free pre-publication, for personal use only. To be published by Cambridge University Press.

173

174 9 Planning with Probabilistic Models

The optimal policy 7* is derived from V*:

7*(s) = argmin Z Pr(s’|s, a)[cost(s, a,s’) + V*(s)]. ©.1)

a s’ey(s,a)

For an arbitrary safe solution x, and V™ as in Equation 8.3, let :

07 (s,a) = Z Pr(s’|s,a)[cost(s,a,s") + V™ (s")]. 9.2)

s’ey(s,a)

Q7 (s,a) is called the cost-to-go. Tt is the weighted sum of the immediate cost of a
in s plus the following expected cost of the successors in y(s, a), as estimated by V7.
Note the relation of V™ to Q”:

VZ(s) = Q" (s, 7(s)).

Given a policy m, we can compute the corresponding V7, then from V™ we can
define another policy n’, called the greedy policy for V7, which chooses in each state
the action that minimizes the cost-to-go, as estimated by V7:

7’ (s) = argmin Z Pr(s’|s, a)[cost(s,a, s’) + V™ (s')]

a s’ey(s,a)

= argmin Q" (s, a) 9.3)
a

In case of ties in the preceding minimum relation, we assume that the greedy policy
7’ keeps the value of x, that is, if ming, Q7 (s,a) = V7™ (s) then 7’ (s) = 7 (s).

Proposition 9.1. When nt is a safe solution, then policy n’ from Equation 9.3 is safe
and dominates n, that is Vs V™ (s) < V7(s). Further, if & is not optimal, then there
is at least one state s for which V™ (s) < V™ (s).

Starting with an initial safe policy, we can repeatedly apply Proposition 9.1 to keep
improving from one policy to the next. This process converges because there is a
finite number of distinct policies and each iteration brings a strict improvement in at
least one state, unless already optimal. This is implemented in the Policy Iteration
algorithm, detailed in the next section.

Finally, note that the Bellman equation for V (Equation 8.4) can also be expressed
for Q:

0*(s,a) = Z Pr(s’|s, a)[cost(s,a, s") + rrlllln 0" (s’,a")] 9.4)

s’ey(s,a)

from which the optimal policy is simply 7*(s) = argmin, Q*(s, a).

9.1.2 Policy Iteration

Policy Iteration (Algorithm 9.1), starts with an initial safe policy 7y, for example,
mo(s) = argming Xy ey (5,q) Pr(s’ls, @) cost(s, a, s"). It iteratively alternates over two
phases:

9.1 Dynamic Programming Algorithms 175

* apolicy evaluation stage which computes V” for current &, and

* a policy improvement stage, which updates 7 with the greedy policy for the
newly found V”. Possible ties in the policy improvement are broken by giving
preference to the current m, i.e., 7 changes only when strictly improving the
minimized value.

Note the interaction between these two phases which permits convergence: updating
7 to the greedy policy for current V™ makes the value function no longer that of the
changed m; updating V™ for the current policy makes 7 no longer greedy for V”. The
algorithm stops when reaching a fixed point on 7, i.e., when & remains unchanged
over an iteration.

Policy lteration(X, Sg, 7o)

T 7o
until reaching a fixed point on 7 do
1 foreach s € S do // policy evaluation
| compute V7 (s)
2 foreach s € S\ S, do // policy improvement

L n(s) < argming Yy ey (5.q) Pr(s’|s, @) [cost(s,a,s") + V7™ (s')]

Algorithm 9.1. Policy lteration algorithm.

There are three ways of evaluating V™ for current 7. The direct method observes
that simple linear equations give V™ when r is fixed. Indeed Equation 8.3, considered
over the entire S, defines a system of n linear equations, where n = |S|, the n unknown
variables being the values of V7™ (s). There is a solution to this n linear equations
if and only if the current r is safe. The value function V™ for the current 7 can be
computed using classical linear calculs methods, such as Gaussian elimination.

A second method for finding V7 consists in computing iteratively the following
series of value functions:

Vi(s) = Z Pr(s’|s, w(s))[cost(s,m(s),s) +V;_1(s)]. 9.5)

s’ey(s,n(s))

It can be shown that, for any initial Vy, if 7 is safe, then this series converges
asymptotically to a fixed point equal to V”. In practice, one stops when max; |V;(s) —
Vi—1(s)| is small enough; V; is then taken as an estimate of V™ (more about this in the
next section).

A third approach estimates V™ by computing Equation 9.5 not systematically, since
this may not feasible when S is too large, but on randomly sampled paths in the MDP
graph. This approach fits into the approximate policy iteration (API) methods. It will
be detailed in Section 9.5.4.

Algorithm Policy lteration, when initialized with a safe policy, strictly improves
in each iteration the current policy over the previous one, until reaching 7*. In
a domain that has no dead ends, there exists a safe mg. All successive policies
are also safe and monotonically decreasing for the dominance relation order, i.e.,

176 9 Planning with Probabilistic Models

if the successive policies defined by Policy lteration are mg, 7y, ..., Tk, ..., 7" then
Vs V*(s) ... < VT (s) < ... < V7 (s) < V™(s). Because there is a finite number
of distinct policies, algorithm Policy Iteration with a safe 7y converges to an optimal
policy in a finite number of iterations.

The requirement that g is safe is met for domains without dead ends. If there are
possible dead ends, finding a safe 7y can be is difficult. We’ll discuss later heuristic
search techniques that can handle dead ends.

Generalized Policy Iteration. Policy lteration performs the policy evaluation and
policy improvement stages completely, over the entire S, at each iteration. But this is
not strictly necessary. Generalized policy iteration interleaves partial iterative updates
of the V7 and partial greedy improvements of the current policy, possibly on single
states at a time. We’ll come back later to this interesting strategy, which has been less
explored for planning than for reinforcement learning where it is very convenient for
a progressively discovered model of a domain (see Section 10.6).

9.1.3 Value Iteration

We defined Q7 and the greedy policy 7’ with respect to the value function V. How-
ever, the same equations 9.2 and 9.3 can be applied to any value function V, not just
V™. This gives a cost-to-go QY (s,a) = Zsey(s,a) Pr(s’]s, a)[cost(s,a,s’) +V(s)]
and a greedy policy 7(s) = argmin,{Q" (s,a)} with respect to V.! From V, a new
value function can be computed with the following equation:

V/(s) = min 0" (s, a)

= min Z Pr(s’|s, a)[cost(s, a,s’) + V(s')]. (9.6)

s’ey(s,a)

V’ is the minimum cost-to-go in s when the successors values are estimated by V.

Dynamic programming consists in applying Equation 9.6 repeatedly, using V’
as an estimate for computing the cost-to-go QY', then another value function
ming{Q"’ (s, a)}. This is implemented in the Value Iteration Algorithm 9.2.

Value lteration starts with an arbitrary heuristic function V{, which estimates the
expected cost of reaching a goal from s. An easily computed heuristic is, for ex-
ample, Vo(s) = 0 when s € Sg, and Vo(s) = ming X5 cy(s,q) Pr(s’ls, a) cost(s, a, s")
otherwise. The algorithm iterates over improvements of the current value function by
performing repeated updates using Equation 9.6. An update at an iteration propagates
to V’(s) changes in V(s") from the previous iteration for the successors s’ € y(s, a).
This is pursued until a fixed point is reached. A fixed point is a full iteration over S
where V’(s) remains identical to V() for all s. The returned solution 7 is the greedy
policy for the final V.

IThe greedy policy for V is sometimes denoted 7¥. When nonambiguous, in the remainder of this
chapter we simply denote 7 the greedy policy for the current V.

9.1 Dynamic Programming Algorithms 177

Value lteration(X, Sg, Vo)
V V()
until reaching a fixed point do
foreach s € S\ S, do
1 L V'(s) « ming{ Xy cy(s,a) Pr(s’[s, a)[cost(s,a,s") + V(s")]}
VeV
n(s) « argmin,{X s cy(s,q) Pr(s’ls, a)[cost(s,a,s") + V(s)]}

Algorithm 9.2. Synchronous Value lteration algorithm. Vj is implemented as a
function, computed once in every state; V, V" and r are global lookup tables.

Algorithm 9.2 is the synchronous version of Value Iteration. It implements a stage-

by-stage sequence of updates where the updates at an iteration are based on values of
V from the previous iteration.

Value lteration(X, Sg, Vo)
V V()
until reaching a fixed point do

foreach s € S\ S; do
| Bellman-Update(s)

Algorithm 9.3. Value lteration, asynchronous algorithm. Bellman-Update uses V
as a global variable.

An alternative is the asynchronous Value Iteration (Algorithm 9.3). There, V(s)
stands for the current value function for s at some stage of the algorithm. It is
initialized as Vj then repeatedly updated. An update of V(i) takes into account values
of successors of s and may affect the ancestors of s within that same iteration over S.

In asynchronous Value lteration, local updates are performed by the Bellman-Update
Algorithm 9.4.

Bellman-Update(s)
foreach a € Applicable(s) do
| 0(5,0) « Syey(s.a) Pr(s’ls, a)[cost(s, a, s") + V(s')]
V(s) « min, O (s, a)
n(s) « argmin, Q(s, a)

Algorithm 9.4. The Bellman update procedure computes V (s) as in Equation 9.6,
and n(s) as the greedy policy for V. Q can be implemented as a local data
structure, m and V as global data structures of algorithms using this procedure.

This procedure iterates over a € Applicable(s) to compute Q (s, a) then the corre-
sponding minimum V(s) and 7 (s). Several algorithms in this chapter use Bellman-
Update. Throughout the chapter, we assume that ties in argmin, {Q (s, a) }, if any, are

178 9 Planning with Probabilistic Models

broken in favor of the previous value of 7(s) and in a systematic way (for example,
lexical order of action names).

At any point of Value lteration, either synchronous or asynchronous, an
update of a state makes its ancestors no longer meeting the equation
V(s) =ming g ey (s,q) Pr(s’[s, a)[cost(s, a,s') + V(s’)]. A changein V(s’), for any
successor s’ of s (including when s is its own successor), requires an update of s.
This is pursued until a fixed point is reached.

The termination condition of the outer loop of Value lteration checks that a fixed
point has been reached, that is, a full iteration over S without a change in V. At the
fixed point, every state s meets Equation 8.3, i.e., Vs V(s) = V7 (s) for current 7 (s).

In previous section, we emphasized that because there is a finite number of policies,
it make sense to stop Policy Iteration when a fixed point is reached. Here, there is
an infinite number of value functions; the precise fixed point is an asymptotic limit.
Hence, we refine the pseudocode of Value Iteration such as to stop when a fixed point is
approximately reached, within some acceptable margin of error. This can be assessed
by the amount of change in the value of V(s) during its update in Bellman-Update.
This amplitude of change is called the residual of a state:

Definition 9.2. The residual of a state s with respect to V is residual(s) = |V (s) —
ming{ Yy ey (s.a) Pr(s’ls, a)[cost(s,a,s”) + V(s)]}|. The global residual over the
entire state space S is residual = maxses{residual(s)}. O

At each iteration of Value Iteration, residual(s) is computed before each update with
respect to the values of V at the previous iteration. The termination condition of Value
lteration with a margin of error set to a small parameter 7 > 0 is: residual < 1. Note,
however, that with such a termination condition, the value of V (i) at the last iteration
is not identical to V™ (s) for current 7 (s), as illustrated next.

Figure 9.1. A very simple domain.

Example 9.3. Consider the very simple domain in Figure 9.1. X has three states,
S0, 1, and the goal g, and two actions a and b. Action a leads in one step to g with
probability p; it loops back on s with probability 1 — p. Action b is deterministic.
Assume constant cost(a) = 10,cost(b) = 100 and p = .2. ¥ has two solutions,
denoted 7, and 7. Their values are:

V7a(sg) = %’(C’) = 50 (directly from Equation 8.3) and

V7 (s9) = 2 X cost(b) = 200.

Hence n* = n,,.

Let us run Value lteration (say, the synchronous version) on this simple domain
assuming V(s) = 0 in every state. After the first iteration V(sg) = 10 and V;(s1) =
100. In the following iterations, V;(so) = 10 + .8 X V;_1(sg), and V;(s1) remains
unchanged. The successive values of V in sq are: 18, 24.4, 29.52, 33.62, 36.89,

9.1 Dynamic Programming Algorithms 179

39.51, 41.61, 43.29, 44.63, 45.71, 46.56, and so on, which converges asymptotically
to 50.

With 7 = 107%, Value lteration stops after 53 iterations with solution 7, and
V(so) = 49.9996. With 7 = 1073,1072 and 10~!, termination is reached after 43,
32, and 22 iterations, respectively. With a larger value of 1, say, n = 5, termination
is reached after just 5 iterations with V(sg) = 33.62 (at this point: residual(sg) =
33.62 — 29.52 < n). Note that at termination V (sg) # V™ (sg) for the found solution
. We'll see next how to bound the difference V7™ (sg) — V(s¢). O

Properties of Bellman updates. The iterative dynamic programming updates cor-
responding to Equation 9.6 have several interesting properties, which are conveniently
stated with the following notation. Let (BV) be a value function corresponding to
a Bellman update of V over S, that is, Vs (BV)(s) = min,{Q" (s,a)}. Successive
updates are denoted as: (BXV) = (B(B*~'V)), with (B°V) = V.

Proposition 9.4. For any two value functions Vi and V, such that Vs Vi(s) < V(s),
we have: Vs (B¥V))(s) < (B¥V,)(s) fork = 1,2,

In particular, if a function Vj is such that Vo (s) < (BVp)(s), then a series of Bellman
updates is monotonically nondecreasing, in other words:
Vs Vo(s) < (BVp)(s) < ... < (BVy)(s) < (BMWy)(s) <

Proposition 9.5. In a domain without dead end, the series of Bellman updates starting
at any value function Viy converges asymptotically to the optimal cost function V*, that
is, Vs limg_ 0o (B¥V)(s5) = V*(s).

Convergence and complexity of Value lteration. For an MDP problem with positive
costs and no dead ends and for any value function Vj, Value Iteration terminates. Each
iteration runs in time O(]A| X |S]) (when |y (s, a)| is upper bounded by some constant),
and the number of iterations required to reach the termination condition residual < n
is finite; it can be bounded under some appropriate assumptions.

Proposition 9.6. For an MDP problem with positive costs and no dead ends, Value
lteration reaches termination, with residual < n, in a finite number of iterations.

Regardless of the value function Vj, Value lteration converges asymptotically to the
optimum:

Proposition 9.7. At termination of Value lteration with residual < n in an MDP
problem with positive costs and no dead ends, the value V is such that Vs € S
lim,, o V(s) = V*(s).

More precisely, it is possible to prove that at termination with V and 7 (the greedy
policy for V), the following bound holds:

Vs |V(s) = V*(s)| < n X max{®"(s), P (s)}, 9.7)

180 9 Planning with Probabilistic Models

where @*(s) and ®”(s) are the expected number of steps to reach a goal from s by
following 7* and & respectively. However, this bound is difficult to compute in the
general case.

More interesting properties can be established when Value lteration uses a heuristic
function Vj that is admissible or monotone.

Definition 9.8. Vj is an admissible heuristic function if and only if Vs Vy(s) < V*(s).
Vo is a monotone heuristic function if and only if Vs Vy(s) < min,{Q(s,a)}.]

Proposition 9.9. IfV; is an admissible heuristic function, then at any iteration of Value
lteration, the value function V remains admissible. At termination with residual < 7,
the found value V and policy m meet the following bounds: Vs V(s) < V*(s) <
V() +n X D" (s) and V(s) < V7™(s) < V(s) +nxX D" (s).

Given 7, ®" (s9), the expected number of steps to reach a goal from s, following
n is computed by solving the n linear equations:

0 ifs e g,

L+ Xgey(s,n(s)) Pr(s’ls, m(s)) @™ (s”) otherwise. ©-8)

D" (s) = {
Note the similarity between Equation 8.3 and Equation 9.8: the expected number of
steps to a goal is simply V7 with unit costs. Note also that the bound 7 X ®” () can
be arbitrarily large.

Value lteration does not guarantee a solution with an a priori upper-bound differ-
ence to the optimum. This difference is bounded a posteriori. Proposition 9.9 entails
0 <V7(s) = V*(s) < V7™(s) —V(s) < nxD7(s). However, a guaranteed approxi-
mation procedure is easily defined using Value lteration with an admissible heuristic.
Algorithm VI, is a procedure to do this.

Ve (V(), E)
V « Vp; initialize > O arbitrarily
while True do
run Value lteration (%, V)
compute ®7 (s¢) for the found solution 7
if 7 X ®"(s9) < € then return
else n «— min{e/ D" (s9),n/2}

Algorithm 9.5. VI, a guaranteed approximation procedure for Value lteration.

With an admissible heuristic, VI, returns a solution 7 within € of the optimum, that
is, V™ (sg) — V*(s0) < €. It repeatedly runs Value lteration (with V from the previous
iteration) using decreasing value of 7 until the desired bound € is reached. Notice the
difference between the roles of 7, the margin of error for the fixed point, and e, the
upper bound of the difference to the optimum.

9.1 Dynamic Programming Algorithms 181

Example 9.10. Going back to the simple domain in Example 9.3, assume we want
a solution no further than € = .1 from the optimum. Starting with = 5, Value
lteration finds the solution m, after 5 iterations. Equation 9.8 for solution 7, gives
d7a(sy) = 5. Value lteration is called again with the previous V and n = .02; it stops
after 23 iterations with the same solution and V (s9) = 49.938. This solution is within
at most .1 of 7*. Note that V() is also guaranteed to be within .1 of V7« (sg). m]

At termination of Value lteration, V™ (sg) for the found solution 7 is unknown. It
is bounded with: V(sg) < V™ (s0) < V(sg) +n X ®"(sg). It is possible to compute
V7, as explained in Section 9.1.2, either by solving Equation 8.3 as a system of the
n linear equations or by repeated updates as in Equation 9.5 until the residual is less
than an accepted margin.

When the heuristic function is both admissible and monotone, then the number
of iterations needed to reach termination is easily bounded. Indeed, when Vj is
monotone, then Vy < (BV})) by definition, hence the remark following Proposition 9.4
applies. V(s) cannot decrease throughout Bellman updates, and it remains monotone.
Each iteration of increases the value of V(s) for some s by at least ; it does not
decrease V for any state. This entails the following bound on the number of iterations:

Proposition 9.11. With an admissible and monotone heuristic, the number of itera-
tions needed by Value lteration to reach termination with residual < n is bounded by

1/n 2s[V*(s) = Vo(9)].

Practical considerations. Accepting a margin of error is reasonable because the
parameters of a model are always estimated with some uncertainty. There is no need to
seek an exact optimal solution with respect to imprecise parameters. An approximate
solution whose degree of optimality matches the accuracy of the cost and probability
parameters is sufficient. An amortization trade-off takes into account how many times
a suboptimal solution will be used for acting. It compares the corresponding loss in
the cost of actions to the cost of further refining a suboptimal solution. For example,
in a receding horizon approach in which 7 is used just once and recomputed at every
stage, a suboptimal solution is often sufficient, whereas for a process-oriented problem
the same policy is used for a long time and may require careful optimization.

When S is of a small enough size to be entirely explicited and maintained in the
memory of the planning computer (typically on the order of few mega states), then
Value lteration is an easily implemented and practical algorithm. For reasonably
small values of 77 (in the order of 10~3), often Value Iteration converges in a few dozen
iterations and is more efficient than Policy lteration. Depending on the amortization
trade-off, the user may not even bother to compute ®” and rely on a heuristic value
of the error parameter . There are even cases in which Value lteration may be
used online, for example, on a receding horizon schema: for |S| in the order of
few thousands states, the running time of Value lteration is on the order of a few
milliseconds. This may happen in small domains and in well-engineered state spaces.

Value lteration looks as a quite efficient and scalable planning algorithm. Unfor-
tunately, the state space in planning is exponential in the size of the input data: |S|
is in the order of m*, where k is the number of ground state variables and m is the

182 9 Planning with Probabilistic Models

size of their range. In many practical cases k is so large (that is, a few hundred)
that iterating over S is not feasible. Options in such cases are to refine the model, to
decompose the problem into feasible subproblems, and to use domain configurable
control knowledge to reduce sharply the branching factor of a problem, and to use
focused search algorithms that explore a small part of the search space as discussed
in Section 9.2 and Section 9.5.

Example 9.12. Consider a robot servicing an environment that has six locations
lo, 11, ..., ls, which are connected as defined by the undirected graph of Figure 9.2.
Traversing an edge has a cost and a nondeterministic outcome: the tentative traversal
of a temporarily busy road has no effect. For example, when in location /y the robot
takes the action move(ly, [1); with a probability .5 the action brings the robot to /],
but if the road is busy the robot has to return to /y; in both cases the action costs 2.
Edges are labelled by their traversal cost and probability of success.

Figure 9.2. Connectivity graph of a simple environment.

In a realistic application, the robot would know (for example, from sensors in the
environment) when a road is busy and for how long. Let us assume that the robot
knows about a busy road only when trying to traverse it; a trial gives no information
about the possible outcome of the next trial. Finding an optimal policy for traversing
between two locations can be modeled as a simple MDP that has as many states as
locations. A state for a location / has as many actions as outgoing edges from /; each
action has two possible outcomes: reaching the adjacent location or staying in /.

Let us run Value Iteration on this simple domain for going from /o to Is. With
Vo = 0 and n = .5, Value lteration terminates after 12 iterations (see Figure 9.3 which
gives V(1) for the first three and last three iterations). It finds the following pol-
icy: m(lp)=move(ly, l4), m(l4)=move(ly,ls), m(I{;)=move(ly, ls), 7 (lr)=move(ly, l4),
n(l3)=move(ly, l4). 7 corresponds to the path (ly, l4,l5). Its cost is V™ (ly) = 20,
which is easily computed from V7™ (ly) = 5/.5 and V™ (lp) = (5 + .5 x V™ (ly))/.5.
Note that at termination V(ly) = 19.87 # V7™ (ly). The residual after iteration 12 is
22.29-21.93 = .36 < 1.

Let us change the cost of the edge (ly, /4) to 10. The cost of the previous policy is
now 30; it is no longer optimal. Value Iteration terminates (with the same 7) after 13
iterations with a policy corresponding to the path (ly, [, [3, [5); its cost is 26.5. O

9.1 Dynamic Programming Algorithms 183

Figure 9.3. V(I) after the first three and last three iterations of Value lteration on the
domain of Figure 9.2.

Iteration lo I I I3 4
1 200 2.00 200 360 5.00
2 400 400 528 592 750
3 6.00 7.00 779 878 8.75

10 1952 21.86 21.16 19.76 9.99
11 19.75 22.18 2193 19.88 10.00
12 19.87 2234 2229 19.94 10.00

Value lteration versus Policy Iteration. The reader has noticed the formal similarities
between Value lteration and Policy lteration: the two algorithms rely on repeated
updates until reaching a fixed point. Their differences are worth being underlined:

* Policy Iteration approaches V* from above, while Value Iteration approaches the
optimum from below. The latter can greatly benefit from a heuristic function.
Policy Iteration requires a safe initial g, but my also gain efficiency with a
heuristic.

* Policy lteration computes V™ for the current and final solution 7, while Value
Iteration relies on an approximate value of V” for the greedy 7.

* Policy Iteration reaches exactly its fixed point while a margin of error has to be
set for Value Iteration, allowing for the flexibility illustrated in the procedure
Vie.

Note, however, that when Policy lteration relies on the iterative method of Equation 9.5
for computing V™ the two algorithms can be quite close.

Extensions of Value lteration. Algorithm Value lteration allows for several improve-
ments and optimizations, such as ordering S according to a dynamic priority scheme,
or partitioning S into acyclic components. The latter point is motivated by the fact that
Value lteration can be made to converge with just one outer loop iteration on acyclic
And/Or graphs.

A variant of Value lteration, called Backward Value Iteration, focuses Value lteration
by performing updates in reverse order, starting from the set of goal states, and
updating only along the current greedy policy (instead of a Bellman update over all
applicable actions). A symmetrical variant, Forward Value Iteration, performs the
outer loop iteration on subsets of S, starting from sg and its immediate successors,
then their successors, and so on.

More generally, asynchronous Value Iteration does not need to update all states at
each iteration. It can be specified as follows: pick up a state s and update it. As long
as the pick ups are fair, that is, no state is left indefinitely non-updated, the algorithm
converges to the optimum. This opens the way to an important extension of Value
lteration for domains that have safe solutions but also dead ends. For that, two main
issues need to be tackled:

* do not require termination with a fixed point for every state in S because this is

184 9 Planning with Probabilistic Models

needed only for the safe states in ¥ (g, 7) and because there may not be a fixed
point for unsafe states; and

* make sure that the values V(i) for unsafe states keep growing strictly such as
to drive the search towards safe policies.

These issues are developed next with heuristic search algorithms.

9.2 Heuristic Search Algorithms

Heuristic search algorithms exploit the guidance of an initial value function Vj to
focus an MDP planning problem on a small part of the search space. We assume here
domains with positive costs, a safe solution and possible dead ends. Before getting
in the specifics of a few algorithms, let us explain their commonalities on the basis of
the following search schema.

9.2.1 A General Heuristic Search Schema

The main idea of heuristic search algorithms is to explore a focused part of the search
space and to perform Bellman updates within this focused part, instead of over the
entire S. This explored part of the search space starts with {so} and is incrementally
expanded. Let the Envelope be the set of states that have been generated at some point
by a search algorithm. The Envelope is partitioned into:

(i) Goal states, for which V(s) = 0.
(ii) Fringe states, non-goal states whose successors are still unknown. For a fringe
state, 7(s) is not yet defined and V(s) = V().
(iii) Interior states, whose successors are already in the Envelope.

Note that since this is a partition, fringe and interior states are not goals.

Expanding a fringe state s requires finding its successor states and computing
O(s,a) = Xyey(s,a) Pr(s’ls,a)[cost(s,a,s”) + V(s)], V(s) = min,{Q(s,a)}, and
n(s) = argmin, {Q(s, a)}, the greedy policy for current V. Updating an interior state
s means performing a Bellman update on s. When a descendant s’ of s gets expanded
or updated, V(s’) changes, which makes V (s) no longer equal to min,{Q(s, a)} and
requires updating s.

Let us define the useful notions of open and solved states with respect to 7, a given
margin of error.

Definition 9.13. A state s € Envelope is open when s is either a fringe or an interior
state such that residual(s) = |V(s) — min,{Q(s,a)}| > n. m]

Definition 9.14. A state s € Envelope is solved when the current (s,) has no open
state; i.e., s is solved when Vs’ € ¥ (s,) either s” € S, or residual(s’) < 1. O

Recall that (s,) includes s and the states in the Envelope reachable from s
by current x. It defines Graph(s,r), the current solution graph starting from s.
Throughout Section 9.2, n is the greedy policy for current V; it changes after an
update. Hence ¥ (s,) and Graph(s, nr) are defined dynamically.

9.2 Heuristic Search Algorithms 185

Most heuristic search algorithms use the preceding notions and are based on dif-
ferent instantiations of a general schema called Find&Revise (Algorithm 9.6), which
repeatedly performs a Find step followed by a Revise step.

Find&Revise(Z, 59, Sq, Vo)
until s is solved do
select an open state s in y(sg,)
if s is a fringe state then expand s
else revise s

Algorithm 9.6. Find&Revise schema. The specifics of the Find and the Revise
steps depend on the particular algorithm instantiating this schema.

The Find step is a traversal of the current y (s, 7r) for finding and choosing an open
state 5. This Find step has to be systematic: no state in ¥ (sg, 7) should be left open
forever without being chosen for revision.

The Revise step expands a fringe state or updates an interior state whose residual >
n. Revising a state can change current 7 and hence ¥ (so, 7). At any point, either a
state s is open, or s has an open descendant (whose revision will later make s open),
or s is solved. In the latter case, (s, r) does not change anymore.

Find&Revise iterates until sq is solved, that is, there is no open state in y(sg, 7).
With an admissible heuristic function, Find&Revise converges to a solution which is
asymptotically optimal with respect to 7.

Proposition 9.15. For an MDP problem with positive costs and no dead ends, and if
Vo is an admissible heuristic, then Find&Revise with a systematic Find step has the
following properties:

* the algorithm terminates with a safe solution,

e V(s) remains admissible for all states in the Envelope,

* the returned solution is asymptotically optimal with respect to n; its difference
with V* is bounded by: V*(so) — V(sp) < 1 X ®7(s9), where ®" is given by
Equation 9.8, and

* if Vi is admissible and monotone then the number of iterations is bounded by

1/n 2s[V*(s) = Vo(s)].

These properties are inherited from Value lteration.

Dealing with dead ends. As discussed earlier, Dynamic Programing algorithms
are limited to domains without dead ends, whereas heuristic search algorithms can
overcome this limitation.

Notice first that only reachable dead ends can be of concern to an algorithm focused
on the part of the state space reachable from sg. Reachable dead ends are handled as
follow:

186 9 Planning with Probabilistic Models

* a deep dead end is a state s from which every action leads to an infinite loop
never reaching a goal. Equation 8.1 ensures that V(s) grows infinitely when s
is a dead end. Indeed, V(s) is the expected sum of strictly positive costs over
sequences of successors of s that grow to infinite length without reaching a
goal.

* an immediate dead end is a state s such that Applicable(s) = @& (as in Ex-
ample 8.4). To make V defined in such a state, we can extend the defini-
tion by adding a third clause in Equation 8.3, stating simply: V(s) = oo if
Applicable(s) = @. Alternatively, we can keep all the definition as introduced
so far and extend the specification of a domain with a dummy action, dgeqdend,
applicable only in states that have no other applicable action; aeqgenq 1S such as
v (S, Adeadena) = {5} and cost(s, dgeadend>) = constant> 0. This straightforward
trick brings us back to the case of deep dead ends.

Because V(s) grows unbounded when s is a dead end, it is possible to show that all
the properties of Find&Revise in Proposition 9.15 hold also for domains with positive
costs, a safe solution in s¢, and reachable dead ends. Let us explain why this is the
case:

» Since V grows infinitely for dead ends, and since an unsafe state has at least a
dead end descendant for any policy and because all costs are strictly positive
then Vs unsafe and VY, V7™ (s) also grows infinitely.

* With a systematic Find, successive Bellman updates will make at some point
in two states s safe and s’ unsafe: V(s) < V(s’). Consequently, if s is safe, the
minimization min,{Q (s, a)} will rule out unsafe policies.

* Finally, Find&Revise does not iterate over the entire state space but only over
the current ¥ (sg,). Since sq is assumed to be safe, y(so, 7) will contain at
some point only safe states over which the convergence to a goal is granted.

Finally, Proposition 9.15 holds also for MDP domains with algebraic cost but where
V(s) grows infinitely for every unsafe state. However this last assumption is not easily
checked when specifying a domain.

Note that Value lteration cannot handle dead ends as Find&Revise does, since Value
lteration iterates over the entire space S, hence cannot converge with unsafe states
because there is no fixed point for dead ends (reachable or not). Heuristic search
algorithms implementing a Find&Revise schema can find a near-optimal partial policy
by focusing on ¥ (g,), which contains only safe states when sy is safe.

Find&Revise opens a number of design choices for the instantiation of the Find and
the Revise steps and for other practical implementation issues regarding the possible
memorization of the envelope and other needed data structure. Find&Revise can be
instantiated in different ways, for example:

» with a best-first search, as in the algorithms AO*, LAO*, and their extensions
(Section 9.2.2);

» with a depth-first and iterative deepening search, as in HDP, LDFS, and their
extensions (Sections 9.2.3 and 9.2.4);

9.2 Heuristic Search Algorithms 187

e with a stochastic simulation search, as in RTDP, LRTDP, and their extensions
(Section 9.5.3).

These algorithms inherit the preceding properties of Find&Revise. They have
additional characteristics, adapted to different application features. In the remainder
of this chapter, we present some of them, assuming to have an MDP problem with
positive cost, where sg is safe and V) is admissible.

9.2.2 Best-First Search

In deterministic planning, best-first search is illustrated with the A* algorithm for
finding optimal paths in graphs. In MDP, best-first search relies on a generalization
of A* for finding optimal graphs in And/Or graphs. This generalization corresponds
to two algorithms: AO* and LAO*. AO* is limited to acyclic And/Or graphs, while
LAO* handles cyclic search spaces. Both algorithms iterate over two steps, which will
be detailed shortly:

(i) Starting at s, follow the current best solution graph y (s, 7r) to find its fringe
states, and expand one of them.
(ii) Update the search space, starting at the expanded state.

The main difference between the two algorithms is in step (i). When the search space
is acyclic, AO* is able to update the search space in a bottom-up stage-by-stage process
focused on the current best policy. When the search space and the solution graph
can be cyclic, LAO* has to combine best-first search with a Dynamic Programming
update.

AO*(Z, 50, g, Vo)

Envelope «— {so}

n — &; V(so) < Vo(so)

while ¥ (5o, 7) has fringe states do
1 traverse y(so, r) and select a fringe state s € (s, 7)
foreach a € Applicable(s) and s’ € y(s,a) do

if 5" is not already in Envelope then

L add s’ to Envelope
V(s’) < Vo(s')

2 AO-Update(s) // alternatively: LAO-Update(s)

Algorithm 9.7. AO*, best-first search algorithm for acyclic domains. Replacing
step 2 by a call to LAO-Update(s) gives LAO*. The variables Envelope, x, and V
are global.

Starting at s¢, each iteration of AO* (Algorithm 9.7) extracts the current best solution
graph by doing a forward traversal along current 7. In each branch, the traversal stops
when it reaches a goal or a fringe state. The selection of which fringe state to expand
is arbitrary. This choice does not change the convergence properties of the algorithm

188 9 Planning with Probabilistic Models

but may affect its efficiency. The expansion of a state s changes generally V(). This
requires updating s and all its ancestors in the envelope

AO-Update(s)
Z «— {s}
while Z # @ do
select s € Z such that Z Ny (s, n) = {s}
remove s from Z
Bellman-Update(s)
Z — ZU{s" € Envelope | s € y(s',n(s"))}

Algorithm 9.8. AO-Update, bottom-up update for AO*.

AO-Update (Algorithm 9.8) implements this update in a bottom-up stage-by-stage
procedure, from the current state s up to sg. The set of states that need to be updated
consists of all ancestors of s from which s is reachable along current 7. Note that
this set is not strictly included in current ¥ (sg, 7). It is generated incrementally as the
set Z of predecessors of s along current 7. Bellman update is applied to each state
in Z whose descendants along current & are not in Z. Because the search space is
acyclic, this implies that the update of a state takes into account all its known updated
descendants, and has to be performed just once. The update of s redefines () and
V(s). The predecessors of s along 7 are added to Z.

A few additional steps are needed in this pseudocode for handling dead ends. The
dummy action d@geqqend, discussed earlier, introduces cycles; this is not what we want
here. In the acyclic case, the only dead ends are immediate, that is, states not in Sg
with no applicable action. This is easily detected when such a state is selected as a
fringe for expansion; that state is simply labelled as a dead end. In AO-Update, for a
state s that has a dead end successor in y (s, 7(s)), the action corresponding to 7 (s)
is removed from Applicable(s); if s has no other applicable action then s is in turn
labeled a dead end, otherwise Bellman-Update(s) is performed, which redefines 7 (s).

AO” on an acyclic search space terminates with a solution. When Vj is admissible,
V(s) remains admissible; at termination the found solution 7 is optimal and V(sg)
is its cost. We finally note that an efficient implementation of AO* may require a
few incremental bookkeeping and simplifications. One consists in changing Z after
the update of s only if V(s) has changed. Another is to label solved states to avoid
revisiting them. Because the space is acyclic, a state s is solved if it is either a goal or
if all the successors of s in y (s, w(s)) after an update are solved.

Example 9.16. Consider the domain in Figure 9.4, which has 17 states, sq to s16 and
three actions a, b, and c. Connectors are labeled by the action name and cost, assumed
independent of successor states; we also assume uniform probability distributions. Let
us take Vp(s) = ming{cost(s,a, s")} and Sz = {512, 515, S16}-

AO* terminates after 10 iterations, which are summarized in Figure 9.5. In the
first iteration, V(s9) = min{5 + 2%4, 19+15,12 + %} = 8. In the second iteration,
V(s1) = min{7.5,24.5,7}; the update changes V (sg), but not 7(sg). Similarly after

9.2 Heuristic Search Algorithms 189

Figure 9.4. Example of an acyclic search space.

Figure 9.5. Iterations of AO* on the example of Figure 9.4: expanded state, sequence of
updated states, value, and policy in s¢ after the update.
s H V(s) \ n(s) \ Updated states \ 7(s2) \ 7(sy) \ 7(s0) \ V(so)

S0 8 a a 8

S 7 c S0 c a 10.5
\Y) 9 b S0 b C a 13

S6 25 a 5§52, 51,50 a a C 19

53 11.5 b S0 a a a 21.75
S4 6 b S1, 50 a a C 22.25
59 21.5 a 53, 80 a a a 22.5
S5 7 a S1, 50 a a a 23.5
S11 10 a S4, 55,582,581, 50 b a a 25.75
513 47.5 a 56,552,851, 50 a a a 26.25

57 is expanded. When sg is expanded, the updates changes 7 (s3), w(s1), and 7 (sq).
The latter changes again successively after sz, s4, and s9 are expanded 7 (s9) = c.
n(s2) changes after s1; then s13 are expanded. After the last iteration, the update
n(so) = n(sy) = n(s2) = n(ss) = n(s11) = a and 7w(s4) = b; the corresponding
solution graph has no fringe state; its cost is V(sg) = 26.25.

Only 10 states in this domain are expanded: the interior states s7, sg, S19, and 514 are
not expanded. The algorithm performs in total 31 Bellman updates. In comparison,
Value Iteration terminates after five iterations corresponding to 5x 17 calls to Bellman-
Update. With a more informed heuristic, the search would have been more focused
(see Section 9.3 and Section 9.3). O

190 9 Planning with Probabilistic Models

Let us now discuss best first search for a cyclic search space, for which updates
cannot be based on a bottom-up stage-by-stage procedure. LAO* handles this general
case. It corresponds to Algorithm 9.7 where step 2 is replaced by a call to LAO-
Update(s). The latter (Algorithm 9.9) performs a Value Iteration-like series of repeated
updates that are limited to the states on which the expansion of s may have an effect.
This is the set Z of s and all its ancestors along current 7. Again, Z is not limited to

¥ (s0, 7).

LAO-Update(s)
Z «— {s} U{s’ € Envelope | s € y(s',m)}
until termination condition do

foreach s € Z do
| Bellman-Update(s)

Algorithm 9.9. LAO-Update, q “Value lteration-like” update for LAO*.

LAO-Update is akin to an asynchronous Value lteration focused by current 7. How-
ever, an update may change current 7, which may introduce new fringe states. Conse-
quently, the termination condition of LAO-Update is the following: either an update
introduces new fringe states in y(sg,) or the residual < n over all updated states.

The preceding pseudo-code terminates with a solution but no guarantee of its opti-
mality. However, if the heuristic Vj is admissible, then the bounds of Proposition 9.9
apply. A procedure such as VI¢ (Algorithm 9.5) can be used to find a solution with a
guaranteed approximation.

Explicit dead ends can be handled with the dummy action a@geqgeng and the man-
agement of loops. If the current 7 is unsafe then the updates will necessarily change
that current policy, as discussed in the previous section. When there is no dead end,
it is possible to implement LAO-Update using a Policy Iteration procedure, but this
was not found as efficient as the Value lteration-like procedure presented here.

LAO* is an instance of the Find&Revise schema (see Exercise 9.10). On an SSP
problem with a safe solution and an admissible heuristic Vj, LAO* is guaranteed to
terminate and to return a safe and asymptotically optimal solution.

The main heuristic function for driving LAO* is Vj (see Section 9.3). Several ad-
ditional heuristics have been proposed for selecting a fringe state in current y (s,)
to be expanded. Examples include choosing the fringe state whose estimated proba-
bility of being reached from sy is the highest, or the one with the lowest V(s). These
secondary heuristics do not change the efficiency of LAO* significantly. A strategy
of delayed updates and multiple expansions was found to be more effective. The
idea here is to expand in each iteration several fringe states in y (s,) before calling
LAO-Update on the union of their predecessors in y(sg, 7). Indeed, an expansion is a
much simpler step than an update by LAO-Update. It is beneficial to perform updates
less frequently and on more expanded solution graphs.

A variant of LAO* (Algorithm 9.10) takes this idea to the extreme. It expands all
fringe states and updates all states met in a post-order traversal of current y (s, 7r) (the
traversal marks states already visited to avoid getting into a loop). It then calls Value

9.2 Heuristic Search Algorithms 191

ILAO* (%, 59, &, Vo)
Envelope «— {so}
while ¥ (59, 7) has fringe states do
foreach s visited in a depth-first post-order traversal of y(sg, 7) do
if s has not already been visited in this traversal then

if s is a fringe then expand s then
| Bellman-Update(s)

perform Value lteration on ¥ (o, 7r) until termination condition

Algorithm 9.10. ILAO*, a variant of LAO*, a best-first search algorithm for cyclic
domains.

lteration on ¥ (sg, 7r) with the termination condition discussed earlier. The while loop
is pursued unless Value lteration terminates with residual < n. Again, a procedure
like VI, is needed to provide a guaranteed approximation.

Like AO*, LAO* can be improved by labelling solved states. This will be illustrated
next with depth-first search.

9.2.3 Depth-First Search

A direct instance of the Find&Revise schema is given by the Heuristic Dynamic
Programming (HDP) algorithm. HDP performs the Find step by a depth-first traversal
of the current solution graph Y (so,7) until finding an open state, which is then
revised. Recall that the greedy policy for current V changes after each Bellman
update. Furthermore, HDP uses this depth-first traversal for finding and labeling
solved states: if s is solved, the entire graph ¥ (s,) is solved and does not need to be
searched anymore.

The identification of solved states relies on the notion of strongly connected com-
ponents of a graph. HDP uses an adapted version of Tarjan’s algorithm for detecting
these components (see Section A.3 and Algorithm A.4). The graph of interest here
is ¥(so,). Let C be a strongly connected component of this graph. Let us define a
component C as being solved when every state s € C is solved.

Proposition 9.17. A strongly connected component C of the current graph y(sg,)
is solved if and only if C has no open state and every other component C’ reachable
from a state in C is solved.

Proof. 1t follows from the fact that the strongly connected components of a graph
define a partition of its vertices into a DAG (see Appendix A.3). If C meets the
conditions of the proposition, then Vs € C, ¥(s, 7) has no open state: s is solved. O

HDP (Algorithm 9.11) is indirectly recursive through a call to Solved-SCC, a
slightly modified version of Tarjan’s algorithm. HDP labels goal states and stops at
any solved state. It updates an open state, or it calls Solved-SCC on a state s whose
residual < n to check whether this state and its descendant in the current solution

192 9 Planning with Probabilistic Models

HDP(s)
if s € S, then label s solved
if s is solved then return false
1 elseif (residual(s) > n) Vv Solved-SCC(s, false) then
L Bellman-Update(s)
return true

Algorithm 9.11. HDP, a heuristic depth-first search algorithm for SSPs.

graph are solved and to label them. Note that the disjunction (line 1) produces a
recursive call only when its first clause is false. HDP and Solved-SCC returns a
binary value that is true if and only if s or one of its descendants has been updated.

Solved-SCC (Algorithm 9.12) finds strongly connected components and labels
them as solved if they meet the conditions of Proposition 9.17. It is very close to
Tarjan’s algorithm. It has a second argument that stands for a binary flag, true when s
or one of its descendant has been updated. Its differences with the original algorithm
are the following. In step 1 the recursion is through calls to HDP, while maintaining
the updated flag. In step 2, the test for a strongly connected component is performed
only if no update took place below s. When the conjunction holds, then s and all
states below s in the depth-first traversal tree make a strongly connected component
C and are not open. Further, all strongly connected components reachable from these
states have already been labeled as solved. Hence, states in C are solved (see details
in Section A.3).

Solved-SCC (s, updated)
index(s) «low(s) « i
i—i+1
push(s, stack)
foreach s’ € y(s,n(s)) do
if index(s”) is undefined then
1 updated «— HDP(s") V updated
L low(s) < min{low(s), low(s"}
else if s’ is in stack then low(s) < min{low(s), low(s’}

2 if (= updated) A (index(s)=low(s)) then
repeat

s’ « pop(stack)

label s’ solved

until s’ = s

return updated

Algorithm 9.12. Procedure for labelling strongly connected components.

HDP is repeatedly called on so until it returns false, that is, until s¢ is solved.

9.2 Heuristic Search Algorithms 193

Appropriate reinitialization of the data structures needed by Tarjan algorithm (i «
0, stack «— @ and index undefined for states in the Envelope) have to be performed
before each call to HDP(sg). For the sake of simplicity, this pseudocode does not
differentiate a fringe state from other open states: expansion of a fringe state (over all
its successors for all applicable actions) is performed in HDP as an update step.

HDP inherits the properties of Find&Revise: with an admissible heuristic Vj, it
converges asymptotically with 7 to the optimal solution; when Vj is also monotone,
its complexity is bounded by 1/ > s[V*(s) — Vo (s)].

9.2.4 Iterative Deepening Search

While best-first search for MDP relied on a generalization of A* to And/Or graphs,
iterative deepening search relies on an extension of the IDA* algorithm.

IDA* (Iterative Deepening A*) proceeds by repeated depth-first, heuristically guided
explorations of a deterministic search space. Each iteration goes deeper than the
previous one and, possibly, improves the heuristic estimates. Iterations are pursued
until finding an optimal path. The extension of IDA* to And/Or graphs is called LDFS;
it also performs repeated depth-first traversals where each traversal defines a graph
instead of a path.

LDFS,(s)
if s € S, then label s solved
if s is solved then return true
updated «— true
1 foreach a € Applicable(s) and while (updated) do
2 if [V(s) = Xy ey(s.a) Pr(s’]s, a)[cost(s, a, s”) + V(s')]| < n then
updated « false

3 foreach s’ € y(s,a) do
| updated < LDFS,(s’) V updated

if updated then Bellman-Update(s)
else
n(s) «—a
L label s solved
return updated

Algorithm 9.13. LDFS,, algorithm.

We first present a simpler version of LDFS called LDFS,, (Algorithm 9.13), which
handles only acyclic domains. LDFS, does a recursive depth-first traversal of the
current y(sg,). A traversal expands fringe states, updates open states, and labels as
solved states that do not, and will not in the future, require updating. LDFS,(so) is
called repeatedly until it returns sg as solved.

For an acyclic search space, a state s is solved when either it is a goal or when its
residual(s) < n and all its successors in y (s, 7r) are solved. This is expressed in line
2 for the current action a.

194 9 Planning with Probabilistic Models

Iteration in line 1 skips actions that do not meet the preceding inequality. It
proceeds recursively on successor states for an action a that meets this inequality. If
these recursions returns false for all the successors in y(s, a), then updated=false at
the end of the inner loop 3; iteration 1 stops and s is labeled as solved. If no action in
s meets inequality in line 2 or if the recursion returns true on some descendant, then s
is updated. The update is propagated back in the recursive calls through the returned
value of updated. This leads to updating the predecessors of s, improving their V (s).

Due to the test on the updated flag, iteration 1 does not run over all applicable
actions; hence LDFS,, performs partial expansions of fringe states. However, when a
state is updated, all its applicable actions have been tried in iteration 1. Furthermore,
the updates are also back-propagated partially, only within the current solution graph.
Finally, states labeled as solved will not be explored in future traversals.

LDFS extends LDFS, to domains with cyclic safe solutions. This is done by
handling cycles in a depth-first traversal, as seen in HDP. Cycles are tested along each
depth-first traversal by checking that no state is visited twice. Recognizing solved
states for cyclic solutions is performed by integrating into LDFS a book-keeping
mechanism similar to the Solved-SCC procedure presented in the previous section.
This integration is, however, less direct than with HDP.

Let us outline how LDFS compares to HDP. A recursion in HDP proceeds along
a single action, which is 7(s), the current best one. LDFS examines all actions in
Applicable(s) until it finds an action a that meets the condition 2 of Algorithm 9.13,
and such that thereisno s’ € y(s, a), which is updated in a recursive call. At this point,
updated=false: iteration 1 stops. If no such action exists, then residual(s) > n and
both procedures LDFS and HDP perform a normal Bellman-update. Partial empirical
tests show that LDFS is generally, but not systematically, faster than HDP.

LDFS is an instance of the Find&Revise schema. It inherits its convergence and
complexity properties, including the bound on the number of trials when used with
an admissible and monotone heuristic.

9.3 Heuristics and Search-Control Knowledge

As for all heuristic search problems, heuristic functions play a critical role in scaling
up probabilistic planning algorithms. Domain-specific heuristics and control knowl-
edge draw from a priori information that is not explicit in the formal representation
of the domain. For example, in a stochastic navigation problem where traversal prop-
erties of the map are uncertain (for example, as in the Canadian Traveller Problem
[853]), the usual Euclidian distance can provide a lower bound of the cost from a
state to the goal. Domain-specific heuristics can be very informative, but it can be
difficult to acquire them from domain experts, estimate their parameters, and prove
their properties. Domain-specific but problem-independent efficient heuristic can
be learned automatically if a simulator of the domain is available (see Chapter 10).
Domain-independent heuristics do not require additional knowledge specification or
a learning stage, but are often less informative. A good strategy is to combine both,
relying more and more on domain-specific heuristics when they can be learned or

9.3 Heuristics and Search-Control Knowledge 195

acquired and tuned. Let us discuss here a few domain-independent heuristics and
how to make use of a priori control knowledge.

9.3.1 Bounded-Lookahead Heuristics

A straightforward simplification of Equation 8.4 gives:

Vo(s) 0 if s € S,
s) =
0 ming{ Xy ey (s,a) Pr(s’|s, a) cost(s,a,s’)} otherwise.

Vo is admissible and monotone. When |Applicable(s)| and |y(s, a)| are small, one
may perform a Bellman update in s and use the following function V; instead of Vj:

Vi(s) 0 if s € Sg,
S) =
: ming{ Xy ey (s.a) Pr(s’|s, a)[cost(s, a, s) + Vo(s")]} otherwise.

Vi is admissible and monotone. So is the simpler variant heuristic
Vi(s) = ming{ming ey (s,q){cost(s,a,s’) + Vo(s")}} for non-goal states, because
Ming ey (s,a) Vo(5') < Xyey(s,a) Pr(s’ls, a)Vo(s’). This construction can straightfor-
wardly be generalized to V,, respectively V,, for arbitrary n > 1, unrolling the Bellman
update for a lookahead of n steps. V,, and V,, are admissible and monotone for any 7.
However, computational constraints limit the construction to small n, bounding the
informativeness of the heuristics.

9.3.2 Determinization-Based Heuristics

A widely used relaxation for domain-independent heuristic construction is the so-
called determinization, which transforms each probabilistic action into a few de-
terministic ones (as seen in Section 12.2). We can map a nondeterministic
domain ¥ = (S, A,v) into a deterministic one X; = (S, Ay, y4) with the follow-
ing property: Vs € S,a € A,s" € y(s,a), Jag € Az with s = y4(s,ay) and
cost(s,ay) = cost(s,a,s’). In other words, X, contains a deterministic action for
each nondeterministic outcome of an action in X. This is the all-outcomes deter-
minization, as opposed to the most-probable outcomes determinization. In the latter,
A, contains deterministic actions only for states s” € (s, a) such that Pr(s’|s, a) is
above some threshold. For SSPs in factorized representation, it is straightforward to
obtain 2, from X.

Let h*(s) be the cost of an optimal path from s to a goal in the all-outcomes
determinization X4, with 4*(s) = co when s is a dead end, immediate or deep. It is
simple to prove that 4™ is an admissible and monotone heuristic for X. But #* can be
computationally expensive, in particular for detecting deep dead ends. Fortunately,
heuristics for X, are also useful for X.

Proposition 9.18. Every admissible heuristic for ¥, is admissible for .

Proof. Let o = (s,s1,...,5¢) be an optimal path in £, from s to a goal; its cost
is h*(s). Clearly o is also a possible sequence of state in ¥ from s to a goal with

196 9 Planning with Probabilistic Models

a non-null probability. No other such a history has a strictly lower cost than A*(s).
Hence, h*(s) is a lower bound on V*(s), the expected optimal cost over all such
histories. Let /(s) be any admissible heuristics for X4: h(s) < h*(s) < V*(s). m|

Hence, the techniques discussed in Section 3.2 for defining admissible heuristics,
such as A™# are applicable in probabilistic domains. Further, informative but in-
admissible heuristics in deterministic domains, such as 4244, have also been found
informative in probabilistic domains when transposed from X; to X.

9.3.3 Regrouped Operator-Counting Heuristics

The all-outcomes determinization relaxes probabilistic actions into deterministic ac-
tions using the very optimistic assumption that one can freely choose the outcome of
every probabilistic action. This permits admissible determinization-based heuristics.
However, this may also lead to harsh underestimations of the actual expected cost V*.

a;
10
?; ol Figure 9.6. All-outcomes determinization
of the simple domain from Figure 9.1.
100 b

Example 9.19. Reconsider the simple domain from Figure 9.1. Assume that the
probability of a leading from sy to g within one step is reduced to p = .02, looping
back to s¢ with a probability of .98. Figure 9.6 shows the all-outcomes determinization
24. Zg4 treats equally all probabilistic action outcomes no matter of their likelihood.
The optimal plan for sg in X4 is {(a»). Therefore 2" (sg) = 10 < 200 = V*(s9). m]

The regrouped operator-counting heuristics h™° was the first family of domain-
independent admissible heuristics taking into account uncertainty about the actions’
outcomes. The operator-counting heuristic has its origins in deterministic models,
where heuristic estimates are derived from a characterization of plans based on action-
occurrence counts Count,, using linear program (LP). Formulating properties of plans
as constraints over the action-occurrence counts, and choosing the LP’s objective
function to minimize plan cost), 4 Count,Cost(a), the optimal LP solutions yield
admissible heuristics.

Let us consider two such heuristic functions 4°(s) and h™°(s). The operator-
counting heuristic £°¢(s) is given by the value of the optimal solution of the following
linear program;

min Z Count,Cost(a)
Count 724 (9.9)
subject to constraints Count, > 0 and I'(s).

This formulation leaves open the choice of the operator-counting constraints T'(s).
Admissibility is granted when I'(s) is satisfied for every plan & by the assignment:

9.3 Heuristics and Search-Control Knowledge 197

Count, = number of occurrences of a in 7

for all actions a. A popular instantiation of I'(s) is given by action landmarks (cf.
Section 3.2.3). Recall that a set of actions R is an action landmark for s if R contains
at least one action from every plan. This naturally translates into the following
operator-counting constraint:

> Count, > 1 (9.10)
a€R
h°°¢ can also admissibly combine multiple action landmarks R, . . ., R, by considering

in ['(s) the conjunction of the corresponding operator-counting constraints (9.10).

The regrouped operator-counting heuristic 4™ lifts the operator-counting heuristic
h° to probabilistic models X. The core still is the linear program (9.9) derived
from X, the all-outcomes determinization of £. In addition, A™° regroups the
determinized actions of the same probabilistic action, synchronizing their counts
according to their associated outcome probabilities. To this end, 2™ includes for
every pair of determinized actions a4 and @/, in 4 of any probabilistic action a in X,
with associated outcome probabilities p and p’, the regrouping constraint:

1 1

—Count,, = —Count, 9.11)
p p N

Example 9.20. Reconsider Example 9.19 and the landmark R = {a;, b} for s¢ in .
The corresponding regrouped operator-counting heuristic is defined via the linear
program

min Count,, 10 + Count,, 10 + Count; 100
Count

subject to Count,, > 0Count,, > 0Count, > 0

Count,, + Count, > 1

50

ECountal = 50Count,,

The optimal solution is Count,, = Count,, = 0 and Count;, = 1, giving the heuristic
h"°(sp) = 100, much higher than 4*(sg) = 10 for the optimal plan of ;. m]

h™¢(s) is admissible but in general not monotone. Monotonicity is violated if the
constraints I'(s) and I'(s”) of a state s and one of its successors s’ are inconsistent,
such as when using different landmark sets for s and s’. Admissibility follows from
the fact that every safe policy & can be transformed into an LP solution with objective
value equal to the expected cost of &, deriving the action counts Count,, of each
determinized action a, from the expected number of executions of the corresponding
probabilistic action @ when running 7 from the state s.

9.3.4 Probabilistic-Abstraction Heuristics

The idea here is to use a state abstraction function @ : § — S, which maps several
states into a single abstract state. In S,, the distinction between states s # s’ is

198 9 Planning with Probabilistic Models

neglected when a/(s) = a(s’). A domain X is mapped into a much smaller abstract
domain 2,. The optimal expected costs V, for X, is taken as a heuristic estimates for
2. This extends the abstraction heuristics of Section 3.6.5 to probabilistic domains.
When X, has a small size V,-values can be computed for all states via methods
like Value Iteration. The abstraction heuristic 27 (s) = V,,(a(s)) is admissible and
monotone.

Crucial for the efficacy of the heuristic, the abstraction function @ must allow
constructing X, without relying on an explicit description of . Probabilistic pattern
databases are one of the most successful probabilistic abstraction heuristics. They
leverage so called syntactic projections to construct @ and X, directly from the
factored domain description. Given a probabilistic planning problem in state-variable
representation (O, R, X, A, s, g), a subset of state variables X’ C X, called a pattern,
defines an abstraction function ax- which projects every state to the state variables
in X', i.e., ax(s) = {x =v | forx = vinsandx € X’}. The projected planning
problem is (O, R, X", A’, sé,g’) where A’, s('), and g’ are obtained by discarding all
appearances of the variables X \ X’ from A, s¢, and g. Given that the size of S, scales
exponentially in |X’|, this puts a limitation on the size of X’, and therewith also on
the informativeness of the corresponding projection heuristic 7%x".

Pattern database heuristics compensate weaknesses of individual projections by
combining a collection of patterns C = {X,...,X,}. A straightforward way to
coalesce the estimates of the individual projection heuristics into an admissible and
monotone heuristic is to take the maximum maxyx cc h*X (s). This has the nice
property that the resulting heuristic dominates each of its members. Ideally one
would however want to sum up the individual estimates, which in turn dominates the
maximum, but unfortunately this is not admissible in general.

Two patterns X; and X, are said to be additive, if there is no action with an effect
on variables from both X; and X,. This criterion implies that the optimal policies
of the respective syntactic projections use disjoint sets of actions, which is in general
sufficient to guarantee that 29%1 (s) + h“%2(s) is admissible. Similarly, since the two
heuristics never count the same action and since they both are monotone, their sum
is guaranteed to be monotone as well. The notion of additivity is extended to sets
of patterns. A collection C, is additive if all X;, X; € C, are pairwise additive.
Like for pairs, the additivity property is sufficient for guaranteeing that the sum
2xrec, ¥ (s) is admissible and monotone.

The canonical pattern database heuristic h€ uses this observation to combine the
projections of arbitrary collections of patterns C by identifying first all the additive
subsets C, C C, and taking the maximum over the respective sums:

hC(s) = max Z hex (s)
additive C,CC X'eC,

9.3.5 Other Search-Control Knowledge

Here, we seek to use domain-specific control knowledge in order to focus the search
in a state s on a subset of applicable actions in s. Domain-configurable planners
rely on this idea. The control knowledge can be expressed as pruning rules written

9.4 Linear Programming Approaches 199

in temporal logic for forward search state-space planners, or as task decomposition
methods for HTN planners.

Let the focus subset be Focus(s,K) C Applicable(s), where K is the control
knowledge applicable in s. Convenient approaches allow computing K incremen-
tally, for example, with a function Progress such that K’ < Progress(s, a, K). In
deterministic state-space planners, K can be a control formula; Focus(s,K) are the
applicable actions that meet this formula; Progress computes Focus for y(s, a). The
planner limits its options to Focus and reduces its branching factor.

Two ingredients are needed to transpose these approaches to probabilistic domains:
(i) a forward-search algorithm, and (ii) a representation and techniques for computing
Focus(s,K) and Progress(s, a, K) for nondeterministic actions. The latter can be
obtained from X, the determinized version of a domain. For the former, there is
the forward variant of Value lteration, and most instances of the Find&Revise schema,
including best-first and depth-first, perform a forward search. Control methods can
also be applied to online and anytime lookahead algorithms of Section 9.5. They can
efficiently speed up a search, but they evidently reduce its convergence (e.g., with
respect to safe and optimal solutions) to the actions selected in the Focus subset.

9.4 Linear Programming Approaches

Linear Programming (LP) is one of the oldest methods for solving MDPs. In com-
parison with dynamic programming, it produces exact solutions, naturally represents
stochastic policies, and elegantly deals with constraints. It is capable of producing
exact optimal solutions for constrained MDPs (C-MDPs) (see Section 8.3.3). It is
also used as a component of heuristic search approaches for constrained stochastic
shortest path problems (C-SSPs), and as a basis for deriving heuristics for SSPs.

We assume, as in Section 9.2, that all actions costs are strictly positive,2 and that
a safe policy exists from the initial state. We will briefly discuss relaxations of the
latter assumption to handle unavoidable dead ends. To simplify the exposition of the
linear programs, we will use cost functions cost(s, a) that do not depend on the next
state of the transition. In the following we abbreviate Applicable(s) with A(s) and
write I for the function that assigns 1 to state s and zero to any other state.

9.4.1 Linear Programs for SSPs

There are two main linear programs for SSPs. The first is the Primal LP (Algo-
rithm 9.14, in the usual format for linear programming, i.e., giving the linear criteria
to be optimized and the constraints to be met). Primal LP operates in the space of
value functions. It optimizes over variables V; representing the value function at each
state s, under two constraints capturing the value function definition at goal states
(C1) and non-goal states (C2), respectively. The optimal solution of Primal LP is V*.

2We will discuss models in which certain costs only need to be constrained rather than optimized, and
those where costs are arbitrary.

200 9 Planning with Probabilistic Models

Slight variants deal with rewards, infinite horizon discounted MDPs, and distributions
over initial states.?

The Primal LP requires that there are no dead ends. If any state s € S is a dead end
(even if avoidable), then the LP’s objective is unbounded, hence there is no optimal
solution. We could allow avoidable dead ends reachable from the initial state s
by changing the objective to maximize Vy,. This then only guarantees that the LP
solution is V* for the states reached by some optimal policy.

Primal LP(Z, Sg)

max Z Vs

seS
s.it. Vo =0 Vs e S, (CI)
Vs < Z Pr(s’|s,a)[cost(s,a) +Vy] Vse€ S,ae A(s) (C2)

s’ey(s,a)

Algorithm 9.14. Primal Linear Program for SSPs

Dual LP(Z, 59, Sg)

min Z cost(s, a)xs 4
seS\Sg,acA(s)

St. X540 20 Vs €S\ Sg,ae€A(s) (C3)

out(s) = Z Xs.a Vs € S\ S, (C4)
acA(s)
in(s) = Z Xy o Pr(sls’, a) VseS (C5)
s'€S\Sg,acA(s’)

out(s) —in(s) = I, (s) Vs € S\ S; (C6)
Z in(s) = 1 (C7)
SESg

Algorithm 9.15. Dual Linear Program for SSPs

The second linear program is the Dual LP (Algorithm 9.15). It operates in the
space of stochastic policies. A stochastic policy is a function 7 : S X A — [0, 1]
which returns a probability distribution over actions to be performed in a given state;
7 (s, a) is the probability required by 7 of performing a in s. The Dual LP optimizes

31t suffices to replace (C1) with an assertion that the Vy are positive, add the discount factor and invert
the direction of the inequality in (C2), and change the objective to minimize the sum of the state
values weighted by their initial probabilities.

9.4 Linear Programming Approaches 201

over variables representing the occupation measures of the policy. The occupation
measure X; , for is the expected number of times action a is performed in state s
before the goal is reached, when executing 7 from the initial state s.

This dual formulation can be interpreted as a probabilistic flow problem where one
unit of flow is injected at the initial state (the source), transits via transient states,
and reaches goal states (the sink). Constraint (C4) defines the flow exiting state s
by applying actions prescribed by the policy, and constraint (C5) defines the flow
entering state s by transiting from states s’ via actions prescribed by the policy.
Constraint (C6) captures the conservation of flow at transient states: the flow exiting
each of these states must equal the flow entering it, with the exception of the initial
state for which the exiting flow exceeds the entering flow by the one unit initially
injected. Constraint (C7) enforces that all the flow reaches goal states, i.e., that the
policy is safe. Finally, the objective function ensures that the total expected cost of
the policy is minimized.

Let x* be an optimal solution of the Dual LP, then the corresponding optimal
stochastic policy is:

*
xs,a

out(s)

7*(s,a) =

For SSPs, there always exist an optimal policy that is deterministic. Deterministic
policies lie at the extreme points of the feasible region of the Dual LP, and any LP solver
based on the simplex method will therefore return a deterministic optimal policy.*
However, the ability of the Dual LP formulation to deal with stochastic policies makes
it useful for handling more complex problems than SSPs, including problems with
constraints, discussed in the next subsection, for which all optimal policies may be
stochastic.

The Dual LP formulation can be easily adapted to infinite horizon and discounted
reward maximization problems, as well as problems that go beyond SSPs such as that
of finding a policy maximizing the probability of reaching the goal. For the latter, it
suffices to remove constraint (C7) and replace the objective with that of maximizing
the probability X’ e, in(s). The resulting LP is called the MAX-PROB LP.

Moreover, there are a number of options to handle unavoidable dead-ends. The
first is the Finite Penalty method, where a dummy action that directly reaches the
goal with probability 1 is applicable from every non-goal state and incurs a very high
fixed cost. A more elegant and principled approach afforded by linear programming
is to consider goal reachability probability and policy expected cost as two different
objectives. For instance, one can use the Min-Cost given Max-Prob criterion which
computes minimal cost policies amongst those with maximal goal reachability. This
requires solving two LPs: the MAX-PROB LP to obtain the maximal goal reachability
probability pmax, and then a slight variant of the Dual LP where the right hand-side
of (C7) is replaced by pmax.

Despite being solvable in polynomial time, linear programs are however not com-
petitive with other approaches for SSPs. The Primal LP has the same number of

4More generally, a deterministic optimal policy for an SSP can be obtained from an stochastic optimal
policy 7* for that SSP by deterministically selecting an action a at each state s such that 7% (s, a) > 0.

202 9 Planning with Probabilistic Models

variables as Value Iteration, but in practice, its exact resolution is slower than the for-
mer. As for the Dual LP, its large number of variables |S| X |A] is a serious drawback.
Therefore, it is only used to solve problems beyond SSPs which are not adequately
covered by other approaches, such as constrained SSPs as we explain next.

9.4.2 Linear Programs for Constrained SSPs

Constrained SSPs, introduced in Section 8.3.3, are SSPs with multiple cost functions
and constraints bounding their expected value. They are formally defined as follows.

Definition 9.21. A constrained stochastic shortest path problem (C-SSP) is a tuple
(Zconstrs S0, Sg)s Where Zeonser = (S, A,y,Pr,cost, i), S,A,y,Pr,so and S, are
defined as in an SSP, cost = [costp, . .., cost] is a vector of k + 1 cost functions such
that costy : S X A — R* is the primary cost function and cost; : S X A — R for
i € {1,...,k} are the secondary cost functions, and & = [u, ..., u] is a vector of k
upper-bounds on the secondary costs. O

plane

min 1.5xg, p, +4x0,c +4x1,c +5x0,p +3x1,p +5x2p

[1.5, 1000, 247] subject to:

05 X0,p +X0,c +X0,p =1 (sg: C4, C5, C6)
N car car X0.p +0.5x1 ¢ +x2p = 1 (g: C5,C7)
s s > , >
\So S Taza.73 A\ 142273 Xe+X1p—X0c—05x16=0 (s1: C4,C5,C6)
b b k= b X2,p —X0,p—X1,5=0 (s2: C4, C5, C6)
AN us US /& 247x0, +73(x0,c +X1,0)+
J“'Q& S(XO,b +X1,p +)C2’b) < 184 (CO,: C8)
7 1000x0,) +24(x0, ¢ +X1,0)+
s 40()(0’1, +Xx1,p +)C2’b) <260 (money: C8)

Figure 9.7. A simple travel C-SSP (left) and its Dual LP (right).

Example 9.22. Consider the simple C-SSP on the left-hand side of Figure 9.7. Alex
needs to frequently travel from home (at sg) to visit his family (represented by the goal
g). For each trip, he can take the plane, which takes just 1.5h but costs 1000 euros
and consumes 247 kg of CO,. He can alternatively take the bus, changing roughly
mid way (at s7); this only costs 40 euros per leg and consumes 8kg of CO», but each
leg takes 5 hours. Finally, he can take a combination of dirt and mountain roads with
his car, which is in principle faster and cheaper than the bus, and consumes much less
CO; than the plane. However, the road is frequently closed (50% of the time) due
to fires, flood, excessive snow, or accidents, and he is often forced to go back to the
only town along the way at s| and stay there pending the issue being resolved before
resuming his trip. Alternatively, from s, he can catch a bus to g via s,. The first
four constraints in the right-hand side of the figure (those labelled sq to s7) are the the
Dual LP constraints capturing the underlying SSP. The occupation measures are x; ;
where i € {0, 1,2} represents the index of the state, and j € {b, ¢, p} represents the
action of taking the bus, car, and plane, respectively.

9.4 Linear Programming Approaches 203

The vectors in red in the figure represent the cost vectors cost (s, a) associated with
taking action a in state s. Alex would like to minimize the time spent traveling, and
this is therefore the primary cost. This is reflected in the objective of the dual LP in
the figure. Money and CO, consumption are the secondary costs. Alex has calculated
that he can afford an average of 260 euros (each way) per visit. Moreover, he is not
prepared to increase his carbon footprint by more than 184 kg of CO; per visit on
average. Hence the bounds vector is i = [260, 184]. O

A solution to a C-SSP is a stochastic policy minimizing the expected primary cost,
subject to the expected secondary costs being below their respective upper bounds.
Not all C-SSPs have solutions, as the constraints may be individually or mutually
unsatisfiable. In the following we write V7 (s) for the value function of policy 7 at
state s for the cost function c.

Definition 9.23. A solution to a C-SSP (Zconsir» S0, Sg) s a safe stochastic policy
minimizing V7, (s0) under the constraints that VI (so) <u; Vi € {1,...,k}. O

It is important to notice that the constraints apply to the expected values VT (s0)
at the initial state. These constraints do not apply to states other than the initial one
even in expectation, nor to individual executions of the policy from the initial state.
For instance, if cost; measures travel time and u; represents a deadline, there is no
guarantee that all possible executions of the policy meet the deadline. Providing
stronger guarantees would require augmenting the state space with state variables
representing the accumulated cost for the various cost functions, leading to an increase
of the size of the state space exponential in k. Irrespective of the high complexity,
the benefits of augmenting the state space in this way are questionable, as there will
always be extremely unlikely executions of the policies that exceed any reasonable
fixed cost bound. The advantages of expected cost constraints are that they do not
increase the theoretical complexity of the problem and can be handled with minimal
changes to the Dual LP.

Indeed, C-SSPs have the same worst-case time complexity as SSPs, i.e., polynomial
in || x|A| (and hence exponential time in the size of the factored MDP representation).
The Dual LP for C-SSPs (Algorithm 9.16) only requires one additional constraint,
namely (C8), which bounds the expected secondary costs V3. (so). If the C-SSP
has a solution, this LP’s optimal solution is an optimal set of occupation measures x*
from which an optimal stochastic policy 7* can be retrieved. Otherwise the LP solver
returns that the problem has no solution.

Paradoxically, optimal deterministic policies, in addition to not being as good as
stochastic ones, are more expensive to compute, making the problem NP-hard. In
practice, they require additional constraints that involve new binary variables, turning
the LP into a Mixed Integer Program (MIP).

Example 9.24. We continue the example depicted in Figure 9.7. The last two con-
straints on the right-hand side enforce the bounds (C8) on the secondary money and
CO; costs of the Dual LP for C-SSPs. The optimal stochastic policy obtained by
solving the Dual LP for C-SSPs uses the plane and the bus roughly 20% of the time
each, and the car the remaining 60% of the time. It never takes the bus from s; to

204 9 Planning with Probabilistic Models

Dual LP for C-SSPs(Z onst» 50, Sg)

min Z costo(s, a)xs. 4
seS\Sg,acA(s)
s.t. (C3)-(C7)

cost; (s, a)xs.q < U; Vie{l,..., k} (C8)
s€S\Sg,acA(s)

Algorithm 9.16. Dual Linear Program for Constrained SSPs

s». On average, it takes 8.3h to reach the goal, and it reaches the bounds of 260 euros
and 184 kg of CO, exactly. In contrast, the optimal deterministic policy takes the bus
all the way from s¢ to g, leading to a journey of 10h, a cost of 80 euros, and a CO,
consumption of 16 kg. O

9.4.3 Hybrid LP and Heuristic Search for Constrained SSPs

The size of the occupation measure space is the product |S| X |A|. Itis too large for the
Dual LP for C-SSPs to be practical. In realistic cases, it would require solving linear
programs with millions or even billions of variables. However, by hybridizing linear
programming and heuristic search, it is possible to guide the search for a solution in
such a way as to explore only a small fraction of the occupation measure space.

i-dual is such a hybrid algorithm for C-SSPs. Recall that heuristic search algorithms
of Section 9.2 explore progressively larger envelopes rooted at the initial state, evaluate
fringe states using a heuristic function, and stop when the initial state is “solved”.
At each iteration, they may expand fringe states reachable under the current policy,
or perform Bellman updates on reachable interior states. i-dual is similar except that
it optimally solves the Dual LP for C-SSPs on the current envelope at each iteration
instead of performing Bellman backups. It expands all fringe states reachable under
the optimal policy found, and stops iterating whenever all non-interior states of the
policy are actual goal states. Using linear programming as a subroutine allows i-
dual to handle constraints and produce stochastic policies whereas previous heuristic
search algorithms could not.

i-dual uses admissible heuristics (lower bounds on V) for each cost function c,
whether primary or secondary. The primary heuristic serves the usual purpose of
guiding the search towards cheap safe policies, whereas the secondary heuristics help
with early pruning of regions of the policy space that do not satisfy the constraints.

More formally, let E = [U F U G be the current envelope explored by i-dual
where [are the interior states, F the fringe states, and G C S, the goal states in
the envelope, and let h = [ho, ..., hx] be a vector of k + 1 heuristic functions such
that ;(s) < Vi, (s) forall i € {0,...,k} and state s € S. Let the set of envelope
actions be Ag = {a € A(s) | s € I}. Ateach iteration, i-dual solves the partial C-SSP
((E,Ag,v,Pr, cost,ii), so, F U G), using the heuristics given by h at fringe states.

9.4 Linear Programming Approaches 205

The LP solved by i-dual at each iteration is shown in Algorithm 9.17.

i-dual LP(((E, Ag, v, Pr, cost, ii), so, F U G),)
I —E\(FUG)

min Z costo(s, a)xs.q + Z ho(s)in(s)

sel,acAEg(s) seF

s.t. (C3) - (C7) [replacing S\ S, with I, S with E, S, with FUG, A with Ag]
Z cost; (s, a)xs q + Z hi(s)in(s) <u; Vie{l,...,k}

sel,acAE(s) seF
(C9)
Algorithm 9.17. Linear Program Solved by i-dual at Each lteration
i-dual((Zconstr» S0 Sg)a h)
E — {soh; F — {s0}; G «— @; Ag «— &; Fp « {so}
while F, # & do // As long as E has reachable fringe states
foreach s € F; do // expand reachable fringe states
remove s from F // and build new partial problem
AEg <« Ag U Applicable(s) // by updating E, Ag, G, and F

foreach a € Applicable(s) and s’ € y(s,a) do
if s’ ¢ E then
add s to E
if s’ € S, then
L add s” to G else
L add s’ to F

x « Solve i-dual LP(((E, Ag, v, Pr, C,ii), so, FUG),h) //Solve LP
if the LP was not solvable then
L return Unsolvable
Fr « {s € Flin(s) > 0} // and update reachable fringe states

foreach (s,a) € E x Ag such that x; , > 0 do
| 7(s,a) « xg5,q/0ut(s)
return m

Algorithm 9.18. i-dual, a hybrid algorithm for C-SSPs.

i-dual (Algorithm 9.18) uses this LP as a subroutine. It starts from the envelope
E containing only the initial state s and from the empty policy. At each iteration,
it updates the envelope by expanding all fringe states F, reachable under the current
policy, and builds a new partial problem over the updated envelope, which is then
solved with i-dual LP. When the current policy has no fringe states (i.e. all terminal

206 9 Planning with Probabilistic Models

states of the policy are goal states), then i-dual has found an optimal stochastic policy
for the original C-SSP. If any of the calls to i-dual LP fails, then the original C-SSP
is unsolvable. Observe that i-dual runs in polynomial time: each iteration (including
i-dual LP) runs in polynomial time, and there are at most linearly many iterations in
the number of states of the C-SSP.

Theorem 9.25. Given a C-SSP C = (Zconsir» S0, Sg) and a vector of admissible

heuristics h, i-dual returns an optimal stochastic policy nt for C if C is solvable, and
returns Unsolvable otherwise. It does so in polynomial time in |S| X |A].

It also possible to use i-dual with inadmissible heuristics to speed up the resolution
of the LP. If the primary cost heuristic sy is not admissible, then i-dual remains
correct and complete, i.e. it will return a safe stochastic policy that satisfies the
constraints if one exists, but the policy may be suboptimal. If a secondary heuristic is
not admissible, then i-dual will be correct but possibly incomplete, i.e, it may deem
the problem unsolvable even if a safe policy satisfying the constraints exists. This is
because constraint (C9) may unduly prune solutions.

A vector of admissible heuristics / can be obtained by constructing an individual
heuristic 4; for each cost function cost;, e.g., via one of the approaches of Section 9.3.
This however has the downside of not taking into account possible dependencies
between the cost functions.

Let us introduce a heuristic that allows us to simultaneously reason over all the
cost functions. Consider first a single cost function cost. The projection occupation-
measure heuristic hP®™ combines into a single LP the Dual LP for the syntactic pro-
jections X over all state variables y (see Section 9.3.4). Let x;_, be the occupation-
measure variable belonging to the state {y = v} in the syntactic projection onto {y}
and action a. Heuristic #P°™ connects the different projections, forcing the LP solution
to execute in all projections all actions exactly the same expected number of times, by
including the following tying constraints:

Wa= Y x (9.12)

v,a’
value v of y value v’ of y’
for all actions a and pairs of distinct state variables y, y’.

The LP’s objective function is the objective function of the Dual LP for the syntactic
projection onto some ¥. The precise choice of $ does not matter given (9.12). AP°™ ()
gives the optimal objective value. To see that this is an admissible estimate of V., (s),
let x§ , be an optimal solution of the Dual LP for the problem (Z, s, Sg) and cost
function cost. Recall that the objective value corresponding to x* is equal to V%, (s),
and consider the assignment:

ay _ *
= > X

s’€S: s’ contains y=v
for all variables y, values v of y, and actions a. As x* satisfies the constraints of the Dual
LP for the concrete problem, X necessarily satisfies the Dual LP for all the projections.
Moreover, £ satisfies the tying constraints by construction. Since X induces an objec-
tive value equal to that of x*, it follows that AP () < objective value of X = V., (s).

9.5 Online Probabilistic Approaches 207

i2-dual is an enhanced variant of i-dual, which embeds the projection occupation-
measure LP directly into the i-dual LP in place of the external heuristics h. This
leads policy update and heuristic computation to work in unison. To obtain an
admissible estimate of the expected cost under cost; starting from the fringe states,
the only change required is synchronizing the flow-surplus in the flow-conservation
constraints (C6) of the projections with the in-flow of the fringe states. Using the
same projection occupation-measure variables for all cost functions creates a tight
link between all the heuristic estimates.

9.5 Online Probabilistic Approaches

Often, finding a complete plan then acting according to that plan is often not a feasible
nor a desirable approach. It is not feasible for complexity reasons in large domains,
that is, a few dozens ground state variables. Even with good heuristics, algorithms
seen in Section 9.2 cannot always address large domains, unless the designer is able
to carefully engineer and decompose the domain. Even memorizing a safe policy as
a table lookup in a large domain is by itself challenging to current techniques (that is,
decision diagrams and symbolic representations). However, a large policy contains
necessarily many states that have a very low probability of being reached, e.g., lower
than the probability of unexpected events not modeled in X. These improbable states
may not justify being searched, unless they are critical. They can be further explored
if they are reached or become likely to be reached while acting.

Furthermore, even when heuristic planning techniques do scale up, acting is usually
time-constrained. A trade-off between the quality of a solution and its computing
time if often desirable, for example, there is no need to improve the quality of an
approximate solution if the cost of finding this improvement exceeds its benefits.
Such a trade-off can be achieved with an online anytime algorithm that computes a
rough solution quickly and improves it when given more time.

Finally, the domain model is seldom precise and complete enough to allow for
reliable long-term plans. Shorter lookaheads with progressive reassessments of the
context are often more robust. This is often implemented in a receding horizon
scheme, which consists in planning for d steps towards the goal, performing one or a
few actions according to the found plan, then replanning further.

This section presents a few techniques that perform online lookaheads and permit
to interleave planning and acting in probabilistic domains. These techniques are based
on a general schema, discussed next.

9.5.1 Lookahead Methods

Lookahead methods allow an actor to progressively elaborate its deliberation while
acting. They rely on a procedure such as MDP-Lookahead presented earlier (Algo-
rithm 8.2), and a generative sampling function. A full definition of y(s, a) for all
a € Applicable(s) is not necessary to a partial exploration. Most partial exploration
techniques rely on sampling methods. They search only one or a few random outcomes
in y(s, a) over a few actions in Applicable(s).

208 9 Planning with Probabilistic Models

Definition 9.26. A generative sampling model of a domain X = (S, A, y, Pr, cost) is
a stochastic function

Sample : § X A — § X R, such that: Sample(s, a) = (s’, cost(s, a, s")),
where s’ € y(s, a) is randomly distributed according to Pr(s’|s, a).]

We assume that several calls to Sample returns a set of states s’ that independently
and identically distributed (the classical i.i.d assumption). Note a domain can be
defined by specifying S, A and a generative Sample function. One does not need
v and a priori estimates of the probability and cost distributions of X. A domain
simulator is generally the way to implement the function Sample, which provides an
implicit (also referred to as a model-free) specification of an MDP.

Approaches and properties of Lookahead. One possible option is to memorize
the search space explored progressively: each call to Lookahead relies on knowledge
acquired from previous calls; its outcome augments this knowledge. As an alternative
to this memory-based approach, a memoryless strategy would start with a fresh look
at the domain in each call to Lookahead. The choice between the two options depends
on how stationary the domain is, how often an actor may reuse its past knowledge,
how easy it is to maintain this knowledge, and how this can help improve the behavior.

The advantages of partial lookahead come naturally with a drawback, which is
the lack of a guarantee on the optimality and safety of the solution. Indeed, it
is not possible in general to choose m(s) with a bounded lookahead while being
sure that it is optimal, and, if the domain has dead ends, that there is no dead end
descendant in y(s, 7). Finding whether a state s is unsafe may require in the worst
case a full exploration of the search space starting at s. In the bounded lookahead
approach, optimality and safety are replaced by a requirement of bounds on the
distance to the optimum and on the probability of reaching the goal. In the memory-
based approaches, one may also seek asymptotic convergence to safe and/or optimal
solutions.

Three approaches to the design of a Lookahead procedure are presented next:

* domain determinization and replanning with deterministic search,
¢ stochastic simulation, and
* sparse sampling and Monte Carlo planning techniques.

The last two approaches are interfaced with a generative sampling model of X using
a Sample function: they do not need a priori specification of probability and cost
distributions. The third one is also memoryless; it is typically used in a receding
horizon scheme. However, many algorithms implementing these approaches can be
used for online interleaved planning and acting framework, as well as for offline
planning. Their control parameters allow for a continuum from the computation of a
greedy policy computed at each state to a full exploration and definition of 7(sp).

9.5.2 Planning with Deterministic Search

Determinization techniques. The idea here is to use any deterministic planner to
generates a path m; from the current state to a goal for the most probable outcomes

9.5 Online Probabilistic Approaches 209

determinized domain, then to act using 4 until reaching a state s that is not in the
domain of 7. At that point one generates a new deterministic plan starting at s.

Note, however, that this approach does not cope adequately with dead ends. Even
if the deterministic planner is complete and finds a path to the goal when there is one,
executing that path may lead along a nondeterministic branch to an unsafe state.

RFF (Algorithm 9.19) relies on a deterministic planner, called Det-Plan, to find in
X4 an acyclic path from a state to a goal. X takes in X the most probable s’ € y(s, a).
Procedure Det-Plan returns a path X, taken as a partial policy. RFF memorizes
previously generated deterministic paths and extends them for states that have a high
reachability probability. RFF can be used as an online Lookahead procedure, possibly
with additional control parameters, or as an an offline planner. In the latter case, RFF
repeatedly extends undefined branches in y(sg, 7).

RFF(Z, 50, Sg. 0)
n < Det-Plan(Zg4, 50, Sg)
while 3s € y(sg,) such that
[(m(s) is undefined) A(s ¢ Sg) A (Pr(s|so, m) > 6)] do
| 7« mUDet-Plan(Zy, s, Sg U Targets(r, s))

Algorithm 9.19. RFF, a determinization planning algorithm.

RFF initializes the policy m with the pairs (state, action) corresponding to a de-
terministic plan from sg to a goal, then it extends m. It looks for a fringe state
s’ € y(so,) that has a successor s not in S, and for which 7 is undefined. If the
probability of reaching s is above some threshold 6, RFF extends m with another
deterministic path from s to a goal or to another state already in the domain of 7. The
set of additional goals given to Det-Plan, denoted Targets(rw, s), can be the already
computed Domain(rr) or any subset of it. If the entire Domain(r) is too large, the
overhead of using it in Det-Plan can be larger than the benefit of reusing paths already
planned in m. A trade-off reduces Targets(nw, s) to k states already in the domain of
n. These can be taken randomly in Domain(rr) or chosen according to some easily
computed criterion.

Computing Pr(s|sg, 7) can be time-consuming (a search and a sum over all paths
from s¢ to s with 7). This probability can be estimated by sampling. A number of
paths starting at s following n are sampled; this allows the estimation of the total
probability of reaching non-goal states that are not in the domain of 7. RFF terminates
when this frequency is lower than 6.

Algorithm 9.19 requires a domain without reachable dead ends. However, RFF can
be extended to domains with avoidable dead ends, that is, where sg is safe. This is
achieved by introducing a backtrack point in a state s which is either an immediate
dead end or for which Det-Plan fails. That state is marked as unsafe; a new search
starting from its predecessor s’ is attempted to change 7 (s”) and avoid the previously
failed action.

RFF algorithm does not attempt to find an optimal or near optimal solution. How-
ever, the offline version of RFF finds a probabilistically safe solution, in the sense

210 9 Planning with Probabilistic Models

that the probability of reaching a state not in the domain of r, either safe or unsafe, is
upper bounded by 6.

Mixed Deterministic-Probabilistic Approaches. In Section 8.3.4 we discussed
modeling domains where all but a few of the actions are deterministic, by mixing
deterministic and nondeterministic approaches.

Here is a possible approach for planning in a domain that has both de-
terministic and nondeterministic actions. Assume that while planning from
a current state s to a goal, the algorithm finds at some point a sequence
((s,ayr), (s2,a2),...,(Sk-1,ak-1), (Sk,a)) such that actions a; through aj_; are de-
terministic, but a is nondeterministic. It is possible to compress this sequence to
a single nondeterministic step (s, @), the cost of which is the sum of cost of the k
steps and the outcome y (s, a) of which is the outcome of the last step. This idea can
be implemented as sketched in Algorithm 9.20. Its advantage is to focus the costly
processing on a small part of the search space.

Incremental-compression-and-search (X, so, Sg)
while there is an unsolved state s in current ¥ (sg, 7) do
search for an optimal path from s to a goal
until a nondeterministic action a
compress this path to a single nondeterministic step
n(s) «—a
revise with Bellman-Update

Algorithm 9.20. Incremental-compression-and-search for sparse probabilistic do-
mains.

The notion of mixed deterministic-probabilistic domains can be extended further
to cases in which |y(s,a)| < k and Applicable(s) < m for some small constants k
and m. Sampling techniques, discussed next, are particularly useful in these cases.

9.5.3 Stochastic Simulation Techniques

Stochastic simulation techniques rely on a generative Sample function. They run
simulated walks from sq to a goal along best current actions by sampling one outcome
for each action. Algorithms implementing this idea are inspired from LRTA* [639].
They can be implemented as offline planners or online Lookahead procedures.

One such algorithm, called RTDP, runs a series of simulated trials starting at sg. A
trial performs a Bellman update on the current state, then it proceeds to a randomly
selected successor state along the current action 7 (), that is, from s to some random
s’ € y(s,m(s)). A trial finishes when reaching a goal. The series of trials is pursued
until either the residual condition is met, which reveals near convergence, as in
Find&Revise, or the amount of time for planning is over. At that point, the best action
in s is returned. With these assumptions RTDP is an anytime algorithm.

9.5 Online Probabilistic Approaches 211

If a goal is reachable from every state in the search space and if the heuristic
Vo is admissible then every trial reaches a goal in a finite number of steps and
improves the values of the visited states over the previous values. Hence, RTDP
converges asymptotically to V*, but not in a bounded number of trials. Note that these
assumptions are stronger than the existence of a safe policy.

LRTDP(Z, 50, g, Vo)
until s is solved or planning time is over do
| LRTDP-Trial(sp)

LRTDP-Trial(s)
visited < empty stack
while s is unsolved do
push(s, visited)
Bellman-Update(s)
(s,c) <« Sample(s, n(s))
s «pop(visited)
while Check-Solved(s) is true and visited is not empty do
| s «pop(visited)

Algorithm 9.21. LRTDP algorithm.

Algorithme LRTDP (for Labelled RTDP), improves over RTDP by explicitly check-
ing and labeling solved states. LRTDP avoids visiting solved states twice. It calls
LTRDP-Trial(so) repeatedly until planning time is over or sg is solved. A trial is a
simulated walk along current best actions. It stops when reaching a solved state. A
state s visited along a trial is pushed in a stack visited. When needed, it is expanded
and Bellman updated. The trial is pursued on a randomly generated successor of s.
The procedure Sample (s, a) returns a pair (s’, cost(s, n(s), s’), with s € y(s, 7(s))
randomly drawn according to the distribution Pr(s’|s, 7(s)).

The states visited along a trial are checked in LIFO order using the procedure
Check-Solved to label them as solved or to update them. Check-Solved(s) searches
through ¥ (s, 7) looking for a state whose residual is greater than the margin n. If it
does not find such a state (flag = true), then there is no open state in y (s, 7): s and
its descendants in (s,) (kept in the closed list) are labeled as solved. Otherwise,
there are open states in (s,). The procedure does not explore further down the
successors of an open state (its residual is larger than 7); it continues on its siblings.

When all the descendants of s whose residual is less or equal to n have been
examined (in that case open = &), the procedure tests the resulting flag. If s is not
yet solved (that is, flag= false), a Bellman update is performed on all states collected
in closed. Cycles in the Envelope are taken care of (with the test s’ ¢ openUclosed):
the search is not pursued on successors that have already been met. The complexity
of Check-Solved(s) is linear in the size of the Envelope, which may be exponential in
the size of the problem description.

Note that by definition, goal states are solved; hence the test “s is unsolved” in the

212 9 Planning with Probabilistic Models

Check-Solved(s)

flag < true

open «— closed < empty stack

if s is unsolved then push(s, open)

while open is not empty do
s « pop(open)
push(s, closed)
if [V(s) — Q(s,n(s))| > n then flag < false
else

foreach s’ € y(s,n(s)) do
L if s” is unsolved and s’ ¢ open U closed then push(s’, open)

if flag= true then
1 L foreach s’ € closed do label s’ as solved // labeling step

else
while closed is not empty do

s « pop(closed)
Bellman-Update(s)

return flag

Algorithm 9.22. Check-Solved, procedure to check and label solve states for
LRTDP.

two preceding procedures checks the explicit labeling performed by Check-Solved
(labeling step) as well as the goal condition.

If a goal is reachable from every state and Vj is admissible, then LRTDP-Trial
always terminates in a finite number of steps. Furthermore, if the heuristic Vj is
admissible and monotone, then the successive values of V with Bellmann updates are
nondecreasing. Under these assumptions, each call to Check-Solved(s) either labels s
as solved or increases the value of some of its successors by at least 7 while decreasing
the value of none. This leads to the same complexity bound as Value Iteration:

Proposition 9.27. LRTDP with an admissible and monotone heuristic on a problem
where a goal is reachable from every state converges in a number of trials bounded

by 1/n 2s[V*(s) = Vo(s)].

This bound is mainly of theoretical interest. Of more practical value is the anytime
property of LRTDP: the algorithm produces a good solution that it can improve if
given more time or in successive calls in MDP-Lookahead. Because Sample returns
states according to their probability distribution, the algorithm solves frequent states
faster than on less probable ones. As an offline planner (that is, repeated trials until
so is solved), its practical performances are comparable to those of the other heuristic
algorithms presented earlier.

9.5 Online Probabilistic Approaches 213

9.5.4 Sampling and Monte Carlo Approaches

The stochastic simulation approach of the previous section with a generative Sample
function can be extended and used in many ways, in particular with the bounded walks
and sampling strategies discussed here.

Let 7y be an arbitrary policy, used at initialization. For example, 7o (s) is the greedy
policy, locally computed only when needed as mo(s) = argmin, Q¥0(s, a) for some
heuristic V. If the actor has no time for planning, then 7 (s) is the default action. If
it can afford a lookahead, then it can improve g with Monte Carlo rollouts.

Monte Carlo Rollout. Let us use the Sample procedure to simulate a random
bounded walk in the search tree down to a depth d. The first step is a chosen
action a applicable in s; the remaining d — 1 steps follow a initial policy my. Let
a’,‘rl0 (s,a) = (s, s1,52,...,5q) be the sequence of states visited during this walk, with
(s1,c1) « Sample(s, a) and (s;41, ci+1) < Sample(s;, mo(s;)) for 1 < i < d. This
history (J',‘rl0 (s, a) is called a rollout for a in s with 7. Let Qﬁlro (s, a) be the cost-to-go
of a in s as estimated by this rollout. It can computed by a call to the procedure
Rollout (s, a, mp, d), which stops after d steps, estimating the remaining cost with Vj,
or when reaching a goal (Algorithm 9.23).

s
s a; ai
yyi 1 LN]
: sl «7.. gIx .ot
$° st k ‘(k

d.
sd, sd, sy 8%

Qi(s,a1) Qd(s,a;) QU(s.a1) Q(s,a;)
(@ (b

Figure 9.8. (a) Single Monte Carlo rollouts for actions in s; (b) Multiple rollouts for
actions in s.

Let us perform a rollout for every action applicable in s following g, as depicted
in Figure 9.8(a), and let us define a new policy:

7(s) = argmin Qf,o(s, a).

The argument of Proposition 9.1 applies here: policy 7 dominates the base policy .
However, a single rollout of a in s will not give a good estimate of the cost-to-go.
A MultipleRollout procedure performs & similar simulated walks of d steps for each

214 9 Planning with Probabilistic Models

Rollout(s, a, 7, d)
(s, c) « Sample(s, a) // where ¢ = cost(s, a, s”)
return [c¢ + Rest-Rollout(s”, 7, d — 1)]

Rest-Rollout(s, 7, d)
if s € S, then return 0
else if d = 0 then return V(s)
else
(s’,c) « Sample(s, 7 (s)) /¢ = cost(s,n(s),s’)
L return [c + Rest-Rollout(s’, 7, d — 1)]

Algorithm 9.23. Performing a rollout for a in s with 7 and computing its total
cost

applicable a in s (Algorithm 9.24 and Figure 9.8(b)). The average of their costs
assesses Q (s, a). This is the case since Sample returns random states according to the
probability distributions. This procedure is probabilistically approximately correct,
that is, it provides a probabilistically safe solution (not guaranteed to be safe) whose
distance to the optimum is bounded. In each s, it performs |Applicable(s)| X k X d
calls to Sample.

MultipleRollout(s, , k, d)
foreach a € Applicable(s) do

Q(s,a) <0
for k times do
L 0(s,a) « Q(s,a) + %Rollout(s, a,n,d)

n(s) « argmin, Q(s, a)

Algorithm 9.24. MultipleRollout, a multiple rollout procedure

Note the similarity of MultipleRollout to the Policy Iteration procedure: in both
cases we first compute the V™, or equivalently the Q" functions for a given n, then
we improve m with the newly computed value or cost functions. There two main
differences: (i) Policy lteration computes V7 systematically while MultipleRollout
estimates with sampling an approximation of Q”, and (ii) Policy lteration defines 7
over all S, whereas here we do it incrementally for current s. The already mentioned
approximate policy iteration techniques rely on MultipleRollout performed over a
number of representative states, and a generalization of the resulting policy to S with
a learning procedure (see Chapter 10).

Sparse Sampling. We can extend the previous approach with bounded multiple

rollouts in s and recursively in each of its descendants reached by these rollouts.
Procedure SLATE builds a tree in which nodes are states; arcs correspond to

transitions to successor states, which are randomly sampled. Two parameters d and k

9.5 Online Probabilistic Approaches 215

bound the tree, respectively in depth and sampling width (see Figure 9.9). At depth
d, a leaf of the tree gets a heuristic value estimated by Vj. In an interior state s and for
each action a applicable in s, k successors are randomly sampled. The average of their
estimated values over the set of pairs (s’, cost(s, a, s”) € samples is used to compute
recursively the cost-to-go Q(a, s). The minimum over all actions in Applicable(s)
gives n(s) and V(s), as in Bellman-Update.

SLATE(s, d, k)
if d = 0 then return V(s)
if s € S, then return 0
foreach a € Applicable(s) do
samples «— &
for k times do
| samples « samples U Sample(s, a)

Q(S, a) — % Z(s’,c)esumples c+ SLATE(S/’ d- 1’ k)

n(s) « argmin, {Q(s,a)}
return Q(s, 7 (s))

Algorithm 9.25. SLATE, sampling lookahead tree.

Assuming that a goal is reachable from every state, SLATE has the following
properties:

It does not require probability distributions: recall that successive calls to
Sample (s,a) returns states in y(s,a) distributed according the Pr(s’|s, a),
which allows estimating Q (s, a).

¢ It defines a near-optimal policy: the difference |V (s) — V*(s)| can be bounded
as a function of d and k.

* Itruns in a worst-case complexity independent of | S|, but nonetheless exponen-
tial in O ((ak)?), where & = max |Applicable(s)|.

Xy
1
jP\ Stk Sir Y Sik

=]

Figure 9.9. SLATE’s sparse sam-
pling tree.

Note the differences between SLATE and MultipleRollout: the latter is polynomial in
d, but its approximation is probabilistic. SLATE provides a guaranteed approximation,
but it is exponential in d. More precisely, SLATE returns a solution whose distance
to the optimal policy is upper bounded [V (s) — V*(s)| < € ; it runs in O (€/98€).

216 9 Planning with Probabilistic Models

A few improvements can be brought to SLATE. One may reduce the sampling with
the depth of the state: the deeper is a state, the less influence it has on the cost-to-go of
the root. Further, the data structure samples can implemented as a set with counters
on its elements such as to perform a single recursive call on a successor s’ of s that is
sampled more than once. Note that the sampling width k can be chosen independently
of |y(s, a)|. However, when k > |y(s, a)|, further simplifications can be introduced,
in particular for deterministic actions. Finally, it is easy to refine SLATE into an
anytime algorithm: an iterative deepening scheme with caching increases the horizon
d until acting time (see Exercise 9.16).

9.5.5 MCTS and UCT

In SLATE, as well as in MultipleRollout, the sampling strategy is systematic. All
actions in Applicable(s) are explored in the same way. A sampling strategy would
allow further exploring a promising action; it would prune out rapidly inferior options,
but no action should be left untried. It would seek a trade-off between the number of
times an action a has been sampled in s and the value Q(s,a). This trade-off seeks
to find a probably good solution while minimizing the search.

Monte Carlo Tree Search techniques. Monte Carlo Tree Search (MCTS) tech-
niques, illustrated in Algorithm 9.26, rely on such a sampling strategy. MCTS is an
online version of Find&Revise. It develops a focused part of the search space, starting
from a current root state s,-, and performs Bellman updates within this focused part. It
has a find step seeking an open state, and a revise step. However MCTS uses rollouts
instead of heuristic estimates for the revise steps.

MCTS(s,, d)
until termination condition do
select an open state s € Y (s, 7)
choose an action @ € Applicable(s)
Q(s,d) « [N(s,a) x Q(s,a) + Rollout(s, d, n,,d)]/(1 + N(s,a))
N(s,d) « N(s,a)+1
n(s) « argmin, {Q(s,a)}
update all ancestors of s in y (s, 7)

A 1 A W N =

return 7(s,) and Q(s,, 7(s,))

Algorithm 9.26. MCTS, a procedure for MDP And/Or graphs

MCTS starts with some initial cost-to-go function Q. As in Find&Revise, a state is
open when either it is a fringe or when it requires further updates. This latter condition
is however assessed by MCTS with respect to the number N (s, a) of rollouts performed
from (s, a), initialized to 0. MCTS maintains such a number for every applicable a
in 5. Lines 1 and 2 in MCTS selects a state and an applicable action with a trade off
between less frequently updated and promising ones. Line 3 is an incremental update
of the cost-to-go using Rollout, averaged over all rollouts performed in s and d. The

9.5 Online Probabilistic Approaches 217

successor s’ of s returned by Sample(s, @) (in Rollout) is added to the envelope. The
other states met along a rollout are not maintained in the envelope. The policy =,
used by Rollout can be argmin, Q¢ or any random policy. Within the enveloppe, 7
is maintained for newly expanded or updated states (lines 5). Ancestors of s in the
envelope are updated bottom up until s,; this can be performed by a procedure such
as Algorithm 9.8. The termination condition stops MCTS when planning time is over
or no open state remains in the envelope. At this stage, 7(s,) is the best action in s,
estimated by MCTS.

The UCT algorithm. Algorithm UCT (for “Upper Confidence Trees”) instantiate
MCTS with a particular sampling strategy. It expands, to a bounded depth, a tree
rooted at the current node. It develops this tree in a non-uniform way. At an interior
node of the tree in a state s, it selects a trial action @ with the strategy described
subsequently. It samples a successor s’ of s along a. It estimates the value for s’
(in Line 1) with a recursive call to UCT-rollout on s” with the cumulative cost of the
rollout below s’. It uses this estimate to update (in Line 2) Q(s, @) by averaging over
all previously sampled successors in y (s, @) (as is done in SLATE or MCTS in Line 3).

UCT(s, d)
until zermination condition do
| UCT-rollout(s, d)
UCT-Rollout(s, d)
if s € S, then return 0
if d = 0 then return Vp(s)
if s ¢ Envelope then
add s to Envelope
N(s) <0
foreach a € Applicable(s) do
| QO(s,a) < 0; N(s,a) <0

a « Select(s) // update with tradeoff in Equation 9.13

(s’,c) « Sample(s, d) /¢ = cost(s,d,s’)
1 cost-rollout < ¢ + UCT-rollout(s’,d — 1)
2 Q(s,d) « [N(s,a) x Q(s, d) + cost-rollout] /(1 + N (s, d))

n(s) « argmax{Q(s,a) | a € Applicable(s)

N(s) « N(s)+1

N(s,d) « N(s,a)+1

return cost-rollout

Algorithm 9.27. UCT, a Monte-Carlo Tree Search procedure.

UCT is called repeatedly on a current state s until time runs out. When this happens,
the solution policy in s is given by n1(s) = argmin, Q(s, a). This process is repeated
on the state observed after performing the action 7(s). UCT can be stopped anytime.

The strategy for selecting trial actions is a trade-off between promising actions and

218 9 Planning with Probabilistic Models

those that need further exploration. Let us denote the untried actions in s at some
stage as Untried(s) = {a € Applicable(s) | N(s,a) = 0}. A trial action 4 in a state s
is selected as follows:

arbitrary a € Untried(s) if Untried(s) # @,
Select(s) = | argmin, {Q(s.a) - C x [log(N(s))/N(s.a)]"/?} ©.13)
if not.

where N (s, a) is the number of time a has been sampled in s, N (s) is the total number
of samples in that state, and C > 0 is a constant. The constant C fixes the relative
weight of exploration of less sampled actions (when C is high) to exploitation of
promising actions (C low). Its empirical tuning significantly affects the performance
of UCT. The choice in Untried when not empty can be heuristically guided.

One can prove that this selection strategy minimizes the number of times a sub-
optimal action is sampled and that UCT converges asymptotically to the optimal
solution.

All approaches described in this Section 9.5.4 can be implemented as memoryless
procedures (in the sense discussed in Section 9.5.1). They are typically used in a
receding horizon MDP-Lookahead schema. This simplifies the implementation of
the planner, in particular when the lookahead bounds are not uniform and have to
be adapted to the context. This has another important advantage in non-stationary
domains. These procedures can generate non-stationary policies, possibly stochastic.
Indeed, an actor may find it desirable to apply a different action on its second visit to s
than on its first. For indefinite horizon problems in particular, non-stationary policies
can be shown to outperform stationary ones.

9.6 Discussion and Bibliographic Notes

9.6.1 MDP Planning Algorithms and Heuristics

The Dynamic Programming foundations and main algorithms go back to the early
work of Bellman, Putermann, Bertsekas, and Tsitsiklis [109, 919, 131] and other con-
tributions discussed in the previous chapter. More recent studies revealed additional
properties of the Value Iteration algorithm, e.g., complexity results with positive costs
and lower bound heuristics [154], or sub-optimality bounds [467]. The propositions
in Section 9.1 are demonstrated in [130]. Several extended and improved Value Itera-
tion algorithms have been proposed, for example, with a prioritized control [40]; with
a focus mechanism [349, 778, 1181]; with a backward order of updates from goals
back along a greedy policy [268]; or with value estimation by random sampling in
approximate value iteration [97, 1030].

Policy Search methods (not the be confused with Policy Iteration) deal with
parametrized policies mg and perform a local search in the parameter space of 6
(for example, gradient descent). The survey in [288] covers in particular their use for
continuous space domains and reinforcement learning problems.

9.6 Discussion and Bibliographic Notes 219

LAO* is developed in [469] as an extension of AO* [856]. The Find&Revise schema
was proposed in [157], together with several instantiation of this schema into heuristic
search algorithms such as HDP [157], LRTDP [158] and LDFS [160]. A few other
heuristic algorithms are presented in their recent textbook [392, chap. 6 & 7]. RTDP
has been introduced in [99]. The domain-configurable control technique presented in
Section 9.3 was developed in [658].

The FF-Replan planner has been developed in [1208] in the context of the Interna-
tional Planning Competition. A critical analysis of its replanning technique appears
in [723], together with a characterization of “probabilistically interesting problems.”
These problems have dead ends and safe solutions. To take the latter into account,
an online receding horizon planner, called FF-Hindsight[1209] relies on estimates
through averaging and sampling over possible determinizations with a fixed looka-
head. The RFF algorithm has been proposed in [1087]; it has been generalized to
hybrid MDPs with continuous state variables [1085].

Linear programming was introduced as a solution method for MDPs in [293] in the
early 1960s. The book [34] provides a thorough account of linear programming and
other methods for solving C-MDPs. The i-dual heuristic search algorithm originates
from [1102], whereas the i2-dual algorithm and occupation measure heuristics were
described in [1104].

Monte Carlo rollouts (named after the casinos of Monte Carlo) have been used
very early in computational physics, e.g., quantum Monte Carlo methods and particle
physics simulations. Particle filtering techniques adapt these approaches to signal
processing [289]. Monte Carlo Tree Search techniques have been developed for
game trees [182]. MCTS won the computer Go tournament in 2005 [260]. Fur-
ther extensions and combination with neural networks lead to several developments
in planning, scheduling and games, and the well-known success of AlphaGo and
AlphaZero [1018, 1019].

The SLATE procedure is due to [595]. UCT was proposed in [623]. An AO* version
of it is described in [162]. UCT was implemented into a few MDP planners such as
PROST [597]. An extension of UCT addressing POMDPs is studied in [1015].

UCT converges on a indefinite horizon MDP: the probability of not finding the
optimal action at the root node goes to zero at a polynomial rate as the number of
rollouts grows to infinity (Theorem 6 in [623])

Several contributions have exploited determinization techniques in probabilistic
planning, e.g., for pruning unnecessary Bellman update [169], for performing Graph-
plan like reachabilitiy analysis [583], or for computing heuristics for the mGPT planner
[159]. Proposition 9.18 is demonstrated in the latter reference.

The regrouped operator-counting and the projection occupation-measure heuristics
were introduced in [1104]. The authors conjectured that both heuristics are actually
equivalent; was shown to be the case in [613]. The idea of deriving probabilistic
planning heuristics from general projections (beyond single variables) was explored
much later after the introduction of AP°™ in [612]. This paper developed probabilis-
tic pattern-database (PPDB) heuristics for MAX-PROB, where multiple projection
heuristics are combined via multiplication in place of addition. PPDB heuristics for
SSPs were introduced in [611]. Besides projections, literature has also studied more

220 9 Planning with Probabilistic Models

general types of probabilistic abstractions [614, 615].

For many planners, deep dead ends can lead to inefficiency or even to nontermina-
tion (for example, as in RTDP and LRTDP). Dead ends can be detected, but unreliably,
through heuristics. They are safely avoided through the unbounded growth of the
value function V with positive costs, as in Find&Revise instances and other variants,
for example, [629], but this can be quite expensive. Allowing for real costs requires
algorithms able to check and avoid dead ends, as in [1089], or in the GSSP model
[631]. GSSP accounts for maximizing the probability of reaching the goal, which
is an important criterion, also addressed by other means in [919] and [1088]. The
approaches in [633] and [1086] for the S*P model goes one step further with a dual
optimization criterion combining a search for a minimal cost policy among policies
with the maximum probability of reaching a goal. An explanation-based learning
technique to acquire clauses that soundly characterizes dead ends is proposed in
[630]. These clauses are easily detected when states are represented as conjunction
of literals. They are found through a bottom-up greedy search and further tested to
avoid false positives. This technique can be usefully integrated into the generalized
Find&Revise schema proposed for the GSSP model [631].

9.6.2 Factored and Hierarchical MDPs

Dynamic programming techniques for MDPs with a structured or factored represen-
tation are studied in [171]. An elaborate and scalable techniques approximation for
MDPs represented with DBNs is studied in [452], with a value function as a linear
combination of basis functions for subsets of the state variables.

The PPDDL language [1212] is supported by planners such as mGPT [159] or
PFD [1056]. RDDL is partially supported by a few planners, e.g., GLUTTON [632],
BEAVER [928], SPUDD and PROST [598]. Their respective merits in various
benchmarks are analyzed in [937].

Symbolic techniques with binary and algebraic decision diagrams have also been
used in probabilistic planning, e.g., a symbolic Value Iteration in the SPUDD planner
[505]. These techniques are used in an RDTP algorithm [344], or a symbolic LAO*
[343]. The nondeterministic MBP planner have been extended to MDPs [768].

Several algorithms have been proposed to take advantage of the structure of a
probabilistic planning problem. This is the case, for example, for hierarchical MDPs
of the HIAO* algorithm [786]. Different methods can be used to hierarchize a domain,
e.g., [426]. Model minimization techniques have been studied in [284]. A kernel
decomposition approach has been developed in [281]. Approximate solutions to large
MDPs with macro actions, that is, local policies defined in particular regions of the
state space are studied in [485]. The DetH* algorithm [90] clusters a state space into
aggregates of closely connected states, then it uses a combination of determinization
at the higher level and Value lteration at the lower level of a hierarchical MDP.

Sparse probabilistic domains have been studied in e.g., [192, 717]. The path
compression technique of Algorithm 9.20 is detailed in the latter reference.

9.6 Discussion and Bibliographic Notes 221

9.6.3 Continuous and Partially Observable MDPs

MDPs in continuous state and action spaces use generally a flat representation: § C R
and A € R™. States and actions as vectors of real numbers, bounded in appropriate
intervals, are quite popular for modeling robotics and control problems, e.g., [685,
Sec.8.5.2]. When actuation is performed at discrete time points (e.g., at a fixed fre-
quency), we are still in the framework of discrete transition systems. This continuous
MDP model is equivalent to having a single parametrized action and the choice of the
parameter values to apply to the current actuation point.

Bellman equation is easily extended with probability density functions to continu-
ous MDPs for the bounded and the discounted infinite horizon cases. The planning
problem can be addressed by computing the value function at hyper-rectangles in
S, the boundaries of which are defined by lower and upper bounds on the values
of each state variable. This is called the Rectangular Piecewise Constant (RPWC)
representation of V [345]. RPWC is consistent with Bellman updates (with a caution
for adaptive discretization), allowing for algorithms similar to Value Iteration. RPWC
can be used to discretize the density functions instead of V, with similar properties
[708]. When the cost function is linear, a Rectangular Piecewise Linear (RPWL)
discretization of V is also amenable to Bellman updates with better results [729].

Monte Carlo Tree Search methods are a powerful alternative to Dynamic Program-
ming approaches for continuous MDPs. The so-called Action Progressive Widening
adapt the UCT sampling strategy to a continuous space [218]. An interesting vari-
ant systematically selects the minimum, median and maximum points of the multi-
dimensional action space before pursuing with random samples [259, 137].

Hybrid MDPs have continuous and discrete state variables. They have been ad-
dressed with extensions of the previous approaches, with various Linear Programming
techniques [484, 662], and with extensions of heuristics search methods, such as Hy-
brid AO* [788].

Other types of models are needed when actions are continuous functions of time.
For example, Time-dependent MDPs handle time continuous actions but assume
discrete transition probability distributions; they can be addressed with Dynamic
Programming methods [172]. The model of Generalized Semi-Markov Decision
Processes does not require discretization [1216]. It can handle uncertain action
durations, but it does not manage plan duration, an issue partly addressed with
exponential distributions in [753].

Partially Observable MDPs (introduced in Section 8.5.3) are MDPs in the belief
state, which is continuous. Many of the mentioned continuous MDP approaches
have been applied to POMDPs, e.g., the RPWC and RPWL approximations. When
S and A are discrete, POMDPs with a discretized belief space draw much attention
and concerns for addressing its exponential size in |S|, which itself is exponential.
Dynamic Programming and Heuristic Search methods to discretized POMDPs have
been proposed [570, 1041]. Approximate methods that focus Bellman updates on a few
belief points (called point-based methods) are surveyed in [998]; they are compared
to an extension of RTDP [161]. Parametrized POMDPs have been addressed with
policy search techniques [846].

222 9 Planning with Probabilistic Models

Monte Carlo methods, which conveniently sample continuous domains, scale up
better than previous approaches. For example, the POMCP planner as been applied to
large POMDPs [1015]. The DESPOT planner combines sampling and anytime search
[1045]. The progressive widening techniques have been extended to POMDPs[1065,
719]. Online algorithms for POMDPs are surveyed in [961]. We already mentioned
the termination problem for goals expressed in the belief space. Fortunately this
problem that can be addressed with termination actions [466], in particular with
Monte Carlo methods.

Robotics offers many POMDP use cases [897, 367, 454]. However applications
often require a more flexible hybrid model, with observable state variables, as well
as non-observable ones. The latter are estimated, as in POMDPs, from indirect
observation variables. This model is called Mixed Observability MDPs (MOMDPs)
[858, 48]. It is attracting interest for, e.g., target tracking [279], navigation [290], or
conservation and natural resource management applications [888].

9.7 Exercises

9.1. Run Policy lteration on the problem in Figure 9.10, starting with the policy
m ={(s0,a), (s1,¢), (52,d), (53, }.

* Compute V™ (s) for the four non-goal states.

* What is the greedy policy of V70?

* Iterate on the above two steps until reaching a fixed point.

goal

Figure 9.10. A simple SSP with unit cost actions.

9.2. Repeat Exercise 9.1 on the problem in Figure 9.11, starting from the following
policy: mo(s1) = mo(s2) = a,mp(s3) = b, mo(s4) = c.

9.3. Run Value Iteration on the problem in Figure 9.10, with = 0.1. Assume that
the foreach statement iterates through states in order of increasing subscripts, and
the argmin operator breaks ties by choosing the action that comes first alphabetically.
0, ifs; is a goal state,

The heuristic function is Vy(s;) =)
i, otherwise.

9.4. Repeat Exercise 9.3 on the problem in Figure 9.11 with 7 = .5, with the following
two heuristic functions:

9.7 Exercises 223

Figure 9.11. An SSP problem with five states and
four actions a, b, ¢, and d; only action a is non-
deterministic, with the probabilities shown in the
figure; the cost of aand b is 1, the cost of c and d
is 100; the initial state is s;; the goal is ss.

* Vo(s) = 0in every state.
* Vo(s1) = Vo(s2) = 1 and Vp(s) = 100 for the two other states.

9.5. In the problem of Figure 9.11, add a self loop as a nondeterministic effect for
actions b, ¢, and d; that is, add s in y (s, a) for these three actions wherever applicable.
Assume that all the distributions are uniform. Solve the two previous exercises on
this modified problem.

9.6. Implement and run algorithm Value lteration for a few problem instances of the
domain PAM,, (Example 8.9). Up to how many containers does your implementation
scales up?

9.7. Run AO* on the domain of Figure 9.4 with the heuristics V| of Section 9.3.

9.8. Modify the domain of Figure 9.4 by making the state 51, an immediate dead end
instead of a goal; run AO* with the heuristics Vy and V| of Section 9.3.

9.9. Run LAO* on the problem in Figure 9.10, with the same n and Vj as in Exercise 9.3.
Assume that in the select statement, the tie-breaking rule is to select the state s; for
which 7 is smallest.

9.10. Prove that algorithm LAO* is an instance of the Find&Revise schema.

9.11. Modify the domain of Figure 9.4 by changing y(s9,a) = {s3, s3} and making
the state 515 an immediate dead end instead of a goal. Run LAO* and ILAO* on this
problem and compare their computation steps.

9.12. Run RFF on the problem in Figure 9.10 with 6 = 0.7, using a Forward-Search
algorithm that always returns a least-cost path to a goal state. Give the following:

(a) Each possible history and its probability. If there are more than four histories,
then say so and give the first four of them.
(b) The probability that the actor will reach the goal.

9.13. Run RFF on the problem of Figure 9.11 with 8§ = 0.7. Suppose the Det-Plan
subroutine calls the same Forward-Search algorithm as in the previous exercise, and
turns the plan into a policy. What is 7 after one iteration of the “while” loop?

224 9 Planning with Probabilistic Models

9.14. Prove that algorithm RFF is complete when using a complete Det-Plan deter-
ministic planner.

9.15. Run Algorithm 9.20 on the problem of Figure 9.11; compare with the compu-
tations of RFF on the same problem.

9.16. Specify the SLATE procedure (Algorithm 9.25) as an anytime algorithm im-
plementing an incremental backup at each increase of the depth d. Implement and
test on a few domains.

10 Reinforcement Learning

Reinforcement learning (RL) is about learning to act with probabilistic models. RL
extends homeostasis regulation to complex behaviors. It parallels metaphorically
the adaptation mechanisms of natural beings to their environment, with on feedback
sensing and means for evaluating what’s good and what’s not. Adaptation is a key
feature of intelligence: an autonomous actor should be able to learn from its actions.
With continual learning, an actor can cope with a continually changing environment.

In the following, we first introduces the main principles and terminology of re-
inforcement learning. Section 10.2 presents a simple form of Q-learning, a generic
value-based RL algorithm. Section 10.3 addresses how to generalize a learned rela-
tion with a parametric representation. We then introduce neural network methods,
which play a major in learning and are needed for the remaining sections, about deep
RL (Section 10.5), and policy-based RL (Section 10.6). The issues of aided rein-
forcement learning with shaped rewards, imitation learning and inverse reinforcement
learning are addressed next. Section 10.8 is about probabilistic planning and RL. A
discussion, bibliographical notes, and exercises end this chapter. Appendix B recaps
the mathematical notations used.

10.1 Principles of RL

Reinforcement Learning (RL) interleaves acting and learning, possibly in a continual
learning framework, to improve an actor’s performance for a given task or goal by a
trial and error interactions with the world. RL may or may not have a domain model.
It relies on a reward function, which defines, in an indirect way, the actor’s purpose,
i.e., what it has to do. RL is used to find out #ow to do it. This reward function is
assumed to reflect a reliable and robust specification of the task to learn. This is an
important assumption that needs to be kept in mind.

The RL learner tries to remember from its past activity which actions in which states
led to higher rewards and which were bad, and, possibly, generalize this knowledge
in order to use it for taking good actions in the future. It seeks to learn how to act by
maximizing the long-term perceived benefit of its actions.

A learner on its own may not have a teacher. It relies solely on a feedback from the
environment following its actions. This feedback is a number: the reward for going
from a state s to s” with a performed action a. RL is an active learning mechanism:
the learner acts not only to achieve its task, but also to learn more about how best
to achieve it. For example, suppose our learner is a cook whose task is to cook a
paella; her reward is the number of likes from her guests. Should she stick to the
recipe she learned or should she try possible variants to improve her cooking? Such a
learner has to solve a tradeoff between exploitation and exploration: whether to stay

Free pre-publication, for personal use only. To be published by Cambridge University Press.

225

226 10 Reinforcement Learning

on a safe, well-known track or to take the risks and efforts to explore possibly better
unknown ones. Exploitation makes the best with what is already learned to maximize
the behavior benefits. To learn the best behavior, exploration has to try options that
are not known enough.

In general it is not feasible to try every possible action in every possible state.
Generalization is a major issue for RL, as well as for other learning approaches. It is
about extending what has been learned in one situation to ‘similar’ situations. The
holy grail is to learn much from a few trials. A further generalization ambition is to
transfer what has been learned for a given task to other ‘similar’ tasks.

The trial and error approach may entail a high risk, unacceptable in critical ap-
plications. With a domain simulator, part of the risk can be avoided: actions are
simulated before being performed in the real world. Current RL techniques remain
demanding, in computational as well as in sampling complexity, i.e., in the number
of trials required to learn a good policy. For that also, simulation is needed.

A learner may get help from a teacher, e.g., with demonstrations of good behaviors
in certain situations, or with advice about how to choose actions. Instead of (or in
addition to) rewards, the learner gets trajectories from a teacher’s demonstrations. A
pedagogical teacher may also shape the rewards such as to ease the learning.! It may
organize the learner’s tasks into a teaching curricula. But even with a teacher, the
capability to generalize what has been learned remains essential.

The usual and convenient framework of RL is the probabilistic MDP representation.
Actions have probabilistic effects. The actor seeks to learn a policy which maximizes
the total expected reward. Many RL approaches consider stochastic policies, which
map states to probability distributions on actions. We focus here on deterministic
policies, which are simpler and easier to learn.

In a process maintenance MDP, the planner seeks a policy that optimizes the actor’s
behavior over a bounded or an infinite horizon (see Section 8.3.1). The learner seeks to
maximize the average reward per step or the total discounted reward over its lifetime.
In goal reachability or episodic tasks MDPs (i.e., SSPs), the planner searches an
optimal the policy that reaches the goal or performs the task. The learner seeks to
achieve the task to be learned while maximizing its total reward. The task is expressed
through a reward function. A learning episode is a trial for achieving the task. It
involves a finite number of steps and necessarily terminates when the task succeeds
or fails, on reaching a terminal state or a termination action.

This chapter is focused on indefinite horizon episodic RL, where learning seeks to
maximize the expected total reward for an episode. Hence we avoid the drawbacks of
discount factors (see Section 8.3.2). This formulation of RL for learning a task with
its associated reward function extends naturally to a goal-conditioned formulation, for
learning a policy for a given goal or set of goals (as per Definition 8.3).

RL in the MDP frameworks comes in many flavors, among which the following:

* Model-based vs model-free RL. In the latter, the learner does not have and does
not use the transition function y nor the corresponding probability distributions;
it acts and observes its states and rewards. In model-based RL, an approximate

IReward shaping is a wide spread practice, from animal trainers to school teachers and coaches.

10.2 Tabular Value-Based RL 227

world model is learned from acting, used as a proxy of the world by planning
actions good for that model, then improved by further acting. This progressively
learned model is used in the exploitation, and possibly the exploration stages.

* Value-based vs policy-based model-free RL. The latter estimates an optimal a
policy n* given its past experiences. The former estimate V* or Q*, the optimal
value or action-value functions. This is in a way similar to Value lteration vs
Policy Iteration algorithms.

* On-policy vs off-policy RL. The former interleaves improving a policy and
using that same policy to act. The latter acts according to a policy different
from the one it is trying to optimize, which can be convenient for exploration.

We mostly focus here on model-free RL, with value-based methods (sections 10.2 to
10.5), and policy-based ones (Section 10.6).

10.2 Tabular Value-Based RL

In value-based RL the actor seeks to estimate from trial and errors, V* or Q*, from
which it easily derives a policy. This might be done in a batch mode from all
experiences, accumulated in a first costly stage. Preferably, learning can progress
incrementally, each new experience improves the current best value estimates, and
increases the quality of the actor’s behavior. In this mode, acting serves the task
achievement purpose as well as the learning purpose. We focus here on incremental
RL. At each stage, the learner progresses by updating its estimates with respect to
the difference of their values from ¢ to ¢ + 1. Because of these incremental updates,
the corresponding techniques are called temporal difference or TD learning methods,
exemplified with the Q-learning algorithm presented here. We first introduce the
main concepts in a very simple case. We then present Q-learning for a tabular
representation: the values learned incrementally are simply cached in memory as
a table and used as is. Other value-based algorithms and extension to a structured
representation are then discussed.

10.2.1 A First Intuition

To give a first idea about Q-learning and its main ingredients, let us warm up with a
very simple case. Consider an actor that has n actions, anyone of them can be used
alone to perform the task at hand, with differing results. For this elementary actor,
each trial of an action is independent of the previous and following trials. The only
information available to the actor is a varying reward associated with performing an
action. The actor wants to learn what’s its best action in average for the task.

Example 10.1. Eva is a cook that knows three possible recipes a, a’, a’”’ for making
a paella. She wants to know what is the best recipe giving the observed average
satisfaction of her fixed set of guests after several trials.> After one trial of each of

2Eva may have a more demanding objective, such as maximizing the total expected satisfaction of
her guests over many meals. In this case Eva may end up with a strategy switching recipes. This
interesting case, related to the so-called n-arms bandit problem, will be discussed in Section 10.9.

228 10 Reinforcement Learning

the three recipes, the guests rank a,a’,a’” respectively 7.2, 5.4, and 6.8, in a scale
[0, 10]. These ranks are the rewards Eva receives. Another trial of @’ is ranked 8;
a’ moves up to an estimated “quality” of 1/2(5.4 + 8)=6.7. A following trial of a’ is
ranked 7.6, giving a current quality of 1/3(5.4 + 8+7.6)=7. This goes on until Eva is
confident about the evaluation of her three recipes. O

Let r(a,i) € R be the reward received after running action a the i time. The
actor estimates the value of an action a that has been performed & times by its average
reward:

k
0@ =1 D r(ad
i=1

k

1 -1
=— k) + -

k’”(a,) Qk 1(a)
By dropping in the above formula the index of the current trial we get an incremental
update rule of Q(a) with respect to the last observed reward r(a):

Q(a) «— ar(a) + (1 —a)Q(a). (10.1)

The parameter a = % is called the learning rate. There can be different learn-

ing rates for different actions, but one seek to try every action as often. When
Va,k — oo, the choice of the action which maximizes the average reward is given
by argmax, {Q(a)}. As long as the exploration of alternative actions has not been
sufficient, the actor needs to try other options according to some heuristics. These
can be expressed as a procedure Select, defined for example as:

Select = {argmaxa{Q(a)} with probability (1 — €) (10.2)

random a” # argmax,{Q(a)} with probability €,

where € is decreasing with experience. Such a strategy is called e—greedy; it is most
often greedy in selecting the currently best option, except for a few exploration cases.
Alternatively, Select may choose an action according to a probabilistic sampling
distribution, e.g., the Boltzmann sampling, according to a probability distribution
proportional to e~2(?)/7 where 7 is decreasing with experience.

The simple update rule 10.1 appears in different forms and plays an important role
in reinforcement learning. It is referred to as the temporal difference update rule (the
current value of Q affects the learned next value). It leads to a family of temporal
difference RL approaches. The learning rate @ becomes too small for large k. When
the environment is stationary, the update of Q(a) with 10.1 becomes increasingly
weak. If the environment is not stationary, one may keep @ < 1 constant.

The update rule 10.1 starts with some initial value Q(a) = go when a has never
been tried. A high value for gg can be a bonus for the exploration of new actions.

This basic case is too simple. It does not relate the quality of an action Q(a) to the
state in which a is performed; nor does it consider the composition of several actions

10.2 Tabular Value-Based RL 229

for a task. In Example 10.1 a paella recipe is made of a dozen of actions all relevant
for the final quality of the dish. A given action may have no immediate reward but
a significant influence in the final reward. However, this simplistic example helps
introducing the main notions of Q-learning, developed next.

10.2.2 Q-learning for a Tabular Representation

Let us now consider the case where several interdependent nondeterministic actions
are needed to perform a task. In a standard reinforcement learning formulation, an
actor wants to learn a policy for performing the task at hand on the basis of rewards
from trial and error. The framework is that of MDP (Chapter 8). We want to synthesize
a solution policy to a goal-directed MDP problem (see Definition 8.3), where the goal
is to terminate the task. But we do not know the domain model. The actor learns by
repeatedly trying to achieve its task. Each trial terminates with success or failure after
a finite number steps. In each, an action a applicable in current state s is performed;
the next state s’ and a reward r(s, a, s’) € R are observed.

In the planning chapter we sought to minimize the expected sum of the cost of the
actions obtained by following a solution policy n from a state s to a goal. Here we
seek to maximize the expected sum of rewards. Earlier we defined a value function V
with respect to action costs (Equation 8.3). We can define it analogously for rewards:

V7(s) = Z Pr(s’|s, n(s))[r(s,n(s),s) +V™(s')]

s’ey(s,n(s))

Similarly for Q, called here to the action-value function:?

0" (s,a)= Y. Pr(sls,a)[r(s,a,5") + V™ (s))]

s’ey(s,a)

The Bellman equation for Q (Equation 9.4) can be restated in this context as:

O(s,a) = Z Pr(s’|s,a)[r(s,a,s") + nlla,x{Q(s’, a’)}] (10.3)

s’ey(s,a)

Without prior knowledge of the domain model, i.e., without y, we cannot solve
Equation 10.3 with the algorithms seen earlier. Instead of that, we can estimate
Q (s, a) from the statistics of trial and error with incremental updates, as we did in the
elementary case. However, the simple update rule 10.1 does not integrate in Q the
effect of a follow-up action a’. Here, the update on Q(s, a) has to take into account
the action-value of the following stage to maximize the total expected reward. This is
done, as in Bellman Equation 10.3, with the following update rule, at the core of the
Q-learning algorithm:

O(s,a) « a[r(s,a,s") + max{Q(s",a")}] + (1 - @)Q(s,q) (10.4)

3In Chapter 9, Q was called the cost-fo-go. Here it is called the action-value function, since we no
longer have costs but rewards, and we move from minimization to maximization.

230 10 Reinforcement Learning

In the right hand side of Equation 10.4, Q(s,a) is the old value of O,
max . {Q(s’,a’)} refers to the action to be executed next, the update term as per
Bellman equation is r (s, a, s”) + max, {Q(s’,a’)}. The current gap in the estimated
value is the difference [r(s, a, s”) + max, {Q(s’,a’)} — Q(s,a)].

Q-learning proceeds by repeatedly trying to perform the task a given number of time.
In each trial, called an episode, the algorithm starts from some initial state, randomly
drawn in a given set in Sy of possible initial states. An episode terminates after a finite
number of steps, when the task succeeds, fails, or some bound is reached. In each
step, a selected action a is performed, the next state s” and a reward r (s, a, s’) € R are
observed. The algorithm is off-policy: the selected action (line 1) is not necessarily
the current policy given by argmax, Q¢. The online version given in Q-learning can
be transformed into a batch version of Q-learning which learns from a history of a
recorded number of episodes obtained with some exploration strategy.

Q-learning
initialize Q
for each episode do
randomly draw a starting state s from Sy
until episode termination do
a < Select(s) // selects a € Applicable(s)
perform action a
observe resulting state s’ and reward r (s, a, s”)
0(s,a) « a[r(s,a,s”) + max,{Q(s’,a’)}] + (1 —a)Q(s,a)

s — s

(7 B L S

Algorithm 10.1. Q-learning algorithm

Q-learning implements Q as lookup table over S X A. It uses a function Select(s),
similar to the elementary case, which favors the action argmax,{Q(s, a)} among ap-
plicable actions, while allowing for the exploration of other actions with a frequency
decreasing with experience, controlled with the € parameter. Large € favors explo-
ration. The learning rate parameter @ € [0, 1] is set empirically. When « is close
to 1, Q follows the last observed rewards by weighting down previous experience
of a in s; when « is close to zero, the previous experience is more important and
Q changes marginally. If the environment is stationary (i.e., when the distributions
remain invariant over time), @ can be set decreasing with the number of instances
(s, a) encountered. Here also, the initial values of Q (s, a) may favor exploration.

The main features of Q-learning are the following:

e it is model-free,

* it learns a policy (implicit in the pseudo-code) as 7 (s) = max, Q(s, a),

e it is off-policy: it acts with Select(s) which may be different from learned
policy allowing for exploration,

* its update rule performs a local step at (s, a) of policy evaluation and improve-
ment.

10.2 Tabular Value-Based RL 231

§ —> Q(S’ Cl) > Select
A ﬂ‘
a
Update
A A
) r(s,a,s’)
s | a0

External World

Figure 10.1. A schematic view of Q-learning with a tabular value function Q.

An episode terminates when the task succeeds, fails or a bound on the number
of steps is reached. The algorithm may be run with a fixed number of episodes, or
stoped when exploration is sufficient, i.e., when enough statistics have been gathered
for every pair (s, a), allowing the learner to act with a policy 7(s) = max, Q(s, a).
One can prove the asymptotic convergence of Q-learning to optimal policies when
each pair (s,a) has been met infinitely often. Intuitively, the arguments for this
convergence combines those for the convergence of the simple update rule 10.1 to the
true vales and the Bellmann equation to the optimum.

But the convergence of the simple Q-learning is too slow for most practical applica-
tions, ruling out learning by performing actions in the real world. If learning can start
using a simulator, the actor might gather offline as much initial statistics as possible in
simulation. After that, it would get into a continual learning and acting stage: when
it needs to perform that same task, it would simply run lines 1 through 5 of Q-learning
and possibly decrease « for future updates.

This algorithm is referred to as Q-learning for a tabular representation: it assumes
that Q is maintained in memory as a global data structure, i.e., a 2D table over all
(s,a) pairs, and that § and A are sets of ground states and actions. We’ll see in
Section 10.3 how to overcome the limitations of the memory-based approach. There
are several variants of the memory-based Q-learning algorithm such as SARSA and
DYNA algorithms that will be discussed in Section 10.9.

RL with a simulator. Q-learning explores with an open “curiosity” possibly dan-
gerous transitions that may have high negative rewards. It has no means for avoiding
dead-ends. Learning with trial and error entails a risk incompatible with critical
applications, for which extensive modeling and testing are usually required. One does
not learn to build bridges through trial and error, but a bridge collapse is taken as an
unfortunate learning event to improve models.

A simulator reflects a model of domain, but there are differences between a model
implemented in a simulator and the one implicitly or explicitly learned by RL. To put
it briefly, the former is about know-what to do, while the latter is about know-how
to do things. A simulator model is a low level description of what might possibly
happen in a domain in response to some elementary actions. For example, in board
games, a simulator gives trivially the board state after a move. In robotics, a simulator

232 10 Reinforcement Learning

implements the robot and the environment geometry, kinematics, dynamics as well as
the physics of actuation and sensing to compute state updates after a robot command
or an event (see Part VII). The models of interest at the RL level are about how best
to act in order to win the game, or to perform a robotics task. None of that is available
in the simulator model.

As an analogy, consider the difference between a model of the ballistic of a thrown
dart and a model for dart playing. For a human player, the former remains often
intuitive, while the latter requires significant training. A robot with a simulator of a
dart dynamics would learn much faster how to play darts.

In a realistic domain, a simulator is necessary to a learner for convergence at a
practical cost. But a simulator may be wrong and ignore possibly relevant variables.
A good simulator is mandatory for critical domains with dead ends or possibly
dangerous actions, e.g., a robot should not get into a slippery zone near a cliff.

One way of interfacing Q-learning with a simulator is to use two stages. In a first
stage the learner runs a variant of Q-learning where lines 2 and 3 are replaced with:

(s',r(s,a,s")) « Simulate(a, s)

where Simulate calls the simulator and returns the next state and the reward. When
sufficient simulated exploration has been performed, the learner starts in the second
stage acting and learning in the real world. To account for the limitations of the
simulation models, the learner improves its knowledge starting with a higher a.
At this second stage, an e-greedy Select may rely on argmax,{Q(a)} with some
confidence. However, it should not propose a different action without performing a
look-ahead with Monte Carlo rollout outs in order to avoid dubious explorations and
remain safe.

10.3 Parametric Value-Based RL

The Q-learning algorithm and other variants, as presented in the previous section,
have a huge drawback: they memorize the learned Q as lookup table and require
the knowledge of Q(s, a) for every (state, action) pair. Except for trivial cases, this
simply does not work. This is because of the size of the corresponding state and
action spaces (e.g., Example 8.9). More importantly, this is also because the learner
is unable to generalize from what it observes to unobserved cases: each experience
gives it only a single point in a huge space. Evidently, this drawback is not specific to
Q-learning, but holds for every memory-based representation.

10.3.1 Parametric vs Memory-Based Representations

Consider the simple case of a learner who observes a collection 9 of matching
pairs of points in some spaces X and ¥Y: D = {(xV,y®) | x) e X,y €
Y,1 <i < N}. D is the learner’s training database. The learner assumes that
its observations are independent and identically distributed (the i.i.d assumption)
according to a relationship to be learned and from which the learner would like to

10.3 Parametric Value-Based RL 233

predict the value y matching some new given x. If the learner can only rely on
its memory of the matching pairs in D, then it will be at loss for finding y, unless
by chance x = x9), for some already experienced pairs in 9, a highly improbable
situation when 9 is small compared to the dimension of X and Y.

Now, assume that X and (possibly) ¥ are metric spaces, endowed with a distance
5 (see Section B.1). The learner can find the closest x() to x, according to §, and
estimate y with respect to the corresponding y?). The nearest neighbor methods and
similar non parametric classification techniques rely on exactly this idea.*

If X and Y are metric spaces, the learner might as well approximate the matching
relationship exemplified in with an easily computable parametric function y =
fo(x), for a vector of parameters # € R™. A parametric function is a family of
functions varying with some parameters.” One seeks the best parameter values for
some specific use. Given a value for 6, fy will immediately provide an estimate of y
for a new x.

In the simple case where X and Y are real numbers, a very well-known and widely
used instance of this approach is linear regression or line fitting. Linear regression
seeks an approximation with a straight line fg(x) = 8¢ + 61x. For each point (x, y) in
D, this approximation will predict § = 6y + 6;x instead of y. A good approximation
would set the vector @ = [6p, 6] " such as to minimize some distance between the
predicted y and the targeted y over all pairs in 9. This can be expressed as minimizing
the squared error empirical loss function for fy:°

Loss(fo)=), (fo)=y7= > (fo+6ix—y)
(x.y)eD (x.y)eD
In the case of linear regression, Loss(fy) is a convex function of 8y and ;. It has a

single minimum, reached when its partial derivatives aLogse(Of o) and aLOgsg(lf o) are null:

D, (fo -y =0,and > (folx)=y)x=0 (10.5)

(x,y)eD (x,y)eD

These two equations are easily solved analytically, giving the optimal values of the
two parameters in a closed form.

Example 10.2. Consider the cook Eva of Example 10.1 who discovers the booknote
of a renown chef from which she wants to learn the “ideal” proportions of rice versus
fish and seafood to put in a paella recipe. The booknote tells about 3 experiences. In
the first one, the chef had 150g of fish and seafood for which he put 300g of rice. In
the following experiences, the proportion where 300 vs 400, then 450 vs 700.
Giving this set D = {(150, 300), (300, 400), (450, 700) }, Eva decides to model the
ideal proportions with a simple linear regression. She solves Equation 10.5 for the
estimated amount of rice given available fish and seafood as: ¥ = 1.33x + 66.6. With

“In classification and clustering problems, ¥ may not need to be a metric space.

. . . 2
SE.g., the families of polynomials 6 + 61x + ...60,x" or gaussians ¢%+01x+0:2x
functions.

6Loss is the square of the Euclidean distance

are parametric

234 10 Reinforcement Learning

this relation, Eva generalizes D for any amount of x. She can also use it to easily find
how much rice, fish and seafood she would need for a paella of say 1500g.

Now the chef notebook may detail the amount of each of 12 ingredients in a paella,
e.g., white fish, mussels, shrimps, seashells, onion, tomato, peas, pepper, garlic, olive
oil, safran, sell and rice. Eva needs a model where fy is a function of 12 variables. O

When the space is X = R, the above approach is called the multivariable linear

regression. A point X = [x,...,x,]" € X is a column vector; similarly for the
parameters 6 = [6y, ..., 80,]".” The linear approximation function is:
fo(xX) =6p + Z 6;x;, writtenas: fp(x) =6 -x (10.6)
1<j<n

In the convenient dot product notation, the bias term 6y corresponds to an augmented
x with a dummy constant element xy = 1. The empirical loss is:

Loss(fo)=) (8-x-y)?
(x.y)eD

A slightly more general formulation is needed when y is also a vector, but fy
remains a linear approximation. In that case Loss(fg) is still a convex function.
The optimal values of the parameters §* = argmin,{Loss(fg)} can also be derived
analytically from the partial derivates of Loss(fg).

When fy is not a linear function of 0, finding analytically the optimal parameters is
more complex and often not feasible. A general approach for computing numerically
the values of the parameters giving the minimal Loss is the gradient descent algorithm.

10.3.2 Gradient Descent

The idea is to search in the continuous parameter space for the minimum
0" = argmin, {Loss(fy)} by following the direction given by the gradient of the loss
function we try to minimize. This direction is the gradient vector

VLoss(fg) = [0Loss(fg)]061, . ..,0Loss(f9)]/06,]".

This is done with a sequence of update steps. Each update changes the parame-
ters towards a direction decreasing the loss, i.e., with an update rule of the form
0 — 6 —aVLoss(fg).

Algorithm 10.2 is a simple instance of this general idea in the multivariable linear
regression case. Its argument is a collection of observed pairs (x(), y()), which
is a subset of 9. In each iteration of the main loop, it makes one update step on
each parameter 6 following the direction given by the partial derivative at this local
dLoss(fo)

90;

point. The update rule comes from , the Loss being over all observed pairs

(x(, y®) (integrating the constant factor from the partial derivatives in @). On
reaching in some §; the minimum (which is global since in the linear case Loss is
convex), the partial derivative is null. This 6; stays at a fixed point. The convergence

TThe transpose T of a row vector is a column vector (see Section B.2).

10.3 Parametric Value-Based RL 235

GradientDescent({(x), yD) | 1 <i < N})
until convergence do
foreach0 < j <ndo

L 0 —0;—aXicien (8- x() — y(i))x;i) // Update rule

Algorithm 10.2. Pseudo code of a simple gradient descent algorithm.

criteria estimates how close to this fixed point for all j the gradient descent is. The
learning rate « can be a fixed constant, but not too large to avoid over shooting. It can
be set to a decreasing rate, together with the decreasing value of the gradient of Loss,
until convergence.

When fy is linear, GradientDescent is guarantee to converge to the optimal pa-
rameters 6 = argmin,{Loss(fg)} with and appropriately chosen decreasing learning
rate. In many cases, unfortunately, the matching relationship in O is not linear and
cannot be approximated with a linear function. Consider for example the relations
(age, weight) of a person, or (age, reliability) of an equipment. These are an in-
creasing, then stable then decreasing functions, for which linear approximation are
inadequate. Fortunately, the parametric approach, as just outlined, remains feasible
with any family of functions, e.g., the polynomials or other exotic functions. As long
as fy is differentiable, Algorithm 10.2 is adequate for finding its optimal parameters.
However, for a nonlinear approximation function Loss(fg) is no longer convex. The
algorithm can get stuck in local minima, requiring additional techniques for reaching
a good approximation function (see Section 10.9).

GradientDescent can be run incrementally, for each new observations (x, y) ac-
quired by the learner, instead of globally on the entire collection of data O (as in
the pseudo-code of Algorithm 10.2). The former is called the stochastic gradient
descent (SGD) mode, while the latter is the batch mode. SGD is computationally
demanding. Moreover, it may drive the estimate in a noisy way, leading to a high
error variance. But it is favorable for avoiding local minima, to which the batch mode
is prone. Alternatively, in a mini-batch mode, the algorithm is repeatedly run on
randomly sampled subsets of 9, which offers a good compromise.

Let us summarize and underline the main points seen so far in this section:

* Itiseasy tolearn from a data collection of observed matching pairs D = {(x, y)}
by approximating the relationship in 9 with a parametric function y = fy(x).

* The optimal parameters 8* = argmin,{Loss(fg)} can be computed with the
GradientDescent algorithm as long as fy is differentiable, with a caveat about
local minima when Loss(fg) is not convex.

* The merits of the approach are

— to generalize what has been observed in D to new predictions;

— to easily compute a prediction of a y from a new x;

— to improve the entire function fy on each new observed pair, instead of
just adding a new instance to the collection experienced by the learner.

236 10 Reinforcement Learning

Note however that for a pair (x\), y(9)) € D, in general fo(x?)) # y(®): we general-
izes and approximates the relation in D, but fy is not a faithful table-lookup.

To sum up, we can model a training set 9 with a parametric function fy. Finding
0" given D is a learning problem. Symmetrically, finding y = f»(x) given x and a
model fy is a prediction or inference problem.®

In RL we view D as being defined incrementally through acting and observing.
When D is a set of training data given a priori, this is called supervised learning.

10.3.3 Parametric Q-learning

We just saw how to generalize a finite set of observations 9 by representing the
corresponding relationship as a parametric function fy, and how to compute the
appropriate values of the parameters. Let us see how this can be used in Q-learning.

Earlier (Section 10.2) we addressed RL using a large table to store Q(s,a) for
every s and a. This has two drawbacks: (i) it takes a huge amount of space, and (ii)
it doesn’t generalize, i.e., it doesn’t provide a way to estimate Q for pairs (s, a) not
seen before. This is like keeping just D instead of fy. Here, we want to develop a
parametric function Q¢ that approximates Q, and adjust the value of 6 to provide the
best fit to the observed rewards.

Parametric techniques are widely used for learning in classification and clustering
problems. We can transpose them to action learning by seeking a parametric ap-
proximation of the relationship from the state space S, to the action space A. Such
a transposition fits naturally to a learning scenario where the learner observes (state,
action) pairs, as in learning from the demonstrations of a teacher (see Section 10.7).
However, in reinforcement learning, the learner does not observe target values as the
teacher’s actions, but the rewards from its own actions.

In general, parametric RL seeks a parametric approximation of V,x, or Q, inte-
grating the rewards r. In Q-learning, we parametrize the action-value as a function
Qo (s, a), with a vector of parameters 8. Qg is assumed to be differentiable with re-
spect 6. The optimal value 6" = argmin,{Loss(Qg)} is still computed with gradient
descent. However the empirical loss is no longer defined on the difference between
predicted and observed, since no observation is available here. The loss is defined
with respect to the difference between Q