
A C T I N G , P L A N N I N G ,
A N D L E A R N I N G

Malik Ghallab
LAAS-CNRS, University of Toulouse, France

Dana Nau
University of Maryland, USA

Paolo Traverso
FBK, Trento, Italy

This material will be published by Cambridge University Press as
Acting, Planning, and Learning by Malik Ghallab, Dana Nau, and Paolo Traverso.

This pre-publication version is free to view and download for personal use only.
Not for redistribution, resale, or use in derivative works.

© 2024 by Malik Ghallab, Dana Nau, and Paolo Traverso.

October 9, 2024

To Janette, Lise, Elena, and to all our family members
who remained supportive during a long project
that consumed much of our time and attention.

Contents
Foreword viii
Preface x
About the Authors xiii

1 Introduction 1
1.1 Architecture and Components of an Actor 2
1.2 Descriptive and Operational Models of Actions 7
1.3 Responsible Research on Autonomous Actors 8

I Deterministic State-Transition Systems 11

2 Deterministic Representation and Acting 13
2.1 Motivating Example . 13
2.2 State-Transition Systems . 14
2.3 State-Variable Representation . 17
2.4 Classical Representation . 22
2.5 Computational Complexity . 24
2.6 Acting . 25
2.7 Discussion and Bibliographic Notes 29
2.8 Exercises . 31

3 Planning with Deterministic Models 34
3.1 Forward State-Space Search . 34
3.2 Heuristic Functions . 41
3.3 Backward Search . 51
3.4 Plan-Space Planning . 54
3.5 Repairing Plans . 60
3.6 Discussion and Bibliographic Notes 61
3.7 Exercises . 66

4 Learning Deterministic Models 71
4.1 Learning Heuristics . 71
4.2 Learning Action Specifications . 75
4.3 Discussion and Bibliographic Notes 86
4.4 Exercises . 92

II Hierarchical Task Networks 94

5 HTN Representation and Planning 96
5.1 Totally Ordered Tasks . 96
5.2 Partially Ordered Tasks . 104
5.3 Hybrid HTN/Classical Planning . 110
5.4 Heuristics, Expressivity, Complexity 112

Free pre-publication, for personal use only. To be published by Cambridge University Press.

iii

iv

5.5 Refinement of Abstract Actions . 113
5.6 Discussion and Bibliographic Notes 116
5.7 Exercises . 119

6 Acting with HTNs 122
6.1 Reactive HTN Acting . 123
6.2 Acting with an Online HTN Planner 123
6.3 Discussion and Bibliographic Notes 127
6.4 Exercises . 129

7 Learning HTN Methods 131
7.1 Learning Methods from Examples . 131
7.2 Learning Methods from Plans . 137
7.3 Planning to Learn . 140
7.4 Discussion and Bibliographic Notes 140
7.5 Exercises . 142

III Probabilistic Models 145

8 Probabilistic Representation and Acting 146
8.1 Basic MDP Representation . 146
8.2 Structured Probabilistic Representations 153
8.3 Modeling a Probabilistic Domain . 161
8.4 Acting with Probabilistic Models . 166
8.5 Discussion and Bibliographic Notes 168
8.6 Exercises . 171

9 Planning with Probabilistic Models 173
9.1 Dynamic Programming Algorithms 173
9.2 Heuristic Search Algorithms . 184
9.3 Heuristics and Search-Control Knowledge 194
9.4 Linear Programming Approaches . 199
9.5 Online Probabilistic Approaches . 207
9.6 Discussion and Bibliographic Notes 218
9.7 Exercises . 222

10 Reinforcement Learning 225
10.1 Principles of RL . 225
10.2 Tabular Value-Based RL . 227
10.3 Parametric Value-Based RL . 232
10.4 Neural Parametric Function Approximators 239
10.5 Deep Value-Based RL . 243
10.6 Policy-Based RL . 248
10.7 Aided Reinforcement Learning . 251
10.8 Acting, Planning and Reinforcement Learning 256
10.9 Discussion and Bibliographic Notes 258
10.10 Exercises . 267

v

IV Nondeterministic Models 268

11 Acting with Nondeterministic Models 271
11.1 State Transition Systems . 271
11.2 Automata . 278
11.3 Behavior Trees . 287
11.4 Petri Nets . 291
11.5 Discussion and Bibliographic Notes 300
11.6 Exercises . 301

12 Planning with Nondeterministic Models 305
12.1 And/Or Graph Search . 305
12.2 Determinization Techniques . 309
12.3 Planning via Symbolic Model Checking 313
12.4 Synthesis of Automata . 323
12.5 Generating Behavior Trees . 326
12.6 Discussion and Bibliographic Notes 330
12.7 Exercises . 336

13 Learning Nondeterministic Models 338
13.1 Nondeterministic Action Schema . 338
13.2 Offline Action Learning . 339
13.3 Discussion and Bibliographic Notes 341
13.4 Exercises . 341

V Hierarchical Refinement Models 342

14 Acting with Hierarchical Refinement 343
14.1 Representation . 343
14.2 Refinement Acting Engine . 349
14.3 Extending the Refinement Acting Engine 352
14.4 Discussion and Bibliographic Notes 357
14.5 Exercises . 359

15 Hierarchical Refinement Planning 362
15.1 Refinement Planning Domains and Problems 362
15.2 Utility Criteria and Optimal Approach 363
15.3 An MCTS Planning Algorithm . 366
15.4 Discussion and Bibliographical Notes 371
15.5 Exercises . 372

16 Learning Hierarchical Refinement Models 374
16.1 Learning to guide RAE and UPOM . 374
16.2 Learning Hierarchical Refinement Methods 378
16.3 Discussion and Bibliographic Notes 382
16.4 Exercises . 382

vi

VI Temporal Models 383

17 Temporal Representation and Planning 385
17.1 Temporal Representation . 385
17.2 A Hybrid Temporal Planner . 397
17.3 Constraint Management . 403
17.4 Discussion and Bibliographic Notes 407
17.5 Exercises . 410

18 Acting with Temporal Controllability 413
18.1 Controllable Temporal Networks . 413
18.2 A Dispatching Algorithm . 419
18.3 Acting without Temporal Refinement 420
18.4 A Temporal Refinement Acting Engine 423
18.5 An MCTS Temporal Planner . 426
18.6 Integrating Planning and Acting . 429
18.7 Discussion and Bibliographic Notes 429
18.8 Exercises . 431

19 Learning for Temporal Acting and Planning 432
19.1 Learning Heuristics for Temporal Planning 432
19.2 Learning Temporal Models . 433
19.3 Discussion and Bibliographic Notes 437
19.4 Exercises . 439

VII Motion and Manipulation Models in Robotics 440

20 Motion and Manipulation Actions 442
20.1 Robots . 442
20.2 Motion . 444
20.3 Navigation . 465
20.4 Manipulation . 472
20.5 Discussion and Bibliographic Notes 476
20.6 Exercises . 476

21 Task and Motion Planning 478
21.1 Motion Planning . 478
21.2 Manipulation planning . 490
21.3 Task, Motion and Manipulation Planning 496
21.4 Discussion and Bibliographic Notes 509
21.5 Exercises . 517

22 Learning for Movement Actions 519
22.1 Learning Sensory-Motor Skills . 519
22.2 Learning for Task and Motion Planning 522
22.3 Discussion and Bibliographic Notes 525
22.4 Exercises . 527

vii

VIII Other Topics and Perspectives 528

23 Large Language Models for Acting and Planning 529
23.1 Principles of LLMs . 529
23.2 LLMs in Acting, Planning and Learning 533

24 Perceiving, Monitoring and Goal Reasoning 539
24.1 Perceiving and Information Gathering 539
24.2 Monitoring . 544
24.3 Goal Reasoning . 549

Appendices 550

A Graphs and Search 551
A.1 Nondeterministic State-Space Search 551
A.2 And/Or Search . 554
A.3 Strongly Connected Components of a Graph 554

B Other Mathematical Background 556
B.1 Metrics and distances . 556
B.2 Vectors and matrices . 556
B.3 Derivative and Gradient . 558

List of Algorithms 559
Bibliographic Abbreviations 563
Bibliography 565

Index 600

Foreword

Over the past decade, Artificial Intelligence (AI) has made remarkable breakthroughs,
particularly in the realm of deep learning and foundation models —sub-symbolic ma-
chine learning approaches that leverages deep neural networks with hundreds of
billions parameters. These models are often called black boxes as their human inter-
pretation and understanding is very limited. This technology has been instrumental in
enhancing interaction, perception, and natural language processing, sometimes even
surpassing human capabilities. As a result, some researchers have begun to equate
AI with deep learning and foundation models. However, I believe this is a significant
misconception.

AI encompasses far more than just sub-symbolic machine learning; it includes
symbolic (i.e., human-understandable) modeling, search algorithms, and reasoning
techniques - all vital aspects of human intelligence that extend beyond machine
learning, and can potentially utilize it to enhance algorithm performance and model
accuracy.

Planning and acting are intrinsic human abilities. Even young children naturally
plan and act, learning from the consequences of their actions in an environment
and refining their skills as they grow. Machines have not yet reached human-level
proficiency in planning and acting, as well as in their integration with learning, leaving
considerable room for advancement and improvements in autonomous intelligent
systems.

This book serves as a crucial milestone in the study of planning, acting, and learning,
exploring how these intelligent features can be effectively combined and integrated to
improve the performance of intelligent systems. The authors, Malik Ghallab, Dana
Nau, and Paolo Traverso, are three outstanding scientists and researchers who have
achieved significant recognition and visibility within the AI international scientific
community. This is the third book they have written on the subject: the first focused
on planning, while the second explored the interaction between acting and planning.
This third book marks an important step forward by also addressing the intersection
of acting, planning, and learning. It discusses Deterministic State-Transitions, Hier-
archical Task Networks, Probabilistic, Non-deterministic, Hierarchical-Refinement,
and Temporal Models, while also considering Robotic Motion and Manipulation. Ad-
ditionally, it explores the emerging capabilities of Large Language Models and how
they can be applied in this field, a very recent and relevant topic at the intersection
between sub-symbolic and symbolic AI.

The book is not only a valuable reference for scientists working in the area but
also serves as a textbook for graduate students, offering a clear, comprehensive,
and well-organized catalogue of techniques and algorithms for domain modeling,
plan construction, and execution, as well as the integration of learning in all these

viii

Free pre-publication, for personal use only. To be published by Cambridge University Press.

ix

activities. I have no doubt that I will recommend it in my courses and use it as a
personal reference.

Prof. Michela Milano
University of Bologna

Preface

For an agent to act intelligently, three essential cognitive functions are acting, planning,
and learning. This book is about ways to automate and integrate them. It is a successor
to our previous books on automated planning [410] and on combining planning and
acting [411]. It includes research advances that have occurred since those books were
published.

This book covers several types of models, approaches, and algorithms—
deterministic, probabilistic, hierarchical, nondeterministic, temporal, and spatial—
and discusses how to use them for acting, planning and learning. The published
literature on these topics is huge and covers several disconnected areas, not all of
which can be covered in a single book. Thus our choice of material was motivated by
putting the integration of acting, planning and learning at the forefront.

The book comprises 24 chapters. After Chapter 1, the Introduction, the other
chapters are organized into eight parts. The first seven focus on the following rep-
resentational models, with each part containing chapters on acting, planning, and
learning with the given model:

• Part I uses a “classical” deterministic state-transition model, represented using
state variables. Several of the concepts in this chapter are used throughout the
book.

• Part II adds hierarchical task networks (HTNs) to the state-transition model in
Part I.

• Parts III and IV extend the state-transition model in Part I to include, respec-
tively, probabilities and nondeterminism.

• Part V describes a hierarchical refinement approach that builds on the HTN
concepts in Part II and the probabilistic model in Part III.

• Part VI models time and concurrency using a chronicle representation.
• Part VII introduces models of robotic motion and manipulation and their com-

bination with more abstract tasks.

Finally, Part VIII includes two chapters on some other important topics that are not
within our main focus: large language models, and sensing, monitoring, and goal
reasoning.

Using This Book

This book is intended both as an information source for scientists and professionals
and as a graduate-level textbook. In most of the chapters, the references are postponed
to a discussion section at the end of the chapter. Most of the discussion sections are

x

Free pre-publication, for personal use only. To be published by Cambridge University Press.

xi

Chapter 1.
Introduction

V.
Hierarchical
Refinement

Models

II. Hierarchical
Task Networks

I. Deterministic
Models

III.
Probabilistic

Models

5

VI.
Temporal
Models

9

10

8

6 7

VII.
Motion and

Manipulation
Models in
Robotics

20

21

22

IV.
Nondeterministic

Models
11

12 13

19

17

18

16

15

14

VIII. Other
Topics and

Perspectives
23 24

2 3
4

Figure 1. Dependencies among chapters. Each gray box represents one of the book’s
parts, and the numbers within each part refer to chapters. A solid line means that some
(though often not all) of the information in one chapter is needed to understand another
chapter. A dashed line means that the information is not required but may be helpful.

followed by sets of exercises. We will make lecture slides and other auxiliary materials
available online.1

In the pseudocode for our algorithms, all variables are local unless declared global.
We assume readers are familiar with the basic concepts of algorithms and data struc-
tures at the level of an undergraduate-level computer science curriculum. Two ap-
pendices provide information about some mathematical and technical topics that go
beyond this background.

In addition to providing a coherent synthesis of the state of the art, this book contains
a substantial amount of new material, most of which is presented in comprehensive
detail consistent with textbook use. Some sections contain new material that has not
yet been implemented and empirically assessed, to provide an invitation for further
research.

The study of this book may follow several paths, depending on the reader’s needs
and familiarity with the material. Figure 1 shows which chapters depend on which
others. We hope this will help readers and teachers plan a fruitful journey through
the book.

Acknowledgments

We are thankful to Sylvie Thiébaux at LAAS-CNRS, Toulouse, and the Australian
National University, and Marcel Steinmetz at LAAS-CNRS, for contributing to Sec-

1http://www.laas.fr/planning

http://www.laas.fr/planning

xii

tion 9.3 and writing Section 9.4. We are grateful to Michela Milano at the University
of Bologna, for writing the Foreword.

We thank several friends and colleagues for their valuable feedback on parts of
this book. These include Pascal Bercher, Janette Cardoso, Mark “Mak” Roberts,
Luciano Serafini, Oliviero Stock, Fabio Pianesi, Bernardo Magnini, Sylvie Thiébaux,
and Silvano Dal Zilio. Dana Nau thanks the students who took a course from a rough
draft of this book. Paolo Traverso owes special thanks to Luciano Serafini for his
contributions to the chapters on learning deterministic and nondeterministic action
schema.

We acknowledge the support of our respective organizations, which provided the
support and facilities that helped to make this work possible: LAAS-CNRS and the
University of Toulouse, France, the University of Maryland, and FBK in Trento, Italy.
Dana Nau thanks ONR, NRL, AFRL, and AFOSR for their support of his work.
Malik Ghallab and Paolo Traverso acknowledge support from the AIPlan4EU project
(Grant agreement ID: 101016442), and Paolo Traverso acknowledges support from
the Future AI Research project (FAIR, PE00000013) under the NRRP MUR program
funded by the NextGenerationEU.

The authors declares that no sentence or figure of this book were produced with
the help of a generative AI software. They have no conflict of interest regarding the
presented methods and techniques, nor with any person or company deploying their
machine implementations.

About the Authors

Malik Ghallab is Directeur de Recherche Emeritus at CNRS and the University of
Toulouse. His research is focused on AI and Robotics. He contributed to topics
such as knowledge representation and reasoning, planning, and learning of skills and
models of behaviors. He (co-)authored over 200 scientific papers and several books.
He taught AI at several universities in France and abroad, and advised 32 PhDs. He
led several AI research programs in France, was director of LAAS-CNRS and CTO
of INRIA. He is involved in initiatives regarding socially responsible research in AI
and computational sciences. He is a EurAI Fellow, and Docteur Honoris Causa of the
University of Linköping, Sweden.

Dana Nau is a Professor Emeritus at the University of Maryland, in the Computer
Science Department and the Institute for Systems Research. He has more than 400
refereed technical publications. Some of his accomplishments include the discovery
of “pathological” game trees in which looking farther ahead produces worse decisions,
the game-playing algorithm used in the program that won the 1997 world computer
bridge championship, applications of AI planning in automated manufacturing, AI
planning systems such as SHOP, SHOP2, Pyhop, and GTPyhop, and evolutionary
game-theoretic studies of factors that affect human behavioral norms. He is an AAAI
Fellow, ACM Fellow, and AAAS Fellow.

Paolo Traverso is the Director of Strategic Planning at Fondazione Bruno Kessler
(FBK), Trento, Italy. His main research interests are in automated planning and
learning under uncertainty. He directed the FBK ICT Research Center from 2007
to 2020, a center of more than 400 people. In 2017, he was appointed Chair of
the Strategic Committee of EIT Digital. Since 2019, he has been a member of the
Scientific Advisory Board of DFKI. He served as a member of the Board of Directors
of AIxIA and of the National Lab on AI and Intelligent Systems. Since 2023, he has
been the leader of the National Project on Integrative AI of “FAIR - Future Artificial
Intelligence Research”. He is the author and co-author of more than one hundred
scientific articles. He is an EurAI Fellow, AAIA Fellow, and AIIA Fellow.

Free pre-publication, for personal use only. To be published by Cambridge University Press.

xiii

1 Introduction

The ability to act autonomously in the environment is a key feature of intelligence. An
AI acting system, for short an actor, is a computational artifact capable of autonomous
operation in its environment. It can be a software system, such as a web-based service
agent, or a robot embodied with sensory-motor devices. Actors require essential
cognitive functions without which intelligence is hardly conceivable, and this book
focuses on the functions of acting, planning, and learning:

• Acting is more than just the sensory-motor execution of low-level commands.
There always is a need to decide how to perform each task, given the context,
and adapt online to changes in the environment.

• Planning involves choosing and organizing actions that can achieve a task or a
goal. It usually involves reasoning on abstract models of a repertoire of actions
the actor may perform.

• Learning is critical for acquiring knowledge about actions’ actual effects, which
actions to perform when, and how to perform and plan them. Conversely, acting
and planning can be used to aid learning.

Combining these cognitive functions will be very important for the future of AI. To
explain why, we briefly summarize some recent developments in AI research.

During the past few decades, AI has produced numerous success stories. However,
most of them were costly, requiring huge development, modeling and adaptation to
their respective domains. They also tended to be brittle and narrow, with capabilities
that were difficult to extend.1 For many years, AI learning systems lacked a capability
to adapt, generalize, and transfer to other domains. These adaptation capabilities,
essential to intelligence, are beginning to be reached in two primary areas: data
interpretation and data generation.2

• Data interpretation. Multi-layered neural networks have extended known prin-
ciples to provide robust universal approximation classifiers. Moreover, they
have incidentally provided, at several abstraction levels, representation features
adapted to specific training data. For decades, the field of pattern recognition
has devoted significant effort to design representation features characterizing
the data at hand. These features are now given for free as latent variables
in the successive hidden layers of a neural net. They result from scalable
training procedures, thanks to improvements in hardware performances and
architectures. AI for data interpretation is no longer costly and narrow. It is

1An example is the Watson system [356], the impressive champion of the Jeopardy Q/A game, which
was transposed to the medical domain, but not successfully deployed despite huge investments.

2This oversimplifies a rich story. See, for example, [725, 758].

Free pre-publication, for personal use only. To be published by Cambridge University Press.

1

2 1 Introduction

widely deployed for the analysis of all kind of multi-modal data in numerous
demanding applications, from astronomy to health and education.

• Data generation. Also here the principles have been known for a while: learn
an adequate distribution for a domain, and sample from it for a given con-
text. Generative sampling and prediction of the next term in a sequence have
benefited from the progress in multi-layered networks in performances and ar-
chitectures. The recent multi-head attention transformer architecture of Large
Language Models, and their extensions in Multimodal Foundation Models,
have led to impressive performance in natural language processing and image
generation tasks. They also demonstrate emergent but still fragile capabilities
in other unexpected common-sense and reasoning tasks. Scalable AI tools for
generating texts, images, videos, and sounds are now widely deployed.

From data to actions. This, we believe, is the next big, two-sided challenge for the
field. On the one hand, AI has to pursue and leverage on its successful achievements
in order to transform current techniques for acting and planning into easily learned
and scalable approaches. An actor should be able to extensively and efficiently learn
how to act and how to plan. It should also be able to act and plan in order to better
learn and adapt to its environment and mission. On the other hand, the challenge is to
“put acting into AI.” For example, the successful data interpretation and generation
methods require numerous actions, such as to gather and select training data, choose
meta-parameters, etc. These should be part of the actions learned, planned for and
performed by the autonomous agent.

In two previous books, we wrote about automated planning [410] and about com-
bining planning and acting [411]. The interactions among the acting, planning, and
learning functions open essential perspectives for addressing the next big AI chal-
lenge. We hope through this book to contribute to the education and training of
researchers and practitioners tackling this challenge.

The rest of this chapter is organized as follows. Section 1.1 presents a conceptual
view of an AI actor, its architecture, and main components. Section 1.2 introduces the
types of models needed for the design of an actor. Section 1.3 expresses our concerns
and recommendations about important ethical issues associated with autonomous
actors. The outline and organization of the book are detailed in the preface.

1.1 Architecture and Components of an Actor

This section introduces the main components and organization of a deliberative actor.
It first presents a simplified, conceptual of view an actor’s architecture. It then
discusses the acting, planning, and learning functions and their interplay.

1.1.1 Architecture

The methods discussed in this book are relevant both for software actors and for actors
embodied with sensory-motor devices. The latter are further detailed in Part VII on

1.1 Architecture and Components of an Actor 3

motion and manipulation. A simplified view of an actor distinguishes two main parts:
a deliberation part and an execution platform (see Figure 1.1).

The execution platform informs the actor about its environment and its current state.
It transforms its commands into actuations that perform its actions (e.g., movements of
a limb or of a virtual character). The platform of an embodied actor assembles sensors,
actuators and signal processing functions. The actor has to control its platform (e.g.,
where to put and how to use its sensors and actuators). Hence, it needs a model of
the platform’s capabilities and limitations.

The deliberation functions are used to choose what to do and how to do it to
achieve the actor’s mission, how to react to changes in the environment, and how
to interact with other actors, including humans. We focus the book on the acting,
planning, and learning functions. Other functions, namely perceiving, monitoring
and goal reasoning, are briefly covers in Chapter 24. Communication, adaptation to,
and interaction with other actors are also important. They are not developed per se,
but Chapter 23 introduces Large Language Models and discusses their possible use
as deliberation functions.

Actor

External World

Objectives

Main deliberation functions

Execution platform

Planning

Acting

Queries
Plans

Learning

Models Users and
Other Actors

Actuations Signals

Commands Percepts

Messages

Figure 1.1. Conceptual architecture of an actor.

The architecture depicted in Figure 1.1 is a simplified conceptual schema that can
be adapted to different classes of environments and actors. It presents the actor as
centralized system, while it can also be distributed. More importantly there are two
essential features, implicit in this figure:

• Hierarchical processing within and across functions. From abstract tasks to de-
tailed actuations, a hierarchy of methods reduce the complexity of deliberation,
and integrate heterogeneous representations and models.

• Continual online closed-loop adaptation. The actor predicts what is expected,
monitors what is taking place, reacts to events, extends, updates, and repairs its
plan, and possibly revises its goals on the basis of its perception and deliberation.

These organizational principles provide a guideline to be adapted to different classes

4 1 Introduction

of environments and actors, about which the various parts of the book make different
assumptions. Let us now discuss the main components of this architecture.

1.1.2 Planning

Planning is about what to do. It relies on a predictive model to foresee what may
happen if some actions are performed, and a search over alternative options. It seeks
to synthesize a plan, i.e., an organized set of actions that may lead, according to
predictions, to a desired goal.

Planning problems vary in the kinds of actions, predictive models and desired
plans. In some cases, specialized planning methods can be used with specific prob-
lem representations. For instance, motion planning synthesizes a kinematic and
dynamic trajectory for moving a device; perception planning generates sensing and
interpretation actions to sense the world, recognize or model an object or a scene.

In many cases, there are commonalities to various planning problems. Domain-
independent planning tries to grasp these commonalities with abstract models.
Domain-independent planners reason about actions by representing them uniformly
as state-transformation operators over widely applicable representations of states as
relations among objects.

Domain-independent and specialized planning are complementary. In a hierar-
chically organized actor, an abstract level can be tackled with domain-independent
techniques, whereas lower levels may require specialized techniques. The integration
of domain-independent and specialized planners raises several challenges, which are
exemplified by the integrated task and motion planning problems in Part VII.

1.1.3 Acting

Acting is about how to do chosen actions while reacting, in a closed loop, to the
observed context in which the activity takes place. An action is considered as a task
to be progressively refined, given the current context, into more primitive actions and
concrete commands. Whereas planning is a search over predicted states, acting is
a continual assessment of the current observed state, and a consequent adaptation.
Acting requires reacting to unexpected changes and exogenous events, which are
independent from the actor’s activity. It also requires a correct mapping between
what is perceived and actuated and what is reasoned about for acting.

The techniques used in planning and acting can be compared as follows. Planning is
organized as an open-loop search, a look-ahead process based on predictions. Acting
is a closed-loop process, with feedback from observed effects and events used as input
for subsequent decisions. Domain-independent planners can be developed to take
advantage of commonalities among different forms of planning problems, but this is
less true for acting systems, which require specific methods.

1.1.4 Interleaving Acting and Planning

Relationships between acting and planning are more complex than a simple linear
sequence ⟨plan, act⟩. Seeking a complete plan before starting to act is not always

1.1 Architecture and Components of an Actor 5

feasible, desirable or needed. It is feasible when the environment is predictable and
well modeled, as in a manufacturing production line. It is needed in domains with
high costs or risks, or when actions are not reversible. In such domains, one often has
to engineer the environment to reduce diversity as much as possible beyond what is
modeled and can be predicted.

In open, dynamic domains with exogenous events that are difficult to model and
fully predict, plans are expected to fail. They cannot be carried out blindly until the
end. Plan modification and replanning are part of a global closed-loop process for
acting. Replanning is normal and should be embedded in the design of an actor.
Metaphorically, planning sheds light on the road ahead, but does not lay an iron rail
all the way to the goal.

The interplay between acting and planning can be organized in many ways, de-
pending on how easy it is to plan, how predictable and dynamic the environment is,
and how costly or risky the actions are. A general paradigm is the receding-horizon
model of interleaved planning and acting. It consists of repeating the two following
two steps until the goal is reached:

1. Plan from the current state toward the goal, but not necessarily all the way to
the goal, stopping at an arbitrary cutoff point called the planning horizon.

2. Perform one or more actions of the synthesized plan. Observe the current state
and decide whether further planning is needed.

A receding-horizon scheme can have various instantiations. Options depend, for
example, on the planning horizon, on what triggers replanning, on the number of
actions performed after a planning stage, and whether planning can be interrupted.
Furthermore, the planning and acting procedures can be run either sequentially, or
in parallel with synchronization. A receding-horizon approach can scale up to large
state spaces, and can redirect the planning in a closed loop according to the results of
acting. But it may also lead to situations from which the goal cannot be reached.

Depending on the planning horizon, the actor may execute each action as soon as
it is planned or wait until a dynamically chosen planning horizon is reached. One
should expect the observed state to differ from the predicted one, and to evolve even
if no action is executed. This may invalidate a plan and require replanning.

Interleaving acting and planning remains relevant if the planner synthesizes alter-
native courses of action for different contingencies (see Parts III and IV). It may not
be worthwhile or even feasible to plan for all possible contingencies, or the planner
may not know in advance what all of them are.

Several instances of the receding-horizon scheme will be illustrated throughout the
book, including anytime approaches.

1.1.5 Learning

Learning is a very broad notion that includes many cognitive capabilities. An actor
learns if it improves its performance with more autonomy and versatility, including
ways to perform new tasks, and adaptation to new or changing environments. Learn-
ing may rely on the actor’s experiences, instructions from a tutor, and/or data and
knowledge gathered from external sources.

6 1 Introduction

Learning alleviates the costly efforts of programming an actor and specifying its
environment. Even when such programming can be performed, it can hardly cover
all the situations the actor may face, so adaptation by learning provides a significant
advantage. Furthermore, learning allows an actor to acquire skills for which the
designer may not have formalized knowledge or are difficult to program.3

An actor may want to learn a reactive function giving how to act in each situation
and context, without further need of reasoning. Alternatively, it may want to learn
models with which to reason for acting and planning. The former, called end-to-end
learning, produces a reactive program that can be effective and efficient, and possibly
amenable to continual adaptation; but it is usually a “black box” function, difficult to
explain, verify or validate. The latter, in contrast, aims at acquiring explicit models
that are predictive but not executable; they can support analysis and explanation.

For example, a robot collaborating with a human should be proved safe to its users.
To be accepted as a co-worker, it should also be able to explain what it is doing
and remain intelligible. End-to-end learning may be less adequate in that regard.
However, it can be very useful for acquiring low-level reactive sensory-motor skills,
e.g., for grasping and manipulation, with additional mechanisms for verification and
validation. It can also be very useful for acquiring domain-dependent search heuristics
for more efficient planning and acting.

1.1.6 Integrating Acting, Planning, and Learning

Acting, planning, and learning are connected in many different ways, seldom limited
to a simple sequence ⟨learn, plan, act⟩. There is learning to plan and learning to act,
but there is also acting to learn, and planning to learn. Let us mention a few possible
interplays among these three functions.

An actor learns by acting. It may have the leisure to act for the sole purpose
of learning. Possibly it may simulate its training actions to learn at an affordable
cost. However, it is always desirable for an actor to keep learning while pursuing its
activities, so it can improve and better adapt to a changing environment whose learned
models need to be updated. Learning can be done when the actor fails, or when it can
benefit from additional advice or knowledge.

An actor or its user may reason about better ways to learn—for example, by
planning how to find states and activities that may be useful for learning. For example,
curriculum learning targets a progressive and rationally organized learning program,
or a well organized training database [112], as would be elaborated by an educator.
Learning to learn, or meta-learning seeks to improve learning.

Often, an actor engaged in its tasks as well as in learning will have to find a tradeoff
between learning more versus advancing in its task. This is the exploration versus
exploitation tradeoff. An actor without much knowledge may favor exploration, while
an expert actor may prefer to exploit known behaviors.

The planning-to-learn paradigm is important in this book. A learner can provide
models and control knowledge, such as heuristics, to an online planning-acting duo.

3These are related to the notion tacit knowledge, e.g., how to recognize a face or ride a bicycle, as
opposed to explicit knowledge, such as scientific facts and models [576].

1.2 Descriptive and Operational Models of Actions 7

Conversely, a planner can synthesize a number of random cases of problems and solu-
tions to feed to a learner’s training database. Planning can be used to create curricula
for curriculum learning. In a continual-learning scheme, the actor’s experiences are
fed back to the original planner for use in additional training to improve what has been
learned. These interactions, partially depicted in Figure 1.2, may possibly require
different planners and interactions with a simulator as well as with the real world.

LearningPlanning

Acting

Planning

External World

Simulator

Training
data Models

Figure 1.2. Interactions
among acting, planning,
and learning.

In some cases, a learner’s output can be directly used for acting without additional
planning. In these cases, the learner may synthesize from a training database a policy
for reactive acting. This can be effective for focused and specialized functions, such
as the sensory-motor control of a device. However, adaptation to a broad diversity of
tasks and environments requires planning, hence it also requires learning for better
planning, and possibly planning for learning as in the previous paragraph.

1.2 Descriptive and Operational Models of Actions

The book presents different models for acting, planning, and learning, starting from
the simplest deterministic state-transition systems, to temporal, probabilistic and
nondeterministic cases. The formal representations used for expressing these models
will be introduced when needed. Most of the chapters use discrete models, except for
Part VII which uses continuous models of motion and manipulation.

Actors’ models of actions can be classified into two types:

• Descriptive models specify what effects an action may have and when it is
feasible. Descriptive models, also called causal models, are relations from the
precondition to the effects of an action. The actor uses these models during
planning, to reason about what actions may achieve the actor’s objectives.

• Operational models specify how to perform an action: what commands to
execute in the current context, and how to organize them to achieve the action’s
intended effects. The actor uses these models during acting, to perform the
actions that it has decided to perform.

Descriptive models are more abstract than operational models. They tend to ignore
details, and focus on the main effects needed to decide about the eventual use of an

8 1 Introduction

action. For example, if you plan to take a book from a bookshelf, at planning time
you usually are not concerned with the available space around the book to insert your
fingers and extract the book. A descriptive model of an action abstracts away these
details to focus on higher-level concerns, such as which shelf the book is in, whether
it is within your reach, and whether you have a free hand with which to take it.

There are several reasons why these idealized abstract models are useful for plan-
ning. First, it is difficult to develop very detailed descriptive models. Second, these
models may require information that is unknown during planning. Third, reasoning
with detailed models is computationally very complex. Planners often need to search
over many different combinations of actions, and if such a planner uses operational
(rather than descriptive) models for this search, it may run very slowly.

Operational models of how to perform actions cannot do with the simplifications
allowed in descriptive models. To pick up a book in a shelf, you will need to determine
precisely where the book is located, whether you need to remove an obstacle to reach
the book, which positions of your hand and fingers give a feasible grasp, and which
sequences of precise motions and manipulations will allow you to perform the action.

Furthermore, operational models may need to include ways to respond to exogenous
events, that is, events that occur because of external factors beyond the actor’s control.
For example, someone might be standing in front of the bookshelf, or the stool you
intended to use to reach the book on a high shelf might be missing, or a potentially
huge number of other possibilities might interfere with your plan.

In principle, descriptive models can take into account the uncertainty caused by
exogenous events (see Parts III and IV). However, exogenous events are often ignored
in descriptive models because it is impractical to try to model all of the possible
joint effects of actions and exogenous events, or to plan in advance for all of the
contingencies. In operational models, however, the need to handle exogenous events
is much more compelling. Operational models must have ways to respond to such
events if they happen, because they can interfere with the achievement of an action.
In the bookshelf example, you might need to ask someone to move out of the way, or
you might have to stand on a chair instead of the missing stool.

Finally, an actor’s hierarchical organization and continual online processing can
be integrated in these two types of models. We may have a hierarchy of operational
models, sketching how to perform abstract tasks, and giving more detailed recipes
for primitive actions. Similarly, we may have a hierarchy of descriptive models,
from abstract tasks down to the effects of commands executable by the platform.
Furthermore, deliberation may perform a continual and interleaved processing of
operational models and descriptive models at different levels of the hierarchy. The
book illustrates instances of these hierarchical models.

1.3 Responsible Research on Autonomous Actors

Autonomous deliberative actors are scientifically and technically challenging for AI.
They are also ethically very challenging. We, and all contributors to AI, hold a
particular responsibility regarding ethical issues. However, since no chapter of this

1.3 Responsible Research on Autonomous Actors 9

book is devoted to ethics, we felt important to clarify here our position and concern,
particularly regarding actor-centered AI.

Discussions of the ethics of AI are very active, with numerous publications, com-
mittees and recommendations (see for example [405, 176, 335, 1109]). Most of these
discussions deal with data-centered ethical concerns, such as biases, privacy, fairness,
transparency, trustworthiness, or ownership. They have been triggered by the signifi-
cant AI advances in data interpretation and data generation. They are certainly very
important. They need to be pursued and implemented into regulations (beyond the
RGPD), institutions (e.g., data trusts) and active monitoring processes.

These data-centered ethical concerns are more focused on individuals than embrac-
ing broader social considerations, such as social cohesion, values, and democratic
organization, which are becoming even more critical with the development of au-
tonomous acting systems. Actor-related ethical issues may have more vital impacts
on humanity—but they have not been as widely studied, possibly because of a less
advanced state of the art.

Some of the actor-centered ethical issues are related to a possible automation
of many human activities, including rewarding qualified professional and creative
jobs. Such a trend, in particular if fast and widespread, would create economic
problems about employment, inequalities and social wealth sharing. It would entail a
questioning of our role in and value to society, and hence to ourself. Feeling socially
superfluous, because machines might do most of what many people can do, may lead
to significant human and social turmoil. It may cause infringements on human dignity.

Human interactions have already changed with social networks. They are fast
changing with conversational agents becoming language-fluent and apparently knowl-
edgeable. They will further change with the advent of autonomous actors that have
not only the capabilities described earlier, but also have capable sensory-motor skills,
detailed knowledge of a person, and can nudge or prod her with respect to dubious
utility criteria. This prospect raises the risk of reduced autonomy and infringements
on human freedom and agency.

Autonomous actors may possibly amplify inequalities and further tilt the power
imbalance between human groups and nations. Leaders may be more likely to
engage in conflicts if they can do so with no risks to their soldiers. Weaponized
actors are a very serious concern. Despite a call from many scientists to ban lethal
autonomous weapons [378], now supported by the UN and other organizations, there
is unfortunately for the moment no international agreement on these matters. Strong
opposition from most powerful nations remains.

Autonomous actors may also be beneficial to our well-being and health, for example
as long-life empathic, serviceable and trustable companions. We need to remain
proactively engaged towards these ends, but we must also keep in mind that the
individual acceptance of a technology (even as a widespread market) is not equivalent
to its social acceptance or acceptability. The latter must include, among other things,
long-term effects, social cohesion and values, and environmental impacts.

Neither the best outcome nor the worst one are the most probable. However,
our current social organization, and the profit-and-power motive for much of its
development, do not lean naturally towards the best. To avoid the worst, we need to

10 1 Introduction

be well aware of the risks and be proactive in mitigating them.
A possible ambition is to seek machines aligned with human values [966, 232].

However, it is unclear whether it is feasible to have machines behaving with and
enforcing our values, if their understanding of those values comes from our specifica-
tions or from observation of our inconsistent behaviors.4 It is even more questionable
whether we could put the risks of fast deployment on hold until we are able to have
all of our AI machines human-aligned.

A more questionable option is to seek machines capable of moral choices. Machines
do not have intrinsic motivations, desires, nor feelings with respect to which moral
choices are meaningful. The so-called “ethics by design” can be quite misleading:
techniques cannot solve everything, including our ethical choices and responsibili-
ties. We certainly must improve and implement verification and validation methods
towards provable trustworthiness, under appropriate assumptions. However, the re-
sponsibilities for designing, using, and allowing the deployment of AI actors remain
ours. Researchers should not only be concerned with how AI should not be used for
harmful purposes, but also with how it can be used to promote positive values and
counteract antidemocratic and deceptive practices.

It is well known that technology is ambivalent, with both good and ugly faces.5
Everyone in society is, to some degree, responsible for harmful technical deployments.
Scientists hold particular responsibilities because they can investigate and foresee long
term risks, and search for mitigating means. They can disseminate knowledge and be
active in social debates about these risks. For that, we believe, they have to remain
cautiously optimistic. This optimism is justified by the numerous expressions of
risk-related concerns published by AI scientists and developers, and their calls for
effective oversight and open independent verifications. It is also justified by some
more advanced regulations (for example, the recently approved European AI Act). We
recommend our responsible reader to remain actively vigilant.

4After centuries of moral effort, we have been able to state some of these values in documents such as
the Universal Declaration of Human Rights. However, these rights are routinely violated and we are
still unable to enforce them.

5Hephaestus, the Greek god of technology, is described as a limping deity.

Part I

Deterministic State-Transition Systems

. . . we must examine the nature of actions,
namely how we ought to do them . . .

Aristotle, Nichomachean Ethics,
circa 330 BCE

Any model of an actor and its environment is necessarily an imperfect approxi-
mation that must incorporate trade-offs among several competing criteria: accuracy,
computational performance, and understandability to users. This part of the book
uses a highly simplified model that incorporates the following set of restrictive as-
sumptions:

1. Finite, static world. There are a finite set of possible states and a finite set
of possible actions. The world changes from one state to another only when
the actor performs an action. If the actor does not act, then the current state
remains unchanged. This precludes the possibility of actions by other actors or
exogenous events that are not due to any actor.

2. Deterministic actions. The outcome of performing an action 𝑎 in a state 𝑠
is determined solely by 𝑎 and 𝑠, and the actor can predict this outcome with
certainty. This excludes the possibility of accidents or execution errors, as well
as nondeterministic actions, such as rolling a pair of dice.

3. Full observability. The actor always knows the current state of the world.6

4. No explicit time, no concurrency. There is no explicit model of time (e.g., when
to start performing an action, how long a state or action should last, or how to
perform other actions concurrently).7 There is just a discrete sequence of states
and actions.

6It has sometimes been argued that if the initial state is known, then determinism assures that the
current state can always be inferred. That’s nearly correct, but it also requires the actor to have perfect
recall of the sequence of actions it has performed.

7This does not prohibit one from encoding time-related information (e.g., timestamps) into the states
and the actions’ preconditions and effects. However, to represent and reason about actions that have
temporal durations, a more sophisticated representation is often needed (see Chapter 17).

Free pre-publication, for personal use only. To be published by Cambridge University Press.

11

12

These assumptions are used far more frequently in planning than in acting, and are
often called the classical planning assumptions. An environment that satisfies them is
called a deterministic state-transition system (for short, just a state-transition system)
or a classical planning domain.

One consequence of these assumptions is that the actions in a state-transition system
are necessarily more abstract than the actor’s sensory-motor commands. A classical-
planning model of an “open door” action may simply assert that the door is now
open instead of closed, but a robot that opens a door will need to use sensory-motor
commands that do not satisfy the classical-planning assumptions:

classical action:

sensory-motor
commands:

ungraspgrasp
knob

turn
knob

maintain move back

pull

monitor

identify
type of door

pull

monitor

move close
to knob

open-door

Figure I.1. A classical action, and non-classical commands that implement it.

Because few (if any) real-world environments satisfy all of the classical planning
assumptions, deterministic state-transition models may introduce errors into an actor’s
deliberations. However, such models can still be desirable despite this problem. They
usually are much simpler to construct and use than other kinds of domain models,
and there are techniques for predicting some of the errors in advance so that an actor
can change the plan to avoid them. Any remaining errors may be acceptable if they
are infrequent and do not have severe consequences.

This part is organized as follows. Chapter 2 presents the state-variable represen-
tation that we will use, describes how it relates to several other representations, and
then presents several acting algorithms. Chapter 3 presents and classifies several
planning algorithms and related techniques, and Chapter 4 describes some ways to
learn state-variable representations.

2 Deterministic Representation and
Acting

This chapter is about representing state-transition systems and using them in acting.
Section 2.2 gives formal definitions of state-transition systems and planning problems,
and a simple acting algorithm. Section 2.3 describes state-variable representations of
state-transition-systems, and Section 2.6 describes several acting procedures that use
this representation. Section 2.4 describes classical representation, an alternative to
state-variable representation that is often used in the planning literature.

2.1 Motivating Example

Most of the examples in this chapter will involve Dock-Worker Robots (DWR) domains.
These are highly simplified “toy” versions of harbor and warehouse systems like the
one in Figure 2.1. Depending on the example, the objects may include ships, cranes,
loading docks, piles of containers, robot vehicles, roads, and delivery gates.

Example 2.1. Figure 2.2 shows a simple DWR domain that is a running example in
this chapter. There are two robots, three loading docks, three containers, and three
piles (stacks of containers). The domain has states, each of which is a configuration

Figure 2.1. A container terminal in Barcelona.

Free pre-publication, for personal use only. To be published by Cambridge University Press.

13

14 2 Deterministic Representation and Acting

Figure 2.2. Running example: a sim-
ple DWR domain.

of the objects (as in the figure), and actions that cause transitions from one state to
another. □

The next section is rather abstract, but we will return to this example in Section 2.3.

2.2 State-Transition Systems

Definition 2.2.1 A state-transition system, or classical planning domain, is a tuple

Σ = (𝑆, 𝐴, 𝛾, cost) or Σ = (𝑆, 𝐴, 𝛾), (2.1)

where

• 𝑆 and 𝐴 are the finite sets of states and actions,
• 𝛾 : 𝑆 × 𝐴 → 𝑆, the state-transition function, is a partial function (that is, its

domain is a subset of 𝑆 × 𝐴) telling what state will be produced if the actor
executes action 𝑎 in state 𝑠. The set of applicable actions in 𝑠 is2

Applicable(𝑠) = {𝑎 ∈ 𝐴 | 𝛾(𝑠, 𝑎) is defined}. (2.2)

• cost : 𝐴 → [0,∞), the cost function,3 is a partial function having the same
domain as 𝛾. It may represent monetary cost, time, or some other numeric
quantity that one might want to minimize. In the second form of Equation 2.1, in
which the cost function is not given explicitly, cost(𝑎) = 1 for every 𝑎 ∈ 𝐴. □

2.2.1 Plans

In order to act purposefully, an actor will need some notion of what actions it needs
to perform. In a deterministic state-transition model, this will be a plan: a finite
sequence of actions

𝜋 = ⟨𝑎1, . . . , 𝑎𝑛⟩. (2.3)

The length of 𝜋 is |𝜋 | = 𝑛, and the cost of 𝜋 is the sum of the action costs:

cost(𝜋) =
𝑛∑︁
𝑖=1

cost(𝑎𝑖). (2.4)

1Definitions, examples, and theorems are all numbered in the same numerical sequence. Algorithms
and equations, however, are in separate sequences.

2Section 8.1 will change Equation 2.2 to model actions that have multiple possible outcomes.
3This definition prevents the cost from depending on 𝑠. See Remark 2.6 for a discussion of this
restriction and some cases in which it can be lifted.

2.2 State-Transition Systems 15

As a special case, ⟨⟩ is the empty plan, which contains no actions. Its length and cost
are both 0.

A subplan 𝜋′ of 𝜋 is a (contiguous) subsequence4 ⟨𝑎𝑖 , . . . , 𝑎 𝑗⟩ of 𝜋. As spe-
cial cases, the subplans ⟨𝑎1, . . . , 𝑎𝑖⟩ and ⟨𝑎 𝑗 , . . . , 𝑎𝑛⟩ are a prefix and suffix of 𝜋,
respectively.5

Here is some notation for concatenation of plans and actions. If 𝜋 = ⟨𝑎1, . . . , 𝑎𝑛⟩
and 𝜋′ = ⟨𝑎′1, . . . , 𝑎

′
𝑛′⟩ are plans and 𝑎 is an action, then

𝜋 ·𝑎 = ⟨𝑎1, . . . , 𝑎𝑛, 𝑎⟩;
𝑎 ·𝜋 = ⟨𝑎, 𝑎1, . . . , 𝑎𝑛⟩;
𝜋 ·𝜋′ = ⟨𝑎1, . . . , 𝑎𝑛, 𝑎

′
1, . . . , 𝑎

′
𝑛′⟩;

𝜋 · ⟨⟩ = ⟨⟩ ·𝜋 = 𝜋.

(2.5)

The state-transition function 𝛾 can easily be extended to include plans, by letting
𝛾(𝑠, 𝜋) be the state produced by starting at 𝑠 and applying the actions in 𝜋 in the order
that they are given, if all of them are applicable. More specifically:

• The empty plan ⟨⟩ is applicable in every state 𝑠, and 𝛾(𝑠, ⟨⟩) = 𝑠.
• If 𝜋 = 𝑎 ·𝜋′, where 𝑎 is applicable in 𝑠 and 𝜋′ is applicable in 𝛾(𝑠, 𝑎), then 𝜋 is

applicable in 𝑠 and

𝛾(𝑠, 𝜋) = 𝛾(𝛾(𝑠, 𝑎), 𝜋′). (2.6)

It immediately follows that if a plan 𝜋 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ is applicable in a state 𝑠0,
then it produces a sequence of states ⟨𝑠0, 𝑠1, . . . , 𝑠𝑛⟩ such that

𝑠1 = 𝛾(𝑠0, 𝑎1), 𝑠2 = 𝛾(𝑠1, 𝑎2), . . . , 𝑠𝑛 = 𝛾(𝑠𝑖−𝑛, 𝑎𝑛). (2.7)

In this case, the transitive closure of 𝜋 on 𝑠0 is the path

𝛾̂(𝑠0, 𝜋) =
{
⟨𝑠0, 𝑠1, . . . , 𝑠𝑛⟩, if 𝜋 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩,
⟨𝑠0⟩, if 𝜋 = ⟨⟩.

(2.8)

From the usual definitions of the length and cost of a path, we get

|𝛾̂(𝑠0, 𝜋) | = |𝜋 |; (2.9)
cost(𝛾̂(𝑠0, 𝜋)) = cost(𝜋). (2.10)

2.2.2 Planning Problems

A classical planning problem is a triple

𝑃 = (Σ, 𝑠0, 𝑆𝑔), (2.11)
4We use “subsequence” to mean a contiguous subsequence. This is consistent with our previous books
[410, 411], but differs from the terminology in some other subfields of computer science [35, 258].

5This terminology is common in the AI planning literature, but it differs from ordinary English usage,
in which a prefix or suffix would be something added to 𝜋, not part of 𝜋 itself.

16 2 Deterministic Representation and Acting

Run-Plan(Σ, 𝜋)
while True do

1 𝑠← observe current state
if 𝜋 = ⟨⟩ then

2 return success

𝑎 ← pop(𝜋)
3 if 𝑎 ∉ Applicable(𝑠) then return failure

perform action 𝑎

Algorithm 2.1. Run-Plan, a simple procedure to run a plan.

where Σ is a state-transition system, 𝑠0 is a state called the initial state, and 𝑆𝑔 is a set
of states called goal states. A solution for 𝑃 is any plan 𝜋 = ⟨𝑎1, . . . , 𝑎𝑛⟩ such that
𝛾(𝑠0, 𝜋) ∈ 𝑆𝑔. The solution 𝜋 is minimal if no subsequence of 𝜋 is also a solution,
shortest if there is no solution 𝜋′ such that |𝜋′ | < |𝜋 |, and optimal if

cost(𝜋) = min{cost(𝜋′) | 𝜋′ is a solution for 𝑃}. (2.12)

Example 2.3. Suppose a planning problem 𝑃 has three solution plans:

𝜋1 = ⟨𝑎1⟩; 𝜋2 = ⟨𝑎2, 𝑎3, 𝑎4, 𝑎5⟩; 𝜋3 = ⟨𝑎2, 𝑎3, 𝑎1⟩.

If each action’s cost is 1, then 𝜋1 is a minimal, shortest, and cost-optimal solution,
𝜋2 is a minimal solution but is neither shortest nor cost-optimal, and 𝜋3 is neither
minimal nor shortest nor cost-optimal. □

2.2.3 Acting with a Plan

Algorithm 2.1, Run-Plan, is a simple procedure for running a plan. If 𝜋 is applicable in
the initial observed state,6 then ideally it will produce the sequence of states 𝛾̂(𝑠0, 𝜋),
and Run-Plan will return success. However, recall from Part I that Σ is not necessarily
a perfect model of the actor’s environment. Execution errors or unpredicted exogenous
events may sometimes cause Run-Plan to encounter states in which the next action of
𝜋 is not applicable, in which case Line 3 will return failure.

Run-Plan can be adapted to test whether 𝜋 has achieved a desired goal 𝑆𝑔, by adding
𝑆𝑔 to its argument list and adding the following line before Line 2:

if 𝑠 ∉ 𝑆𝑔 then return failure

Section 2.6 will discuss some ways for an actor to recover from failures, either
by re-executing parts of 𝜋 or acquiring a new solution plan. Chapter 3 will discuss
several algorithms to produce solution plans.

6Although we call this the observed state, it is more likely to be an abstraction of the state that the actor
observes, with various low-level details omitted that are irrelevant for planning.

2.3 State-Variable Representation 17

2.3 State-Variable Representation

In Section 2.2, states were an abstract set 𝑆 = {𝑠0, 𝑠1, . . . , }. Explicit enumeration
of 𝑆 can often be quite large; even trivially simple examples such as Figure 2.2 can
have hundreds or thousands of states. Furthermore, names such as 𝑠0, 𝑠1, . . . tell us
nothing about the states’ internal structure.

To represent complex domains, we will want a more expressive representation that
gives information about relationships among objects in the actor’s environment. For
example, to describe the state shown in Figure 2.2—which will be a running example
in this section—we might want to write

loc(r1) = d1 (2.13)

to mean that robot r1’s location is d1.

position

nil

 object

symbol

robot dock T F

r1 r2 d1 d2 d3

container

d1 d2 d3

pile

p1 p2 p3

Figure 2.3. A type hierarchy for the objects in Figure 2.2. Boxed words are types, other
words are objects.

In Equation 2.13, d1 and r1 are called objects or object constants. We will organize
objects into sets and subsets using a type hierarchy. For example, Figure 2.3 is a type
hierarchy for our running example, and it corresponds to the following sets of objects:

H =


Objects = Positions ∪ Containers ∪ Piles ∪ Symbols;

Positions = Robots ∪ Docks ∪ {nil};
Symbols = {T, F, nil}; Containers = {c1, c2, c3};

Piles = {p1, p2, p3}; Robots = {r1, r2};
Docks = {d1, d2, d3}.

(2.14)

With a slight abuse in terminology, we not distinguish between types and and the
corresponding sets of constants. For example, we will callH a type hierarchy.

We will have typed variables called object variables. In our running example, an
object variable 𝑟 of type robot has Range(𝑟) = Robots (or less formally, 𝑟 ∈ Robots).

A domain usually has a set of rigid properties that do not change over time, such
as its topology and connectivity. In our running example, robots and containers can
be moved around, but the locations of piles and docks are rigid. To represent such
properties we will define rigid relations over the types. In our running example, the

18 2 Deterministic Representation and Acting

rigid relations are adjacent ⊆ Docks×Docks, a symmetric relation telling which pairs
of loading docks have roads between them, and at ⊆ Piles ×Docks, which gives each
pile’s location:

adjacent = {(d1, d2), (d2, d1), (d2, d3), (d3, d2), (d3, d1), (d1, d3)};
at = {(p1, d1), (p2, d2), (p3, d2)}.

Properties of the domain that change over time, possibly under the effect of the
actor’s activity, we will describe using functional terms called state variables.7 State
variables have zero or more arguments, each of which may be either an object or an
object variable. Each state variables is typed; for example, loc(r1) ∈ Docks.

2.3.1 Representing States

In each state, every ground state variable has a value that we will represent as an
assignment, written as an equation similar to Equation 2.13, which assigns to loc(r1)
the value d1. We also will find it useful to refer to lifted assignments, e.g., loc(r1) = 𝑙,
where 𝑟 and 𝑙 are object variables to be instantiated later (see Definition 2.5).

Here are the state variables. Their parameter types are 𝑟 ∈ Robots, 𝑑 ∈ Docks, 𝑐 ∈
Containers, 𝑝 ∈ Piles.

• cargo(𝑟) ∈ Containers ∪ {nil} is either the container that 𝑟 is carrying, or nil if
𝑟 is not carrying anything. Each robot can hold at most one container.

• loc(𝑟) ∈ Docks is the loading dock where 𝑟 is located.
• occupied(𝑑) ∈ {T, F} is T if there is a robot at 𝑑, and F otherwise. At most one

robot can be at each loading dock.
• pile(𝑐) ∈ Piles ∪ {nil} is the pile that 𝑐 is in, or nil if 𝑐 is not in a pile.
• pos(𝑐) ∈ Robots ∪ Piles ∪ {nil} is 𝑐’s position, which may be a robot, another

container if 𝑐 is in a pile, or nil if 𝑐 is at the bottom of a pile.
• top(𝑝) ∈ Containers ∪ {nil} is the container at the top of 𝑝, with top(𝑝) = nil if
𝑝 is empty.

Example 2.4. The following total assignment is the state shown in Figure 2.2:

𝑠0 = {cargo(r1) = nil, cargo(r2) = nil,
loc(r1) = d1, loc(r2) = d2,
occupied(d1) = T, occupied(d2) = T, occupied(d3) = F,
pile(c1) = p1, pile(c2) = p1, pile(c3) = p2,
pos(c1) = c2, pos(c2) = nil, pos(c3) = nil,
top(p1) = c1, top(p2) = c3, top(p3) = nil}. □

Usually some total assignments are nonsensical in the domain that the state variables
are intended to represent. In our running example, it is nonsensical to have a state
in which both pos(c1) = r1 and cargo(r1) = F. In principle, one could exclude such

7The terms state variable and fluent are considered synonymous [967]. However, in much of the
published literature, fluents have only Boolean values, and state variables have no parameters. We
use a more flexible representation that includes both parameters and non-Boolean values.

2.3 State-Variable Representation 19

things from the set of states 𝑆 by writing a set of constraints that every state must
satisfy. However, we will instead will leave these “unreal” states in 𝑆, and enforce
the constraints implicitly by writing actions that always map real states to other real
states (see Section 2.3.3).

Definition 2.5. The following terminology is borrowed loosely from first-order logic:

• An atom (short for atomic formula) or positive literal is either a rigid-relation
assertion rel(𝑧1, . . . , 𝑧𝑛), or a state-variable assignment x(𝑧1, . . . , 𝑧𝑛−1) = 𝑧𝑛,
where rel or x is the name of the relation or state variable, and 𝑧1, . . . , 𝑧𝑛 are
objects or object variables.

• A negated atom or negative literal is an atom with a negation sign in front of
it, such as ¬rel(𝑧1, . . . , 𝑧𝑛) or ¬ x(𝑧1, . . . , 𝑧𝑛−1) = 𝑧𝑛. We usually will write the
latter as x(𝑧1, . . . , 𝑧𝑛−1) ≠ 𝑧𝑛.

• Let 𝑒 be any syntactic expression that contains literals. Then 𝑒 is ground if it
contains no object variables, lifted if it contains object variables but no objects,
and partially instantiated if it includes both objects and object variables.

• If 𝑧 is an object variable in 𝑒, then instantiating 𝑧 means replacing 𝑧

with either an object in Range(𝑧), or another object variable 𝑧′ such that
Range(𝑧′) ⊆ Range(𝑧). Instantiating 𝑒 means instantiating zero or more of
the object variables in 𝑒. The resulting expression is an instance of 𝑒. □

Remark 2.6. Although state variables and rigid relations may have arguments that
are object constants or object variables, we do not—for now—allow the arguments to
be other state variables, as in an expression such as at(p1, loc(r1)).8 This restriction,
and the restriction in Definition 2.2 that the cost function cannot depend on 𝑠, are
needed to accommodate the requirements of some, but not all, of the algorithms in
Parts I, II, and VI. Cases in which these restrictions can be relaxed or discarded are
discussed in Sections 2.7.2 and 3.6.7 and the first paragraph of Chapter 5. □

2.3.2 Action Schemas and Actions

Definition 2.7. Given a type hierarchyH , an action schema (or action template) is a
tuple

𝛼 = (head(𝛼), pre(𝛼), eff(𝛼), cost(𝛼)) or 𝛼 = (head(𝛼), pre(𝛼), eff(𝛼)),

where:

• head(𝛼) is an expression of the form name(𝑧1, . . . , 𝑧𝑘), where name is a name
and (𝑧1, . . . , 𝑧𝑘) is a list of zero or more object variables that are 𝛼’s parameters.
So that name will uniquely identify 𝛼, no other action can have the same name.

• pre(𝛼) = {𝑝1, . . . , 𝑝𝑚} is a set of zero or more preconditions, each of which is
a literal. Within each literal 𝑝𝑖 , every argument must be either an object or one
of the parameters 𝑧1, . . . , 𝑧𝑘 .

8Were it not for this restriction, the definition of instantiation in Definition 2.5 would also allow
substituting a state variable 𝑥 for an object variable 𝑧 if Range(𝑥) ⊆ Range(𝑧).

20 2 Deterministic Representation and Acting

• eff(𝛼) = {𝑥1 = 𝑣1, . . . , 𝑥𝑛 = 𝑣𝑛} is a set of zero or more effects, each of which
is a state-variable assignment for a different state variable. In each effect, the
assigned value 𝑣𝑖 must be either an object or one of 𝑧1, . . . , 𝑧𝑘 .

• cost(𝛼) is a positive number denoting the cost of applying actions that are
instances of 𝛼. If it is omitted from the schema, it defaults to 1.

• Every parameter and state variable in 𝛼 has a range that is one of the sets inH .

Notation and terminology. To emphasize that each effect 𝑥𝑖 = 𝑣𝑖 changes a state
variable’s value, we usually will instead write it as 𝑥𝑖← 𝑣𝑖 . Furthermore, we usually
will write 𝛼 in the following pseudocode format, omitting the last line if 𝑐 = 1:

name(𝑧1, 𝑧2, . . . , 𝑧𝑘)
pre: 𝑝1, . . . , 𝑝𝑚
eff: 𝑥1← 𝑣1, . . . , 𝑥𝑛← 𝑣𝑛

cost: 𝑐

We will often refer to 𝛼 by writing just its name, and to instances of 𝛼 by writing
just their heads, as in the following two examples. Such references are unambiguous
because 𝛼’s name is unique and its only variables are its parameters. □

Example 2.8. Continuing Example 2.1, here are three action schemas, where 𝑐 ∈
Containers, 𝑐′ ∈ Containers ∪ {nil}, 𝑑, 𝑑′ ∈ Docks, 𝑝 ∈ Piles, and 𝑟 ∈ Robots:

take(𝑟, 𝑐, 𝑐′, 𝑝, 𝑑) // 𝑟 takes 𝑐 off of 𝑝
pre: at(𝑝, 𝑑), cargo(𝑟) = nil, loc(𝑟) = 𝑑, pos(𝑐) = 𝑐′, top(𝑝) = 𝑐
eff: cargo(𝑟) ← 𝑐, pile(𝑐) ← nil, pos(𝑐) ← 𝑟, top(𝑝) ← 𝑐′

put(𝑟, 𝑐, 𝑐′, 𝑝, 𝑑) // 𝑟 puts 𝑐 onto 𝑝
pre: at(𝑝, 𝑑), pos(𝑐) = 𝑟 , loc(𝑟) = 𝑑, top(𝑝) = 𝑐′
eff: cargo(𝑟) ← nil, pile(𝑐) ← 𝑝, pos(𝑐) ← 𝑐′, top(𝑝) ← 𝑐

move(𝑟, 𝑑, 𝑑′) // 𝑟 moves from 𝑑 to 𝑑′

pre: adjacent(𝑑, 𝑑′), loc(𝑟) = 𝑑, occupied(𝑑′) = F
eff: loc(𝑟) ← 𝑑′, occupied(𝑑) ← F, occupied(𝑑′) ← T

In take and put, one might be tempted to replace the preconditions at(𝑝, 𝑑) and
loc(𝑟) = 𝑑 with a single precondition at(𝑝, loc(𝑟)). In other situations, one might want
to put computational formulas in the preconditions and effects of action schemas. The
restriction in Remark 2.6 prevents these things, but later in the book we will discuss
cases where the restriction can be relaxed. □

Let 𝑎 be ground instance of an action schema, that is, 𝑎 is an expression produced
by substituting object variables for all of the action schema’s parameters. If 𝑎 is a
ground instance of an action schema and eff(𝑎) assigns at most one value to each state
variable, then 𝑎 represents an action. If a state 𝑠 satisfies pre(𝑎), then 𝑎 is applicable
in 𝑠, and applying it produces the following state:

𝛾(𝑠, 𝑎) = {an assignment 𝑥 =𝑤 for each effect 𝑥←𝑤 in eff(𝑎)} ∪ {every

2.3 State-Variable Representation 21

assignment 𝑥 =𝑤 in 𝑠 such that eff(𝑎) does not assign a value to 𝑥}. (2.15)

Thus for every assignment 𝑥 = 𝑣 in 𝑠,

𝛾(𝑠, 𝑎) contains

{
𝑥 =𝑤 if eff(𝑎) contains 𝑥←𝑤 for some 𝑤,
𝑥 = 𝑣 otherwise.

If 𝑎 isn’t applicable in 𝑠, then 𝛾(𝑠, 𝑎) is undefined.

Example 2.9. Let A be the set of action schemas in Example 2.8, and let 𝑎1 =

take(r1, c1, c2, p1, d1). Then

pre(𝑎1) = {at(p1, d1), cargo(r1) = nil, loc(r1) = d1, pos(c1) = c2, top(p1) = c1};
eff(𝑎1) = {cargo(r1) ← c1, pile(c1) ← nil, pos(c1) ← r1, top(p1) ← c2}.

It follows that 𝑎1 is applicable to the state 𝑠0 in Example 2.4. The state 𝛾(𝑠0, 𝑎1) is
shown in Figure 2.4. It is identical to 𝑠0 except for the following changes:

cargo(r1) = c1, pile(c1) = nil, pos(c1) = r1, top(p1) = c2. □

Figure 2.4. The state 𝛾(𝑠0, 𝑎1),
where 𝑠0 and 𝑎1 are as in Example 2.9.

2.3.3 Representing Planning Problems

In Section 2.2 we defined planning problems using a set of goal states 𝑆𝑔. To represent
𝑆𝑔 we will use a set of ground literals 𝑔 called a goal formula, with 𝑆𝑔 being the set
of all states that satisfy 𝑔, that is, 𝑆𝑔 = {𝑠 ∈ 𝑆 | 𝑠 |= 𝑔}.9

For notational convenience, we will usually write a call to a planning algorithm as

Planner(Σ, 𝑠0, 𝑔) or Planner(Σ, 𝑠0, 𝑆𝑔),

where Planner is the name of the planning algorithm and (Σ, 𝑠0, 𝑔) or (Σ, 𝑠0, 𝑆𝑔) is
the planning problem. However, as we explained at the start of Section 2.3, what
the planner needs is not an exhaustive list of everything in Σ, but instead a compact
representation with which it can quickly compute the parts of Σ that it needs. In most
cases, the following information is sufficient:

• a type hierarchyH ,
• a set 𝑅 of rigid relations,

9Obviously this places some limitations on what states can be in 𝑆𝑔. A widely used work-around is to
add state variables to the domain to make it easier to represent important sets of states. An example
is the cargo state variable in Example 2.8.

22 2 Deterministic Representation and Acting

• a set 𝑋 of state variables, including specifications of their ranges,
• a set A of action schemas,
• an initial state 𝑠0,
• a goal formula 𝑔.

More specifically:

Definition 2.10. (H , 𝑅, 𝑋,A) is a state-variable representation of a state-transition
system Σ = (𝑆, 𝐴, 𝛾, cost) in which 𝑆 contains all total assignments of the state vari-
ables, 𝐴 is the set of all actions represented by the action schemas inA, and 𝛾 is given
by Equation 2.15. Similarly, (H , 𝑅, 𝑋,A, 𝑠0, 𝑔) is a state-variable representation of
the planning problem 𝑃 = (Σ, 𝑠0, 𝑔).

Terminology. When using a state-variable representation for Σ, we will sometimes
call Σ a state-variable planning domain. In this case, Σ is lifted if both 𝑋 and A are
lifted, and ground if both 𝑋 and A are ground. □

In a state-variable representation, some of the total assignments in 𝑆may be nonsen-
sical. For example, let (H , 𝑅, 𝑋,A) be the state-variable representation developed in
Examples 2.1 and 2.8. In the environment that (H , 𝑅, 𝑋,A) is intended to represent,
it would be nonsensical to have a state in which both cargo(r1) = c1 and loc(c1) = d3.
The representation allows such states, but none of them can ever be reached from
states such as the one in Figure 2.2.

In principle, one could formulate constraints to exclude nonsensical states from 𝑆.
However, if the initial state 𝑠0 and the action schemas inA are defined properly, then
no plan that begins at 𝑠0 will ever produce a nonsensical state. Thus such constraints
generally are unnecessary. In the AI planning literature, most of the classical-planning
formulations do not use constraints on states.

2.4 Classical Representation

Classical representation10 is an alternative to state-variable representation that has
been widely used in the literature on automated planning. It differs from state-
variable representation primarily in the following respects. All atoms have a name-
and-arguments syntax, with no ‘=’ or ‘←’ symbols. Each state 𝑠 is represented as the
set of all atoms that are true in 𝑠, hence any atom not in this set is false in 𝑠. Each
planning operator (the classical version of an action schema) has preconditions and
effects that contain atoms and negated atoms.

Figure 2.5 shows state-variable and classical representations of a simple DWR
planning problem. In pedagogical examples like the one in the figure, there usually are
no type declarations in the classical-planning domain, depending instead on the actions
to produce sensible values for the variables. However, computer implementations of
these examples usually do include type declarations (see Section 2.4.1).

10This is also sometimes called “STRIPS representation” because it is similar (though not identical) to
the representation used in the STRIPS planning system [359, 856].

2.4 Classical Representation 23

(a) Initial state 𝑠0

take(𝑟, 𝑐, 𝑙)
pre: loc(𝑟, 𝑙), pos(𝑐, 𝑙), ¬loaded(𝑟)
eff: pos(𝑐, 𝑙), ¬pos(𝑐, 𝑟), loaded(𝑟)

put(𝑟, 𝑐, 𝑙)
pre: loc(𝑟, 𝑙), pos(𝑐, 𝑟)
eff: pos(𝑐, 𝑙), ¬pos(𝑐, 𝑟), ¬loaded(𝑟)

move(𝑟, 𝑙, 𝑚)
pre: loc(𝑟, 𝑙)
eff: loc(𝑟, 𝑚), ¬loc(𝑟, 𝑙)

𝑠0 = {loc(r1,loc1), loc(r2,loc2),
pos(c1,loc1), pos(c2,r2),
loaded(r2)}

𝑔 = {pos(c1,loc2)}

(b) Classical representation

Types:
Robots = {r1,r2}, Containers = {c1,c2},
Locs = {loc1,loc2}, Booleans = {T, F}
𝑟 ∈ Robots; 𝑐 ∈ Containers; 𝑙, 𝑚 ∈ Locs;

loc(𝑟) ∈ Locs;
pos(𝑐) ∈ Locs ∪ Robots;

loaded(𝑟) ∈ Booleans

take(𝑟, 𝑐, 𝑙)
pre: loc(𝑟) = 𝑙, pos(𝑐) = 𝑙, loaded(𝑟) = F
eff: pos(𝑐) ← 𝑟, loaded(𝑟) ← T

put(𝑟, 𝑐, 𝑙)
pre: loc(𝑟) = 𝑙, pos(𝑐) = 𝑟
eff: pos(𝑐) ← 𝑙, loaded(𝑟) ← F

move(𝑟, 𝑙, 𝑚)
pre: loc(𝑟) = 𝑙
eff: loc(𝑟) ←𝑚

𝑠0 = {loc(r1)= loc1, loc(r2)= loc2,
pos(c1)= loc1, pos(c2)= r2,
loaded(r1) = F, loaded(r2) = T}

𝑔 = {pos(c1)= loc2}

(c) State-variable representation

Figure 2.5. State-variable and classical representations of a simple planning problem. It
is similar to Example 2.8, but with the following differences: there are no piles, containers
cannot be stacked on each other, and both robots may be at the same location.

Instead of a list of positive and negative effects, classical planning operators some-
times are written with lists of atoms to add and delete from the current state. For
example, in the take operator in Figure 2.5(b), the ‘eff:’ line may be replaced with

add: loaded(𝑟), pos(𝑐, 𝑙)
del: pos(𝑐, 𝑟)

Classical and state-variable representations have equivalent expressive power. Each
can be translated into the other with at most a polynomial increase in the size of the
representation. Because of this, the computational complexity results in Section 2.5
are independent of whether the planning problems are represented in classical or
state-variable representation.

2.4.1 PDDL Example

PDDL, the Planning Domain Definition Language, is based on classical representation
but uses a LISP-like syntax. As an example, Figure 2.6 shows a PDDL version of
the planning problem in Figure 2.5. The purpose of the requirements clause at the
beginning of the domain definition is to specify what capabilities a planning system

24 2 Deterministic Representation and Acting

(define (domain example-domain)

(requirements

:negative -preconditions)

(:action take

:parameters (?r ?l ?c)

:precondition

(and (loc ?r ?l)

(loc ?c ?l)

(not (loaded ?r)))

:effect

(and (not (loc ?c ?l))

(loc ?c ?r)

(loaded ?r)))

(:action put

:parameters (?r ?l ?c)

:precondition

(and (loc ?r ?l)

(loc ?c ?r))

:effect

(and (loc ?c ?l)

(not (loc ?c ?r))

(not (loaded ?r))))

(:action move

:parameters (?r ?l ?m)

:precondition

(and (loc ?r ?l)

(adjacent ?l ?m))

:effect

(and (not (loc ?r ?l))

(loc ?r ?m))))

(define (problem example-prob)

(:domain example-domain))

(:init

(adjacent loc1 loc2)

(adjacent loc2 loc1)

(loc c1 loc1)

(loc c2 r2)

(loc r1 loc1)

(loc r2 loc2)

(:goal (loc c1 1oc2)))

Figure 2.6. PDDL representation of the classical planning problem in Figure 2.5.

Figure 2.7. Complexity of classical planning problems.

Is 𝑃 lifted Is Σ fixed Complexity of Complexity of
or ground? in advance? PLAN EXISTENCE PLAN LENGTH
lifted no EXPSPACE-complete NEXPTIME-complete
ground no PSPACE-complete PSPACE-complete
lifted yes PSPACE PSPACE
ground yes Constant time Constant time

will need. Here, it specifies that the planner must be able to reason about negative
preconditions such as (not (loaded ?r)) in the take operator.

The domain definition in Figure 2.6 does not include a type hierarchy like the one
in Figure 2.5(b). However, PDDL provides an option for specifying one, by including
:typing in the requirements clause. PDDL also includes ways to write axioms
for inferring properties that are not stated explicitly, preferences on which goals to
achieve, elementary numeric operations, certain kinds of temporal constraints and
deterministic exogenous events. For tutorial expositions of these and other features,
see [481].

2.5 Computational Complexity

Computational complexity results are normally given for decision problems, where
each decision problem is an infinite set questions that have yes/no answers. Here two

2.6 Acting 25

decision problems in which 𝑃 may be any state-variable planning problem:

• PLAN EXISTENCE: does 𝑃 have a solution?
• PLAN LENGTH: does 𝑃 have a solution of length ≤ 𝑘?

Figure 2.7 shows how the computational complexity of each decision problem 𝑃

depends on whether the problem is lifted or ground, and whether the planning domain
is given in the planner’s input or fixed in advance (thus allowing a domain-specific
planner to be used). Section 2.7.1 provides additional information.

The lower computational complexity values when 𝑃 is ground do not mean that
grounding a decision problem will make it easier to solve. Computational complexity
is relative to the size of the problem representation, which is much larger for the
grounded version of a problem than the lifted version, so grounding a problem makes
makes its computational complexity smaller even though the amount of computation
to solve it remains roughly the same.

Although these complexity results may look intimidating, they are worst-case
results. There are many planning domains in which the time complexity is much lower
(for example, many are polynomial in the average case, and some are polynomial even
in the worst case). Furthermore, there are planning algorithms (such as variations of
GBFS in Section 3.1.6) that can often find near-optimal solutions very quickly.

Because of those considerations, it might be more useful to think of the complexity
results as indications of the expressivity of state-variable representation. Despite all
of its restrictions, it is capable of expressing problems that are very hard to solve.

2.6 Acting

Suppose an actor calls a planning algorithm on a planning problem 𝑃 = (Σ, 𝑠0, 𝑆𝑔),
and the planner returns a solution plan 𝜋. IfΣ were a perfect model of the environment,
𝜋 would be guaranteed to produce the state 𝛾(𝑠0, 𝜋). However, because it is very
unlikely that Σ will model the environment perfectly, unexpected outcomes might
occur. These may be caused, for example, by problems with the actor’s execution
platform, incorrect information in the actor’s model of the world, or exogenous events.
In such situations, an actor can sometimes react by selectively choosing which parts
of 𝜋 to execute, as described in the next section. In other cases, the actor may need to
call a planner to get a new plan, as discussed in Section 2.6.2.

2.6.1 Reactive Plan Execution

Sometimes an actor can react to unexpected events during plan execution by repeatedly
choosing which parts of 𝜋 to execute—for example, by re-executing some actions or
skipping some actions. Algorithm 2.2, Reactive-Execution, is a procedure to do this.
In the for loop at Line 2, it searches for a suffix ⟨𝑎𝑖 , . . . , 𝑎𝑛⟩ of 𝜋 that can achieve 𝑔
from the current state 𝑠. It returns failure if the search is unsuccessful, and otherwise
it executes 𝑎𝑖 , gets the new current state, and repeats the search. The for loop at
Line 2 is inefficient because it recomputes many of the same state transitions at each
iteration of the loop, but Exercise 2.5 looks at some ways to speed it up.

26 2 Deterministic Representation and Acting

Reactive-Execution(Σ, 𝜋, 𝑔)
let ⟨𝑎1, . . . , 𝑎𝑛⟩ be the actions in 𝜋

1 while True do
𝑠← observe current state
if 𝑠 |= 𝑔 then return success
𝑎 ← nil

2 for 𝑖 ← 𝑛 down to 1 do
if 𝛾(𝑠, ⟨𝑎𝑖 , . . . , 𝑎𝑛⟩) |= 𝑔 then

𝑎 ← 𝑎𝑖
exit the for loop

if 𝑎 = nil then return failure
perform 𝑎

Algorithm 2.2. Reactive-Execution is an acting procedure that selects and exe-
cutes parts of a plan 𝜋, repeating until it either achieves a goal 𝑔 or fails.

Reactive-Execution can react very quickly in situations where parts of 𝜋 are still
capable of achieving the goal. In other situations, it may be necessary for the actor to
acquire a new or modified plan. We now will discuss some acting procedures that do
this by calling a planner that can be used online.

2.6.2 Acting with Lookahead

Run-Lookahead(Σ, 𝑔)
while True do

𝑠← observed current state
if 𝑠 |= 𝑔 then return success
𝜋 ← Lookahead(Σ, 𝑠, 𝑔)
if 𝜋 = failure then return failure
𝑎 ← pop-first-action(𝜋) // remove and return 𝜋’s first action
trigger the execution of 𝑎

Algorithm 2.3. Run-Lookahead, which replans before each action.

This section discusses two procedures based on the receding-horizon approach
described in Section 1.1.4. Both procedures use an online planning algorithm, Looka-
head, that is not required to return an entire solution plan. The plan may go part of
the way to a goal state, or may even be a single action. Section 2.6.3 will discuss
some ways to modify the planning algorithms in Chapter 3 to do this.

The first procedure is Algorithm 2.3, Run-Lookahead. Until it reaches a goal state,
it repeatedly calls Lookahead to get a plan, performs the first action of the plan,
and calls Lookahead again. This can be useful if the environment often changes

2.6 Acting 27

unpredictably in ways that can cause plans to fail, because it immediately detects
such changes and replans. However, it might be impractical if Lookahead has a large
running time, and it might be unnecessary if plan failures are infrequent.

Run-Lazy-Lookahead(Σ, 𝑔)
𝜋 ← ⟨⟩
while True do

𝑠← observed state
if 𝑠 |= 𝑔 then return success

1 if 𝜋 = ⟨⟩ or Simulate(Σ, 𝑠, 𝑔, 𝜋) = failure then
2 𝜋 ← Lookahead(Σ, 𝑠, 𝑔)

if 𝜋 = failure then return failure
𝑎 ← pop-first-action(𝜋) // remove and return 𝜋’s first action
perform 𝑎

Algorithm 2.4. Run-Lazy-Lookahead, which replans only when necessary.

The second procedure is Algorithm 2.3, Run-Lazy-Lookahead. Repeatedly, it gets
a plan 𝜋 from Lookahead and executes 𝜋 until either it reaches a goal and exits, or 𝜋
ends, or Simulate, a plan simulator, says the rest of 𝜋 will not work properly.

The purpose of Simulate is to detect potential future problems before they occur. A
simple Simulate program could return success if 𝛾(𝑠, 𝜋) |= 𝑔 and failure otherwise.
To detect more subtle problems, Simulate could instead do a more detailed test such
as a physics-based simulation.

Compared to Run-Lookahead, Run-Lazy-Lookahead eliminates the overhead of
planning at every step and replaces it with the overhead of running Simulate at every
step. If Simulate is not too complicated, this will probably reduce the total overhead
since it evaluates a single plan rather than a large space of plans. However, a potential
advantage of Run-Lookahead is that it can respond to exogenous changes that make
a better plan available, such as an unexpected opportunity to take a faster route to a
destination or get a higher score in a game.

Both Run-Lookahead and Run-Lazy-Lookahead interleave acting and planning. It
is also possible to write procedures in which the acting and planning processes run
concurrently. This is more complicated because of the need to coordinate the two
processes, but it can be useful in rapidly changing environments.

2.6.3 Interacting with an Online Planner

We emphasized earlier that Lookahead should be an online planner: the actor may
call it frequently to get updated plans, and it may need to produce plans quickly so
that the actor doesn’t have to make long pauses between actions. However, most of
the planning algorithms to be discussed in Chapter 3 are designed to run offline: they
return only when they have found a solution plan or verified that no solution exists.
In rapidly changing environments, the soundness of such planners can no longer be
guaranteed: by the time that the planner returns a plan, changes to the environment

28 2 Deterministic Representation and Acting

may already have invalidated it. To use such a planner online, one may want to
modify the planner or how the actor interacts with it. We now discuss some possible
modifications.

Subgoaling. One way that the actor can reduce the amount of time used by the
planner is to call it on smaller planning problems. Instead of giving a planner the
ultimate goal 𝑔, the actor may instead give the planner a subgoal that needs to be
achieved in order to achieve 𝑔. Once the subgoal has been achieved, the actor may
formulate its next subgoal and call the planner again.

In practical settings, formulating these subgoals is usually done in a domain-specific
manner. However, one possible domain-independent approach may be to compute an
ordered set of landmarks (see Section 3.2.3) and choose the earliest one as a subgoal.

Limited-horizon planning. Recall that in the receding-horizon technique, the plan-
ner starts at the current state and searches until it either reaches a goal or exceeds
the planning horizon, then it returns the best solution or partial solution it has found.
Several of the planning algorithms in Chapter 3 can be modified to do this.

The term partial solution is somewhat misleading because there is no guarantee
that the plan will actually lead the actor toward a goal. However, even a complete
solution plan will not always enable an actor to reach the goal, because the actor may
encounter problems that are not in the planner’s domain model.

Sampling. In a sampling search, the planner uses a modified version of greedy
search (Section 3.1.2) in which the node selection is randomized. The choice can
be purely random, or it can be weighted according to a heuristic evaluation (see
Chapter 3). The modified algorithm can do this several times to generate multiple
solutions, and either return the one that looks best or return the 𝑛 best solutions so
that the actor can evaluate them further. The UCT and UPOM algorithms in Chapters
9 and 15 use this technique.

2.6.4 Acting with Plan Repair

When an actor runs into problems while executing a plan 𝜋, sometimes it is preferable
to repair 𝜋 instead of calling Lookahead to get a new one. This can reduce the runtime
needed for planning, and can also improve the plan’s stability, that is, the amount of
the original plan 𝜋 that is retained in the repaired plan. While executing 𝜋, the actor
might have made commitments to other actors that would be difficult to cancel, or
may have obtained resources that are needed later in 𝜋 and are important not to waste.
Plan stability can also be important for human interaction, as users may be confused
if an actor makes radical changes to 𝜋 in response to trivial problems.

To modify Run-Lazy-Lookahead to try to repair plans, Line 2 can be replaced with

𝜋 ← Lookahead-Repair(Σ, 𝑠, 𝑔, 𝜋)

where Lookahead-Repair should attempt to repair 𝜋, and return a new plan only if its
repair attempts fail. Section 3.5 discusses some possible plan-repair algorithms.

2.7 Discussion and Bibliographic Notes 29

2.7 Discussion and Bibliographic Notes

2.7.1 Classical and State-Variable Representations

Although problem representations based on state variables have long been used in
control-system design [440, 992, 305] and operations research [1075, 7, 519], their
use in automated-planning research came much later [69, 71, 391]. Instead, most
automated-planning research has used representation and reasoning techniques de-
rived from mathematical logic. This began with the early work on GPS [843] and the
situation calculus [771] and continued with the STRIPS planning system [359] and the
classical representation described in Section 2.4 [856, 883, 715, 410, 967]. Classical
representation is sometimes called STRIPS representation, but it is somewhat simpler
than the representation used in the STRIPS planner [359].

In classical and state-variable planning domains, it is possible to encode (rather
awkwardly) arithmetic relations among finite sets of numbers [481]. State-variable
representations can be extended to include real numeric state variables, but this incurs
a sharp increase in computational complexity [489].

The PDDL representation language was first published in 1998 [409] for use in the
AIPS-98 planning competition [735], the first of a long series of International Planning
Competitions.11 The language has gone through several updates and extensions, but
has remained static since 2008. For an excellent exposition of its features, see [481].

The complexity results in Section 2.5, and several other related results, are proved in
[329]. The proofs are stated using classical representation, but can easily be translated
to state-variable representation.

Ground representations. A classical representation is ground if it contains no un-
ground atoms. With this restriction, the planning operators have no parameters; hence
each planning operator represents just a single action. Ground classical representa-
tions usually are called propositional representations [194], because the ground atoms
can be rewritten as propositional variables.

Every classical representation can be translated into an equivalent propositional
representation by replacing each planning operator with all of its ground instances
(all of the actions that it represents), but this incurs a combinatorial explosion in
the size of the representation. If a planning operator has 𝑝 parameters and each
parameter has 𝑣 possible values, then there are 𝑣𝑝 ground instances. In a ground
classical representation, each instance must be written explicitly, thus increasing the
size of the representation by a multiplicative factor of 𝑣𝑝.

A ground state-variable representation is one in which all of the state variables are
ground. Each ground state variable can be rewritten as a state variable that has no ar-
guments (like an ordinary mathematical variable) [71, 490, 941]. Every state-variable
representation can be translated into an equivalent ground state-variable representa-
tion, with a combinatorial explosion like the one in the classical-to-propositional
conversion. If an action schema has 𝑝 parameters and each parameter has 𝑣 possible
values, then the ground representation is larger by a factor of 𝑣𝑝.
11See https://www.icaps-conference.org/competitions/

https://www.icaps-conference.org/competitions/

30 2 Deterministic Representation and Acting

The propositional and ground state-variable representation schemes are both
PSPACE-equivalent [193, 70]. They can represent exactly the same set of planning
problems as classical and state-variable representations; but as we just discussed, they
may require exponentially more space to do so. This lowers the complexity class
because computational complexity is expressed as a function of the size of the input.

In a previous work [410, Section 2.5.4], we claimed that propositional and ground
state-variable representations could each be converted into the other with at most a
linear increase in size, but that claim was only partially correct. Propositional actions
can be converted to ground state-variable actions with at most a linear increase in
size, using a procedure similar to the one we used to convert planning operators to
action schemas. For converting in the reverse direction, the worst-case increase in
size is polynomial but superlinear.12

The literature contains several examples of cases in which the problem representa-
tion and the computation of heuristic functions can be done more easily with ground
state variables than with propositions [491, 941]. Helmert [490, Section 1.3] advances
a number of arguments for considering ground state-variable representations superior
to propositional representations.

2.7.2 Generalized Domain Models

If we ignore Remark 2.6, state-variable representation can be generalized to let states
be arbitrary data structures, and an action schema’s preconditions, effects, and cost
be arbitrary computable functions operating on those data structures. Analogous
generalizations can be made to the classical representation in Section 2.4 by allowing a
predicate’s arguments to be functional terms whose values are calculated procedurally
rather than inferred logically [481]. Such generalizations make some kinds of planning
algorithms and search heuristics inapplicable (see Section 3.6.7), but can make the
domain models applicable to a much larger variety of application domains,

There are several other ways to generalize the action models in Section 2.3.2, such
as explicit models of time requirements or multiple possible outcomes. Parts III, IV,
V, and VI discuss several such generalizations.

2.7.3 Online Planning

The automated planning literature started very early to address the problems of inte-
grating a planner in the acting loop of an agent. Concomitant to the seminal paper
on STRIPS [359], Fikes [358] proposed a program called Planex for monitoring the
execution of a plan and revising planning when needed, and our Reactive-Execution
algorithm is inspired by the “triangle table” data structure used in that work. Nu-
merous contributions followed (e.g., [36, 464, 1024, 1125, 909, 826, 177]). As we

12We believe it is a multiplicative factor in the interval [lg 𝑣, 𝑣], where 𝑣 is the maximum size of any
state variable’s range. The lower bound, lg 𝑣, follows from the observation that if there are 𝑛 state
variables, then representing the states may require 𝑛 lg 𝑣 propositions, with commensurate increases
in the size of the planning operators. The upper bound, 𝑣, follows from the existence of a con-
version procedure that replaces each action’s effect 𝑥(𝑐1, . . . , 𝑐𝑛) ← 𝑑with the following set of literals:

{𝑝𝑥 (𝑐1, . . . , 𝑐𝑛, 𝑑)} ∪ {¬𝑥(𝑐1, . . . , 𝑐𝑛, 𝑑
′) | 𝑑′ ∈ Range(𝑥(𝑐1, . . . , 𝑐𝑛)) \ {𝑑}}.

2.8 Exercises 31

remarked at the beginning of Section 2.6.3, a limitation of all these works is that their
soundness cannot be guaranteed if the environment changes too rapidly [62].

Problems involving integration of classical planning algorithms into the control
architecture of specific systems, such as spacecraft, robots, or Web services, have
been extensively studied. However, many of these contributions have assumed, as we
did tacitly in Section 2.6, that the plans generated by the planning algorithms were
directly executable, an assumption that is often unrealistic. Part V will discuss the
integration of planning and acting with refinement of actions into commands, and
ways to react to events.

The receding-horizon technique has been widely used in control theory, specifically
in model-predictive control. The survey by Garcia et al. [380] traces its implemen-
tation back to the early sixties. The general idea is to use a predictive model to
anticipate over a given horizon the response of a system to some control and to select
the control such that the response has some desired characteristics. Optimal control
seeks a response that optimizes a criterion. The use of these techniques together with
task planning has been explored by Dean and Wellman [285].

Subgoaling has been used in the design of several problem-solving and search
algorithms (e.g., [671, 641]). It is especially useful if the goals are serialized, that is,
ordered in a sequence such that each one can be achieved without negating the ones
that were previously achieved. A set of goals is serializable if they can be serialized
[641],13 and serializable goals can be further classified as trivially serializable (for
example, goals that are fully independent) and laboriously serializable [86].

In practical applications, subgoaling often involves domain-specific techniques.
For example, the video game Killzone 2 [1137, 214] does subgoal planning with the
planner running several times per second, concurrently with acting, for short-term
objectives such as “get to shelter” for its computerized opponents.

Sampling techniques are widely used for handling stochastic models of uncertainty
and nondeterminism (see Part III).

2.8 Exercises

2.1. Let 𝑃1 = (Σ, 𝑠0, 𝑔1) and 𝑃2 = (Σ, 𝑠0, 𝑔2) be two classical planning problems
with the same planning domain and initial state. Let 𝜋1 = ⟨𝑎1, . . . , 𝑎𝑛⟩ and 𝜋2 =

⟨𝑏1, . . . , 𝑏𝑛⟩ be solutions for 𝑃1 and 𝑃2, respectively. Let 𝜋 = ⟨𝑎1, 𝑏1, . . . , 𝑎𝑛, 𝑏𝑛⟩.

(a) If 𝜋 is applicable in 𝑠0, then is it a solution for 𝑃1? For 𝑃2? Why or why not?
(b) 𝐸1 be the set of all state variables in eff(𝑎1), . . . , eff(𝑎𝑛), and 𝐸2 be the set of

all state variables in eff(𝑏1), . . . , eff(𝑏𝑛). If 𝐸1 ∩ 𝐸2 = ∅, then is 𝜋 applicable
in 𝑠0? Why or why not?

(c) Let 𝑃1 be the set of all state variables that occur in pre(𝑎1), . . . , pre(𝑎𝑛),
and 𝑃2 be the set of all state variables that occur in the preconditions of
pre(𝑏1), . . . , pre(𝑏𝑛). If 𝑃1 ∩ 𝑃2 = ∅ and 𝐸1 ∩ 𝐸2 = ∅, then is 𝜋 applicable in
𝑠0? Is it a solution for 𝑃1? For 𝑃2? Why or why not?

13For example, Figure 2.8 is a nonserializable planning problem called the Sussman anomaly [1145].

32 2 Deterministic Representation and Acting

pickup(𝑥)
pre: loc(𝑥) = table, top(𝑥) = nil,

holding= nil
eff: loc(𝑥) ← hand, holding← 𝑥

putdown(𝑥)
pre: holding= 𝑥
eff: loc(𝑥) ← table, holding← nil

unstack(𝑥, 𝑦)
pre: loc(𝑥) = 𝑦, top(𝑥) = nil,

holding= nil
eff: loc(𝑥) ← hand, top(𝑦) ← nil,

holding← 𝑥

stack(𝑥, 𝑦)
pre: holding= 𝑥, top(𝑦) = nil
eff: loc(𝑥) ← 𝑦, top(𝑦) ← 𝑥,

holding← nil

Objects = Blocks ∪ {hand, table, nil}
Blocks = {a, b, c}

a	
c	

b	

𝑠0 = {top(a) = c, top(b) = nil,
top(c) = nil, holding= nil,
loc(a) = table, loc(b) = table,
loc(c) = a}

𝑔 = {loc(a) = b, loc(b) = c}

(a) action schemas, where 𝑥, 𝑦 ∈ Blocks (b) objects, initial state, and goal

Figure 2.8. A blocks-world planning domain and a planning problem.

2.2. Give a classical planning problem 𝑃1 and a solution 𝜋1 for 𝑃1 such that 𝜋1 is
minimal but not shortest. Give a classical planning problem 𝑃2 and a solution 𝜋2 for
𝑃2 such that 𝜋2 is acyclic but not minimal.

2.3. Let Σ = (𝑆, 𝐴, 𝛾) be the state-transition system represented by H , 𝑅 𝑋 , and A
in Examples 2.1 and 2.8.

(a) How many states are in 𝑆? How many actions are in 𝐴? Briefly describe them.
(b) Let 𝑆′ be the set of all states reachable from 𝑠0, that is,

𝑆′ = {𝛾(𝑠0, 𝜋) | 𝜋 is a plan that is applicable in 𝑠0}.

How many states are in 𝑆′? Give an example of a state in 𝑆 that is not in 𝑆′.
(c) Do the states in 𝑆 all have sensible meanings? Do the states in 𝑆′?
(d) Let 𝑃 = (Σ, 𝑠0, 𝑔), where 𝑠0 is as in Example 2.1 and 𝑔 = {pos(c1) = d2}. Give

a shortest solution for 𝑃. Give a solution that is minimal but not shortest. How
many minimal solutions are there?

2.4. The blocks world is a well-known classical planning domain14 in which a set of
cubical blocks, Blocks = {a, b, c, . . .}, are arranged in stacks of varying size on an
infinitely large table, table. To move the blocks, there is a robot hand, hand, that can
hold at most one block at a time.

Figure 2.8(a) gives the action schemas. For each block 𝑥, loc(𝑥) is 𝑥’s location,
which may be table, hand, or another block; and top(𝑥) is the block (if any) that is on
𝑥, with top(𝑥) = nil if nothing is on 𝑥. Finally, holding tells what block the robot hand
is holding, with holding = nil if the hand is empty.
14More accurately, because the number of blocks may vary, it is a set of planning domains.

2.8 Exercises 33

(a) Why are there four action schemas rather than just two?
(b) Is the state variable holding really needed? Why or why not?
(c) In the planning problem in Figure 2.8(b), how many states satisfy 𝑔?
(d) Give necessary and sufficient conditions for a set of blocks-world atoms to be

a state.
(e) Is every blocks world planning problem solvable? Why or why not?

2.5. This exercise involves the for loop at Line 2 of Reactive-Execution.

(a) Give the loop’s big-𝑂 time complexity as a function of 𝑛 and 𝑘 , where 𝑛 is the
number of actions in 𝜋, and 𝑘 is the maximum number of preconditions and
effects of each action in 𝜋.

(b) The for loop can be made much faster by using a table that relates each action’s
preconditions to effects of previous actions and the initial state, and relates each
action’s effects to the preconditions of subsequent actions and the goal. Write
such a data structure, rewrite the for loop to use it, and analyze the resulting
time complexity.

2.6. Suppose an actor starts in state 𝑠0 of the planning problem shown in Figure 2.5,
using Run-Lazy-Lookahead with a Lookahead algorithm that always returns the short-
est possible solution plan. The first call to Lookahead returns

𝜋 = {take(r1,c1,loc1), move(r1,loc1,loc2), put(r1,c1,loc2)}.

(a) Suppose that after the actor has performed take(r1,c1,loc1) and
move(r1,loc1,loc2), monitoring reveals that c1 fell off of the robot and is still
back at loc1. Tell what will happen, step by step. Assume that Lookahead(𝑃)
will always return the best solution for 𝑃.

(b) Repeat part (a) assuming that c1 will fall off of the robot every time it performs
move(r1,loc1,loc2).

(c) Repeat part (a) using Run-Lookahead.
(d) Suppose that after the actor has performed take(r1,c1,loc1), monitoring reveals

that r1’s wheels have stopped working, hence r1 cannot move from loc1. What
should the actor do to recover? How would you modify Run-Lazy-Lookahead
and Run-Lookahead to accomplish this?

2.7. Consider the planning domain in Examples 2.1 and 2.8.

(a) Rewrite the planning domain using classical representation.
(b) Rewrite it in PDDL.

3 Planning with Deterministic Models

Section 1.1.2 introduced the idea of domain-independent planning algorithms.
Domain-independent classical-planning algorithms, which are the subject of this
chapter, were until recently the most widely studied class of AI planning algorithms.

This chapter is organized as follows. Section 3.1 classifies and describes a variety
of forward-search planning algorithms, and Section 3.2 provides some heuristics to
guide such algorithms. Sections 3.3 and 3.4 describe backward search and plan-space
planning algorithms. Section 3.6 provides discussion and bibliographic notes, and
Section 3.7 contains exercises.

3.1 Forward State-Space Search

Forward-Search(Σ, 𝑠0, 𝑔)
𝑠← 𝑠0; 𝜋 ← ⟨⟩
while 𝑠 ̸ |= 𝑔 do

if Applicable(𝑠) = ∅ then return failure
1 nondeterministically choose 𝑎 ∈ Applicable(𝑠)

𝑠← 𝛾(𝑠, 𝑎); 𝜋 ← 𝜋 ·𝑎
return 𝜋

Algorithm 3.1. Forward-Search, a schema for forward state-space search.

Given a planning problem 𝑃 = (Σ, 𝑠0, 𝑔), many classical planning algorithms search
forward from the initial state 𝑠0 to try to construct a sequence of actions that reaches a
state in 𝑆𝑔. Algorithm 3.1, Forward-Search, is a procedural schema for a wide variety
of such algorithms. In Line 1, the idea is to try various actions 𝑎 ∈ Applicable(𝑠)
until we find one that we like, and the “nondeterministically choose” command is an
abstraction that allows us to ignore the precise order in which to try them. This lets us
describe properties of all algorithms that search the same search space, irrespective
of the order in which they visit the nodes. For more details of such nondeterministic
algorithms, see Appendix A.

The search space for a planning problem 𝑃 = (Σ, 𝑠0, 𝑔) is a graph containing every
path that Forward-Search(Σ, 𝑠0, 𝑔) can generate, that is, all paths that start at 𝑠0 and do
not continue beyond goal states. We will use the following terminology and notation:

• To keep the presentation simple, we will write each node as a pair 𝜈 = (𝜋, 𝑠),
where 𝜋 is a plan and 𝑠 = 𝛾(𝑠0, 𝜋). In practical implementations, however, 𝜈
will usually include other information such as its depth, cost, and pointers to

34
Free pre-publication, for personal use only. To be published by Cambridge University Press.

3.1 Forward State-Space Search 35

parent and child nodes. Most implementations will not store 𝜋 explicitly in 𝜈,
but instead will calculate it by tracing the “parent” pointers from 𝜈 back to the
initial node.

• The initial or starting node is the pair (⟨⟩, 𝑠0), where ⟨⟩ is the empty plan and
𝑠0 is the initial state.

• If 𝜈 = (𝜋, 𝑠) is a node and 𝑎 ∈ 𝐴 is applicable in 𝑠, then the node (𝜋 ·𝑎, 𝛾(𝑠, 𝑎))
is a child of 𝜈. To expand a node 𝜈 means to generate all of its children.

• A successor or descendant of a node 𝜈 is any child of 𝜈 or, recursively, a
successor of any child of 𝜈. An ancestor of 𝜈 is any node 𝜈′ such that 𝜈 is a
successor of 𝜈′.

• The depth of a node 𝜈 = (𝜋, 𝑠) is the length of the path 𝛾̂(𝑠0, 𝜋), or equivalently,
the length of 𝜋. The search space’s height is the length of the longest acyclic path
that starts at the initial node. Its maximum branching factor is the maximum
number of children of any node.

• The cost of a node 𝜈 = (𝜋, 𝑠) is cost(𝜈) = cost(𝜋).

Forward-Search-Det(Σ, 𝑠0, 𝑔)
Frontier← {(⟨⟩, 𝑠0)} // (⟨⟩, 𝑠0) is the initial node
Expanded← ∅
while Frontier ≠ ∅ do

1 select a node (𝜋, 𝑠) ∈ Frontier
remove (𝜋, 𝑠) from Frontier and add it to Expanded

2 if 𝑠 satisfies 𝑔 then return 𝜋
Children← {(𝜋 ·𝑎, 𝛾(𝑠, 𝑎)) | 𝑎 ∈ 𝐴 is applicable in 𝑠}

3 prune (i.e., select and remove) 0 or more nodes from Children, Frontier,
and Expanded

4 Frontier← Frontier ∪ Children
return failure

Algorithm 3.2. Forward-Search-Det, a deterministic version of Forward-Search.

Algorithm 3.2, Forward-Search-Det, is a deterministic version of Forward-Search
in which Frontier is a set of nodes that are candidates to be visited, and Expanded is a
set of nodes that have already been visited. During each loop iteration, the algorithm
selects a node, generates its children, prunes some unpromising nodes, and updates
Frontier to include the remaining children. Many forward-search planning algorithms
can be described as versions of Forward-Search-Det by specifying how they select
nodes in Line 1 and prune nodes in Line 3.

In many forward-search algorithms, the pruning step (Line 3 of Forward-Search-
Det) often includes a cycle-checking step:

Remove from Children every node 𝜈 = (𝜋, 𝑠) for which an ancestor of 𝜈
has the same state 𝑠.

In classical planning problems (and any other planning problems in which the state
space is finite), cycle checking guarantees that the search will always terminate.

36 3 Planning with Deterministic Models

3.1.1 Breadth-First and Depth-First Search

Breadth-first search can be written as a version of Forward-Search-Det with selection
and pruning as follows:

• Node selection. Select a node 𝜈 = (𝜋, 𝑠) ∈ Children that minimizes the length
of 𝜋. If there are several such nodes, some possible tie-breaking rules are to
choose the leftmost node or to choose a node that minimizes cost(𝜋), ℎ(𝑠), or
𝑓 (𝜈).

• Pruning. Remove from Children and Frontier every node (𝜋, 𝑠) such that
Expanded contains a node (𝜋′, 𝑠′) such that 𝑠′ = 𝑠. This keeps the algorithm
from expanding 𝑠 more than once.

In classical planning problems, breadth-first search will always terminate and will
return a solution if one exists. The solution will be shortest but not necessarily
cost-optimal.

Because breadth-first search keeps only one path to each node, its worst-case
memory requirement is 𝑂 (|𝑆 |), where |𝑆 | is the number of nodes in the search space.
Its worst-case running time is 𝑂 (𝑏 |𝑆 |), where 𝑏 is the maximum branching factor.

Depth-first search is usually written as a recursive algorithm, but it can be rewritten
to run iteratively as a version of Forward-Search-Det In classical planning problems,
it will always terminate and will return a solution if one exists, but the solution will
not necessarily be shortest or cost-optimal.

Depth-first search only needs to remember the nodes along the current path and the
children of those nodes, so the worst-case memory requirement is 𝑂 (𝑏𝑙), where 𝑏 is
the maximum branching factor and 𝑙 is the height of the search space. However, the
worst-case running time is 𝑂 (𝑏𝑙), which can be much worse than 𝑂 (|𝑆 |) if there are
many paths from 𝑠0 to each state.

3.1.2 Greedy Search

Greedy search is a depth-first search with no backtracking:

• Node selection. Select a node (𝜋, 𝑠) ∈ Children that minimizes ℎ(𝑠).
• Pruning. First, do cycle checking. Then assign Frontier ← ∅, so that Line 4

of Forward-Search-Det will be the same as assigning Frontier← Children.

The search follows a single path, and prunes all nodes not on that path. It is guaranteed
to terminate on classical planning problems, but it is not guaranteed to return an
optimal solution or even a solution at all. Its worst-case running time is𝑂 (𝑏𝑙) and its
the worst-case memory requirement is 𝑂 (𝑙), where 𝑙 is the height of the search space
and 𝑏 is the maximum branching factor.

3.1.3 Uniform-Cost Search

Uniform-cost (or least-cost first) search is somewhat like breadth-first search, but it
does node selection and pruning using the accumulated cost of each node:

• Node selection. Select a node (𝜋, 𝑠) ∈ Children that minimizes cost(𝜋).

3.1 Forward State-Space Search 37

• Pruning. Remove from Children and Frontier every node (𝜋, 𝑠) such that
Expanded contains a node (𝜋′, 𝑠). In classical planning problems (and any other
problems in which all costs are nonnegative), it can be proved that cost(𝜋′) ≤
cost(𝜋), so this step ensures that the algorithm only keeps the least costly path
to each node.

In classical planning problems, the search is guaranteed to terminate and to return an
optimal solution. Like breadth-first search, its worst-case running time and memory
requirement are 𝑂 (𝑏 |𝑆 |) and 𝑂 (|𝑆 |), respectively.

3.1.4 Using a Heuristic Function

Most forward-search planning algorithms attempt to find a solution without exploring
the entire search space, which in the worst case can be exponentially large.1 To make
informed guesses about which parts of the search space are more likely to lead to
solutions, node selection (Line 1 of Forward-Search-Det) often involves a heuristic
function ℎ : 𝑆 → R that returns an estimate of ℎ∗(𝑠), which is the minimum cost of
getting from 𝑠 to a goal state:

ℎ(𝑠) ≈ ℎ∗(𝑠) = min{cost(𝜋) | 𝛾(𝑠, 𝜋) satisfies 𝑔}. (3.1)

As a special case, we require that ℎ(𝑠) = 0 whenever 𝑠 satisfies 𝑔. In Section 3.2 we
will discuss some ways to compute heuristic functions.

Given a node 𝜈 = (𝜋, 𝑠), some forward-search algorithms will use ℎ to compute an
estimate 𝑓 (𝜈) of the minimum cost of any solution plan that begins with 𝜋:2

𝑓 (𝜈) = cost(𝜋) + ℎ(𝑠) ≈ 𝑓 ∗(𝜈), (3.2)
where

𝑓 ∗(𝜈) = min{cost(𝜋 ·𝜋′) | 𝛾(𝑠0, 𝜋 ·𝜋′) satisfies 𝑔}. (3.3)

If 0 ≤ ℎ(𝑠) ≤ ℎ∗(𝑠) for every 𝑠 ∈ 𝑆, then ℎ is admissible, from which the following
properties follow immediately:

• 𝑓 (𝜈) ≤ 𝑓 ∗(𝜈), i.e., 𝑓 (𝜈) is a lower bound on the cost of every solution that
begins with 𝜋;

• If 𝑠 is a goal state, then ℎ(𝑠) = 0 and 𝑓 (𝜈) = cost(𝜋).

3.1.5 A*

A*, Algorithm 3.3, is similar to uniform-cost search but it uses a heuristic function
for node selection. This makes A*’s pruning more complicated. If a node in Children
has the same state as one in Expanded or Frontier, it compares their costs and keeps
only the least costly one.

Here are some of A*’s properties:
1The worst-case computational complexity is EXPSPACE-equivalent (see Section 3.6), although the
complexity of a specific planning domain usually is much less.

2In many presentations of heuristic search, 𝑓 (𝜈) is written as 𝑓 (𝑠), but that causes ambiguity if there
is more than one plan 𝜋 such that 𝛾(𝑠0, 𝜋) = 𝑠. Making 𝑓 a function of 𝜈 avoids that difficulty.

38 3 Planning with Deterministic Models

A*(Σ, 𝑠0, 𝑔)
Use Forward-Search-Det with node selection and pruning as follows:

• Node selection. In Line 1, select a node 𝜈 ∈ Children that minimizes
𝑓 (𝜈) (defined in Equation 3.2).

• Pruning. In Line 3, for each node (𝜋, 𝑠) ∈ Children, if there is a node
(𝜋′, 𝑠′) ∈ Frontier ∪ Expanded such that 𝑠′ = 𝑠, then keep whichever
of (𝜋, 𝑠) and (𝜋′, 𝑠′) has lower cost,a and prune the other one and its
descendants.

aIf both nodes have the same cost, a typical tie-breaking rule is to keep the oldest one.

Algorithm 3.3. The A* algorithm.

• Termination, completeness, and optimality. On any classical planning problem,
A* will terminate and return a solution if one exists. If ℎ is admissible, then this
solution will be optimal.

• Epsilon-optimality. If ℎ is 𝜖-admissible (i.e., if there is an 𝜖 > 0 such that
0 ≤ ℎ(𝑠) ≤ ℎ∗(𝑠) + 𝜖 for every 𝑠 ∈ 𝑆), then the solution returned by A* will be
within 𝜖 of optimal.

• Monotonicity. If ℎ(𝑠) ≤ cost(𝛾(𝑠, 𝑎)) + ℎ(𝛾(𝑠, 𝑎)) for every state 𝑠 and ap-
plicable action 𝑎, then ℎ is said to be monotone or consistent. In this case,
𝑓 (𝜈) ≤ 𝑓 (𝜈′) for every child 𝜈′ of a node 𝜈, from which it can be shown that
A* will never prune any nodes from Expanded, and will expand no state more
than once.

• Informedness. Let ℎ1 and ℎ2 be admissible heuristic functions such that ℎ2
dominates3 ℎ1, i.e., 0 ≤ ℎ1(𝑠) ≤ ℎ2(𝑠) ≤ ℎ∗(𝑠) for every 𝑠 ∈ 𝑆. Then A*
will never expand more nodes4 with ℎ2 than with ℎ1, and in most cases, it will
expand fewer nodes with ℎ2 than with ℎ1.

A*’s primary drawback is its space requirement: it needs to store every state that it
visits. Like uniform-cost search, A*’s worst-case running time and memory require-
ment are 𝑂 (𝑏 |𝑆 |) and 𝑂 (|𝑆 |). However, with a good heuristic function, A*’s running
time and memory requirement are usually much smaller.

3.1.6 Greedy Best-First Search

For classical planning problems where nonoptimal solutions are acceptable, the most
frequently used search algorithm is Greedy Best-First Search (GBFS), which works
as follows:

Like hill climbing, GBFS continues to expand nodes along its current path as long
as that path looks promising. But like A*, GBFS stores every state that it visits. Hence

3Dominance has often been described by saying that “ℎ2 is more informed than ℎ1,” but that phrase is
awkward because ℎ2 always dominates itself.

4This assumes that when A* chooses among nodes that have the same 𝑓 -value, it always uses the same
tie-breaking rule.

3.1 Forward State-Space Search 39

GBFS(Σ, 𝑠0, 𝑔)
Use Forward-Search-Det with node selection and pruning as follows:

• Node selection. In Line 1, select a node (𝜋, 𝑠) ∈ Frontier that mini-
mizes ℎ(𝑠).

• Pruning. In Line 3, pruning should at least include cycle checking. In
other cases where a node in (𝜋, 𝑠) ∈ Children has the same state 𝑠 as
some other node, one could prune one of the nodes arbitrarily, prune
the higher-cost node, or do no pruning.a

aThe rationale for no pruning is that with a good heuristic function, GBFS is unlikely to
select both nodes for expansion.

Algorithm 3.4. GBFS, greedy best-first search.

it can easily switch to a different path if the current path dead-ends or ceases to look
promising.

Like A*, GBFS’s worst-case running time and memory requirement are𝑂 (𝑏 |𝑆 |) and
𝑂 (|𝑆 |). Unlike A*, GBFS is not guaranteed to return optimal solutions; but in most
cases, it will explore far fewer paths than A* and find solutions much more quickly.

DFBB(Σ, 𝑠0, 𝑔)
return (DFBB1(Σ, (𝑠0, ⟨⟩), 𝑔, failure,∞))

DFBB1(Σ, 𝜈, 𝑔, 𝜋∗, 𝑐∗)
(𝜋, 𝑠) ← 𝜈

if 𝑠 |= 𝑔 and cost(𝜋) < 𝑐∗ then
1 𝑐∗ ← cost(𝜋); 𝜋∗ ← 𝜋

2 else if 𝑓 (𝜈) < 𝑐∗ then
Children← {(𝜋 ·𝑎, 𝛾(𝑠, 𝑎)) | 𝑎 ∈ 𝐴 is applicable in 𝑠}
foreach 𝜈 ∈ Children do
(𝑐∗, 𝜋∗) ← DFBB1(Σ, 𝜈, 𝑔, 𝜋∗, 𝑐∗)

return (𝑐∗, 𝜋∗)

Algorithm 3.5. DFBB, depth-first branch and bound.

3.1.7 Depth-First Branch and Bound

Depth-first branch and bound, DFBB, is a modified version of depth-first search. If
the heuristic function 𝑓 in Line 2 is admissible, it will return a least-cost solution if a
solution exists. In the initial recursive call, 𝜈 = (𝑠0, ⟨⟩) is the root node. The variables
𝜋∗ and 𝑐∗ are the least costly solution seen so far and its cost, which are updated in
Line 1 each time a solution is found. Line 2 expands 𝜈 only if 𝑓 (𝜈) < 𝑐∗, which
can prune large parts of the search space if 𝑐∗ is small. When the recursive calls are

40 3 Planning with Deterministic Models

finished, DFBB returns the pair (𝜋∗, 𝑐∗).
DFBB has the same termination, completeness, and optimality properties as A*.

The only nodes in its recursion stack are the nodes in the current path and their sibling
nodes, so its memory requirement is usually much lower than A*’s. However, like
depth-first search, if there are many paths to a state it may revisit the state many times,
which can make its running time much worse than A*’s. In the worst case, its running
time and memory requirement are𝑂 (𝑏𝑙) and𝑂 (𝑏𝑙), the same as for depth-first search.

IDS(Σ, 𝑠0, 𝑔)
for 𝑘 ← 1 to∞ do

do a depth-first search of (Σ, 𝑠0, 𝑔), backtracking at all nodes of depth 𝑘
if the search found a solution then return it
if the search generated no nodes of depth 𝑘 then return failure

Algorithm 3.6. IDS, iterative-deepening search.

3.1.8 Iterative Deepening

Several forward-search algorithms wrap a depth-first search inside an iterative loop.
One of the best known is iterative-deepening search (IDS), Algorithm 3.6. On classical
planning problems, its termination, completeness, and optimality properties are the
same as for breadth-first search. Its primary advantage over breadth-first search is
that its worst-case memory requirement is only 𝑂 (𝑏𝑑), where 𝑑 is the depth of the
solution returned if there is one, or the height of the search space otherwise. If the
number of nodes at each depth 𝑘 grows exponentially with 𝑘 , then IDS’s worst-case
running time is 𝑂 (𝑏𝑑), which can be substantially worse than breadth-first search if
there are many paths to each state.

IDA*(Σ, 𝑠0, 𝑔)
𝑐 ← 0
while True do

do a depth-first search of (Σ, 𝑠0, 𝑔), backtracking whenever 𝑓 (𝜈) > 𝑐
if the search found a solution then return it
if the search did not generate an 𝑓 (𝜈) > 𝑐 then return failure
𝑐 ← the smallest 𝑓 (𝜈) > 𝑐 where backtracking occurred

Algorithm 3.7. IDA*, iterative-deepening A*.

A closely related algorithm, iterative-deeping A* (Algorithm 3.7), uses a cost
bound rather than a depth bound. On classical planning problems, IDA*’s termination,
completeness, and optimality properties are the same as those of A*, and its worst-
case memory requirement is 𝑂 (𝑏𝑙), where 𝑙 is the height of the search space. If
the number of nodes grows exponentially with 𝑐 (which usually is true in classical

3.2 Heuristic Functions 41

planning problems but less likely to be true in nonclassical ones), then IDA*’s worst-
case running time is𝑂 (𝑏𝑑), where 𝑑 is either the depth of the solution found by IDA*,
or the height of the search space if there is no solution. This can be substantially
worse than A*’s running time if there are many paths to each state.

3.1.9 Choosing a Forward-Search Algorithm

It is difficult to give any hard-and-fast rules for choosing among the forward-search
algorithms presented here, but here are some rough guidelines.

If the solution must be optimal (or within 𝜖 of optimal) and one has a good heuristic
function that is admissible (or 𝜖-admissible, respectively), then an A*-like algorithm
is a good choice if the state space is small enough to store every node in main memory.
If the state space is too large to hold in main memory, then an algorithm such as DFBB
or IDA* may be worth trying, but there may be problems with excessive running time
if the state space has many paths to each state.

If a nonoptimal solution is acceptable and a good heuristic function is available,
often the best choice is to develop a planning algorithm that uses either GBFS or
one that weights ℎ more heavily than 𝑔. There are no guarantees as to GBFS’s
performance, but with a good heuristic function it usually works quite well.

For integration of planning into acting, an important question is how to turn any of
these algorithms into online algorithms. This is discussed further in Chapter 3.

3.2 Heuristic Functions

Recall from Section 3.1.4 that a heuristic function ℎ computes an estimate of ℎ∗(𝑠),
and ℎ is admissible if 0 ≤ ℎ(𝑠) ≤ ℎ∗(𝑠) for every state 𝑠.

The simplest possible heuristic function is ℎ(𝑠) = 0 for every 𝑠. This is admissible
and is trivial to compute, but provides no useful information. Usually we will want a
better estimate of ℎ∗. If it can be computed in a polynomial amount of time and can
provide an exponential reduction in the number of nodes examined by the planning
algorithm, this makes the computational effort worthwhile.

The best-known way to produce heuristic functions is relaxation. To relax a
planning domain Σ = (𝑆, 𝐴, 𝛾, cost) and planning problem 𝑃 = (Σ, 𝑠0, 𝑔) is to
change them by making actions more widely applicable and introducing additional
states, actions, plans, and goals. This produces a relaxed planning domain Σ′ =
(𝑆′, 𝐴′, 𝛾′, cost) and planning problem 𝑃′ = (Σ′, 𝑠′0, 𝑔

′) having the following property:
if 𝜋 is any solution for 𝑃, then 𝑃′ has a solution 𝜋′ such that cost(𝜋′) ≤ cost(𝜋).

Given an algorithm for solving planning problems in Σ′, we can use it to create a
heuristic function for 𝑃 that works as follows: given a state 𝑠 ∈ 𝑆, use the algorithm
to solve (Σ′, 𝑠, 𝑔′), and return the cost of the solution. If the algorithm always finds
optimal solutions, then the heuristic function will be admissible.

Example 3.1. Figure 3.1 depicts a road network that connects a set of locations, each
represented by a pair of coordinates. Let us say that two locations are adjacent if
there is a road between them. Suppose a robot can move from a location (𝑥, 𝑦) to an

42 3 Planning with Deterministic Models

(0,3)

(0,2)

(3,3)

(2,1) (3,1) (6,1)

(4,0)
x

y

1 2 3 4 5 6

(1,0)

(4,4)(2,4)

0

4

3

2

1

0

Figure 3.1. A network of locations con-
nected by roads.

														d3	
	

g:

												d1	

												d3	
	

											d2	c1	

s0:
r1	

r1	 c1	

Figure 3.2. Initial state and goal for Example 3.2.

adjacent location (𝑥′, 𝑦′) at a cost equal to the distance from (𝑥, 𝑦) to (𝑥′, 𝑦′). The
road network and the movement actions can be represented as a planning domain in
which each state 𝑠𝑥,𝑦 is represented by the (𝑥, 𝑦) coordinates of the robot’s current
location.

Suppose we want to plan a sequence of move actions to move the robot from (𝑥, 𝑦)
to location (6, 1) at the minimum possible cost. One possible heuristic function is the
Euclidean distance,

ℎ(𝑠𝑥,𝑦) =
√︃
(𝑥 − 6)2 + (𝑦 − 1)2, (3.4)

which is the length of an optimal solution for a relaxed problem in which the actor is
not constrained to follow roads. This is a lower bound on the cost of every route to
location (6, 1), so ℎ is admissible. □

The preceding heuristic function is domain-specific, but there are many domain-
independent heuristic functions that can be used in any classical planning domain.
The following subsections describe a few of them.

Although the planning algorithms earlier in this chapter did not require any partic-
ular domain representation, the heuristic functions do. We will use the state-variable
representation described in Section 2.3, and we will use the following planning prob-
lem as a running example.

Example 3.2. Figure 3.2 shows a planning problem 𝑃 = (Σ, 𝑠0, 𝑔), in a simplified
version of the planning domain in Example 2.1. The objects include one robot r1, one

3.2 Heuristic Functions 43

container c1, three docks d1, d2, d3, no piles, and the constant nil. There are no rigid
relations. The state variables are cargo(r1), loc(c1), and loc(r1), with

Range(cargo(r1)) = {c1, nil};
Range(loc(c1)) = {d1, d2, d3, r1};
Range(loc(c1)) = {d1, d2, d3}.

Here are the action schemas and their parameter ranges:

take(𝑟, 𝑐, 𝑙)
pre: cargo(𝑟) = nil, loc(𝑐) = 𝑙, loc(𝑟) = 𝑙
eff: cargo(𝑟) ← 𝑐, loc(𝑐) ← 𝑟

cost: 1

put(𝑟, 𝑐, 𝑙)
pre: cargo(𝑟) = 𝑐, loc(𝑟) = 𝑙
eff: cargo(𝑟) ← nil, loc(𝑐) ← 𝑙

cost: 1

move(𝑟, 𝑑, 𝑒)
pre: loc(𝑟) = 𝑑
eff: loc(𝑟) ← 𝑒

cost: 1

Range(𝑐) = {c1};
Range(𝑑) = Range(𝑒) = {d1, d2, d3};
Range(𝑙) = {d1, d2, d3, r1};
Range(𝑟) = {r1}.

𝑃’s initial state and goal are

𝑠0 = {loc(r1) = d3, cargo(r1) = nil, loc(c1) = d1};
𝑔 = {loc(r1) = d3, loc(c1) = r1}.

In 𝑠0, the applicable actions are 𝑎1 = move(r1, d3, d1) and 𝑎2 = move(r1, d3, d2). Let

𝑠1 = 𝛾(𝑠0, 𝑎1) = {loc(r1) = d1, cargo(r1) = nil, loc(c1) = d1},
𝑠2 = 𝛾(𝑠0, 𝑎2) = {loc(r1) = d2, cargo(r1) = nil, loc(c1) = d1}.

If we run GBFS on 𝑃, then in Line 1 of Forward-Search-Det, GBFS will choose
between 𝑎1 and 𝑎2 by evaluating ℎ(𝑠1) and ℎ(𝑠2). The following subsections describe
several possibilities for what ℎ might be. □

3.2.1 Delete-Relaxation Heuristics

Several heuristic functions are based on the notion of delete-relaxation, in which
applying an action never removes old atoms from a state, but simply adds new ones.

If a state 𝑠 includes an atom 𝑥 = 𝑣 and an applicable action 𝑎 has an effect 𝑥←𝑤,
then the delete-relaxed result of applying 𝑎 will be a “state” 𝛾+(𝑠, 𝑎) that includes
both 𝑥 = 𝑣 and 𝑥 =𝑤. We will make the following definitions:

• A relaxed state (or r-state, for short) is any set 𝑠 of ground atoms that contains
at least one occurrence of every state variable 𝑥 ∈ 𝑋 . It follows that every state
is also an r-state.

• A relaxed state 𝑠 r-satisfies a set of literals 𝑔 if 𝑆 contains a subset 𝑠 ⊆ 𝑠 that
satisfies 𝑔.

• An action 𝑎 is r-applicable in an r-state 𝑠 if 𝑠 r-satisfies pre(𝑎). In this case, the
resulting r-state is

𝛾+(𝑠, 𝑎) = 𝑠 ∪ 𝛾(𝑠, 𝑎). (3.5)

44 3 Planning with Deterministic Models

• By extension, a plan 𝜋 = ⟨𝑎1, . . . , 𝑎𝑛⟩ is r-applicable in an r-state 𝑠0 if there are
r-states 𝑠1, . . . , 𝑠𝑛 such that

𝑠1 = 𝛾+(𝑠0, 𝑎1), 𝑠2 = 𝛾+(𝑠1, 𝑎2), . . . , 𝑠𝑛 = 𝛾+(𝑠𝑛−1, 𝑎𝑛).

In this case, 𝛾+(𝑠0, 𝜋) = 𝑠𝑛.
• A plan 𝜋 is a relaxed solution for a planning problem 𝑃 = (Σ, 𝑠0, 𝑔) if 𝛾+(𝑠0, 𝜋)

r-satisfies 𝑔. Thus the cost of the optimal relaxed solution is

Δ+(𝑠, 𝑔) = min{cost(𝜋) | 𝛾+(𝑠, 𝜋) r-satisfies 𝑔}.

For a planning problem 𝑃 = (Σ, 𝑠0, 𝑔), the optimal relaxed solution heuristic is

ℎ+(𝑠) = Δ+(𝑠, 𝑔).

Example 3.3. Let 𝑃 be the planning problem in Example 3.2. Let 𝑠1 =

𝛾+(𝑠0,move(r1, d3, d1)) and 𝑠2 = 𝛾+(𝑠1, take(r1, c1, d1)). Then

𝑠1 = {loc(r1) = d1, loc(r1) = d3, cargo(r1) = nil, loc(c1) = d1};
𝑠2 = {loc(r1) = d1, loc(r1) = d3, cargo(r1) = nil, cargo(r1) = c1,

loc(c1) = d1, loc(c1) = r1}.

Because 𝑠2 r-satisfies 𝑔, the plan 𝜋 = ⟨move(r1, d3, d1), take(r1, c1, d1)⟩ is a relaxed
solution for 𝑃. There are no shorter relaxed solutions, so ℎ+(𝑠) = Δ+(𝑠0, 𝑔). □

Every ordinary solution for 𝑃 is also a relaxed solution for 𝑃, so ℎ+(𝑠) ≤ ℎ∗(𝑠) for
every 𝑠. Thus ℎ+ is admissible, so it can be used with A* to find an optimal solution for
𝑃. However, ℎ+ is expensive to compute: the problem of finding an optimal relaxed
solution for a planning problem 𝑃 is NP-hard.5

3.2.2 Relaxed Planning Graph Heuristics

We now describe an approximation to ℎ+ that is easier to compute. It is based on the
fact that if 𝐴 is a set of actions that are all r-applicable in a relaxed state 𝑠, then they
will produce the following r-state regardless of the order in which they are applied:

𝛾+(𝑠, 𝐴) = 𝑠 ∪
⋃
𝑎∈𝐴

eff(𝑎). (3.6)

HFF, Algorithm 3.8, starts at an initial r-state 𝑠0 = 𝑠, and uses Equation 3.6 to
generate a sequence of successively larger r-states and sets of r-applicable actions,

𝑠0, 𝐴1, 𝑠1, 𝐴2, 𝑠2 . . . ,

until it generates an r-state that r-satisfies 𝑔. From this sequence, HFF extracts a
relaxed solution and returns its cost. In Line 2, if the sequence has converged to an
r-state that does not r-satisfy 𝑔, then the planning problem has no solution.

5The problem is NP-complete when 𝑃 is ground [133], hence is at least NP-hard when 𝑃 is lifted.

3.2 Heuristic Functions 45

HFF(Σ, 𝑠, 𝑔)
𝑠0 = 𝑠; 𝐴0 = ∅

1 for 𝑘 ← 1 by 1 until a subset of 𝑠𝑘 r-satisfies 𝑔 do
𝐴𝑘 ← {all actions that are r-applicable in 𝑠𝑘−1}
𝑠𝑘 ← 𝛾+(𝑠𝑘−1, 𝐴𝑘)

2 if 𝑠𝑘 = 𝑠𝑘−1 then return∞ // (Σ, 𝑠, 𝑔) has no solution

𝑔̂𝑘 ← 𝑔

3 for 𝑖 ← 𝑘 down to 1 do
arbitrarily choose a minimal set of actions 𝑎̂𝑖 ⊆ 𝐴𝑖 such that 𝛾+(𝑠𝑖 , 𝑎̂𝑖)

satisfies 𝑔̂𝑖
𝑔̂𝑖−1 ← (𝑔̂𝑖 − eff(𝑎̂𝑖)) ∪ pre(𝑎̂𝑖)

4 𝜋̂ ← ⟨𝑎̂1, 𝑎̂2, . . . , 𝑎̂𝑘⟩
return

∑{cost(𝑎) | 𝑎 is an action in 𝜋̂}

Algorithm 3.8. HFF, which computes the Fast-Forward heuristic.

from ŝ0:

Atoms in ŝ1:Actions in A1:Atoms in ŝ0:
loc(r1) = d1
loc(c1) = d1
cargo(r1) = nil

move(r1,d1,d3)
move(r1,d1,d2)

loc(r1) = d1
loc(c1) = d1

cargo(r1) = nil

loc(r1) = d3
loc(r1) = d2

take(r1,c1,d1)
cargo(r1) = c1
loc(c1) = r1

Figure 3.3. Computation of HFF(Σ, 𝑠1, 𝑔) = 2. The solid lines indicate the actions’ pre-
conditions and effects. The elements of 𝑔̂0, 𝑎̂1, and 𝑔̂1 are shown in boldface.

The Fast-Forward heuristic6 is

ℎFF(𝑠) = the value returned by HFF. (3.7)

The definition of ℎFF is ambiguous, because the returned value may vary depending
on HFF’s choices of 𝑎̂𝑘 , 𝑎̂𝑘−1, . . . , 𝑎̂1 in the loop at Line 3. Furthermore, because
there is no guarantee that these choices are the optimal ones, ℎFF is not admissible.

The running time for HFF is nontrivial, but it is polynomial in the total number of
actions and ground atoms in the planning domain.

Example 3.4. In Example 3.2, suppose GBFS’s heuristic function is ℎFF. To compute
ℎFF(𝑠1), HFF begins with 𝑠0 = 𝑠1, and computes 𝐴1 and 𝑠1 in the loop at Line 1.
Figure 3.3 illustrates the computation: the lines to the left of each action show which
atoms in 𝑠0 satisfy its preconditions, and the lines to the right of each action show
which atoms in 𝑠1 are its effects. For the loop at Line 3, HFF begins with 𝑔̂1 = 𝑔 and

6The name comes from the FF planner in which this heuristic was introduced; see Section 3.6.5.

46 3 Planning with Deterministic Models

from ŝ0:

 Atoms in ŝ2:
Actions in A2:

Atoms in ŝ1:Actions in A1:Atoms in ŝ0:
loc(r1) = d2
loc(c1) = d1
cargo(r1) = nil

move(r1,d2,d3)
move(r1,d2,d1)

 from ŝ1:

loc(r1) = d2
loc(c1) = d1

cargo(r1) = nil

loc(r1) = d3
loc(r1) = d1

move(r1,d1,d2)
move(r1,d3,d2)

move(r1,d1,d3)

move(r1,d2,d3)
move(r1,d2,d1)

move(r1,d3,d1)

take(r1,c1,d1)

loc(r1) = d2
loc(c1) = d1
cargo(r1) = nil

loc(r1) = d3
loc(r1) = d1

cargo(r1) = c1
loc(c1) = r1

Figure 3.4. Computation of HFF(Σ, 𝑠2, 𝑔) = 3. The atoms and actions in each 𝑔̂𝑖 and 𝑎̂𝑖
are shown in boldface, and the solid lines indicate their preconditions and effects.

computes 𝑎̂1 and 𝑔̂0; these sets are shown in boldface in Figure 3.3. In Line 4, the
relaxed solution is

𝜋̂ = ⟨𝑎̂1⟩ = ⟨{move(r1, d1, d3), take(r1, c1, d1)}⟩.

Thus HFF returns ℎFF(𝑠1) = cost(𝜋̂) = 2.
Figure 3.4 is a similar illustration of HFF’s computation of ℎFF(𝑠2). For the loop

at Line 1, HFF begins with 𝑠0 = 𝑠2 and computes the sets 𝐴1, 𝑠1, 𝐴2, and 𝑠2. For the
loop at Line 3, HFF begins with 𝑔̂2 = 𝑔 and computes 𝑎̂2, 𝑔̂1, 𝑎̂1, and 𝑔̂0, which are
shown in boldface in Figure 3.4. In Line 4, the relaxed solution is

𝜋̂ = ⟨𝑎̂1, 𝑎̂2⟩ = ⟨{move(r1, d2, d1)}, {move(r1, d1, d3), take(r1, c1, d1)}⟩,

so HFF returns ℎFF(𝑠2) = cost(𝜋̂) = 3.
Thus ℎFF(𝑠1) < ℎFF(𝑠2), so GBFS will choose to expand 𝑠1 next. □

The graph structures in Figures 3.3 and 3.4 are called relaxed planning graphs.

Improving HFF. If 𝑠 is the current state and 𝐴 is the set of applicable actions,
then it is not very efficient to call HFF(𝛾(𝑠, 𝑎)) once for each 𝑎 ∈ 𝐴. The calls to
HFF are likely to produce planning graphs that have a large amount of overlap, thus
incurring a lot of repeated effort. Second, there may be many actions that will not
appear in any non-redundant solution plan, and calling HFF on them is wasted effort.
The same result can be produced more efficiently as follows. First, call HFF(𝑠) to
produce a single planning graph 𝐺. Second, prune from 𝐴 all non-helpful actions,
that is, actions that do not appear in any relaxed solution. Third, for each non-pruned
action 𝑎 ∈ 𝐴, extract from 𝐺 a relaxed solution and ℎFF value for 𝛾(𝑠, 𝑎). Similar
approaches can be devised for the heuristic functions in the following sections.

3.2.3 Landmark Heuristics

Let 𝑃 = (Σ, 𝑠, 𝑔) be a planning problem, and 𝜙 = 𝑝1 ∨ . . . ∨ 𝑝𝑚 be a disjunction of
literals. Then 𝜙 is a disjunctive landmark for 𝑃 if every solution for 𝑃 produces a state

3.2 Heuristic Functions 47

RPG-Landmarks(Σ, 𝑠, 𝑔)
Queue← ⟨all literals in 𝑔⟩; Examined← ∅
while Queue ≠ ⟨⟩ do

𝜙← pop(Queue)
1 if 𝜙 ∉ Examined and 𝑠 ̸ |= 𝜙 then

// Step 1: get an action landmark
2 𝑅 ← {𝑎 | eff(𝑎) includes a literal in 𝜙}

// Step 2: get a smaller action landmark
3 𝑠0 ← 𝑠

for 𝑘 ← 1 by 1 until 𝑠𝑘 = 𝑠𝑘−1 do
𝐴𝑘 ← {𝑎 ∈ 𝐴 \ 𝑅 | 𝑎 is r-applicable in 𝑠𝑘−1}

4 𝑠𝑘 ← 𝛾+(𝑠𝑘−1, 𝐴𝑘)
5 𝑁 ← {𝑎 ∈ 𝑅 | 𝑎 is r-applicable in 𝑠𝑘}

if 𝑁 = ∅ then return failure

// Step 3: get disjunctive landmarks
6 Φ← {every disjunction 𝜙′ of ≤ 4 preconditions of actions in 𝑁

such that every 𝑎 ∈ 𝑁 has at least one precondition in 𝜙′}
7 append to Queue every 𝜙′ ∈ Φ that isn’t subsumed by another

member of Φ
add 𝜙 to Examined

return Examined

Algorithm 3.9. RPG-Landmarks, an algorithm to find disjunctive landmarks by
using relaxed planning graphs.

in which 𝜙 is true. The problem of deciding whether an arbitrary 𝜙 is a disjunctive
landmark is PSPACE-complete, but that is a worst-case result. There are several
polynomial-time algorithms for discovering some (though not necessarily all) of a
problem’s disjunctive landmarks.

Algorithm 3.9, RPG-Landmarks, uses relaxed planning graphs to look for dis-
junctive landmarks, starting with the goals in 𝑔 and going backward toward 𝑠0. It
maintains a queue of landmarks to examine. In each iteration of its while loop, it
takes a landmark 𝜙 from the queue and performs the following steps to look for other
landmarks that precede 𝜙:

Step 1: get an action landmark. At Line 2, all plans that achieve 𝜙 from 𝑠 must
contain one or more actions in 𝑅. Thus 𝑅 is an action landmark for 𝜙.

Step 2: get a smaller action landmark. When the relaxed-planning-graph compu-
tation at lines 3–4 finishes, 𝑠𝑘 includes every atom that is achievable without
using 𝑅. Thus at Line 5, 𝑁 ⊆ 𝑅 includes every action in 𝑅 that can be made
executable without using 𝑅. The other actions in 𝑅 cannot be made executable
without using 𝑁 , so 𝑁 is another action landmark. If 𝑁 = ∅ then (Σ, 𝑠, 𝑔) is
unsolvable; otherwise RPG-Landmarks continues to the next step.

48 3 Planning with Deterministic Models

Step 3: get disjunctive landmarks. If we take one precondition from each action in
𝑁 , then the disjunction of these preconditions is a landmark that precedes 𝜙.
Rather than computing all such landmarks (which would cause a combinatorial
explosion), Line 6 lets Φ be the set of all such landmarks that contain 4 or fewer
literals. Line 7 adds to the queue the ones that the others don’t subsume.

After its queue is exhausted, RPG-Landmarks returns the landmarks that it found.
Although it is more complicated than HFF, its running time is still polynomial. The
RPG Landmark heuristic is

ℎRL(𝑠) = the number of landmarks returned by RPG-Landmarks(Σ, 𝑠, 𝑔). (3.8)

This is a relatively simple landmark heuristic, and there are many ways to improve it
(see Section 3.6.5). Furthermore, planning algorithms can be made to perform better
by considering the order in which to try to achieve landmarks. For example, a solution
plan will need to achieve every landmark 𝜙′ in Line 7 before achieving 𝜙.

Example 3.5. As before, consider the planning problem (Σ, 𝑠0, 𝑔) in Example 3.2.
To compute ℎRL(𝑠1), we call RPG-Landmarks(Σ, 𝑠1, 𝑔). Every solution for
(Σ, 𝑠1, 𝑔) must include a state in which cargo(r1) = c1, and this is the only land-
mark that RPG-Landmarks will return. It will not return loc(r1) = d1, which is
already true in 𝑠1. Thus ℎRL(𝑠1) = 1.

For the planning problem (Σ, 𝑠2, 𝑔), RPG-Landmarks will return two landmarks:
cargo(s1) = c1 and loc(r1) = d1. Thus ℎRL(𝑠2) = 2. □

3.2.4 Max-Cost and Additive Cost Heuristics

The max-cost of a set of literals 𝑔 = {𝑙1, . . . , 𝑙𝑘} is defined recursively as the largest
max-cost of each literal 𝑙𝑖 . Each 𝑙𝑖’s max-cost is the minimum, over all actions 𝑎 that
can produce 𝑙𝑖 , of 𝑎’s cost plus the max-cost of pre(𝑎). Here are the equations:

Δmax(𝑠, 𝑔) = max
𝑙𝑖∈𝑔

Δmax(𝑠, 𝑙𝑖);

Δmax(𝑠, 𝑙𝑖) =
{

0, if 𝑙𝑖 ∈ 𝑠,
min{Δmax(𝑠, 𝑎) | 𝑎 ∈ 𝐴 and 𝑙𝑖 ∈ eff(𝑎)}, otherwise;

Δmax(𝑠, 𝑎) = cost(𝑎) + Δmax(𝑠, pre(𝑎)).

(3.9)

In a planning problem 𝑃 = (Σ, 𝑠0, 𝑔), the max-cost heuristic is

ℎmax(𝑠) = Δmax(𝑠, 𝑔). (3.10)

As shown in the following example, the computation of ℎmax can be visualized as an
And/Or search going backward from 𝑔.

Example 3.6. In Example 3.2, suppose GBFS’s heuristic function is ℎmax. Figure 3.5
shows the computation of ℎmax(𝑠1) = 1 and ℎmax(𝑠2) = 2. Because ℎmax(𝑠1) <
ℎmax(𝑠2), GBFS will choose 𝑠1. □

3.2 Heuristic Functions 49

true in s1

loc(r1)=d3 loc(c1)=r1

g = {loc(r1)=d3, loc(c1)=r1}

move(r1,d1,d3)
move(r1,d2,d3)

pre:
loc(r1)=d1

pre:
loc(r1)=d2

true in s1

… 00
> 0

min(1,(>1)) = 1

pre:

cargo(r1)=nil

true in s1

loc(r1)=d1
loc(c1)=d1

true in s1

0

0

take(r1,c1,d1)

0+1 = 10+1 = 1 (>0)+1 > 1

take(r1,c2,d2)

take(r1,c3,d3)

…

…
> 0

> 0

(>0) +1 > 1
(>0)+1 > 1

min(1,(>1),(>1)) = 1

max(0,0,0) = 0

hmax(s1) = Δmax(s1,g) = max(1,1) = 1
max

max

hmax(s2) = Δmax(s2,g) = max(1,2) = 2

move(r1,d2,d1)

loc(r1)=d3 loc(c1)=r1

g = {loc(r1)=d3, loc(c1)=r1}

move(r1,d1,d3)
move(r1,d2,d3)

pre:
loc(r1)=d1

pre:
loc(r1)=d2

…
true in s2

0
> 0

0

min(1,(>1)) = 1

pre:

cargo(r1)=nil

true in s2

loc(r1)=d1
loc(c1)=d1

true in s2

0 0+1 = 1

take(r1,c1,d1)

1+1 = 2(>0)+1 > 1 0+1 = 1

take(r1,c2,d2)

take(r1,c3,d3)

…

…
> 1

> 1

(>1) +1 > 2
(>1)+1 > 2

min(2,(>2),(>2)) = 2

max(0,1,0) = 1

pre:
loc(r1)=d2

true in s2

0

max

max

Figure 3.5. Computation of ℎmax (𝑠1, 𝑔) and ℎmax (𝑠2, 𝑔). The max and min operations in
Equation 3.9 are shown as And-branches and Or-branches, respectively.

At the beginning of Section 3.2, we said that most heuristics are derived by relax-
ation. The ℎmax heuristic can be described as the cost of an optimal solution to a
relaxed problem in which a goal (i.e., a set of literals such as 𝑔 or the preconditions of
an action) can be reached by achieving just one of the goal’s literals, namely, the one
that is the most expensive to achieve. It can also be described as a delete-relaxation
heuristic and as a landmark heuristic (see Section 3.6.5).

Although ℎmax is admissible, it is not very informative. A closely related heuristic,
the additive cost heuristic, is not admissible but generally works better in practice.
It is similar to ℎmax but adds the costs of each set of literals rather than taking their

50 3 Planning with Deterministic Models

true in s1

loc(r1)=d3 loc(c1)=r1

g = {loc(r1)=d3, loc(c1)=r1}

move(r1,d1,d3)
move(r1,d2,d3)

pre:
loc(r1)=d1

pre:
loc(r1)=d2

true in s1

… 0
0

> 0

min(1,(>1)) = 1

pre:

cargo(r1)=nil

true in s1

loc(r1)=d1
loc(c1)=d1

true in s1

0

0

take(r1,c1,d1)

0+1 = 1
0+1 = 1 (>0)+1 > 1

take(r1,c3,d3)

…
> 0

(>0)+1 > 1

min(1,(>1),(>1)) = 1

0+0+0 = 0

hadd(s1) = Δadd(s1,g) = 1+1 = 2
add

add

take(r1,c2,d2)

…
> 0

(>0) +1 > 1

hadd(s2) = Δadd(s2,g) = 1+2 = 3

loc(r1)=d3 loc(c1)=r1

g = {loc(r1)=d3, loc(c1)=r1}

move(r1,d1,d3)
move(r1,d2,d3)

min((>1),1) = 1

take(r1,c1,d1)

1+1 = 2
(>0)+1 > 1 0+1 = 1

take(r1,c3,d3)

…
> 1

(>1)+1 > 2

min(2,(>2),(>2)) = 2

move(r1,d2,d1)

pre:
loc(r1)=d1

pre:
loc(r1)=d2

…
true in s2 0> 0

0

pre:

cargo(r1)=nil

true in s2

loc(r1)=d1
loc(c1)=d1

true in s2

0 0+1 = 1

0+1+0 = 1

pre:
loc(r1)=d2

true in s2

0

add

add

take(r1,c2,d2)

…
> 1

(>1) +1 > 2

Figure 3.6. Computation of ℎadd (𝑠1, 𝑔) and ℎadd (𝑠2, 𝑔). The
∑

and min operations in
Equations 3.12 and 3.13 are shown as And-branches and Or-branches, respectively.

maximum. It is defined as

ℎadd(𝑠) = Δadd(𝑠, 𝑔), (3.11)
where

Δadd(𝑠, 𝑔) =
∑︁
𝑙𝑖∈𝑔

Δadd(𝑠, 𝑙𝑖); (3.12)

Δadd(𝑠, 𝑙𝑖) =
{

0, if 𝑙𝑖 ∈ 𝑠,
min{Δadd(𝑠, 𝑎) | 𝑙𝑖 ∈ eff(𝑎)}, otherwise;

(3.13)

3.3 Backward Search 51

Δadd(𝑠, 𝑎) = cost(𝑎) + Δadd(𝑠, pre(𝑎)). (3.14)

As shown in the following example, the computation of ℎadd can be visualized as
an And/Or search nearly identical to the one for ℎmax.

Example 3.7. In Example 3.2, suppose GBFS’s heuristic function is ℎadd. Figure 3.6
shows the computation of ℎadd(𝑠1) = 2 and ℎadd(𝑠2) = 3. Because ℎadd(𝑠1) <
ℎadd(𝑠2), GBFS will choose 𝑠1.

To see that ℎadd is not admissible, notice that if a single action 𝑎 could achieve
both loc(r1)=d3 and loc(c1)=r1, then ℎadd(𝑔) would be higher than ℎ∗(𝑔), because ℎadd

would count 𝑎’s cost twice. □

Both ℎmax and ℎadd have the same time complexity, which (like HFF) is polynomial
in the total number of actions and ground atoms in the planning domain.

3.3 Backward Search

This section describes an algorithm that does a state-space search going backward
from a goal 𝑔. To begin, we will need to define the conditions that make an action 𝑎
useful as the last step of a plan to achieve 𝑔:

Definition 3.8. An action 𝑎 is consistent with a set of literals 𝑔 if it satisfies the first
two of the following restrictions, and relevant for 𝑔 if it satisfies all three of them:7

1. 𝑎 makes no condition in 𝑔 false: For every literal 𝑥 ≠ 𝑣 (or 𝑥 = 𝑣) in 𝑔, eff(𝑎)
does not contain 𝑥← 𝑣 (or respectively, 𝑥← 𝑣′ for some 𝑣′ ≠ 𝑣).

2. 𝑎 does not require any condition in 𝑔 to be false: For every literal 𝑥 ≠ 𝑣 (or 𝑥 = 𝑣)
in 𝑔 that is not affected by eff(𝑎), pre(𝑎) does not contain 𝑥 = 𝑣 (or respectively,
𝑥 = 𝑣′ for some 𝑣′ ≠ 𝑣).

3. 𝑎 makes at least one condition in 𝑔 true: For at least one literal 𝑥 = 𝑣 (or 𝑥 ≠ 𝑣)
in 𝑔, eff(𝑎) contains 𝑥← 𝑣 (or respectively, 𝑥← 𝑣′ for some 𝑣 ≠ 𝑣′). □

We can now define 𝛾−1(𝑔, 𝑎) to be the conditions that must hold in every state 𝑠
such that 𝛾(𝑠, 𝑎) |= 𝑔. If 𝑎 is consistent with 𝑔, then

𝛾−1(𝑔, 𝑎) = pre(𝑎) ∪ {𝑥 = 𝑣 in 𝑔 | eff(𝑎) doesn’t contain 𝑥← 𝑣}
∪ {𝑥 ≠ 𝑣 in 𝑔 | eff(𝑎) doesn’t contain 𝑥← 𝑣′ for any 𝑣′ ≠ 𝑣}, (3.15)

and if 𝑎 isn’t consistent with 𝑔 then 𝛾−1(𝑔, 𝑎) is undefined. By extension, we let

𝛾−1(𝑔, 𝜋) =
{
𝑔, if 𝜋 is empty,
𝛾−1(𝛾−1(𝑔, 𝜋′), 𝑎), if 𝜋 = 𝑎 ·𝜋′ and 𝑎 is consistent with 𝛾−1(𝑔, 𝜋′).

(3.16)

7When testing for relevance, backward-search algorithms sometimes omit one or both of the consistency
restrictions. This simplifies the implementation, at the risk of misclassifying some actions as relevant
that cannot be the last step of a plan to achieve 𝑔. For an example, see Line 2 of RPG-Landmarks.

52 3 Planning with Deterministic Models

As a special case, suppose 𝑔 = ∅. In this case, Equation 3.15 reduces to 𝛾−1(∅, 𝑎) =
pre(𝑎), and Equation 3.16 gives the conditions that a state must satisfy for 𝜋 to be
applicable. Thus we define

pre(𝜋) = 𝛾−1(∅, 𝜋). (3.17)

Backward-Search(Σ, 𝑠0, 𝑔0)
1 𝑔 ← 𝑔0; 𝜋 ← ⟨⟩

while 𝑠 ̸ |= 𝑔 do
2 𝐴′ ← {𝑎 | 𝑎 is relevant for 𝑔}

if 𝐴′ = ∅ then return failure
3 nondeterministically choose 𝑎 ∈ 𝐴′
4 𝑔 ← 𝛾−1(𝑔, 𝑎)

𝜋 ← 𝑎 ·𝜋
return (𝜋)

Algorithm 3.10. Backward-Search planning algorithm. In each loop iteration, 𝜋
is a plan that can achieve 𝑔0 from any state that satisfies 𝑔.

We now are ready to present Backward-Search. It is similar to Forward-Search
except that it goes backward from the goal instead of forward from the initial state.
We can incorporate cycle checking into it by adding the line

Solvable← {𝑔}

after Line 1, and the following lines after Line 4:

if 𝑔 ∈ Solvable then return failure
Solvable← Solvable ∪ {𝑔}

A more powerful form of cycle checking is to replace the preceding two lines with
the following subsumption test:

if ∃𝑔′ ∈ Solvable s.t. 𝑔′ ⊆ 𝑔 then return failure
Solvable← Solvable ∪ {𝑔}

Here, each 𝑔′ ∈ Solvable represents a set of states from which 𝜋 or one of its suffixes
can reach 𝑔0. If these “solvable” states include every state that 𝑎 ·𝜋 can solve, then
it is useless to continue searching beyond 𝑎 ·𝜋. For any solution that ends with 𝑎 ·𝜋,
another branch of the search space will contain a shorter solution that omits 𝑎.

Example 3.9. Suppose we augment Backward-Search to incorporate cycle checking
and call it on the planning problem in Example 3.2. The first time through the loop,

𝑔 ← {cargo(r1) = c1, loc(r1) = d3},
𝐴′ ← {move(r1, d1, d3),move(r1, d2, d3), take(r1, c1, d3)}.

3.3 Backward Search 53

In Line 3, suppose Backward-Search chooses move(r1, d1, d3). Then

𝑔 ← 𝛾−1(𝑔,move(r1, d1, d3)) = {loc(r1) = d1, cargo(r1) = c1};
𝜋 ← ⟨move(r1, d1, d3)⟩;

Solvable← {{cargo(r1) = c1, loc(r1) = d3}, {loc(r1) = d1, cargo(r1) = c1}}.

In the second loop iteration,

𝐴′ ← {move(r1, d2, d1),move(r1, d3, d1), take(r1, c1, d1)}.

Let us consider two of the possible choices at Line 3:

1. If Backward-Search chooses move(r1, d3, d1), then

𝑔 ← 𝛾−1(𝑔,move(r1, d3, d1)) = {loc(r1) = d3, cargo(r1) = c1};
𝜋 ← ⟨move(r1, d3, d1),move(r1, d1, d3)⟩;
𝑔 ∈ Solvable, so Backward-Search returns failure.

2. If Backward-Search chooses take(r1, c1, d1), then

𝑔 ← 𝛾−1(𝑔, take(r1, c1, d1)) = {loc(r1) = d1, cargo(r1) = nil};
𝜋 ← ⟨take(r1, c1, d1),move(r1, d1, d3)⟩;

Solvable← {{cargo(r1) = c1, loc(r1) = d3}, {loc(r1) = d1, cargo(r1) = c1},
{loc(r1) = d1, cargo(r1) = nil}}.

If Backward-Search chooses move(r1, d1, d3) in the third loop iteration, then
at the start of the fourth loop iteration it will return

𝜋 ← ⟨move(r1, d1, d3), take(r1, c1, d1),move(r1, d1, d3)⟩. □

To choose among actions in 𝐴′, Backward-Search can use many of the same
heuristic functions described in Section 3.2, but with the following modification:
rather than using them to estimate the cost of getting from the current state to the goal,
what should be estimated is the cost of getting from 𝑠0 to 𝛾−1(𝑔, 𝑎).

Often an action schema 𝛼 may have multiple instances that are relevant for 𝑔,
leading to a combinatorial explosion in the size of Backward-Search’s search space.
This problem can be alleviated by writing a Lifted-Backward-Search algorithm that
leaves some of 𝛼’s parameters uninstantiated. However, the details are complicated
and we will omit them.8

8To find partially instantiated actions that satisfy a single atom in 𝑔, one could use a simple match-
ing algorithm similar to Algorithm 5.6. However, Lifted-Backward-Search needs to find partially-
instantiated actions that satisfy one or more literals in 𝑔, which requires a unification algorithm. See
[967, Section 9.2.1] for an explanation and [535] for an algorithm.

54 3 Planning with Deterministic Models

3.4 Plan-Space Planning

Plan-space planning has some similarities to backward search, but it formulates plan-
ning as a constraint satisfaction problem and uses constraint-satisfaction techniques
to produce solutions that are more flexible than linear sequences of ground actions.
For example, it can produce plans in which the actions are partially ordered, along
with a guarantee that every total ordering that is compatible with this partial ordering
will be a solution plan.

Such flexibility allows some of the ordering decisions to be postponed until the
plan is being executed, at which time the actor may have a better idea about which
ordering will work best. Furthermore, the techniques used for plan-space planning
are a first step toward planning concurrent execution of temporal actions, a topic that
we will develop further in Part VI.

3.4.1 Definitions

Plan-space planning involves making repeated modifications to a plan in which the
actions are both partially ordered and partially instantiated, as defined below.

A partially ordered plan is a triple

𝜋 = (𝑉, 𝐸, act), (3.18)

where 𝑉 and 𝐸 are the nodes and edges of an acyclic digraph and act is a function
that maps each node 𝑣 ∈ 𝑉 into an action, act(𝑣), so that actions may occur more
than once. The edges in 𝐸 represent ordering constraints on the nodes, and we define
𝑣 ≺ 𝑣′ if 𝑣 ≠ 𝑣′ and (𝑉, 𝐸) contains a path from 𝑣 to 𝑣′. Thus 𝜋 represents a partially
ordered multiset in which act is the labeling function.

If 𝑣1, . . . , 𝑣𝑛 is any ordering of the nodes such that 𝑖 < 𝑗 whenever 𝑣𝑖 ≺ 𝑣 𝑗 , then
the plan

𝜋′ = ⟨act(𝑣1), . . . , act(𝑣𝑛)⟩ (3.19)

is a total ordering of 𝜋. A partially ordered solution for a planning problem 𝑃 is a
partially ordered plan 𝜋 such that every total ordering of 𝜋 is a solution for 𝑃.

Definition 3.10. A partial plan is a 4-tuple

𝜋 = (𝑉, 𝐸, act, 𝐶), (3.20)

where (𝑉, 𝐸, act) is a partially ordered plan as in Equation 3.18, except that for each
𝜈 ∈ 𝑉 , the action act(𝜈) may be unground. 𝐶 is a set of constraints, each of which is
one of the following:

• An inequality constraint is an expression 𝑧 ≠ 𝑧′, where 𝑧 is an object variable,
and 𝑧′ is either an object variable or a constant.

• A causal link is an expression of the form

𝜈1
𝑥=𝑏
99K 𝜈2, (3.21)

3.4 Plan-Space Planning 55

a2 = move(r1,d1,d2)

occupied(d1) = nil
occupied(d2) = r1

loc(r1) = d2

occupied(d2) = nil
loc(r1) = d1

a1 = move(r,d2,d)
occupied(d) = nil

loc(r) = d

occupied(d) = r
occupied(d2) = nil

loc(r) = d2

Figure 3.7. A partial plan that contains a causal link. Each action’s preconditions and
effects are shown near its upper left corner and lower right corner, respectively.

where 𝜈1 and 𝜈2 are nodes, 𝜈1 ≺ 𝜈2, the effects of act(𝜈1) include 𝑥← 𝑏, and the
preconditions of act(𝜈2) include either 𝑥 = 𝑏 or a literal 𝑥 ≠ 𝑏′ for some 𝑏′ ≠ 𝑏.
The causal link’s purpose is to assert that act(𝜈1) is the action that establishes
the given precondition of act(𝜈2). If a node 𝜈3 such that 𝜈1 ≺ 𝜈3 ≺ 𝜈2 has an
effect 𝑥← 𝑡 for some 𝑡, then 𝜈3 violates the causal link, even if 𝑡 = 𝑏.9 □

Example 3.11. Let Σ be a planning domain in which Objects = Robots ∪ Docks,
where Robots = {r1, r2} and Docks = {d1, d2, d3}. There are no rigid relations, and
one action schema, where 𝑟 ∈ Robots and 𝑑, 𝑑′ ∈ Docks:

move(𝑟, 𝑑, 𝑑′)
pre: loc(𝑟) = 𝑑, occupied(𝑑′) = nil
eff: loc(𝑟) ← 𝑑′, occupied(𝑑′) = 𝑟

Let 𝜋 = (𝑉, 𝐸, act, 𝐶) be the following partial plan:

𝑉 = {𝜈1, 𝜈2},
𝐸 = {(𝜈1, 𝜈2)},

act(𝜈1) = move(𝑟, d2, 𝑑),
act(𝜈2) = move(r1, d1, d2,

𝐶 = {𝜈1
occupied(d2) = nil
99999999999K 𝜈2}.

The plan is shown in Figure 3.7, with the edge in 𝐸 represented by a solid arrow and
the causal link represented by a dashed arrow. □

A partial plan 𝜋 = (𝑉, 𝐸, act, 𝐶) is inconsistent in each of the following situations:
if (𝑉, 𝐸) contains a cycle, if𝐶 contains a self-contradictory inequality constraint (e.g.,
𝑦 ≠ 𝑦), if there is a violated causal link, or if an action act(𝜈) has an illegal argument.
Otherwise 𝜋 is consistent.

Definition 3.12. A partial solution for a planning problem 𝑃 = (Σ, 𝑠0, 𝑔) is a partial
plan 𝜋 = (𝑉, 𝐸, act,∅) in which 𝑠0 and 𝑔 are represented by dummy actions 𝑎0 and
𝑎𝑔 that are not instances of action schemas in A. Their sole purpose is to represent
𝑠0 and 𝑔 in a way that is easy for PSP to work with. More specifically,

9The reason for calling this a violation when 𝑡 = 𝑏 is to ensure PSP (which will be defined in the next
section) performs a systematic search [770, 572], that is, it does not generate the same partial plan
several times in different parts of the search space. This reduces the size of PSP’s search space.

56 3 Planning with Deterministic Models

• 𝑉 contains nodes 𝜈0 and 𝜈𝑔 such that act(𝜈0) = 𝑎0 and act(𝜈𝑔) = 𝑎𝑔;
• 𝑎0 has pre(𝑎0) = ∅ and eff(𝑎0) = 𝑠0;
• 𝑎𝑔 has pre(𝑎𝑔) = 𝑔 and eff(𝑎𝑔) = ∅;
• the ordering constraints in 𝐸 must be such that 𝜈0 ≺ 𝜈 ≺ 𝜈𝑔 for every node
𝜈 ∉ {𝜈0, 𝜈𝑔}. □

PSP(Σ, 𝜋)
while Flaws(𝜋) ≠ ∅ do

1 arbitrarily select 𝑓 ∈ Flaws(𝜋)
𝑅 ← {all feasible resolvers for 𝑓 }
if 𝑅 = ∅ then return failure

2 nondeterministically choose 𝜌 ∈ 𝑅
3 modify 𝜋 by applying 𝜌 to it

return (𝜋)

Algorithm 3.11. PSP, a plan-space planning algorithm. If the partial plan 𝜋

represents a solvable planning problem in the planning domain Σ, then at least
one of PSP’s nondeterministic traces will return a solution plan.

3.4.2 Planning Algorithm

Algorithm 3.11, PSP, takes as input a planning domain Σ and a partial solution 𝜋
that represents a planning problem 𝑃 = (Σ, 𝑠0, 𝑔). To try to solve 𝑃, PSP repeatedly
looks for flaws in 𝜋 and applies resolvers to remove the flaws.

In PSP, Flaws(𝜋) is the set of all flaws in 𝜋. There are two kinds of flaws: open
goals and threats. These are described next, along with their resolvers.

Open goals. If a node 𝜈 ∈ 𝑉 has a precondition 𝑝 ∈ pre(act(𝜈)) for which there is
no causal link, then 𝑝 is an open goal. There are two kinds of resolvers for this flaw:

• Use an action already in 𝜋. Suppose 𝜋 contains a node 𝜈′ such that 𝜈 ⊀ 𝜈′ and
act(𝜈′) has an effect 𝑒 that can be unified with 𝑝, that is, 𝑒 and 𝑝 can be made
syntactically identical by instantiating some of the object variables in 𝜋. Then
the flaw can be resolved by unifying 𝑒 and 𝑝, adding a causal link 𝜈′ 𝑒′

99K 𝜈 in
which 𝑒′ is the unified expression, and adding (𝜈′, 𝜈) to 𝐸 so that 𝜈′ ≺ 𝜈.

• Use a new action. Let 𝛼 be an action schema and 𝑎 be a standardization of
𝛼, that is, a copy of 𝛼 in which object variables are renamed to avoid name
conflicts with the object variables in 𝜋.10 If eff(𝑎) includes an effect 𝑒 such that
𝑝 is an instance of 𝑒, then the flaw can be resolved by adding to 𝜋 a new node 𝜈′
with act(𝜈′) = 𝑎, instantiating variables of 𝑎 to make 𝑒match 𝑝, adding a causal
link 𝜈′

𝑝
99K 𝜈, and adding edges (𝜈0, 𝜈

′) and (𝜈′, 𝜈) to 𝐸 so that 𝜈0 ≺ 𝜈′ ≺ 𝜈.
10This is analogous to standardization in logical inference (see [967, Section 9.2.1]).

3.4 Plan-Space Planning 57

												d1	 														d2	
r1	r2	

											d1	

											d3	
	

														d2	
r1	 r2	r1	

𝑠0 𝑔

Figure 3.8. Initial state and goal for Example 3.13.

Threats. Let 𝜈1
𝑥=𝑏
99K 𝜈2 be any causal link in 𝜋, and 𝜈 ∈ 𝑉 be any node such that

𝜈 ⊀ 𝜈1 and 𝜈2 ⊀ 𝜈 (that is, 𝜈 may come between 𝜈1 and 𝜈2). Suppose act(𝜈) has an
effect 𝑥′← 𝑡 such that the state variable 𝑥′ can be unified with 𝑥. Then 𝜈 is a threat to
the causal link. There are three kinds of resolvers for such a threat:

• Make 𝜈 ≺ 𝜈1 by adding (𝜈, 𝜈1) to 𝐸 .
• Make 𝜈2 ≺ 𝜈 by adding (𝜈2, 𝜈) to 𝐸 .
• Add to 𝐶 an inequality constraint that prevents 𝑥 and 𝑥′ from unifying.

Example 3.13. Let Σ be the planning domain in Example 3.11, and consider the
planning problem 𝑃 = (Σ, 𝑠0, 𝑔), where

𝑠0 = {loc(r1) = d1, loc(r2) = d2,
occupied(d1) = r1, occupied(d2) = r2, occupied(d3) = nil};

𝑔 = {loc(r1) = d2, loc(r2) = d1}.

Figure 3.8 shows 𝑠0 and 𝑔, and Figure 3.9 shows the initial partial plan. Figures
3.10–3.13 show some snapshots of one of PSP’s nondeterministic execution traces.
Solid arrows represent edges in 𝐸 , dashed arrows represent causal links, and thick
dot-dashed arrows represent threats. □

Like Forward-Search and Backward-Search, PSP is sound and complete; but unlike
them, it may often have infinite paths in its search space. Thus it is not guaranteed to
terminate on unsolvable problems.

3.4.3 Search Heuristics

Several of the choices that PSP must make during its search are very similar to
the choices that a backtracking search algorithm makes in order to solve constraint-
satisfaction problems (CSPs); for example, see [967]. Consequently, some of the
heuristics to guide CSP algorithms can be translated into heuristics to guide PSP:

• Because all of the flaws must eventually be resolved, flaw selection in Line 1 of
PSP is not a nondeterministic choice. However, the order in which PSP selects
the flaws can affect the size of the search space generated by PSP’s nondeter-
ministic choices in Line 2. Flaw selection is analogous to variable ordering in
CSPs, and the Minimum Remaining Values heuristic for CSPs (choose the vari-
able with the fewest remaining values) is analogous to a PSP heuristic called
Fewest Alternatives First: select the flaw with the fewest resolvers.

58 3 Planning with Deterministic Models

occupied(d1) = r1

loc(r2) = d1
loc(r1) = d2

loc(r2) = d2
loc(r1) = d1

occupied(d2) = r2

occupied(d3) = nil
 ag

 a0

Figure 3.9. The initial partial plan. The dummy actions 𝑎0 and 𝑎𝑔 represent 𝑠0 and 𝑔.
There are two open-goal flaws: 𝑎𝑔’s preconditions loc(r1) = d2 and loc(r2) = d1.

a1 = move(r1,d,d2)

occupied(d1) = r1

loc(r2) = d1
loc(r1) = d2

loc(r2) = d2
loc(r1) = d1

occupied(d2) = r2

occupied(d3) = nil

 ag a0

occupied(d) = nil
occupied(d2) = r1

loc(r1) = d2

occupied(d2) = nil
loc(r1) = d

occupied(d') = nil
occupied(d1) = r2

loc(r2) = d1

occupied(d1) = nil
loc(r2) = d'

a2 = move(r2,d',d1)

Figure 3.10. Resolving 𝑎𝑔’s open-goal flaws. For loc(r1) = d2, PSP adds action 𝑎1 and a
causal link. For loc(r2) = d1, PSP adds action 𝑎2 and another causal link. This adds four
new open-goal flaws: the preconditions of 𝑎1 and 𝑎2.

a1 = move(r1,d1,d2)

occupied(d1) = r1

loc(r2) = d1
loc(r1) = d2

loc(r2) = d2
loc(r1) = d1

occupied(d2) = r2

occupied(d3) = nil

 ag a0

occupied(d1) = nil
occupied(d2) = r1

loc(r1) = d2

occupied(d2) = nil
loc(r1) = d1

a3 = move(r,d2,d'')
occupied(d'') = nil

loc(r) = d''

occupied(d'') = r
occupied(d2) = nil

loc(r) = d2

a2 = move(r2,d',d1)

occupied(d') = nil
occupied(d1) = r2

loc(r2) = d1

occupied(d1) = nil
loc(r2) = d'

Figure 3.11. Resolving 𝑎1’s open-goal flaws. For loc(r1) = 𝑑, PSP instantiates 𝑑 to d1 and
adds a causal link from 𝑎0. For occupied(d2) = nil, PSP adds action 𝑎3 and a causal link.
The new action causes two threats, shown as dashed-dotted lines.

3.4 Plan-Space Planning 59

a1 = move(r1,d1,d2)

occupied(d1) = r1

loc(r2) = d1
loc(r1) = d2

loc(r2) = d2
loc(r1) = d1

occupied(d2) = r2

occupied(d3) = nil

occupied(d') = nil
occupied(d1) = r2

loc(r2) = d1

occupied(d1) = nil
loc(r2) = d'

 ag a0

occupied(d1) = nil
occupied(d2) = r1

loc(r1) = d2

occupied(d2) = nil
loc(r1) = d1

a3 = move(r2,d2,d')
occupied(d') = nil

loc(r2) = d'

occupied(d') = r2
occupied(d2) = nil

loc(r2) = d2

a2 = move(r2,d',d1)

Figure 3.12. Resolving 𝑎2’s open-goal flaws. For occupied(d1) = nil, PSP adds a causal
link from 𝑎1. For loc(r2) = 𝑑′, PSP adds a causal link from 𝑎3, where it instantiates 𝑟 to r2
and 𝑑′′ to 𝑑′. These changes also resolve the two threats.

a1 = move(r1,d1,d2)

occupied(d1) = r1

loc(r2) = d1
loc(r1) = d2

loc(r2) = d2
loc(r1) = d1

occupied(d2) = r2

occupied(d3) = nil

occupied(d3) = nil
occupied(d1) = r2

loc(r2) = d1

occupied(d1) = nil
loc(r2) = d3

 ag a0

occupied(d1) = nil
occupied(d2) = r1

loc(r1) = d2

occupied(d2) = nil
loc(r1) = d1

a3 = move(r2,d2,d3)
occupied(d3) = nil

loc(r2) = d3

occupied(d3) = r2
occupied(d2) = nil

loc(r2) = d2

a2 = move(r2,d3,d1)

Figure 3.13. Resolving 𝑎3’s open-goal flaws. For loc(r2) = d2, PSP adds a causal link from
𝑎0. For occupied(d3) = nil, PSP instantiates 𝑑′ to d3 and adds a causal link from 𝑎0. There
are no further flaws, so this is a partially-ordered solution.

• Resolver selection in Line 2 of PSP is analogous to value ordering in CSPs.
The Least Constraining Value heuristic for CSPs is to choose the value that
rules out the fewest values for the other variables. One might want to translate
this into a “least-constraining resolver” heuristic for PSP: choose the resolver
that rules out the fewest resolvers for the other flaws. Unfortunately, this ignores
an important difference between plan-space planning and CSPs.

In a CSP, the number of variables is ordinarily fixed in advance, the search
space is finite, and all solutions are at the same depth. In PSP, the least-
constraining resolver may introduce a new action. This may occur arbitrarily
many times, and each occurrence is analogous to introducing new variables

60 3 Planning with Deterministic Models

(and new constraints) into a CSP: it increases the size of the search space.
One way to fix this problem might be to look first for resolvers that do not

introduce open goals—and if there are several such resolvers, then to choose
the one that rules out the fewest resolvers for the other flaws.

Although these heuristics can help speed PSP’s search, implementations of PSP
tend to run much more slowly than the fastest state-space planners. Generally the latter
are GBFS algorithms that are guided by heuristics like the ones in Section 3.2, and there
are several impediments to developing an analogous version of PSP. Because plan
spaces have no explicit states, the heuristics in Section 3.2 are not directly applicable,
nor is it clear how to develop similar plan-space heuristics. Even if such heuristics
were available, a depth-first implementation of PSP would be problematic because
plan spaces generally are infinite. Thus for solving classical planning problems such
as the ones in the International Planning Competitions, most automated-planning
researchers have abandoned PSP in favor of forward-search algorithms.

On the other hand, the hybrid-planning algorithms in Sections 5.3 and 17.2 are
based on PSP. They are much easier to understand if one first understands PSP.

3.5 Repairing Plans

Plan repair can provide advantages over generating new plans from scratch, both in
terms of the runtime needed for planning and the plan’s stability, that is, the amount of
the original plan 𝜋 that is retained in the repaired plan. As discussed in Section 2.6.4,
plan stability may be important if the actor needs to coordinate with other actors that
are depending on 𝜋, avoid wasting resources that were acquired for use later in 𝜋, or
avoid making changes that may be confusing to human users.

Incremental-Repair(Σ, 𝑠, 𝑔, 𝜋)
while True do

1 𝜋′ ← Lookahead(Σ, 𝑠, 𝛾−1(𝑔, 𝜋))
if 𝜋′ ≠ failure then return 𝜋′ ·𝜋
if 𝜋 = ⟨⟩ then return failure
𝑎 ← pop(𝜋)

Algorithm 3.12. Incremental-Repair tries to retain 𝜋’s largest possible suffix.

Incremental-Repair attempts to repair 𝜋 in a way that retains the largest possible
suffix of 𝜋. First it looks for a plan 𝜋′ such that 𝜋′ ·𝜋 |= 𝑔. If that succeeds, it returns
𝜋′ ·𝜋. Otherwise it removes the first action from 𝜋 and tries again, proceeding in this
manner until either it succeeds or none of 𝜋 is left.

Line 1 of Incremental-Repair uses an extended definition of 𝛾−1 (see Equation 3.15)
that includes plans. If 𝜋 is a plan, then 𝛾−1(𝑔, 𝜋) is the condition that a state 𝑠 must

3.6 Discussion and Bibliographic Notes 61

satisfy to ensure that 𝛾(𝑠, 𝜋) |= 𝑔. More formally,

𝛾−1(𝑔, 𝜋) =


𝑔, if 𝜋 = ⟨⟩,
𝛾−1(𝛾−1(𝑔, 𝑎), 𝜋′), if 𝜋 = 𝜋′ ·𝑎 for some 𝜋′ and 𝑎,
undefined, otherwise.

(3.22)

Incremental-Repair is a simple algorithm that provides no guarantee of finding the
best way to repair 𝜋. Other approaches to plan repair are discussed in Section 3.6.9.

3.6 Discussion and Bibliographic Notes

3.6.1 Nondeterministic Algorithms

Many of the planning algorithms in this book will be presented as nondeterministic
search algorithms, like the Forward-Search algorithm at the beginning of this chapter.
Line 1 of Forward-Search corresponds to trying several members of 𝑅 sequentially
in a trial-and-error fashion. The command “nondeterministically choose” is an
abstraction that lets us ignore the precise order in which those values are tried. This
lets us discuss properties that are shared by a wide variety of algorithms that search
the same space of partial solutions, even though those algorithms may visit different
nodes of that space in different orders. Initially these were just called nondeterministic
algorithms [366, 246], but this kind of nondeterminism later came to be called angelic,
as distinguished from demonic and erratic nondeterminism [115].

3.6.2 Search Algorithms

Heuristic functions that estimated the distance to the goal were first developed in
the mid-1960s [842, 721, 304], and the A* algorithm was developed a few years later
[471, 472]. The 𝜖-optimality result for A* is from [908]. A huge amount of subsequent
work has been done on A* and other heuristic search algorithms. There are tutorial
introductions to some of these algorithms [856, 967]. Our definition of problem
relaxation in Section 3.2 is based on [877], which provides a comprehensive analysis
of a large number of algorithms and techniques.

Branch-and-bound algorithms have been widely used in combinatorial optimization
problems [813]. DFBB (Section 3.1.7) is the best-known version, but most forward-
search algorithms (including, for example, A*) can be formulated as special cases of
branch-and-bound [532, 831].

GBFS, which has been used in many classical planning algorithms [490, 392], was
first introduced in [304] under a different name. Several enhancements to GBFS have
been developed, such as combining it with local search [1187]. GBFS, and several
other algorithms that find approximately optimal solutions, can be adapted to run in
an “anytime mode” in which the algorithm does not stop at the first solution it finds,
but instead continues to look for better and better solutions as time permits [468].

Prior to GBFS, the name “greedy best-first search” was used in [156] for a planning
algorithm similar to the weighted A* algorithm in [908]. These algorithms use a

62 3 Planning with Deterministic Models

heuristic function of the form 𝑔 + 𝑤ℎ or (1 − 𝑤)𝑔 + 𝑤ℎ, where 𝑤 > 1 is a weight
that gives ℎ more influence than 𝑔. Such a weighting scheme has worked well in the
LAMA planner [941].

Heuristic search algorithms can sometimes encounter “heuristic plateaus” that all
look the same from the point of view of the heuristic function [373, 507]. To escape
such plateaus, the well-known FF algorithm does a breadth-first search [509]. A more
recent technique is a width-𝑘 search, which prunes all states except those in which at
least 𝑘 literals have become true for the first time along the current path [722].

In game-tree search programs for games such as chess and checkers, the acting
procedure is similar to Run-Lookahead with the Lookahead subroutine being like a
time-limited version of depth-first iterative deepening (Section 3.1.8) and the depth-
first search being a variant of the well-known alpha-beta algorithm [619, 856, 967].

IDA* [640] and other iterative-deepening algorithms are a special case of node-
regeneration algorithms that retract nodes to save space and regenerate them later if
they need to examine them again. There are several other such algorithms [642, 415].

3.6.3 Planning Graphs

A planning graph is similar to HFF’s relaxed planning graphs (see Figures 3.3 and 3.4),
but it also includes various mutex (i.e., mutual exclusion) conditions: for example,
two actions are mutex if they change the same state variable to different values.
Rather than including all r-applicable actions, each 𝐴𝑘 only includes the ones whose
preconditions are not mutex in 𝑠𝑘 . A good tutorial account of this appears in [1162].

Planning graphs were first used in the Graphplan algorithm [146], which does
an iterative-deepening search to generate successively larger r-states. For each r-
state 𝑠𝑘 such that the atoms of 𝑔 are non-mutex in 𝑠𝑘 , Graphplan does a backward
search to look for a relaxed solution 𝜋 such that the actions in each 𝑎̂𝑖 are non-
mutex. Such a 𝜋 is often called a parallel plan or layered plan, and it is a partially
ordered solution (although not necessarily an optimal one). In any solvable planning
problem, a sufficiently large planning graph will contain a solution, hence Graphplan
is complete. Furthermore, because Graphplan’s backward search is restricted to the
planning graph, it usually can solve classical planning problems much faster than
planners based on Backward-Search or PSP [1162].

Graphplan inspired much follow-up research on planning-graph techniques. Some
of them extend planning graphs in various nonclassical directions, such as conformant
planning [1034], sensing [1165], temporal planning [1035, 400, 733], resources
[624, 625, 1049], probabilities [145], soft constraints [791], and distributed planning
[545]. Others have combined planning graphs with other techniques for use on
classical-planning problems. The STAN planner [732] uses a combination of efficient
planning-graph implementation and domain analysis. LPG [399] does a stochastic
local search on a network of the actions in the planning graph.

3.6.4 Translating Planning Problems into Other Problems

The BlackBox planner [591] can translate a planning problem or a planning graph
into a satisfiability problem and search for a solution using a satisfiability solver. The

3.6 Discussion and Bibliographic Notes 63

basic idea is, for 𝑛 = 1, 2 . . . , to take the problem of finding a plan of length 𝑛,
rewrite it as a satisfiability formula 𝑓𝑛, and try to solve 𝑓𝑛. If the planning problem
is solvable, then 𝑓𝑛 will be solvable for sufficiently large 𝑛. Subsequent work on
planning as satisfiability has included new translation algorithms [529, 949, 8], and
planning-specific heuristics for variable selection in satisfiability problems [948].

There are related approaches that translate planning problems into constraint-
satisfaction problems [298, 91, 92] or integer-programming problems [1113]; see
[829] for an overview.

3.6.5 Heuristic Functions

The ℎadd and ℎmax heuristics in Section 3.2.4 were first used in the HSP planning
system [156]. They were highly influential because they disproved a long-held as-
sumption that good heuristic functions needed to be domain-specific. HSP performed
excellently in the 1998 planning competition, the first of a planning-competition
series11 that has sparked much research on domain-independent planning heuristics.

Most domain-independent heuristics can be classified roughly as delete-relaxation
heuristics, landmark heuristics, critical-path heuristics, and abstraction heuristics
[492]. The next several paragraphs discuss each of these. There also are heuristic
functions that combine multiple heuristic estimates [957].

Delete-Relaxation Heuristics. Delete-relaxation and the ℎ+ and ℎFF heuristics (see
Section 3.2.1) were pioneered primarily by Hoffmann [509], and the name ℎFF derives
from its use in the FF planning system [507]. However, instead of using ℎFF in the
way that we described, FF did something closer to the improvements described at
the end of Section 3.2.2. Delete-relaxation can also be used to describe the ℎadd

and ℎmax heuristics: ℎmax is the optimal parallel solution (see Section 3.6.3) for the
delete-relaxed problem [493, 133].

The causal-graph heuristic [490] involves analyzing the planning domain’s causal
structure using a directed graph in which the nodes are the planning domain’s state
variables, and the edges represent dependencies among the state variables. Although
it is not immediately obvious that this is a delete-relaxation heuristic, there is a
delete-relaxation heuristic that includes it and ℎadd as special cases [493].

Landmark Heuristics. The early work on landmarks [913] was hugely influential,
inspiring a great deal of additional work on the subject. The landmark heuristic
that we described in Section 3.2.3 is relatively simple, and there are many ways to
improve it. The problems of determining whether a fact is a landmark, or whether
one landmark must precede another, are PSPACE-complete [510]. However, there are
several polynomial-time criteria that are sufficient (but not necessary) to guarantee
that a fact is a landmark or that one landmark must proceed another. Some of the
better-known approaches involve relaxed planning graphs [510], domain transition
graphs [942, 941], hitting sets [165], and cyclic dependencies [189].

11See https://www.icaps-conference.org/competitions/.

https://www.icaps-conference.org/competitions/

64 3 Planning with Deterministic Models

The ℎmax heuristic can also be described as a landmark heuristic [492]. An enhanced
version, ℎLM-Cut, is still admissible and gives close approximations to ℎ+ [492]. It
has been generalized to planning problems in which actions have conditional effects
[958]. Landmark heuristics have also been developed for temporal [587] and numeric
[983] planning problems.

Critical-Path Heuristics. There is a set {ℎ𝑚 | 𝑚 = 1, 2, . . .} of admissible heuristic
functions based loosely on critical paths (an important concept in project scheduling).
Each ℎ𝑚 approximates the cost of achieving a goal 𝑔 by the cost of achieving the most
costly subset of size 𝑚 [476, 478]. The computation is exponential in 𝑚, but runs in
polynomial time for any fixed 𝑚.

Abstraction Heuristics. An abstraction of a planning domain Σ is a 𝛾-preserving
homomorphism from Σ onto a smaller planning domain Σ′. For each planning
problem 𝑃 = (Σ, 𝑠0, 𝑔), this defines a corresponding abstraction 𝑃′ = (Σ′, 𝑠′0, 𝑔

′). If
𝑐∗ is the cost of an optimal solution to a planning problem, then 𝑐∗(𝑃′) ≤ 𝑐∗(𝑃). If
Σ′ is simple enough that we can compute 𝑐∗(𝑃′) for every planning problem 𝑃′ in Σ′,
then the function ℎ(𝑠) = 𝑐∗(Σ′, 𝑠′, 𝑔′) is an admissible heuristic for 𝑃.

The best-known such abstraction is pattern database abstraction [263, 319]. The
pattern is a subset 𝑋 ′ of the state variables in Σ, and the mapping from Σ to Σ′ is
done by removing all literals that have state variables not in 𝑋 ′. The pattern database
is a table that gives 𝑐∗(𝑃′) for every planning problem 𝑃′ in Σ′. There are algorithms
to decide what to include in 𝑋 ′ [479, 495], but unfortunately the size of the pattern
database and the cost of computing each entry both grow exponentially with 𝑋 ′. This
can be alleviated [320, 79] using symbolic representation techniques such as BDDs
(Section 12.3.4), but 𝑋 ′ still needs to be kept small [496]. The database provides no
information about variables not in 𝑋 ′, so this limits the informedness of ℎ.

Awareness of this limitation has led to research on other criteria for aggregating
sets of states in Σ into individual states in Σ′, including merge-and-shrink abstraction
[494, 496] and structural-pattern abstraction [589], as well as ways to improve the
heuristic’s informedness by composing several different abstractions [588, 496, 994].

3.6.6 Plan-Space Planning

The two earliest plan-space planners, NOAH [969] and NONLIN [1079], combined
plan-space search with HTN task refinement (see Chapter 5). Plan-space planning
was initially called nonlinear planning, reflecting some debate over whether “linear”
planning referred to the structure of the planner’s current set of actions (a sequence
instead of a partial order) or to its search strategy that addresses one goal after the
previous one has been completely solved.

The SNLP algorithm [770] introduced the concept of systematic search, in which
a plan-space planner generates each partial plan at most once [572]. The footnote at
the end of Definition 3.10 discusses systematic search in PSP. The UCPOP planner
[883, 87, 1163] extended SNLP to handle some extensions to the classical domain
representation, including conditional effects and universally quantified effects [879,

3.6 Discussion and Bibliographic Notes 65

880]. Several other extensions have also been studied, such as incomplete information
and sensing actions [886, 334, 429] and some kinds of extended goals [1164, 77].

Work on planning performance in plan-space planning has included studies of
search control and pruning [397], commitment strategies [793, 794, 1213], state
space versus plan space [1123], and domain features [618].

The general formulation of domain-independent planning in [578, 573] takes into
account most of the preceding issues.

3.6.7 Generalized Domain Models

In Section 2.7.2 we discussed the possibility of generalizing the state-variable rep-
resentation in Section 2.3 to allow actions to do arbitrary computations on states
represented as arbitrary data structures. With such modifications, the forward-search
algorithms in Section 3.1 will still work correctly [856, 654, 521], but they will not be
able to use the domain-independent heuristic functions in Section 3.2, because those
heuristics work by manipulating the syntactic elements of state-variable and classical
representations. Instead, domain-specific heuristic functions will be needed.

One way to generalize the action model while still allowing domain-independent
heuristics is to write each action as a combination of two parts—a “classical” part
that uses a classical or state-variable representation and a “nonclassical” part that uses
some other kind of representation—and write separate algorithms to reason about the
classical and nonclassical parts. This approach has been used to combine classical
planning and integer programming [480]. There is also a “planning modulo theories”
approach [447] that was inspired by prior work on SAT modulo theories [852, 88].

For a planning system to work well, its domain and problem descriptions may need
to be carefully engineered and fine-tuned for particular domains and problems. This
can require an expert understanding of both the domain and the planning language
[481]. An ongoing series of workshops focuses on ways to alleviate the task of
knowledge engineering for planning. The 33rd such workshop was in 2023.12

3.6.8 Planning with Abstraction

In the AI planning literature, planning with abstraction usually has meant a relaxation
process in which an abstract planning problem 𝑃′ = (Σ′, 𝑠′0, 𝑔

′) is formed from a
classical planning problem 𝑃 = (Σ, 𝑠0, 𝑔) by removing some atoms and the literals that
contain them [969, 617, 1199, 424]. If a planner finds a solution 𝜋′ = ⟨𝑎′1, . . . , 𝑎

′
𝑛⟩ for

𝑃′, then for each 𝑖, let 𝑎𝑖 be the action whose abstraction is 𝑎′
𝑖
. Then we can constrain

the search for a solution to 𝑃 by treating pre(𝑎′1), . . . , pre(𝑎′𝑛) like landmarks:

find a solution 𝜋0 for 𝑃0 = (Σ, 𝑠0, pre(𝑎1)),
find a solution 𝜋1 for 𝑃1 = (Σ, 𝑠1, pre(𝑎2)), where 𝑠1 = 𝛾(𝑠0, 𝜋0),

. . . ,

find a solution 𝜋𝑛−1 for 𝑃𝑛−1 = (Σ, 𝑠𝑛−1, pre(𝑎𝑛)), where 𝑠𝑛−1 = 𝛾(𝑠𝑛−2, 𝜋𝑛−2),
find a solution 𝜋𝑛 for 𝑃𝑛 = (Σ, 𝑠𝑛, 𝑔), where 𝑠𝑛 = 𝛾(𝑠𝑛−1, 𝜋𝑛−1).

12See https://icaps23.icaps-conference.org/program/workshops/keps/.

https://icaps23.icaps-conference.org/program/workshops/keps/

66 3 Planning with Deterministic Models

If a condition called the downward refinement property [68] holds, then 𝜋0, . . . , 𝜋𝑛 will
be guaranteed to exist, and their concatenation will be a solution for 𝑃. Planning with
abstraction typically is done at multiple levels: use an abstraction 𝑃′′ to constrain the
search for solving 𝑃′; use an abstraction 𝑃′′′ to constrain the search for solving 𝑃′′; and
so forth. Such abstraction hierarchies have been extensively studied [85, 617, 1199].

In the abstract planning problem 𝑃′, each state or action represents an equivalence
class of states or actions in 𝑃. These equivalence classes were induced by the removal
of atoms, but there are other ways to create equivalence classes with analogous
properties and use them for planning with abstraction [754, 755].

Often the downward refinement property is not satisfied, and in such cases planning
with abstraction is not guaranteed to work. However, abstracted planning problems
can also be used to provide heuristic functions to guide the search for a solution to the
unabstracted problem (see the abstraction heuristics part of Section 3.6.5).

3.6.9 Plan Repair

The term “plan stability” was introduced in [371], which used a modified version of
the LPG planner [400] to show that plan repair could produce corrected plans more
quickly and with fewer revisions than replanning from scratch. The term “minimal
perturbation” was used synonymously in [266], which pointed out the importance of
commitments to other agents.

There has been much classical planning research on the problem of plan adaptation,
that is, taking a solution for one problem and modifying it to get a solution for another
[465, 836, 63, 400, 820]. Because plan repair is a special case of plan adaptation,
most of these algorithms can be used for plan repair. Fewer classical-planning works
have focused on plan repair per se; one exception is the POPR plan-repair algorithm
for plan-space plans [1114].

Work has also been done on plan repair in non-classical domains. There are
domain-specific algorithms for a variety of domains [971, 1027, 463, 825, 706], and
Section 2.6.4 will discuss plan-repair algorithms for HTN planning.

3.7 Exercises

3.1. Prove that in any solvable classical planning problem, at least one execution trace
of Forward-Search will return a shortest solution. Do the same for Backward-Search.

3.2. Under what conditions will GBFS switch to a different path if its current path is
not a dead end?

3.3. In the blocks-world planning problem in Exercise 2.4, let 𝑏 be any block, and
suppose its current location is loc(𝑏) = 𝑙 for some 𝑙. We will say that 𝑏 needs to
be moved if either the goal formula includes an atom loc(𝑏) = 𝑙′ such that 𝑙′ ≠ 𝑙,
or there is a block below 𝑏 that needs to be moved. Consider the heuristic function
ℎ(𝑠) = nm(𝑠) − om(𝑠), where

nm(𝑠) = the number of blocks that need to be moved;

3.7 Exercises 67

𝑠0 = {loc(a) = b, loc(b) = table, loc(c) = table,
clear(a) = T, clear(b) = F, clear(c) = T},

𝑔 = {loc(a) = b, loc(b) = c}

Figure 3.14. Initial state and goal for the planning problem in Exercise 3.3.

om(𝑠) = the number of blocks that are at most two moves away from a
location where they won’t need to be moved.

Using ℎ, suppose we run GBFS on the planning problem in Figure 3.14. Draw the
search tree that GBFS will produce. For each node in the tree, just draw the state,
rather than writing it mathematically. Next to each state, write its ℎ value.

take(𝑟, 𝑐, 𝑙)
pre: loc(𝑟) = 𝑙, pos(𝑐) = 𝑙,

cargo(𝑟) = nil
eff: cargo(𝑟) ← 𝑐, pos(𝑐) ← 𝑟

put(𝑟, 𝑐, 𝑙)
pre: loc(𝑟) = 𝑙, pos(𝑐) = 𝑟
eff: cargo(𝑟) ← nil, pos(𝑐) ← 𝑙

move(𝑟, 𝑙, 𝑚)
pre: loc(𝑟) = 𝑙
eff: loc(𝑟) ←𝑚

where 𝑟 ∈ Robots, 𝑙, 𝑚 ∈ Locations,
𝑐 ∈ Containers

𝑠0:

								loc1	 						loc2	

r1	 r2	
c1	 c2	

𝑠0 = {loc(r1)= loc1, loc(r2)= loc2,
cargo(r1) = nil, cargo(r2) = nil,
pos(c1)= loc1, pos(c2)= loc2},

𝑔 = {pos(c1)= loc2, pos(c2)= loc2}

Figure 3.15. Planning problem for Exercise 3.4.

3.4. Figure 3.15 shows a planning problem involving two robots whose actions are
controlled by a single actor. Unlike some of our previous examples, it is possible for
both robots to occupy the same location.

(a) If we run Forward-Search on this problem, how many iterations will the shortest
execution traces have, and what plans will they return? For one of them, give
the sequence of states and actions in the execution trace.

(b) If we run Backward-Search on this problem, how many iterations will the
shortest execution traces have, and what plans will they return? For one of
them, give the sequence of goals and actions in the execution trace.

(c) Compute ℎFF(𝑠0).
(d) In HFF, suppose that instead of exiting the loop at the first value of 𝑘 such that

𝑠𝑘 r-satisfies 𝑔, we instead keep iterating the loop. At what value of 𝑘 will |𝑠𝑘 |
reach its maximum? At what value of 𝑘 will |𝐴𝑘 | reach its maximum?

68 3 Planning with Deterministic Models

(e) Compute ℎRL(𝑠0).
(f) Compute ℎadd(𝑠0) and ℎmax(𝑠0).

3.5. Write pseudocode for the improved version of HFF that was described in the last
paragraph of Section 3.2.2. Describe a similar improved version of RPG-Landmarks,
and write pseudocode for it.

3.6. What might be an effective way to use ℎFF, ℎRL, ℎadd, and ℎmax with Backward-
Search?

3.7. In the discussion of RPG-Landmarks, we remarked that a solution plan will need
to achieve every landmark 𝜙′ in Line 7 before achieving the landmark 𝜙.

(a) Modify RPG-Landmarks to make Examined a partially ordered set that uses the
order in which the landmarks will need to be achieved.

(b) Describe a planning algorithm that uses the partially ordered set in part (a) to
solve a planning problem by solving a sequence of subproblems.

3.8. Consider the planning problem in Figure 2.8(b). At 𝑠0, suppose GBFS needs to
choose between the actions 𝑎1 = unstack(c,a) and 𝑎2 = pickup(b). Let 𝑠1 = 𝛾(𝑠0, 𝑎1)
and 𝑠2 = 𝛾(𝑠0, 𝑎2). Compute each of the following pairs of heuristic values, and tell
whether or not they will produce the best choice:

(a) ℎFF(𝑠1) and ℎFF(𝑠2). (b) ℎRL(𝑠1) and ℎRL(𝑠2).
(c) ℎadd(𝑠1) and ℎadd(𝑠2). (d) ℎmax(𝑠1) and ℎmax(𝑠2).

3.9. Here is a state-variable version of the problem of swapping the values of two vari-
ables. The ontology of typed objects is Objects = Variables ∪ Numbers, Variables =

{foo, bar, baz}; and Numbers = {0, 1, 2, 3, 4, 5}. There is one action schema:

assign(𝑥1, 𝑥2, 𝑛)
pre: value(𝑥2) = 𝑛
eff: value(𝑥1) ← 𝑛

where 𝑥1, 𝑥2 ∈ Variables and 𝑛 ∈ Numbers. The initial state and goal are

𝑠0 = {value(foo)= 1, value(bar)= 5, value(baz)= 0};
𝑔 = {value(foo)= 5, value(bar)= 1}.

At 𝑠0, suppose GBFS needs to choose between the actions 𝑎1 = assign(baz,foo,1) and
𝑎2 = assign(foo,bar,5). Let 𝑠1 = 𝛾(𝑠0, 𝑎1) and 𝑠2 = 𝛾(𝑠0, 𝑎2). Compute each of the
following pairs of heuristic values, and tell whether they will produce the best choice:

(a) ℎFF(𝑠1) and ℎFF(𝑠2). (b) ℎRL(𝑠1) and ℎRL(𝑠2).
(c) ℎadd(𝑠1) and ℎadd(𝑠2). (d) ℎmax(𝑠1) and ℎmax(𝑠2).

3.10. For the planning problem in Exercise 3.9, let 𝜋 be the partial plan in Figure 3.16.

(a) In 𝜋, how many threats are there? What are they? What are their resolvers?

3.7 Exercises 69

a1	=	assign(foo,bar,5)

value(bar)=1
value(foo)=5

value(bar)=5
value(foo)=1

value(baz)=0

finish start

value(foo)=5

value(bar)=5

value(bar)=1

value(x)=1
a2	=	assign(bar,x,1)

Figure 3.16. Partial plan for Exercise 3.10.

(b) Can PSP generate 𝜋? If so, describe an execution trace that will produce it. If
no, explain why not.

(c) In PSP’s search space, how many immediate successors does 𝜋 have?
(d) How many solution plans can PSP produce from 𝜋?
(e) How many of the preceding solution plans are minimal?
(f) Trace the operation of PSP on 𝜋. Follow whichever of PSP’s execution traces

finds the shortest plan.

hold=&x
clear(a)=T

unstack(x,a)

loc(b)=c
loc(a)=b

loc(a)=table
hold=nil

loc(b)=table

finish start

hold=nil

loc(x)=a
stack(a,b)
hold=a

hold=nil
clear(x)=T clear(b)=T

pickup(a)

loc(a)=table

hold=nil
clear(a)=T

loc(x)=table

putdown(x)
hold=x

loc(x)=hand

hold=nil
clear(x)=T

hold=a
loc(a)=hand

pickup(b)
clear(b)=T

hold=nil
loc(b)=table

hold=b
loc(b)=hand

loc(b)=c
stack(b,c)

hold=b
clear(c)=T

hold=nil
clear(c)=F

loc(a)=b
clear(b)=F

loc(c)=a
clear(a)=F
clear(b)=T
clear(c)=T

Figure 3.17. Partial plan for Exercise 3.11.

3.11. Repeat Exercise 3.10 using the planning problem in Figure 2.8(b) and the partial
plan in Figure 3.17.

3.12. Let 𝜋 be a partially ordered solution for a planning problem 𝑃 = (Σ, 𝑠0, 𝑔).
(a) Write a simple modification of Run-Lazy-Lookahead to execute 𝜋.
(b) Suppose your procedure is executing 𝜋, and let 𝜋′ be the part of 𝜋 that it has

not yet executed. Suppose an unanticipated event invalidates some of the total

70 3 Planning with Deterministic Models

orderings of 𝜋′ (i.e., not all of them will still achieve 𝑔). Write an algorithm to
choose a total ordering of 𝜋′ that still achieves 𝑔, if one exists.

3.13. If 𝜋 = ⟨𝑎1, . . . , 𝑎𝑛⟩ is a solution for a planning problem 𝑃, other orderings of
the actions in 𝜋 may also be solutions for 𝑃.

(a) Write an algorithm to turn 𝜋 into a partially ordered solution.
(b) Are there cases in which your algorithm will find a partially ordered solution

that PSP will miss? Are there cases in which PSP will find a partially ordered
solution that your algorithm will miss? Explain.

4 Learning Deterministic Models

In this chapter we focus on two key topics for learning with deterministic models:
learning heuristics that can speed up the search for a solution plan and the automated
synthesis of the model itself.

In Section 4.1, we deal with the problem of learning heuristics that allow us to
explore parts of the search space that are more likely to lead to solutions. Indeed,
heuristic functions (see Section 3.2) have been demonstrated to play a key practical role
in finding (optimal) plans and allowing plan generation algorithms to scale up to large
state spaces. Heuristic functions can be of two different kinds: Domain independent
heuristics that can be applied to any deterministic model, and domain dependent
heuristics that exploit the specific structure and knowledge about the domain. Here
we provide some basic techniques that, when applied to a given domain, learn domain
(and problem) dependent heuristics.

In Section 4.2, we address the problem of learning a deterministic model, and we
focus on learning action schemas (see Section 2.3.2). Indeed, acting and planning
requires the specification of planning domains through action schemas, i.e., a lifted
representation of actions with their preconditions and effects. The automated learning
of action schemas is widely recognised as a key and compelling challenge to overcome
the difficulties of specifying actions, which is often a time consuming and error-prone
task. We discuss two main approaches to learning action schema: offline learning
from a given set of traces (i.e., sequences alternating actions and states) and online
learning, i.e., learning by applying actions step by step. We show how some basic
routines for offline learning can be re-used for online learning. We also discuss some
algorithms that use planning to learn the model online.

4.1 Learning Heuristics

We have introduced heuristic functions in Chapter 3 (see Section 3.2): a heuristic
function ℎ computes an estimate of the minimum cost ℎ∗(𝑠) of getting from 𝑠 to a goal
state. If the cost is uniform or not specified, it computes an estimate of the minimum
distance from a state to the goal. Heuristic functions have been demonstrated to play a
key practical role in finding (optimal) plans and allowing plan generation algorithms
to scale up to large state spaces. Heuristic functions can be of two different kinds:

• Domain independent heuristics are general, they can be applied to any de-
terministic model. Sections 3.2.1, 3.2.3, and 3.2.4 define three main domain
independent heuristics that have been proven experimentally to be effective in
several different deterministic models.

Free pre-publication, for personal use only. To be published by Cambridge University Press.

71

72 4 Learning Deterministic Models

• Domain dependent heuristics can be more effective than domain independent
heuristics, since they exploit the specific structure and knowledge about the
domain. However, they are less general, they can work just in the case of a
specific deterministic model, and defining them may be not obvious, sometimes
requiring to elicit knowledge from domain experts.

While domain dependent heuristics may be difficult to define by hand, they can
be learned automatically, e.g., through running a simulator. A good strategy can
be therefore to combine both approaches, e.g., refining and improving the heuristic
function by learning a domain dependent heuristic starting from a domain independent
one.

An interesting idea is to devise a ”domain independent learning technique” that,
when applied to a given domain, learns a domain dependent heuristics (Section 4.1.1).
Such a learning technique applies in general, independently of the initial heuristic it
starts from: given the constraint that the heuristic is zero in the goal states, ℎ(𝑠) =
0 ∀𝑠 ∈ 𝑆𝑔, we can assign an arbitrary value to ℎ in all non-goal states. Alternatively,
we can easy the task of learning domain dependent heuristics by initializing the
value of ℎ with any kind of “good” domain independent heuristic, e.g., those defined
in Sections 3.2.1, 3.2.3, and 3.2.4. There is a bunch of work on learning domain
independent heuristics. We discuss this work in Section 4.3.

4.1.1 Learning domain dependent heuristics

Section 4.1.1 presents LRTA* (Learning Real Time A*), which interleaves planning,
learning the heuristic, and acting. LRTA* needs repeated trials to converge to optimal
solutions. Next, Section 4.1.1 presents a general schema that automatically repeats
the learning of ℎ until it finds an 𝜖-optimal solution. The learned heuristic ℎ isn’t just
domain-dependent, it’s problem-dependent.

Learning Real Time A*

LRTA*, Algorithm 4.1, interleaves searching, acting and learning an heuristic. During
search, until the goal is reached, in each state 𝑠, LRTA* finds the action 𝑎 that minimizes
𝑄(𝑠, 𝑎), i.e., the estimated distance from 𝑠 to the goal by taking into account the cost
of applying 𝑎 in 𝑠 and the heuristic of the next state 𝑠′ obtained by applying 𝑎. LRTA*
updates the heuristic in 𝑠 with the cost of applying 𝑎 plus the heuristic in the next state
𝑠′.

If the goal is reachable from the initial state 𝑠0, then LRTA* is guaranteed to reach
the goal. Because LRTA* does a greedy best-first search (see Section 3.1.6), a single
run of LRTA* does not guarantee an optimal plan. However, if ℎ is admissible, then
repeated runs of LRTA* will eventually converge to an optimal plan. A “good” initial
ℎ0 (see e.g., Section 3.2) speeds up the convergence.1

1LRTA* generalizes well to planning with probabilistic models (see Section 9.5.3).

4.1 Learning Heuristics 73

LRTA*(Σ, 𝑠0, 𝑆𝑔, ℎ0)
Initialize the current state and the empty plan: 𝑠← 𝑠0; 𝜋 ← ⟨⟩
Initialize the heuristic: ℎ(𝑠) ← ℎ0(𝑠) for all states of Σ
while 𝑠 ∉ 𝑆𝑔 do

foreach 𝑎 ∈ Applicable(𝑠) do
𝑄(𝑠, 𝑎) ← cost(𝑠, 𝑎) + ℎ(𝛾(𝑠, 𝑎))

ℎ(𝑠) ← min𝑎{𝑄(𝑠, 𝑎)}
𝑎 ← argmin𝑎{𝑄(𝑠, 𝑎)}
𝜋 ← 𝜋 ·𝑎
𝑠← 𝛾(𝑠, 𝑎)

Algorithm 4.1. Learning Real Time A*.

Learning 𝜖-optimal heuristics

In this section, we present algorithms that learn heuristics that allow for 𝜖-optimal
solutions in one single run. Like LRTA*, they learn heuristics by interleaving search
with updating of ℎ. The main difference is that they keep memory of all visited states,
and update ℎ not only in the current state but in all the visited states. This provides
the ability to change plan if we are not on a path to an optimal solution. Intuitively,
the condition for reaching an optimal solution is that the update of ℎ is lower than 𝜖 .2

We start by introducing some notions that allow us to keep trace of all visited states
along different paths generated during the search by our algorithms. We let Fringe be
the set of fringe states, which have been generated but not yet expanded; and Interior
be the set of interior states, which have been expanded.3 We let Envelope be the
set of states that have been generated at some point by a search algorithm, that is,
Envelope = Interior ∪ Fringe.

The idea is to learn ℎ in a state 𝑠 ∈ Fringe in a similar way to LRTA*, that
is, by expanding 𝑠 ∈ Fringe and finding its successor state 𝛾(𝑠, 𝑎) for all actions
𝑎 ∈ Applicable(𝑠), and updating ℎ(𝑠) with the value obtained from the most promising
action at 𝑠, that is, the action in Applicable(𝑠) that minimizes the distance to the goal.

After a state 𝑠 ∈ Fringe is expanded, it becomes an interior state, i.e., 𝑠 ∈ Interior.
Since we aim at 𝜖-optimal solutions, also the ℎ(𝑠) of interior states must be updated
with the value obtained from the most promising action at 𝑠. Each time ℎ(𝑠) changes,
each state that leads to 𝑠 (that is, each 𝑠′ such that 𝑠 = 𝛾(𝑠′, 𝑎)) will need its heuristic
function ℎ(𝑠′) updated, because its most promising action may have changed.

Algorithm 4.2 is a general schema4 for an algorithm that interleaves the application
of actions in Fringe (the expand phase) with the updating of ℎ in expanded and
interior states (the update phase). The learning is performed starting from a given

2The main ideas presented in this section come from the application of value iteration (see Sec-
tion 9.1.3). Here we have the specific case of value iteration for deterministic models.

3This is similar to Algorithm 3.2 in Section 3.1, in which Frontier is a set of nodes (𝜋, 𝑠) in which 𝑠
has been generated but not yet expanded, and Expanded is a set of nodes (𝜋, 𝑠) in which 𝑠 has already
been visited. Fringe is the set of states in Frontier, and Interior is the set of states in Expanded.

4Algorithm 4.2 is an adaptation to deterministic domains of Algorithm 9.6 in Section 9.2.

74 4 Learning Deterministic Models

initial heuristic function ℎ0(𝑠) = 0 for all 𝑠 that are goal states, ℎ0(𝑠) > 0 for all the
other states. The learned heuristic is problem-dependent, because it depends on the
goal to be achieved.

Expand&Update(Σ, 𝑠0, 𝑆𝑔, ℎ0)
initialize ℎ with ℎ0, open and fringe states with 𝑠0, and 𝜋 with the empty

plan
until 𝑠0 is solved do

1 select an open state 𝑠 in 𝛾̂(𝑠0, 𝜋)
2 if 𝑠 is a fringe state then expand 𝑠
3 else

ℎ(𝑠) ← min𝑎∈Applicable(𝑠) [cost(𝑠, 𝑎) + ℎ(𝛾(𝑠, 𝑎))]
𝜋 ← 𝜋 · argmin𝑎∈Applicable(𝑠) [cost(𝑠, 𝑎) + ℎ(𝛾(𝑠, 𝑎))]

Algorithm 4.2. Expand&Update schema.

Recall that 𝛾̂(𝑠, 𝜋) is the transitive closure of a plan 𝜋 on a state 𝑠, i.e., the sequence
of states generated by plan 𝜋 from 𝑠 (see Equation 2.8). We define solved and open
states as follows:

• A state 𝑠 ∈ Envelope is open if it is not a goal state and either it is a fringe state
or it is an interior state such that residual(𝑠) = |ℎ(𝑠) − min𝑎{𝑄(𝑠, 𝑎)}| > 𝜖 .
Thus a non-goal state 𝑠 ∈ Envelope is open if (𝑠 ∈ Fringe) ∨ (𝑠 ∈ Interior ∧
residual(𝑠) > 𝜖).

• A state 𝑠 ∈ Envelope is solved if the current 𝛾̂(𝑠, 𝜋) has no open states, that is,
if ∀𝑠′ ∈ 𝛾̂(𝑠, 𝜋) either 𝑠′ ∈ 𝑆𝑔 or residual(𝑠′) ≤ 𝜖 .

The selection of an open state (line 1) must ensure that no state in 𝛾̂(𝑠0, 𝜋) remains
open indefinitely without being chosen for revision. Moreover, the expansion of a
fringe state (Line 2) generates more than one new fringe state, it is intended to apply
all applicable actions to the current state 𝑠 and to add them to Fringe. These are two
main differences with respect to LRTA*, where (i) just one fringe state is generated at
each run, thus precluding the possibility to take alternative paths to the goal, and (ii)
open states that are not fringe states and that do not lead to the minimal cost (distance)
to the goal are not updated with a new value of ℎ and a new plan. All of this is needed
to generate 𝜖-optimal solutions in one run.

The expansion of a fringe state changes the current plan 𝜋 and hence 𝛾̂(𝑠0, 𝜋). At
any point, either a state 𝑠 is open, or 𝑠 is expanded in an open fringe state (whose
update will later make 𝑠 open - Line 3), or 𝑠 is solved. In the latter case, 𝛾̂(𝑠, 𝜋) does
not change anymore. Algorithm 4.2 iterates until 𝑠0 is solved, that is, there is no open
state in 𝛾̂(𝑠0, 𝜋). With an admissible heuristic function, Algorithm 4.2 converges to
a solution which is asymptotically optimal with respect to 𝜖 .

4.2 Learning Action Specifications 75

4.2 Learning Action Specifications

Acting and planning with (deterministic) models require the specification of actions
thorough their preconditions and effects. However, the manual specification of actions
is often an inaccurate, time-consuming, and error-prone task. Moreover, most often,
it is impossible to specify a complete and correct model of the world. Finally, most
of the times a model needs to be updated and adapted to a changing environment.

The automated learning of action specifications is widely recognised as a key and
compelling challenge to overcome these difficulties. To ensure the generality and re-
usability of the specification of actions, preconditions and effects are represented with
lifted action schemas (see Section 2.3.2), which are independent from the specific set
of objects involved in each planning domain.

Intuitively, the automated learning of action specifications is achieved by an actor
that applies actions in the environment or through a simulator. The actor learns action
specifications by observing the result of action applications.

The assumption that the actor does not know the model is similar to what happens in
reinforcement learning in the case of probabilistic models (see Chapter 10). However,
here the problem is different. The goal is not to learn a plan or a policy. The goal is
to learn the deterministic model, i.e., the (lifted) specification of actions through their
preconditions and effects.

In this chapter, we consider two different kinds of problems and approaches to
learning actions:

• Learning actions offline by analyzing a given and fixed set of traces, i.e., a set
of sequences alternating actions and states resulting from their application.

• Learning actions online, i.e., step by step by choosing an action to apply in
the current state, observing the result, and iteratively choosing and applying an
action in the reached state.

We will study the problem of learning action schemas in the case of full observ-
ability, i.e., when an actor has access to the value of all state variables in each state.
See Section 4.3 for a discussion on the problem of learning actions from observations
in which the value of some state variable is unknown, and/or some of the executed
actions might be missing.

The structure of the remaining chapter is as follows. In Section 4.2.1, we address
the problem of learning actions offline: we start from the hypotheses that all actions
in the trace are applicable. We then drop such assumption, allowing for inapplicable
actions in the trace, a key step for extending the learning algorithm in the case of
learning action models online. Indeed, in the online case, the actor chooses actions
to be applied step by step and it cannot know whether actions are applicable.

In Section 4.2.2, we address the problem of learning actions online, i.e., the case in
which an actor applies actions in the current observed state and observes the results of
such applications. Before addressing the online learning action problem, we consider
first the case of “learning by queries”. In this scenario, the actor chooses a state and
an action and gets the result of applying such action in such state. The intuition is
to query a platform that acts as an oracle and replies to the query with the results

76 4 Learning Deterministic Models

of action applications. We introduce here an important concept that is essential for
addressing the online learning problem: the notion of informative state-action pair.
Intuitively, a state and an action are informative when the application of that action
in that state allows the actor to learn something new about preconditions and effects.
This notion is important since a learning algorithm can guide the application of actions
to informative states. Moreover, the algorithm can know if there is anything more to
learn, or if it should terminate its task.

Once we have provided such basic concepts and routines, we address the problem
of learning actions online. Differently from learning by queries, in this case the
actor can not choose states arbitrarily at each step, but it must chose actions from
the current state. This is a much more realistic hypotheses than the assumption in
learning by query, since it mimics what happens in learning by acting in the real world,
and it deals with the problem of learning dynamically by the application of actions
in an unknown environment. Also in this case, the actor exploits the key notion of
informative state-action pair by looking for states where it can apply actions that allow
for learning something new. We devise an approach where the actor plans for reaching
an informative state where to apply an action in the current model. The application
of actions in the generated plan may fail, since the actor generates plans with an
incomplete and imperfect model, however the actor can learn also from failures.

4.2.1 Offline Action Learning

We recall the definition of (lifted) state variable, (lifted) assignment, and action
schemas (or action template) given in Section 2.3. (Ground) state variables are expres-
sions of the form x(𝑐1, . . . , 𝑐𝑛), also written x(c), where 𝑐1, . . . , 𝑐𝑛 are constants de-
noting typed objects. Lifted state Variables are expressions of the form x(𝑧1, . . . , 𝑧𝑛),
also written x(𝒛), where x is a state variable name and 𝑧1, . . . , 𝑧𝑛 are parameters of
given types. (Ground) assignments are expressions of the form x(𝑐1, . . . , 𝑐𝑛) = 𝑐𝑛+1,
where x is a state-variable name and 𝑐1, . . . , 𝑐𝑛, 𝑐𝑛+1 are constants denoting typed
objects. Lifted assignments are expressions of the form x(𝑧1, . . . , 𝑧𝑛) = 𝑧𝑛+1, where x
is a state-variable name and 𝑧1, . . . , 𝑧𝑛, 𝑧𝑛+1 are parameters.

We recall the definition of action schema (see Definition 2.7 in Section 2.3.2):
𝑎(𝑧1, . . . , 𝑧𝑘), also written 𝑎(𝒛), is the head of an action schema with 𝑎 the action
name and 𝑧1, . . . , 𝑧𝑘 a list parameters. We write 𝑎(𝑐1, . . . , 𝑐𝑘) (also written 𝑎(𝒄))
as the head of an action grounded with the constants 𝑐1, . . . , 𝑐𝑘 in place of the
parameters 𝑧1, . . . , 𝑧𝑘 . We call 𝑎(𝑐1, . . . , 𝑐𝑘) (also written 𝑎(𝒄)) a ground action
name. Preconditions and effects are sets of lifted assignments.

We extend the notion of lifted state variable and lifted assignment by allowing for
a set of special constants which contains special symbols that denote constant values
that are generally used in any planning domain. For instance, we suppose we have two
special constants true and false of type Bool that denote the Boolean values “true” and
“false”. Indeed, in the case of Boolean state variables, we prefer to use the notation
x(𝒄) = true and x(𝒄) = false rather than x(𝒄) and ¬x(𝒄), since this will allow us to use
a uniform representation for Boolean and non-Boolean state variables in the learning
algorithms.

4.2 Learning Action Specifications 77

The input to the problem of learning actions offline is a set of finite traces. A trace is
a sequence 𝑠0, 𝑎1, 𝑠1, 𝑎2, . . . , 𝑎𝑛, 𝑠𝑛+1 of alternating states and action names with their
grounded parameters. The set of traces can be broken into a set 𝑇 of transitions of the
form (𝑠, 𝑎(𝒄), 𝑠′).5 Given a set of transitions 𝑇 (or equivalently a set of traces), we
want to learn the preconditions and effects (sets of lifted assignments) of the actions
that appear in 𝑇 .6

We will start our approach to learning action schemas based on some simple rules
that are valid for ground assignments and actions.7 Let pre(𝑎(𝒄)) and eff(𝑎(𝒄))
be the preconditions and effects of pre(𝑎(𝒛)) and eff(𝑎(𝒛)), resp., grounded with
constants 𝒄 (i.e., obtained by replacing parameters 𝒛 with constants 𝒄 of the proper
type). Let (𝑠, 𝑎(𝒄), 𝑠′) ∈ 𝑇 be a transition, where 𝑠 and 𝑠′ are states, and 𝑎(𝒄) is a
ground action. Given a ground transition (𝑠, 𝑎(𝒄), 𝑠′), the following rules state when
a ground assignment 𝑥(𝒄) = 𝑐 can be a ground precondition or a ground effect of a
ground action name:

1. If 𝑥(𝒄) = 𝑐 ∉ 𝑠, then 𝑥(𝒄) = 𝑐 ∉ pre(𝑎(𝒄))

2. If 𝑥(𝒄) = 𝑐 ∉ 𝑠′, then 𝑥(𝒄) = 𝑐 ∉ eff(𝑎(𝒄))

3. If 𝑥(𝒄) = 𝑐 ∈ 𝑠′ \ 𝑠, then 𝑥(𝒄) = 𝑐 ∈ eff(𝑎(𝒄))

From these simple rules we can define the upper and lower bounds of grounded
preconditions and effects, given a set of transitions (traces) 𝑇 .

∅ ⊆ pre(𝑎(𝒄)) ⊆
⋂

(𝑠,𝑎 (𝒄) ,𝑠′) ∈𝑇
𝑠 (4.1)⋃

(𝑠,𝑎 (𝒄) ,𝑠′) ∈𝑇
𝑠′ \ 𝑠 ⊆ eff(𝑎(𝒄)) ⊆

⋂
(𝑠,𝑎 (𝒄) ,𝑠′) ∈𝑇

𝑠′ (4.2)

Equation 4.1 holds since a ground assignment cannot be a precondition if it is not
in every state 𝑠 where the action 𝑎(𝒄) is applied, and therefore only assignments that
are in all the states where action 𝑎(𝒄) is applied may be preconditions of 𝑎(𝒄). On
the other hand, the fact that a state variable has been observed in a state of the trace,
does not necessarily means that it is a precondition. It may be even the case that
action 𝑎(𝒄) has no precondition at all, and therefore the lower bound of pre(𝑎(𝒄)) is
the empty set.

Equation 4.2 states that an assignment cannot be an effect if it is not in all the states
resulting from the application of an action. On the other hand, all the state variables
that have an assignment that in the resulting state 𝑠′ is different from the one in the
original state 𝑠 are necessarily effects, and this is an upper bound for eff(𝑎(𝒄)).

5Indeed, the order of transitions in the trace does not influence the learning task. This is true in the
cased of full observability, in which there are not hidden state variables, i.e., the actor has access to
the value of all state variables in all states. In Section 4.3, we will briefly discuss works that deal with
partial traces with hidden state variables, where the order of transitions in a trace is important.

6With abuse of notation, we use 𝑇 both for the trace and the set of transitions given in input to the
learning problem.

7In the literature, these rules are called the Safe Action Model (SAM) rules.

78 4 Learning Deterministic Models

Given these simple considerations, we can devise a first simple algorithm for
computing the lifted preconditions and effects from a set of transitions. Let 𝑇 be a
set of transitions (𝑠, 𝑎(𝒄), 𝑠′). Let 𝑠(𝒄) denote the set of ground assignments in 𝑠
that contain only constants in 𝒄. 𝑠(𝒛) is the result of the replacement of each 𝑐𝑖 in 𝒄
with 𝑧𝑖 . Algorithm 4.3 simply exploits the ideas underlying rules in Equation 4.1 and
Equation 4.2.

Action-Offline-Learning-Simple(𝑇)
for 𝑎 action name that appears in 𝑇 do

pre(𝑎(𝒛)) ← ⋂
(𝑠,𝑎 (𝒄) ,𝑠′) ∈𝑇 𝑠(𝒛)

eff(𝑎(𝒛)) ← ⋃
(𝑠,𝑎 (𝒄) ,𝑠′) ∈𝑇 𝑠′(𝒛) \ 𝑠(𝒛)

Algorithm 4.3. Simple Action Offline Learning.

Example 4.1. In this example, we consider the following trace: a robot is loaded,
then it moves to a target location where it gets unloaded, and finally the robot moves
back to the original location. The corresponding trace is the following:

𝑇 = ⟨𝑠0, load(r1), 𝑠1,move(r1, l1, l2), 𝑠2, unload(r1), 𝑠3,move(r1, l2, l1), 𝑠4⟩,where
𝑠0 = {loaded(r1) = false, pos(r1) = l1},
𝑠1 = {loaded(r1) = true, pos(r1) = l1},
𝑠2 = {loaded(r1) = true, pos(r1) = l2},
𝑠3 = {loaded(r1) = false, pos(r1) = l2}
𝑠4 = {loaded(r1) = false, pos(r1) = l1}

Algorithm 4.3 computes the following action schema:

load(𝑟)
pre : loaded(𝑟) = false
eff : loaded(𝑟) = true

unload(𝑟)
pre : loaded(𝑟) = true
eff : loaded(𝑟) = false

move(𝑟, 𝑙, 𝑙′)
pre : pos(𝑟) = 𝑙
eff : pos(𝑟) = 𝑙′

This example gives an intuition of the fact that Algorithm 4.3 learns preconditions
that may be preconditions but are not guaranteed to be preconditions. Indeed, if the
trace would have stopped at state 𝑠3, we would have had loaded(r) = true in the
preconditions of move(𝑟, 𝑙, 𝑙′), i.e., Algorithm 4.3 would have learned that a robot
can be moved from one location to another one only when it is loaded. □

Notice that, as clearly stated by Equation 4.1, the preconditions pre(𝑎(𝒛)) computed
by Algorithm 4.3 are not necessarily preconditions. In the following, we will indicate
with the notation pre?(𝑎(𝒛)) the fact the lifted assignments in pre?(𝑎(𝒛)) might be
preconditions, but are not guaranteed to be preconditions. We say they are potential
preconditions. We call the preconditions that are guaranteed to be preconditions,
certain preconditions, and we write pre!(𝑎(𝒛)). On the contrary, Algorithm 4.3
computes in eff(𝑎(𝒛)) all the certain effects (we write them as eff!(𝑎(𝒛))) that are

4.2 Learning Action Specifications 79

Action-Offline-Learning?!(𝑇)
for 𝑎 action name that appears in 𝑇 do

pre?(𝑎(𝒛)) ←
⋂
(𝑠,𝑎 (𝒄) ,𝑠′) ∈𝑇 𝑠(𝒛)

eff!(𝑎(𝒛)) ←
⋃
(𝑠,𝑎 (𝒄) ,𝑠′) ∈𝑇 𝑠′(𝒛) \ 𝑠(𝒛)

eff?(𝑎(𝒛)) ←
⋂
(𝑠,𝑎 (𝒄) ,𝑠′) ∈𝑇 𝑠′(𝒛)

Algorithm 4.4. Action Offline Learning with potential and certain preconditions
and effects.

guaranteed to be effects, but not the potential effects, that we write as eff?(𝑎(𝒛))) .
In Algorithm 4.4, we refine the simple Algorithm 4.3 for offline learning taking into
account the difference between potential and certain preconditions and effects.

Example 4.2. Consider example Example 4.1. Algorithm 4.4 gives the following
results:

pre?(load(𝑟)) = {loaded(𝑟) = false}
eff!(load(𝑟)) = {loaded(𝑟) = true}
eff?(load(𝑟)) = {loaded(𝑟) = true}

pre?(unload(𝑟)) = {loaded(𝑟) = true}
eff!(load(𝑟)) = {loaded(𝑟) = false}
eff!(load(𝑟)) = {loaded(𝑟) = false}

pre?(move(𝑟, 𝑙, 𝑙′)) = {pos(𝑟) = 𝑙}
eff!(move(𝑟, 𝑙, 𝑙′)) = {pos(𝑟) = 𝑙′}
eff?(move(𝑟, 𝑙, 𝑙′)) = {pos(𝑟) = 𝑙′}

Notice that we could eliminate the potential effects that are also certain. □

We then address the interesting case in which we have a trace that includes non-
applicable actions, i.e., actions that may fail. Indeed we should have the possibility
to learn also from failure, and this will be important for on-line learning, since in the
online case we cannot be guaranteed that the selected actions are applicable in the
current state.

Let 𝑇 be a set of triples (𝑠, 𝑎(𝒄), 𝑠′), where 𝑠 is a state, 𝑎(𝒄) is an action name
grounded with constants 𝑐1, . . . , 𝑐𝑛, and 𝑠′ is either a state or failure.

The result of Algorithm 4.5 is a quadruple of (pre?, pre!, eff?, eff!). Notice that
Algorithm 4.5 introduces disjunctions in the preconditions, which are not allowed in
the classical formulation of action schemas. We have that :

1. For any 𝑥1(𝒛) = 𝑧1 ∨ · · · ∨ 𝑥𝑛 (𝒛) = 𝑧𝑛 ∈ pre!(𝑎(𝒛)), there is an 𝑖 such that
𝑥𝑖 (𝒛) = 𝑧𝑖 ∈ pre(𝑎(𝒛));

2. pre(𝑎(𝒛)) ⊆ pre?(𝑎(𝒛))
3. eff!(𝑎(𝒛)) ⊆ eff(𝑎(𝒛)) ⊆ eff?(𝑎(𝒛))

Algorithm 4.5 has an important advantage with respect previous algorithms! By
dealing with failures it can compute certain preconditions, i.e., preconditions that are
actually needed to apply the action. This is impossible without dealing with failure.

80 4 Learning Deterministic Models

Action-Offline-Learning-with-Failure(𝑇)
1 for 𝑎 action name that appears in 𝑇 do
2 pre?(𝑎(𝒛)) ←

⋂
(𝑠,𝑎 (𝒄) ,𝑠′) ∈𝑇

𝑠′≠ failure

𝑠(𝒛)

3 pre!(𝑎(𝒛)) ←
⋃

(𝑠,𝑎 (𝒄) ,failure) ∈𝑇

∨(pre?(𝑎(𝒛)) \ 𝑠(𝒛))

4 for 𝛼 ≠ 𝛽 ∈ pre!(𝑎(𝒛)) do
if 𝛼 |= 𝛽 then

5 remove 𝛽 from pre!(𝑎)

6 eff!(𝑎(𝒛)) ←
⋃

(𝑠,𝑎 (𝒄) ,𝑠′) ∈𝑇
𝑠′≠failure

𝑠′(𝒛) \ 𝑠(𝒛)

7 eff?(𝑎(𝒛)) ←
⋂

(𝑠,𝑎 (𝒄) ,𝑠′) ∈𝑇
𝑠′≠ failure

𝑠′(𝒛)

Algorithm 4.5. Offline Action Learning with actions that may fail.

Example 4.3. This example is a simple extension of Example 4.1, where we start
by unloading an unloaded robot, an action that is not applicable. In this example
we suppose that the failing action leaves the situation unchanged, i.e., we stay in
the original state. We add to the transitions that can be extracted from the trace in
Example 4.1, the following transition:

⟨𝑠0 = {loaded(r1) = false, pos(r1) = l1}, unload(r1), failure⟩

Algorithm 4.5 gives the following results:

pre?(load(𝑟)) = {loaded(𝑟) = false}
pre!(load(𝑟)) = ∅
eff!(load(𝑟)) = {loaded(𝑟) = true}
eff?(load(𝑟)) = {loaded(𝑟) = true}

pre?(unload(𝑟)) = {loaded(𝑟) = true}
pre!(unload(𝑟)) = {loaded(𝑟) = true}
eff!(unload(𝑟)) = {loaded(𝑟) = false}
eff?(unload(𝑟)) = {loaded(𝑟) = false}

pre?(move(𝑟, 𝑙, 𝑙′)) = {pos(𝑟) = 𝑙}
pre!(move(𝑟, 𝑙, 𝑙′)) = ∅
eff!(move(𝑟, 𝑙, 𝑙′)) = {pos(𝑟) = 𝑙′}
eff?(move(𝑟, 𝑙, 𝑙′)) = {pos(𝑟) = 𝑙′}

Notice how dealing with action application failures allows us to determine certain
preconditions. □

4.2 Learning Action Specifications 81

The learning algorithms presented so far in this section are based on the idea to
compute the preconditions and effects of an action 𝑎(𝒄) by analysing all the transitions
of the same action 𝑎(𝒄) in 𝑇 . A different approach is to select a transition (in a trace)
and to incrementally update the preconditions and effects. This alternative approach
is particularly interesting, since it will allow us to provide the basic routines for online
action learning. Indeed in online learning (Section 4.2.2), we must incrementally
select an action an analyse the transition resulting from the action application.

The incremental offline algorithms Algorithm 4.6, Algorithm 4.7, and Algo-
rithm 4.8 are the incremental version of the offline algorithms Algorithm 4.3, Al-
gorithm 4.4, and Algorithm 4.5.

Action-Incremental-Learning-Simple(𝑇)
for 𝑎 action name that appears in 𝑇 do

pre(𝑎(𝒛)) ← U
eff(𝑎(𝒛)) ← ∅

while 𝑇 ≠ ∅ do
choose (𝑠, 𝑎(𝒄), 𝑠′) ∈ 𝑇
pre(𝑎(𝒛)) ← 𝑝𝑟𝑒(𝑎(𝒛)) ∩ 𝑠(𝒛)
eff(𝑎(𝒛)) ← eff(𝑎(𝒛)) ∪ 𝑠′(𝒛) \ 𝑠(𝒛)
𝑇 ← 𝑇 ∩ (𝑠, 𝑎(𝒄), 𝑠′)

Algorithm 4.6. A simple algorithm for Incremental Action Learning.

Action-Incremental-Learning?!(𝑇)
for 𝑎 action name that appears in 𝑇 do

pre?(𝑎(𝒛)) ← U
eff?(𝑎(𝒛)) ← eff!(𝑎(𝒛)) ← ∅

while 𝑇 ≠ ∅ do
choose (𝑠, 𝑎(𝒄), 𝑠′) ∈ 𝑇
pre?(𝑎(𝒛)) ← pre?(𝑎(𝒛)) ∩ 𝑠(𝒛)
eff!(𝑎(𝒛)) ← eff!(𝑎(𝒛)) ∪ 𝑠′(𝒛) \ 𝑠(𝒛)
eff?(𝑎(𝒛)) ← eff?(𝑎(𝒛)) ∪ 𝑠′(𝒛)
𝑇 ← 𝑇 ∩ {(𝑠, 𝑎(𝒄), 𝑠′)}

Algorithm 4.7. Incremental Action Learning with potential and certain precon-
ditions and effects.

82 4 Learning Deterministic Models

Action-Incremental-Learning-with-Failure(𝑇)
for 𝑎 action name that appears in 𝑇 do

pre?(𝑎(𝒛)) ← eff?(𝑎(𝒛)) ← U
pre!(𝑎(𝒛)) ← eff!(𝑎(𝒛)) ← ∅

while 𝑇 ≠ ∅ do
choose (𝑠, 𝑎(𝒄), 𝑠′) ∈ 𝑇
if 𝑠′ ≠ failure then

pre?(𝑎(𝒛)) ← 𝑝𝑟𝑒(𝑎(𝒛)) ∩ 𝑠(𝒛)
eff!(𝑎(𝒛)) ← eff!(𝑎(𝒛)) ∪ 𝑠′(𝒛) \ 𝑠(𝒛)
eff?(𝑎(𝒛)) ← eff?(𝑎(𝒛)) ∩ 𝑠′(𝒛)

else if there is no 𝛽 ∈ pre!(𝑎(𝒛)) s.t. 𝛽 |= ∨(pre?(𝑎(𝒛) \ 𝑠(𝒛)) then
pre!(𝑎(𝒛)) ← pre!(𝑎(𝒛)) ∪ {

∨(pre?(𝑎(𝒛)) \ 𝑠(𝒛)))}
𝑇 ← 𝑇 ∩ {(𝑠, 𝑎(𝒄), 𝑠′)}

Algorithm 4.8. Incremental Action Learning with actions that may fail

4.2.2 Online Action Learning

While in offline learning we assume a set of transitions is given in input to the
learning algorithms, online action learning algorithms do not have a set of transitions
in input, but they must build the set of transitions by selecting actions to be applied
incrementally.

We start by defining a basic building block for online learning, i.e., learning from
the application of a ground action name. Algorithm 4.9 takes in input a state 𝑠, a
ground action name 𝑎(𝒄), and a set of previously computed preconditions pre(𝑎(𝒛))
and effects eff(𝑎(𝒛)) of action 𝑎(𝒛). It applies the action to the state 𝑠 and stores the
result in 𝑠′, which might be a state if the action succeeds or failure if it fails. Notice
that the part of Algorithm 4.9 computing the preconditions and effects of the action
application is the same as in the incremental Algorithm 4.8.

Learn-by-action-application(𝑠, 𝑎(𝒄), pre(𝑎(𝒛)), eff(𝑎(𝒛))
𝑠′ ← apply action 𝑎(𝒄) to state 𝑠
if 𝑠′ ≠ failure then

pre?(𝑎(𝒛)) ← pre(𝑎(𝒛)) ∩ 𝑠(𝒛)
eff!(𝑎(𝒛)) ← eff!(𝑎(𝒛)) ∪ 𝑠′(𝒛) \ 𝑠(𝒛)
eff?(𝑎(𝒛)) ← eff?(𝑎(𝒛)) ∩ 𝑠′(𝒛)

else if there is no 𝛽 ∈ pre!(𝑎(𝒛)) s.t. 𝛽 |= ∨(pre?(𝑎(𝒛) \ 𝑠(𝒛)) then
pre!(𝑎(𝒛)) ← pre!(𝑎(𝒛)) ∪ {

∨(pre?(𝑎(𝒛)) \ 𝑠(𝒛)))}

Algorithm 4.9. Learning by action application.

We can now define a first version of an online algorithm, where learning is per-
formed by applying an action in a given state. We suppose we can freely select the

4.2 Learning Action Specifications 83

Naive-Learning-Actions-by-Queries(state variable and action names, 𝐶)
for each action name 𝑎 do

pre?(𝑎(𝒛)) ← eff?(𝑎(𝒛)) ← U (the universal set)
pre!(𝑎(𝒛)) ← eff!(𝑎(𝒛)) ← ∅

for all pairs ⟨𝑠, 𝑎(𝒄)⟩ do
Learn-by-action-application(𝑠, 𝑎(𝒄), pre(𝑎(𝒛)), eff(𝑎(𝒛))

Algorithm 4.10. A naive version of Action Learning by Queries.

Learning-Actions-by-Queries(state variable and action names, 𝐶)
for each action name 𝑎 do

pre?(𝑎(𝒛)) ← eff?(𝑎(𝒛)) ← U (the universal set)
pre!(𝑎(𝒛)) ← eff!(𝑎(𝒛)) ← ∅

while there exists an informative state-action pair ⟨𝑠, 𝑎(𝒄)⟩ do
Learn-by-action-application(𝑠, 𝑎(𝒄), pre(𝑎(𝒛)), eff(𝑎(𝒛))

Algorithm 4.11. Action Learning by Queries.

state where to apply the action (without knowing whether it will succeed or fail). It
is like we can query an oracle, or a system simulating the real environment, which
answers to the query with the result of the application of the selected action to the
selected state. We call this approach ”learning by query”.

Algorithm 4.10 takes as input a set of state variable names, a set of action names,
and a set of constants𝐶. It represents a naive version of online learning by query in the
sense that blindly applies all possible ground actions to all possible states. There is no
attempt to select a pair action-state that could provide useful information to learn the
preconditions and effects. It does not exploit the real advantage of the online approach,
i.e., the fact that we can choose the action to apply in a given state, and therefore we
can choose an informative state-action pair, i.e. a state and a ground action that
allow the actor to learn preconditions and effects that have not been learned yet. The
intuition is that, during the learning process, a state-action pair is informative when
the application of the action to the state provides some further useful information,
thus allowing us to learn something more with respect to what we have learned so far.

During the learning process, a state-action pair ⟨𝑠, 𝑎(𝒄)⟩ is informative if all the
certain ground preconditions pre!(𝑎(𝒄)) hold in 𝑠, and at least one among the potential
preconditions pre?(𝑎(𝒄)) or one among the potential effects eff?(𝑎(𝒄)) does not hold
in 𝑠.

Intuitively, a state is informative for a given action if all the certain preconditions
of the action hold in the state so that we have a chance to apply the action; at least one
potential precondition/effect does not hold, so that we can understand whether it is a
certain precondition/effect or it is not a precondition/effect at all.

Given the notion of informative state-action pair, we can define Algorithm 4.11
that learns by querying the results of applying actions to states that allow learning

84 4 Learning Deterministic Models

something more, until no further informative state-action pair exists.
We are now going to drop a basic assumption underlying the approach in Algo-

rithm 4.11 to online learning by querying the results of applying a given action in a
given state. In the new scenario, we cannot select any state and query for the results
of applying an action in that state. We can instead sense the current state, and we can
then select an action to be applied in the current state. If the action succeeds, we get
to the state resulting from the application of the action. If the action fails, we get to
a state possibly different from the foreseen state. It maybe the same original state in
which we have applied the action, or another state, but we suppose we can go on with
the learning process.

Online-Action-Learning(state variable and action names, 𝐶)
for each action name 𝑎 do

pre?(𝑎(𝒛)) ← eff?(𝑎(𝒛)) ← U (the universal set)
pre!(𝑎(𝒛)) ← eff!(𝑎(𝒛)) ← ∅

plan 𝜋 ← ⟨⟩
𝑠← observe the current state
while True do

if 𝜋 = ⟨⟩ then
1 𝜋 ← a plan that leads from 𝑠 to an informative ⟨𝑠′, 𝑎(𝒄)⟩

if 𝜋 = 𝑛𝑖𝑙 then
return (no informative pair state action is reachable from 𝑠)

𝜋 ← 𝜋 · 𝑎(𝒄)
𝑎(𝒄) ← pop(𝜋)
Learn-by-action-application(𝑠, 𝑎(𝒄), pre(𝑎(𝒛)), eff(𝑎(𝒛))
if the application fails then 𝜋 ← ⟨⟩
𝑠← observe the current state

Algorithm 4.12. Online Learning of Action Models.

Algorithm 4.12 takes in input a set of state variable names, a set of action names, and
a set of constants𝐶. It exploits the notion of informative state-action pair. However, it
cannot freely select an informative state-action pair, like in the query based approach
(Algorithm 4.11). It has to try to reach a state 𝑠 where it can apply the action 𝑎(𝒄)
such that ⟨𝑠, 𝑎(𝒄)⟩ is an informative state-action pair. Planning at Line 1 is performed
in a model with all the potential and certain preconditions that have been computed
at the moment. If no plan for an informative state-action pair exists, then from the
current state there is no reachable state such that we have an informative state-action
pair. This means there is nothing more we can learn, and the Algorithm 4.12 returns.
If a plan exists, then we add to the current plan the action 𝑎(𝒄) of the informative
state-action pair, and we call the subroutine learning by applying the first action in the
plan to the current state (Algorithm 4.9). If the application fails, we plan again for a
different state where we have an informative state-action pair. If the action succeeds,
we go on by applying the next action in the plan. Notice that, if we are so lucky that

4.2 Learning Action Specifications 85

all actions in the plan are applicable, then the plan becomes empty, and we start by
planning again to reach a next state where we have an informative state-action pair.

Notice a further difference of Algorithm 4.12 with learning by query (Algo-
rithm 4.10 and Algorithm 4.11): the former constructs automatically a single trace of
action applications that may fail, while learning by query constructs a set of transitions
that are not necessarily connected in a trace.

Algorithm 4.12 is an example of “planning to learn”, in the sense that it plans to
try to reach an informative state-action pair. In spite of the fact that it plans in an
incomplete or even incorrect model, and the applications of actions of the generated
plans can fail, it uses planning to try to reach a state where we can apply an action
and learn new preconditions and effects. The main difference w.r.t. the “planning
to learn” paradigm depicted in Figure 1.2 is that learning and planning are tightly
integrated, since while we learn, we plan to learn from each single action application,
rather than collecting a set of training examples.

4.2.3 Comparing Offline and Online

Offline learning is the most common approach in research literature. The underlying
idea is that we have a log of plan executions, the corresponding traces or the cor-
respondng set of transitions, and from that log we learn what we can. Notice that
the offline learning algorithms presented in Section 4.2.1 guarantee to learn precon-
ditions and effects in the lower and upper bound defined by rules Equation 4.1 and
Equation 4.2. They are correct and complete with respect to the input trace, in the
intuitive sense that they do not learn an effect that is not an effect of an action and
they do not eliminate a precondition that is a precondition of the action. However,
what they can learn is limited to the specific set of transitions given in input. If the
set of transitions does not provide all the useful information, there is nothing offline
learning can do.

Online action learning is a different approach where we learn incrementally step by
step by applying actions in some states. Intuitively, the two algorithms that learn by
querying (Algorithm 4.10 and Algorithm 4.11) are correct and complete in a stronger
sense than the correctness and completeness guaranteed by offline algorithms. Indeed
they can query all possible state-action pairs and learn only and all the preconditions
and the effects that are actually preconditions and effects of an action. This in theory.
In practice, most often, the space of state-action pairs is huge, and cannot be explored
exhaustively.

The online algorithm that drops the assumption of freely selecting a state to apply
an action (Algorithm 4.12), and has instead to sense the current state and select an
action to apply in that state, does not guarantee to reach all the possible states of the
state space, like ”learning by querying” does. Indeed, it depends on which is the
initial state that is sensed, since there might be states that are unreachable from such
state. Moreover, some actions might not be reversed (simple dead end), or it may
end up in a complex dead end (i.e., a state that leads to a loop that does not allow the
algorithm to get out of that loop). Algorithm 4.12 guarantees to learn all and only
the preconditions and effects with respect the reachable states in the case of safely

86 4 Learning Deterministic Models

explorable models (there are no irreversible actions or loops without a possibility to
exit from the loop), i.e., it learns everything it can learn in a model with only the
reachable states from the initial sensed state.

In spite of the fact that learning by query algorithms have the possibility to explore
the whole space of state-action pairs, Algorithm 4.12 that senses the current state
and that can apply actions only in the current state is much more interesting. On the
one hand, it pursues a more difficult approach, due to the fact that it “cannot jump
arbitrarily from one state to another”; it can only apply actions in the current state
where the actor is. As a consequence, it can try to reach an informative state-action
pair by planning, but there is no guarantee to reach it since the model that has been
learned so far can be incomplete and incorrect.

On the other hand, it works in a scenario that is much more realistic, where it
is possible to learn from applications of actions in a real environment, and can be
used to incrementally and dynamically learn in a (partially) unknown environment.
The choice of the action to apply is an important step. We can indeed interleave
a learning phase with an exploration phase that selects the actions to apply. We
could use different heuristics for the exploration phase in the style of what is done
in reinforcement learning for probabilistic domains, see Chapter 10. However, such
techniques do not exploit the idea of informative states, and therefore they are not
devoted to generate informative traces, i.e. traces leading to informative states. It is
true that, since we do not know whether actions are applicable, in the case of online
learning by planning (Algorithm 4.12), we are not guaranteed to reach an informative
state, but the important point is that we can try to get there and learn also from failure.
In this way, we can guarantee that we get to all informative states that are reachable.

4.3 Discussion and Bibliographic Notes

Since the seminal work on learning for planning in deterministic domains [360, 203,
1124, 421, 1124, 1126, 580, 331, 574], and the first approaches to learning action
models by integrating learning, planning, and execution [382], research in learning
for planning has addressed different kinds of problems. For instance, the work
in [247] focuses on learning action-sequences as macro-actions to use them as an
heuristic during search; [579] introduces the notion of explanation based learning,
which involves using prior knowledge to explain why training examples have given
some labels, and uses this explanation to guide the learning. In [1206], a model-lite
approach is proposed to do planning, where a planner is supposed to work with an
incomplete model and using a probabilistic approach to learn and update the model.
See [1236, 556] for general reviews of machine learning for planning.

In the following sections we focus on recent work on learning heuristics (Sec-
tion 4.3.1) and learning action specifications (Section 4.3.2).

4.3.1 Learning Heuristics

In Section 4.1, have shown a way to learn domain dependent heuristics using tech-
niques based on value iteration (see Section 9.1.3 in Chapter 9) and adapting them

4.3 Discussion and Bibliographic Notes 87

to deterministic models. Algorithm 4.1 (LRTA*) has been devised in [639]. There
has been indeed a lot of work on learning heuristics or value functions to control the
search (see, e.g., [174, 1225, 191]).

Recent works have addressed the task of improving domain independent heuristics
by exploiting the notion of relaxed-plan for STRIPS domains. The works in [1207,
1210] use machine learning to improve given domain independent heuristics. They
use linear regression to learn the difference between the actual distance-to-go and the
estimate given by a relaxed-plan heuristic. Each feature in the feature space for linear
regression is an integer valued function of the state, the goal, and the set of actions.
The feature space strongly correlates with the length of the shortest plan to the goal,
and improves the heuristic w.r.t. the one purely based on relaxed plans, which ignores
delete-lists and often underestimates the distance to the goal. The work in [1196]
builds on [1207] by incorporating ideas from structural prediction and exploiting
the power of discriminative machine learning approaches. The learning method
discriminates between “good” and “bad” states rather than attempting to precisely
model the distance to the goal. It takes into account the actual search performance of
the heuristic during the learning phase by iteratively updating the heuristic in response
to observed search errors.

Greedy heuristic search performance in several combinatorial search domains are
investigated in [1179]. Their results suggest that heuristics that exhibit strong corre-
lation with the distance-to-go are less likely to produce large local minima. The work
in [1180] makes use of the Kendall rank correlation coefficient to select a pattern
database. The work in [385] improves heuristics in a greedy best-first search ex-
ploiting the ordering of states induced by the original heuristics rather than ordinary
least-squares regression.

While most of the works based on relaxed plans improve existing heuristics, the
approach presented in [1006] learns domain independent heuristics from scratch. It
is based on a deep learning recurrent encode-decode neural network based on hyper-
graph networks, i.e., a generalization of graph networks to hyper-graphs, induced by
the delete-relaxation relaxed plans. The work in [222] extends the results in [1006]
with grounded and lifted graph representations of planning tasks suitable for learning
domain-independent heuristics, learning in this way heuristics that allow planners to
solve large problems. Other recent works make use deep learning techniques. For
instance, [972] combines multiple heuristics values by using a neural network whose
features are the different available heuristics. In a different approach, [49] generates
a sequence of heuristics from a given weak heuristic and a set of unsolved training
instances. The training instances that can be solved using the weak heuristic provide
training examples for a learning algorithm that produces a heuristic that is expected
to be stronger than the weak heuristic. If the weak heuristic cannot solve any of
the given instances, random walks create a sequence of successively more difficult
training instances starting with ones that are guaranteed to be solvable by the weak
heuristic. The process is then repeated, producing a sequence of heuristics until a
sufficiently strong heuristic is produced.

The work in [1093] proposes an interesting and effective approach that learns
heuristics online, during search, without requiring expensive pre-training. The works

88 4 Learning Deterministic Models

in [346, 730] use imitation learning to generalize neural networks heuristics over
the states in the state space of the given instance. In [347], heuristics are learned
from scratch using states as the neural network input, Generalized heuristics can be
learned in the absence of symbolic action models using deep neural networks that
utilize an input predicate vocabulary but are agnostic to object names and quantities
[585]. Potential heuristics are introduced in [912]. They represent heuristics as a
linear combination of state features, whose evaluation is performed by summing the
weights of all features that are true in a state. The computational complexity of
potential heuristic synthesis for satisficing planning in studied in [497]. The work
shows that the problem of synthesizing a dead-end avoiding potential heuristic is
PSPACE-complete and thus as hard as planning.

The learning of heuristics for classical planning is an active field of research, and
a workshop on Heuristics and Search for Domain-independent Planning (HSDIP) is
dedicated every year at the main conference on planning (ICAPS).

4.3.2 Learning Action Specifications

Several works have addressed the task of learning action specifications and have
provided important results from different perspectives and according to different as-
sumptions. We structure this section by discussing existing work in learning action
preconditions and effects according to the offline and the online approach (Sec-
tion 4.3.2 and Section 4.3.2, respectively). We conclude the section by discussing
some first attempts to learn deterministic action specifications from continuous per-
ceptions (Section 4.3.2).

Offline approaches

A lot of research has been done on learning action specifications offline. The rules in
Equation 4.1 and Equation 4.2, which specify the lower and upper bounds for ground
preconditions and effects, and which provide the basis for the offline algorithms
presented in Section 4.2.1, are called SAM (Safe Action Model) rules. They have
been first introduced in [1057]. This work addresses the problem of learning ground
preconditions and effects for safe model free planning, a planning problem whose
input are state atomic variables, initial and final state, and traces. This work has
been extended to the problem of learning lifted preconditions and effects in the
case of fluents (Boolean state variables) in [563]. Further extensions can deal with
probabilities [562], with numeric action models [808], and in a multi agent setting
[807]. The aforementioned works address the problem of learning action specificatons
in the case of full observability.

Further offline approaches address the problem with different assumptions on the
observability of states and actions. arms [1200] learns strips action models from a
set of successfully observed plans, without observing intermediate states, and making
use of a max-sat solver. slaf [37] learns action models with universal quantifiers
in effects, with partial observability of states, and making use of a sat solver. lamp
[1232] learns action models with quantifiers and logical implication, under the hy-
pothesis of partial observability, and using Markov logic networks. In [814], the

4.3 Discussion and Bibliographic Notes 89

authors learn action models with noisy and incomplete observations of states, and
from successful and failing executions of actions. aman [1233] learns strips action
models from plan traces without observing states and from plans whose actions have
a probability of being observed incorrectly (noisy actions). The work in [844] pro-
poses a genetic algorithm to learn macro-actions (with negative preconditions) given
a domain and action sequences. locm2 [262] learns from action sequences without
any information about states, neither the initial nor the final state. The approach does
not require to know the predicates of the planning domain. The fama system [18]
learns strips action models from examples by transforming the learning task into a
classical planning task. The approach works with different kinds of inputs, from a set
of plans to just a pair of initial and final states, without intermediate actions or states.
Moreover, it accepts in input partially specified action models. The also provides an
extensive and detailed comparison and classification of state of the art approaches
to offline action model learning. The work in [672] proposes a technique based on
probabilistic inference to learn action specifications from plan traces that are obtained
by observing the environment states through noisy sensors.

The works in [164, 954] provide a framework for learning first-order symbolic
representations from plain graphs, i.e., state transition systems generated by the
execution of plans. While most of the works in offline learning action models assume
that the actor gets input traces in the appropriate symbolic representation, a major
distinguishing characteristic of this work is that the action model is learned from non-
symbolic data, such as graphs representing the state transition system generated by the
applications of actions. Moreover, the authors do not assume knowledge of the action
schemas, predicate symbols, or objects. In particular, they learn action specifications
that produce state-space graphs isomorphic to the input ones, by encoding the learning
problem as a SAT problem. While in [164] the input graphs are assumed to be
complete and without noise, in [954] these assumptions are relaxed by exploiting a
more efficient encoding of the learning problem in answer set programming. Graph
Neural Networks are exploited as a solver to learn generalized policies in [1053].
The work in [15] provides a general framework that, given in input a state transitions
system, is able to synthesize different target languages for action specification, such
as the synthesis of STRIPS action models, or the update rule of a cellular automaton.
Given a set of examples of state-transitions, represented as (pre-state, action, post-
state) tuples, the actor synthesizes a structured program that, when executed on a
given pre-state, outputs its associated post-state. The synthesis method implements
a combinatorial search in the space of well-structured terminating programs that can
be built using a Random-Access Machine (RAM). In [1077], the authors propose an
approach to learn type-generalized actions that can transfer to a variety of different
and unknown situations and entities.

There are also works addressing the problem of learning action specifications by
using natural language processing. For instance, the work in [14] proposes to use
a neurosymbolic approach based on Logical Neural Networks, where neurons have
meanings in weighted real-valued logic, to learn lifted logical operator models in
PDDL through neuro-symbolic Inductive Logic Programming.

Most of the aforementioned approaches relax the assumption of full observability,

90 4 Learning Deterministic Models

they can deal with state variables whose value may be not accessible (hidden) in some
states, and some of them deal even with noisy states and noisy actions. All of them
assume that the actions to be executed is given in input with plan traces, and therefore
do not deal with the problem of guiding the exploration phase towards informative
applications of actions.

Online approaches

Since the seminal work on online learning of operators [421, 1153], and the first
approaches to learning action models by integrating learning, planning, and execu-
tion [382], recent approaches have addressed the problem of online and incremental
learning of action models. 3SG [211] is an online algorithm that learns probabilistic
action models with conditional effects and deals with action failures, sensory noise,
and incomplete information.

In [1191], the authors describe an instance-based online method for learning action
models in relational domains. The work is extended to deal with both discrete
and continuous action models in [1192, 1193]. The works in [952, 951] propose
a technique based on relational reinforcement learning to learn deterministic action
models, and [953] extends the approach to deal with nondeterministic actions.

olam [674] learns lifted action models (expressed in pddl) under the the assumption
of perfect (non-noisy) full observability of actions and the states reached by the
agent. olam learns action models online, incrementally during the execution of
plans, by combining and interleaving the activity of learning action preconditions
and effects with an exploration phase that selects which plan to execute. Its main
distinguishing characteristic is the ability to generate online informative traces, an
important advantage w.r.t. all the offline approaches. olam generates informative
traces by searching for informative states. Indeed, the idea of informative state-action
pair presented in Section 4.2.2 has been inspired and adapted from [674]. While in
Section 4.2.2 we deal with state variables, the work in [674] is limited to Boolean
state variables. The olam online learning algorithm has been proved to be correct
and complete for reachable states.

The work in [443] addresses the problem of repairing action specifications that are
incomplete or incorrect. It uses automated planning to repair errors in the specification
of actions that render the planning task unsolvable. This work focuses on missing
action effects, which can compromise the task’s solvability.

The work on planning by reinforcement learning (RL) [1070] (see Chapter 10),
shares some similarities with the online approaches to learning action models, since
both approaches learn action models online by applying actions in a simulated en-
vironment or by actually acting in a real world environment. However, both model
based and model free RL focuses on learning policies for probabilistic models rather
than action models for deterministic domains. Moreover, RL generates policies for
state transition systems, where states and actions are atomic and ground. The work on
action model learning deals with the different problem to learn lifted preconditions
and effects, that can define the behaviour of actions in general, in different states.
Finally, the work presented in this chapter does not require the definition of a reward

4.3 Discussion and Bibliographic Notes 91

function, a task that can be difficult and not natural in some cases.

Learning actions from continuous perceptions

The approach described in this Chapter is based on the assumption that perceptions
are mapped directly into the value of state variables. In both the offline and the online
approach, we assume that the actor gets the results of the application of an action in
the appropriate symbolic representation.

However, in many applications, there is a huge gap between real perceptions and the
symbolic abstract representation in state variables. Most often, an actor perceives the
world and acts in it through sensors and actuators that work with data in a continuous
space, typically represented with variables on real numbers.8 For instance, a robot
does not perceive directly the fact that it is in a given room/state, instead it perceives,
e.g., to be in a position of the building through sensors like odometers or images from
its RGB camera.

It is part of the cognitive capability of the actor to fill the gap between these two
different levels of abstractions. For this reason, it is important to study and devise
approaches that address the problem of learning how to map perceptions and observa-
tions represented with continuous variables into abstract models, in our case abstract
deterministic symbolic models. While the problem of designing and implementing a
mapping from continuous variables representing perceptions to abstract representa-
tions has been studied extensively, the problem of learning an abstract representation
from continuous perceptions, as well the problem of learning the mapping between
continuous perceptions and abstract representations, is far from obvious and it is de-
serving more and more research. For this reason, in the following, we discuss some
recent and different approaches to learning deterministic models from continuous
perceptions in the environment.

Causal InfoGAN [657] learns discrete or continuous models from high dimensional
sequential observations with the objective to generate an execution trace in the high
dimensional space. LatPlan [58, 57] takes in input pairs of high dimensional raw
data (e.g., images) corresponding to transitions. It takes an offline approach. In a first
phase, a State Autoencoder learns a mapping between raw data and abstract states,
represented as vectors of binary state variables. In the second phase, LatPlan learns
a transition function from the state pairs obtained by applying the mapping learned in
the first phase to the training pairs. Planning is finally applied to the learned model.
LatPlan has been shown experimentally to work with high dimensional data like
images. In [714], the authors propose a framework that learns action models from
parsed images given in a language used to describe 2D objects. The approach does
not require to know the predicates of the planning domain.

In [637], STRIPS models are constructed by learning the Boolean atoms of the
preconditions and effects of actions. The basic assumption is that a continuous model
of the world is available, and that it is possible to know a fixed set-theoretic mapping
from the continuous model to the deterministic classical planning domain.

8Even [164, 954], which try to learn action specification from execution graphs, do not deal with
perceptions in a continuous space.

92 4 Learning Deterministic Models

pal [996] is based on a framework to learn a deterministic state transition system
from observations of continuous variables through a perception function estimating
the likelihood of being in a given state of the transition system. In [673], the idea
is extended with a PDDL-based deterministic symbolic model that guides the explo-
ration of the environment to learn the state transition system online and to scale up to
large state spaces. Ogamus [675] learns online the grounding of PDDL deterministic
models by exploring unknown environments, mapping sensory data into symbolic
states, and extending the signature of the symbolic model with new constants repre-
senting new objects discovered online in the environment. In [198], a state transition
system is learned incrementally in an unknown environment. The learned model is
reused for tackling the object goal navigation task. Each state is an abstraction of
perceptions from high-dimensional sensory data (e.g., RGB-D images). A “planning
for learning” approach (see Figure 1.2) is proposed in [676], where symbolic planning
in a PDDL representation is used to train automatically a neural network for learning
object properties by continuously collectomg training data obtained by exploring the
environment. This work is extended in [677] by learning the PDDL preconditions
under which the agent can perceive correctly an object property. The quality of the
prediction of a deep neural network is evaluated by identifying, via clustering, which
are the circumstances in which the predictions are correct with a certain level of
confidence. In [1183], an end-to-end framework learns probabilistic state predictions
from sequences of image-action pairs and infers lifted action schema.

A complementary approach is pursued in works that plan and learn directly in a
continuous space, see e.g., [5], [797], [243]. These approaches do not require an
abstract discrete model of the world. Such approaches are very suited to address some
tasks, e.g., moving a robot arm to a desired position or performing some manipulations.
However, in several situations, it is conceptually appropriate and practically efficient
to learn an abstract discrete and deterministic model where planning is much easier
and efficient to perform.

Approaches based on Large Language Models (LLMs) (see Chapter 23) constitute a
potential new trend that in the future could be related to learning action specifications
(see, e.g, [865])

The issues dealt by the above mentioned works on learning actions from contin-
uous perceptions have also been addresses extensively and in depth by the robotics
community, which has addressed the general problem of dealing with actuators that
have to perform actions and sensors that perform perceptions in the real world (see,
Part VII).

4.4 Exercises

4.1. Refine and implement the schema presented in Section 4.1.1, Algorithm 4.2.

4.2. Given a set of transitions (𝑠, 𝑎, 𝑠′), and a relaxed plan heuristic ℎ0 how would
you train a neural network to learn a better heuristic?

4.3. Rewrite the algorithms in Section 4.2.1 and Section 4.2.2 in the case all state
variables are Boolean.

4.4 Exercises 93

4.4. How would you extend the algorithms in Section 4.2.1 and Section 4.2.2 in the
case some of the state variable values are hidden in some states?

4.5. How would you extend the algorithms in Section 4.2.1 and Section 4.2.2 in the
case some of the state variable values are noisy, i.e., they do not provide a correct
value for sensors?

Part II

Hierarchical Task Networks

Though this be madness, yet there is method in’t.

William Shakespeare, Hamlet, circa 1600

Hierarchical Task Network (HTN) planning and acting operates at multiple levels
of abstraction. Given a network of tasks that are activities to perform, the actor
or planner refines9 them into smaller and smaller tasks, proceeding until it finds
executable actions. For the simple DWR domain in Figure 2.2, the following figure
shows one way this might be done:

take(r1,c3,p2) move(r1,d1) take(r1,c3,p1)

retrieve(c3)

deliver(c3,d1)

move(r1,d2)

 obtain(c3,d2)

move(r2,d3)

Figure II.1. Refinement of tasks into smaller tasks.

The refinement process is guided by HTN methods, each of which specifies a way
to refine a task into subtasks. Some tasks may have several applicable methods, each
of which proposes a different refinement, in which case the actor or planner may need
to try several different refinements to find the best one for the problem at hand.

By specifying standard ways to perform tasks, HTN methods can implement not
just the end-state constraints used in classical planning, but also constraints on a
plan’s trajectory that are difficult to encode as classical actions—as may occur in
batch recipes, medical procedures, standard operating procedures, and the like. Fur-
thermore, by focusing the search on specific ways to solve a problem, HTN methods
can reduce the size of a planner’s or actor’s search space.

9Most of the HTN planning literature calls this decomposing the tasks, but we call it refining for
consistency with the rest of this book.

94

Free pre-publication, for personal use only. To be published by Cambridge University Press.

95

In complicated applications, significant effort may be needed to ensure that the
HTN methods are correct and complete. Of course, similar effort may be needed to
develop classical representations of complicated application domains [481].

This part is organized as follows. Chapter 5 is about representing HTN methods
and using them for planning. Chapter 6 describes a reactive HTN acting procedure,
some ways for an actor to use HTN planning algorithms, and some ways to recover
when problems occur during plan execution. Chapter 7 describes some algorithms
for learning HTN methods from example plan traces.

Later, in Parts VI and V of the book, some of the HTN concepts will be generalized
to represent and reason about probabilistic action outcomes or temporal durations.

5 HTN Representation and Planning

This chapter is about representing HTN planning domains and solving HTN planning
problems. Because HTN representation formalisms add HTN tasks and methods to
classical domain models, several of the formal definitions require the same restrictions
as in Part I. Most practical HTN implementations, however, loosen or drop several of
these restrictions, such as the ones discussed in Remark 2.6.

This chapter is organized as follows. Section 5.1 is about ways to represent and solve
planning problems in which there is a totally ordered sequence of tasks to accomplish.
Section 5.2 generalizes these to allow partially ordered tasks. Section 5.3 describes
ways to combine classical planning and HTN planning. Section 5.4 briefly discusses
heuristic functions, expressivity, and computational complexity.

5.1 Totally Ordered Tasks

This section is about total-order HTN planning, which deals with totally ordered
sequences of tasks. We will use the definitions of action schemas, object variables,
and goal formulas in Chapter 3, and add definitions of tasks and methods.

Definition 5.1. A task is any of the following syntactic entities:

1. A primitive task is an instance (either ground or unground) of an action schema.
2. A compound task is a term of the form name(𝑧1, . . . , 𝑧𝑘), where name is a

symbol called the task’s name, and each 𝑧𝑖 is an object or an object variable.
3. A goal task is a classical goal formula, that is, a set of literals.

Compound tasks and goal tasks are also called nonprimitive tasks. □

Definition 5.2. A total-order HTN method is a tuple

𝑚 = (head(𝑚), task(𝑚), pre(𝑚), subtasks(𝑚)) (5.1)

where:

• head(𝑚) is a syntactic expression of the form name(𝑧1, . . . , 𝑧𝑘), where name is
a symbol called 𝑚’s name and (𝑧1, . . . , 𝑧𝑘) is a list of zero or more parameters.

• task(𝑚) is a nonprimitive task. This is the task for which 𝑚 is relevant, and
depending on its type, 𝑚 is either a compound-task method or goal method.

• pre(𝑚) is a set of zero or more literals that are called 𝑚’s preconditions.
• subtasks(𝑚) is a sequence of zero or more tasks that are called 𝑚’s subtasks.
• If 𝑚 is a goal method, then to ensure that 𝑚 will accomplish task(𝑚), the last

element of subtasks(𝑚) must be either task(𝑚) or a primitive task 𝛼 such that
eff(𝛼) |= task(𝑚).

96
Free pre-publication, for personal use only. To be published by Cambridge University Press.

5.1 Totally Ordered Tasks 97

• The parameters in head(𝑚) are not required to be object variables; they may
also be object constants and state variables.1 However, every object variable
that occurs anywhere in 𝑚 must also occur somewhere in head(𝑚). □

Notation and terminology: Rather than writing methods as tuples, we usually will
use the following pseudocode format:

name(𝑧1, 𝑧2, . . . , 𝑧𝑘)
task: 𝑡
pre: 𝑝1, . . . , 𝑝𝑚
sub: 𝑡1, . . . , 𝑡𝑛

which says that head(𝑚) = name(𝑧1, . . . , 𝑧𝑛), task(𝑚) = 𝑡, pre(𝑚) = {𝑝1, . . . , 𝑝𝑚},
and subtasks(𝑚) = {𝑡1, . . . , 𝑡𝑛}.

Example 5.3. LetΣ be the classical planning domain in Example 2.1, and consider the
goal task {pile(𝑐) = 𝑝}. Here is a method for this task. Its parameters are 𝑟 ∈ Robots;
𝑑 ∈ Docks; 𝑐, 𝑐′ ∈ Containers; and 𝑝 ∈ Piles:

m1-put-in-pile(𝑟, 𝑐, 𝑝, 𝑑)
task: {pile(𝑐) = 𝑝}
pre: at(𝑝, 𝑑), pile(𝑐) ≠ 𝑝, cargo(𝑟) = nil
sub: get-container(𝑟, 𝑐), navigate(𝑟, 𝑑), put(𝑟, 𝑐, top(𝑝), 𝑝, 𝑑)

The preconditions require that pile 𝑝 is at loading dock 𝑑, container 𝑐 isn’t already
part of 𝑝, and robot 𝑟 isn’t carrying anything.

The first two tasks in the subtask list are compound, and Example 5.4 will give
methods for them. The last subtask is an instance2 of the put action in Example 2.8,
and its effects include pile(𝑐) = 𝑝. This satisfies the requirement in Definition 5.2 for
the last subtask of a goal method. □

5.1.1 Total-Order HTN Planning Domains

A total-order HTN planning domain is a tuple

Σ = (Σc,M), (5.2)

where Σc is a classical planning domain in state-variable representation, andM is a
set of total-order HTN methods subject to the following restrictions: every 𝑚 ∈ M
has a unique name, every parameter of 𝑚 is an object variable, and every argument
of task(𝑚) is an object variable.

Because every object variable in𝑚 is a parameter of𝑚, it follows that every instance
of 𝑚 can be unambiguously identified by its head. Thus when referring to an instance
of 𝑚, we will usually will write just its head rather than the entire method.

1This is to allow 𝑚 to be an instance of another method. Later, Equation 5.2 will require that in HTN
domain definitions, the methods’ parameters all are variables.

2Some HTN formalisms would not allow top(𝑝) to appear in the subtask’s argument list. To satisfy
such a restriction, we can replace top(𝑝) with a new variable 𝑐′, and give the method an additional
precondition 𝑐′ = top(𝑝). Similar changes can be made to the other methods in this chapter.

98 5 HTN Representation and Planning

Figure 5.1. The state 𝑠0 in Equa-
tion 5.6.

We let

Ground(M) = {all ground instances of methods inM}. (5.3)

A ground method 𝑚 is applicable in a state 𝑠 if 𝑠 |= pre(𝑚). Furthermore, 𝑚 is
relevant for a task 𝑡 if either 𝑡 is a compound task and task(𝑚) = 𝑡, or 𝑡 is a goal task
and task(𝑚) |= 𝑡. We let

Methods(𝑠, 𝑡,M) = {𝑚 ∈ Ground(M) | 𝑚 is applicable in 𝑠 and relevant for 𝑡}.
(5.4)

If 𝑡 is a goal task, then

Actions(𝑠, 𝑡) = {𝑎 ∈ Applicable(𝑠) | 𝛾(𝑠, 𝑎) |= 𝑡}. (5.5)

Example 5.4. Let Σc be a classical planning domain in which the objects, rigid
relations, and states are the same as in Example 2.1 except that there is only one robot,
r1, and the actions are the ground instances of the action schemas in Example 2.8.
Figure 5.1 shows the following state:

𝑠0 = {cargo(r1) = nil, loc(r1) = d1,
occupied(d1) = T, occupied(d2) = F, occupied(d3) = F,
pile(c1) = p1, pile(c2) = p2, pile(c3) = p2,
pos(c1) = nil, pos(c2) = c3, pos(c3) = nil,
top(p1) = c1, top(p2) = c2, top(p3) = nil}.

(5.6)

The total-order HTN planning domain is Σ = (Σc,M), where M contains eight
methods. They have the following parameters with the following ranges: 𝑟 ∈ Robots;
𝑐 ∈ Containers; 𝑑, 𝑑′ ∈ Docks; 𝑝, 𝑝′ ∈ Piles.

The first method inM is m1-put-in-pile from Example 5.3. Next are two methods
for m1-put-in-pile’s subtask get-container:

m1-get-container(𝑟, 𝑐)
task: get-container(𝑟, 𝑐)
pre: cargo(𝑟) = 𝑐
sub: // no subtasks

m2-get-container(𝑟, 𝑐, 𝑝, 𝑑)
task: get-container(𝑟, 𝑐)
pre: cargo(𝑟) = nil, pile(𝑐) = 𝑝, at(𝑝, 𝑑)
sub: navigate(𝑟, 𝑑), uncover(𝑐),

take(𝑟, 𝑐, pos(𝑐), 𝑝, 𝑑)

The method m1-get-container is for the case where 𝑟 is already carrying 𝑐 and thus
nothing needs to be done. In m2-get-container, the first precondition makes it appli-
cable only if 𝑟 is not carrying anything, and its other two preconditions ensure that 𝑝
and 𝑑 have the correct values. Its uncover and navigate subtasks are described in the

5.1 Totally Ordered Tasks 99

following paragraphs, and the take is one of the actions in Example 2.8. There are no
methods for cases where 𝑟 is carrying something other than 𝑐.

Next are two methods for uncover(𝑐), the task of removing all containers above 𝑐:

m1-uncover(𝑐)
task: uncover(𝑐)
pre: top(pile(𝑐)) = 𝑐
sub: // no subtasks

m2-uncover(𝑟, 𝑐, 𝑝, 𝑐′, 𝑝′, 𝑑)
task: uncover(𝑐)
pre: pile(𝑐) = 𝑝, top(𝑝) = 𝑐′, 𝑐′ ≠ 𝑐, (1)

at(𝑝, 𝑑), at(𝑝′, 𝑑), 𝑝 ≠ 𝑝′, (2)
loc(𝑟) = 𝑑, cargo(𝑟) = nil (3)

sub: take(𝑟, 𝑐′, pos(𝑐′), 𝑝, 𝑑),
put(𝑟, 𝑐′, top(𝑝′), 𝑝′, 𝑑),
uncover(𝑐)

The method m1-uncover is for the case where nothing needs to be done because 𝑐
is at the top of its pile. In m2-uncover, the three lines of preconditions require that
(1) 𝑐 is in a pile 𝑝 but not at the top of 𝑝, (2) both 𝑝 and another pile 𝑝′ are at the
same loading dock 𝑑, and (3) 𝑟 is at 𝑑 and isn’t carrying anything. The subtasks are
to move 𝑟 to 𝑑, remove the topmost container above 𝑐, and call the task uncover(𝑐)
recursively. The recursive calls will remove the rest of the containers above 𝑐.

Finally, there are three methods for navigate(𝑟, 𝑑), the task of moving 𝑟 to 𝑑. We
include them for illustrative purposes, but we do not recommend using them unless
the planning domain is quite small, because they can produce a huge search space. A
domain-specific heuristic function could be used to avoid most of the search space,
but in most practical applications one would instead use a route-planning algorithm.
Here are the three methods:

m1-navigate(𝑟, 𝑑)
task: navigate(𝑟, 𝑑)
pre: loc(𝑟) = 𝑑
sub: // no subtasks

m2-navigate(𝑟, 𝑑′, 𝑑)
task: navigate(𝑟, 𝑑)
pre: adjacent(𝑑′, 𝑑), loc(𝑟) = 𝑑′
sub: move(𝑟, 𝑑′, 𝑑)

m3-navigate(𝑟, 𝑑′, 𝑑)
task: navigate(𝑟, 𝑑)
pre: loc(𝑟) ≠ 𝑑,¬adjacent(loc(𝑟), 𝑑), adjacent(loc(𝑟), 𝑑′)
sub: move(𝑟, loc(𝑟), 𝑑′), // primitive task

navigate(𝑟, 𝑑) // compound task

If 𝑟 is already at 𝑑, m1-navigate is applicable and does nothing. If 𝑟’s location is
adjacent to 𝑑, m2-navigate moves 𝑟 to 𝑑 using the action move in Example 2.8. If 𝑟’s
location is not adjacent to 𝑑, then m3-navigate moves 𝑟 to another dock 𝑑′ and calls
navigate recursively to try to get from 𝑑′ to 𝑑.

Thus the methods in M are m1-put-in-pile, m1-get-container, m2-get-container,
m1-uncover, m2-uncover, m1-navigate, m2-navigate, and m3-navigate. □

If Σ = (Σc,M) is a total-order HTN planning domain and (𝑂, 𝑅, 𝑋,A) is the state-
variable representation of Σc, then the tasks in Σ include task(𝑚) for every ground
method 𝑚 inM, every set of literals in Σc, and every instance of the action schemas
in A.

100 5 HTN Representation and Planning

Example 5.5. In Example 5.4, all instances of put-in-pile(𝑐, 𝑝), uncover(𝑐), and
navigate(𝑟, 𝑑) are compound tasks. The goal tasks include all sets of literals
in Σc, hence include m1-put-in-pile’s goal task {pile(𝑐) = 𝑝}. All instances of
take(𝑟, 𝑐, 𝑐′, 𝑝, 𝑑), put(𝑟, 𝑐, 𝑐′, 𝑝, 𝑑), and move(𝑟, 𝑑, 𝑑′) are primitive tasks. □

5.1.2 Total-Order HTN Planning Problems

Definition 5.6. A total-order HTN planning problem is a tuple 𝑃 = (Σ, 𝑠0, 𝑇), where
Σ = (Σc,M) is a total-order HTN planning domain, 𝑠0 is 𝑃’s initial state, and 𝑇 is a
sequence of ground tasks.

Solutions for 𝑃 are defined inductively as follows. If 𝑇 is empty, then the empty
plan ⟨⟩ is a solution for 𝑃. Otherwise, let 𝑡 be the first task of 𝑇 , so that 𝑇 = 𝑡 ·𝑇 ′
where 𝑇 ′ is a (possibly empty) sequence of tasks. Then:

1. If 𝑡 is an action in Applicable(𝑠0), then for every solution 𝜋 for the problem
(Σ, 𝛾(𝑠0, 𝑡), 𝑇 ′), the plan 𝑡 ·𝜋 is a solution for 𝑃.

2. If 𝑡 is a compound task or goal task and 𝑚 ∈ Methods(𝑠0, 𝑡,M), then every
solution for the problem (Σ, 𝑠0, subtasks(𝑚) ·𝑇 ′) is also a solution for 𝑃.

3. If 𝑡 is a goal task and 𝑎 ∈ Actions(𝑠0, 𝑡), then3 for every solution 𝜋 for the
problem (Σ, 𝛾(𝑠0, 𝑎), 𝑇 ′), the plan 𝑎 ·𝜋 is a solution for 𝑃.

4. If 𝑡 is a goal task and 𝑠0 |= 𝑡, then every solution for the problem (Σ, 𝑠0, 𝑇
′) is

also a solution for 𝑃. □

Example 5.7. Let Σ and 𝑠0 be as in Example 5.4, and suppose we want to move
container c1 to pile p2. The goal task is {pile(c1) = p2}, so the planning problem is

𝑃 = (Σ, 𝑠0, ⟨{pile(c1) = p2}⟩), (5.7)
which has one solution:

𝜋 = ⟨take(r1, c1, c2, p1, d1), move(r1, d1, d2), put(r1, c1, c3, p2, d2)⟩.

Figure 5.2 is a refinement tree (see next paragraph) that shows the derivation of 𝜋. □

Definition 5.8. Let 𝜋 be a solution for a total-order HTN planning problem 𝑃 =

(Σ, 𝑠0, 𝑇). A refinement tree for 𝜋 is a tree in which each node is a tuple

𝜈 = (label(𝜈), content(𝜈), parent(𝜈),Children(𝜈)),

where label(𝜈) is a unique identifier, content(𝜈) is a ground task or ground method,
parent(𝜈) is 𝜈’s parent, and Children(𝜈) is a sequence of children. As a special case,
the root node has content(𝜈) = root and parent(𝜈) = nil.

The nodes are organized as follows:

• Root node. If content(𝜈) = root, then for each 𝑡𝑖 in 𝑇 , 𝜈 has a child 𝜈𝑖 with
content(𝜈𝑖) = 𝑡𝑖 . Notice that if 𝑇 is empty then 𝜈 has no children.

3The requirement that 𝑎 ∈ Actions(𝑠0, 𝑡) prevents arbitrary action sequences from being solutions,
unlike in classical planning.

5.1 Totally Ordered Tasks 101

goal task t1
{pile(c1)=p2)}

method m1
m1-put-in-pile(r1,c1,p1,d1,p2,d2)

compound task t2
get-container(r1,c1)

compound task t5
uncover(c1)

compound task t3
navigate(r1,d2)

action a1
take(r1,c1,nil,p1,d1)

action a3
put(r1,c1,c3,p2,d2)

method m3
m2-navigate(r1,d2)

action a2
move(r1,d1,d2)

compound task t4
navigate(r1,d1)

method m4
m1-navigate(r1,d1)

(no children)

root

method m2
m2-get-container(r1,c1,p1,d1)

method m5
m1-uncover(c1)

(no children)

Figure 5.2. A refinement tree (see Definition 5.8) for the plan 𝜋 in Example 5.7. At each
node, the first line gives the kind of node and its label, and the second line is the node’s
content.

• Action nodes. If content(𝜈) is a primitive task (hence an action, because 𝜈 is
ground), then 𝜈 has no children.

• Compound-task nodes. If content(𝜈) is a compound task and 𝑚 is the ground
methods that refined it, then 𝜈 has one child 𝜈′, with content(𝜈′) = 𝑚.

• Goal-task nodes. If content(𝜈) is a goal task and 𝑚 is the ground method
or action that refined it, then 𝜈 has one child 𝜈′, with content(𝜈′) = 𝑚. If
content(𝜈) wasn’t refined because it was already true in the current state, then
𝜈 has no children.

• Method nodes. If content(𝜈) is a ground method 𝑚, then for each task 𝑡𝑖 in
subtasks(𝑚), 𝜈 has a child 𝜈𝑖 with content(𝜈𝑖) = 𝑡𝑖 . Note that if subtasks(𝑚) is
empty then 𝜈 has no children.

If 𝜋 = ⟨𝑎1, . . . , 𝑎𝑛⟩, then 𝑎1, . . . , 𝑎𝑛 will be the contents of the tree’s action nodes in
left-to-right order. □

5.1.3 Total-Order HTN Planning Algorithms

Algorithm 5.1, TO-HTN-Forward, is a nondeterministic total-order HTN planning
algorithm based on Definition 5.6. In Line 1, it calls the subroutine HTN-Get-
Candidates to get a set 𝑀 of candidate ground methods and actions for the first

102 5 HTN Representation and Planning

TO-HTN-Forward(Σc,M, 𝑠, 𝑇)
if 𝑇 is empty then return ⟨⟩
𝑡 ← the first element of 𝑇 ; 𝑇 ′ ← the rest of 𝑇

1 𝑀 ← HTN-Get-Candidates(Σc,M, 𝑠, 𝑡)
if 𝑀 = ∅ then return failure
nondeterministically choose 𝑚 ∈ 𝑀
switch 𝑚 do

2 case 𝑚 is an action do
𝜋 ← TO-HTN-Forward(Σc,M, 𝛾(𝑠, 𝑚), 𝑇 ′)
if 𝜋 ≠ failure then return 𝑚 ·𝜋
else return failure

3 case 𝑚 is a ground method do
return TO-HTN-Forward(Σc,M, 𝑠, subtasks(𝑚) ·𝑇 ′)

HTN-Get-Candidates(Σc,M, 𝑠, 𝑡)
switch 𝑡 do

4 case 𝑡 is an action do
if 𝑡 is applicable in 𝑠 then 𝑀 ← {𝑎}
else 𝑀 ← ∅

5 case 𝑡 is a compound task do 𝑀 ← Methods(𝑠, 𝑡,M)
6 case 𝑡 is a goal task do

𝑀 ← Methods(𝑠, 𝑡,M) ∪ Actions(𝑠, 𝑡)
7 if 𝑠 |= 𝑡 then 𝑀 ← 𝑀 ∪ {null}

returnM

Algorithm 5.1. TO-HTN-Forward, which plans for totally-ordered tasks.

element 𝑡 of 𝑇 . The subroutine’s cases correspond to the if parts of Definition 5.6’s
numbered clauses:

• Line 4 corresponds to clause 1, in which 𝑡 is an action. If 𝑡 is applicable in 𝑠,
then it is put into 𝑀 .

• Line 5 corresponds to clause 2, in which task(𝜏) is a compound task. In this
case, the ground methods that are both relevant and applicable are put into 𝑀 .

• Line 6 corresponds to clauses 2, 3, and 4, in which task(𝜏) is a compound task.
For each applicable clause, the candidates it produces are put into 𝑀 .

• Line 5 corresponds to item 4, in which 𝑡 is already true. To implement this
case, null is a dummy method with no preconditions and no subtasks.4

Once it has 𝑀 , TO-HTN-Forward nondeterministically chooses an element of 𝑀 and

4Line 7 is written to ensure that when 𝑠 |= 𝑡, TO-HTN-Forward will consider both empty and nonempty
plans for achieving 𝑡, because a nonempty plan might have side-effects that are needed later in 𝑇 .
However, if the HTN methods in Σ are well-written then such situations should not occur. In this
case, TO-HTN-Forward’s search space can be reduced by changing Line 7 to 𝑀 ← {null}.

5.1 Totally Ordered Tasks 103

calls itself recursively in lines 2 and 3, which correspond to the “then” parts of
Definition 5.6’s numbered clauses.

TO-HTN-Forward can be proved sound and complete by induction (see Exercise 5.5).
If (Σ, 𝑠, 𝑇) is a solvable total-order HTN planning problem and 𝜋 is the empty plan,
then at least one of TO-HTN-Forward’s nondeterministic traces will return a solution
plan.

Algorithm 5.2, TO-HTN-Forward-Det, is a deterministic version of TO-HTN-
Forward. Its Frontier, Children, and Expanded sets are like the ones in Forward-
Search-Det, but each node is a triple (𝜋, 𝑠, 𝑇) in which 𝜋 is a plan, 𝑠 = 𝛾(𝑠0, 𝜋), and 𝑇
is a sequence of tasks. Line 2 produces the same effect as line 7 of TO-HTN-Forward.

Algorithm 5.3, TO-HTN-Forward-RT, is a modified version of TO-HTN-Forward
that makes a subtree for each 𝑡 ∈ 𝑇 and returns a refinement tree like the one in
Figure 5.2. It should be called with parent = nil. Its subroutine RT-Make-Node is for
making new nodes and adding them to the tree. In Line 1, the if test excludes special
cases in which a new node isn’t needed.

TO-HTN-Forward-Det(Σc,M, 𝑠0, 𝑇0)
Frontier← {(⟨⟩, 𝑠0, 𝑇0)} // {initial node}
Expanded← ∅
while Frontier ≠ ∅ do

1 select a node 𝜈 = (𝜋, 𝑠, 𝑇) ∈ Frontier
remove 𝜈 from Frontier and add it to Expanded
if 𝑇 = ⟨⟩ then return 𝜋
𝑡 ← the first element of 𝑇 ; 𝑇 ′ ← the rest of 𝑇
switch 𝑡 do

case 𝑡 is an action do
if 𝑡 is applicable in 𝑠 then Children← {(𝜋 · 𝑡, 𝛾(𝑠, 𝑡), 𝑇 ′)}
else Children← ∅

case 𝑡 is a compound task do
Children← {(𝜋, 𝑠, subtasks(𝑚) ·𝑇 ′) | 𝑚 ∈ Methods(𝑠, 𝑡,M)}

case 𝑡 is a goal task do
Children← {(𝜋 ·𝑎, 𝛾(𝑠, 𝑎), 𝑇 ′) | 𝑎 ∈ Actions(𝑠, 𝑡)}

∪ {(𝜋, 𝑠, subtasks(𝑚) ·𝑇 ′) | 𝑚 ∈ Methods(𝑠, 𝑡,M)}
2 if 𝑠 |= 𝑡 then Children← Children ∪ {(𝜋, 𝑠, 𝑇 ′)}

prune 0 or more nodes from Children, Frontier and Expanded
Frontier← Frontier ∪ Children

return failure

Algorithm 5.2. TO-HTN-Forward-Det, a deterministic version of TO-HTN-
Forward.

104 5 HTN Representation and Planning

TO-HTN-Forward-RT(Σc,M, 𝑠, 𝑇, parent)
if parent = nil then parent← RT-Make-Node(root, nil)
foreach 𝑡 ∈ 𝑇 do

𝜈 ← RT-Make-Node(𝑡, parent)
𝑀 ← HTN-Get-Candidates(Σc,M, 𝑠, 𝑡)
if 𝑀 = ∅ then return failure

1 if 𝑡 is not an action and 𝑡 ≠ null then 𝜈 ← RT-Make-Node(𝑚, 𝜈)
nondeterministically choose 𝑚 ∈ 𝑀
if 𝑚 is a ground method then

if TO-HTN-Forward-RT(Σc,M, 𝑠, subtasks(𝑚), 𝜈) = failure then
return failure

else if 𝑚 is an action then 𝑠← 𝛾(𝑠, 𝑡)
return parent

RT-Make-Node(task-or-method, parent)
𝑙 ← a new label that depends on task-or-method
𝜈 ← a new node (𝑙, task-or-method, parent, ⟨⟩)
if parent ≠ nil then append 𝜈 to Children(parent)
return 𝜈

Algorithm 5.3. TO-HTN-Forward-RT, which returns a refinement tree. It should
be called with parent = nil. The subroutine HTN-Get-Candidates is the same as
in TO-HTN-Forward.

5.1.4 Serially Solvable Planning Problems

A total-order HTN planner’s search space can be greatly reduced if its planning
problem 𝑃 = (Σ, 𝑠0, 𝑇) is serially solvable, a condition that is defined inductively as
follows. If 𝑇 = ⟨⟩ then 𝑃 is serially solvable. If 𝑇 ≠ ⟨⟩, then let 𝑡 be the first element
of 𝑇 , so that 𝑇 = 𝑡 ·𝑇 ′ for some 𝑇 ′. Then 𝑃 is serially solvable if for every plan 𝜋 that
solves (Σ, 𝑠0, ⟨𝑡⟩), the planning problem (Σ, 𝛾(𝑠0, 𝜋), 𝑇 ′) is serially solvable.

Example 5.9. The planning problem in Example 5.4 is serially solvable. □

If 𝑃 = (Σ, 𝑠0, ⟨𝑡1, . . . , 𝑡𝑛⟩) is serially solvable, then whenever TO-HTN-Forward-Det
finds a plan 𝜋1 to accomplish 𝑡1, it can prune all of the other paths in its search space,
because 𝑃 is guaranteed to have a solution that starts with 𝜋1. Applying this argument
repeatedly, each time it find plans for 𝑡2, . . . , 𝑡𝑛, it can prune all of the other paths in
its search space. Algorithm 5.4, TO-HTN-Serial, is an algorithm that works this way.

If a planning problem is not serially solvable, a planner may still be able to prune
large parts of its search space if parts of the problem are serially solvable.

5.2 Partially Ordered Tasks

Sometimes it is undesirable to specify a total order on a set of tasks. If several possible
orderings are acceptable, then we might want to specify a partial ordering and let the

5.2 Partially Ordered Tasks 105

planner decide which total ordering to use. To represent partially ordered tasks, we
define a partially ordered task network to be a pair

T = (𝑇, ≺), (5.8)

where 𝑇 is a set of task nodes and ≺ is a partial ordering of 𝑇 . Each task node is a pair
𝜏 = (label(𝜏), task(𝜏)), where task(𝜏) is a task and label(𝜏) is a unique identifier.
Thus a task may occur in 𝑇 more than once with different labels.

In this section, “task network” will mean a partially ordered task network.
A partial-order HTN method is a tuple

𝑚 = (head(𝑚), task(𝑚), pre(𝑚), subtasks(𝑚), ≺𝑚), (5.9)

where head(𝑚), task(𝑚), and pre(𝑚) are as in Equation 5.1, and (subtasks(𝑚), ≺𝑚)
is a task network. We normally will write partial-order HTN methods as pseudocode
instead of tuples; Example 5.10 will give several examples.

5.2.1 Planning Domains and Problems

A partial-order HTN planning domain is a pair

Σ = (Σc,M), (5.10)

TO-HTN-Serial(Σc,M, 𝑠, 𝑇)
𝜋 ← ⟨⟩
while 𝑇 ≠ ⟨⟩ do

𝑡 ← the first element of 𝑇 ; 𝑇 ← the rest of 𝑇
if 𝑡 is an action then

if 𝑡 is not applicable in 𝑠 then return failure
𝑠← 𝛾(𝑠, 𝑡); 𝜋 ← 𝜋 · 𝑡

else if 𝑡 is a goal task and Actions(𝑠, 𝑡) ≠ ∅ then
arbitrarily select 𝑎 ∈ Actions(𝑠, 𝑡)
𝑠← 𝛾(𝑠, 𝑎); 𝜋 ← 𝜋 ·𝑎

else
𝑀 ← Methods(𝑠, 𝑡,M)
if 𝑀 = ∅ then return failure
nondeterministically choose 𝑚 ∈ 𝑀
𝜋′ ← TO-HTN-Serial(Σc,M, 𝑠, subtasks(𝑚))
if 𝜋′ = failure then return failure
𝑠← 𝛾(𝑠, 𝜋′); 𝜋 ← 𝜋 ·𝜋′

return 𝜋

Algorithm 5.4. An algorithm for serially solvable total-order HTN planning prob-
lems.

106 5 HTN Representation and Planning

where Σc = (𝑆, 𝐴, 𝛾, cost) is a classical planning domain andM is a set of partial-
order HTN methods.

Total-order HTN planning can be viewed as a special case of partial-order HTN
planning, because total-order HTN methods can be translated into equivalent partial-
order HTN methods in linear time. For a total-order HTN method with subtasks
𝑡1, . . . , 𝑡𝑛, the corresponding partial-order HTN method has a label 𝑙𝑖 for each 𝑡𝑖 , with
ordering constraints 𝑙1 ≺ 𝑙2 ≺ . . . ≺ 𝑙𝑛.

Figure 5.3. A DWR example in which cranes are at loading docks, not on robots.

Example 5.10. Let Σc be the DWR domain shown in Figure 5.3, in which the cranes
are at loading docks, not on robots. The rigid relations and state variables in Σc are
like the ones in Example 2.1, but with three differences. First, if 𝑘 is a crane, then
at(𝑘, 𝑑) means that 𝑘 is attached to loading dock 𝑑. Second, there is a new state
variable holding(𝑘) whose value is either a container 𝑐 if 𝑘 is holding 𝑐, or nil if 𝑘 is
empty. Third, the range of pos(𝑐) is Cranes ∪ Piles ∪ nil.

The action schemas for Σc include move from Example 2.8, and also the following:

unstack(𝑘, 𝑐, 𝑐′, 𝑝, 𝑑) // take container 𝑐 from pile 𝑝
pre: at(𝑘, 𝑑), at(𝑝, 𝑑), holding(𝑘) = nil, pos(𝑐) = 𝑐′, top(𝑝) = 𝑐
eff: holding(𝑘) ← 𝑐, pos(𝑐) ← 𝑘 , pile(𝑐) ← nil, top(𝑝) ← 𝑐′

stack(𝑘, 𝑐, 𝑐′, 𝑝, 𝑑) // put container 𝑐 onto pile 𝑝
pre: at(𝑘, 𝑑), at(𝑝, 𝑑), holding(𝑘) = 𝑐, top(𝑝) ← 𝑐′

eff: holding(𝑘) ← nil, pos(𝑐) = 𝑐′, pile(𝑐) ← 𝑝, top(𝑝) = 𝑐

unload(𝑘, 𝑐, 𝑟, 𝑑) // take container 𝑐 from robot 𝑟
pre: at(𝑘, 𝑑), holding(𝑘) = 𝑐, loc(𝑟) = 𝑑
eff: cargo(𝑟) ← 𝑐, pos(𝑐) ← 𝑟, holding(𝑘) ← nil

load(𝑘, 𝑐, 𝑟, 𝑑) // put container 𝑐 onto robot 𝑟
pre: at(𝑘, 𝑑), holding(𝑘) = nil, loc(𝑟) = 𝑑, cargo(𝑟) = 𝑐
eff: pos(𝑐) ← 𝑘 , holding(𝑘) ← 𝑐, cargo(𝑟) ← nil

In the partial-order HTN domain, put-on-robot(𝑐, 𝑟) is the task of putting container
𝑐 onto robot 𝑟. Here is a method to do this when 𝑟 is empty, 𝑐 is at the top of a pile 𝑝,
and an empty crane is available. The method’s partial-ordering constraints say that
navigate and unstack may be done in either order, but both must be done before load.

5.2 Partially Ordered Tasks 107

m1-put-on-robot(𝑘, 𝑐, 𝑐′, 𝑟, 𝑑, 𝑝)
task: put-on-robot(𝑐, 𝑟)
pre: cargo(𝑟) = nil, top(𝑝) = 𝑐, at(𝑝, 𝑑),

attached(𝑘, 𝑑), holding(𝑘) = nil
sub: (t1, navigate(𝑟, 𝑑)), // compound task

(t2, unstack(𝑘, 𝑐, 𝑐′, 𝑝, 𝑑)), // action
(t3, load(𝑘, 𝑐, 𝑟, 𝑑)) // action

≺: t1≺ t3, t2≺ t3

The navigate task has two methods that are adaptations of the ones in Example 5.4:

m1-navigate(𝑟, 𝑑)
task: navigate(𝑟, 𝑑)
pre: loc(𝑟) = 𝑑
sub: // none
≺: // none

m2-navigate(𝑟, 𝑑′, 𝑑)
task: navigate(𝑟, 𝑑)
pre: adjacent(𝑑′, 𝑑), loc(𝑟) = 𝑑′
sub: (t1,move(𝑟, 𝑑′, 𝑑))
≺: // none

The partial-order HTN planning domain is Σ = (Σc,M), where M =

{m1-put-on-robot, m1-navigate, m2-navigate}. □

Here are some basic operations on ground task networks.5 Let T1 = (𝑇1, ≺1) and
T2 = (𝑇2, ≺2) be ground task networks that have no labels in common. Then:

• The union of T1 and T2 is T1 ∪ T2 = (𝑇1 ∪ 𝑇2, ≺1 ∪ ≺2).
• If 𝜏 is a task node in T1, the task network produced by removing 𝜏 from T1 is

T1 \ {𝜏} = (𝑇 ′1 , ≺
′
1), (5.11)

where 𝑇 ′1 = 𝑇1 \ {𝜏}, and ≺′1 is the restriction of ≺1 to 𝑇 ′1 .
• Let 𝑚 = (head(𝑚), task(𝑚), pre(𝑚), subtasks(𝑚), ≺𝑚) be a ground method

that is relevant for 𝜏. Then the task network produced from T1 by refining 𝜏
with 𝑚 is

refine(T1, 𝜏, 𝑚) = (𝑇 ′1 ∪ subtasks(𝑚), ≺′1 ∪ ≺𝜏 ∪ ≺𝑚), (5.12)

where 𝑇 ′1 and ≺′1 are as in Equation 5.11, ≺𝜏 is a partial ordering that constrains
the nodes of 𝑇 ′1 that were before (or after) 𝜏 to be before (or after, respectively)
the nodes of subtasks(𝑚). Formally, for every 𝜏1 ∈ 𝑇 ′1 and 𝜏𝑚 ∈ subtasks(𝑚),
if 𝜏1 ≺1 𝜏 then 𝜏1 ≺𝜏 𝜏𝑚, and if 𝜏 ≺1 𝜏1 then 𝜏𝑚 ≺𝜏 𝜏1.

A partial-order HTN planning problem is a tuple

𝑃 = (Σ, 𝑠0,T), (5.13)

where Σ is a partial-order HTN planning domain, 𝑠0 is the initial state, and T is a
ground task network.

Solutions to partial-order HTN planning problems can be defined in two ways. In
the following definition, they are ordinary (totally ordered) plans. An alternative is to
allow the plans to be partially ordered.

5These operations can be generalized to unground task networks and methods, by renaming object
variables so that T1, T2, and 𝑚 have no variable names in common.

108 5 HTN Representation and Planning

action a21
unstack(k2,c1,c2,p2,d2)

task t11
put-on-robot(c1,r1)

method m11
m1-put-on-robot(c1,r1)

action a12
unstack(k2,c1,c2,p2,d2)

action a13
load(k2,c1,r1,d2)

task t12
navigate(r1,d2)

method m12
m2-navigate(r1,d2)

root

action a11
move(r1,d1,d2)

task t21
put-on-robot(c1,r1)

method m21
m1-put-on-robot(c1,r1)

action a23
load(k2,c1,r1,d2)

task t22
navigate(r1,d2)

method m22
m2-navigate(r1,d2)

root

action a22
move(r1,d1,d2)

(a) refinement tree for 𝜋1 (b) refinement tree for 𝜋2

Figure 5.4. Refinement trees for Example 5.12. At each node, the first line tells what
kind of node and gives its label, and the second line is the node’s content.

Definition 5.11. A solution for a partial-order HTN planning problem 𝑃 = (Σ, 𝑠0,T)
is defined inductively as follows. If T is empty, then ⟨⟩ is a solution for 𝑃. If T is not
empty, then let 𝜏 be any task node in T that has no predecessors in T , let 𝑡 = task(𝜏),
and let T ′ = T \ {𝜏}. Then:

1. If 𝑡 is an action in Applicable(𝑠0), then for every solution 𝜋 for the problem
(Σ, 𝛾(𝑠0, 𝑡),T ′), the plan 𝑡 ·𝜋 is a solution for 𝑃.

2. If 𝑡 is a goal task or compound task and 𝑚 ∈ Methods(𝑠0, 𝑡,M), then every
solution for the problem (Σ, 𝑠0, refine(T , 𝜏, 𝑚)) is also a solution for 𝑃.

3. If 𝑡 is a goal task and 𝑎 ∈ Actions(𝑠, 𝑡), then for every solution 𝜋 for the problem
(Σ, 𝛾(𝑠0, 𝑎),T ′), the plan 𝑎 ·𝜋 is a solution for 𝑃.

4. If 𝑡 is a goal task and 𝑠0 |= 𝑡, then every solution for the problem (Σ, 𝑠0,T ′) is
also a solution for 𝑃. □

If 𝜋 is a solution for 𝑃, then the definition of a refinement tree for 𝜋 is the same as
Definition 5.8, with T substituted for 𝑇 .

Example 5.12. Let Σ be as in Example 5.10, 𝑠0 be as in Figure 5.3, and T = (𝑇, ≺),
where 𝑇 = {put-on-robot(c1,r1)} and ≺ is empty. Then 𝑃 = (Σ, 𝑠0,T) has two
solutions, which are identical except for the ordering of the first two actions:

𝜋1 = move(r1,d1,d2), unstack(k2,c1,c2,p2,d2), load(k2,c1,r1,d2),
𝜋2 = unstack(k2,c1,c2,p2,d2),move(r1,d1,d2), load(k2,c1,r1,d2).

Figure 5.4 shows refinement trees for both of them. □

5.2 Partially Ordered Tasks 109

PO-HTN-Forward(Σc,M, 𝑠,T)
if T is empty then return ⟨⟩

1 nondeterministically choose a node 𝜏 in T that has no predecessors in T
foreach 𝜏′ in T that has no predecessors in T do

2 if 𝜏′ ≠ 𝜏 then add ordering constraints to T to make 𝜏 ≺ 𝜏′

𝑡 ← task(𝜏)
𝑀 ← HTN-Get-Candidates(Σc,M, 𝑠, 𝑡)
if 𝑀 ≠ ∅ then

nondeterministically choose 𝑚 ∈ 𝑀
if 𝑚 is an action then

𝜋 ← PO-HTN-Forward(Σc,M, 𝛾(𝑠, 𝑎),T \ {𝜏})
if 𝜋 ≠ failure then return 𝑎 ·𝜋

else if 𝑚 is a ground method then
return PO-HTN-Forward(Σc,M, 𝑠, refine(T , 𝜏, 𝑚))

return failure

Algorithm 5.5. A planning algorithm for partially-ordered tasks. The subroutine
HTN-Get-Candidates is the same as in TO-HTN-Forward.

5.2.2 Partial-Order HTN Planning

Algorithm 5.5, PO-HTN-Forward, is a straightforward implementation of Defini-
tion 5.11. In the definition, 𝑡 = task(𝜏) is always the first task in the solution. Lines
1–2 of the algorithm choose this task and ensure that it will come first. The rest of the
algorithm uses Equations 5.11 and 5.12 for removal and refinement of nodes in T ,
but otherwise is nearly identical to TO-HTN-Forward. A partial-order HTN version
of TO-HTN-Forward-RT can also be written.

PO-HTN-Forward can be proved sound and complete by induction. If a partial-
order HTN planning problem (Σ, 𝑠,T) has at least one solution, then at least one of
PO-HTN-Forward’s nondeterministic traces will return a solution.

5.2.3 Plan-Space partial-order HTN Planning

We now describe a plan-space planning algorithm for partial-order HTN problems. It
is identical to PSP, Algorithm 3.11, except that it has an additional parameter, the set
of methodsM. However, there are changes to some of the definitions of the entities
that PSP manipulates. More specifically:

1. The definitions of partially-ordered plans and solutions are unchanged.
2. A partial plan is a 4-tuple 𝜋 = (𝑉, 𝐸, act, 𝐶) as in Equation 3.20, but with two

changes. First, in each node 𝜈, act(𝜈) may be either a primitive task (an action)
or a nonprimitive task. Second, in Equation 3.21, act(𝜈2) may be either an
action, or a goal task that contains 𝑥 = 𝑏 or 𝑥 ≠ 𝑏′.

3. Except for the new definition of a partial plan, partial solutions are the same as
in Definition 3.12.

110 5 HTN Representation and Planning

Relevant-Methods(M, 𝜏)
𝑀 ← ∅
foreach 𝑚 ∈ M such that task(𝑚) and task(𝜏) have the same name and
same number of arguments do
𝑚′ ← a copy of 𝑚
rename the variables in 𝑚′ to avoid name conflicts with 𝜏
let 𝑦1, . . . , 𝑦𝑛 be the parameters of task(𝑚′)
for 𝑖 = 1, . . . , 𝑛 do

in 𝑚′, replace each occurrence of 𝑦𝑖 with the 𝑖’th argument of
task(𝜏)

add 𝑚′ to 𝑀

Algorithm 5.6. Relevant-Methods, which finds a set of methods that are relevant
for 𝜏 and have no name conflicts. Depending on 𝜏, the methods may be either
ground or unground.

4. A partial plan may have three kinds of flaws. In addition to the open goals and
threats defined in Section 3.4.2, 𝜋 has a compound-task flaw at every node 𝑣
such that act(𝑣) is an unrefined compound task. A resolver for this flaw is a
relevant method 𝑚 that has no name conflicts with the variables in 𝜏. Such
an 𝑚 can be found using Relevant-Methods(M, 𝜏), Algorithm 5.6. The flaw
can be resolved by replacing 𝑣 with a sequence of nodes 𝑣0 ≺ . . . ≺ 𝑣𝑘 , where
act(𝑣0) is the goal task pre(𝑚), and act(𝑣1), . . . , act(𝑣𝑘) are the subtasks of 𝑚.

5. For open-goal flaws, the “establish 𝑝 by adding a new action” resolver is not
allowed. Instead, 𝑝 must be established using an action in 𝜋. We will loosen
this restriction in Section 5.3.

If 𝑃 = (Σ, 𝑠0,T) is a partial-order HTN planning problem, then the following
partial solution 𝜋𝑃 = (𝑉, 𝐸, act, 𝐶) represents 𝑃:

• 𝑉 includes a node 𝑣0 in which act(𝑣0) = 𝑎0 is a dummy action for 𝑠0 as
in Equation 3.20. For each task node 𝜏 ∈ T , 𝑉 includes a node 𝑣𝜏 with
act(𝑣𝜏) = task(𝜏).

• For each node 𝜏 in T that has no predecessors, 𝐸 includes an edge (𝑣0, 𝑣𝜏).
For each precedence constraint 𝜏 ≺ 𝜏′ in T , 𝐸 includes an edge (𝑣𝜏 , 𝑣𝜏′).

• 𝐶 = ∅.

With the preceding changes, if 𝑃 is a solvable partial-order HTN planning problem
and we call PSP(Σ, 𝜋𝑃), then one or more of its nondeterministic execution traces
will return a solution.

5.3 Hybrid HTN/Classical Planning

Because the solutions to an HTN planning problem depend onM, an HTN planner
may return failure in some situations where a classical planner would return a solution.

5.3 Hybrid HTN/Classical Planning 111

In some cases, this failure may be deliberate. HTN methods can often be a convenient
way to encode restrictions that would be more difficult to write as classical action
preconditions. For example, if a shuttle bus is supposed to follow a certain route from
𝑎 to 𝑏, then one might write HTN methods that can only produce that route, regardless
of whether there are other routes from 𝑎 to 𝑏.

In other cases, the failure might be unintentional. In complicated environments,
the methods inM might not be sufficiently comprehensive to cover every situation
that may occur—either because the domain author failed to consider some edge cases,
or because the domain author preferred to use a hybrid planning approach, that is, to
write HTN methods for some of the domain and let the planner use other planning
techniques elsewhere.

Hybrid planning is sometimes called task insertion, the idea being that the planner
can modify the task network by inserting tasks that are not subtasks of anything
already in the network. We now give several examples.

if 𝑀 = ∅ then
𝑀 ← Applicable(𝑠) ∪ {𝑚 ∈ Ground(M) | 𝑚 is applicable in 𝑠}

Algorithm 5.7. Hybrid-planning pseudocode to insert into HTN-Get-Candidates,
just after Line 7.

Hybrid forward search. In TO-HTN-Forward and PO-HTN-Forward, inserting a
new task into 𝑇 or T is roughly equivalent to inserting an action or ground method
that is relevant for the task. One possibility is to do this whenever a planning problem
would otherwise be unsolvable. For example, the pseudocode in Algorithm 5.7 will
modify TO-HTN-Forward and PO-HTN-Forward to add all applicable actions and
ground methods to 𝑀 when it is empty, instead of returning failure. If the modified
algorithms are called withM = ∅, they will behave like Forward-Search.

if 𝑀 = ∅ then
Landmarks← RPG-Landmarks(Σc, 𝑠, 𝑔)
𝑀 ← ⋃

𝑔′∈Landmarks Actions(𝑠, 𝑔′) ∪Methods(𝑠, 𝑔′,M)
if 𝑀 = ∅ then

𝑀 ← Applicable(𝑠) ∪ {𝑚 ∈ Ground(M) | 𝑚 is applicable in 𝑠}

Algorithm 5.8. Pseudocode for landmark-based hybrid planning, to insert into
HTN-Get-Candidates just after Line 7.

We may prefer to add to 𝑀 only some of the applicable actions and methods, such
as the ones that are relevant for some landmarks (defined in Section 3.2.3). If this set
is empty, we then can try adding all applicable actions and methods. The pseudocode
in Algorithm 5.8 will make TO-HTN-Forward and PO-HTN-Forward do this.

112 5 HTN Representation and Planning

Hybrid plan-space planning. A naive way to get hybrid planning would be to mod-
ify the partial-order HTN version of PSP (see Section 5.2.3) to nondeterministically
choose, at each iteration of the while loop, either to execute lines 1–3 or add to 𝜋 a
nondeterministically chosen task 𝑡. However, without any constraints on 𝑡, this would
work very poorly: there would be an immense state space with a huge branching
factor.

Here is a hybrid-planning version of PSP that is much more focused. We take the
classical PSP algorithm in Section 3.4 and make all of the changes in Section 5.2.3
with one exception: we omit item 5, that is, we allow the “establish 𝑝 by adding a new
action” resolver to be used. This gives the algorithm all of the plan-space planning
capabilities in Section 3.4. We also add the following resolver for open goals, so that
the algorithm can use goal methods to resolve them:

• Establish 𝑝 using a goal method. Let 𝑝 be an open goal, and 𝑚 be a standard-
ized6 goal method such that 𝑝 is an instance of task(𝑚). Then the following
modification to 𝜋 is a resolver for 𝑝:

Add to 𝜋 a new node 𝑣′ with act(𝑣′) = 𝑚, instantiate variables of 𝑚
to make task(𝑚) match 𝑝, add a causal link 𝑣′

𝑝
99K 𝑣, and add edges

(𝑣0, 𝑣
′) and (𝑣′, 𝑣) to 𝐸 so that 𝑣0 ≺ 𝑣′ ≺ 𝑣.

5.4 Heuristics, Expressivity, Complexity

Here are brief discussions of heuristic functions, expressivity, and computational
complexity for HTN planning.

Heuristic functions. Section 3.1.4 described how to use heuristic functions for
node selection in classical planning algorithms, and heuristic functions similarly can
be used for node selection in TO-HTN-Forward-Det and PO-HTN-Forward. It would
not work well to take the heuristic functions in Section 3.2 and use them directly,
but there are ways to translate them into heuristic functions for HTN planning. The
details of those translations are rather complicated.

Heuristic functions can also be developed using a data structure called a task de-
composition graph, an And/Or graph that is like a union of all the possible refinement
trees for the planning problem. There is a root node similar to the one in a refinement
tree. For each ground task 𝑡, there is an Or-node whose children are all of the appli-
cable ground methods relevant for 𝑡. For each ground method, there is an And-node
whose children are the subtasks. The graph can be created once when the planning
domain is defined, and searched whenever heuristic values are needed. We omit the
details of these approaches, but Section 5.6.3 cites relevant publications.

Expressivity. partial-order HTN planning is more expressive than total-order HTN
planning, which is more expressive than classical planning. The details of the proof

6That is, the object variables in 𝑚 have been renamed to avoid name conflicts.

5.5 Refinement of Abstract Actions 113

depend on the theory of formal languages, but the basic idea is as follows. partial-
order HTN planning has equivalent expressive power to context-sensitive languages:
each partial-order HTN planning problem’s set of solutions corresponds to a context-
sensitive language, and vice versa. Similarly, total-order HTN planning has equivalent
expressive power to context-free languages, and classical planning has equivalent
expressive power to regular languages. There are context-sensitive languages that are
not context-free, and context-free languages that are not regular languages.

Several subsets of total-order HTN planning can be translated to classical planning.
Total-order HTN planning can also be translated into propositional logic. These
translation techniques have been used as a basis for efficient total-order HTN planners
(see Section 5.6.1).

Computational complexity. Undecidable problems can be encoded as total-order
HTN planning problems, and thus also as partial-order HTN planning problems.
Again we will skip the details of the proof, but it involves taking a well-known undecid-
able problem—whether two context-free languages have a nonempty intersection—
and encoding it as a total-order HTN planning problem.

Hybrid total-order HTN/classical planning is EXPSPACE-complete, and hybrid
partial-order HTN/classical planning is 2-NEXPTIME-complete. These complex-
ity results are intermediate between the complexity of classical planning and HTN
planning.

As in Section 2.5, these are worst-case results. In many planning domains the time
complexity is much lower: many are polynomial in the average case, and some are
polynomial even in the worst case.

5.5 Refinement of Abstract Actions

Another variant of HTN planning is to refine abstract actions. Like tasks, these are
complex activities that need to be accomplished, but they have preconditions and
effects somewhat like those of the non-abstract actions in Section 2.3.2.

5.5.1 Representation

We will represent abstract actions as ground instances of abstract-action (AA)
schemas, where each such schema is a triple 𝛼 = (head(𝛼), pre(𝛼), eff(𝛼)). Al-
though AA schemas and abstract actions may appear syntactically identical to
their non-abstract counterparts, their semantics is different. In an abstract action
𝑎 = (head(𝑎), pre(𝑎), eff(𝑎)),

• head(𝑎) is a task to be refined,
• pre(𝑎) is a precondition that must be true when the task begins,
• the “effect” eff(𝑎) is similar to a goal: it is a condition that must be true when

the task finishes.

Given a state 𝑠 that satisfies pre(𝑎), a planner will try to refine 𝑎 into a plan 𝜋 such
that 𝛾(𝑠, 𝜋) |= eff(𝑎).

114 5 HTN Representation and Planning

For simplicity of presentation, we will focus on sets of abstract actions that are
totally ordered. A total-order AA method is a tuple

𝑚 = (head(𝑚), task(𝑚), pre(𝑚), subtasks(𝑚), eff(𝑚)), (5.14)

such that
• head(𝑚), task(𝑚), and pre(𝑚) are as in Definition 5.2.
• subtasks(𝑚) is a sequence of actions. Each action may be lifted, ground, or

partially instantiated, and may be either abstract or non-abstract.
• eff(𝑚) is a condition that must be true after completion of subtasks(𝑚).

A ground method 𝑚 is relevant for an abstract action 𝑎 if task(𝑚) = head(𝑎) and
eff(𝑚) |= eff(𝑎). By analogy to Equation 5.4, if 𝑔 is a set of literals, 𝑎 is an abstract
action andM is a set of total-order AA methods, then

Methods(𝑔, 𝑎,M) = {𝑚 ∈ Ground(M) | 𝑔 |= pre(𝑚) and 𝑚 is relevant for 𝑎}.
(5.15)

A total-order AA planning domain is a triple Σ = (Σc,A,M), where Σc is a
classical planning domain, A is a set of abstract actions, and M is a set of AA
methods. An abstract plan is a sequence of actions, each of which may be either
abstract or non-abstract. A total-order AA planning problem is a tuple 𝑃 = (Σ, 𝑠0, 𝐴),
where Σ is a total-order AA planning domain, 𝑠0 is an initial state, and 𝐴 is an abstract
plan.

A solution for a total-order AA planning problem 𝑃 = (Σ, 𝑠0, 𝐴) is a non-abstract
plan that is defined inductively as follows. If 𝐴 = ⟨⟩, then 𝐴 itself is a solution for 𝑃.
Otherwise, let 𝑎 be the first action in 𝐴, so that 𝐴 = 𝑎 · 𝐴′ for some 𝐴′. Then:

1. If 𝑎 is non-abstract and is applicable in 𝑠0, then for every solution 𝜋 for
(Σ, 𝛾(𝑠0, 𝑎), 𝐴′), the plan 𝑎 ·𝜋 is a solution for 𝑃.

2. If 𝑎 is abstract and 𝑚 ∈ Methods(𝑠, 𝑎,M), then every solution for
(Σ, 𝑠0, subtasks(𝑚) · 𝐴′) is also a solution for 𝑃.

If 𝐴 is a non-abstract plan, it follows from the definition that if 𝐴 is applicable in 𝑠0
then 𝐴 is 𝑃’s only solution, and otherwise 𝑃 has no solution.

5.5.2 Adaptations of HTN Algorithms

It is straightforward to write total-order AA adaptations of the planning algorithms
in Sections 5.1, 5.2, and 5.3 and the heuristic functions in Section 5.4. In Algorithm
5.9, which is based on TO-HTN-Forward, Σ = (Σc,A,M) is the planning domain
and 𝑃 = (Σ, 𝑠0, 𝐴) is the planning problem. If 𝑃 is solvable, then at least one of the
nondeterministic traces will return a solution. Otherwise they all will return failure.

By analogy to Section 5.1.4, serial solvability of 𝑃 is defined recursively as follows.
If 𝐴 = ⟨⟩ then 𝑃 is serially solvable. Otherwise, let 𝑎 be the first element of 𝐴, so
that 𝐴 = 𝑎 · 𝐴′ for some 𝐴′. Then 𝑃 is serially solvable if for every plan 𝜋 that solves
(Σ, 𝑠0, ⟨𝑎⟩), the planning problem (Σ, 𝛾(𝑠0, 𝜋), 𝐴′) is serially solvable. TO-HTN-
Serial can easily be modified to produce a TO-AA-Serial algorithm for serially-solvable
total-order AA planning problems.

5.5 Refinement of Abstract Actions 115

TO-AA-Forward(Σc,A,M, 𝑠, 𝐴)
if 𝐴 is empty then return ⟨⟩
𝑎 ← the first element of 𝐴; 𝐴′ ← the rest of 𝐴
if 𝑎 is abstract then

1 𝑀 ← Methods(𝑠, 𝑎,M)
if 𝑀 ≠ ∅ then

2 nondeterministically choose 𝑚 ∈ 𝑀
3 return TO-AA-Forward(Σc,A,M, 𝑠, subtasks(𝑚) · 𝐴′)

else if 𝑎 is applicable in 𝑠 then
𝜋 ← TO-AA-Forward(Σc,A,M, 𝛾(𝑠, 𝑎), 𝐴′)
if 𝜋 ≠ failure then return 𝑎 ·𝜋

return failure

Algorithm 5.9. TO-AA-Forward, an AA adaptation of TO-HTN-Forward.

5.5.3 Angelic Refinement

A total-order AA domain Σ = (Σc,M), is downward refinable if for every abstract
action 𝑎 in Σ and every state 𝑠 that satisfies pre(𝑎), Methods(𝑠, 𝑎,M) is nonempty.
In other words, whenever 𝑠 |= pre(𝑎) there is at least one 𝑚 ∈ Ground(M) such that

task(𝑚) = head(𝑎), 𝑠 |= pre(𝑚), and eff(𝑚) |= eff(𝑎).

In a downward-refinable total-order AA domain, an abstract plan 𝐴 is angelically
refinable if 𝐴 is empty, if 𝐴 contains a single action, or if 𝐴 is a sequence of 𝑛 actions
𝐴 = ⟨𝑎1, 𝑎2, ..., 𝑎𝑛⟩ such that

eff(𝑎1) |= pre(𝑎2), eff(𝑎2) |= pre(𝑎3), . . . , eff(𝑎𝑛−1) |= pre(𝑎𝑛).

If 𝐴 is angelically refinable then we define

pre(𝐴) =
{

pre(𝑎), if 𝑎 is the first action in 𝐴,
∅, if 𝐴 = ⟨⟩.

A planning problem 𝑃 = (Σ, 𝑠0, 𝐴) is angelically solvable if 𝐴 is angelically refin-
able and 𝑠0 |= pre(𝐴). Obviously, most total-order AA planning problems are not
angelically solvable—but the ones that are can be solved very quickly.

If 𝑃 is angelically solvable then it is serially solvable, so it can be solved by the
TO-AA-Serial algorithm mentioned at the end of Section 5.5.2. However, it also can
be solved more simply using Algorithm 5.10, TO-AA-Angelic.

TO-AA-Angelic is similar to TO-HTN-Serial and TO-AA-Serial, but it omits several
of the failure tests and makes a deterministic rather than nondeterministic choice.
For angelically solvable planning problems, it will always return solutions, and for
unsolvable problems it will always return failure. For planning problems that are
solvable but not angelically solvable, it might or might not return solutions.

116 5 HTN Representation and Planning

TO-AA-Angelic(Σc,M, 𝑠, 𝐴)
𝜋 ← ⟨⟩
while 𝐴 ≠ ⟨⟩ do

1 𝑎 ← the first action in 𝐴; 𝐴← the rest of 𝐴
if 𝑎 is abstract then

2 arbitrarily select any 𝑚 ∈ Methods(𝑠, 𝑎,M)
𝜋′ ← TO-AA-Angelic(Σc,M, 𝑠, subtasks(𝑚))
𝑠← 𝛾(𝑠, 𝜋′); 𝜋 ← 𝜋 ·𝜋′

else if 𝑎 is applicable in 𝑠 then
𝑠← 𝛾(𝑠, 𝑎); 𝜋 ← 𝜋 ·𝑎

else return failure
return 𝜋

Algorithm 5.10. TO-AA-Angelic, a planner for angelically refinable domains.

We have only defined angelic refinability and solvability for total-order AA planning
domains. However, it is possible to write similar definitions for total-order HTN
planning domains, and a TO-HTN-Angelic algorithm similar to TO-AA-Angelic.

5.6 Discussion and Bibliographic Notes

5.6.1 General Background

The first HTN planning systems began to be developed in the mid-1970s [970, 1079].
They did plan-space HTN planning in a manner somewhat like the algorithm in
Section 5.2.3, but with several other elaborate features [1172, 264]. There also was
work that used planning-graph techniques to make plan-space HTN planning more
efficient [737, 736].

In addition to preconditions, some plan-space HTN planners allowed methods to
have filter conditions [327]. These look syntactically like preconditions—but instead
of treating them as goals to achieve, the planner would not use a method if its filter
conditions were not true. However, determining the correct state in which to evaluate
filter conditions is a complicated issue [327], and most current HTN planners do not
use them (an exception is [682]).

In an effort to simplify HTN planning, several HTN planners used forward-search
instead of plan-space planning, and removed various of the complicating features of
the early HTN planners, including filter conditions and goal tasks [832, 833, 410]. This
simplified model of HTN planning became highly influential. Later research efforts,
having lost track of goal tasks as a part of HTN planning, re-invented them under the
name of goal-network planning [1009, 1010]. Because our HTN formulation includes
goal tasks (see Section 5.1), it has a version of goal-network planning as a special
case. TO-HTN-Forward and PO-HTN-Forward are based loosely on the SHOP [832],
SHOP2 [833], and GDP [1009] algorithms.

5.6 Discussion and Bibliographic Notes 117

Several other HTN planning techniques involve translating HTN planning problems
into some other format. For some restricted classes of HTN planning, planning
problems can be translated into classical planning problems and solved using classical
planners [24, 512]. Another approach is to translate HTN planning problems into
satisfiability problems, and construct plans using a satisfiability solver [107, 108, 105,
989]. This uses a version of iterative deepening: it bounds the length of the solution
and uses the satisfiability solver to see whether there’s a solution of that length—and if
not, then it increases the bound and tries again. HTN instances can also be compiled
into programs in a conventional programming language [534, 747]. This can, for
example, allow optimizations to minimize backtracking [747].

An HTN planner performed quite well in the 2002 International Planning Competi-
tion [734], but HTN planners were not involved in subsequent competitions until 2020.
The 2020 International Planning Competition focused entirely on HTN planning, and
stimulated research on several new HTN planners, including several of the ones cited
in the preceding paragraphs. Our formulation of partial-order HTN planning is based
loosely on the HDDL language that was developed for the competition [515].

5.6.2 Formal Models

Theoretical models for HTN planning began to be developed in the early 1990s
[1198, 577]. Subsequent theoretical investigations have produced formal semantics
for plan-space [327] and forward-search [430] HTN planning, a provably correct
planning algorithm [328], and analyses of the complexity and expressivity of HTN
planning [330, 513] and hybrid HTN/classical planning [27].

Our presentation of HTN planning algorithms has focused primarily on forward
search and plan-space search, but those are not the only possibilities. A formal model
of HTN search spaces [26] has shown that because they have a more complex structure
than classical search spaces, there is a wider variety of possible ways to search them,
including some possibilities for which no planning algorithms have yet been written.

5.6.3 Heuristic Functions

The complex refinement structure of HTN planning domains makes it more difficult to
develop heuristic functions than in classical planning. One approach is to translate the
HTN planning problem into a classical planning problem for which classical planning
heuristics can be used: [28] does this for a subset of HTN planning problems in which
the method calls are tail-recursive, and [514] does it by encoding a relaxed version of
the HTN planning problem as a classical planning problem. There also are ways to
adapt classical heuristics for use in HTN planning [514].

In [114], task decomposition graphs are used as the basis for an admissible HTN
heuristic. Task decomposition graphs have also been used to develop heuristic func-
tions for hybrid HTN/classical planning [113].

118 5 HTN Representation and Planning

5.6.4 Hybrid HTN/Classical Planning

Some of the early work on HTN planning used a hybrid approach that combined HTN
planning with classical plan-space planning [328, 581], and this approach was also
used in several subsequent works [737, 736, 144, 113, 324]. Hybrid HTN/classical
planning is roughly equivalent to HTN planning with task insertion, in which arbitrary
tasks may be inserted into the task network [396]. Inserting a task into a task network
is equivalent to inserting the task’s methods and actions as we did in Algorithm 5.7.

Section 5.3 mentioned the possibility of using a landmark computation such as
RPG-Landmarks to identify goals that match PO-HTN-Forward’s goal methods. The
GoDeL planner [1010] used this approach. If GoDeL encountered a goal for which
there is an applicable method then it would use the method, and otherwise it would
invoke a landmark-based forward search. During each episode of landmark generation,
GoDeL treated the landmarks as intermediate goals, and reverted to HTN planning
whenever it encountered a landmark for which there was an applicable method.

Another approach to hybrid planning is to run a classical planner and an HTN
planner as two separate subroutines, with the HTN planner passing control to the
classical planner whenever it encounters a task for which no methods have been
defined, and the classical planner passing control to the HTN planner whenever it
encounters an “action” that matches an HTN method [402]. A similar effect has been
achieved by compiling a set of HTN methods (subject to certain restrictions) into a
set of classical “actions” whose names, preconditions, and effects encode the steps
involved in applying the methods, and using these actions in a classical planner [24].

5.6.5 Planning with Abstract Actions

In Section 5.5.3, downward refinability of a planning domain is an HTN version of
the downward refinement property in Section 3.6.8. Angelic refinability of a plan is
related to angelic nondeterminism in the theory of programming [115, 148], where
an angelically nondeterministic “choose” command is assumed to make a successful
choice if one exists.7 In top-down program design, one can first write a high-level
algorithm that contains a “choose,” and then replace the “choose” with deterministic
code for making the best choice. That is how we wrote the TO-AA-Angelic algorithm.

TO-AA-Angelic was inspired by the Angelic-Search algorithm in [967, Section
11.4], but there is a key difference: unlike TO-AA-Angelic, which always refines the
first action in 𝐴 before refining the rest of 𝐴, Angelic-Search may refine the actions of
𝐴 in any order. To illustrate a difficulty that this causes, let us suppose that 𝐴 = 𝑎1 ·𝑎2,
where both 𝑎1 and 𝑎2 are abstract, and suppose we want to refine 𝑎2 before 𝑎1. If 𝑀
is the set of relevant methods for 𝑎2, then it is unclear which 𝑚 ∈ 𝑀 to choose. If we
make the wrong choice, then the refined problem 𝑃′ = (Σ, 𝑠0, 𝑎1 ·subtasks(𝑚)) might
not be solvable. The discussion of Angelic-Search includes some clever ways to deal
with this problem by matching sets of refinements of 𝑎1 with sets of refinements of
𝑎2. However, the details are complicated and are not always feasible to implement.

7The nondeterministically choose command in our pseudocode algorithms is very similar; see Sec-
tion A.1 for details.

5.7 Exercises 119

5.6.6 Extensions and Applications

In HTN planners based on forward search, it is easy to allow arbitrary computational
formulas in the methods and action schemas. Several total-order HTN planners
[832, 1009, 830], and a few partial-order HTN planners [833, 433], work this way. This
makes it possible to use application-specific data structures. Extensions have also been
developed for Horn-clause inference [833], temporally-extended preferences [1043],
temporal planning (TemPlan in Chapter 17), probabilistic environments (UPOM in
Chapter 15), and coordination of multi-agent systems [697].

Such extensions, along with the ability of HTN methods to represent “standard
operating procedures” [1170], have helped to make HTN planners useful in a vari-
ety of applications. Some examples include scheduling [1171], logistics and cri-
sis management [265, 1080, 144], spacecraft planning and scheduling [1, 332],
equipment configuration [13], manufacturing process planning [1039], evacuation
planning [821], real-time tracking [520], composition of web services [1031, 1042]
and information streams [1044], requirements engineering [1043], computer games
[1040, 504, 214, 784, 840], and robotics [809, 566, 1059, 277, 143].

One difficulty in developing HTN-planning applications is that the domain au-
thor needs to write and debug a potentially complex set of domain-specific HTN
methods [575]. A potential way to alleviate this problem is to learn HTN methods
automatically. Chapter 7 describes some of the research on that topic.

5.6.7 Other Topics

Plan verification. HTN plan verification consists of two closely-related problems:

• Given an HTN planning problem 𝑃 = (Σ, 𝑠0, 𝑇) and a plan 𝜋, is 𝜋 a solution
for 𝑃?

• Given an HTN planning domain Σ and a plan 𝜋, does there exist a planning
problem 𝑃 = (Σ, 𝑠0, 𝑇) such that 𝜋 is a solution for 𝑃?

If Σ were a classical planning domain, then both problems could be solved in low-
order polynomial time by evaluating 𝛾(𝑠0, 𝜋). However, verification of HTN planning
problems is much more complicated because of the need to check whether 𝜋 can be
produced by HTN refinement.

One approach to HTN plan verification is to translate the planning problem into a
Boolean formula that is satisfiable if and only if 𝜋 is a solution for 𝑃 [106]. Another
is to translate Σ into an attribute grammar and check whether 𝜋 can be parsed as a
solution for 𝑃 [94, 95].8 A third approach is to translate the verification problem into
an HTN planning problem that can be solved by an HTN planner [517].

5.7 Exercises

5.1. In Example 5.4, rewrite m2-get-container to eliminate the parameter 𝑝 by replac-
ing it with pile(𝑐).

8An extended version of this approach can try to correct a plan by deleting actions from it [96].

120 5 HTN Representation and Planning

5.2. Modify the following methods to satisfy the restrictions given in Remark 2.6:
m2-uncover in Example 5.4, m3-navigate in Example 5.4, and m1-put-on-robot in
Example 5.10.

5.3. Write methods for some situations that m2-get-container in Example 5.4 doesn’t
handle, such as the case where cargo(𝑟) is neither nil nor 𝑐.

5.4. Characterize the situations that the uncover methods in Example 5.4 don’t handle.
Write methods to handle those cases.

5.5. Prove that TO-HTN-Forward is sound and complete. Do the same for PO-HTN-
Forward.

5.6. Write total-order HTN methods for the usual recursive formulation of the Towers
of Hanoi problem. Using your methods, is the problem serially solvable? Why or
why not?

5.7. In Example 5.10, write an m2-put-on-robot method for the case where 𝑐 is not at
the top of its pile.

5.8. In Example 5.10, write an m-remove-from-robot method in which a crane removes
a container from a robot and puts it onto a designated pile. If this is available, then
does it change the number of solution plans in Example 5.12? Why or why not?

5.9. In Example 5.10, write methods for put-on-robot(𝑐, 𝑟) for these cases: (a) 𝑘 is
empty but 𝑟 is not; (b) 𝑟 is empty but 𝑘 is not; (c) neither 𝑟 nor 𝑘 is empty.

5.10. Write a partial-order HTN planning algorithm similar to TO-HTN-Forward-RT.

5.11. Professor Prune claims that any partial-order HTN method can be translated
into an equivalent set of methods with totally ordered subtasks. Here is his argument:

Let 𝑚 = (head(𝑚), task(𝑚), pre(𝑚), subtasks(𝑚), ≺𝑚) be the partial-
order HTN method, and let ≺1, . . . , ≺𝑘 be all of the total orderings that
satisfy ≺𝑚. For 𝑖 = 1, . . . , 𝑘 , let 𝑚𝑖 = (head(𝑚), task(𝑚), pre(𝑚), ≺𝑖).
Then 𝑚1, . . . , 𝑚𝑘 can produce every totally ordered solution plan that 𝑚
can produce.

To show that Professor Prune is wrong, write a partial-order HTN method 𝑚 that can
produce a solution plan that none of 𝑚1, . . . , 𝑚𝑘 can produce.9

5.12. Definition 5.11 defined partial-order HTN solution plans to be totally ordered.
Write a definition of a partially ordered solution plan, and modify PO-HTN-Forward
to find such solutions.

5.13. In Section 3.4.2, there were two open-goal resolvers: one that uses an action
already in 𝜋, and one that adds a new action to 𝜋.

(a) Why does Section 5.2.3 use only one of those resolvers?
9Thanks to Pascal Bercher for inspiring this exercise.

5.7 Exercises 121

(b) In Section 5.3 there is an open-goal resolver that uses a goal method. Why
aren’t there two such resolvers, like there are for actions?

5.14. Prove that if If 𝑃 = ((Σc,M), 𝑠0, 𝐴) is a solvable total-order AA planning prob-
lem, then at least one of the nondeterministic traces of TO-AA-Forward(Σc,M, 𝑠0, 𝐴)
will return a solution plan, and otherwise all of the traces will return failure.

5.15. Write total-order AA adaptations of one or more of the following algorithms:
TO-HTN-Forward-Det, TO-HTN-Forward-RT, TO-HTN-Serial, PO-HTN-Forward, the
hybrid planning algorithms in Section 5.3, and the heuristic functions in Section 5.4.

5.16. Prove that if 𝑃 is an angelically solvable planning problem, it is serially solvable.

5.17. Prove that if 𝑃 is an angelically solvable planning problem, TO-AA-Angelic will
find a solution for 𝑃.

5.18. Analyze the time complexity of TO-AA-Angelic.

5.19. In a downward-refinable planning domain, consider solvable planning problems
that are not angelically solvable.

(a) Give an example of such a problem.
(b) Will TO-AA-Angelic always (or ever) solve such problems? Why or why not?

5.20. Write definitions of downward refinability, angelic refinability, and angelic
solvability for total-order HTN planning domains. Write a TO-HTN-Angelic algorithm
similar to TO-AA-Angelic.

6 Acting with HTNs

This chapter discusses how to use HTN domain models during acting. One of the
biggest issues, of course, is that unlike an HTN domain model, the actor’s environment
is not necessarily deterministic or static: exogenous events and unanticipated action
outcomes can make the current state different from what an HTN model would
predict. Despite this, an HTN domain model can be a very useful way to provide
some of the actor’s know-how—the operational information discussed in Section 1.2.
HTN methods can provide instructions to the actor on how to perform complex tasks
without the overhead of searching through a large state space, how to avoid situations
where unanticipated events are likely to cause bad outcomes, and how to recover when
unanticipated events occur.

Section 6.1 describes a way to use HTN methods for purely reactive acting, and
some potential problems with this approach. Section 6.1 describes some simple ways
for an actor to use an HTN planner, replanning if problems occur. Section 6.2.1
describes ways to repair existing plans when unexpected events occur during acting.
Finally, Section 6.3 is the discussion and bibliographic remarks and Section 6.4 is the
exercises.

TO-HTN-Act(Σc,M, 𝑇)
if 𝑇 is empty then return success
𝑡 ← the first element of 𝑇 ; 𝑇 ′ ← the rest of 𝑇

1 𝑠← observe current state
𝑀 ← HTN-Get-Candidates(Σc,M, 𝑠, 𝑡)

2 foreach 𝑚 ∈ 𝑀 do
if 𝑚 is a method then

if TO-HTN-Act(Σc,M, subtasks(𝑚) ·𝑇 ′) = success then return
success

else if 𝑚 is an action then
3 execute 𝑚

if 𝑚 executed successfully then return TO-HTN-Act(Σc,M, 𝑇 ′)

return failure

Algorithm 6.1. TO-HTN-Act, a reactive HTN acting algorithm. The HTN-Get-
Candidates subroutine is the same as in Algorithm 5.1.

122
Free pre-publication, for personal use only. To be published by Cambridge University Press.

6.1 Reactive HTN Acting 123

6.1 Reactive HTN Acting

Algorithm 6.1, TO-HTN-Act, is a modified version of TO-HTN-Forward that uses HTN
methods for acting instead of planning. The modifications are as follows:

• Instead of taking 𝑠 as an argument, TO-HTN-Act observes 𝑠 in Line 1. Instead
of computing 𝛾 in Line 3, TO-HTN-Act performs the action on its execution
platform. Instead of returning a plan, it returns either success or failure.

• The loop at Line 2 is a failure-recovery mechanism. If failure occurs when
using a chosen method 𝑚, TO-HTN-Act tries to reaccomplish 𝑇 using other
methods in 𝑀 . If all of the other methods fail, then it returns failure to the next
higher level in the recursion stack, which will try to reaccomplish the task that
had 𝑡 as a subtask. The approach is similar to backtracking, but not identical.
At each loop iteration after the first one, a true backtracking algorithm would
revert 𝑠 to the value it had before the first loop iteration, but TO-HTN-Act cannot
time-travel back to a state in the past.

Similar modifications can be used to transform other planning algorithms in Chapter 5
into acting algorithms.

As written, TO-HTN-Act operates purely reactively. Instead of looping through
the methods in an arbitrary order in Line 2, it may perform better if it can make an
informed choice of which 𝑚 ∈ 𝑀 to try first. One possibility is to use a heuristic
function. Another is for it to choose 𝑚 by calling an online HTN planner that returns
the topmost method in its refinement tree (most of the planners in Chapter 5 can
easily be modified to do this). However, this can cause repeated duplication of effort
between TO-HTN-Act and the planner, increasing their time complexity.1 The next
section discusses some acting algorithms that operate more efficiently.

6.2 Acting with an Online HTN Planner

Algorithms 6.2 and 6.3, HTN-Run-Lookahead and HTN-Run-Lazy-Lookahead, are
receding-horizon actors that get their plans from an HTN planner. They are mod-
ified versions of Run-Lookahead and Run-Lazy-Lookahead in Section 2.6.2. The
modifications are as follows:

• Σ andT may be either a total-order HTN planning domain and sequence of tasks
as in Section 5.1, or a partial-order HTN planning domain and task network as
in Section 5.2. In either case, the planning problem is (Σ, 𝑠,T), where 𝑠 is the
current state.

• Lookahead is an online HTN planner. This could be one of the planning
algorithms in Chapter 5, possibly modified to terminate its search early. For

1Suppose TO-HTN-Act chooses 𝑚 by calling an HTN planner M that returns a method, and let Tree be
the refinement tree for 𝑚. Then TO-HTN-Act’s recursive calls will be like a preorder traversal of Tree.
At each nonprimitive task 𝑡, M will be called again and will redo its search of the subtree below 𝑡.
In the worst case, these unnecessary calls to M can increase the time complexity by a multiplicative
factor of 𝑛, where 𝑛 is the number of nonprimitive tasks in Tree.

124 6 Acting with HTNs

example, in a receding-horizon approach, Lookahead could search to a cutoff
depth and return the best partial plan that it has seen so far.

• Since HTN planning does not necessarily have a goal state, the termination
criterion is whether Lookahead returns ⟨⟩. When implementing Lookahead,
one should ensure that it returns ⟨⟩ only when nothing needs to be done.

• For simplicity of presentation, HTN-Run-Lazy-Lookahead does not call a Sim-
ulate subroutine. However, it can easily be modified to do so.

HTN-Run-Lookahead(Σ,T)
while True do

1 𝑠← observed current state
2 𝜋 ← Lookahead(Σ, 𝑠,T)

if 𝜋 = failure then return failure
3 if 𝜋 = ⟨⟩ then return success

𝑎 ← pop(𝜋) // remove and return 𝜋’s first action
4 trigger execution of 𝑎

Algorithm 6.2. HTN-Run-Lookahead, which replans at each action.

HTN-Run-Lazy-Lookahead(Σ,T)
𝜋 ← ⟨⟩
while True do

if 𝜋 = ⟨⟩ then
1 𝑠← observed state
2 𝜋 ← Lookahead(Σ, 𝑠,T)

if 𝜋 = failure then return failure
3 if 𝜋 = ⟨⟩ then return success

𝑎 ← pop(𝜋) // remove and return 𝜋’s first action
trigger execution of 𝑎

Algorithm 6.3. HTN-Run-Lazy-Lookahead, which replans only when necessary.

HTN-Run-Lookahead and HTN-Run-Lazy-Lookahead can work well in some cases
and badly in others. Here are examples of both cases:

Example 6.1. In Example 5.7, consider 𝑃 = (Σ, 𝑠0, ⟨put-in-pile(c1, p2)⟩) as an acting
problem, with Lookahead = TO-HTN-Forward. Let us consider two cases: (i) if the
state-transition function’s predictions are completely accurate, so that the current state
after executing actions 𝑎1, . . . , 𝑎𝑛 is always 𝛾(𝑠0, ⟨𝑎1, . . . , 𝑎𝑛⟩); and (ii) if there are
some failures or unexpected events but they do not make the problem unsolvable.

In case (i), here is what will happen if we use HTN-Run-Lazy-Lookahead:

• In the first loop iteration, 𝜋 = ⟨⟩ and 𝑠 = 𝑠0. HTN-Run-Lazy-Lookahead calls

6.2 Acting with an Online HTN Planner 125

TO-HTN-Forward(Σ, 𝑠0, ⟨put-in-pile(c1, p2)⟩), which returns

𝜋 = ⟨take(r1, c1, c2, p1, d1), move(r1, d1, d2), put(r1, c1, c3, p2, d2)⟩.

From 𝜋, HTN-Run-Lazy-Lookahead pops and executes take(r1, c1, c2, p1, d1).
• In the 2nd and 3rd loop iterations, HTN-Run-Lazy-Lookahead pops and executes

move(r1, d1, d2) and put(r1, c1, c3, p2, d2). This leaves 𝜋 = ⟨⟩.
• In the 4th loop iteration, HTN-Run-Lazy-Lookahead calls TO-HTN-Forward,

which returns 𝜋 = ⟨⟩. HTN-Run-Lazy-Lookahead exits with success.

If we instead use HTN-Run-Lookahead, it also will execute the same actions and return
success, but it will call TO-HTN-Forward once before executing each action.

In case (ii), the task-list methods in Σ (see Example 5.4) are robust enough that
in most cases, both HTN-Run-Lazy-Lookahead and HTN-Run-Lookahead will recover
and finish successfully. □

Example 6.2. HTN-Run-Lookahead and HTN-Run-Lazy-Lookahead have more diffi-
culty with the planning problem in Example 5.12. As before, suppose Lookahead is
PO-HTN-Forward and it returns the following solution from Example 5.12,

𝜋2 = unstack(k2,c1,c2,p2,d2),move(r1,d1,d2), load(k2,c1,r1,d2).

If no unexpected events occur during execution, then Run-Lazy-Lookahead will ex-
ecute 𝜋2 to completion and return success, but Run-Lookahead will not. Run-
Lookahead will execute the unstack action, then call PO-HTN-Forward again, which
will fail because no methods are applicable when k2 is holding c1.

If execution failures occur that are not serious enough to make the problem un-
solvable, HTN-Run-Lazy-Lookahead will succeed in some cases and fail in others.
As an example of the latter, suppose a transient error causes move(r1,d1,d2) to fail
without changing the current state. Then HTN-Run-Lazy-Lookahead will call PO-
HTN-Forward again, which will fail because no methods are applicable when k2 is
holding c1. □

6.2.1 Acting with Plan Repair

When an actor executes a plan, execution errors or exogenous events may sometimes
cause it to fail. In Section 6.2, HTN-Run-Lookahead and HTN-Run-Lazy-Lookahead
recover from such failures by discarding the old plan and calling the planner again,
giving it the same task as before and the current observed state. However, as we
discussed in Section 3.5, there are several reasons why it may be preferable to repair
the original plan instead.

The plan-repair algorithm in Section 3.5 used a relatively simple heuristic for
deciding what parts of the plan to try to repair. In HTN planning domains, the planning
problem’s refinement structure can help decide what repairs to try. Algorithm 6.4,
HTN-Run-Repair, is a modified version of HTN-Run-Lazy-Lookahead that does this.

HTN-Run-Repair begins by calling Lookahead-RT, which may be any online planner
that returns a refinement tree, such as an online version of TO-HTN-Forward-RT.

126 6 Acting with HTNs

HTN-Run-Repair(Σ, 𝑇)
𝑠← observed state
tree← Lookahead-RT(Σ, 𝑠, 𝑇)
if tree = failure then return failure
𝜋 ← the sequence of action nodes in tree
while True do

if 𝜋 = ⟨⟩ and tree has no unsolved nodes then return success
𝜈 ← pop(𝜋) // the first action node in 𝜋
trigger execution of content(𝜈)
if content(𝜈) failed then

// repair the tree, and make 𝜈′ the next action node to perform
𝜈′ ← HTN-Repair(Σ, 𝜈0, 𝜈)
if 𝜈′ = failure then return failure
𝜋 ← the sequence of action nodes starting at 𝜈′

Algorithm 6.4. HTN-Run-Repair, which repairs its plan if actions fail.

After Lookahead-RT returns, HTN-Run-Repair starts executing the actions in the
refinement tree’s action nodes. If it encounters a failure or the refinement tree ends, it
calls HTN-Repair, which may be any algorithm that repairs the part of the refinement
tree where the failure occurred and returns the node at which execution should resume
(Section 6.2.2 will discuss such algorithms). This process repeats until either HTN-
Run-Repair finishes successfully or a failure occurs that HTN-Repair cannot fix.

Example 6.3. Suppose we run HTN-Run-Repair on the planning problem in Exam-
ple 5.12, and Lookahead-RT returns the root of the refinement tree for 𝜋2 in Fig-
ure 5.4. When HTN-Run-Repair tries to execute 𝜋2, suppose unstack(k2,c1,c2,p2,d2)
finishes correctly but move(r1,d1,d2) fails. Then HTN-Run-Repair will call
HTN-Repair(Σ, 𝜈0, 𝜈), where 𝜈0 is the root node and 𝜈 = (𝑎22,move(r1,d1,d2)) is
the node where the failure occurred. Suppose HTN-Repair decides that the failure
was transient and the action should be tried again. Then HTN-Repair will return 𝜈
and HTN-Run-Repair will try to execute move(r1,d1,d2) again. If there are no further
problems, it will execute the rest of the refinement tree to completion. □

6.2.2 Incremental Plan Repair

This section discusses some repair algorithms that can be used as HTN-Run-Repair’s
HTN-Repair algorithm.

Let Tree be a refinement tree, and 𝜈 be a task node where a failure has occurred
during acting. Algorithm 6.5, Incremental-Repair, looks for a new plan for 𝜈 that
will preserve applicability of the rest of Tree. If it cannot find one, then it calls itself
recursively on the next higher task node, to replan a larger part of Tree.

Incremental-Repair-2, Algorithm 6.6, is a finer-grained version of Incremental-
Repair. It first looks for a plan for 𝜈 that will preserve applicability of the rest of Tree.

6.3 Discussion and Bibliographic Notes 127

HTN-Incremental-Repair(Σ, Tree, 𝜈)
𝜋pending ← the sequence of actions after 𝜈 in Tree
𝑠← observed current state
𝑡 ← content(𝜈)
Tree1 ← Lookahead-RT(Σ, 𝑠, ⟨𝑡⟩) // a new refinement tree for 𝑡
if Tree1 ≠ failure then

𝜋1 ← the sequence of actions in Tree1’s leaf nodes
if 𝜋pending is applicable in 𝛾(𝑠, 𝜋1) then

𝜈1 ← the task node for 𝑡 in Tree1
𝜈first ← the first action node in Tree1
in Tree, replace 𝜈 with 𝜈1
return 𝑣first // the action to execute next

else
if parent(𝜈) is the root of Tree then return failure
𝜈′ ← the lowest ancestor of 𝜈 that is a task node
return Incremental-Repair(Σ, Tree, 𝜈′)

Algorithm 6.5. HTN-Incremental-Repair, which replans increasingly larger tasks.
At the failed task node 𝜈, it looks for a new plan 𝜋1 that preserves applicability
of the actions after 𝜈. If that fails, it calls itself recursively on the task node
above 𝜈.

If that fails, it tries to find a plan for both 𝜈 and the next sibling node (if there is one)
that will preserve applicability of the rest of Tree. If that fails, it tries planning for 𝜈
and its next two siblings, and so forth until there are no more siblings. If that fails, it
calls itself recursively on the next higher task node, to replan a larger part of Tree.

If one of the preceding algorithms is HTN-Run-Repair’s HTN-Repair subroutine, it
can sometimes happen that HTN-Run-Repair repeatedly encounters a failure at some
node 𝜈, and HTN-Repair repeatedly returns the same repair that failed the previous
time. Sometimes this may be the right thing to do: if the repaired plan’s failure is
transient then one might want to keep trying until it succeeds. However, if the repaired
plan’s failure is inevitable then HTN-Repair should try a different repair. For the latter
case, Incremental-Repair and Incremental-Repair-2 can be modified to keep a list of
the repairs that they have already tried, and not try them again (see Exercise 6.6).

6.3 Discussion and Bibliographic Notes

Reactive acting. BDI (Belief-Desire-Intention) architectures are reactive systems
somewhat similar to the algorithms in Sections 6.1 and 6.2, but they differ with respect
to their representation of actions and methods [276, 100, 275]. Most BDI systems
will not replan, though there are a few exceptions [981, 1204]; and they will select
and execute an untried method when failure occurs.

The Icarus algorithm [681] learns hierarchical logic programs that are analogous to

128 6 Acting with HTNs

Incremental-Repair-2(Σ, Tree, 𝜈)
𝑠← observed current state
𝑝 ← parent(𝜈)
⟨𝜈1, . . . , 𝜈𝑘⟩ ← Children(𝑝)
𝑖 ← the index of 𝜈 in ⟨𝜈1, . . . , 𝜈𝑘⟩, so that 𝜈 = 𝜈𝑖
for 𝑗 ← 𝑖 to 𝑘 do

𝜋pending ← the sequence of actions after 𝜈 𝑗 in Tree
Tree1 ← Lookahead-RT(Σ, 𝑠, ⟨content(𝜈𝑖), . . . , content(𝜈 𝑗)⟩)
if Tree1 ≠ failure then

𝜋1 ← the sequence of actions in Tree1’s leaf nodes
if 𝜋pending is applicable in 𝛾(𝑠, 𝜋1) then

𝜈first ← the first action node in Tree1
in Tree, replace 𝜈𝑖 , . . . , 𝜈 𝑗 with Children(root(Tree1))
return 𝜈first

else
if parent(𝜈) is the root of Tree then return failure
𝜈′ ← the lowest ancestor of 𝜈 that is a task node
return Incremental-Repair-2(Σ, Tree, 𝜈′)

Algorithm 6.6. Incremental-Repair-2, a finer-grained repair algorithm. It first
tries to replan 𝜈. If this fails, it tries repeatedly to replan 𝜈 and some of its
siblings, increasing the number of siblings each time. If that fails, it calls itself
recursively on the task node above 𝜈.

HTN methods, and uses them for reactive acting. We discuss it further in Section 7.4.

Plan repair. In general, plan stability (see Section 3.5) can be accomplished more
effectively for HTN planning than for classical planning, by using the HTN plan
structure to localize the errors and failures, and using repair knowledge encoded into
the HTN methods [1170].

In plan-space HTN planning, SIPE [1169] used a collection of “replanning actions”
for repairing several kinds of errors. In PRIAR [577], validation graphs were used to
identify disruptions and make patches to plan-space plans. The repair algorithm in
[141] works by retracting the planning steps at the failure points, and then following
the previous generation process as closely as possible.

The simple approach used in our Incremental-Repair and Incremental-Repair-2
algorithms is similar to that in [1155, 80]. Repairs can be done more effectively by
reasoning about causal dependencies among actions, either analytically [64, 141, 436]
or using simulation techniques [1218].

In [516], plan repair is done by modifying the planning domain to incorporate
the observed outcome of an action failure, and recreating the refinement tree in the
modified domain. This approach is appealing theoretically, but it excludes some
intuitively plausible repairs that other repair algorithms can perform at higher levels

6.4 Exercises 129

of the refinement tree [432].
Some other approaches to plan repair include an HTN version of [141] gives a plan-

repair algorithm for HTN plan-space plans that is similar to the classical plan-space
repair algorithm in Section 5.2.2.

6.4 Exercises

Stack-Blocks(𝑠0, 𝑔)
𝜋 ← ⟨⟩
while one or more blocks need to be moved do

𝐶 ← {blocks that are clear and need to be moved}
𝑀 ← {blocks for which the goal location is either the table or a block
that doesn’t need to be moved}

if 𝐶 ∩ 𝑀 ≠ ∅ then
choose a block in 𝐶 ∩ 𝑀 and move it to its goal location

else choose a block in 𝐶 and move it to the table
return 𝜋

Algorithm 6.7. Stack-Blocks, a blocks-world acting algorithm that finds near-
optimal solutions.

6.1. Consider blocks-world problems in which the initial state includes the atom
holding = nil, and the goal 𝑔 is a set of loc atoms like those in Figure 2.8. Algorithm
6.7, Stack-Blocks, can find near-optimal solutions for such problems, where “optimal”
means the smallest number of actions. Here are some terms used in the pseudocode:

• A block 𝑏 is clear if top(𝑏) = nil.
• If the goal 𝑔 contains an atom of the form loc(𝑏) = 𝑐, then 𝑐 is block 𝑏’s goal

location. Otherwise 𝑏 has no goal location.
• A block 𝑏 needs to be moved if either 𝑏 has a goal location that differs from

its current location, or 𝑏’s current location is a block that needs to be moved.
Otherwise 𝑏 doesn’t need to be moved.

Answer the following questions:

(a) What sequence of actions will Stack-Blocks produce for the planning problem
in Exercise 2.4(b)?

(b) Write a set of total-order HTN methods that encode Stack-Blocks. Assume
there is a function need-to-move(𝑏) that returns True if 𝑏 needs to be moved
and False otherwise, that you can use in the methods’ preconditions.

6.2. In Figure 2.8, suppose the first “move” action drops the block onto the table,
and all subsequent “move” actions operate correctly. For each of the following acting
algorithms, tell what sequence of actions will be performed using the methods you
wrote in Exercise 6.1.

130 6 Acting with HTNs

(a) HTN-Run-Lookahead, with Lookahead = TO-HTN-Forward.
(b) HTN-Run-Lazy-Lookahead, with Lookahead = TO-HTN-Forward.
(c) HTN-Run-Repair, with Lookahead-RT = TO-HTN-Forward-RT and

HTN-Repair = Incremental-Repair.
(d) HTN-Run-Repair, with Lookahead-RT = TO-HTN-Forward-RT and

HTN-Repair = Incremental-Repair-2.

6.3. Repeat Exercise 6.2, but this time assume that for every block 𝑏, the first “move”
operation on 𝑏 drops it onto the table, and all subsequent “move” operations on 𝑏
operate correctly.

6.4. In Exercise 6.2, suppose every “move” operation drops the block onto the table.
For each of the four acting procedures in Exercise 6.2, will it eventually terminate or
will it keep trying to move blocks forever?

6.5. In Example 6.3, can situations occur where Incremental-Repair and Incremental-
Repair-2 will repeatedly return the same plan? If so, describe such a situation. If not,
then explain why not.

6.6. Modify Incremental-Repair and Incremental-Repair-2 so that at each node of the
refinement tree they will keep a list of the methods that they have already tried at that
node, and will not try those methods again if called again at that node.

6.7. Repeat parts (c) and (d) of Exercises 6.2–6.5 using the modified versions of
Incremental-Repair and Incremental-Repair-2 that you wrote in Exercise 6.6.

7 Learning HTN Methods

HTN planning algorithms require a set of HTN methods that provide knowledge about
potential problem-solving strategies. Typically these methods are written by a domain
expert, but this chapter is about some ways to learn HTN methods from examples.
For simplicity, we focus specifically on how to learn total-order HTN methods.

This chapter is organized as follows. Section 7.1 describes a learning-by-
demonstration problem in which a learner is given examples of plans to accomplish
various tasks, and the objective is to learn HTN methods. Section 7.2 describes a
more difficult version of the same problem: the examples consist only of plans, and
the learner needs to use other information to infer what tasks the plans accomplish.
Section 7.3 speculates briefly about prospects for a “planning-to-learn” approach in
which a learner generates its own examples using a classical planner.

7.1 Learning Methods from Examples

Given a specification of a classical planning domain, suppose we want to learn a set
of total-order HTN methods for various tasks from examples of how to accomplish
the tasks. These examples could be provided by a tutor, or could be produced by
observing a system in action, or if all of the tasks are goal tasks then the learner could
generate the examples using a classical planner. More specifically, we will define a
solution example to be a triple

𝑒 = (task(𝑒), pre(𝑒), plan(𝑒)), (7.1)

where pre(𝑒) is a set of literals that a state 𝑠 must satisfy for plan(𝑒) to accomplish
task(𝑒).1 In this section we will define an algorithm to learn total-order HTN methods
from solution examples.

7.1.1 Preliminaries

Before presenting the algorithm, we first need some definitions.
To reason about solution examples, we will need to extend 𝛾 to sets of literals.2

If 𝜋 is a plan and 𝐿 is a set of literals that satisfies pre(𝜋), then 𝜋 is applicable
in every state that satisfies 𝐿. If we call that set of states 𝑆𝐿 , then we can define
𝛾(𝑆𝐿 , 𝜋) = {𝛾(𝑠, 𝜋) | 𝑠 ∈ 𝑆𝐿}. It follows from Equation 2.15 that 𝛾(𝑆𝐿 , 𝜋) is the set
of all states that satisfy the following set of literals:

1In this definition, we could have used a single initial state instead of pre(𝑒). However, pre(𝑒) is more
general and will be useful in some of our computations.

2Some readers might find it helpful to think of this as an inverse of 𝛾−1, which produces a set of states
to which 𝛾 can be applied.

Free pre-publication, for personal use only. To be published by Cambridge University Press.

131

132 7 Learning HTN Methods

{an assignment 𝑥 =𝑤 for each effect 𝑥←𝑤 in eff(𝑎)} ∪ {every
literal 𝑥 =𝑤 or 𝑥 ≠𝑤 in 𝐿 such that eff(𝑎) does not assign a value to 𝑥}. (7.2)

With some mild abuse of notation, we will call this set of states 𝛾(𝐿, 𝜋).
The learning algorithm will use an intermediate data structure that we will call a

method proposal, which is a tuple of the form

𝜆 = (task(𝜆), pre(𝜆), subtasks(𝜆), plan(𝜆)). (7.3)

Here, the intent is to describe a potential method—except for the method’s head, which
will be added later. The three elements task(𝜆), pre(𝜆), and plan(𝜆)) are essentially
a solution example: plan(𝜆) is a plan that is applicable and accomplishes task(𝜆) in
any state that satisfies pre(𝜆). The other element, subtasks(𝜆), gives the proposed
method’s subtasks. Thus the proposal is to create a method to refine task(𝜆) into
subtasks(𝜆) in any state that satisfies pre(𝜆), with a requirement that the algorithm
will need to create other methods that refine subtasks(𝜆) into plan(𝜆).

Example 7.1. From Example 5.7 and Figure 5.2 we can get several examples of
method proposals. The task is 𝑡1 = {pile(c1) = p2}, and the plan to accomplish it is
the sequence of actions at the tree’s leaf nodes, 𝜋1 = ⟨𝑎1, 𝑎2, 𝑎3⟩. Let

𝑔0 = 𝛾−1(𝑡1, 𝜋1) (7.4)

as calculated in Exercise 7.1(a). Then 𝑡1 can be accomplished in any state that satisfies
𝑔0. Here are three different sets of method proposals to achieve it:

1. Here is a method proposal to refine 𝑡1 directly into 𝜋1:

𝜆1 = (𝑡1, 𝑔0, 𝜋1, 𝜋1). (7.5)

2. Here are method proposals to refine 𝑡1 into ⟨𝑡2, 𝑡3, 𝑎3⟩ as 𝑚1 does in Figure 5.2,
and to refine 𝑡2 and 𝑡3 into 𝑎1 and 𝑎2. We will not give the values of pre(𝑎1) and
pre(𝑎2) here, but they can be calculated from the action schemas in Example 2.8.

𝜆′1 = (𝑡1, 𝑔0, ⟨𝑡2, 𝑡3, 𝑎3⟩, 𝜋1), (7.6)
𝜆2 = (𝑡2, pre(𝑎1), ⟨𝑎1⟩, ⟨𝑎1⟩), (7.7)
𝜆3 = (𝑡3, pre(𝑎2), ⟨𝑎2⟩, ⟨𝑎2⟩). (7.8)

3. Here are method proposals for the refinements that𝑚1, . . . , 𝑚5 do in Figure 5.2.
The values of pre(𝑚1), . . . , pre(𝑚5) can be calculated from the action schemas
in Example 2.8 and the method definitions in Example 5.4.

𝜆′1 = (𝑡1, pre(𝑚1), ⟨𝑡2, 𝑡3, 𝑎3⟩, 𝜋1),
𝜆′2 = (𝑡2, pre(𝑚2), ⟨𝑡4, 𝑡5, 𝑎1⟩, ⟨𝑎1⟩),
𝜆3 = (𝑡3, pre(𝑚3), ⟨𝑎2⟩, ⟨𝑎2⟩),
𝜆4 = (𝑡4, pre(𝑚4), ⟨⟩, ⟨⟩),
𝜆5 = (𝑡5, pre(𝑚5), ⟨⟩, ⟨⟩). □

7.1 Learning Methods from Examples 133

Methods-from-Examples(Σc, 𝐸)
1 Proposals← {(𝑡, pre, 𝜋, 𝜋) | (𝑡, pre, 𝜋) ∈ 𝐸}

// Step 1: replace subplans with subtasks
2 foreach 𝜆 ∈ Proposals do

let ⟨𝑡1, . . . , 𝑡𝑛⟩ be the sequence of tasks in subtasks(𝜆)
3 while there is a 𝜆′ ∈ Proposals such that subtasks(𝜆′) matches a

(contiguous) subsequence ⟨𝑡𝑖 , . . . , 𝑡 𝑗⟩ of ⟨𝑡1, . . . , 𝑡𝑛⟩ and
𝑡1, . . . , 𝑡𝑖−1 are actions and 𝛾(pre(𝜆), ⟨𝑡1, . . . , 𝑡𝑖−1⟩) |= pre(𝜆′)

do
4 choose any such 𝜆′ arbitrarily

in subtasks(𝜆), replace ⟨𝑡𝑖 , . . . , 𝑡 𝑗⟩ with task(𝜆′)

// Step 2: lift the method proposals
5 Ω← Σc’s ontology of typed objects
6 foreach 𝜆 ∈ Proposals do
7 foreach constant symbol 𝑏 in 𝜆 that is not a special constant do

𝑅 ← the set in Ω that contains 𝑏
𝑥𝑏 ← a new variable name with Range(𝑥𝑏) = 𝑅
in 𝜆, substitute 𝑥𝑏 for every occurrence of 𝑏

// Step 3: remove subsumed method proposals, then convert proposals to methods
8 foreach 𝜆, 𝜆′ ∈ Proposals do

if 𝜆′ is an instance of 𝜆 then remove 𝜆′ from Proposals
9 foreach 𝜆 ∈ Proposals do

head← a new method name and a list of the object variables in 𝜆
M ←M ∪ (head, task(𝜆), pre(𝜆), subtasks(𝜆))

returnM

Algorithm 7.1. Methods-from-Examples, which learns methods from solution
examples. Line 3 requires a 𝛾 function that has been extended to ground
preconditions (see Equation 7.1).

7.1.2 The Learning Algorithm

Algorithm 7.1, Methods-from-Examples, learns total-order HTN methods from a
domain Σc and a set 𝐸 of solution examples. Its objective is to create a set of methods
M such that for every example (𝑡, pre, 𝜋) and every state 𝑠 that satisfies pre, 𝜋 is a
solution for the planning problem ((Σc,M), 𝑠, 𝑡).

In Line 1, the algorithm initializes Proposals so that for each example in 𝐸 there is
a method proposal like the one in Equation 7.5: each subtask list is itself the desired
solution. Although Proposals could be converted directly into a set of methods, they
would be unable to solve any planning problems other than the ones in 𝐸 . To make
the methods more general, so the algorithm performs the following steps.

Step 1: At Line 2, the algorithm modifies the methods to generate subtasks that
the other methods can accomplish. For each 𝜆, 𝜆′ ∈ Proposals such that subtasks(𝜆′)

134 7 Learning HTN Methods

matches part of subtasks(𝜆), the algorithm modifies 𝜆 so that instead of generating
subtasks(𝜆) directly, it will use task(𝜆′) as an intermediate step.

Step 2: At Line 6, the algorithm makes the method proposals more general by
lifting them, that is, replacing object constants with variables.3 This assumes that the
ontology Ω in Line 5 includes a set of special constants that should not be lifted, such
as T, F, and nil.4

Step 3: Once the method proposals are lifted, some of them may subsume others.
At Line 8, the algorithm removes the subsumed ones from Proposals. At Line 9, it
converts the remaining ones into methods and adds them toM. Then it returnsM.

Example 7.2. Continuing from Example 7.1, let us consider a call to
Methods-from-Examples(Σc, {𝑒1, 𝑒2, 𝑒3}), where

𝑒1 = (𝑡1, 𝑔0, 𝜋1), 𝑒2 = (𝑡2, pre(𝑎1), ⟨𝑎1⟩), 𝑒3 = (𝑡3, pre(𝑎2), ⟨𝑎2⟩).

For these three examples, at Line 1 the algorithm generates the method proposals 𝜆1,
𝜆2, and 𝜆3 in Equations 7.5, 7.7, and 7.8, and puts them into Proposals.

Step 1 modifies 𝜆1 by replacing 𝑎1 and 𝑎2 with 𝑡2 and 𝑡3, which makes 𝜆1 identical
to 𝜆′1 in Equation 7.6. Step 2 lifts the proposals by replacing r1, c1, c2, d1, d2, p1,
and p2 with 𝑟1 ∈ Robots, 𝑐1, 𝑐2 ∈ Containers, 𝑑1, 𝑑2 ∈ Docks, and 𝑝1, 𝑝2 ∈ Piles.
Afterwards, Proposals contains:

𝜆̂1 = (𝑡0, 𝑔̂0, ⟨𝑡1, 𝑡2, 𝑎̂3⟩, ⟨𝑎̂1, 𝑎̂2, 𝑎̂3⟩),
𝜆̂2 = (𝑡1, pre(𝑎̂1), ⟨𝑎̂1⟩, ⟨𝑎̂1⟩),
𝜆̂3 = (𝑡2, pre(𝑎̂2), ⟨𝑎̂2⟩, ⟨𝑎̂2⟩),

where

𝑡0 = {pile(𝑐1) = 𝑝2}, 𝑡1 = get-container(𝑟1, 𝑐1), 𝑡2 = navigate(𝑟1, 𝑑2),
𝑎̂3 = put(𝑟1, 𝑐1, 𝑐3, 𝑝2, 𝑑2), 𝑎̂1 = take(𝑟1, 𝑐1, 𝑐2, 𝑝1, 𝑑1), 𝑎̂2 = move(𝑟1, 𝑑1, 𝑑2).

For brevity, the values of 𝑔̂0, pre(𝑎̂1), and pre(𝑎̂2) are not shown here, but they can be
calculated from the action schemas and method definitions in Examples 2.8 and 5.4.

In Step 3, the loop at Line 8 does not change Proposals because no candidate
subsumes any of the others. The loop at Line 9 converts each 𝜆̂𝑖 into a method and
puts it intoM. For example, it converts 𝜆̂3 to the following method (the method and
variable names may differ from those shown here):

mu3(𝑟1, 𝑑1, 𝑑2)
task: navigate(𝑟1, 𝑑2)
pre: adjacent(𝑑1, 𝑑2), loc(𝑟1) = 𝑑1, occupied(𝑑2) = F
sub: move(𝑟1, 𝑑1, 𝑑2)

This is like m2-navigate in Example 5.4, but with the additional precondition
occupied(𝑑2) = F.

Finally, Methods-from-Examples returnsM. □
3An unresolved issue is how far to lift an object constant if the ontology Ω organizes them into multiple
levels. For example, if c1 ∈ Containers ⊂ Positions, then should c1 be replaced with a variable
whose range is Containers or one whose range is Positions?

4Section 4.2.1 will also use a set of special constants for this purpose.

7.1 Learning Methods from Examples 135

7.1.3 Properties of the Algorithm

Completeness. It is not hard to show that Methods-from-Examples is complete with
respect to 𝐸 , that is, it will produce a set of methodsM capable of solving all of the
planning problems in 𝐸 . In other words, for each example (𝑡, pre, 𝜋) ∈ 𝐸 and for
every state 𝑠 that satisfies pre, 𝜋 is a solution for the planning problem ((Σc,M), 𝑠, 𝑡).
The proof is by induction on the number of refinement steps.

In many cases, 𝐸 may be just a subset of a much larger (and possibly infinite)
set of examples 𝐸 ′. In such cases, Methods-from-Examples is asymptotically com-
plete. For 𝑖 = 0, 1, 2, . . . , let 𝐸𝑖 be the set of all examples (𝑡, pre, 𝜋) such that
length(𝜋) ≤ 𝑖. Let M′ = ⋃

𝑖M𝑖 , where M𝑖 is the set of methods returned by
Methods-from-Examples(Σc, 𝐸𝑖). Then for every example (𝑡, pre, 𝜋) ∈ 𝐸 ′ and every
state 𝑠 that satisfies pre, 𝜋 is a solution for the planning problem ((Σc,M′), 𝑠, 𝑡).

Complexity. It is easy to see that Methods-from-Examples has low-order polynomial
running time. The hardest parts of the computation are the nested loops at lines 2
and 9, which compare the subtask lists of every pair of proposals, for a total of𝑂 (𝑝2)
comparisons where 𝑝 is the number of proposals. Each comparison is a string-
matching problem that takes linear time in the length of the subtask lists, which is
𝑂 (𝑛) where 𝑛 = |𝜋 |. Thus the overall computational complexity is 𝑂 (𝑝2𝑛).

Minimality. Methods-from-Examples satisfies the following minimality property.
At the end of Step 1, every proposal in Proposals has a minimal set of subtasks.
For each 𝜆 ∈ Proposals, subtasks(𝜆) cannot be made smaller, because none of its
subsequences can be replaced with any of the tasks in {task(𝜆′) | 𝜆′ ∈ Proposals}.

At the end of Step 2, when all of the method proposals are lifted, some of them may
now be able to produce parts of subtasks(𝜆̂), so the minimality property no longer
holds. However, if we modify the algorithm to repeat the loop at Line 1 again after
the loop at Line 6 has finished, then the final set of method proposals—and thus the
set of methods returned by the algorithm—will again have minimal sets of subtasks.

Soundness. Given a set of examples 𝐸 , if Methods-from-Examples(Σc, 𝐸) returns
a set of methods M, then for every example 𝑒 ∈ 𝐸 and every planning problem
𝑃 = ((Σc,M), 𝑠, task(𝑒)) such that 𝑠 satisfies pre(𝑒), 𝑃 is solvable. If this is our
definition of soundness, then Methods-from-Examples is sound.

However, suppose the examples in 𝐸 were taken from an HTN planning domain
(Σc,M′), and we want Methods-from-Examples to learn a set of methodsM that is
equivalent toM′. Then we might want to require that for every 𝑠 and 𝑇 , the planning
problems 𝑃 = ((Σc,M), 𝑠, 𝑇) and 𝑃′ = ((Σc,M′), 𝑠, 𝑇) should have the same sets of
solutions. If that is our definition of soundness, then Methods-from-Examples is not
sound. To see why, recall that the methods inM are lifted. If some of the methods
inM′ are not lifted, then 𝑃 may have more solutions than 𝑃′.

The problem here is not whether Methods-from-Examples is sound, it is that the
examples in 𝐸 do not completely specify M′. The same set 𝐸 could have been
generated byM′, or by the setM returned by Methods-from-Examples, or by some

136 7 Learning HTN Methods

other sets of methods. The learning algorithm cannot tell which, because it operates
offline with no way to generate additional examples.5

A possible fix for the problem might be to modify Methods-from-Examples to take
both positive and negative examples, the latter being examples of solutions that the
methods should never produce. With such a modification, a sufficiently large set of
examples might be able to make the algorithm converge to a unique set of methods.
However, this idea is quite speculative, and we know of no work on the topic.

Generality. In general, we would like the methods to be capable of solving many
more planning problems than the ones in 𝐸 . In the previous paragraphs we pointed
out that it is difficult to specify what additional planning problems the methods inM
should be able to solve. The following paragraphs give examples of some cases in
which the methods in Example 7.2 can solve some planning problems not in 𝐸 , and
an example of a case in which they cannot.

In the methods produced by Methods-from-Examples, all of the objects have been
replaced by object variables, so their ability to solve planning problems is unaffected
by changes to the objects’ names. It also is unaffected by changes to irrelevant domain
features. For example, the methods learned in Example 7.2 can still achieve 𝑡1 if we
rename c1 and r1 to c17 and r28, or if we insert some additional containers under c3,
or if we add some piles to the loading docks.

Unfortunately, if we put one or more containers on top of c1 then the methods cn
no longer achieve 𝑡1, becauseM doesn’t contain the recursive m2-uncover method in
Example 5.4. If we add examples to 𝐸 in which there are containers on c1, then the
algorithm will learn some methods to uncover c1, but it will not learn the recursion
step at the end of m2-uncover. It will only learn methods to remove the number
of containers in the examples. They will not be able to achieve 𝑡1 if we put more
containers onto c1 than are present in the examples.

As a work-around, one could modify an HTN planner to call a classical planner
in such cases—but this would negate some of HTN planning’s advantages, such as
the ability for an HTN domain author to constrain the search space to make the
planner avoid undesirable solutions and exit quickly when no desirable solution can
be found. It would be more desirable to learn a simple set of methods that could
perform unlimited recursion. Section 7.4 discusses some work on this topic, but more
needs to be done.

Refinement trees. The set 𝐸 does not need to be restricted to contain just solution
examples. It may instead contain task refinements of the form

𝑒 = (task(𝑒), pre(𝑒), subtasks(𝑒)), (7.9)

where subtasks(𝑒) is a list of subtasks. These might be taken from a refinement tree,
or might be provided by a human expert who has good ideas about what subtasks to
use.

5A similar problem with offline learning of action schemas in Section 4.2.1 is addressed by online
learning Section 4.3.

7.2 Learning Methods from Plans 137

goal task t1
{pile(c1)=p2)}

method m1
m1-put-in-pile(r1,c1,p1,d1,p2,d2)

compound task t2
get-container(r1,c1)

compound task t5
uncover(c1)

compound task t3
navigate(r1,d2)

action a1
take(r1,c1,nil,p1,d1)

action a3
put(r1,c1,c3,p2,d2)

method m3
m2-navigate(r1,d2)

action a2
move(r1,d1,d2)

compound task t4
navigate(r1,d1)

method m4
m1-navigate(r1,d1)

(no children)

root

method m2
m2-get-container(r1,c1,p1,d1)

method m5
m1-uncover(c1)

(no children)

Figure 7.1. Three subtrees of the refinement tree in Figure 5.2, with the missing part of
the refinement tree shown in gray.

If 𝐸 includes all of the task refinements in a refinement tree, then this provides
some very specific information about what the method proposals should be, and in
this case Step 1 of Methods-from-Examples can be skipped entirely. For example, if 𝐸
contains all of the task refinements shown in Figure 5.2, then this tells the algorithm
to use the method proposals in part 3 of Example 7.1.
𝐸 might instead include just some of a solution tree’s task refinements. In Exam-

ple 7.2, if 𝐸 were the task refinements shown in the three subtrees shown in Figure 7.1,
this would tell Methods-from-Examples to use the method proposals 𝜆′2, 𝜆3, 𝜆4, and
𝜆5 in part 3 of Example 7.1. If we also gave it the solution example 𝑒1 = (𝑡1, 𝑔0, 𝜋1)
from Example 7.2, this would enable it to create 𝜆′1.

7.2 Learning Methods from Plans

Suppose we have a set of plans, an initial state for each plan, and some tasks for which
we would like to learn methods. As before, the plans could be provided by a tutor, or
produced by observing a system in action, or generated by the learner using a classical
planner. If we have an easy way to infer whether each task has been accomplished,
then we can create solution examples from which Methods-from-Examples can learn
methods. This section presents an algorithm for doing that.

As a way to infer whether each task has been accomplished, let us suppose that for
each task we have two annotations: one telling what conditions need to hold when
the task begins, and one telling what conditions need to hold when the task finishes.
For now we will assume that these annotations are provided by a human. However, it

138 7 Learning HTN Methods

would be desirable to have a way to create them automatically, and some preliminary
work has been done on this topic (this is discussed further in Section 7.4).

More specifically, an annotated task6 is a triple 𝜏 = (task(𝜏), pre(𝜏), eff(𝜏)), where
• task(𝜏) is a compound task or goal task;
• pre(𝜏) is a set of literals called 𝜏’s precondition, which should be true before

accomplishing 𝜏;
• eff(𝜏) is a set of literals that must be true immediately after 𝜏 has been ac-

complished. Although we will call it 𝜏’s “effects,” it is essentially a goal: any
successful refinement of 𝜏 must produce a state in which eff(𝜏) is true.

Algorithm 7.2, Methods-from-Plans, uses plans to learn methods for annotated
tasks. Its input includes a classical planning domain, a set of pairs of plans and their
initial states, and a set of annotated tasks. It works as follows.

Methods-from-Plans(Σc,Pairs,T)
𝐸 ← ∅

1 foreach pair (𝑠0, 𝜋) ∈ Pairs do
2 ⟨𝑎1, . . . , 𝑎𝑛⟩ ← 𝜋; ⟨𝑠0, . . . , 𝑠𝑛⟩ ← 𝛾̂(𝑠0, 𝜋)
3 foreach annotated task 𝜏 ∈ T do

foreach nonempty subplan ⟨𝑎𝑖 , . . . , 𝑎 𝑗⟩ of 𝜋 do
4 if 𝑠𝑖−1 |= pre(𝜏) and 𝑠𝑖−1 ̸ |= eff(𝜏) and 𝑠 𝑗 |= eff(𝜏) then
5 // The plan ⟨𝑎𝑖 , . . . , 𝑎 𝑗⟩ accomplishes 𝜏

pre← pre(𝜏) ∪ 𝛾−1(eff(𝜏), ⟨𝑎𝑖 , . . . , 𝑎 𝑗⟩)
6 add (task(𝜏), pre, ⟨𝑎𝑖 , . . . , 𝑎 𝑗⟩) to 𝐸

7 if ∃𝑠 𝑗 ∈ {𝑠0, . . . , 𝑠𝑛} such that 𝑠 𝑗 |= pre(𝜏) and 𝑠 𝑗 |= eff(𝜏) then
// The empty plan accomplishes 𝜏
add (task(𝜏), pre(𝜏) ∪ eff(𝜏), ⟨⟩) to 𝐸

8 foreach 𝜏, 𝜏′ in E do
if 𝜏′ is an instance of 𝜏 then remove 𝜏′ from 𝐸

9 return Methods-from-Examples(Σc, 𝐸)

Algorithm 7.2. Methods-from-Plans, which learns methods for annotated tasks.

The outer loop at Line 1 iterates through each pair (𝑠0, 𝜋). From the initial state 𝑠0
and the actions in 𝜋, Line 2 calculates the sequence of states that the plan produces.

The nested loops at Line 3 compare each annotated task 𝜏 with each nonempty
subplan of 𝜋.7 If a subplan’s starting and ending states satisfy pre(𝜏) and eff(𝜏),
respectively, then Line 6 adds to 𝐸 a solution example saying that the subplan accom-
plishes 𝜏. If a state 𝑠𝑖 satisfies both pre(𝜏) and eff(𝜏), then Line 7 adds to 𝐸 a solution

6Syntactically, annotated tasks are identical to the abstract actions in Section 5.5.1. However, the
purpose here is not to define an abstract action, but instead to aid the learning algorithm by providing
information about what the desired HTN methods for task(𝜏) should do.

7As in the complexity analysis of Methods-from-Examples, it is not hard to see that the time complexity
is low-order polynomial.

7.2 Learning Methods from Plans 139

example saying that the empty plan accomplishes 𝜏. This is for creating methods with
no subtasks, such as m1-get-container and m1-uncover in Example 5.4.

The loop at Line 8 removes from 𝐸 any examples that are subsumed by others.
Finally, Line 9 calls Methods-from-Examples on 𝐸 , and returns the resulting set of
methods.

Example 7.3. The following annotated tasks correspond to 𝑡1, 𝑡2, and 𝑡3 in Figure 5.2.

𝜏1 = (𝑡1, {pile(c1) = p1}, {top(p2) = c1}),
𝜏2 = (get-container(r1,c1), {cargo(r1) = nil}, {cargo(r1) = c1}),
𝜏3 = (navigate(r1,d2), {loc(r1) = d1}, {loc(r1) = d2}).

Suppose we call Methods-from-Plans(Σc, {(𝑠0, 𝜋1)}, {𝜏1, 𝜏2, 𝜏3}), where Σc, 𝑠0, and
𝜋1 are as in Examples 7.1 and 7.2.

In the first iteration of the loop at Line 3, 𝜏 = 𝜏1, and the only subplan of 𝜋1 that
satisfies Line 4 is 𝜋1 itself. In Line 5,

pre = pre(𝜏) ∪ 𝛾−1(eff(𝜏1), 𝜋1) = pre(𝜏) ∪ 𝛾−1(𝑡1, 𝜋1) = 𝛾−1(𝑡1, 𝜋1) = 𝑔0,

so Line 6 will add (𝑡1, 𝑔0, 𝜋1) to 𝐸 , which is the same as 𝑒1 in Example 7.2.
In the second iteration of the loop, 𝜏 = 𝜏2, and the subplans of 𝜋1 that accomplish

𝜏2 are ⟨𝑎1⟩ and ⟨𝑎1, 𝑎2⟩, so Line 6 will add to 𝐸 the following two solution examples,
the first of which is the same as 𝑒2 in Example 7.2:

(𝑡2, pre(𝜏2) ∪ 𝛾−1(eff(𝜏2), ⟨𝑎1⟩), ⟨𝑎1⟩) = (𝑡2, pre(𝑎1), ⟨𝑎1⟩),
(𝑡2, pre(𝜏2) ∪ 𝛾−1(eff(𝜏2), ⟨𝑎1, 𝑎2⟩), ⟨𝑎1, 𝑎2⟩) = (𝑡2, pre(𝑎1) ∪ pre(𝑎2), ⟨𝑎1, 𝑎2⟩).

In the third iteration of the loop, 𝜏 = 𝜏3, and there are four subplans of 𝜋1 that
accomplish 𝜏2: ⟨𝑎2⟩, ⟨𝑎1, 𝑎2⟩, ⟨𝑎2, 𝑎3⟩, and 𝜋1. Line 6 will add to 𝐸 a solution
example for each of them.

From the seven examples, Methods-from-Examples will create seven methods.
Depending on what choices it makes in Line 4, these may or may not include the
methods in Example 7.2. Methods different from the ones in Example 7.2 are unlikely
to be very useful, and thus good heuristics are needed to guide the choices in Line 4.
Research is needed on this topic. □

If we know the task hierarchy in advance, then it can be used to optimize the learning,
by ordering the examples in 𝐸 in a bottom-up fashion, starting with the bottom-level
tasks and going the top-level ones. This way, the methods learned for each task 𝜏
can be learned from the methods already learned for its subtasks, constructing the
refinement tree as we go. As described at the end of Section 7.1.3 under the topic of
refinement trees, this would allow Step 1 of Methods-from-Examples to be skipped.
The same approach can be used even if we do not have 𝐸 , provided that we have a
classical planner to generate plans for the annotated tasks.

140 7 Learning HTN Methods

7.3 Planning to Learn

In principle, the method-learning algorithms in this chapter could be used as part of
a planning-to-learn approach in which a learner uses the learning algorithms in the
previous sections, along with a classical planner from which to generate examples. The
idea would be to repeatedly create planning problems, use the planner to solve them,
give the planner’s solutions as input to the learning algorithm, and use the learning
algorithm’s output to decide what planning problems to generate next. The learner
could strategically call the planner on planning problems for which the solutions
would provide information about how to construct new methods, or information
about conditions under which one of its methods does or doesn’t work.

One way to do this would be to start with a set of annotated tasks. For an annotated
task 𝜏 = (task(𝜏), pre(𝜏), eff(𝜏)), the learner could call a classical planner on a
planning problem in which the initial state satisfies pre(𝜏) and the goal is eff(𝜏). The
resulting plan would then provide a solution example that could be given as input to
Methods-from-Plans. If Methods-from-Plans were modified to work incrementally,
then the learner could make strategic choices of which annotated tasks to use as input
to the classical planner, as discussed in the previous paragraph.

If no tasks were available to start from, another possibility would be to use a
landmark algorithm (see Section 3.2.3) to create planning problems, return a sequence
of landmarks for each planning problem, and use the landmarks to divide the classical
planner’s solutions into collections of examples to use as input to Methods-from-
Examples. In this case, the landmarks would constitute the tasks. This could be done
incrementally as described in the previous paragraph.

No work has yet been done on these approaches, and it is unclear how well either
of them would work in practice. One challenge would be how to guide the generation
of new planning problems to solve. Another would be how to prevent the generation
of a large number of methods of which very few are useful. If ways can be found
to address these challenges, a next step might be to build an actor that integrates the
operation of the learner, an acting algorithm, and an HTN planning algorithm.

7.4 Discussion and Bibliographic Notes

Learning total-order HTN methods. Most HTN method-learning algorithms are
for total-order HTN methods. The best-known of these is HTN-Maker [511]. In-
stead of making a set of examples like Methods-from-Plans does, HTN-Maker goes
directly into a computation to produce methods. It makes choices deterministically,
going backwards from the goal. Despite these differences, HTN-Maker provided the
inspiration for Methods-from-Plans.

CurricuLearn [710] is a modified version of HTN-Maker that learns from a curricu-
lum [112], a sequence of examples of increasing difficulty that guide the learner to
(in this case) first learn methods for small tasks, then larger methods that build on
the smaller ones. Methods-from-Examples was inspired by CurricuLearn, though the
algorithms themselves are different.

7.4 Discussion and Bibliographic Notes 141

Another approach [498] is to learn methods that contain task names without any
parameters for the tasks, and then add the parameters. To learn the methods, the author
uses a simplified version of HTN-Maker that ignores all of the action parameters,
together with a collection of preprocessing and postprocessing algorithms to optimize
the set of methods that are learned. To decide which parameters to add to the
methods, the author describes algorithms to generate a set of candidates and then use
MAX-SMT optimization to choose which parameters to use.

HTNLearn [1234] is designed to learn definitions of both methods and actions.
Its input includes plans that are augmented with a sequence of subtrees like those
in Figure 7.1, along with partial information about the intermediate states between
the leaf nodes of the refinement trees. By compiling statistics on the atoms in
the intermediate states, the algorithm creates weighted hypotheses about the actions
and methods. It feeds this information, along with various other constraints, into a
weighted MAX-SAT solver. The solver’s solution provides preconditions for each
method, and preconditions and effects for each action.

At the end of the “generality” topic in Section 7.1.3, we discussed the need for a
way to learn recursive methods. To date, two approaches have been proposed that can
do this in some situations [498, 710], but this is otherwise an open problem.

Near the beginning of Section 7.2, we mentioned the desirability of having an
algorithm to create task annotations automatically. One of the results in [710] is an
algorithm to create annotations from landmarks. It works well in several test cases,
but more work remains to be done on this topic.

Learning partial-order HTN methods. Learning partial-order HTN methods is
more complicated, but there are a few works on the topic.

The work described in [738] uses a technique called invariance analysis. Given a
classical planning domain and a problem in that domain, the idea is to first construct
one or more invariants, each of which is a set of atoms such that exactly one of the
atoms is true at every state in the domain. For each invariant, the algorithm constructs
an invariant graph showing the possible transitions from each atom to the others. For
example, if c1 is a container in a DWR problem, then the set of possible values of
pos(c1) is an invariant. Two of the possible transitions might be from pos(c1) = loc1
to pos(c1) = r1, and vice versa. The learning algorithm uses paths in the invariant
graphs to construct methods for achieving desired values.

The MethodRefine algorithm [1186] is for situations where some of the methods’
bodies are incompletely specified, that is, they include some but not all of the subtasks
that are needed to solve a planning problem. The objective is to find what additional
subtasks are needed, and modify the method to include them. To do this, the authors
use a hybrid HTN/classical planner (see Section 5.3) to solve the planning problem,
and augment the methods to include the additional tasks that appear in the hybrid
planner’s solution.

Other related work. Icarus [681] learns hierarchical logic programs that are analo-
gous to HTN methods, and uses them for reactive acting. Its input includes a planning
problem, a set of primitive skills that are similar to actions, and a hierarchy of concepts

142 7 Learning HTN Methods

that are abstract conditions along with ways to infer whether those conditions hold.
Given a planning problem, it uses a variant of backward search to solve the problem.
When it recognizes places in its solution plan where the various concepts hold, it can
use those parts of the plan to form nonprimitive skills that are analogous to methods.

HPNL [680] includes a representation and a learning algorithm that improve on the
ones in Icarus, and a planner that uses them. The primary improvement is a way for
the methods to include information that conditions their applicability on what other
goals the planner needs to achieve.

7.5 Exercises

7.1. In the following calculations, use the action schemas in Example 2.8, the defini-
tion of 𝛾−1 in Equation 3.15, and the method definitions in Example 5.4:

(a) Calculate 𝛾−1(𝑡1, 𝜋1) in Example 7.1.
(b) Calculate pre(𝑚1), . . . , pre(𝑚5) in Example 7.1.
(c) Calculate pre(𝑎̂1), pre(𝑎̂2), pre(𝑎̂3), and 𝑔̂0 in Example 7.2.

7.2. Prove that if 𝑔 is a ground set of literals and 𝛾−1(𝑔, 𝑎) is defined, then it is also
a ground set of literals. Hint: the proof is by induction on the length of 𝜋.

7.3. Modify Methods-from-Examples to remove the requirement in Line 3 that
𝑡1, . . . , 𝑡𝑖−1 be actions. The modification is rather complicated, and will introduce a
lot of computational overhead. It involves the following steps:

• Modify TO-HTN-Forward to work on partial states.

• In Line 3, replace 𝛾(pre(𝜆), ⟨𝑡1, . . . , 𝑡𝑖−1⟩ with 𝛾(pre(𝜆), 𝜋), where 𝜋 is the
plan returned by TO-HTN-Forward(pre(𝜆), ⟨𝑡1, . . . , 𝑡𝑖−1⟩).

• To provide the methods that TO-HTN-Forward will need, use a copy of the loop
at Line 9 of Methods-from-Examples.

7.4. For choosing𝜆′ in Line 4 of Methods-from-Examples, some possible heuristics are
to choose a 𝜆′ that maximizes 𝑗 , or 𝑖, or 𝑗 − 𝑖, or some combination of them. Another
possibility is to choose a set of method proposals that produce non-overlapping
portions of sub, in a way that maximizes the total length of these portions. Compare
these heuristics on several examples. For each of them, try to come up with an
example in which it does better than the others.

7.5. In Example 7.2, write the methods that the algorithm produces from 𝜆̂1 and 𝜆̂2.

7.6. Let Σc be the simple DWR domain illustrated in in Figure 7.2. The loading dock
and crane do not have names. The ontology of typed objects is

Objects = Containers ∪ Piles ∪ Positions ∪ Special;
Containers = {c1, c2, c3, c4, c5}; Piles = {p1, p2, p3};

Positions = Containers ∪ {nil}; Special = {nil}.

7.5 Exercises 143

p3p1 p2
c1
c2
c3
c4

p3p1 p2
c1
c2

c4

c3

p3p1 p2
c4
c3

c1
c2

p3p1 p2
c4
c3

c1

c2

𝑠0 𝑠1 𝑠2 𝑠3

Figure 7.2. Four states for Example 7.2.

There are two action schemas, where 𝑐 ∈ Containers, 𝑐′ ∈ Positions, 𝑝 ∈ Piles:

take(𝑐, 𝑐′, 𝑝) // take container 𝑐 off of 𝑐′ in pile 𝑝
pre: holding= nil, pos(𝑐) = 𝑐′, top(𝑝) = 𝑐
eff: holding← 𝑐, pos(𝑐) ← nil, pile(𝑐) ← nil, top(𝑝) ← 𝑐′

put(𝑐, 𝑐′, 𝑝) // put container 𝑐 onto 𝑐′ in pile 𝑝
pre: holding= 𝑐, top(𝑝) = 𝑐′
eff: holding← nil, pos(𝑐) ← 𝑐′, pile(𝑐) ← 𝑝, top(𝑝) ← 𝑐

The state variables have the following ranges:

Range(pile(𝑐)) = Piles ∪ {nil};
Range(holding) = Range(pos(𝑐)) = Range(top(𝑝)) = Positions.

Let 𝑠0, 𝑠1, 𝑠2, and 𝑠3 be the states shown in Figure 7.2, and let

𝜋0 = ⟨⟩,
𝜋1 = ⟨take(c2,c1,p1), put(c2,c3,p2)⟩,
𝜋2 = ⟨take(c3,c2,p1), put(c3,c4,p2)⟩ · 𝜋1,

𝜋3 = ⟨take(c4,c3,p1), put(c4,nil,p2)⟩ · 𝜋2.

Notice that 𝛾(𝑠3, 𝜋0) = 𝛾(𝑠2, 𝜋1) = 𝛾(𝑠1, 𝜋2) = 𝛾(𝑠0, 𝜋3) = 𝑠3.

Suppose we call Methods-from-Examples(Σc, 𝐸), where

𝐸 = {(𝑡, 𝑠3, 𝜋0), (𝑡, 𝑠2, 𝜋1), (𝑡, 𝑠1, 𝜋2), (𝑡, 𝑠0, 𝜋3)},

and where 𝑡 = make-clear(c1, p1) is the task of removing the containers above c1 in
p1. Answer the following questions:

(a) What method proposals will be created in Line 1?
(b) What will the method proposals be at the end of the loop at Line 1?
(c) What will the lifted method proposals be at the end of the loop at Line 6?
(d) In the loop at Line 8, what method proposals, if any, will be removed?
(e) What methods will be returned?
(f) How would your answers change if Special were empty?

7.7. Prove the completeness result in the first paragraph of Section 7.1.3.

144 7 Learning HTN Methods

7.8. Modify Methods-from-Examples to make it capable of taking as input the ex-
amples produced by Make-Examples in Example 7.3. Run the modified algorithm
by hand, to demonstrate that it will create seven methods as mentioned at the end of
Example 7.3.

Part III

Probabilistic Models

One may even say, strictly speaking, that
almost all our knowledge is only probable.

Pierre-Simon de Laplace, Essai
philosophique sur les probabilités,
1814

The motivations for acting and planning with probabilistic models are about han-
dling uncertainty in a quantitative way, with optimal or near optimal decisions.

The future is never entirely and precisely predictable. Uncertainty can be due to
exogenous events in the environment, from nature and unmodeled actors, to noisy
sensing and information gathering actions, to possible failures and outcome of im-
precise or intrinsically nondeterministic actions (e.g., throwing a dice). Models are
necessarily incomplete. Knowledge about open environments is partial. Part of what
may happen can be only be modeled with uncertainty. Even in closed predictable
environments, complete deterministic models may be too complex to develop.8

This part of the book explores approaches for using probabilistic models to handle
the uncertainty and nondeterminism in acting, planning and learning. These ap-
proaches are based on optimization methods for Markov decision processes (MDP).

Chapter 8 explains the basic principles and representations for MDP problems,
starting with a simple flat representation, then considering a structured representation
with domain decomposition and hierarchization methods. It addresses the issues
of acting with and modeling a probabilistic domain. Chapter 9 is about planning
techniques with probabilistic domains. Dynamic programming, heuristic search,
linear programming, online and sampling algorithms for these problems are presented
and analyzed. Chapter 10 considers reinforcement learning for probabilistic models.

8For example, the kinetic theory of gazes in statistical physics aggregates deterministic laws of ele-
mentary particles as statistical models.

Free pre-publication, for personal use only. To be published by Cambridge University Press.

145

8 Probabilistic Representation and Acting

In probabilistic models, an action has several possible outcomes that are not equally
likely; their distribution can be estimated, relying for example on statistics of past
observations. The purpose is to act optimally with respect to an optimization criteria
of the estimated likelihood of action effects and their cost.

The usual formal probabilistic models are Markov decision processes (MDPs). An
MDP is a nondeterministic state-transition system with a probability distribution and
a cost distribution. The probability distribution defines how likely it is to get to a state
𝑠′ when an action 𝑎 is performed in a state 𝑠.

This chapter presents MDPs in the flat then the structured state-space representa-
tions. Section 8.3 covers modeling issues of a probabilistic domain with MDPs and
variants such as the Stochastic Shortest Path model (SSP) or the Constrained MDP
(C-MDP) model. Section 8.4 focuses on acting with MDPs. Partially Observable
MDPs and other extended models are discussed in Section 8.5.

8.1 Basic MDP Representation

This section introduces the main definitions and concepts needed for modeling a
probabilistic domain with a flat representation.

A probabilistic state-transition system is said to be Markovian if the probability
distribution of the next state depends only on the current state and not on the sequence
of states that preceded it. The system is said to be stationary when the probability
and the cost distributions remain invariant over time.1

Markovian and stationary properties are not intrinsic features of the world but are
properties of its model. It is possible to take into account the dependence on the past
within a Markovian description by defining an extended state that includes the current
configuration of the world, as well as information about how the system has reached
that configuration, as illustrated next.

Example 8.1. Consider a domain whose dynamic depends not only on the current
value of a state variable 𝑥𝑡 , but also on the past two values 𝑥𝑡−1 and 𝑥𝑡−2. Let us add
to the state space two state variables 𝑥′𝑡 = 𝑥𝑡−1 and 𝑥′′𝑡 = 𝑥𝑡−2. A model with the three
variables 𝑥, 𝑥′, 𝑥′′ is Markovian.

A similar idea can be used to handle time dependence to obtain a stationary model.
Consider a city traffic domain whose model varies over time, e.g., rush hours, day/night
time, days of the week. Adding a state variable ranging over these categories of traffic
levels leads to a stationary model. □

1Note that a stationary system changes over time, but according to the same unvarying model.

146

Free pre-publication, for personal use only. To be published by Cambridge University Press.

8.1 Basic MDP Representation 147

A probabilistic state-transition system is observable when the actor can always
determine in which state it is. There are several families of observable stationary
Markovian models, some with slight variations, e.g., transition rewards instead of
costs). Other models consider significant extensions, such as partially observable
states, or concurrent and durative actions. We focus here on observable stationary
Markovian systems, and discuss extensions in Section 8.5.

8.1.1 Main Definitions

Definition 8.2. A probabilistic domain is a tuple Σ = (𝑆, 𝐴, 𝛾, Pr, cost) where:

• 𝑆 and 𝐴 are finite sets of states and actions, respectively.
• 𝛾 : 𝑆 × 𝐴 → 2𝑆 is the state transition function; the states 𝑠′ ∈ 𝛾(𝑠, 𝑎) are dis-

tributed according to a probability distribution Pr(𝑠′ |𝑠, 𝑎). The set of applicable
actions in a state 𝑠 is denoted Applicable(𝑠) = {𝑎 ∈ 𝐴|𝛾(𝑠, 𝑎) ≠ ∅}.2

• Pr(𝑠′ |𝑠, 𝑎) is the probability of reaching 𝑠′ when action 𝑎 takes place in 𝑠;
Pr(𝑠′ |𝑠, 𝑎) ≠ 0 iff 𝑠′ ∈ 𝛾(𝑠, 𝑎).

• cost : 𝑆 × 𝐴 × 𝑆 → R; cost(𝑠, 𝑎, 𝑠′) is the cost of 𝑎 when reaching 𝑠′ from 𝑠.
The opposite of the cost is called the reward: 𝑟 (𝑠, 𝑎, 𝑠′) = − cost(𝑠, 𝑎, 𝑠′). □

The actor wants to act in Σ following a plan expressed as a policy:

• A policy is a function 𝜋 : 𝑆′ → 𝐴, with 𝑆′ ⊆ 𝑆, such that for every 𝑠 ∈ 𝑆′,
𝜋(𝑠) ∈ Applicable(𝑠). Thus Domain(𝜋) = 𝑆′.

• The transitive closure of 𝑠 and 𝜋 is the set of all states reachable from 𝑠

using 𝜋. Mathematically, it is 𝛾̂(𝑠, 𝜋) = 𝑆0 ∪ 𝑆1 ∪ . . . , where 𝑆0 = {𝑠0} and
𝑆𝑖 = {𝛾(𝑠, 𝑎) | 𝑠 ∈ 𝑆𝑖−1} for all 𝑖 > 0.

• The reachability graph for 𝑠 and 𝜋 shows how the states in 𝛾̂(𝑠, 𝜋) can be
reached from 𝑠. Mathematically, it is a directed graph Graph(𝑠, 𝜋) = (V, E),
whereV = 𝛾̂(𝑠, 𝜋) and E = {(𝑠′, 𝑠′′) | 𝑠′ ∈ V, 𝑠′′ ∈ 𝛾(𝑠′, 𝜋(𝑠′))}).

• leaves(𝑠, 𝜋) = 𝛾̂(𝑠, 𝜋)\Domain(𝜋) is the set of all states that have no successors
in Graph(𝑠, 𝜋).

Note that 𝜋 is a partial function, possibly undefined in 𝑆\𝑆′, even for states that may
have applicable actions.

An MDP problem for the domain Σ can be expressed as a triple (Σ, 𝑠0, 𝑆𝑔), where
𝑠0 ∈ 𝑆 \ 𝑆𝑔 is the initial state and 𝑆𝑔 ⊆ 𝑆 is a set of goal states. The problem is to
reach a state in 𝑆𝑔 starting from 𝑠0, while possibly optimizing a cost criteria.

Definition 8.3. A solution to an MDP problem (Σ, 𝑠0, 𝑆𝑔) is a policy 𝜋 : 𝑆′ → 𝐴 such
that 𝑠0 ∈ 𝑆′ and leaves(𝑠0, 𝜋) ∩ 𝑆𝑔 ≠ ∅. The solution is said to be closed if and only
if ∀𝑠 ∈ 𝛾̂(𝑠0, 𝜋), (𝑠 ∈ Domain(𝜋)) ∨ (𝑠 ∈ 𝑆𝑔) ∨ Applicable(𝑠) = ∅. □

In other words, every state reachable from 𝑠0 by a closed solution 𝜋 is either in
the domain of 𝜋, is a goal, or has no applicable action. A closed policy 𝜋 provides
applicable actions, if there are any, to 𝑠0 and to its all descendants reachable by 𝜋,

2Note the difference from Definition 2.2, in which 𝛾(𝑠, 𝑎) is either a single state or undefined, and
from Equation 2.2.

148 8 Probabilistic Representation and Acting

and have at least one path in Graph(𝑠0, 𝜋) that reaches a goal state. It is defined over
the entire 𝛾̂(𝑠0, 𝜋), except at goal states and states that have no applicable action. As
usual, goals are considered to be terminal states requiring no further action.

Example 8.4. Here is a simple example, inspired from casino coin machines called
one-armed bandits. This domain has three state variables 𝑥, 𝑦, and 𝑧, ranging over
the set {𝑣𝑎, 𝑣𝑏, 𝑣𝑐}. The domain has nine states: {𝑥 = 𝑣𝑎, 𝑦 = 𝑣𝑎, 𝑧 = 𝑣𝑎} . . . {𝑥 =

𝑣𝑐, 𝑦 = 𝑣𝑐, 𝑧 = 𝑣𝑐}, which are abbreviated as 𝑆 = {(𝑎𝑎𝑎), (𝑎𝑎𝑏), . . . , (𝑐𝑐𝑐)}. There
are three actions: pull left, pull right, and pull both arms simultaneously, denoted
respectively Left, Right, and Both. When the values of the three state variables are
distinct, then the three actions are applicable. If 𝑥 ≠ 𝑦 = 𝑧, only Left is applicable.
If 𝑥 = 𝑦 ≠ 𝑧, only Right is applicable. If 𝑥 = 𝑧 ≠ 𝑦, only Both is applicable. When
the three variables have the same value no action is applicable. Here is a possible
specification of Left (each outcome is prefixed by its corresponding probability):

Left:
pre: (𝑥 ≠ 𝑦)
eff: (1

3): {𝑥 ← 𝑣𝑎}
(1

3): {𝑥 ← 𝑣𝑏}
(1

3): {𝑥 ← 𝑣𝑐}

Similarly, when applicable, Right randomly changes 𝑧; Both randomly changes 𝑦. We
assume these changes to be uniformly distributed. Figure 8.1 gives part of the state
space of this domain corresponding to the problem of going from 𝑠0 = (𝑎𝑏𝑐) to a
goal state in 𝑆𝑔 = {(𝑏𝑏𝑏), (𝑐𝑐𝑐)}. Note that every action in this domain may possibly
leave the state unchanged, that is, ∀𝑠∀𝑎, 𝑠 ∈ 𝛾(𝑠, 𝑎). Note also that the state space
of this domain is not fully connected: once two variables are made equal, there is no
action to change them. Consequently, states (𝑎𝑐𝑏), (𝑏𝑎𝑐), (𝑏𝑐𝑎), (𝑐𝑎𝑏) and (𝑐𝑏𝑎)
are not reachable from (𝑎𝑏𝑐).

A solution to the problem in Figure 8.2 is, for instance,

𝜋(𝑎𝑏𝑐) = Left, 𝜋(𝑏𝑏𝑐) = 𝜋(𝑏𝑏𝑎) = Right, 𝜋(𝑐𝑏𝑐) = 𝜋(𝑐𝑎𝑐) = Both.

Here, 𝜋 is defined over Domain(𝜋) = {𝑠0, (𝑏𝑏𝑐), (𝑐𝑏𝑐), (𝑏𝑏𝑎), (𝑐𝑎𝑐)}, and
𝛾̂(𝑠0, 𝜋) = Domain(𝜋) ∪ 𝑆𝑔. Figure 8.2 gives the Graph(𝑠0, 𝜋) for that solution. □

Definition 8.3 is for goal reachability problems. In some domains, the actor does
not have specific goals. It may want to perform a task ending with some termination
action. Alternatively, it may want to keep acting optimally over an infinite horizon,
a case referred to as process maintenance problems. We focus on goal reachability
problems and discussed the other cases in Section 8.3.1.

8.1.2 Safe and Unsafe Policies

Let 𝜋 be a closed solution to the problem (Σ, 𝑠0, 𝑆𝑔). Run-Policy is a simple procedure
for acting with a policy 𝜋, by performing in each state 𝑠 the action given by 𝜋(𝑠) until
reaching a goal or a state that has no applicable action.

8.1 Basic MDP Representation 149

2

(abc)

(bbc) (cbc) (aac)(acc) (aba) (abb)

(bba) (cac)

(ccc) (aaa)

(aab)(bcc) (aca) (cbb)

(bbb)

Left
Both

Right

Right

Right

Right

Right

Left

Left

Left

Left

Both

Both

Both

Both

Figure 8.1. Part of the state space for the problem in Example 8.4.

4

(abc)

(bbc) (cbc)

(bba) (cac)

(ccc)(bbb)

Left

Right

Right

Both

Both

Figure 8.2. A safe solution for Example 8.4 and its Graph(𝑠0, 𝜋); self-loops in every node
are implicit.

150 8 Probabilistic Representation and Acting

Run-Policy(Σ, 𝑠0, 𝑆𝑔, 𝜋)
𝑠← 𝑠0
while 𝑠 ∉ 𝑆𝑔 and 𝑠 ∈ Domain(𝜋) do

perform action 𝜋(𝑠)
𝑠← observe resulting state

Algorithm 8.1. Run-Policy, a simple procedure to run a closed solution policy.

Let 𝜎 = ⟨𝑠0, 𝑠1, . . . , 𝑠ℎ⟩ be a finite sequence of states followed by this procedure in
some run of policy 𝜋 that reaches a goal, that is, 𝑠ℎ ∈ 𝑆𝑔. 𝜎 is called a history; it is a
path in Graph(𝑠0, 𝜋) from 𝑠0 to 𝑆𝑔. For a given 𝜋 there can be an infinite number of
finite histories. The cost of 𝜎 is the total sum of the cost of actions along the history
𝜎.

cost(𝜎) =
ℎ−1∑︁
𝑖=0

cost(𝑠𝑖 , 𝜋(𝑠𝑖), 𝑠𝑖+1), for 𝜎 = ⟨𝑠0, 𝑠1, . . . , 𝑠ℎ⟩.

The probability of following the history 𝜎 is Pr(𝜎 | 𝑠0, 𝜋) =
∏ℎ−1

𝑖=0 Pr(𝑠𝑖+1 |𝑠𝑖 , 𝜋(𝑠𝑖)).
Note that 𝜎 may not be a simple path: it may contain loops, that is, 𝑠 𝑗 = 𝑠𝑖 for some
𝑗 > 𝑖. But because actions are nondeterministic, a loop does not necessarily prevent
the procedure from eventually reaching a goal: the action 𝜋(𝑠𝑖) that led to an already
visited state may get out of the loop when executed again at step 𝑗 .

Example 8.5. For the policy in Figure 8.2, a history that reaches a goal despite visiting
the same state three times is 𝜎 = ⟨𝑠0, (𝑐𝑏𝑐), (𝑐𝑎𝑐), (𝑐𝑏𝑐), (𝑐𝑏𝑐), (𝑐𝑐𝑐)⟩ □

A policy may also get trapped forever in a loop, or it may reach a nongoal leaf.
Hence Run-Policy may not terminate or not reach a goal. The actor preferably
seeks solutions that offer some guarantee of reaching a goal. Let Pr𝑙 (𝑆𝑔 |𝑠, 𝜋) be the
probability of reaching a goal from a state 𝑠 by following policy 𝜋 for at most 𝑙 steps:
Pr𝑙 (𝑆𝑔 |𝑠, 𝜋) =

∑
𝜎 Pr(𝜎), for 𝜎 ∈ {⟨𝑠, 𝑠1, . . . , 𝑠ℎ⟩ | 𝑠𝑖+1 ∈ 𝛾(𝑠𝑖 , 𝜋(𝑠𝑖)), 𝑠ℎ ∈ 𝑆𝑔, ℎ ≤

𝑙}. Let Pr(𝑆𝑔 |𝑠, 𝜋) = lim𝑙→∞ Pr𝑙 (𝑆𝑔 |𝑠, 𝜋). With this notation, it follows that:

• if 𝜋 is a solution to the problem (Σ, 𝑠0, 𝑆𝑔) then Pr(𝑆𝑔 |𝑠0, 𝜋) > 0;
• a goal is reachable from a state 𝑠 with policy 𝜋 if and only if Pr(𝑆𝑔 |𝑠, 𝜋) > 0;
• if 𝑠 ∉ Domain(𝜋), then Pr(𝑆𝑔 | 𝑠, 𝜋) is 1 if 𝑠 ∈ 𝑆𝑔, and 0 otherwise.

Definition 8.6. A solution 𝜋 to an MDP problem (Σ, 𝑠0, 𝑆𝑔) is safe if and only if
∀𝑠 ∈ 𝛾̂(𝑠0, 𝜋) there is a path from 𝑠 to a goal. When 𝜋 is safe Pr(𝑆𝑔 |𝑠0, 𝜋) = 1. If
0 < Pr(𝑆𝑔 |𝑠0, 𝜋) < 1 then 𝜋 is an unsafe solution.3 □

With a safe policy, procedure Run-Policy(Σ, 𝑠0, 𝑆𝑔, 𝜋) always (i.e., with a probability
1) reaches a goal.

The number of steps needed to reach the goal is indefinite, i.e., finite but not bounded
a priori. Such a bound would require a safe acyclic policy (see Section 8.3.4). With

3Another terminology refers to proper and improper for safe and unsafe solutions.

8.1 Basic MDP Representation 151

an unsafe policy, Run-Policy may or may not terminate; if it does terminate, it may
reach either a goal or a state with no applicable action.

It is useful to extend the safety concept from policies to states:

Definition 8.7. Safe, unsafe and dead end states are defined as follows:

• a state 𝑠 is safe if and only if ∃𝜋 such that Pr(𝑆𝑔 |𝑠, 𝜋) = 1.
• 𝑠 is unsafe if and only if ∃𝜋 such that Pr(𝑆𝑔 |𝑠, 𝜋) > 0 and ∀𝜋, Pr(𝑆𝑔 |𝑠, 𝜋) < 1,

or equivalently, (Σ, 𝑠, 𝑆𝑔) has an unsafe solution but no safe solution.
• 𝑠 is a dead end if and only if ∀𝜋 Pr(𝑆𝑔 |𝑠, 𝜋) = 0.

An MDP problem (Σ, 𝑠0, 𝑆𝑔) is safe when 𝑠0 is safe. □

A state 𝑠 is safe if and only if there exists a policy 𝜋 such that for every 𝑠′ ∈ 𝛾̂(𝑠, 𝜋)
there is a path from 𝑠′ to a goal. Note that a policy 𝜋 is a safe solution of (Σ, 𝑠0, 𝑆𝑔)
if and only if ∀𝑠 ∈ 𝛾̂(𝑠0, 𝜋), 𝑠 is safe. Conversely, 𝑠 is unsafe if and only if it has a
dead end descendant for every policy: ∀𝜋 ∃𝑠′ ∈ 𝛾̂(𝑠, 𝜋) 𝑠′ is a dead end. If a state 𝑠
is a dead end, then there is no solution to the problem (Σ, 𝑠, 𝑆𝑔).

A state that has no applicable action is a dead end, but so is a state from which
every policy is trapped forever in a loop or leads only to other dead ends. The former
are called immediate dead ends; the latter are deep dead ends.

Example 8.8. In Figure 8.1, the state (𝑎𝑎𝑎) is an immediate dead end, the states
(𝑎𝑎𝑐), (𝑎𝑎𝑏), (𝑎𝑏𝑎), and (𝑎𝑐𝑎) are deep dead ends, the states (𝑏𝑏𝑏) and (𝑐𝑐𝑐) are
goals, and all of the other states are safe. Any policy starting in the safe state 𝑠0 with
either action Both or Right is unsafe because it leads to dead ends. The policy given
in Figure 8.2 is safe. □

(Σ,s,Sg) has a solution
Yes No

Applicable(s)=∅
Yes No

∃𝜋 that always reaches a goal
Yes No

safe unsafe explicit dead-ends is: implicit dead-end

Figure 8.3. Partition of the set of states with respect to solutions.

Explicit dead ends are easy to detect: in such a state, Run-Policy(Σ, 𝑠0, 𝑆𝑔, 𝜋) finds
that Applicable(𝑠) = ∅ and terminates unsuccessfully. Implicit dead ends create
difficulties for many algorithms, including to Run-Policy that may not terminate.
Figure 8.3 summarizes the four types of states with respect to goal reachability.

A domain has no dead end if and only if every state in S is safe. A domain has no
reachable dead end if and only if every state reachable from 𝑠0 by any policy is safe.
These desirable cases are difficult to check in advance. A problem has a safe solution
when the domain dead ends are avoidable: there is a 𝜋 such that 𝛾̂(𝑠0, 𝜋) avoids dead
ends. Example 8.5 illustrates a domain where dead ends are avoidable. In solving an

152 8 Probabilistic Representation and Acting

MDP, one will seek to avoid dead ends, searching for safe solutions. If the domain
has an unavoidable dead end, reachable from 𝑠0, then 𝑠0 is unsafe. In that case, one
may accept an unsafe solution whose probability of reaching a goal is maximal.

In summary, an MDP problem (Σ, 𝑠0, 𝑆𝑔) can be such that:

(i) it has no dead end;
(ii) it has no reachable dead end;

(iii) it has a safe solution, i.e., its possible dead ends are avoidable; or
(iv) it has a solution, possibly unsafe.

These four cases are in decreasing order of restriction.

8.1.3 Optimal Policies

The quality of a solution 𝜋 depends on how safe it is, but also how good it is with
respect to an optimization criteria. The usual criteria uses the probability and cost
parameters of the problem and seeks a solution with minimal expected cost.

Let us assume an MDP problem (Σ, 𝑠0, 𝑆𝑔) that has a safe solution 𝜋. Let us define
for 𝜋 a value function 𝑉 𝜋 : Domain(𝜋) → R which give the expected sum of the cost
of the actions obtained by following 𝜋 from a state 𝑠 to a goal:

𝑉 𝜋 (𝑠) = E𝜎

[∑︁
𝑖

cost(𝑠𝑖 , 𝜋(𝑠𝑖), 𝑠𝑖+1)
]
, (8.1)

where E is over all histories 𝜎 ∈ {⟨𝑠, 𝑠1 . . . , 𝑠ℎ⟩ | 𝑠𝑖+1 ∈ 𝛾(𝑠𝑖 , 𝜋(𝑠𝑖)), 𝑠ℎ ∈ 𝑆𝑔}.
𝑉 𝜋 (𝑠) is the expected cost for running the procedure Run-Policy(Σ, 𝑠, 𝑆𝑔, 𝜋) from

𝑠 until termination. It is the total cost of following a history 𝜎 from 𝑠 to 𝑆𝑔, averaged
over all such histories in Graph(𝑠, 𝜋):

𝑉 𝜋 (𝑠) =
∑︁
𝜎

Pr(𝜎) cost(𝜎), (8.2)

where cost(𝜎) = ∑
𝑖 cost(𝑠𝑖 , 𝜋(𝑠𝑖), 𝑠𝑖+1) and Pr(𝜎) = ∏

𝑖 Pr(𝑠𝑖+1 |𝑠𝑖 , 𝜋(𝑠𝑖)).
Since 𝜋 is assumed to be safe, the probability of reaching a goal is one; every 𝜎 is

of indefinite length, i.e., ℎ is finite but unbounded. Hence 𝑉 𝜋 (𝑠) is necessarily finite.
Note for an unsafe policy the expected sum of action costs until reaching a goal is not
well-defined: on a history 𝜎 on which Run-Policy(Σ, 𝑠, 𝑆𝑔, 𝜋) does not terminate, the
sum in Equation 8.2 grows to infinity.

It is possible to prove that 𝑉 𝜋 (𝑠) is given by the following recursive equation (see
Exercise 8.2):

𝑉 𝜋 (𝑠) =
{

0 if 𝑠 ∈ 𝑆𝑔,∑
𝑠′∈𝛾 (𝑠, 𝜋 (𝑠)) Pr(𝑠′ |𝑠, 𝜋(𝑠)) [cost(𝑠, 𝜋(𝑠), 𝑠′) +𝑉 𝜋 (𝑠′)] otherwise.

(8.3)
A policy 𝜋′ dominates a policy 𝜋 if and only if 𝑉 𝜋′ (𝑠) ≤ 𝑉 𝜋 (𝑠) for every state

for which both 𝜋 and 𝜋′ are defined. An optimal policy is a policy 𝜋∗ that dom-
inates all other policies. It has a minimal expected cost over all possible policies:

8.2 Structured Probabilistic Representations 153

𝑉∗(𝑠) = min𝜋 𝑉
𝜋 (𝑠). The optimality principle extends 8.3 to compute𝑉∗ as the fixed

point of the following expression, called the Bellman equation:

𝑉∗(𝑠) =
{

0 if 𝑠 ∈ 𝑆𝑔,
min𝑎{

∑
𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) +𝑉∗(𝑠′)] otherwise.

(8.4)

The optimal policy is directly derived from 𝑉∗:

𝜋∗(𝑠) = argmin
𝑎

∑︁
𝑠′∈𝛾 (𝑠,𝑎)

Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) +𝑉∗(𝑠′)] (8.5)

In a domain that has a safe solution, one or several optimal policies 𝜋∗ exist. Their
value is given by the unique solution of the Bellman equation.

The value function 𝑉 𝜋 plays a critical role in solving MDP problems. It allows
ranking safe policies according to their expected total cost, and to use optimization
techniques for seeking a safe optimal or near optimal policy, using 8.4. 𝑉 𝜋 focuses the
search heuristically on a part of the search space, possibly away from avoidable dead
ends (see Chapter 9). When this is not feasible, one may accept an unsafe solution that
has a high probability of reaching a goal. A trade-off between cost and probability of
reaching the goal needs to be found (see Section 8.3.1).

8.2 Structured Probabilistic Representations

The modeling stage of a domain is always critical, in particular with probabilistic
models. It requires good representations. The previous section used a “flat” rep-
resentation, with a single state variable 𝑠 that ranges over 𝑆. Such a representation
requires the explicit definition of the entire state space, a requirement that is rarely
feasible. Structured representations, also referred to as factored representations,4 are
exponentially more compact. They allow for the implicit definition of the ingredients
of a domain through a collection of objects and parametrized state variables, as well as
operators with a compact specification of probability and cost distributions, policies,
and value function.

8.2.1 Probabilistic Precondition-Effect Operators

Probabilistic precondition-effect operators are a direct extension of deterministic ac-
tion schemas of Section 2.3.2. Here the set 𝛾(𝑠, 𝑎) and the distribution Pr(𝑠′ |𝑠, 𝑎)
are given as possible effects of an action schema, the instances of which are ground
actions. Let us illustrate this representation through a few instances of a domain with
increasingly more elaborate examples.

Example 8.9. Consider a simple service robot domain, called PAM𝑝, with one robot
rbt and four locations {pier1, pier2, exit1, exit2}. At each location, there are containers
of different types. The robot can move between locations; it can take a container from
a location and put it in a location. The motion is deterministic, and the four locations

4sometime in a narrower sense, with state variables without parameters.

154 8 Probabilistic Representation and Acting

are pairwise adjacent. Actions take and put are constrained by the activity in the
corresponding location: if it is busy, these actions fail to achieve their intended effect
and do nothing. A location becomes or ceases to be busy randomly with probability
𝑝. We model this as an exogenous event, switch(𝑙), that switches the busy attribute of
location 𝑙. We assume at this stage to have a full knowledge of the state of the world.
This simple domain is modeled with the following state variables:

• loc(𝑟) ∈ {pier1, pier2, exit1, exit2}: location of robot 𝑟;
• ctrs(𝑙, 𝜏) ∈ {0, 1, . . . , 𝑘}: number of containers in location 𝑙 of some type 𝜏;

we assume 𝜏 ∈ {red,blue};
• load(𝑟) ∈ {red, blue, empty}: type of the container on robot 𝑟 if any; and
• busy(𝑙) ∈ Boolen.

A typical problem in PAM𝑝 is to move red containers from any of the piers to exit1
and blue ones to exit2. □

Even a domain as simple as PAM𝑝 can have a huge state space (in 𝑂 (𝑘 𝑙) for 𝑙
locations), forbidding an explicit enumeration or a drawing such as Figure 8.1. An
adequate specification of the actions in the previous example has to take into account
their effects as well as the effects of concurrent exogenous events. Indeed, recall that
nondeterminism accounts for the possible outcomes of an action 𝑎 when the world
is static, but also for events that may happen in the world while 𝑎 is taking place,
or have an impact on the effects of 𝑎. Hence, 𝛾(𝑠, 𝑎) represents the set of possible
states corresponding to the joint effects of 𝑎 and concurrent exogenous events. The
latter may however concern state variables that are not among the arguments of 𝑎.
When the |𝛾(𝑠, 𝑎) | are not too large, probabilistic precondition-effect operators can
be a possible representation, with en extension for free variables to handle effects of
exogenous events, as illustrated next.

Example 8.10. In PAM𝑝 the deterministic effect of action move has to be combined
with the random effects of events switch(𝑙) in any of the four locations. Hence in total
|𝛾(𝑠,move) | = 24. These random events are assumed to be independent and concern
free variables, beyond the parameters of the action. Action move can be written as
follow:

move(𝑟 : Robots; 𝑙, 𝑚 : Locations)
free: 𝑙1, 𝑙2, 𝑙3, 𝑙4 : Locations
pre : loc(𝑟) = 𝑙, 𝑙1 ≠ 𝑙2 ≠ 𝑙3 ≠ 𝑙4
eff : 𝑝0 : loc(𝑟) ← 𝑚

𝑝1 : loc(𝑟) ← 𝑚, busy(𝑙1) ← ¬busy(𝑙1)
𝑝2 : loc(𝑟) ← 𝑚, busy(𝑙1) ← ¬busy(𝑙1), busy(𝑙2) ← ¬busy(𝑙2)
𝑝3 : loc(𝑟) ← 𝑚, busy(𝑙1) ← ¬busy(𝑙1), busy(𝑙2) ← ¬busy(𝑙2),

busy(𝑙3) ← ¬busy(𝑙3)
𝑝4 : loc(𝑟) ← 𝑚, busy(𝑙1) ← ¬busy(𝑙1), busy(𝑙2) ← ¬busy(𝑙2),

busy(𝑙3) ← ¬busy(𝑙3), busy(𝑙4) ← ¬busy(𝑙4)

𝑙1 to 𝑙4 are free variables for the effects of random events; 𝑝𝑖 is the probability
that 𝑖 switch events occur, for 𝑖 = 0 to 4, that is, 𝑝0 = (1 − 𝑝)4, 𝑝1 = 𝑝 × (1 −

8.2 Structured Probabilistic Representations 155

𝑝)3, 𝑝2 = 𝑝2 × (1 − 𝑝)2, 𝑝3 = 𝑝3 × (1 − 𝑝), and 𝑝4 = 𝑝4. Note that there are four
possible cases with probability 𝑝1, six cases with 𝑝2 and four cases to 𝑝3, giving:
𝑝0 + 4 × 𝑝1 + 6 × 𝑝2 + 4 × 𝑝3 + 𝑝4 = 1.

The take action is similarly specified: when the robot location 𝑙 is not busy and
contains at least one container of the requested type c, then take may either lead to a
state where 𝑙 is busy with no other effect, or it may achieve its effects of a container of
type 𝜏 being loaded and ctrs(l,c) being reduced by one. For each of these two cases,
additional switch events may occur in any of the three other locations. This is similar
for action Put (see Exercise 8.6). □

To summarize, the probabilistic actions schemas have preconditions and effects, as
the deterministic schemas, but they have as many alternative sets of effects as possible
outcomes. Each alternative effect field is specified with a probability value, which
can be a function of the operator’s parameters.

8.2.2 Dynamic Bayesian Networks

Parameterized probabilistic precondition-effect operators can be expressive, but they
require going through all the alternative joint effects of an action and possible exoge-
nous events and computing their probability. In many cases, it is not easy to factor out
a large 𝛾(𝑠, 𝑎) into a few alternative effects, as illustrated earlier. This representation
quickly meets its limits.

Example 8.11. PAM𝑞 is a more realistic version of the PAM𝑝 domain. It takes
into account the arrival of containers of different types in one of the two piers and
their departure from one of the two exit locations, but it ignores the ship unloading
and truck loading operations. The arrival and departure of containers and their
types are considered as exogenous events. Locations have a maximum capacity of K
containers of each type, K being a constant parameter. When an exit location reaches
its maximum capacity for some type then the robot cannot put additional containers
of that type. When a pier is full, no arrival event of the corresponding type is possible.
In addition to the move, take, and put actions and the switch event seen earlier, we
now have two additional events:

• arrival(𝑙): at each state transition, if a pier 𝑙 is not full and the robot is not at 𝑙
then one container may arrive at 𝑙 with probability 𝑞; further, 60% of arrivals
in pier1 are red containers, and 80% are blue in pier2;

• departure(𝑙) : if the robot is not at an exit location 𝑙 and there are containers
there, then there is a probability 𝑞′ that a container may depart from 𝑙; only red
containers depart from exit1 and only blue ones depart from exit2.

A typical task for the robot in domain PAM𝑞 is to move all red containers to exit1 and
all blue ones to exit2. □

With only three exogenous events as in PAM𝑞, the joint effects of action and
events become complex: the size and intricacy of 𝛾(𝑠, 𝑎) reaches a point where the
specification of precondition-effect operators is not easy (see Exercise 8.7).

156 8 Probabilistic Representation and Acting

Bayesian networks is an appropriate representation for expressing conditional dis-
tributions on random variables. It offers powerful techniques for reasoning on these
distributions. A Bayesian network is a DAG where nodes are random variables as-
sociated with a priori or conditional probability distributions. An edge between two
random variables 𝑥 and 𝑦 expresses a conditional probability dependance of 𝑦 with
respect to 𝑥.

Dynamic Bayesian Networks (DBNs) extend the static representation to handle
different stages in time of the same variables. They are particularly convenient in our
case for expressing probabilistic state transitions from 𝑠 to 𝛾(𝑠, 𝑎), with a focus on the
state variables relevant for the action 𝑎 and the exogenous events that may take place
concurrently with 𝑎. This is illustrated in the following example.

busy(l) busy’(l)

load(r) load’(r)

ctrs(l’,c’) ctrs’(l’,c’)
l’ ∈ {pier1,pier2}, l’≠l

ctrs(l”,c”) ctrs’(l”,c”)
l”∈ {exit1,exit2}, l”≠l

loc(r)
loc(r)=l

ctrs(l,c) ctrs’(l,c)
ctrs(l,c) > 0

arrival

departure

switch busy(l)
T
F

Prob[busy’(l)=T]
1-p
p

Figure 8.4. A DBN for action take in the domain PAM𝑞.

Example 8.12. Figure 8.4 represents the DBN characterizing action take in PAM𝑞

domain. It shows the state variables that condition or are affected by take and the
events switch, arrival and departure. If 𝑥 is a state variable of state 𝑠, we denote 𝑥′ that
same state variable in 𝑠′ ∈ 𝛾(𝑠, 𝑎). Here, we extend a ground DBN representation
with parameterized random variables, with possible instantiation constraints. For
example, busy(𝑙) is a Boolean random variable true when location 𝑙 is busy. Note that
variable loc(𝑟) conditions take but is not affected by the action and events: it appears
only in the left side of the DBN.

A DBN specifies conditional probability tables that give the distribution over the
values of a variable as a function of the values of its predecessors. Figure 8.4 illustrates
such a table for the simple case of variable busy(𝑙) that has a single predecessor. Note
that 𝑝 in this table varies in general with 𝑙. □

When a variable in a DBN has 𝑚 ground predecessors that range over 𝑘 values,
the conditional probability table is of size 𝑘𝑚. This can quickly become a bottleneck

8.2 Structured Probabilistic Representations 157

for the specification of a DBN. Fortunately, in well-structured domains, conditional
probably tables can be given in a factorized form as decision trees. These decision trees
are also convenient for expressing constraints between instances of the parametrized
state variables in the network.

Prob[ctrs’(l1,𝜏1)= ctrs(l1,𝜏1)+1]

ctrs(l1,𝜏1)

K < K
loc(r)

l1 ≠ l1

𝜏1

l1

pier2pier1
𝜏1

bluered
bluered

0

0

.09 .06 .03 .12

(a)

Prob[ctrs’(l2,𝜏2)= ctrs(l2,𝜏2)-1]

ctrs(l2,𝜏2)
0 >0

loc(r)
l2 ≠ l2

𝜏1

l2

exit2exit1
𝜏1

bluered
bluered

0

0

0 .15 .15 0

(b)
Prob[ctrs’(l,𝜏)= ctrs(l,𝜏)-1]

ctrs(l,𝜏)
0 >0

loc(r)
≠l l

0

0 load(r)

empty≠empty
busy(l)

T F

busy’(l)
T F

0

0

0 .95

(c)

Figure 8.5. Conditional probability trees for the ctrs state variables for the action take
combined with the possible events switch, arrival, and departure: (a) accounts for the
arrival of a container at a pier location, (b) for a departure at an exit location, and (c) for
a container being taken by the robot.

Example 8.13. Figure 8.5 gives the conditional probabilities for the ctrs variables in
the DBN of Figure 8.4. The leaves of each tree give the probability that the number
of containers of some type at some location increases or decreases by one container
(the probability that this number remains unchanged is the complement to 1). To
simplify the picture, we take 𝑝 = .05 and 𝑞 = 𝑞′ = .15. Tree (a) accounts for the
possible arrival of a container of some type at a pier location: if the location is full
(ctrs(𝑙1, 𝜏1) =K) or if the robot is in that location (loc(𝑟) = 𝑙1), then no container
arrival is possible, otherwise there is a probability of .15 × .6 for the arrival of a
red container at pier1, and so on. Similarly, tree (b) accounts for the departure of
a container at an exit location. Tree (c) gives the proper effect of action take: the
probability that ctrs changes is conditioned by the five ancestor variables of that node
in the DBN. □

In Example 8.11, the interactions between exogenous events and actions are quite
simple: events are independent and have almost no interference with the robot actions.
In applications with more complex probabilistic interferences between the effects of
actions and possible events, the DBN representation is especially needed. It is also
convenient for the modeling of sensing actions, where sensor models must be used to
relate sensed features to values of state variables.

158 8 Probabilistic Representation and Acting

busy(l) busy’(l)

load(r) load’(r)

pos(c) pos’(c)

hue(c)

loc(r)

ctrs(l) ctrs’(l)

Figure 8.6. Part of the DBN for action take in domain PAM𝑜.

hue
a"
b"
c"
d

Prob[type=red | hue]"
.05!
.1!
.85!
.95

(a)

busy(l)
T F

ctrs(l,𝜏)
0 >0

loc(r)
≠l l

load(r)
empty≠empty
pos(c)
≠l l

busy’(l)
T F

hue(c)
da b cunknown

0

0

0

0

0

0

0 .047 .095 .807 .902

Prob[load’(r)=red]

(b)

Figure 8.7. (a) Conditional probability table for the type of a container given its observed
feature; (b) conditional probability trees for load’(r)=red.

Example 8.14. Consider PAM𝑜, a variant of the previous domain where the robot
does not have full knowledge of the state of the world. It still knows the exact number
of containers in each location, but it does not know their types. However, it has a
perceive action: when the robot is sensing a container 𝑐, perceive(𝑐) gives the value
of an observable feature, denoted hue(𝑐), which is conditionally dependent on the
container’s type. To model this domain, we keep the state variables loc(𝑟), load(𝑟),
and busy(𝑙) as earlier; ctrs(𝑙) is now the total number of containers in 𝑙. We further

8.2 Structured Probabilistic Representations 159

introduce the following variables:

• type(𝑐) ∈ {red, blue}: type of container 𝑐,
• pos(𝑐) ∈ {pier1, pier2, exit1, exit2, rbt}: location of container 𝑐, and
• hue(𝑐) ∈{a, b, c, d, unknown}: the observed feature of 𝑐.

Action perceive(𝑐) can be modeled as requiring the robot to be at the same location
as 𝑐 and hue(𝑐) to be unknown; its effect is to change the value of hue(𝑐) to a, b, c,
or d. Furthermore, the sensor model gives a conditional probability table of type(𝑐)
given hue(𝑐) (Figure 8.7(a)). Action take(𝑟, 𝑙, 𝑐) is now conditioned by two additional
variables pos(𝑐), which should be identical to loc(𝑟), and hue(𝑐) that should be not
unknown. Figure 8.6 gives a DBN for that action. A conditional probability tree for
Prob[load’(𝑟)=red] is in Figure 8.7(b). It takes into account the probability of the
location becoming busy (.95), as well as the probability of looking at a red container
when its observed feature has some value. Prob[load’(𝑟)=blue] is the complement to
one of the numbers in the last four leaves; it is equal to zero in the other leaves where
Prob[load’(𝑟)=empty]=1. □

The previous example illustrates two important representation issues:

• An observed feature informs probabilistically about the value of a non-
observable variable. A non-observable variable (type(𝑐) in the example) is
replaced by a state variable that can be observed (here hue(𝑐)) and to which the
probabilistic planning and acting models and techniques apply normally.

• The effects of a sensing action can be required (for example, the precondition
that hue(𝑐) ≠ unknown) and planned for, as with any other state transformation
action.

8.2.3 Domain Decomposition and Hierarchization

The expressiveness of structured representations for probabilistic problems allows for
a compact specification of a domain that has to a huge state space, often not directly
tractable with available techniques for finding a solution. In addition to a compact
representation, we would like to structure a domain into smaller tractable subdomains.
Two related principles can be used for that: abstraction and decomposition. Let us
briefly introduce some approaches.

Abstraction methods. Abstraction consists in defining a partition of 𝑆 into clusters.
A cluster is a subset of states that are close enough to be considered indistinguishable
with respect to some characteristics, such as to be processed jointly as a single abstract
state. For example, these close states may be attributed the same policy 𝜋(𝑠). The
original problem is solved with respect to abstract states that are these clusters, the
solution of which is then possibly refined within each abstract state. Abstraction is
the complement of refinement.

A popular form of abstraction is based on focusing a cluster on some relevant state
variables and ignoring the other variables, considered as less relevant. The conditional
probability trees in Section 8.2.2 illustrate the idea: the state variables that are not part

160 8 Probabilistic Representation and Acting

of any tree are irrelevant. Often the irrelevant variables at one stage can be important
at some other stage of the problem: the abstraction is not uniform. Furthermore, one
may have to resort to approximation to find enough structure in a problem: variables
that affect slightly the decision-making process (i.e., 𝜋(𝑠)) are abstracted away.

Another abstraction approach extends model minimization techniques for comput-
ing minimal models of finite-state machines.5 One starts with an a priori partition of
𝑆 into clusters, for example, subset of states having (approximately) the same value
function 𝑉 . A cluster is split when its states have different probability transitions to
states in the same or other clusters. When all clusters are homogenous with respect to
state transitions, then the problem consisting of these clusters, considered as abstract
states, is equivalent to the original problem. The effort in model reduction is paid
off by solving a smaller problem. This is particularly the case when the clusters and
the value function are represented in a factored form, as state variable formulas (see
Section 9.6.2).

Symbolic algorithms (as in Section 12.3) develop this idea further with the use
of algebraic decision diagrams (ADD). An ADD generalizes a decision tree into a
rooted acyclic graph whose nodes are state variables, branches are possible values
of the corresponding variables, and leaves are sets of states. An ADD represents a
function whose values label its leaves. For example, an ADD can encode the function
𝑉 (𝑠) in which all the states corresponding to a leaf have the same value. Similarly, one
can represent Pr(𝑠′ |𝑠, 𝑎) and cost(𝑠, 𝑎) as ADDs. When the structure of the problem
can be mapped into compressed ADDs — a condition not easily satisfied — then fast
operations on ADDs allow more efficiently exploring 𝑆 or on the relevant part of it
for finding a solution.

Decomposition methods. The idea is to decompose the original problem into inde-
pendent or loosely coupled subproblems that are solved independently. Their solutions
are recomposed together to get the solution of the global problem. For example, serial
decomposition addresses the original task as a sequence of subtasks whose solutions
will be sequentially run.

The notion of closed subsets of states is convenient for decomposing a domain.
𝐶 ⊆ 𝑆 is closed if there is no transition from a state in 𝐶 to a state outside of 𝐶. It is
a maximal closed subset if it does not have a proper subset that is also closed. If the
problem is not to reach a goal, but to control a process by acting as best as possible over
an infinite horizon (process-oriented problems), an optimal policy can be constructed
independently for each maximal closed subset without interfering with the rest of the
domain. A maximal closed subset 𝐶 can be viewed as an independent subprocess.
Once reached, the system stays in this subprocess forever. 𝐶 can be collapsed to a
single absorbing state, at which point, other closed subsets can be found.

The kernel decomposition method implements this idea with more flexibility. The
set 𝑆 is decomposed into blocks, with possible transitions between blocks through
a few states for each block. These states permitting block transitions are called the
kernel of the domain. Starting with some initial value function𝑉 for the kernel states,

5For any given finite state machine 𝑀 , there is a machine 𝑀′, minimal in the number of states, which
is equivalent to 𝑀 , i.e., which recognizes the same language.

8.3 Modeling a Probabilistic Domain 161

optimal policies are computed independently for each block, allowing one to update
the values of the kernel and iterate until updates are negligible.

Finally, let us mention that abstraction and decomposition are also used for com-
puting heuristics and control knowledge to guide or focus a global search. There
is a large overlap between abstraction or decomposition methods and the techniques
discussed in Section 9.3.

8.3 Modeling a Probabilistic Domain

In general, the horizon for an acting problem can be (i) bounded, i.e., acting stops
after at most a given number ℎ𝑚𝑎𝑥 of steps, (ii) indefinite, i.e., the horizon is finite but
not a priori bounded, or (iii) infinite. We discussed so far goal reachability MDPs that
have an indefinite horizon. This section considers other cases of indefinite horizon
and infinite ones, as well as issues regarding and actor’s objectives, criteria, and the
sources of nondeterminism it needs to model.

8.3.1 Objectives and Horizon

Let us distinguish two classes of problems corresponding to different types of horizon.

Process maintenance problems. Consider, for example, a robot whose sole func-
tion is to keep an office space clean and tidy, or a system controlling traffic lights and
seeking to minimize congestions, or an elevator controller and seeking to minimize
expected passengers time to their destination floors. This is the class of process
maintenance problems, which corresponds to continual tasks. Here the actor has no
specific goal state; its objective is to act optimally, over possibly an infinite horizon.

A process maintenance problem can be specified as an MDP, defined as in Defini-
tion 8.2. A solution to the problem is a policy that runs “forever,” that is, as long as
this policy does not prescribe an emergency exit action, or does not reach a state with
no applicable action. The notions of safe and unsafe states, linked to the probability
of reaching a goal, are no longer relevant as defined earlier, since there are no goals.
The notion of optimal policies remains essential, but with slightly different criteria:

• for a bounded horizon MDP: the criteria is as expressed in Equation 8.1, but
the expected sum is over all histories 𝜎 of bounded length, i.e., |𝜎 | ≤ ℎ𝑚𝑎𝑥 for
an a priori given bound ℎ𝑚𝑎𝑥 .

• for an infinite horizon MDP: the criteria is the expected sum of a discounted cost
over an infinite horizon for a given a discount factor 0 < 𝛿 < 1. Equation 8.1
is changed into 𝑉 𝜋 (𝑠0) = 𝐸 [

∑∞
𝑖=0 𝛿

𝑖 × cost(𝑠𝑖 , 𝜋(𝑠𝑖))]; similarly, Equation 8.3
becomes 𝑉 𝜋 (𝑠) = ∑

𝑠′∈𝛾 (𝑠, 𝜋 (𝑠)) Pr(𝑠′ |𝑠, 𝜋(𝑠)) [cost(𝑠, 𝜋(𝑠), 𝑠′) + 𝛿 ×𝑉 𝜋 (𝑠′)].
Discounted cost MDP are more popular than bounded horizon ones for handling

process maintenance problem. The discount factor is mathematically needed for an
expected sum over an infinite horizon, but it leads to numerous drawbacks (discussed
later). One can argue that there is no infinite horizon in real-life problems. Moreover,
it is often easier to choose a bound ℎ𝑚𝑎𝑥 (e.g.,, the cost over one year for the traffic

162 8 Probabilistic Representation and Acting

controller, or until the next change in the street layout), than to choose a meaningful
and satisfactory discount factor 𝛿.

Goal reachability and episodic task problems. We discussed earlier goal reach-
ability MDP problems. Episodic task problems correspond to tasks that always
terminate at some point, e.g., when performing a termination action, after a finite but
unbounded number of steps. These two classes of problems are have an indefinite
horizon. It is possible to model an episodic task problem as a goal reachability prob-
lem, e.g., by annotating tasks (see Section 7.2) and adding to 𝑆𝑔 specific termination
states (including failure states).

Stochastic Shortest Path (SSP) problems is an important class of goal reachability
and episodic task problems. An SSP is a goal reachability MDP problem that has
a safe solution and, either (i) all costs are positive, or (ii) for every unsafe policy 𝜋
there is an unsafe state 𝑠 such that 𝑉 𝜋 (𝑠) = ∞. These condition ensure finding a safe
solution and hence acting with termination. An SSP has an indefinite horizon.

SSP generalize the familiar shortest-path problems in graphs to probabilistic
And/Or graphs. SSP express naturally probabilistic planning and acting problems.
They are also quite general in the family of MDP models. In particular, it is possible
to prove that every bounded horizon MDP and every infinite horizon discounted cost
MDP problem can be restated into an equivalent SSP [131].

Goal reachability problems are sometime specified with a set of possible initial
states and a probability distribution over this set. This case can be handled by adding
a conventional 𝑠0 with a single applicable action leading with the same distribution
to one of initial states of the problem.

In some cases, an MDP can be addressed as satisficing problem, i.e., find any
safe solution. More often MDPs are taken as optimization problem for the minimal
expected cost or for other criteria, discussed next.

8.3.2 Criteria

Note that satisficing approach to a goal reachability MDP can be obtained as a
particular case of optimizing with unit costs: one minimizes the expected distance to
the goal, which usually leads to good heuristics for finding a solution.

Maximizing rewards. Instead of costs, one might be interested in taking into ac-
count action rewards for reaching particular states. Rewards are simply the opposite
of costs. One switches from minimization to maximization problems. SSPs with
rewards also require a safe solution and either strictly positive rewards or infinite
value function for unsafe state and policies.

In problems with possibly negative costs or reward (i.e, mixing bonuses and penal-
ties), the latter condition is hard to verify. One has to check that every cycle not
containing a goal has a strictly positive cost (or strictly negative reward). This is not
needed in a process maintenance problems with a discount factor allowing to handle
real costs or rewards that sum up over infinite terms to finite values.

8.3 Modeling a Probabilistic Domain 163

Scaling and shaping costs and rewards. It is easy to show from Equation 8.4 and
8.5 that an affine transformation of the cost function does not change the optimal
policy. In other words, given constants 𝛼 and 𝛽, the optimal policy is the same for the
two functions cost(𝑠, 𝑎, 𝑠′) and cost′(𝑠, 𝑎, 𝑠′) = 𝛼 cost(𝑠, 𝑎, 𝑠′) + 𝛽.

A less immediate but more useful transformation is given by a property called the
shaping theorem. Let ℎ : 𝑆 → R be any function from the states to the reals. A cost
shaping is a transformation of the cost function with ℎ given by:

cost′(𝑠, 𝑎, 𝑠′) = cost(𝑠, 𝑎, 𝑠′) − ℎ(𝑠) + ℎ(𝑠′).

The optimal policy remains unchanged with any cost shaping transformation. This
can be quite beneficial for learning an optimal policy when guided towards desirable
paths (see Chapter 10).

These properties of affine and shaping transformations apply to SSP with algebraic
costs or rewards, and to infinite horizon MDP with a discount factor, for which shaping
is expressed as cost(𝑠, 𝑎, 𝑠′) − ℎ(𝑠) + 𝛿ℎ(𝑠′).

Minimizing the average cost per step. The expected average cost per step to the
goal is an alternative objective function. For this criteria, Equation 8.1 takes an
averaging factor of 1/ℎ, where ℎ is the length of history 𝜎. However, the criteria may
prefer a longer high cost history to a short lower cost one (e.g., 𝑐′/ℎ′ < 𝑐/ℎ if 𝑐′ = 2𝑐
and ℎ′ = 3ℎ). Of course this cannot happen if each unit cost is not lower than 1.

Maximizing the probability of reaching a goal. In many applications, one is
more concerned about the probability of reaching a goal than about the expected
cost of a policy. This is particularly the case when 𝑠0 is unsafe. With this criterion,
called MAX-PROB, one does not need to assume the existence of a safe policy, since
one optimizes over the entire set of policies, including unsafe ones. One way of
addressing this criteria is to take a reward maximization approach with the following
reward function:

𝑟 (𝑠, 𝑎, 𝑠′) =
{

1 if 𝑠 ∈ 𝑆𝑔,
0 otherwise.

(8.6)

In such a model, the expected value of a policy 𝜋 is exactly the probability Pr(𝑆𝑔 |𝑠0, 𝜋)
of reaching a goal from 𝑠0 by following 𝜋.

Discount factor. An infinite horizon MDP requires a discount factor 0 < 𝛿 < 1, for
the convergence of the infinite sum𝑉 𝜋 (𝑠0) = 𝐸 [

∑∞
𝑖=0 𝛿

𝑖×cost(𝑠𝑖 , 𝜋(𝑠𝑖))]. It has been
demonstrated that in the limit when 𝛿 approaches one, the discounted cost criteria
approaches the average cost criteria over long horizon [131].

Discount factors seem an easy fix, including for problems with algebraic costs or
rewards. But they have many disadvantages:

• Solutions to a discounted MDP are very sensitive to a chosen value of 𝛿. In
robotics, for example, it has been noted that values lead to unstable control.6

6According to the survey [622]“discounted formulations are frequently inadmissible in robot control”.

164 8 Probabilistic Representation and Acting

• The literature often refers to financial applications, interest rates or amortization
rates. Beyond finance, this does not give a convincing rational for discounts.

• Psychological arguments pointing that one is usually more sensitive to imme-
diate than to long term rewards or costs may be true. But this can be seen more
as a weakness, with possibly damaging effects, than a desirable feature to be
taken as a model.

• Since in practice there is no infinite horizon, it is not obvious to justify and
pickup a value for 𝛿 relevant to a given application. Discounting the future can
in many cases be myopic and reflect a greedy bias.

• Introducing a discount just to handle unsafe policies and states with algebraic
costs or rewards can be misleading towards such unsafe solutions.

In summary, discounts are seldom grounded in a practical meaning, they depreciate
the future, lead to sensitive and possibly instable solutions and are not strictly needed.
Throughout this book we avoid using discounted criteria.

8.3.3 Multiple Objectives

One might want to address multiple objectives and seek a compromise, e.g., between
goal satisfaction probability, energy consumption, and time to reach the goal. A
number of models aim at finding policies that provide an acceptable tradeoff between
multiple objectives.

The simplest is the constrained MDP (C-MDP) , which allows optimizing a primary
objective whilst keeping secondary objectives within given bounds. A C-MDP takes
the form of an MDP with a vector of cost functions ®𝑐𝑜𝑠𝑡 = [cost0, cost1, . . . , cost𝑘]
and a vector of upper bounds ®𝑢 = [𝑢1, . . . , 𝑢𝑘]. A solution to a C-MDP is a policy 𝜋
minimizing the expected primary cost 𝑉 𝜋

cost0 (𝑠0) (as in a regular MDP); in addition 𝜋
complies with the constraint that each expected secondary cost lies below its respective
bound: 𝑉 𝜋

cost𝑖 (𝑠0) ≤ 𝑢𝑖 ∀𝑖 ∈ {1, . . . , 𝑘}.
Importantly, optimal policies for C-MDPs may be stochastic, i.e. they may map a

state to a probability distribution over actions, as illustrated next.

Example 8.15. Consider an MDP with just an initial state and a goal state, and two
actions leading from 𝑠0 to the goal: go-slow, which costs 2 units of fuel and 10 units of
time, and go-fast, which costs 10 units of fuel and 2 units of time. Fuel is the primary
cost, and one must reach the goal with at most 6 units of time on average. The only
deterministic policy satisfying the constraint is to apply go-fast, at a cost of 10 units
of fuel. The optimal stochastic policy however, applies go-fast and go-slow 50% of
the time each. It satisfies the constraint but costs only 6 units of fuel on average. □

Algorithms for solving C-MDPs can incorporate goal satisfaction probability sim-
ilarly as a cost function – either by maximizing it if it is the primary objective, or
by ensuring it exceeds a lower bound if it is a secondary objective. C-MDP capture
the bi-level optimization problem of finding a policy whose expected cost is mini-
mal, among those having the maximum probability of reaching the goal. In some
applications, a low-cost solution with an acceptable probability of reaching the goal is

8.3 Modeling a Probabilistic Domain 165

preferred to a high probability policy with a significantly higher cost. C-MDPs sup-
port this since they allow optimizing over all policies above a given goal-probability
threshold. However, other, more complex models are specifically designed to support
the exploration of trade-offs between these often conflicting objectives.

This is the case of multi-objective MDPs (MO-MDPs), which are a general MDP
model handling the optimisation of multiple objectives, represented by a vector of 𝑘
cost functions. MO-MDPs are useful when the best way to combine these objectives
into a single objective is unknown at planning time, when such a combination is
computationally too complex to handle, or when the aim of the decision process is to
help a user elicitate what an acceptable combination might be. An MO-MDP value
function becomes a vector ®𝑉 𝜋 whose components represent the expectations of the re-
spective cost functions. A policy 𝜋 dominates another policy 𝜋′ iff ®𝑉 𝜋

𝑖
(𝑠0) ≤ ®𝑉 𝜋′

𝑖
(𝑠0)

for 1 ≤ 𝑖 ≤ 𝑘 and ®𝑉 𝜋
𝑗
(𝑠0) < ®𝑉 𝜋′

𝑗
(𝑠0) for at least one 𝑗 ∈ {1, . . . , 𝑘}. A solution to

an MO-MDP is a Pareto coverage set of non-dominated stochastic policies, i.e. the
largest set of policies such that no one in the set is dominated by another policy in the
set. In practice since the Pareto coverage set is infinite, solution algorithms compute
the extreme points of its convex hull, which consist of deterministic policies. The
Pareto set of non-dominated stochastic policy is then implicitly given by the points
on the surface of the polyhedron defined by the convex hull.

8.3.4 Nondeterminism

The sources of nondeterminism that one chooses to model in Σ and how they are
modeled are critical issues. Except for trivial cases, no predictive model is without
causes of uncertainty, but one may choose to ignore for good reasons some of them.
Uncertainty can be due to sensing and information gathering actions, to exogenous
events in the environment (i.e., the proper dynamic of the world and other unmodeled
actors), to possible failures and other intrinsically nondeterministic actions.

Sensing and information gathering actions. These are essential sources of nonde-
terminism. Sensing related to a particular state variable 𝑥 can be modeled as actions
applicable in some states and associated with a priori and conditional distributions
over possible values of 𝑥 (for example, Prob[type|hue] in Example 8.14). Sensing
actions that inform on 𝑥 change the distribution of its values. Conditional distribu-
tions of state variables given observations can be obtained from probabilistic models
of sensors.

Exogenous events and the proper dynamics of the environment. These are gen-
erally difficult to model deterministically as predictable events. When their possible
effects interfere weakly with those of deliberate actions, events can be modeled as
probability distributions over possible effects. For example, in Example 8.9, a lo-
cation becomes or ceases to be busy because of some exogenous events, modeled
simply as probabilistic effects of a move action. It is possible to model events as
random variables whose values interfere with the outcome of an action. The DBN
representation of actions can handle that directly (see Example 8.11). Conditional

166 8 Probabilistic Representation and Acting

expressions have to be added to the probabilistic precondition-effect representation to
take into account posterior probabilities given observed events.

Failures and nondeterministic actions. Intrinsically nondeterministic actions,
such as throwing a dice or playing a casino machine (Example 8.4) are not generally
mixed up with other actions and are dealt with specifically. Failures need certainly
to be taken into account. However, the usual consideration of nominal effects versus
erroneous effects of an action might not be the most relevant in practice. For example,
the classical benchmark of navigating in a grid where a move action can lead to other
nodes than the intended ones is often unrealistic: it does not take into account the
necessary refinement of each action into lower level steps until reaching closed-loop
controlled motion and localization. Further, rare events, such as component failures
leading to non-modeled effects, are better handled with using specific approaches
such as diagnosis and recovery.

Sparse Probabilistic Domains The degree of nondeterminism can be appreciated
by the size of |𝛾(𝑠, 𝑎) | and how overlapping are the sets 𝛾(𝑠, 𝑎), over applicable actions
in 𝑠. In sparse probabilistic planning problems, 𝛾(𝑠, 𝑎) remains a small set. In some
cases, nondeterminism is limited to parts of the domain. Possibly, most actions are
deterministic except for a few that have just two outcomes: nominal and abnormal
effects. This is the case, for example, when most of the environment is known but a
few areas are partially unknown, or when only sensing actions are nondeterministic,
while all other actions have a unique predictable outcomes. In these cases, it is
worthwhile to combine deterministic actions with probabilistic ones, and appropriate
algorithm to each for finding a solution (see paragraph 9.5.2).

8.4 Acting with Probabilistic Models

8.4.1 Basic Acting Procedures

We introduced a very simple Run-Policy procedure (Algorithm 8.1) for acting using
a precomputed policy 𝜋. When no policy is available and too complex to compute
online, lookahead methods allow an actor to progressively elaborate its deliberation
while acting, using a procedure such as MDP-Lookahead (Algorithm 8.2). This
procedure calls a bounded Lookahead step, which searches for a partial plan rooted at
𝑠. Lookahead computes partially 𝜋, at least in 𝑠, and returns the corresponding action.
The parameter 𝜃 sets bounds for the lookahead search. For example, 𝜃 may specify the
depth of the lookahead, its maximum processing time, or use a real-time interruption
mechanism corresponding to an acting deadline. The simple pseudo-code below can
be extended when Lookahead fails by retrying with another 𝜃.

The main difference between Run-Policy and MDP-Lookahead is the use of Looka-
head instead of 𝜋(𝑠).

Working with a progressively generated policy, defined when and where it is needed,
makes it possible for MDP-Lookahead to interleave planning and acting, while dealing
with complexity and partial domain knowledge.

8.4 Acting with Probabilistic Models 167

MDP-Lookahead(Σ, 𝑠0, 𝑆𝑔)
𝑠← 𝑠0
while 𝑠 ∉ 𝑆𝑔 and Applicable(𝑠) ≠ ∅ do

1 𝑎 ←Lookahead (𝑠, 𝜃)
if 𝑎 = failure then return failure
else

perform action 𝑎
𝑠← observe resulting state

Algorithm 8.2. MDP-Lookahead, acting with the guidance of lookahead search.

In most cases, the step “perform action 𝑎” in Run-Policy or MDP-Lookahead proce-
dures is not a primitive command. It requires further context dependent deliberation
and refinement, which are discussed next.

8.4.2 Refining Actions

Performing an action as specified in Run-Policy or in MDP-Lookahead is seldom an
atomic step. It requires refinement steps that may interfere with the current policy
or the lookahead procedure. In some cases the deterministic techniques discussed in
Part I and Part II can be used for performing these refinements. For example, 𝜋(𝑠)
can be considered as an HTN task, refined in the context of 𝑠 into a sequence of
primitives, to be performed sequentially until reaching some 𝑠′ ∈ 𝛾(𝑠, 𝜋(𝑠)). A few
extensions to deterministic methods for acting can be desirable when combined with
probabilistic models for planning. Among these, in particular, are the following:

• When a refined action 𝜋(𝑠) is performed and leads back to the state 𝑠, this
action may be performed again with a different refinement. After a few trials,
one may also switch in 𝑠 for 𝜋() to some other applicable action 𝑎′ ≠ 𝜋(𝑠).
This is equivalent to following a stochastic policy when needed.

• The refinement of 𝜋(𝑠) may require primitives to monitor the transition from 𝑠

to a state in 𝛾(𝑠, 𝜋(𝑠))

In general however refining probabilistic actions with deterministic techniques is
not satisfactory. Because of the nondeterminism, it is not obvious to decide when the
sequence in which 𝜋(𝑠) has been refined terminates and in which state of 𝛾(𝑠, 𝜋(𝑠)).
One needs to follow such a sequence in a conditional manner, with context dependent
branches. Acting with such a class of refinement methods is very important; it will
be covered in Part V.

168 8 Probabilistic Representation and Acting

8.5 Discussion and Bibliographic Notes

8.5.1 Foundations

Sequential decision making under uncertainty benefits from a long line of work in
mathematics, starting with Andrei Markov in the 19th century, who initiated the
theory of stochastic processes, now called Markov processes. The field developed
extensively in the 1950s with contributions from optimal control, operations research
and computer science. The Dynamic Programming book [109] opened the way to
numerous developments, detailed into influential monographs, for example, [294,
130, 919, 131].

Many of the early developments were focused on process maintenance problems
(Section 8.3.1). Goal reachability problems were also defined quite early: the analysis
developed in [132], who coined the name SSP, traces back their origin to [317].
However, their development is in many aspects more recent and remains active within
the artificial intelligence and automated planning communities, as illustrated with
numerous articles and books, for example, [190, 764].

8.5.2 Stochastic Shortest Path Models and Constrained Models

The highly successful Markov Decision Process (MDP) class of models grew up
into many extended and special cases.7 The Stochastic Shortest Path (SSP) model is
appealing for two reasons: (i) it is a simple and quite natural model for goal-oriented
probabilistic problems, and (ii) it is more general than many MDP models. As
demonstrated in [130] the SSP model includes as special cases the bounded horizon
and the discounted MDP models. The cost shaping property is due to [847].

SSP are defined in the literature with a few variations related to how the so-called
connectivity assumption and the positive cycle assumption are expressed. The first is
defined either by assuming that every state is safe or that 𝑠0 is safe. This amounts
to requiring either that there is no dead end in the domain or that existing dead ends
are avoidable with a safe policy starting at 𝑠0. The second assumption is equivalent
to requiring that every cycle not containing the goal has positive costs. These two
assumptions should preferably be expressed as conditions that are easily testable at
the specification stage of the domain. For example, demanding that every unsafe
policy has infinite cost is less restrictive than constraining all costs to be positive, but
it is also less easy to verify. A general approach is to allow for real costs and use
algorithms able to check and avoid dead ends (see Chapter 9).

The Constrained MDP model (C-MDP) has been proposed in [34, 1102] to handle
a constrained optimization objective. A special case is the bi-level optimization
problem of finding a policy whose expected cost is minimal, among those having the
maximum probability of reaching the goal [1103]. A generalization is given with
the Multi-Objective MDPs model (MO-MDP) [1168, 959], which extends C-MDP to
Pareto optimization approaches.

7These are, for example, C-MDP, MO-MDP, POMDP, MOMDP, CoMDP, MMDP, SIMDP, MDPIP,
HMDP, HDMDP, GSSP, S3P, DSSP, POSB-MDP, NEG-MDP, MAXPROB-MDP, MDP-IP, TiMDP,
CPTP, Dec-MDP, Dec-SIMDP, Dec-POMDP, MPOMDP, POIPSG, and COM-MTDP.

8.5 Discussion and Bibliographic Notes 169

8.5.3 Partially Observable Models

The model of Partially Observable Markov Decision Process (POMDP) provides an
important generalization regarding the epistemic condition of an actor, that is, what
it knows about the state it is in. The SSP and MDP models assume that after each
state transition the actor knows which state 𝑠 it has reached; it then proceeds with the
action 𝜋(𝑠) appropriate for 𝑠. The POMDP model considers that the actor does not
know its current state. It knows about the value of some observation variable 𝑜 ∈ 𝑂
and two probability distributions: Pr(𝑠′ |𝑠, 𝑎) for the transition from 𝑠 to 𝑠′ with 𝑎,
and Pr(𝑜 |𝑠′, 𝑎) for observing 𝑜 when reaching 𝑠′ with 𝑎. This gives a probability
distribution of possible states the actor might be in: 𝑏(𝑠), called the actor’s belief, is
the probability of being at some stage in state 𝑠. Beliefs are updated with Bayes rules.
The belief of being in 𝑠′ after doing 𝑎 in 𝑠 and observing 𝑜 is:

𝑏(𝑠′ |𝑎, 𝑜) =
∑

𝑠∈𝑆 Pr(𝑠′ |𝑠, 𝑎) Pr(𝑜 |𝑠′, 𝑎)𝑏(𝑠)
Pr(𝑜 |𝑏, 𝑎)

where Pr(𝑜 |𝑏, 𝑎) = ∑
𝑠,𝑠′∈𝑆 Pr(𝑠′ |𝑠, 𝑎) Pr(𝑜 |𝑠′, 𝑎)𝑏(𝑠).

It has been demonstrated that the last observation 𝑜 does not summarize the past
execution, but the last belief does [59]. Hence, a POMDP problem can be addressed
as an MDP problem in the belief space, which is continuous. One starts with an initial
belief 𝑏0 (initial state distribution) and seeks an optimal policy that gives for every
belief point 𝑏 an action 𝜋(𝑏), leading to a goal expressed in the belief space.

The value function is now a mapping from beliefs to real values; Bellman equation
8.4 is revised as:

𝑉∗(𝑏) = min
𝑎
{
∑︁
𝑠′
𝑏(𝑠′)𝑐𝑜𝑠𝑡 (𝑠, 𝑎, 𝑠′) +

∑︁
𝑜

Pr(𝑜 |𝑏, 𝑎)𝑉∗(𝑏(𝑠′ |𝑎, 𝑜))}

Several approaches generalizing MDP techniques to POMDPs have been proposed
(see Section 9.6). They face significant difficulties, among which the following:

• A tremendous complexity if the belief space is discretized: each point corre-
sponds to a subset of states. Hence, a discretized belief space is in 𝑂 (2 |𝑆 |).
Since |𝑆 | is already exponential in the number of state variables, sophisticated
algorithms and heuristics do not scale up very well. Significant modeling effort
is required for decomposing a domain into small loosely coupled problems
amenable to a solution. For example, a clever hierarchization technique is
required for a small state space (about 600 states) to obtain a solution [897].

• A strong assumption (not always highlighted in the POMDP literature): a policy
from beliefs to actions requires the action 𝜋(𝑏) to be applicable in every state
𝑠 compatible with a belief 𝑏. It is not always the case that the intersection of
Applicable(𝑠) over all states 𝑠 compatible with 𝑏 is meaningful. Sometimes,
one would like to be able to choose an action that is feasible in a subset of 𝜋(𝑏)
on the basis of states likelihood, as for example in [23].

• A termination issue: expressing the goal in the belief space is unnatural. A
simple threshold on

∑
𝑠∈𝑆𝑔 𝑏(𝑠)may not be sufficient. This is often an argument

in defense of infinite horizon discounted POMDP. But discounts in POMDP
can be avoided with termination actions in episodic tasks problems [466].

170 8 Probabilistic Representation and Acting

• The partial observability model of POMDP is restrictive. It does not consider
that part of 𝑠 can be observable. An actor may distinguish between invisible
and observable state variables; the latter may be visible or hidden at some point.
One may act such as to observe observable variables needed for the activity,
and such as to reduce the uncertainty about the states it will be in its planned
course of action. Such a partial observability approach is pursued for example
with the MOMDP models [858, 48], which consider that the set of states is the
Cartesian product of a set of visible state variables and a set of hidden ones.

• Finally, observability issues requires a specific handling of observation actions.
The set 𝑂 has to be structured. At some step one does not try to observe
all observable variables, but only those relevant for the current stage of the
task at hand; irrelevant unknown observables are ignored. Further, it is not a
single observation step; it can be a succession of observations until reducing
the uncertainty to a level consistent with what’s at stake. These observation
actions have a cost and need to be planned for. This is for example illustrated
in the HiPPo systems of [1048] for a robotics manipulation task.

We’ll come back to POMDP and MOMDP in the following chapter.

8.5.4 Domain Modeling and Languages

An overview of factored MDP representations with their merits and problems is given
in [170]. Their use for representing actions has been introduced in [280]. The
modeling language PPDDL [1212] extends PDDL to probabilistic operators.

The Relational Dynamic Influence Diagram Language (RDDL) [979] is a com-
pact representation integrating Dynamic Bayesian Networks and influence diagrams.
Bayesian Networks are covered in the textbook [628]. RDDL allows efficiently mod-
eling domains with exogenous events.

8.5.5 Extended MDP Models

We referred to probabilistic MDP models with timeless state transitions. Many appli-
cations require explicit time, durations, concurrency, and synchronization concepts.
A simple MDP extension adds time in the state representation, for example, time as an
additional state variable. In this direct extension, timeless MDP techniques can be used
to handle actions with deterministic durations and goals with deadlines. However,
this model cannot handle concurrent actions. The Semi-Markov Decision Process
(SMDP) model [522, 368] extends this simple temporal MDP model with probabilis-
tic integer durations. The Time-dependent MDP (TiMDP) model [173] considers
distribution of continuous relative or absolute time durations. Concurrent MDPs
extend the timeless MDP model to handle concurrent steps of unit duration, where
each transition is a subset of actions [767]. A Generalized SMDP model combines
semi-Markov models with concurrency and asynchronous events [1215]. Algorithms
for these models have been proposed by several authors, notably [765, 724, 766]. It is
interesting to note that SMDP provide a foundation to several reinforcement learning
approaches [870, 39, 756, 350].

8.6 Exercises 171

Possibilistic MDP transpose the Markov framework to cases where uncertainty
is due to a lack of knowledge handled with qualitative estimates [968]. In some
domains this was found to give better results than with probabilistic MDP [312]. A
hybrid framework where state transitions can be modeled as either possibilistic or
probabilistic, depending in the nature of actions and available information, has also
been proposed [101].

Another important extension is related to continuous and hybrid state space and
action space. The hybrid state space combines discrete and continuous state vari-
ables. The latter have been addressed with severable discretization techniques such
as adaptive approximation [819], piecewise constant or linear approximation [345],
and parametric function approximation [728, 662]. Linear Programming approaches
for hybrid state spaces have been proposed by several authors, for example, [453].
Heuristic search techniques have been extended to hybrid cases, for example, the
HAO∗ algorithm [787].

Finally, there are several extensions of the stationary and deterministic policy
models. A stochastic policy maps states into probability distributions over actions. A
non-stationary policy evolve with time, that is, it is a mapping of state and time into
either actions when it is deterministic, or into probability distributions over actions
when the policy is both stochastic and non-stationary. In some cases, such as in finite
horizon problems, a non-stationary policy can be better than a stationary one, for
example, 𝜋(𝑠) is not the same action when visiting 𝑠 the first time then on the 𝑛𝑡ℎ
visit. However, extending the state representation (with variables representing the
context) is often easier than handling general non-stationary stochastic models, for
which fewer algorithms and computational results are known (for example, [987]).

8.6 Exercises

8.1. In the SSP shown here, every action
has cost 1 except wait, which has cost
0. For each action with more than one
outcome, all outcomes are equally likely.

a1s0

s2

s3
s1 a2

a5
a4

goal
wait

a3

a6

s4
a7

(a) How many different policies are there (excluding partial policies)? Explain.
(b) Write and solve a set of linear equations for the expected cost of the policy

𝜋 = {(𝑠0, 𝑎1), (𝑠1, 𝑎2), (𝑠2, 𝑎3), (𝑠3,wait), (𝑠4, 𝑎5)}.
(c) Give an optimal policy 𝜋∗. Is there more than one such policy? What is𝑉 𝜋∗ (𝑠)

for each 𝑠?

8.2. Prove that the recursive Equation 8.3 follows from the definition of 𝑉 𝜋 (𝑠) in
Equation 8.1.

8.3. Prove that a policy 𝜋∗ that meets Equation 8.5 is optimal.

8.4. In the domain of Example 8.4, consider a policy 𝜋 such that 𝜋(𝑠0) = Both. Is
𝜋 a safe policy when 𝑠0 is either (acb), (bca) or (cba)? Is it safe when 𝑠0 is (bac) or
(cab)?

172 8 Probabilistic Representation and Acting

8.5. Consider the domain Σ in Example 8.4.

(a) Extend Σ with a fourth action denoted All, which is applicable only in the state
(𝑎𝑎𝑎) and flips randomly the three variables at once. Does the corresponding
state space have dead ends? If not, run algorithm VI on this example, assuming
uniform cost and probability distributions.

(b) Extend Σ by having the three state variables range over {1, 2, . . . , 𝑚}, such
that actions Left, Right, and Both are as defined initially; action All is applicable
only to a state of the form (𝑖, 𝑖, 𝑖) where 𝑖 is even; it flips randomly the three
variables. Assume 𝑠0 = (1, 2, 3) and goals are of the form (𝑖, 𝑖, 𝑖) where 𝑖 is
odd. Run VI on this extended example and analyze its performance with respect
to 𝑚.

8.6. Write the probabilistic precondition-effect operators for the take and put actions
of the domain PAM𝑝 (Example 8.10). How many ground actions are there is this
domain?

8.7. For the domain in Example 8.11, analyze the interactions between the arrival,
departure, and switch events with the action take and put. Compute the sets 𝛾(𝑠, take)
and 𝛾(𝑠, put) for different states 𝑠.

8.8. Analyze a generalized PAM𝑞 domain where the arrival and departure of contain-
ers can take place even in the robot location. Define conditional probability trees for
the variable ctrs.

8.9. Model an MDP system controlling a single elevator. Consider state variables
such as current-floor the elevator is in, pending-floors a list of floors demanded by
on board passengers, demanded-floors a list of floors of waiting passengers, period
characterize the time period in the day and week for the demand. An action move
takes the elevator to a next pending floor; updates its state variables for the passengers
getting out, those getting in with random destinations, and new random demand with
distributions depending on the period. It also updates the period according to a
particular distribution. Discuss the limitations of such a model.

9 Planning with Probabilistic Models

This chapter is about techniques for solving MDP problems. It presents planning
algorithms that seeks optimal or near optimal solution policies for a domain. Most
of the chapter is focused on indefinite horizon goal reachability domains that have
positive costs and a safe solution; they may have dead ends but those are avoidable.
This is a category of stochastic shortest path problems (see Section 8.3.1). Another
category of SSP problems allows real costs but requires the value function to be
infinite in any unsafe state. This assumption is difficult to grant when designing a
domain, whereas modeling with positive costs is easier.

The chapter is organized into four main sections:
• planning algorithms based on dynamic programming and the optimality prin-

ciple, i.e., policy iteration and value iteration and their extensions,
• heuristic search planning algorithms,
• linear programming approaches, capable of solving SSPs with constraints,
• online planning approaches with generative sampling models, mainly deter-

minization techniques and Monte Carlo Tree Search techniques.

9.1 Dynamic Programming Algorithms

Dynamic programming as been the first and main algorithmic approach for solving
MDP problems with an explicit state space in a flat representation. We assume here
strictly positive costs (i.e., in R+) and domains without dead end.

9.1.1 Optimality Principle

Recall from Section 8.1.3 that the value function 𝑉 𝜋 is the expected sum of the cost
of the actions obtained by following a safe policy 𝜋 from a state 𝑠 to a goal. Since all
costs are in R+, 𝑉 𝜋 : Domain(𝜋) → R+. We assume a domain without dead ends,
hence a safe policy exists. 𝑉 𝜋 is given by Equation 8.3:

𝑉 𝜋 (𝑠) =
{

0 if 𝑠 ∈ 𝑆𝑔,∑
𝑠′∈𝛾 (𝑠, 𝜋 (𝑠)) Pr(𝑠′ |𝑠, 𝜋(𝑠)) [cost(𝑠, 𝜋(𝑠), 𝑠′) +𝑉 𝜋 (𝑠′)] otherwise.

A policy 𝜋′ dominates a policy 𝜋 if and only if 𝑉 𝜋′ (𝑠) ≤ 𝑉 𝜋 (𝑠) for every state for
which both 𝜋 and 𝜋′ are defined. An optimal policy 𝜋∗ dominates all other policies.
It has a minimal expected cost over all possible policies: 𝑉∗(𝑠) = min𝜋 𝑉

𝜋 (𝑠). The
Bellman equation 8.4 gives recursively 𝑉∗ as:

𝑉∗(𝑠) =
{

0 if 𝑠 ∈ 𝑆𝑔,
min𝑎{

∑
𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) +𝑉∗(𝑠′)] otherwise.

Free pre-publication, for personal use only. To be published by Cambridge University Press.

173

174 9 Planning with Probabilistic Models

The optimal policy 𝜋∗ is derived from 𝑉∗:

𝜋∗(𝑠) = argmin
𝑎

∑︁
𝑠′∈𝛾 (𝑠,𝑎)

Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) +𝑉∗(𝑠′)] . (9.1)

For an arbitrary safe solution 𝜋, and 𝑉 𝜋 as in Equation 8.3, let :

𝑄 𝜋 (𝑠, 𝑎) =
∑︁

𝑠′∈𝛾 (𝑠,𝑎)
Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) +𝑉 𝜋 (𝑠′)] . (9.2)

𝑄 𝜋 (𝑠, 𝑎) is called the cost-to-go. It is the weighted sum of the immediate cost of 𝑎
in 𝑠 plus the following expected cost of the successors in 𝛾(𝑠, 𝑎), as estimated by 𝑉 𝜋 .
Note the relation of 𝑉 𝜋 to 𝑄 𝜋 :

𝑉 𝜋 (𝑠) = 𝑄 𝜋 (𝑠, 𝜋(𝑠)).

Given a policy 𝜋, we can compute the corresponding 𝑉 𝜋 , then from 𝑉 𝜋 we can
define another policy 𝜋′, called the greedy policy for 𝑉 𝜋 , which chooses in each state
the action that minimizes the cost-to-go, as estimated by 𝑉 𝜋 :

𝜋′(𝑠) = argmin
𝑎

∑︁
𝑠′∈𝛾 (𝑠,𝑎)

Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) +𝑉 𝜋 (𝑠′)]

= argmin
𝑎

𝑄 𝜋 (𝑠, 𝑎) (9.3)

In case of ties in the preceding minimum relation, we assume that the greedy policy
𝜋′ keeps the value of 𝜋, that is, if min𝑎 𝑄

𝜋 (𝑠, 𝑎) = 𝑉 𝜋 (𝑠) then 𝜋′(𝑠) = 𝜋(𝑠).

Proposition 9.1. When 𝜋 is a safe solution, then policy 𝜋′ from Equation 9.3 is safe
and dominates 𝜋, that is ∀𝑠 𝑉 𝜋′ (𝑠) ≤ 𝑉 𝜋 (𝑠). Further, if 𝜋 is not optimal, then there
is at least one state 𝑠 for which 𝑉 𝜋′ (𝑠) < 𝑉 𝜋 (𝑠).

Starting with an initial safe policy, we can repeatedly apply Proposition 9.1 to keep
improving from one policy to the next. This process converges because there is a
finite number of distinct policies and each iteration brings a strict improvement in at
least one state, unless already optimal. This is implemented in the Policy Iteration
algorithm, detailed in the next section.

Finally, note that the Bellman equation for 𝑉 (Equation 8.4) can also be expressed
for 𝑄:

𝑄∗(𝑠, 𝑎) =
∑︁

𝑠′∈𝛾 (𝑠,𝑎)
Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) +min

𝑎′
𝑄∗(𝑠′, 𝑎′)] (9.4)

from which the optimal policy is simply 𝜋∗(𝑠) = argmin𝑎 𝑄
∗(𝑠, 𝑎).

9.1.2 Policy Iteration

Policy Iteration (Algorithm 9.1), starts with an initial safe policy 𝜋0, for example,
𝜋0(𝑠) = argmin𝑎

∑
𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎) cost(𝑠, 𝑎, 𝑠′). It iteratively alternates over two

phases:

9.1 Dynamic Programming Algorithms 175

• a policy evaluation stage which computes 𝑉 𝜋 for current 𝜋, and
• a policy improvement stage, which updates 𝜋 with the greedy policy for the

newly found 𝑉 𝜋 . Possible ties in the policy improvement are broken by giving
preference to the current 𝜋, i.e., 𝜋 changes only when strictly improving the
minimized value.

Note the interaction between these two phases which permits convergence: updating
𝜋 to the greedy policy for current 𝑉 𝜋 makes the value function no longer that of the
changed 𝜋; updating 𝑉 𝜋 for the current policy makes 𝜋 no longer greedy for 𝑉 𝜋 . The
algorithm stops when reaching a fixed point on 𝜋, i.e., when 𝜋 remains unchanged
over an iteration.

Policy Iteration(Σ, 𝑆𝑔, 𝜋0)
𝜋 ← 𝜋0
until reaching a fixed point on 𝜋 do

1 foreach 𝑠 ∈ 𝑆 do // policy evaluation
compute 𝑉 𝜋 (𝑠)

2 foreach 𝑠 ∈ 𝑆 \ 𝑆𝑔 do // policy improvement
𝜋(𝑠) ← argmin𝑎

∑
𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) +𝑉 𝜋 (𝑠′)]

Algorithm 9.1. Policy Iteration algorithm.

There are three ways of evaluating 𝑉 𝜋 for current 𝜋. The direct method observes
that simple linear equations give𝑉 𝜋 when 𝜋 is fixed. Indeed Equation 8.3, considered
over the entire 𝑆, defines a system of 𝑛 linear equations, where 𝑛 = |𝑆 |, the 𝑛 unknown
variables being the values of 𝑉 𝜋 (𝑠). There is a solution to this 𝑛 linear equations
if and only if the current 𝜋 is safe. The value function 𝑉 𝜋 for the current 𝜋 can be
computed using classical linear calculs methods, such as Gaussian elimination.

A second method for finding 𝑉 𝜋 consists in computing iteratively the following
series of value functions:

𝑉𝑖 (𝑠) =
∑︁

𝑠′∈𝛾 (𝑠, 𝜋 (𝑠))
Pr(𝑠′ |𝑠, 𝜋(𝑠)) [cost(𝑠, 𝜋(𝑠), 𝑠′) +𝑉𝑖−1(𝑠′)] . (9.5)

It can be shown that, for any initial 𝑉0, if 𝜋 is safe, then this series converges
asymptotically to a fixed point equal to𝑉 𝜋 . In practice, one stops when max𝑠 |𝑉𝑖 (𝑠) −
𝑉𝑖−1(𝑠) | is small enough; 𝑉𝑖 is then taken as an estimate of 𝑉 𝜋 (more about this in the
next section).

A third approach estimates𝑉 𝜋 by computing Equation 9.5 not systematically, since
this may not feasible when 𝑆 is too large, but on randomly sampled paths in the MDP
graph. This approach fits into the approximate policy iteration (API) methods. It will
be detailed in Section 9.5.4.

Algorithm Policy Iteration, when initialized with a safe policy, strictly improves
in each iteration the current policy over the previous one, until reaching 𝜋∗. In
a domain that has no dead ends, there exists a safe 𝜋0. All successive policies
are also safe and monotonically decreasing for the dominance relation order, i.e.,

176 9 Planning with Probabilistic Models

if the successive policies defined by Policy Iteration are 𝜋0, 𝜋1, . . . , 𝜋𝑘 , . . . , 𝜋
∗ then

∀𝑠 𝑉∗(𝑠) ≤ . . . ≤ 𝑉 𝜋𝑘 (𝑠) ≤ . . . ≤ 𝑉 𝜋1 (𝑠) ≤ 𝑉 𝜋0 (𝑠). Because there is a finite number
of distinct policies, algorithm Policy Iteration with a safe 𝜋0 converges to an optimal
policy in a finite number of iterations.

The requirement that 𝜋0 is safe is met for domains without dead ends. If there are
possible dead ends, finding a safe 𝜋0 can be is difficult. We’ll discuss later heuristic
search techniques that can handle dead ends.

Generalized Policy Iteration. Policy Iteration performs the policy evaluation and
policy improvement stages completely, over the entire S, at each iteration. But this is
not strictly necessary. Generalized policy iteration interleaves partial iterative updates
of the 𝑉 𝜋 and partial greedy improvements of the current policy, possibly on single
states at a time. We’ll come back later to this interesting strategy, which has been less
explored for planning than for reinforcement learning where it is very convenient for
a progressively discovered model of a domain (see Section 10.6).

9.1.3 Value Iteration

We defined 𝑄 𝜋 and the greedy policy 𝜋′ with respect to the value function 𝑉 𝜋 . How-
ever, the same equations 9.2 and 9.3 can be applied to any value function 𝑉 , not just
𝑉 𝜋 . This gives a cost-to-go 𝑄𝑉 (𝑠, 𝑎) = ∑

𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) +𝑉 (𝑠′)]
and a greedy policy 𝜋(𝑠) = argmin𝑎{𝑄𝑉 (𝑠, 𝑎)} with respect to 𝑉 .1 From 𝑉 , a new
value function can be computed with the following equation:

𝑉 ′(𝑠) = min
𝑎
𝑄𝑉 (𝑠, 𝑎)

= min
𝑎

∑︁
𝑠′∈𝛾 (𝑠,𝑎)

Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) +𝑉 (𝑠′)] . (9.6)

𝑉 ′ is the minimum cost-to-go in 𝑠 when the successors values are estimated by 𝑉 .
Dynamic programming consists in applying Equation 9.6 repeatedly, using 𝑉 ′

as an estimate for computing the cost-to-go 𝑄𝑉 ′ , then another value function
min𝑎{𝑄𝑉 ′ (𝑠, 𝑎)}. This is implemented in the Value Iteration Algorithm 9.2.

Value Iteration starts with an arbitrary heuristic function 𝑉0, which estimates the
expected cost of reaching a goal from 𝑠. An easily computed heuristic is, for ex-
ample, 𝑉0(𝑠) = 0 when 𝑠 ∈ 𝑆𝑔, and 𝑉0(𝑠) = min𝑎

∑
𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎) cost(𝑠, 𝑎, 𝑠′)

otherwise. The algorithm iterates over improvements of the current value function by
performing repeated updates using Equation 9.6. An update at an iteration propagates
to 𝑉 ′(𝑠) changes in 𝑉 (𝑠′) from the previous iteration for the successors 𝑠′ ∈ 𝛾(𝑠, 𝑎).
This is pursued until a fixed point is reached. A fixed point is a full iteration over 𝑆
where 𝑉 ′(𝑠) remains identical to 𝑉 (𝑠) for all 𝑠. The returned solution 𝜋 is the greedy
policy for the final 𝑉 .

1The greedy policy for 𝑉 is sometimes denoted 𝜋𝑉 . When nonambiguous, in the remainder of this
chapter we simply denote 𝜋 the greedy policy for the current 𝑉 .

9.1 Dynamic Programming Algorithms 177

Value Iteration(Σ, 𝑆𝑔, 𝑉0)
𝑉 ← 𝑉0
until reaching a fixed point do

foreach 𝑠 ∈ 𝑆 \ 𝑆𝑔 do
1 𝑉 ′(𝑠) ← min𝑎{

∑
𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) +𝑉 (𝑠′)]}

𝑉 ← 𝑉 ′

𝜋(𝑠) ← argmin𝑎{
∑

𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) +𝑉 (𝑠′)]}

Algorithm 9.2. Synchronous Value Iteration algorithm. 𝑉0 is implemented as a
function, computed once in every state; 𝑉 , 𝑉 ′ and 𝜋 are global lookup tables.

Algorithm 9.2 is the synchronous version of Value Iteration. It implements a stage-
by-stage sequence of updates where the updates at an iteration are based on values of
𝑉 from the previous iteration.

Value Iteration(Σ, 𝑆𝑔, 𝑉0)
𝑉 ← 𝑉0
until reaching a fixed point do

foreach 𝑠 ∈ 𝑆 \ 𝑆𝑔 do
Bellman-Update(𝑠)

Algorithm 9.3. Value Iteration, asynchronous algorithm. Bellman-Update uses 𝑉
as a global variable.

An alternative is the asynchronous Value Iteration (Algorithm 9.3). There, 𝑉 (𝑠)
stands for the current value function for 𝑠 at some stage of the algorithm. It is
initialized as𝑉0 then repeatedly updated. An update of𝑉 (𝑠) takes into account values
of successors of 𝑠 and may affect the ancestors of 𝑠 within that same iteration over 𝑆.
In asynchronous Value Iteration, local updates are performed by the Bellman-Update
Algorithm 9.4.

Bellman-Update(𝑠)
foreach 𝑎 ∈ Applicable(𝑠) do

𝑄(𝑠, 𝑎) ← ∑
𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) +𝑉 (𝑠′)]

𝑉 (𝑠) ← min𝑎 𝑄(𝑠, 𝑎)
𝜋(𝑠) ← argmin𝑎 𝑄(𝑠, 𝑎)

Algorithm 9.4. The Bellman update procedure computes𝑉 (𝑠) as in Equation 9.6,
and 𝜋(𝑠) as the greedy policy for 𝑉 . 𝑄 can be implemented as a local data
structure, 𝜋 and 𝑉 as global data structures of algorithms using this procedure.

This procedure iterates over 𝑎 ∈ Applicable(𝑠) to compute 𝑄(𝑠, 𝑎) then the corre-
sponding minimum 𝑉 (𝑠) and 𝜋(𝑠). Several algorithms in this chapter use Bellman-
Update. Throughout the chapter, we assume that ties in argmin𝑎{𝑄(𝑠, 𝑎)}, if any, are

178 9 Planning with Probabilistic Models

broken in favor of the previous value of 𝜋(𝑠) and in a systematic way (for example,
lexical order of action names).

At any point of Value Iteration, either synchronous or asynchronous, an
update of a state makes its ancestors no longer meeting the equation
𝑉 (𝑠) = min𝑎

∑
𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) +𝑉 (𝑠′)]. A change in𝑉 (𝑠′), for any

successor 𝑠′ of 𝑠 (including when 𝑠 is its own successor), requires an update of 𝑠.
This is pursued until a fixed point is reached.

The termination condition of the outer loop of Value Iteration checks that a fixed
point has been reached, that is, a full iteration over 𝑆 without a change in 𝑉 . At the
fixed point, every state 𝑠 meets Equation 8.3, i.e., ∀𝑠 𝑉 (𝑠) = 𝑉 𝜋 (𝑠) for current 𝜋(𝑠).

In previous section, we emphasized that because there is a finite number of policies,
it make sense to stop Policy Iteration when a fixed point is reached. Here, there is
an infinite number of value functions; the precise fixed point is an asymptotic limit.
Hence, we refine the pseudocode of Value Iteration such as to stop when a fixed point is
approximately reached, within some acceptable margin of error. This can be assessed
by the amount of change in the value of 𝑉 (𝑠) during its update in Bellman-Update.
This amplitude of change is called the residual of a state:

Definition 9.2. The residual of a state 𝑠 with respect to 𝑉 is residual(𝑠) = |𝑉 (𝑠) −
min𝑎{

∑
𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) + 𝑉 (𝑠′)]}|. The global residual over the

entire state space 𝑆 is residual = max𝑠∈𝑆{residual(𝑠)}. □

At each iteration of Value Iteration, residual(𝑠) is computed before each update with
respect to the values of𝑉 at the previous iteration. The termination condition of Value
Iteration with a margin of error set to a small parameter 𝜂 > 0 is: residual ≤ 𝜂. Note,
however, that with such a termination condition, the value of 𝑉 (𝑠) at the last iteration
is not identical to 𝑉 𝜋 (𝑠) for current 𝜋(𝑠), as illustrated next.

4

s0
a

b

.2

s1 b

g
10

100
100

Figure 9.1. A very simple domain.

Example 9.3. Consider the very simple domain in Figure 9.1. Σ has three states,
𝑠0, 𝑠1, and the goal 𝑔, and two actions 𝑎 and 𝑏. Action 𝑎 leads in one step to 𝑔 with
probability 𝑝; it loops back on 𝑠0 with probability 1 − 𝑝. Action 𝑏 is deterministic.
Assume constant cost(𝑎) = 10, cost(𝑏) = 100 and 𝑝 = .2. Σ has two solutions,
denoted 𝜋𝑎 and 𝜋𝑏. Their values are:
𝑉 𝜋𝑎 (𝑠0) = 𝑐𝑜𝑠𝑡 (𝑎)

𝑝
= 50 (directly from Equation 8.3) and

𝑉 𝜋𝑏 (𝑠0) = 2 × 𝑐𝑜𝑠𝑡 (𝑏) = 200.
Hence 𝜋∗ = 𝜋𝑎.

Let us run Value Iteration (say, the synchronous version) on this simple domain
assuming 𝑉0(𝑠) = 0 in every state. After the first iteration 𝑉1(𝑠0) = 10 and 𝑉1(𝑠1) =
100. In the following iterations, 𝑉𝑖 (𝑠0) = 10 + .8 × 𝑉𝑖−1(𝑠0), and 𝑉𝑖 (𝑠1) remains
unchanged. The successive values of 𝑉 in 𝑠0 are: 18, 24.4, 29.52, 33.62, 36.89,

9.1 Dynamic Programming Algorithms 179

39.51, 41.61, 43.29, 44.63, 45.71, 46.56, and so on, which converges asymptotically
to 50.

With 𝜂 = 10−4, Value Iteration stops after 53 iterations with solution 𝜋𝑎 and
𝑉 (𝑠0) = 49.9996. With 𝜂 = 10−3, 10−2 and 10−1, termination is reached after 43,
32, and 22 iterations, respectively. With a larger value of 𝜂, say, 𝜂 = 5, termination
is reached after just 5 iterations with 𝑉 (𝑠0) = 33.62 (at this point: residual(𝑠0) =
33.62 − 29.52 < 𝜂). Note that at termination 𝑉 (𝑠0) ≠ 𝑉 𝜋𝑎 (𝑠0) for the found solution
𝜋𝑎. We’ll see next how to bound the difference 𝑉 𝜋 (𝑠0) −𝑉 (𝑠0). □

Properties of Bellman updates. The iterative dynamic programming updates cor-
responding to Equation 9.6 have several interesting properties, which are conveniently
stated with the following notation. Let (𝐵𝑉) be a value function corresponding to
a Bellman update of 𝑉 over 𝑆, that is, ∀𝑠 (𝐵𝑉) (𝑠) = min𝑎{𝑄𝑉 (𝑠, 𝑎)}. Successive
updates are denoted as: (𝐵𝑘𝑉) = (𝐵(𝐵𝑘−1𝑉)), with (𝐵0𝑉) = 𝑉 .

Proposition 9.4. For any two value functions 𝑉1 and 𝑉2 such that ∀𝑠 𝑉1(𝑠) ≤ 𝑉2(𝑠),
we have: ∀𝑠 (𝐵𝑘𝑉1) (𝑠) ≤ (𝐵𝑘𝑉2) (𝑠) for 𝑘 = 1, 2,

In particular, if a function𝑉0 is such that𝑉0(𝑠) ≤ (𝐵𝑉0) (𝑠), then a series of Bellman
updates is monotonically nondecreasing, in other words:
∀𝑠 𝑉0(𝑠) ≤ (𝐵𝑉0) (𝑠) ≤ . . . ≤ (𝐵𝑘𝑉0) (𝑠) ≤ (𝐵𝑘+1𝑉0) (𝑠) ≤

Proposition 9.5. In a domain without dead end, the series of Bellman updates starting
at any value function𝑉0 converges asymptotically to the optimal cost function𝑉∗, that
is, ∀𝑠 lim𝑘→∞(𝐵𝑘𝑉0) (𝑠) = 𝑉∗(𝑠).

Convergence and complexity of Value Iteration. For an MDP problem with positive
costs and no dead ends and for any value function𝑉0, Value Iteration terminates. Each
iteration runs in time O(|𝐴| × |𝑆 |) (when |𝛾(𝑠, 𝑎) | is upper bounded by some constant),
and the number of iterations required to reach the termination condition residual ≤ 𝜂
is finite; it can be bounded under some appropriate assumptions.

Proposition 9.6. For an MDP problem with positive costs and no dead ends, Value
Iteration reaches termination, with residual ≤ 𝜂, in a finite number of iterations.

Regardless of the value function 𝑉0, Value Iteration converges asymptotically to the
optimum:

Proposition 9.7. At termination of Value Iteration with residual ≤ 𝜂 in an MDP
problem with positive costs and no dead ends, the value 𝑉 is such that ∀𝑠 ∈ 𝑆

lim𝜂→0𝑉 (𝑠) = 𝑉∗(𝑠).

More precisely, it is possible to prove that at termination with 𝑉 and 𝜋 (the greedy
policy for 𝑉), the following bound holds:

∀𝑠 |𝑉 (𝑠) −𝑉∗(𝑠) | ≤ 𝜂 ×max{Φ∗(𝑠),Φ𝜋 (𝑠)}, (9.7)

180 9 Planning with Probabilistic Models

where Φ∗(𝑠) and Φ𝜋 (𝑠) are the expected number of steps to reach a goal from 𝑠 by
following 𝜋∗ and 𝜋 respectively. However, this bound is difficult to compute in the
general case.

More interesting properties can be established when Value Iteration uses a heuristic
function 𝑉0 that is admissible or monotone.

Definition 9.8. 𝑉0 is an admissible heuristic function if and only if ∀𝑠 𝑉0(𝑠) ≤ 𝑉∗(𝑠).
𝑉0 is a monotone heuristic function if and only if ∀𝑠 𝑉0(𝑠) ≤ min𝑎{𝑄(𝑠, 𝑎)}. □

Proposition 9.9. If𝑉0 is an admissible heuristic function, then at any iteration of Value
Iteration, the value function 𝑉 remains admissible. At termination with residual ≤ 𝜂,
the found value 𝑉 and policy 𝜋 meet the following bounds: ∀𝑠 𝑉 (𝑠) ≤ 𝑉∗(𝑠) ≤
𝑉 (𝑠) + 𝜂 ×Φ𝜋 (𝑠) and 𝑉 (𝑠) ≤ 𝑉 𝜋 (𝑠) ≤ 𝑉 (𝑠) + 𝜂 ×Φ𝜋 (𝑠).

Given 𝜋, Φ𝜋 (𝑠0), the expected number of steps to reach a goal from 𝑠0 following
𝜋 is computed by solving the 𝑛 linear equations:

Φ𝜋 (𝑠) =
{

0 if 𝑠 ∈ 𝑔,
1 +∑𝑠′∈𝛾 (𝑠, 𝜋 (𝑠)) Pr(𝑠′ |𝑠, 𝜋(𝑠))Φ𝜋 (𝑠′) otherwise. (9.8)

Note the similarity between Equation 8.3 and Equation 9.8: the expected number of
steps to a goal is simply 𝑉 𝜋 with unit costs. Note also that the bound 𝜂 ×Φ𝜋 (𝑠0) can
be arbitrarily large.

Value Iteration does not guarantee a solution with an a priori upper-bound differ-
ence to the optimum. This difference is bounded a posteriori. Proposition 9.9 entails
0 ≤ 𝑉 𝜋 (𝑠) − 𝑉∗(𝑠) ≤ 𝑉 𝜋 (𝑠) − 𝑉 (𝑠) ≤ 𝜂 × Φ𝜋 (𝑠). However, a guaranteed approxi-
mation procedure is easily defined using Value Iteration with an admissible heuristic.
Algorithm VI𝜖 , is a procedure to do this.

VI𝜖 (𝑉0, 𝜖)
𝑉 ← 𝑉0; initialize 𝜂 > 0 arbitrarily
while True do

run Value Iteration (Σ, 𝑉)
compute Φ𝜋 (𝑠0) for the found solution 𝜋
if 𝜂 ×Φ𝜋 (𝑠0) ≤ 𝜖 then return
else 𝜂← min{𝜖/Φ𝜋 (𝑠0), 𝜂/2}

Algorithm 9.5. VI𝜖 , a guaranteed approximation procedure for Value Iteration.

With an admissible heuristic, VI𝜖 returns a solution 𝜋 within 𝜖 of the optimum, that
is, 𝑉 𝜋 (𝑠0) −𝑉∗(𝑠0) ≤ 𝜖 . It repeatedly runs Value Iteration (with 𝑉 from the previous
iteration) using decreasing value of 𝜂 until the desired bound 𝜖 is reached. Notice the
difference between the roles of 𝜂, the margin of error for the fixed point, and 𝜖 , the
upper bound of the difference to the optimum.

9.1 Dynamic Programming Algorithms 181

Example 9.10. Going back to the simple domain in Example 9.3, assume we want
a solution no further than 𝜖 = .1 from the optimum. Starting with 𝜂 = 5, Value
Iteration finds the solution 𝜋𝑎 after 5 iterations. Equation 9.8 for solution 𝜋𝑎 gives
Φ𝜋𝑎 (𝑠0) = 5. Value Iteration is called again with the previous 𝑉 and 𝜂 = .02; it stops
after 23 iterations with the same solution and𝑉 (𝑠0) = 49.938. This solution is within
at most .1 of 𝜋∗. Note that 𝑉 (𝑠0) is also guaranteed to be within .1 of 𝑉 𝜋𝑎 (𝑠0). □

At termination of Value Iteration, 𝑉 𝜋 (𝑠0) for the found solution 𝜋 is unknown. It
is bounded with: 𝑉 (𝑠0) ≤ 𝑉 𝜋 (𝑠0) ≤ 𝑉 (𝑠0) + 𝜂 × Φ𝜋 (𝑠0). It is possible to compute
𝑉 𝜋 , as explained in Section 9.1.2, either by solving Equation 8.3 as a system of the
𝑛 linear equations or by repeated updates as in Equation 9.5 until the residual is less
than an accepted margin.

When the heuristic function is both admissible and monotone, then the number
of iterations needed to reach termination is easily bounded. Indeed, when 𝑉0 is
monotone, then𝑉0 ≤ (𝐵𝑉0) by definition, hence the remark following Proposition 9.4
applies. 𝑉 (𝑠) cannot decrease throughout Bellman updates, and it remains monotone.
Each iteration of increases the value of 𝑉 (𝑠) for some 𝑠 by at least 𝜂; it does not
decrease𝑉 for any state. This entails the following bound on the number of iterations:

Proposition 9.11. With an admissible and monotone heuristic, the number of itera-
tions needed by Value Iteration to reach termination with residual ≤ 𝜂 is bounded by
1/𝜂∑𝑆 [𝑉∗(𝑠) −𝑉0(𝑠)].

Practical considerations. Accepting a margin of error is reasonable because the
parameters of a model are always estimated with some uncertainty. There is no need to
seek an exact optimal solution with respect to imprecise parameters. An approximate
solution whose degree of optimality matches the accuracy of the cost and probability
parameters is sufficient. An amortization trade-off takes into account how many times
a suboptimal solution will be used for acting. It compares the corresponding loss in
the cost of actions to the cost of further refining a suboptimal solution. For example,
in a receding horizon approach in which 𝜋 is used just once and recomputed at every
stage, a suboptimal solution is often sufficient, whereas for a process-oriented problem
the same policy is used for a long time and may require careful optimization.

When 𝑆 is of a small enough size to be entirely explicited and maintained in the
memory of the planning computer (typically on the order of few mega states), then
Value Iteration is an easily implemented and practical algorithm. For reasonably
small values of 𝜂 (in the order of 10−3), often Value Iteration converges in a few dozen
iterations and is more efficient than Policy Iteration. Depending on the amortization
trade-off, the user may not even bother to compute Φ𝜋 and rely on a heuristic value
of the error parameter 𝜂. There are even cases in which Value Iteration may be
used online, for example, on a receding horizon schema: for |𝑆 | in the order of
few thousands states, the running time of Value Iteration is on the order of a few
milliseconds. This may happen in small domains and in well-engineered state spaces.

Value Iteration looks as a quite efficient and scalable planning algorithm. Unfor-
tunately, the state space in planning is exponential in the size of the input data: |𝑆 |
is in the order of 𝑚𝑘 , where 𝑘 is the number of ground state variables and 𝑚 is the

182 9 Planning with Probabilistic Models

size of their range. In many practical cases k is so large (that is, a few hundred)
that iterating over 𝑆 is not feasible. Options in such cases are to refine the model, to
decompose the problem into feasible subproblems, and to use domain configurable
control knowledge to reduce sharply the branching factor of a problem, and to use
focused search algorithms that explore a small part of the search space as discussed
in Section 9.2 and Section 9.5.

Example 9.12. Consider a robot servicing an environment that has six locations
𝑙0, 𝑙1, . . . , 𝑙5, which are connected as defined by the undirected graph of Figure 9.2.
Traversing an edge has a cost and a nondeterministic outcome: the tentative traversal
of a temporarily busy road has no effect. For example, when in location 𝑙0 the robot
takes the action move(𝑙0, 𝑙1); with a probability .5 the action brings the robot to 𝑙1,
but if the road is busy the robot has to return to 𝑙0; in both cases the action costs 2.
Edges are labelled by their traversal cost and probability of success.

1

l5

l0

l4 l3

l2

l1

10

5

5

5

5

2

2
2

2

.2

.5

.5

.5

.5
.2

.8

.8

.8

Figure 9.2. Connectivity graph of a simple environment.

In a realistic application, the robot would know (for example, from sensors in the
environment) when a road is busy and for how long. Let us assume that the robot
knows about a busy road only when trying to traverse it; a trial gives no information
about the possible outcome of the next trial. Finding an optimal policy for traversing
between two locations can be modeled as a simple MDP that has as many states as
locations. A state for a location 𝑙 has as many actions as outgoing edges from 𝑙; each
action has two possible outcomes: reaching the adjacent location or staying in 𝑙.

Let us run Value Iteration on this simple domain for going from 𝑙0 to 𝑙5. With
𝑉0 = 0 and 𝜂 = .5, Value Iteration terminates after 12 iterations (see Figure 9.3 which
gives 𝑉 (𝑙) for the first three and last three iterations). It finds the following pol-
icy: 𝜋(𝑙0)=move(𝑙0, 𝑙4), 𝜋(𝑙4)=move(𝑙4, 𝑙5), 𝜋(𝑙1)=move(𝑙0, 𝑙4), 𝜋(𝑙2)=move(𝑙0, 𝑙4),
𝜋(𝑙3)=move(𝑙0, 𝑙4). 𝜋 corresponds to the path ⟨𝑙0, 𝑙4, 𝑙5⟩. Its cost is 𝑉 𝜋 (𝑙0) = 20,
which is easily computed from 𝑉 𝜋 (𝑙4) = 5/.5 and 𝑉 𝜋 (𝑙0) = (5 + .5 × 𝑉 𝜋 (𝑙4))/.5.
Note that at termination 𝑉 (𝑙0) = 19.87 ≠ 𝑉 𝜋 (𝑙0). The residual after iteration 12 is
22.29 − 21.93 = .36 < 𝜂.

Let us change the cost of the edge (𝑙0, 𝑙4) to 10. The cost of the previous policy is
now 30; it is no longer optimal. Value Iteration terminates (with the same 𝜂) after 13
iterations with a policy corresponding to the path ⟨𝑙0, 𝑙1, 𝑙3, 𝑙5⟩; its cost is 26.5. □

9.1 Dynamic Programming Algorithms 183

Figure 9.3. 𝑉 (𝑙) after the first three and last three iterations of Value Iteration on the
domain of Figure 9.2.

Iteration 𝑙0 𝑙1 𝑙2 𝑙3 𝑙4
1 2.00 2.00 2.00 3.60 5.00
2 4.00 4.00 5.28 5.92 7.50
3 6.00 7.00 7.79 8.78 8.75
10 19.52 21.86 21.16 19.76 9.99
11 19.75 22.18 21.93 19.88 10.00
12 19.87 22.34 22.29 19.94 10.00

Value Iteration versus Policy Iteration. The reader has noticed the formal similarities
between Value Iteration and Policy Iteration: the two algorithms rely on repeated
updates until reaching a fixed point. Their differences are worth being underlined:

• Policy Iteration approaches𝑉∗ from above, while Value Iteration approaches the
optimum from below. The latter can greatly benefit from a heuristic function.
Policy Iteration requires a safe initial 𝜋0, but my also gain efficiency with a
heuristic.

• Policy Iteration computes 𝑉 𝜋 for the current and final solution 𝜋, while Value
Iteration relies on an approximate value of 𝑉 𝜋 for the greedy 𝜋.

• Policy Iteration reaches exactly its fixed point while a margin of error has to be
set for Value Iteration, allowing for the flexibility illustrated in the procedure
VI𝜖 .

Note, however, that when Policy Iteration relies on the iterative method of Equation 9.5
for computing 𝑉 𝜋 the two algorithms can be quite close.

Extensions of Value Iteration. Algorithm Value Iteration allows for several improve-
ments and optimizations, such as ordering 𝑆 according to a dynamic priority scheme,
or partitioning 𝑆 into acyclic components. The latter point is motivated by the fact that
Value Iteration can be made to converge with just one outer loop iteration on acyclic
And/Or graphs.

A variant of Value Iteration, called Backward Value Iteration, focuses Value Iteration
by performing updates in reverse order, starting from the set of goal states, and
updating only along the current greedy policy (instead of a Bellman update over all
applicable actions). A symmetrical variant, Forward Value Iteration, performs the
outer loop iteration on subsets of 𝑆, starting from 𝑠0 and its immediate successors,
then their successors, and so on.

More generally, asynchronous Value Iteration does not need to update all states at
each iteration. It can be specified as follows: pick up a state 𝑠 and update it. As long
as the pick ups are fair, that is, no state is left indefinitely non-updated, the algorithm
converges to the optimum. This opens the way to an important extension of Value
Iteration for domains that have safe solutions but also dead ends. For that, two main
issues need to be tackled:

• do not require termination with a fixed point for every state in 𝑆 because this is

184 9 Planning with Probabilistic Models

needed only for the safe states in 𝛾̂(𝑠0, 𝜋) and because there may not be a fixed
point for unsafe states; and

• make sure that the values 𝑉 (𝑠) for unsafe states keep growing strictly such as
to drive the search towards safe policies.

These issues are developed next with heuristic search algorithms.

9.2 Heuristic Search Algorithms

Heuristic search algorithms exploit the guidance of an initial value function 𝑉0 to
focus an MDP planning problem on a small part of the search space. We assume here
domains with positive costs, a safe solution and possible dead ends. Before getting
in the specifics of a few algorithms, let us explain their commonalities on the basis of
the following search schema.

9.2.1 A General Heuristic Search Schema

The main idea of heuristic search algorithms is to explore a focused part of the search
space and to perform Bellman updates within this focused part, instead of over the
entire 𝑆. This explored part of the search space starts with {𝑠0} and is incrementally
expanded. Let the Envelope be the set of states that have been generated at some point
by a search algorithm. The Envelope is partitioned into:

(i) Goal states, for which 𝑉 (𝑠) = 0.
(ii) Fringe states, non-goal states whose successors are still unknown. For a fringe

state, 𝜋(𝑠) is not yet defined and 𝑉 (𝑠) = 𝑉0(𝑠).
(iii) Interior states, whose successors are already in the Envelope.

Note that since this is a partition, fringe and interior states are not goals.
Expanding a fringe state 𝑠 requires finding its successor states and computing

𝑄(𝑠, 𝑎) = ∑
𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) + 𝑉 (𝑠′)], 𝑉 (𝑠) = min𝑎{𝑄(𝑠, 𝑎)}, and

𝜋(𝑠) = argmin𝑎{𝑄(𝑠, 𝑎)}, the greedy policy for current 𝑉 . Updating an interior state
𝑠 means performing a Bellman update on 𝑠. When a descendant 𝑠′ of 𝑠 gets expanded
or updated, 𝑉 (𝑠′) changes, which makes 𝑉 (𝑠) no longer equal to min𝑎{𝑄(𝑠, 𝑎)} and
requires updating 𝑠.

Let us define the useful notions of open and solved states with respect to 𝜂, a given
margin of error.

Definition 9.13. A state 𝑠 ∈ Envelope is open when 𝑠 is either a fringe or an interior
state such that residual(𝑠) = |𝑉 (𝑠) −min𝑎{𝑄(𝑠, 𝑎)}| > 𝜂. □

Definition 9.14. A state 𝑠 ∈ Envelope is solved when the current 𝛾̂(𝑠, 𝜋) has no open
state; i.e., 𝑠 is solved when ∀𝑠′ ∈ 𝛾̂(𝑠, 𝜋) either 𝑠′ ∈ 𝑆𝑔 or residual(𝑠′) ≤ 𝜂. □

Recall that 𝛾̂(𝑠, 𝜋) includes 𝑠 and the states in the Envelope reachable from 𝑠

by current 𝜋. It defines Graph(𝑠, 𝜋), the current solution graph starting from 𝑠.
Throughout Section 9.2, 𝜋 is the greedy policy for current 𝑉 ; it changes after an
update. Hence 𝛾̂(𝑠, 𝜋) and Graph(𝑠, 𝜋) are defined dynamically.

9.2 Heuristic Search Algorithms 185

Most heuristic search algorithms use the preceding notions and are based on dif-
ferent instantiations of a general schema called Find&Revise (Algorithm 9.6), which
repeatedly performs a Find step followed by a Revise step.

Find&Revise(Σ, 𝑠0, 𝑆𝑔, 𝑉0)
until 𝑠0 is solved do

select an open state 𝑠 in 𝛾̂(𝑠0, 𝜋)
if 𝑠 is a fringe state then expand 𝑠
else revise 𝑠

Algorithm 9.6. Find&Revise schema. The specifics of the Find and the Revise
steps depend on the particular algorithm instantiating this schema.

The Find step is a traversal of the current 𝛾̂(𝑠0, 𝜋) for finding and choosing an open
state 𝑠. This Find step has to be systematic: no state in 𝛾̂(𝑠0, 𝜋) should be left open
forever without being chosen for revision.

The Revise step expands a fringe state or updates an interior state whose residual >
𝜂. Revising a state can change current 𝜋 and hence 𝛾̂(𝑠0, 𝜋). At any point, either a
state 𝑠 is open, or 𝑠 has an open descendant (whose revision will later make 𝑠 open),
or 𝑠 is solved. In the latter case, 𝛾̂(𝑠, 𝜋) does not change anymore.

Find&Revise iterates until 𝑠0 is solved, that is, there is no open state in 𝛾̂(𝑠0, 𝜋).
With an admissible heuristic function, Find&Revise converges to a solution which is
asymptotically optimal with respect to 𝜂.

Proposition 9.15. For an MDP problem with positive costs and no dead ends, and if
𝑉0 is an admissible heuristic, then Find&Revise with a systematic Find step has the
following properties:

• the algorithm terminates with a safe solution,
• 𝑉 (𝑠) remains admissible for all states in the Envelope,
• the returned solution is asymptotically optimal with respect to 𝜂; its difference

with 𝑉∗ is bounded by: 𝑉∗(𝑠0) − 𝑉 (𝑠0) ≤ 𝜂 × Φ𝜋 (𝑠0), where Φ𝜋 is given by
Equation 9.8, and

• if 𝑉0 is admissible and monotone then the number of iterations is bounded by
1/𝜂∑𝑆 [𝑉∗(𝑠) −𝑉0(𝑠)].

These properties are inherited from Value Iteration.

Dealing with dead ends. As discussed earlier, Dynamic Programing algorithms
are limited to domains without dead ends, whereas heuristic search algorithms can
overcome this limitation.

Notice first that only reachable dead ends can be of concern to an algorithm focused
on the part of the state space reachable from 𝑠0. Reachable dead ends are handled as
follow:

186 9 Planning with Probabilistic Models

• a deep dead end is a state 𝑠 from which every action leads to an infinite loop
never reaching a goal. Equation 8.1 ensures that 𝑉 (𝑠) grows infinitely when 𝑠
is a dead end. Indeed, 𝑉 (𝑠) is the expected sum of strictly positive costs over
sequences of successors of 𝑠 that grow to infinite length without reaching a
goal.

• an immediate dead end is a state 𝑠 such that Applicable(𝑠) = ∅ (as in Ex-
ample 8.4). To make 𝑉 defined in such a state, we can extend the defini-
tion by adding a third clause in Equation 8.3, stating simply: 𝑉 (𝑠) = ∞ if
Applicable(𝑠) = ∅. Alternatively, we can keep all the definition as introduced
so far and extend the specification of a domain with a dummy action, 𝑎deadend,
applicable only in states that have no other applicable action; 𝑎deadend is such as
𝛾(𝑠, 𝑎deadend) = {𝑠} and cost(𝑠, 𝑎deadend, 𝑠) = constant> 0. This straightforward
trick brings us back to the case of deep dead ends.

Because𝑉 (𝑠) grows unbounded when 𝑠 is a dead end, it is possible to show that all
the properties of Find&Revise in Proposition 9.15 hold also for domains with positive
costs, a safe solution in 𝑠0, and reachable dead ends. Let us explain why this is the
case:

• Since 𝑉 grows infinitely for dead ends, and since an unsafe state has at least a
dead end descendant for any policy and because all costs are strictly positive
then ∀𝑠 unsafe and ∀𝜋, 𝑉 𝜋 (𝑠) also grows infinitely.

• With a systematic Find, successive Bellman updates will make at some point
in two states 𝑠 safe and 𝑠′ unsafe: 𝑉 (𝑠) < 𝑉 (𝑠′). Consequently, if 𝑠 is safe, the
minimization min𝑎{𝑄(𝑠, 𝑎)} will rule out unsafe policies.

• Finally, Find&Revise does not iterate over the entire state space but only over
the current 𝛾̂(𝑠0, 𝜋). Since 𝑠0 is assumed to be safe, 𝛾̂(𝑠0, 𝜋) will contain at
some point only safe states over which the convergence to a goal is granted.

Finally, Proposition 9.15 holds also for MDP domains with algebraic cost but where
𝑉 (𝑠) grows infinitely for every unsafe state. However this last assumption is not easily
checked when specifying a domain.

Note that Value Iteration cannot handle dead ends as Find&Revise does, since Value
Iteration iterates over the entire space 𝑆, hence cannot converge with unsafe states
because there is no fixed point for dead ends (reachable or not). Heuristic search
algorithms implementing a Find&Revise schema can find a near-optimal partial policy
by focusing on 𝛾̂(𝑠0, 𝜋), which contains only safe states when 𝑠0 is safe.

Find&Revise opens a number of design choices for the instantiation of the Find and
the Revise steps and for other practical implementation issues regarding the possible
memorization of the envelope and other needed data structure. Find&Revise can be
instantiated in different ways, for example:

• with a best-first search, as in the algorithms AO*, LAO*, and their extensions
(Section 9.2.2);

• with a depth-first and iterative deepening search, as in HDP, LDFS, and their
extensions (Sections 9.2.3 and 9.2.4);

9.2 Heuristic Search Algorithms 187

• with a stochastic simulation search, as in RTDP, LRTDP, and their extensions
(Section 9.5.3).

These algorithms inherit the preceding properties of Find&Revise. They have
additional characteristics, adapted to different application features. In the remainder
of this chapter, we present some of them, assuming to have an MDP problem with
positive cost, where 𝑠0 is safe and 𝑉0 is admissible.

9.2.2 Best-First Search

In deterministic planning, best-first search is illustrated with the A* algorithm for
finding optimal paths in graphs. In MDP, best-first search relies on a generalization
of A* for finding optimal graphs in And/Or graphs. This generalization corresponds
to two algorithms: AO* and LAO*. AO* is limited to acyclic And/Or graphs, while
LAO* handles cyclic search spaces. Both algorithms iterate over two steps, which will
be detailed shortly:

(i) Starting at 𝑠0, follow the current best solution graph 𝛾̂(𝑠0, 𝜋) to find its fringe
states, and expand one of them.

(ii) Update the search space, starting at the expanded state.

The main difference between the two algorithms is in step (ii). When the search space
is acyclic, AO* is able to update the search space in a bottom-up stage-by-stage process
focused on the current best policy. When the search space and the solution graph
can be cyclic, LAO* has to combine best-first search with a Dynamic Programming
update.

AO*(Σ, 𝑠0, 𝑔,𝑉0)
Envelope← {𝑠0}
𝜋 ← ∅; 𝑉 (𝑠0) ← 𝑉0(𝑠0)
while 𝛾̂(𝑠0, 𝜋) has fringe states do

1 traverse 𝛾̂(𝑠0, 𝜋) and select a fringe state 𝑠 ∈ 𝛾̂(𝑠0, 𝜋)
foreach 𝑎 ∈ Applicable(𝑠) and 𝑠′ ∈ 𝛾(𝑠, 𝑎) do

if 𝑠′ is not already in Envelope then
add 𝑠′ to Envelope
𝑉 (𝑠′) ← 𝑉0(𝑠′)

2 AO-Update(𝑠) // alternatively: LAO-Update(𝑠)

Algorithm 9.7. AO*, best-first search algorithm for acyclic domains. Replacing
step 2 by a call to LAO-Update(𝑠) gives LAO*. The variables Envelope, 𝜋, and 𝑉
are global.

Starting at 𝑠0, each iteration of AO* (Algorithm 9.7) extracts the current best solution
graph by doing a forward traversal along current 𝜋. In each branch, the traversal stops
when it reaches a goal or a fringe state. The selection of which fringe state to expand
is arbitrary. This choice does not change the convergence properties of the algorithm

188 9 Planning with Probabilistic Models

but may affect its efficiency. The expansion of a state 𝑠 changes generally 𝑉 (𝑠). This
requires updating 𝑠 and all its ancestors in the envelope

AO-Update(𝑠)
𝑍 ← {𝑠}
while 𝑍 ≠ ∅ do

select 𝑠 ∈ 𝑍 such that 𝑍 ∩ 𝛾̂(𝑠, 𝜋) = {𝑠}
remove 𝑠 from 𝑍

Bellman-Update(𝑠)
𝑍 ← 𝑍 ∪ {𝑠′ ∈ Envelope | 𝑠 ∈ 𝛾(𝑠′, 𝜋(𝑠′))}

Algorithm 9.8. AO-Update, bottom-up update for AO*.

AO-Update (Algorithm 9.8) implements this update in a bottom-up stage-by-stage
procedure, from the current state 𝑠 up to 𝑠0. The set of states that need to be updated
consists of all ancestors of 𝑠 from which 𝑠 is reachable along current 𝜋. Note that
this set is not strictly included in current 𝛾̂(𝑠0, 𝜋). It is generated incrementally as the
set 𝑍 of predecessors of 𝑠 along current 𝜋. Bellman update is applied to each state
in 𝑍 whose descendants along current 𝜋 are not in 𝑍 . Because the search space is
acyclic, this implies that the update of a state takes into account all its known updated
descendants, and has to be performed just once. The update of 𝑠 redefines 𝜋(𝑠) and
𝑉 (𝑠). The predecessors of 𝑠 along 𝜋 are added to 𝑍 .

A few additional steps are needed in this pseudocode for handling dead ends. The
dummy action 𝑎deadend, discussed earlier, introduces cycles; this is not what we want
here. In the acyclic case, the only dead ends are immediate, that is, states not in 𝑆𝑔
with no applicable action. This is easily detected when such a state is selected as a
fringe for expansion; that state is simply labelled as a dead end. In AO-Update, for a
state 𝑠 that has a dead end successor in 𝛾(𝑠, 𝜋(𝑠)), the action corresponding to 𝜋(𝑠)
is removed from Applicable(s); if 𝑠 has no other applicable action then 𝑠 is in turn
labeled a dead end, otherwise Bellman-Update(𝑠) is performed, which redefines 𝜋(𝑠).

AO* on an acyclic search space terminates with a solution. When 𝑉0 is admissible,
𝑉 (𝑠) remains admissible; at termination the found solution 𝜋 is optimal and 𝑉 (𝑠0)
is its cost. We finally note that an efficient implementation of AO* may require a
few incremental bookkeeping and simplifications. One consists in changing 𝑍 after
the update of 𝑠 only if 𝑉 (𝑠) has changed. Another is to label solved states to avoid
revisiting them. Because the space is acyclic, a state 𝑠 is solved if it is either a goal or
if all the successors of 𝑠 in 𝛾(𝑠, 𝜋(𝑠)) after an update are solved.

Example 9.16. Consider the domain in Figure 9.4, which has 17 states, 𝑠0 to 𝑠16 and
three actions a, b, and c. Connectors are labeled by the action name and cost, assumed
independent of successor states; we also assume uniform probability distributions. Let
us take 𝑉0(𝑠) = min𝑎{cost(𝑠, 𝑎, 𝑠′)} and 𝑆𝑔 = {𝑠12, 𝑠15, 𝑠16}.

AO* terminates after 10 iterations, which are summarized in Figure 9.5. In the
first iteration, 𝑉 (𝑠0) = min{5 + 2+4

2 , 19 + 15, 12 + 5+9
2 } = 8. In the second iteration,

𝑉 (𝑠1) = min{7.5, 24.5, 7}; the update changes 𝑉 (𝑠0), but not 𝜋(𝑠0). Similarly after

9.2 Heuristic Search Algorithms 189

s0

s1 s2 s3

s4 s5 s6 s7

s9
s8

s10

s12

s11

s13

s15
s14

s16

5

12

4

5

19

2

4

20 4

8
5

3
4 5

7
10

6

20 15 6
9

2535

4

a

b

c

c

b
b

b

b

b

a a

a

a

a

a

a

a

a

a
a

a

a

b

b

Figure 9.4. Example of an acyclic search space.

Figure 9.5. Iterations of AO* on the example of Figure 9.4: expanded state, sequence of
updated states, value, and policy in 𝑠0 after the update.

𝑠 𝑉 (𝑠) 𝜋(𝑠) Updated states 𝜋(𝑠2) 𝜋(𝑠1) 𝜋(𝑠0) 𝑉 (𝑠0)
𝑠0 8 a a 8
𝑠1 7 c 𝑠0 c a 10.5
𝑠2 9 b 𝑠0 b c a 13
𝑠6 25 a 𝑠2, 𝑠1, 𝑠0 a a c 19
𝑠3 11.5 b 𝑠0 a a a 21.75
𝑠4 6 b 𝑠1, 𝑠0 a a c 22.25
𝑠9 21.5 a 𝑠3, 𝑠0 a a a 22.5
𝑠5 7 a 𝑠1, 𝑠0 a a a 23.5
𝑠11 10 a 𝑠4, 𝑠5, 𝑠2, 𝑠1, 𝑠0 b a a 25.75
𝑠13 47.5 a 𝑠6, 𝑠2, 𝑠1, 𝑠0 a a a 26.25

𝑠2 is expanded. When 𝑠6 is expanded, the updates changes 𝜋(𝑠2), 𝜋(𝑠1), and 𝜋(𝑠0).
The latter changes again successively after 𝑠3, 𝑠4, and 𝑠9 are expanded 𝜋(𝑠0) = c.
𝜋(𝑠2) changes after 𝑠11 then 𝑠13 are expanded. After the last iteration, the update
𝜋(𝑠0) = 𝜋(𝑠1) = 𝜋(𝑠2) = 𝜋(𝑠5) = 𝜋(𝑠11) = a and 𝜋(𝑠4) = b; the corresponding
solution graph has no fringe state; its cost is 𝑉 (𝑠0) = 26.25.

Only 10 states in this domain are expanded: the interior states 𝑠7, 𝑠8, 𝑠10, and 𝑠14 are
not expanded. The algorithm performs in total 31 Bellman updates. In comparison,
Value Iteration terminates after five iterations corresponding to 5×17 calls to Bellman-
Update. With a more informed heuristic, the search would have been more focused
(see Section 9.3 and Section 9.3). □

190 9 Planning with Probabilistic Models

Let us now discuss best first search for a cyclic search space, for which updates
cannot be based on a bottom-up stage-by-stage procedure. LAO* handles this general
case. It corresponds to Algorithm 9.7 where step 2 is replaced by a call to LAO-
Update(𝑠). The latter (Algorithm 9.9) performs a Value Iteration-like series of repeated
updates that are limited to the states on which the expansion of 𝑠 may have an effect.
This is the set 𝑍 of 𝑠 and all its ancestors along current 𝜋. Again, 𝑍 is not limited to
𝛾̂(𝑠0, 𝜋).

LAO-Update(𝑠)
𝑍 ← {𝑠} ∪ {𝑠′ ∈ Envelope | 𝑠 ∈ 𝛾̂(𝑠′, 𝜋)}
until termination condition do

foreach 𝑠 ∈ 𝑍 do
Bellman-Update(𝑠)

Algorithm 9.9. LAO-Update, q “Value Iteration-like” update for LAO*.

LAO-Update is akin to an asynchronous Value Iteration focused by current 𝜋. How-
ever, an update may change current 𝜋, which may introduce new fringe states. Conse-
quently, the termination condition of LAO-Update is the following: either an update
introduces new fringe states in 𝛾̂(𝑠0, 𝜋) or the residual ≤ 𝜂 over all updated states.

The preceding pseudo-code terminates with a solution but no guarantee of its opti-
mality. However, if the heuristic 𝑉0 is admissible, then the bounds of Proposition 9.9
apply. A procedure such as VI𝜖 (Algorithm 9.5) can be used to find a solution with a
guaranteed approximation.

Explicit dead ends can be handled with the dummy action 𝑎deadend and the man-
agement of loops. If the current 𝜋 is unsafe then the updates will necessarily change
that current policy, as discussed in the previous section. When there is no dead end,
it is possible to implement LAO-Update using a Policy Iteration procedure, but this
was not found as efficient as the Value Iteration-like procedure presented here.

LAO* is an instance of the Find&Revise schema (see Exercise 9.10). On an SSP
problem with a safe solution and an admissible heuristic 𝑉0, LAO* is guaranteed to
terminate and to return a safe and asymptotically optimal solution.

The main heuristic function for driving LAO* is 𝑉0 (see Section 9.3). Several ad-
ditional heuristics have been proposed for selecting a fringe state in current 𝛾̂(𝑠0, 𝜋)
to be expanded. Examples include choosing the fringe state whose estimated proba-
bility of being reached from 𝑠0 is the highest, or the one with the lowest 𝑉 (𝑠). These
secondary heuristics do not change the efficiency of LAO* significantly. A strategy
of delayed updates and multiple expansions was found to be more effective. The
idea here is to expand in each iteration several fringe states in 𝛾̂(𝑠0, 𝜋) before calling
LAO-Update on the union of their predecessors in 𝛾̂(𝑠0, 𝜋). Indeed, an expansion is a
much simpler step than an update by LAO-Update. It is beneficial to perform updates
less frequently and on more expanded solution graphs.

A variant of LAO* (Algorithm 9.10) takes this idea to the extreme. It expands all
fringe states and updates all states met in a post-order traversal of current 𝛾̂(𝑠0, 𝜋) (the
traversal marks states already visited to avoid getting into a loop). It then calls Value

9.2 Heuristic Search Algorithms 191

ILAO*(Σ, 𝑠0, 𝑔,𝑉0)
Envelope← {𝑠0}
while 𝛾̂(𝑠0, 𝜋) has fringe states do

foreach 𝑠 visited in a depth-first post-order traversal of 𝛾̂(𝑠0, 𝜋) do
if 𝑠 has not already been visited in this traversal then

if 𝑠 is a fringe then expand 𝑠 then
Bellman-Update(𝑠)

perform Value Iteration on 𝛾̂(𝑠0, 𝜋) until termination condition

Algorithm 9.10. ILAO*, a variant of LAO*, a best-first search algorithm for cyclic
domains.

Iteration on 𝛾̂(𝑠0, 𝜋) with the termination condition discussed earlier. The while loop
is pursued unless Value Iteration terminates with residual ≤ 𝜂. Again, a procedure
like VI𝜖 is needed to provide a guaranteed approximation.

Like AO*, LAO* can be improved by labelling solved states. This will be illustrated
next with depth-first search.

9.2.3 Depth-First Search

A direct instance of the Find&Revise schema is given by the Heuristic Dynamic
Programming (HDP) algorithm. HDP performs the Find step by a depth-first traversal
of the current solution graph 𝛾̂(𝑠0, 𝜋) until finding an open state, which is then
revised. Recall that the greedy policy for current 𝑉 changes after each Bellman
update. Furthermore, HDP uses this depth-first traversal for finding and labeling
solved states: if 𝑠 is solved, the entire graph 𝛾̂(𝑠, 𝜋) is solved and does not need to be
searched anymore.

The identification of solved states relies on the notion of strongly connected com-
ponents of a graph. HDP uses an adapted version of Tarjan’s algorithm for detecting
these components (see Section A.3 and Algorithm A.4). The graph of interest here
is 𝛾̂(𝑠0, 𝜋). Let 𝐶 be a strongly connected component of this graph. Let us define a
component 𝐶 as being solved when every state 𝑠 ∈ 𝐶 is solved.

Proposition 9.17. A strongly connected component 𝐶 of the current graph 𝛾̂(𝑠0, 𝜋)
is solved if and only if 𝐶 has no open state and every other component 𝐶′ reachable
from a state in 𝐶 is solved.

Proof. It follows from the fact that the strongly connected components of a graph
define a partition of its vertices into a DAG (see Appendix A.3). If 𝐶 meets the
conditions of the proposition, then ∀𝑠 ∈ 𝐶, 𝛾̂(𝑠, 𝜋) has no open state: 𝑠 is solved. □

HDP (Algorithm 9.11) is indirectly recursive through a call to Solved-SCC, a
slightly modified version of Tarjan’s algorithm. HDP labels goal states and stops at
any solved state. It updates an open state, or it calls Solved-SCC on a state 𝑠 whose
residual ≤ 𝜂 to check whether this state and its descendant in the current solution

192 9 Planning with Probabilistic Models

HDP(𝑠)
if 𝑠 ∈ 𝑆𝑔 then label 𝑠 solved
if 𝑠 is solved then return false

1 else if (residual(𝑠) > 𝜂) ∨ Solved-SCC(𝑠, false) then
Bellman-Update(𝑠)
return true

Algorithm 9.11. HDP, a heuristic depth-first search algorithm for SSPs.

graph are solved and to label them. Note that the disjunction (line 1) produces a
recursive call only when its first clause is false. HDP and Solved-SCC returns a
binary value that is true if and only if 𝑠 or one of its descendants has been updated.

Solved-SCC (Algorithm 9.12) finds strongly connected components and labels
them as solved if they meet the conditions of Proposition 9.17. It is very close to
Tarjan’s algorithm. It has a second argument that stands for a binary flag, true when 𝑠
or one of its descendant has been updated. Its differences with the original algorithm
are the following. In step 1 the recursion is through calls to HDP, while maintaining
the updated flag. In step 2, the test for a strongly connected component is performed
only if no update took place below 𝑠. When the conjunction holds, then 𝑠 and all
states below 𝑠 in the depth-first traversal tree make a strongly connected component
𝐶 and are not open. Further, all strongly connected components reachable from these
states have already been labeled as solved. Hence, states in 𝐶 are solved (see details
in Section A.3).

Solved-SCC(𝑠, updated)
index(𝑠) ←low(𝑠) ← 𝑖

𝑖 ← 𝑖 + 1
push(𝑠, stack)
foreach 𝑠′ ∈ 𝛾(𝑠, 𝜋(𝑠)) do

if index(𝑠′) is undefined then
1 updated← HDP(𝑠′) ∨ updated

low(𝑠) ← min{low(𝑠), low(𝑠′}
else if 𝑠′ is in stack then low(𝑠) ← min{low(𝑠), low(𝑠′}

2 if (¬ updated) ∧ (index(𝑠)=low(𝑠)) then
repeat

𝑠′ ← pop(stack)
label 𝑠′ solved

until 𝑠′ = 𝑠
return updated

Algorithm 9.12. Procedure for labelling strongly connected components.

HDP is repeatedly called on 𝑠0 until it returns false, that is, until 𝑠0 is solved.

9.2 Heuristic Search Algorithms 193

Appropriate reinitialization of the data structures needed by Tarjan algorithm (𝑖 ←
0, stack ← ∅ and index undefined for states in the Envelope) have to be performed
before each call to HDP(𝑠0). For the sake of simplicity, this pseudocode does not
differentiate a fringe state from other open states: expansion of a fringe state (over all
its successors for all applicable actions) is performed in HDP as an update step.

HDP inherits the properties of Find&Revise: with an admissible heuristic 𝑉0, it
converges asymptotically with 𝜂 to the optimal solution; when 𝑉0 is also monotone,
its complexity is bounded by 1/𝜂∑𝑆 [𝑉∗(𝑠) −𝑉0(𝑠)].

9.2.4 Iterative Deepening Search

While best-first search for MDP relied on a generalization of A* to And/Or graphs,
iterative deepening search relies on an extension of the IDA* algorithm.

IDA* (Iterative Deepening A*) proceeds by repeated depth-first, heuristically guided
explorations of a deterministic search space. Each iteration goes deeper than the
previous one and, possibly, improves the heuristic estimates. Iterations are pursued
until finding an optimal path. The extension of IDA* to And/Or graphs is called LDFS;
it also performs repeated depth-first traversals where each traversal defines a graph
instead of a path.

LDFS𝑎 (𝑠)
if 𝑠 ∈ 𝑆𝑔 then label 𝑠 solved
if 𝑠 is solved then return true
updated← true

1 foreach 𝑎 ∈ Applicable(𝑠) and while (updated) do
2 if |𝑉 (𝑠) −∑𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) +𝑉 (𝑠′)] | ≤ 𝜂 then

updated← false
3 foreach 𝑠′ ∈ 𝛾(𝑠, 𝑎) do

updated← LDFS𝑎 (𝑠′) ∨ updated

if updated then Bellman-Update(𝑠)
else

𝜋(𝑠) ← 𝑎

label 𝑠 solved
return updated

Algorithm 9.13. LDFS𝑎 algorithm.

We first present a simpler version of LDFS called LDFS𝑎 (Algorithm 9.13), which
handles only acyclic domains. LDFS𝑎 does a recursive depth-first traversal of the
current 𝛾̂(𝑠0, 𝜋). A traversal expands fringe states, updates open states, and labels as
solved states that do not, and will not in the future, require updating. LDFS𝑎 (𝑠0) is
called repeatedly until it returns 𝑠0 as solved.

For an acyclic search space, a state 𝑠 is solved when either it is a goal or when its
residual(𝑠) ≤ 𝜂 and all its successors in 𝛾(𝑠, 𝜋) are solved. This is expressed in line
2 for the current action 𝑎.

194 9 Planning with Probabilistic Models

Iteration in line 1 skips actions that do not meet the preceding inequality. It
proceeds recursively on successor states for an action 𝑎 that meets this inequality. If
these recursions returns false for all the successors in 𝛾(𝑠, 𝑎), then updated=false at
the end of the inner loop 3; iteration 1 stops and 𝑠 is labeled as solved. If no action in
𝑠 meets inequality in line 2 or if the recursion returns true on some descendant, then 𝑠
is updated. The update is propagated back in the recursive calls through the returned
value of updated. This leads to updating the predecessors of 𝑠, improving their 𝑉 (𝑠).

Due to the test on the updated flag, iteration 1 does not run over all applicable
actions; hence LDFS𝑎 performs partial expansions of fringe states. However, when a
state is updated, all its applicable actions have been tried in iteration 1. Furthermore,
the updates are also back-propagated partially, only within the current solution graph.
Finally, states labeled as solved will not be explored in future traversals.

LDFS extends LDFS𝑎 to domains with cyclic safe solutions. This is done by
handling cycles in a depth-first traversal, as seen in HDP. Cycles are tested along each
depth-first traversal by checking that no state is visited twice. Recognizing solved
states for cyclic solutions is performed by integrating into LDFS a book-keeping
mechanism similar to the Solved-SCC procedure presented in the previous section.
This integration is, however, less direct than with HDP.

Let us outline how LDFS compares to HDP. A recursion in HDP proceeds along
a single action, which is 𝜋(𝑠), the current best one. LDFS examines all actions in
Applicable(𝑠) until it finds an action 𝑎 that meets the condition 2 of Algorithm 9.13,
and such that there is no 𝑠′ ∈ 𝛾(𝑠, 𝑎), which is updated in a recursive call. At this point,
updated=false: iteration 1 stops. If no such action exists, then residual(𝑠) > 𝜂 and
both procedures LDFS and HDP perform a normal Bellman-update. Partial empirical
tests show that LDFS is generally, but not systematically, faster than HDP.

LDFS is an instance of the Find&Revise schema. It inherits its convergence and
complexity properties, including the bound on the number of trials when used with
an admissible and monotone heuristic.

9.3 Heuristics and Search-Control Knowledge

As for all heuristic search problems, heuristic functions play a critical role in scaling
up probabilistic planning algorithms. Domain-specific heuristics and control knowl-
edge draw from a priori information that is not explicit in the formal representation
of the domain. For example, in a stochastic navigation problem where traversal prop-
erties of the map are uncertain (for example, as in the Canadian Traveller Problem
[853]), the usual Euclidian distance can provide a lower bound of the cost from a
state to the goal. Domain-specific heuristics can be very informative, but it can be
difficult to acquire them from domain experts, estimate their parameters, and prove
their properties. Domain-specific but problem-independent efficient heuristic can
be learned automatically if a simulator of the domain is available (see Chapter 10).
Domain-independent heuristics do not require additional knowledge specification or
a learning stage, but are often less informative. A good strategy is to combine both,
relying more and more on domain-specific heuristics when they can be learned or

9.3 Heuristics and Search-Control Knowledge 195

acquired and tuned. Let us discuss here a few domain-independent heuristics and
how to make use of a priori control knowledge.

9.3.1 Bounded-Lookahead Heuristics

A straightforward simplification of Equation 8.4 gives:

𝑉0(𝑠) =
{

0 if 𝑠 ∈ 𝑆𝑔,
min𝑎{

∑
𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎) cost(𝑠, 𝑎, 𝑠′)} otherwise.

𝑉0 is admissible and monotone. When |Applicable(𝑠) | and |𝛾(𝑠, 𝑎) | are small, one
may perform a Bellman update in 𝑠 and use the following function 𝑉1 instead of 𝑉0:

𝑉1(𝑠) =
{

0 if 𝑠 ∈ 𝑆𝑔,
min𝑎{

∑
𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎, 𝑠′) +𝑉0(𝑠′)]} otherwise.

𝑉1 is admissible and monotone. So is the simpler variant heuristic
𝑉 ′1 (𝑠) = min𝑎{min𝑠′∈𝛾{ (𝑠,𝑎) {cost(𝑠, 𝑎, 𝑠′) + 𝑉0(𝑠′)}} for non-goal states, because
min𝑠′∈𝛾 (𝑠,𝑎) 𝑉0(𝑠′) ≤

∑
𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎)𝑉0(𝑠′). This construction can straightfor-

wardly be generalized to𝑉𝑛 respectively𝑉 ′𝑛 for arbitrary 𝑛 ≥ 1, unrolling the Bellman
update for a lookahead of 𝑛 steps. 𝑉𝑛 and 𝑉 ′𝑛 are admissible and monotone for any 𝑛.
However, computational constraints limit the construction to small 𝑛, bounding the
informativeness of the heuristics.

9.3.2 Determinization-Based Heuristics

A widely used relaxation for domain-independent heuristic construction is the so-
called determinization, which transforms each probabilistic action into a few de-
terministic ones (as seen in Section 12.2). We can map a nondeterministic
domain Σ = (𝑆, 𝐴, 𝛾) into a deterministic one Σ𝑑 = (𝑆, 𝐴𝑑 , 𝛾𝑑) with the follow-
ing property: ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴, 𝑠′ ∈ 𝛾(𝑠, 𝑎), ∃𝑎𝑑 ∈ 𝐴𝑑 with 𝑠′ = 𝛾𝑑 (𝑠, 𝑎𝑑) and
cost(𝑠, 𝑎𝑑) = cost(𝑠, 𝑎, 𝑠′). In other words, Σ𝑑 contains a deterministic action for
each nondeterministic outcome of an action in Σ. This is the all-outcomes deter-
minization, as opposed to the most-probable outcomes determinization. In the latter,
𝐴𝑑 contains deterministic actions only for states 𝑠′ ∈ 𝛾(𝑠, 𝑎) such that Pr(𝑠′ |𝑠, 𝑎) is
above some threshold. For SSPs in factorized representation, it is straightforward to
obtain Σ𝑑 from Σ.

Let ℎ∗(𝑠) be the cost of an optimal path from 𝑠 to a goal in the all-outcomes
determinization Σ𝑑 , with ℎ∗(𝑠) = ∞ when 𝑠 is a dead end, immediate or deep. It is
simple to prove that ℎ∗ is an admissible and monotone heuristic for Σ. But ℎ∗ can be
computationally expensive, in particular for detecting deep dead ends. Fortunately,
heuristics for Σ𝑑 are also useful for Σ.

Proposition 9.18. Every admissible heuristic for Σ𝑑 is admissible for Σ.

Proof. Let 𝜎 = ⟨𝑠, 𝑠1, . . . , 𝑠𝑔⟩ be an optimal path in Σ𝑑 from 𝑠 to a goal; its cost
is ℎ∗(𝑠). Clearly 𝜎 is also a possible sequence of state in Σ from 𝑠 to a goal with

196 9 Planning with Probabilistic Models

a non-null probability. No other such a history has a strictly lower cost than ℎ∗(𝑠).
Hence, ℎ∗(𝑠) is a lower bound on 𝑉∗(𝑠), the expected optimal cost over all such
histories. Let ℎ(𝑠) be any admissible heuristics for Σ𝑑: ℎ(𝑠) ≤ ℎ∗(𝑠) ≤ 𝑉∗(𝑠). □

Hence, the techniques discussed in Section 3.2 for defining admissible heuristics,
such as ℎmax, are applicable in probabilistic domains. Further, informative but in-
admissible heuristics in deterministic domains, such as ℎadd, have also been found
informative in probabilistic domains when transposed from Σ𝑑 to Σ.

9.3.3 Regrouped Operator-Counting Heuristics

The all-outcomes determinization relaxes probabilistic actions into deterministic ac-
tions using the very optimistic assumption that one can freely choose the outcome of
every probabilistic action. This permits admissible determinization-based heuristics.
However, this may also lead to harsh underestimations of the actual expected cost 𝑉∗.

s0
a2

b s1 b

g
10

100
100

a1
10

Figure 9.6. All-outcomes determinization
of the simple domain from Figure 9.1.

Example 9.19. Reconsider the simple domain from Figure 9.1. Assume that the
probability of 𝑎 leading from 𝑠0 to 𝑔 within one step is reduced to 𝑝 = .02, looping
back to 𝑠0 with a probability of .98. Figure 9.6 shows the all-outcomes determinization
Σ𝑑 . Σ𝑑 treats equally all probabilistic action outcomes no matter of their likelihood.
The optimal plan for 𝑠0 in Σ𝑑 is ⟨𝑎2⟩. Therefore ℎ∗(𝑠0) = 10 < 200 = 𝑉∗(𝑠0). □

The regrouped operator-counting heuristics ℎroc was the first family of domain-
independent admissible heuristics taking into account uncertainty about the actions’
outcomes. The operator-counting heuristic has its origins in deterministic models,
where heuristic estimates are derived from a characterization of plans based on action-
occurrence counts Count𝑎 using linear program (LP). Formulating properties of plans
as constraints over the action-occurrence counts, and choosing the LP’s objective
function to minimize plan cost

∑
𝑎∈𝐴 Count𝑎Cost(𝑎), the optimal LP solutions yield

admissible heuristics.
Let us consider two such heuristic functions ℎoc(𝑠) and ℎroc(𝑠). The operator-

counting heuristic ℎoc(𝑠) is given by the value of the optimal solution of the following
linear program;

min
Count

∑︁
𝑎∈𝐴

Count𝑎Cost(𝑎)

subject to constraints Count𝑎 ≥ 0 and Γ(𝑠).
(9.9)

This formulation leaves open the choice of the operator-counting constraints Γ(𝑠).
Admissibility is granted when Γ(𝑠) is satisfied for every plan 𝜋 by the assignment:

9.3 Heuristics and Search-Control Knowledge 197

Count𝑎 = number of occurrences of 𝑎 in 𝜋

for all actions 𝑎. A popular instantiation of Γ(𝑠) is given by action landmarks (cf.
Section 3.2.3). Recall that a set of actions 𝑅 is an action landmark for 𝑠 if 𝑅 contains
at least one action from every plan. This naturally translates into the following
operator-counting constraint: ∑︁

𝑎∈𝑅
Count𝑎 ≥ 1 (9.10)

ℎoc can also admissibly combine multiple action landmarks 𝑅1, . . . , 𝑅𝑛 by considering
in Γ(𝑠) the conjunction of the corresponding operator-counting constraints (9.10).

The regrouped operator-counting heuristic ℎroc lifts the operator-counting heuristic
ℎoc to probabilistic models Σ. The core still is the linear program (9.9) derived
from Σ𝑑 , the all-outcomes determinization of Σ. In addition, ℎroc regroups the
determinized actions of the same probabilistic action, synchronizing their counts
according to their associated outcome probabilities. To this end, ℎroc includes for
every pair of determinized actions 𝑎𝑑 and 𝑎′

𝑑
in Σ𝑑 of any probabilistic action 𝑎 in Σ,

with associated outcome probabilities 𝑝 and 𝑝′, the regrouping constraint:

1
𝑝

Count𝑎𝑑 =
1
𝑝′

Count𝑎′
𝑑

(9.11)

Example 9.20. Reconsider Example 9.19 and the landmark 𝑅 = {𝑎2, 𝑏} for 𝑠0 in Σ𝑑 .
The corresponding regrouped operator-counting heuristic is defined via the linear
program

min
Count

Count𝑎110 + Count𝑎210 + Count𝑏100

subject to Count𝑎1 ≥ 0 Count𝑎2 ≥ 0 Count𝑏 ≥ 0
Count𝑎2 + Count𝑏 ≥ 1

50
49

Count𝑎1 = 50Count𝑎2

The optimal solution is Count𝑎1 = Count𝑎2 = 0 and Count𝑏 = 1, giving the heuristic
ℎroc(𝑠0) = 100, much higher than ℎ∗(𝑠0) = 10 for the optimal plan of Σ𝑑 . □

ℎroc(𝑠) is admissible but in general not monotone. Monotonicity is violated if the
constraints Γ(𝑠) and Γ(𝑠′) of a state 𝑠 and one of its successors 𝑠′ are inconsistent,
such as when using different landmark sets for 𝑠 and 𝑠′. Admissibility follows from
the fact that every safe policy 𝜋 can be transformed into an LP solution with objective
value equal to the expected cost of 𝜋, deriving the action counts Count𝑎𝑑 of each
determinized action 𝑎𝑑 from the expected number of executions of the corresponding
probabilistic action 𝑎 when running 𝜋 from the state 𝑠.

9.3.4 Probabilistic-Abstraction Heuristics

The idea here is to use a state abstraction function 𝛼 : 𝑆 ↦→ 𝑆𝛼, which maps several
states into a single abstract state. In 𝑆𝛼, the distinction between states 𝑠 ≠ 𝑠′ is

198 9 Planning with Probabilistic Models

neglected when 𝛼(𝑠) = 𝛼(𝑠′). A domain Σ is mapped into a much smaller abstract
domain Σ𝛼. The optimal expected costs𝑉∗𝛼 for Σ𝛼 is taken as a heuristic estimates for
Σ. This extends the abstraction heuristics of Section 3.6.5 to probabilistic domains.
When Σ𝛼 has a small size 𝑉∗𝛼-values can be computed for all states via methods
like Value Iteration. The abstraction heuristic ℎ𝛼 (𝑠) = 𝑉∗𝛼 (𝛼(𝑠)) is admissible and
monotone.

Crucial for the efficacy of the heuristic, the abstraction function 𝛼 must allow
constructing Σ𝛼 without relying on an explicit description of Σ. Probabilistic pattern
databases are one of the most successful probabilistic abstraction heuristics. They
leverage so called syntactic projections to construct 𝛼 and Σ𝛼 directly from the
factored domain description. Given a probabilistic planning problem in state-variable
representation (𝑂, 𝑅, 𝑋, 𝐴, 𝑠0, 𝑔), a subset of state variables 𝑋 ′ ⊆ 𝑋 , called a pattern,
defines an abstraction function 𝛼𝑋′ which projects every state to the state variables
in 𝑋 ′, i.e., 𝛼𝑋′ (𝑠) = {𝑥 = 𝑣 | for 𝑥 = 𝑣 in 𝑠 and 𝑥 ∈ 𝑋 ′}. The projected planning
problem is (𝑂, 𝑅, 𝑋 ′, 𝐴′, 𝑠′0, 𝑔

′) where 𝐴′, 𝑠′0, and 𝑔′ are obtained by discarding all
appearances of the variables 𝑋 \𝑋 ′ from 𝐴, 𝑠0, and 𝑔. Given that the size of 𝑆𝛼 scales
exponentially in |𝑋 ′ |, this puts a limitation on the size of 𝑋 ′, and therewith also on
the informativeness of the corresponding projection heuristic ℎ𝛼𝑋′ .

Pattern database heuristics compensate weaknesses of individual projections by
combining a collection of patterns C = {𝑋1, . . . , 𝑋𝑛}. A straightforward way to
coalesce the estimates of the individual projection heuristics into an admissible and
monotone heuristic is to take the maximum max𝑋′∈C ℎ𝛼𝑋′ (𝑠). This has the nice
property that the resulting heuristic dominates each of its members. Ideally one
would however want to sum up the individual estimates, which in turn dominates the
maximum, but unfortunately this is not admissible in general.

Two patterns 𝑋1 and 𝑋2 are said to be additive, if there is no action with an effect
on variables from both 𝑋1 and 𝑋2. This criterion implies that the optimal policies
of the respective syntactic projections use disjoint sets of actions, which is in general
sufficient to guarantee that ℎ𝛼𝑋1 (𝑠) + ℎ𝛼𝑋2 (𝑠) is admissible. Similarly, since the two
heuristics never count the same action and since they both are monotone, their sum
is guaranteed to be monotone as well. The notion of additivity is extended to sets
of patterns. A collection 𝐶𝑎 is additive if all 𝑋𝑖 , 𝑋 𝑗 ∈ 𝐶𝑎 are pairwise additive.
Like for pairs, the additivity property is sufficient for guaranteeing that the sum∑

𝑋′∈𝐶𝑎
ℎ𝛼𝑋′ (𝑠) is admissible and monotone.

The canonical pattern database heuristic ℎC uses this observation to combine the
projections of arbitrary collections of patterns C by identifying first all the additive
subsets 𝐶𝑎 ⊆ C, and taking the maximum over the respective sums:

ℎC (𝑠) = max
additive 𝐶𝑎⊆C

∑︁
𝑋′∈𝐶𝑎

ℎ𝛼𝑋′ (𝑠)

9.3.5 Other Search-Control Knowledge

Here, we seek to use domain-specific control knowledge in order to focus the search
in a state 𝑠 on a subset of applicable actions in 𝑠. Domain-configurable planners
rely on this idea. The control knowledge can be expressed as pruning rules written

9.4 Linear Programming Approaches 199

in temporal logic for forward search state-space planners, or as task decomposition
methods for HTN planners.

Let the focus subset be Focus(𝑠,K) ⊆ Applicable(𝑠), where K is the control
knowledge applicable in 𝑠. Convenient approaches allow computing K incremen-
tally, for example, with a function Progress such that K ′ ← Progress(𝑠, 𝑎,K). In
deterministic state-space planners, K can be a control formula; Focus(𝑠,K) are the
applicable actions that meet this formula; Progress computes Focus for 𝛾(𝑠, 𝑎). The
planner limits its options to Focus and reduces its branching factor.

Two ingredients are needed to transpose these approaches to probabilistic domains:
(i) a forward-search algorithm, and (ii) a representation and techniques for computing
Focus(𝑠,K) and Progress(𝑠, 𝑎,K) for nondeterministic actions. The latter can be
obtained from Σ𝑑 , the determinized version of a domain. For the former, there is
the forward variant of Value Iteration, and most instances of the Find&Revise schema,
including best-first and depth-first, perform a forward search. Control methods can
also be applied to online and anytime lookahead algorithms of Section 9.5. They can
efficiently speed up a search, but they evidently reduce its convergence (e.g., with
respect to safe and optimal solutions) to the actions selected in the Focus subset.

9.4 Linear Programming Approaches

Linear Programming (LP) is one of the oldest methods for solving MDPs. In com-
parison with dynamic programming, it produces exact solutions, naturally represents
stochastic policies, and elegantly deals with constraints. It is capable of producing
exact optimal solutions for constrained MDPs (C-MDPs) (see Section 8.3.3). It is
also used as a component of heuristic search approaches for constrained stochastic
shortest path problems (C-SSPs), and as a basis for deriving heuristics for SSPs.

We assume, as in Section 9.2, that all actions costs are strictly positive,2 and that
a safe policy exists from the initial state. We will briefly discuss relaxations of the
latter assumption to handle unavoidable dead ends. To simplify the exposition of the
linear programs, we will use cost functions cost(𝑠, 𝑎) that do not depend on the next
state of the transition. In the following we abbreviate Applicable(𝑠) with 𝐴(𝑠) and
write I𝑠 for the function that assigns 1 to state 𝑠 and zero to any other state.

9.4.1 Linear Programs for SSPs

There are two main linear programs for SSPs. The first is the Primal LP (Algo-
rithm 9.14, in the usual format for linear programming, i.e., giving the linear criteria
to be optimized and the constraints to be met). Primal LP operates in the space of
value functions. It optimizes over variables𝑉𝑠 representing the value function at each
state 𝑠, under two constraints capturing the value function definition at goal states
(C1) and non-goal states (C2), respectively. The optimal solution of Primal LP is 𝑉∗.

2We will discuss models in which certain costs only need to be constrained rather than optimized, and
those where costs are arbitrary.

200 9 Planning with Probabilistic Models

Slight variants deal with rewards, infinite horizon discounted MDPs, and distributions
over initial states.3

The Primal LP requires that there are no dead ends. If any state 𝑠 ∈ 𝑆 is a dead end
(even if avoidable), then the LP’s objective is unbounded, hence there is no optimal
solution. We could allow avoidable dead ends reachable from the initial state 𝑠0
by changing the objective to maximize 𝑉𝑠0 . This then only guarantees that the LP
solution is 𝑉∗ for the states reached by some optimal policy.

Primal LP(Σ, 𝑆𝑔)
max

∑︁
𝑠∈𝑆

𝑉𝑠

s.t. 𝑉𝑠 = 0 ∀𝑠 ∈ 𝑆𝑔 (C1)

𝑉𝑠 ≤
∑︁

𝑠′∈𝛾 (𝑠,𝑎)
Pr(𝑠′ |𝑠, 𝑎) [cost(𝑠, 𝑎) +𝑉𝑠′] ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴(𝑠) (C2)

Algorithm 9.14. Primal Linear Program for SSPs

Dual LP(Σ, 𝑠0, 𝑆𝑔)
min

∑︁
𝑠∈𝑆\𝑆𝑔 ,𝑎∈𝐴(𝑠)

cost(𝑠, 𝑎)𝑥𝑠,𝑎

s.t. 𝑥𝑠,𝑎 ≥ 0 ∀𝑠 ∈ 𝑆 \ 𝑆𝑔, 𝑎 ∈ 𝐴(𝑠) (C3)

𝑜𝑢𝑡 (𝑠) =
∑︁

𝑎∈𝐴(𝑠)
𝑥𝑠,𝑎 ∀𝑠 ∈ 𝑆 \ 𝑆𝑔 (C4)

𝑖𝑛(𝑠) =
∑︁

𝑠′∈𝑆\𝑆𝑔 ,𝑎∈𝐴(𝑠′)
𝑥𝑠′ ,𝑎 Pr(𝑠 |𝑠′, 𝑎) ∀𝑠 ∈ 𝑆 (C5)

𝑜𝑢𝑡 (𝑠) − 𝑖𝑛(𝑠) = I𝑠0 (𝑠) ∀𝑠 ∈ 𝑆 \ 𝑆𝑔 (C6)∑︁
𝑠∈𝑆𝑔

𝑖𝑛(𝑠) = 1 (C7)

Algorithm 9.15. Dual Linear Program for SSPs

The second linear program is the Dual LP (Algorithm 9.15). It operates in the
space of stochastic policies. A stochastic policy is a function 𝜋 : 𝑆 × 𝐴 ↦→ [0, 1]
which returns a probability distribution over actions to be performed in a given state;
𝜋(𝑠, 𝑎) is the probability required by 𝜋 of performing 𝑎 in 𝑠. The Dual LP optimizes

3It suffices to replace (C1) with an assertion that the 𝑉𝑠 are positive, add the discount factor and invert
the direction of the inequality in (C2), and change the objective to minimize the sum of the state
values weighted by their initial probabilities.

9.4 Linear Programming Approaches 201

over variables representing the occupation measures of the policy. The occupation
measure 𝑥𝑠,𝑎 for 𝜋 is the expected number of times action 𝑎 is performed in state 𝑠
before the goal is reached, when executing 𝜋 from the initial state 𝑠0.

This dual formulation can be interpreted as a probabilistic flow problem where one
unit of flow is injected at the initial state (the source), transits via transient states,
and reaches goal states (the sink). Constraint (C4) defines the flow exiting state 𝑠
by applying actions prescribed by the policy, and constraint (C5) defines the flow
entering state 𝑠 by transiting from states 𝑠′ via actions prescribed by the policy.
Constraint (C6) captures the conservation of flow at transient states: the flow exiting
each of these states must equal the flow entering it, with the exception of the initial
state for which the exiting flow exceeds the entering flow by the one unit initially
injected. Constraint (C7) enforces that all the flow reaches goal states, i.e., that the
policy is safe. Finally, the objective function ensures that the total expected cost of
the policy is minimized.

Let 𝑥∗ be an optimal solution of the Dual LP, then the corresponding optimal
stochastic policy is:

𝜋∗(𝑠, 𝑎) =
𝑥∗𝑠,𝑎
𝑜𝑢𝑡 (𝑠)

For SSPs, there always exist an optimal policy that is deterministic. Deterministic
policies lie at the extreme points of the feasible region of the Dual LP, and any LP solver
based on the simplex method will therefore return a deterministic optimal policy.4
However, the ability of the Dual LP formulation to deal with stochastic policies makes
it useful for handling more complex problems than SSPs, including problems with
constraints, discussed in the next subsection, for which all optimal policies may be
stochastic.

The Dual LP formulation can be easily adapted to infinite horizon and discounted
reward maximization problems, as well as problems that go beyond SSPs such as that
of finding a policy maximizing the probability of reaching the goal. For the latter, it
suffices to remove constraint (C7) and replace the objective with that of maximizing
the probability

∑
𝑠∈𝑆𝑔 𝑖𝑛(𝑠). The resulting LP is called the MAX-PROB LP.

Moreover, there are a number of options to handle unavoidable dead-ends. The
first is the Finite Penalty method, where a dummy action that directly reaches the
goal with probability 1 is applicable from every non-goal state and incurs a very high
fixed cost. A more elegant and principled approach afforded by linear programming
is to consider goal reachability probability and policy expected cost as two different
objectives. For instance, one can use the Min-Cost given Max-Prob criterion which
computes minimal cost policies amongst those with maximal goal reachability. This
requires solving two LPs: the MAX-PROB LP to obtain the maximal goal reachability
probability 𝑝𝑚𝑎𝑥, and then a slight variant of the Dual LP where the right hand-side
of (C7) is replaced by 𝑝𝑚𝑎𝑥.

Despite being solvable in polynomial time, linear programs are however not com-
petitive with other approaches for SSPs. The Primal LP has the same number of

4More generally, a deterministic optimal policy for an SSP can be obtained from an stochastic optimal
policy 𝜋∗ for that SSP by deterministically selecting an action 𝑎 at each state 𝑠 such that 𝜋∗ (𝑠, 𝑎) > 0.

202 9 Planning with Probabilistic Models

variables as Value Iteration, but in practice, its exact resolution is slower than the for-
mer. As for the Dual LP, its large number of variables |𝑆 | × |𝐴| is a serious drawback.
Therefore, it is only used to solve problems beyond SSPs which are not adequately
covered by other approaches, such as constrained SSPs as we explain next.

9.4.2 Linear Programs for Constrained SSPs

Constrained SSPs, introduced in Section 8.3.3, are SSPs with multiple cost functions
and constraints bounding their expected value. They are formally defined as follows.

Definition 9.21. A constrained stochastic shortest path problem (C-SSP) is a tuple
(Σ𝑐𝑜𝑛𝑠𝑡𝑟 , 𝑠0, 𝑆𝑔), where Σ𝑐𝑜𝑛𝑠𝑡𝑟 = (𝑆, 𝐴, 𝛾, Pr, ®𝑐𝑜𝑠𝑡, ®𝑢), 𝑆, 𝐴, 𝛾, Pr, 𝑠0 and 𝑆𝑔 are
defined as in an SSP, ®cost = [cost0, . . . , cost𝑘] is a vector of 𝑘 + 1 cost functions such
that cost0 : 𝑆 × 𝐴 ↦→ R+ is the primary cost function and cost𝑖 : 𝑆 × 𝐴 ↦→ R for
𝑖 ∈ {1, . . . , 𝑘} are the secondary cost functions, and ®𝑢 = [𝑢1, . . . , 𝑢𝑘] is a vector of 𝑘
upper-bounds on the secondary costs. □

min 1.5𝑥0, 𝑝 + 4𝑥0,𝑐 + 4𝑥1,𝑐 + 5𝑥0,𝑏 + 3𝑥1,𝑏 + 5𝑥2,𝑏
subject to:
𝑥0, 𝑝 + 𝑥0,𝑐 + 𝑥0,𝑏 = 1 (𝑠0: C4, C5, C6)
𝑥0, 𝑝 + 0.5𝑥1,𝑐 + 𝑥2,𝑏 = 1 (𝑔: C5, C7)
𝑥1,𝑐 + 𝑥1,𝑏 − 𝑥0,𝑐 − 0.5𝑥1,𝑐 = 0 (𝑠1: C4, C5, C6)
𝑥2,𝑏 − 𝑥0,𝑏 − 𝑥1,𝑏 = 0 (𝑠2: C4, C5, C6)
247𝑥0, 𝑝 + 73(𝑥0,𝑐 + 𝑥1,𝑐)+

8(𝑥0,𝑏 + 𝑥1,𝑏 + 𝑥2,𝑏) ≤ 184 (CO2: C8)
1000𝑥0, 𝑝 + 24(𝑥0,𝑐 + 𝑥1,𝑐)+

40(𝑥0,𝑏 + 𝑥1,𝑏 + 𝑥2,𝑏) ≤ 260 (money: C8)

Figure 9.7. A simple travel C-SSP (left) and its Dual LP (right).

Example 9.22. Consider the simple C-SSP on the left-hand side of Figure 9.7. Alex
needs to frequently travel from home (at 𝑠0) to visit his family (represented by the goal
𝑔). For each trip, he can take the plane, which takes just 1.5h but costs 1000 euros
and consumes 247 kg of CO2. He can alternatively take the bus, changing roughly
mid way (at 𝑠2); this only costs 40 euros per leg and consumes 8kg of CO2, but each
leg takes 5 hours. Finally, he can take a combination of dirt and mountain roads with
his car, which is in principle faster and cheaper than the bus, and consumes much less
CO2 than the plane. However, the road is frequently closed (50% of the time) due
to fires, flood, excessive snow, or accidents, and he is often forced to go back to the
only town along the way at 𝑠1 and stay there pending the issue being resolved before
resuming his trip. Alternatively, from 𝑠1, he can catch a bus to 𝑔 via 𝑠2. The first
four constraints in the right-hand side of the figure (those labelled 𝑠0 to 𝑠2) are the the
Dual LP constraints capturing the underlying SSP. The occupation measures are 𝑥𝑖, 𝑗
where 𝑖 ∈ {0, 1, 2} represents the index of the state, and 𝑗 ∈ {𝑏, 𝑐, 𝑝} represents the
action of taking the bus, car, and plane, respectively.

9.4 Linear Programming Approaches 203

The vectors in red in the figure represent the cost vectors ®𝑐𝑜𝑠𝑡 (𝑠, 𝑎) associated with
taking action 𝑎 in state 𝑠. Alex would like to minimize the time spent traveling, and
this is therefore the primary cost. This is reflected in the objective of the dual LP in
the figure. Money and CO2 consumption are the secondary costs. Alex has calculated
that he can afford an average of 260 euros (each way) per visit. Moreover, he is not
prepared to increase his carbon footprint by more than 184 kg of CO2 per visit on
average. Hence the bounds vector is ®𝑢 = [260, 184]. □

A solution to a C-SSP is a stochastic policy minimizing the expected primary cost,
subject to the expected secondary costs being below their respective upper bounds.
Not all C-SSPs have solutions, as the constraints may be individually or mutually
unsatisfiable. In the following we write 𝑉 𝜋

𝑐 (𝑠) for the value function of policy 𝜋 at
state 𝑠 for the cost function 𝑐.

Definition 9.23. A solution to a C-SSP (Σ𝑐𝑜𝑛𝑠𝑡𝑟 , 𝑠0, 𝑆𝑔) is a safe stochastic policy
minimizing 𝑉 𝜋

cost0 (𝑠0) under the constraints that 𝑉 𝜋
cost𝑖 (𝑠0) ≤ 𝑢𝑖 ∀𝑖 ∈ {1, . . . , 𝑘}. □

It is important to notice that the constraints apply to the expected values 𝑉 𝜋
cost𝑖 (𝑠0)

at the initial state. These constraints do not apply to states other than the initial one
even in expectation, nor to individual executions of the policy from the initial state.
For instance, if 𝑐𝑜𝑠𝑡𝑖 measures travel time and 𝑢𝑖 represents a deadline, there is no
guarantee that all possible executions of the policy meet the deadline. Providing
stronger guarantees would require augmenting the state space with state variables
representing the accumulated cost for the various cost functions, leading to an increase
of the size of the state space exponential in 𝑘 . Irrespective of the high complexity,
the benefits of augmenting the state space in this way are questionable, as there will
always be extremely unlikely executions of the policies that exceed any reasonable
fixed cost bound. The advantages of expected cost constraints are that they do not
increase the theoretical complexity of the problem and can be handled with minimal
changes to the Dual LP.

Indeed, C-SSPs have the same worst-case time complexity as SSPs, i.e., polynomial
in |𝑆 |×|𝐴| (and hence exponential time in the size of the factored MDP representation).
The Dual LP for C-SSPs (Algorithm 9.16) only requires one additional constraint,
namely (C8), which bounds the expected secondary costs 𝑉 𝜋

cost𝑖 (𝑠0). If the C-SSP
has a solution, this LP’s optimal solution is an optimal set of occupation measures 𝑥∗
from which an optimal stochastic policy 𝜋∗ can be retrieved. Otherwise the LP solver
returns that the problem has no solution.

Paradoxically, optimal deterministic policies, in addition to not being as good as
stochastic ones, are more expensive to compute, making the problem NP-hard. In
practice, they require additional constraints that involve new binary variables, turning
the LP into a Mixed Integer Program (MIP).

Example 9.24. We continue the example depicted in Figure 9.7. The last two con-
straints on the right-hand side enforce the bounds (C8) on the secondary money and
CO2 costs of the Dual LP for C-SSPs. The optimal stochastic policy obtained by
solving the Dual LP for C-SSPs uses the plane and the bus roughly 20% of the time
each, and the car the remaining 60% of the time. It never takes the bus from 𝑠1 to

204 9 Planning with Probabilistic Models

Dual LP for C-SSPs(Σ𝑐𝑜𝑛𝑠𝑡 , 𝑠0, 𝑆𝑔)
min

∑︁
𝑠∈𝑆\𝑆𝑔 ,𝑎∈𝐴(𝑠)

cost0(𝑠, 𝑎)𝑥𝑠,𝑎

s.t. (C3) - (C7)∑︁
𝑠∈𝑆\𝑆𝑔 ,𝑎∈𝐴(𝑠)

cost𝑖 (𝑠, 𝑎)𝑥𝑠,𝑎 ≤ 𝑢𝑖 ∀𝑖 ∈ {1, . . . , 𝑘} (C8)

Algorithm 9.16. Dual Linear Program for Constrained SSPs

𝑠2. On average, it takes 8.3h to reach the goal, and it reaches the bounds of 260 euros
and 184 kg of CO2 exactly. In contrast, the optimal deterministic policy takes the bus
all the way from 𝑠0 to 𝑔, leading to a journey of 10h, a cost of 80 euros, and a CO2
consumption of 16 kg. □

9.4.3 Hybrid LP and Heuristic Search for Constrained SSPs

The size of the occupation measure space is the product |𝑆 | × |𝐴|. It is too large for the
Dual LP for C-SSPs to be practical. In realistic cases, it would require solving linear
programs with millions or even billions of variables. However, by hybridizing linear
programming and heuristic search, it is possible to guide the search for a solution in
such a way as to explore only a small fraction of the occupation measure space.

i-dual is such a hybrid algorithm for C-SSPs. Recall that heuristic search algorithms
of Section 9.2 explore progressively larger envelopes rooted at the initial state, evaluate
fringe states using a heuristic function, and stop when the initial state is “solved”.
At each iteration, they may expand fringe states reachable under the current policy,
or perform Bellman updates on reachable interior states. i-dual is similar except that
it optimally solves the Dual LP for C-SSPs on the current envelope at each iteration
instead of performing Bellman backups. It expands all fringe states reachable under
the optimal policy found, and stops iterating whenever all non-interior states of the
policy are actual goal states. Using linear programming as a subroutine allows i-
dual to handle constraints and produce stochastic policies whereas previous heuristic
search algorithms could not.

i-dual uses admissible heuristics (lower bounds on 𝑉∗𝑐) for each cost function 𝑐,
whether primary or secondary. The primary heuristic serves the usual purpose of
guiding the search towards cheap safe policies, whereas the secondary heuristics help
with early pruning of regions of the policy space that do not satisfy the constraints.

More formally, let 𝐸 = 𝐼 ∪ 𝐹 ∪ 𝐺 be the current envelope explored by i-dual
where 𝐼 are the interior states, 𝐹 the fringe states, and 𝐺 ⊆ 𝑆𝑔 the goal states in
the envelope, and let ®ℎ = [ℎ0, . . . , ℎ𝑘] be a vector of 𝑘 + 1 heuristic functions such
that ℎ𝑖 (𝑠) ≤ 𝑉∗cost𝑖 (𝑠) for all 𝑖 ∈ {0, . . . , 𝑘} and state 𝑠 ∈ 𝑆. Let the set of envelope
actions be 𝐴𝐸 = {𝑎 ∈ 𝐴(𝑠) | 𝑠 ∈ 𝐼}. At each iteration, i-dual solves the partial C-SSP
((𝐸, 𝐴𝐸 , 𝛾, Pr, ®𝑐𝑜𝑠𝑡, ®𝑢), 𝑠0, 𝐹 ∪ 𝐺), using the heuristics given by ®ℎ at fringe states.

9.4 Linear Programming Approaches 205

The LP solved by i-dual at each iteration is shown in Algorithm 9.17.

i-dual LP(((𝐸, 𝐴𝐸 , 𝛾, Pr, ®𝑐𝑜𝑠𝑡, ®𝑢), 𝑠0, 𝐹 ∪ 𝐺), ®ℎ)
𝐼 ← 𝐸 \ (𝐹 ∪ 𝐺)
min

∑︁
𝑠∈𝐼,𝑎∈𝐴𝐸 (𝑠)

cost0(𝑠, 𝑎)𝑥𝑠,𝑎 +
∑︁
𝑠∈𝐹

ℎ0(𝑠)𝑖𝑛(𝑠)

s.t. (C3) - (C7) [replacing 𝑆\𝑆𝑔 with 𝐼, 𝑆 with 𝐸 , 𝑆𝑔 with 𝐹∪𝐺, 𝐴 with 𝐴𝐸]∑︁
𝑠∈𝐼,𝑎∈𝐴𝐸 (𝑠)

cost𝑖 (𝑠, 𝑎)𝑥𝑠,𝑎 +
∑︁
𝑠∈𝐹

ℎ𝑖 (𝑠)𝑖𝑛(𝑠) ≤ 𝑢𝑖 ∀𝑖 ∈ {1, . . . , 𝑘}

(C9)

Algorithm 9.17. Linear Program Solved by i-dual at Each Iteration

i-dual((Σ𝑐𝑜𝑛𝑠𝑡𝑟 , 𝑠0, 𝑆𝑔), ®ℎ)
𝐸 ← {𝑠0}; 𝐹 ← {𝑠0}; 𝐺 ← ∅; 𝐴𝐸 ← ∅; 𝐹𝜋 ← {𝑠0}
while 𝐹𝜋 ≠ ∅ do // As long as 𝐸 has reachable fringe states

foreach 𝑠 ∈ 𝐹𝜋 do // expand reachable fringe states
remove 𝑠 from 𝐹 // and build new partial problem
𝐴𝐸 ← 𝐴𝐸 ∪ Applicable(𝑠) // by updating 𝐸 , 𝐴𝐸 , 𝐺, and 𝐹
foreach 𝑎 ∈ Applicable(𝑠) and 𝑠′ ∈ 𝛾(𝑠, 𝑎) do

if 𝑠′ ∉ 𝐸 then
add 𝑠′ to E
if 𝑠′ ∈ 𝑆𝑔 then

add 𝑠′ to 𝐺 else
add 𝑠′ to 𝐹

𝑥 ← Solve i-dual LP(((𝐸, 𝐴𝐸 , 𝛾, Pr, ®𝐶, ®𝑢), 𝑠0, 𝐹 ∪ 𝐺), ®ℎ) // Solve LP
if the LP was not solvable then

return Unsolvable
𝐹𝜋 ← {𝑠 ∈ 𝐹 |𝑖𝑛(𝑠) > 0} // and update reachable fringe states

foreach (𝑠, 𝑎) ∈ 𝐸 × 𝐴𝐸 such that 𝑥𝑠,𝑎 > 0 do
𝜋(𝑠, 𝑎) ← 𝑥𝑠,𝑎/𝑜𝑢𝑡 (𝑠)

return 𝜋

Algorithm 9.18. i-dual, a hybrid algorithm for C-SSPs.

i-dual (Algorithm 9.18) uses this LP as a subroutine. It starts from the envelope
𝐸 containing only the initial state 𝑠0 and from the empty policy. At each iteration,
it updates the envelope by expanding all fringe states 𝐹𝜋 reachable under the current
policy, and builds a new partial problem over the updated envelope, which is then
solved with i-dual LP. When the current policy has no fringe states (i.e. all terminal

206 9 Planning with Probabilistic Models

states of the policy are goal states), then i-dual has found an optimal stochastic policy
for the original C-SSP. If any of the calls to i-dual LP fails, then the original C-SSP
is unsolvable. Observe that i-dual runs in polynomial time: each iteration (including
i-dual LP) runs in polynomial time, and there are at most linearly many iterations in
the number of states of the C-SSP.

Theorem 9.25. Given a C-SSP 𝐶 = (Σ𝑐𝑜𝑛𝑠𝑡𝑟 , 𝑠0, 𝑆𝑔) and a vector of admissible
heuristics ®ℎ, i-dual returns an optimal stochastic policy 𝜋 for 𝐶 if 𝐶 is solvable, and
returns Unsolvable otherwise. It does so in polynomial time in |𝑆 | × |𝐴|.

It also possible to use i-dual with inadmissible heuristics to speed up the resolution
of the LP. If the primary cost heuristic ℎ0 is not admissible, then i-dual remains
correct and complete, i.e. it will return a safe stochastic policy that satisfies the
constraints if one exists, but the policy may be suboptimal. If a secondary heuristic is
not admissible, then i-dual will be correct but possibly incomplete, i.e, it may deem
the problem unsolvable even if a safe policy satisfying the constraints exists. This is
because constraint (C9) may unduly prune solutions.

A vector of admissible heuristics ®ℎ can be obtained by constructing an individual
heuristic ℎ𝑖 for each cost function 𝑐𝑜𝑠𝑡𝑖 , e.g., via one of the approaches of Section 9.3.
This however has the downside of not taking into account possible dependencies
between the cost functions.

Let us introduce a heuristic that allows us to simultaneously reason over all the
cost functions. Consider first a single cost function 𝑐𝑜𝑠𝑡. The projection occupation-
measure heuristic ℎpom combines into a single LP the Dual LP for the syntactic pro-
jections Σ{𝑦} over all state variables 𝑦 (see Section 9.3.4). Let 𝑥𝑦𝑣,𝑎 be the occupation-
measure variable belonging to the state {𝑦 = 𝑣} in the syntactic projection onto {𝑦}
and action 𝑎. Heuristic ℎpom connects the different projections, forcing the LP solution
to execute in all projections all actions exactly the same expected number of times, by
including the following tying constraints:∑︁

value 𝑣 of 𝑦
𝑥
𝑦
𝑣,𝑎 =

∑︁
value 𝑣′ of 𝑦′

𝑥
𝑦′

𝑣′ ,𝑎, (9.12)

for all actions 𝑎 and pairs of distinct state variables 𝑦, 𝑦′.
The LP’s objective function is the objective function of the Dual LP for the syntactic

projection onto some 𝑦̂. The precise choice of 𝑦̂ does not matter given (9.12). ℎpom(𝑠)
gives the optimal objective value. To see that this is an admissible estimate of𝑉∗𝑐𝑜𝑠𝑡 (𝑠),
let 𝑥∗𝑠,𝑎 be an optimal solution of the Dual LP for the problem (Σ, 𝑠, 𝑆𝑔) and cost
function 𝑐𝑜𝑠𝑡. Recall that the objective value corresponding to 𝑥∗ is equal to𝑉∗𝑐𝑜𝑠𝑡 (𝑠),
and consider the assignment:

𝑥
𝑦
𝑣,𝑎 =

∑︁
𝑠′∈𝑆 : 𝑠′ contains 𝑦=𝑣

𝑥∗𝑠′ ,𝑎

for all variables 𝑦, values 𝑣 of 𝑦, and actions 𝑎. As 𝑥∗ satisfies the constraints of the Dual
LP for the concrete problem, 𝑥 necessarily satisfies the Dual LP for all the projections.
Moreover, 𝑥 satisfies the tying constraints by construction. Since 𝑥 induces an objec-
tive value equal to that of 𝑥∗, it follows that ℎpom(𝑠) ≤ objective value of 𝑥 = 𝑉∗𝑐𝑜𝑠𝑡 (𝑠).

9.5 Online Probabilistic Approaches 207

i2-dual is an enhanced variant of i-dual, which embeds the projection occupation-
measure LP directly into the i-dual LP in place of the external heuristics ®ℎ. This
leads policy update and heuristic computation to work in unison. To obtain an
admissible estimate of the expected cost under 𝑐𝑜𝑠𝑡𝑖 starting from the fringe states,
the only change required is synchronizing the flow-surplus in the flow-conservation
constraints (C6) of the projections with the in-flow of the fringe states. Using the
same projection occupation-measure variables for all cost functions creates a tight
link between all the heuristic estimates.

9.5 Online Probabilistic Approaches

Often, finding a complete plan then acting according to that plan is often not a feasible
nor a desirable approach. It is not feasible for complexity reasons in large domains,
that is, a few dozens ground state variables. Even with good heuristics, algorithms
seen in Section 9.2 cannot always address large domains, unless the designer is able
to carefully engineer and decompose the domain. Even memorizing a safe policy as
a table lookup in a large domain is by itself challenging to current techniques (that is,
decision diagrams and symbolic representations). However, a large policy contains
necessarily many states that have a very low probability of being reached, e.g., lower
than the probability of unexpected events not modeled in Σ. These improbable states
may not justify being searched, unless they are critical. They can be further explored
if they are reached or become likely to be reached while acting.

Furthermore, even when heuristic planning techniques do scale up, acting is usually
time-constrained. A trade-off between the quality of a solution and its computing
time if often desirable, for example, there is no need to improve the quality of an
approximate solution if the cost of finding this improvement exceeds its benefits.
Such a trade-off can be achieved with an online anytime algorithm that computes a
rough solution quickly and improves it when given more time.

Finally, the domain model is seldom precise and complete enough to allow for
reliable long-term plans. Shorter lookaheads with progressive reassessments of the
context are often more robust. This is often implemented in a receding horizon
scheme, which consists in planning for 𝑑 steps towards the goal, performing one or a
few actions according to the found plan, then replanning further.

This section presents a few techniques that perform online lookaheads and permit
to interleave planning and acting in probabilistic domains. These techniques are based
on a general schema, discussed next.

9.5.1 Lookahead Methods

Lookahead methods allow an actor to progressively elaborate its deliberation while
acting. They rely on a procedure such as MDP-Lookahead presented earlier (Algo-
rithm 8.2), and a generative sampling function. A full definition of 𝛾(𝑠, 𝑎) for all
𝑎 ∈ Applicable(𝑠) is not necessary to a partial exploration. Most partial exploration
techniques rely on sampling methods. They search only one or a few random outcomes
in 𝛾(𝑠, 𝑎) over a few actions in Applicable(s).

208 9 Planning with Probabilistic Models

Definition 9.26. A generative sampling model of a domain Σ = (𝑆, 𝐴, 𝛾, Pr, cost) is
a stochastic function

Sample : 𝑆 × 𝐴→ 𝑆 × R, such that: Sample(𝑠, 𝑎) = (𝑠′, cost(𝑠, 𝑎, 𝑠′)),
where 𝑠′ ∈ 𝛾(𝑠, 𝑎) is randomly distributed according to Pr(𝑠′ |𝑠, 𝑎). □

We assume that several calls to Sample returns a set of states 𝑠′ that independently
and identically distributed (the classical i.i.d assumption). Note a domain can be
defined by specifying 𝑆, 𝐴 and a generative Sample function. One does not need
𝛾 and a priori estimates of the probability and cost distributions of Σ. A domain
simulator is generally the way to implement the function Sample, which provides an
implicit (also referred to as a model-free) specification of an MDP.

Approaches and properties of Lookahead. One possible option is to memorize
the search space explored progressively: each call to Lookahead relies on knowledge
acquired from previous calls; its outcome augments this knowledge. As an alternative
to this memory-based approach, a memoryless strategy would start with a fresh look
at the domain in each call to Lookahead. The choice between the two options depends
on how stationary the domain is, how often an actor may reuse its past knowledge,
how easy it is to maintain this knowledge, and how this can help improve the behavior.

The advantages of partial lookahead come naturally with a drawback, which is
the lack of a guarantee on the optimality and safety of the solution. Indeed, it
is not possible in general to choose 𝜋(𝑠) with a bounded lookahead while being
sure that it is optimal, and, if the domain has dead ends, that there is no dead end
descendant in 𝛾̂(𝑠, 𝜋). Finding whether a state 𝑠 is unsafe may require in the worst
case a full exploration of the search space starting at 𝑠. In the bounded lookahead
approach, optimality and safety are replaced by a requirement of bounds on the
distance to the optimum and on the probability of reaching the goal. In the memory-
based approaches, one may also seek asymptotic convergence to safe and/or optimal
solutions.

Three approaches to the design of a Lookahead procedure are presented next:
• domain determinization and replanning with deterministic search,
• stochastic simulation, and
• sparse sampling and Monte Carlo planning techniques.

The last two approaches are interfaced with a generative sampling model of Σ using
a Sample function: they do not need a priori specification of probability and cost
distributions. The third one is also memoryless; it is typically used in a receding
horizon scheme. However, many algorithms implementing these approaches can be
used for online interleaved planning and acting framework, as well as for offline
planning. Their control parameters allow for a continuum from the computation of a
greedy policy computed at each state to a full exploration and definition of 𝜋(𝑠0).

9.5.2 Planning with Deterministic Search

Determinization techniques. The idea here is to use any deterministic planner to
generates a path 𝜋𝑑 from the current state to a goal for the most probable outcomes

9.5 Online Probabilistic Approaches 209

determinized domain, then to act using 𝜋𝑑 until reaching a state 𝑠 that is not in the
domain of 𝜋𝑑 . At that point one generates a new deterministic plan starting at 𝑠.

Note, however, that this approach does not cope adequately with dead ends. Even
if the deterministic planner is complete and finds a path to the goal when there is one,
executing that path may lead along a nondeterministic branch to an unsafe state.

RFF (Algorithm 9.19) relies on a deterministic planner, called Det-Plan, to find in
Σ𝑑 an acyclic path from a state to a goal. Σ𝑑 takes in Σ the most probable 𝑠′ ∈ 𝛾(𝑠, 𝑎).
Procedure Det-Plan returns a path Σ𝑑 taken as a partial policy. RFF memorizes
previously generated deterministic paths and extends them for states that have a high
reachability probability. RFF can be used as an online Lookahead procedure, possibly
with additional control parameters, or as an an offline planner. In the latter case, RFF
repeatedly extends undefined branches in 𝛾̂(𝑠0, 𝜋).

RFF(Σ, 𝑠0, 𝑆𝑔, 𝜃)
𝜋 ← Det-Plan(Σ𝑑 , 𝑠0, 𝑆𝑔)
while ∃𝑠 ∈ 𝛾̂(𝑠0, 𝜋) such that

[(𝜋(𝑠) is undefined) ∧(𝑠 ∉ 𝑆𝑔) ∧ (Pr(𝑠 |𝑠0, 𝜋) ≥ 𝜃)] do
𝜋 ← 𝜋 ∪ Det-Plan(Σ𝑑 , 𝑠, 𝑆𝑔 ∪ Targets(𝜋, 𝑠))

Algorithm 9.19. RFF, a determinization planning algorithm.

RFF initializes the policy 𝜋 with the pairs (state, action) corresponding to a de-
terministic plan from 𝑠0 to a goal, then it extends 𝜋. It looks for a fringe state
𝑠′ ∈ 𝛾̂(𝑠0, 𝜋) that has a successor 𝑠 not in 𝑆𝑔 and for which 𝜋 is undefined. If the
probability of reaching 𝑠 is above some threshold 𝜃, RFF extends 𝜋 with another
deterministic path from 𝑠 to a goal or to another state already in the domain of 𝜋. The
set of additional goals given to Det-Plan, denoted Targets(𝜋, 𝑠), can be the already
computed Domain(𝜋) or any subset of it. If the entire Domain(𝜋) is too large, the
overhead of using it in Det-Plan can be larger than the benefit of reusing paths already
planned in 𝜋. A trade-off reduces Targets(𝜋, 𝑠) to 𝑘 states already in the domain of
𝜋. These can be taken randomly in Domain(𝜋) or chosen according to some easily
computed criterion.

Computing Pr(𝑠 |𝑠0, 𝜋) can be time-consuming (a search and a sum over all paths
from 𝑠0 to 𝑠 with 𝜋). This probability can be estimated by sampling. A number of
paths starting at 𝑠0 following 𝜋 are sampled; this allows the estimation of the total
probability of reaching non-goal states that are not in the domain of 𝜋. RFF terminates
when this frequency is lower than 𝜃.

Algorithm 9.19 requires a domain without reachable dead ends. However, RFF can
be extended to domains with avoidable dead ends, that is, where 𝑠0 is safe. This is
achieved by introducing a backtrack point in a state 𝑠 which is either an immediate
dead end or for which Det-Plan fails. That state is marked as unsafe; a new search
starting from its predecessor 𝑠′ is attempted to change 𝜋(𝑠′) and avoid the previously
failed action.

RFF algorithm does not attempt to find an optimal or near optimal solution. How-
ever, the offline version of RFF finds a probabilistically safe solution, in the sense

210 9 Planning with Probabilistic Models

that the probability of reaching a state not in the domain of 𝜋, either safe or unsafe, is
upper bounded by 𝜃.

Mixed Deterministic-Probabilistic Approaches. In Section 8.3.4 we discussed
modeling domains where all but a few of the actions are deterministic, by mixing
deterministic and nondeterministic approaches.

Here is a possible approach for planning in a domain that has both de-
terministic and nondeterministic actions. Assume that while planning from
a current state 𝑠 to a goal, the algorithm finds at some point a sequence
⟨(𝑠, 𝑎1), (𝑠2, 𝑎2), . . . , (𝑠𝑘−1, 𝑎𝑘−1), (𝑠𝑘 , 𝑎)⟩ such that actions 𝑎1 through 𝑎𝑘−1 are de-
terministic, but 𝑎 is nondeterministic. It is possible to compress this sequence to
a single nondeterministic step (𝑠, 𝑎), the cost of which is the sum of cost of the 𝑘
steps and the outcome 𝛾(𝑠, 𝑎) of which is the outcome of the last step. This idea can
be implemented as sketched in Algorithm 9.20. Its advantage is to focus the costly
processing on a small part of the search space.

Incremental-compression-and-search(Σ, 𝑠0, 𝑆𝑔)
while there is an unsolved state 𝑠 in current 𝛾̂(𝑠0, 𝜋) do

search for an optimal path from 𝑠 to a goal
until a nondeterministic action 𝑎

compress this path to a single nondeterministic step
𝜋(𝑠) ← 𝑎

revise with Bellman-Update

Algorithm 9.20. Incremental-compression-and-search for sparse probabilistic do-
mains.

The notion of mixed deterministic-probabilistic domains can be extended further
to cases in which |𝛾(𝑠, 𝑎) | < 𝑘 and Applicable(𝑠) < 𝑚 for some small constants 𝑘
and 𝑚. Sampling techniques, discussed next, are particularly useful in these cases.

9.5.3 Stochastic Simulation Techniques

Stochastic simulation techniques rely on a generative Sample function. They run
simulated walks from 𝑠0 to a goal along best current actions by sampling one outcome
for each action. Algorithms implementing this idea are inspired from LRTA∗ [639].
They can be implemented as offline planners or online Lookahead procedures.

One such algorithm, called RTDP, runs a series of simulated trials starting at 𝑠0. A
trial performs a Bellman update on the current state, then it proceeds to a randomly
selected successor state along the current action 𝜋(𝑠), that is, from 𝑠 to some random
𝑠′ ∈ 𝛾(𝑠, 𝜋(𝑠)). A trial finishes when reaching a goal. The series of trials is pursued
until either the residual condition is met, which reveals near convergence, as in
Find&Revise, or the amount of time for planning is over. At that point, the best action
in 𝑠0 is returned. With these assumptions RTDP is an anytime algorithm.

9.5 Online Probabilistic Approaches 211

If a goal is reachable from every state in the search space and if the heuristic
𝑉0 is admissible then every trial reaches a goal in a finite number of steps and
improves the values of the visited states over the previous values. Hence, RTDP
converges asymptotically to𝑉∗, but not in a bounded number of trials. Note that these
assumptions are stronger than the existence of a safe policy.

LRTDP(Σ, 𝑠0, 𝑔,𝑉0)
until 𝑠0 is solved or planning time is over do

LRTDP-Trial(𝑠0)

LRTDP-Trial(𝑠)
𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← empty stack
while 𝑠 is unsolved do

push(𝑠, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑)
Bellman-Update(𝑠)
(𝑠, 𝑐) ← Sample(𝑠, 𝜋(𝑠))

𝑠←pop(𝑣𝑖𝑠𝑖𝑡𝑒𝑑)
while Check-Solved(𝑠) is true and 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 is not empty do

𝑠←pop(𝑣𝑖𝑠𝑖𝑡𝑒𝑑)

Algorithm 9.21. LRTDP algorithm.

Algorithme LRTDP (for Labelled RTDP), improves over RTDP by explicitly check-
ing and labeling solved states. LRTDP avoids visiting solved states twice. It calls
LTRDP-Trial(𝑠0) repeatedly until planning time is over or 𝑠0 is solved. A trial is a
simulated walk along current best actions. It stops when reaching a solved state. A
state 𝑠 visited along a trial is pushed in a stack 𝑣𝑖𝑠𝑖𝑡𝑒𝑑. When needed, it is expanded
and Bellman updated. The trial is pursued on a randomly generated successor of 𝑠.
The procedure Sample (𝑠, 𝑎) returns a pair (𝑠′, 𝑐𝑜𝑠𝑡 (𝑠, 𝜋(𝑠), 𝑠′), with 𝑠′ ∈ 𝛾(𝑠, 𝜋(𝑠))
randomly drawn according to the distribution Pr(𝑠′ |𝑠, 𝜋(𝑠)).

The states visited along a trial are checked in LIFO order using the procedure
Check-Solved to label them as solved or to update them. Check-Solved(𝑠) searches
through 𝛾̂(𝑠, 𝜋) looking for a state whose residual is greater than the margin 𝜂. If it
does not find such a state (𝑓 𝑙𝑎𝑔 = true), then there is no open state in 𝛾̂(𝑠, 𝜋): 𝑠 and
its descendants in 𝛾̂(𝑠, 𝜋) (kept in the 𝑐𝑙𝑜𝑠𝑒𝑑 list) are labeled as solved. Otherwise,
there are open states in 𝛾̂(𝑠, 𝜋). The procedure does not explore further down the
successors of an open state (its residual is larger than 𝜂); it continues on its siblings.

When all the descendants of 𝑠 whose residual is less or equal to 𝜂 have been
examined (in that case 𝑜𝑝𝑒𝑛 = ∅), the procedure tests the resulting flag. If 𝑠 is not
yet solved (that is, flag= false), a Bellman update is performed on all states collected
in closed. Cycles in the Envelope are taken care of (with the test 𝑠′ ∉ open∪closed):
the search is not pursued on successors that have already been met. The complexity
of Check-Solved(𝑠) is linear in the size of the Envelope, which may be exponential in
the size of the problem description.

Note that by definition, goal states are solved; hence the test “𝑠 is unsolved” in the

212 9 Planning with Probabilistic Models

Check-Solved(𝑠)
flag← true
open← 𝑐𝑙𝑜𝑠𝑒𝑑 ← empty stack
if 𝑠 is unsolved then push(𝑠, 𝑜𝑝𝑒𝑛)
while open is not empty do

𝑠← pop(open)
push(𝑠, closed)
if |𝑉 (𝑠) −𝑄(𝑠, 𝜋(𝑠)) | > 𝜂 then 𝑓 𝑙𝑎𝑔 ← false
else

foreach 𝑠′ ∈ 𝛾(𝑠, 𝜋(𝑠)) do
if 𝑠′ is unsolved and 𝑠′ ∉ open ∪ closed then push(𝑠′, 𝑜𝑝𝑒𝑛)

if flag= true then
1 foreach 𝑠′ ∈ closed do label 𝑠′ as solved // labeling step

else
while closed is not empty do

𝑠← pop(closed)
Bellman-Update(𝑠)

return flag

Algorithm 9.22. Check-Solved, procedure to check and label solve states for
LRTDP.

two preceding procedures checks the explicit labeling performed by Check-Solved
(labeling step) as well as the goal condition.

If a goal is reachable from every state and 𝑉0 is admissible, then LRTDP-Trial
always terminates in a finite number of steps. Furthermore, if the heuristic 𝑉0 is
admissible and monotone, then the successive values of 𝑉 with Bellmann updates are
nondecreasing. Under these assumptions, each call to Check-Solved(𝑠) either labels 𝑠
as solved or increases the value of some of its successors by at least 𝜂 while decreasing
the value of none. This leads to the same complexity bound as Value Iteration:

Proposition 9.27. LRTDP with an admissible and monotone heuristic on a problem
where a goal is reachable from every state converges in a number of trials bounded
by 1/𝜂∑𝑆 [𝑉∗(𝑠) −𝑉0(𝑠)].

This bound is mainly of theoretical interest. Of more practical value is the anytime
property of LRTDP: the algorithm produces a good solution that it can improve if
given more time or in successive calls in MDP-Lookahead. Because Sample returns
states according to their probability distribution, the algorithm solves frequent states
faster than on less probable ones. As an offline planner (that is, repeated trials until
𝑠0 is solved), its practical performances are comparable to those of the other heuristic
algorithms presented earlier.

9.5 Online Probabilistic Approaches 213

9.5.4 Sampling and Monte Carlo Approaches

The stochastic simulation approach of the previous section with a generative Sample
function can be extended and used in many ways, in particular with the bounded walks
and sampling strategies discussed here.

Let 𝜋0 be an arbitrary policy, used at initialization. For example, 𝜋0(𝑠) is the greedy
policy, locally computed only when needed as 𝜋0(𝑠) = argmin𝑎 𝑄

𝑉0 (𝑠, 𝑎) for some
heuristic 𝑉0. If the actor has no time for planning, then 𝜋0(𝑠) is the default action. If
it can afford a lookahead, then it can improve 𝜋0 with Monte Carlo rollouts.

Monte Carlo Rollout. Let us use the Sample procedure to simulate a random
bounded walk in the search tree down to a depth 𝑑. The first step is a chosen
action 𝑎 applicable in 𝑠; the remaining 𝑑 − 1 steps follow a initial policy 𝜋0. Let
𝜎𝑑
𝜋0 (𝑠, 𝑎) = ⟨𝑠, 𝑠1, 𝑠2, . . . , 𝑠𝑑⟩ be the sequence of states visited during this walk, with
(𝑠1, 𝑐1) ← Sample(𝑠, 𝑎) and (𝑠𝑖+1, 𝑐𝑖+1) ← Sample(𝑠𝑖 , 𝜋0(𝑠𝑖)) for 1 ≤ 𝑖 < 𝑑. This
history 𝜎𝑑

𝜋0 (𝑠, 𝑎) is called a rollout for 𝑎 in 𝑠 with 𝜋0. Let 𝑄𝑑
𝜋0 (𝑠, 𝑎) be the cost-to-go

of 𝑎 in 𝑠 as estimated by this rollout. It can computed by a call to the procedure
Rollout (𝑠, 𝑎, 𝜋0, 𝑑), which stops after 𝑑 steps, estimating the remaining cost with 𝑉0,
or when reaching a goal (Algorithm 9.23).

1

s
a1 ai

s11 s1i

sd1 sd1
Qd(s,a1) Qd(s,ai)

(a)

1

s

s11 s1i

sd1 sdi

Qd(s,a1) Qd(s,ai)

a1 ai
… …
k k

…

1

(b)

Figure 9.8. (a) Single Monte Carlo rollouts for actions in 𝑠; (b) Multiple rollouts for
actions in 𝑠.

Let us perform a rollout for every action applicable in 𝑠 following 𝜋0, as depicted
in Figure 9.8(a), and let us define a new policy:

𝜋(𝑠) = argmin
𝑎

𝑄𝑑
𝜋0 (𝑠, 𝑎).

The argument of Proposition 9.1 applies here: policy 𝜋 dominates the base policy 𝜋0.
However, a single rollout of 𝑎 in 𝑠 will not give a good estimate of the cost-to-go.

A MultipleRollout procedure performs 𝑘 similar simulated walks of 𝑑 steps for each

214 9 Planning with Probabilistic Models

Rollout(𝑠, 𝑎, 𝜋, 𝑑)
(𝑠′, 𝑐) ← Sample(𝑠, 𝑎) // where 𝑐 = cost(𝑠, 𝑎, 𝑠′)
return [𝑐 + Rest-Rollout(𝑠′, 𝜋, 𝑑 − 1)]

Rest-Rollout(𝑠, 𝜋, 𝑑)
if 𝑠 ∈ 𝑆𝑔 then return 0
else if 𝑑 = 0 then return 𝑉0(𝑠)
else
(𝑠′, 𝑐) ← Sample(𝑠, 𝜋(𝑠)) // 𝑐 = cost(𝑠, 𝜋(𝑠), 𝑠′)
return [𝑐 + Rest-Rollout(𝑠′, 𝜋, 𝑑 − 1)]

Algorithm 9.23. Performing a rollout for 𝑎 in 𝑠 with 𝜋 and computing its total
cost

applicable 𝑎 in 𝑠 (Algorithm 9.24 and Figure 9.8(b)). The average of their costs
assesses𝑄(𝑠, 𝑎). This is the case since Sample returns random states according to the
probability distributions. This procedure is probabilistically approximately correct,
that is, it provides a probabilistically safe solution (not guaranteed to be safe) whose
distance to the optimum is bounded. In each 𝑠, it performs |Applicable(𝑠) | × 𝑘 × 𝑑
calls to Sample.

MultipleRollout(𝑠, 𝜋, 𝑘, 𝑑)
foreach 𝑎 ∈ Applicable(𝑠) do

𝑄(𝑠, 𝑎) ← 0
for 𝑘 times do

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 1
𝑘

Rollout(𝑠, 𝑎, 𝜋, 𝑑)

𝜋(𝑠) ← argmin𝑎 𝑄(𝑠, 𝑎)

Algorithm 9.24. MultipleRollout, a multiple rollout procedure

Note the similarity of MultipleRollout to the Policy Iteration procedure: in both
cases we first compute the 𝑉 𝜋 , or equivalently the 𝑄 𝜋 functions for a given 𝜋, then
we improve 𝜋 with the newly computed value or cost functions. There two main
differences: (i) Policy Iteration computes 𝑉 𝜋 systematically while MultipleRollout
estimates with sampling an approximation of 𝑄 𝜋 , and (ii) Policy Iteration defines 𝜋
over all 𝑆, whereas here we do it incrementally for current 𝑠. The already mentioned
approximate policy iteration techniques rely on MultipleRollout performed over a
number of representative states, and a generalization of the resulting policy to 𝑆 with
a learning procedure (see Chapter 10).

Sparse Sampling. We can extend the previous approach with bounded multiple
rollouts in 𝑠 and recursively in each of its descendants reached by these rollouts.

Procedure SLATE builds a tree in which nodes are states; arcs correspond to
transitions to successor states, which are randomly sampled. Two parameters 𝑑 and 𝑘

9.5 Online Probabilistic Approaches 215

bound the tree, respectively in depth and sampling width (see Figure 9.9). At depth
𝑑, a leaf of the tree gets a heuristic value estimated by𝑉0. In an interior state 𝑠 and for
each action 𝑎 applicable in 𝑠, 𝑘 successors are randomly sampled. The average of their
estimated values over the set of pairs (𝑠′, cost(𝑠, 𝑎, 𝑠′) ∈ samples is used to compute
recursively the cost-to-go 𝑄(𝑎, 𝑠). The minimum over all actions in Applicable(𝑠)
gives 𝜋(𝑠) and 𝑉 (𝑠), as in Bellman-Update.

SLATE(𝑠, 𝑑, 𝑘)
if 𝑑 = 0 then return 𝑉0(𝑠)
if 𝑠 ∈ 𝑆𝑔 then return 0
foreach 𝑎 ∈ Applicable(𝑠) do

samples← ∅
for 𝑘 times do

samples← samples ∪ Sample(𝑠, 𝑎)
𝑄(𝑠, 𝑎) ← 1

𝑘

∑
(𝑠′ ,𝑐) ∈samples 𝑐 + SLATE(𝑠′, 𝑑 − 1, 𝑘)

𝜋(𝑠) ← argmin𝑎{𝑄(𝑠, 𝑎)}
return 𝑄(𝑠, 𝜋(𝑠))

Algorithm 9.25. SLATE, sampling lookahead tree.

Assuming that a goal is reachable from every state, SLATE has the following
properties:

• It does not require probability distributions: recall that successive calls to
Sample (𝑠, 𝑎) returns states in 𝛾(𝑠, 𝑎) distributed according the Pr(𝑠′ |𝑠, 𝑎),
which allows estimating 𝑄(𝑠, 𝑎).

• It defines a near-optimal policy: the difference |𝑉 (𝑠) − 𝑉∗(𝑠) | can be bounded
as a function of 𝑑 and 𝑘 .

• It runs in a worst-case complexity independent of |𝑆 |, but nonetheless exponen-
tial in 𝑂 ((𝛼𝑘)𝑑), where 𝛼 = max |Applicable(𝑠) |.

1

s

s1.1 si.1

a1 ai
… …

…
s1.k si.k

depth d…

Figure 9.9. SLATE’s sparse sam-
pling tree.

Note the differences between SLATE and MultipleRollout: the latter is polynomial in
𝑑, but its approximation is probabilistic. SLATE provides a guaranteed approximation,
but it is exponential in 𝑑. More precisely, SLATE returns a solution whose distance
to the optimal policy is upper bounded |𝑉 (𝑠) −𝑉∗(𝑠) | < 𝜖 ; it runs in 𝑂 (𝜖 𝑙𝑜𝑔𝜖).

216 9 Planning with Probabilistic Models

A few improvements can be brought to SLATE. One may reduce the sampling with
the depth of the state: the deeper is a state, the less influence it has on the cost-to-go of
the root. Further, the data structure samples can implemented as a set with counters
on its elements such as to perform a single recursive call on a successor 𝑠′ of 𝑠 that is
sampled more than once. Note that the sampling width 𝑘 can be chosen independently
of |𝛾(𝑠, 𝑎) |. However, when 𝑘 > |𝛾(𝑠, 𝑎) |, further simplifications can be introduced,
in particular for deterministic actions. Finally, it is easy to refine SLATE into an
anytime algorithm: an iterative deepening scheme with caching increases the horizon
𝑑 until acting time (see Exercise 9.16).

9.5.5 MCTS and UCT

In SLATE, as well as in MultipleRollout, the sampling strategy is systematic. All
actions in Applicable(𝑠) are explored in the same way. A sampling strategy would
allow further exploring a promising action; it would prune out rapidly inferior options,
but no action should be left untried. It would seek a trade-off between the number of
times an action 𝑎 has been sampled in 𝑠 and the value 𝑄(𝑠, 𝑎). This trade-off seeks
to find a probably good solution while minimizing the search.

Monte Carlo Tree Search techniques. Monte Carlo Tree Search (MCTS) tech-
niques, illustrated in Algorithm 9.26, rely on such a sampling strategy. MCTS is an
online version of Find&Revise. It develops a focused part of the search space, starting
from a current root state 𝑠𝑟 , and performs Bellman updates within this focused part. It
has a find step seeking an open state, and a revise step. However MCTS uses rollouts
instead of heuristic estimates for the revise steps.

MCTS(𝑠𝑟 , 𝑑)
until termination condition do

1 select an open state 𝑠 ∈ 𝛾̂(𝑠𝑟 , 𝜋)
2 choose an action 𝑎̃ ∈ Applicable(𝑠)
3 𝑄(𝑠, 𝑎̃) ← [𝑁 (𝑠, 𝑎̃) ×𝑄(𝑠, 𝑎̃) + Rollout(𝑠, 𝑎̃, 𝜋𝑟 , 𝑑)]/(1 + 𝑁 (𝑠, 𝑎̃))
4 𝑁 (𝑠, 𝑎̃) ← 𝑁 (𝑠, 𝑎̃) + 1
5 𝜋(𝑠) ← argmin𝑎{𝑄(𝑠, 𝑎)}
6 update all ancestors of 𝑠 in 𝛾̂(𝑠𝑟 , 𝜋)

return 𝜋(𝑠𝑟) and 𝑄(𝑠𝑟 , 𝜋(𝑠𝑟))

Algorithm 9.26. MCTS, a procedure for MDP And/Or graphs

MCTS starts with some initial cost-to-go function𝑄0. As in Find&Revise, a state is
open when either it is a fringe or when it requires further updates. This latter condition
is however assessed by MCTS with respect to the number 𝑁 (𝑠, 𝑎) of rollouts performed
from (𝑠, 𝑎), initialized to 0. MCTS maintains such a number for every applicable 𝑎
in 𝑠. Lines 1 and 2 in MCTS selects a state and an applicable action with a trade off
between less frequently updated and promising ones. Line 3 is an incremental update
of the cost-to-go using Rollout, averaged over all rollouts performed in 𝑠 and 𝑎̃. The

9.5 Online Probabilistic Approaches 217

successor 𝑠′ of 𝑠 returned by Sample(𝑠, 𝑎̃) (in Rollout) is added to the envelope. The
other states met along a rollout are not maintained in the envelope. The policy 𝜋𝑟
used by Rollout can be argmin𝑎 𝑄0 or any random policy. Within the enveloppe, 𝜋
is maintained for newly expanded or updated states (lines 5). Ancestors of 𝑠 in the
envelope are updated bottom up until 𝑠𝑟 ; this can be performed by a procedure such
as Algorithm 9.8. The termination condition stops MCTS when planning time is over
or no open state remains in the envelope. At this stage, 𝜋(𝑠𝑟) is the best action in 𝑠𝑟
estimated by MCTS.

The UCT algorithm. Algorithm UCT (for “Upper Confidence Trees”) instantiate
MCTS with a particular sampling strategy. It expands, to a bounded depth, a tree
rooted at the current node. It develops this tree in a non-uniform way. At an interior
node of the tree in a state 𝑠, it selects a trial action 𝑎̃ with the strategy described
subsequently. It samples a successor 𝑠′ of 𝑠 along 𝑎̃. It estimates the value for 𝑠′
(in Line 1) with a recursive call to UCT-rollout on 𝑠′ with the cumulative cost of the
rollout below 𝑠′. It uses this estimate to update (in Line 2) 𝑄(𝑠, 𝑎̃) by averaging over
all previously sampled successors in 𝛾(𝑠, 𝑎̃) (as is done in SLATE or MCTS in Line 3).

UCT(𝑠, 𝑑)
until termination condition do

UCT-rollout(𝑠, 𝑑)
UCT-Rollout(𝑠, 𝑑)

if 𝑠 ∈ 𝑆𝑔 then return 0
if 𝑑 = 0 then return 𝑉0(𝑠)
if 𝑠 ∉ Envelope then

add 𝑠 to Envelope
𝑁 (𝑠) ← 0
foreach 𝑎 ∈ Applicable(𝑠) do

𝑄(𝑠, 𝑎) ← 0; 𝑁 (𝑠, 𝑎) ← 0

𝑎̃ ← Select(𝑠) // update with tradeoff in Equation 9.13
(𝑠′, 𝑐) ← Sample(𝑠, 𝑎̃) // 𝑐 = cost(𝑠, 𝑎̃, 𝑠′)

1 cost-rollout← 𝑐 + UCT-rollout(𝑠′, 𝑑 − 1)
2 𝑄(𝑠, 𝑎̃) ← [𝑁 (𝑠, 𝑎̃) ×𝑄(𝑠, 𝑎̃) + cost-rollout]/(1 + 𝑁 (𝑠, 𝑎̃))
𝜋(𝑠) ← argmax{𝑄(𝑠, 𝑎) | 𝑎 ∈ Applicable(𝑠)
𝑁 (𝑠) ← 𝑁 (𝑠) + 1
𝑁 (𝑠, 𝑎̃) ← 𝑁 (𝑠, 𝑎̃) + 1
return cost-rollout

Algorithm 9.27. UCT, a Monte-Carlo Tree Search procedure.

UCT is called repeatedly on a current state 𝑠 until time runs out. When this happens,
the solution policy in 𝑠 is given by 𝜋(𝑠) = argmin𝑎 𝑄(𝑠, 𝑎). This process is repeated
on the state observed after performing the action 𝜋(𝑠). UCT can be stopped anytime.

The strategy for selecting trial actions is a trade-off between promising actions and

218 9 Planning with Probabilistic Models

those that need further exploration. Let us denote the untried actions in 𝑠 at some
stage as Untried(𝑠) = {𝑎 ∈ Applicable(𝑠) | 𝑁 (𝑠, 𝑎) = 0}. A trial action 𝑎̃ in a state 𝑠
is selected as follows:

Select(𝑠) =


arbitrary 𝑎 ∈ Untried(𝑠) if Untried(𝑠) ≠ ∅,

argmin𝑎{𝑄(𝑠, 𝑎) − 𝐶 × [log(𝑁 (𝑠))/𝑁 (𝑠, 𝑎)]1/2}
if not.

(9.13)

where 𝑁 (𝑠, 𝑎) is the number of time 𝑎 has been sampled in 𝑠, 𝑁 (𝑠) is the total number
of samples in that state, and 𝐶 > 0 is a constant. The constant 𝐶 fixes the relative
weight of exploration of less sampled actions (when 𝐶 is high) to exploitation of
promising actions (𝐶 low). Its empirical tuning significantly affects the performance
of UCT. The choice in Untried when not empty can be heuristically guided.

One can prove that this selection strategy minimizes the number of times a sub-
optimal action is sampled and that UCT converges asymptotically to the optimal
solution.

All approaches described in this Section 9.5.4 can be implemented as memoryless
procedures (in the sense discussed in Section 9.5.1). They are typically used in a
receding horizon MDP-Lookahead schema. This simplifies the implementation of
the planner, in particular when the lookahead bounds are not uniform and have to
be adapted to the context. This has another important advantage in non-stationary
domains. These procedures can generate non-stationary policies, possibly stochastic.
Indeed, an actor may find it desirable to apply a different action on its second visit to 𝑠
than on its first. For indefinite horizon problems in particular, non-stationary policies
can be shown to outperform stationary ones.

9.6 Discussion and Bibliographic Notes

9.6.1 MDP Planning Algorithms and Heuristics

The Dynamic Programming foundations and main algorithms go back to the early
work of Bellman, Putermann, Bertsekas, and Tsitsiklis [109, 919, 131] and other con-
tributions discussed in the previous chapter. More recent studies revealed additional
properties of the Value Iteration algorithm, e.g., complexity results with positive costs
and lower bound heuristics [154], or sub-optimality bounds [467]. The propositions
in Section 9.1 are demonstrated in [130]. Several extended and improved Value Itera-
tion algorithms have been proposed, for example, with a prioritized control [40]; with
a focus mechanism [349, 778, 1181]; with a backward order of updates from goals
back along a greedy policy [268]; or with value estimation by random sampling in
approximate value iteration [97, 1030].

Policy Search methods (not the be confused with Policy Iteration) deal with
parametrized policies 𝜋𝜃 and perform a local search in the parameter space of 𝜃
(for example, gradient descent). The survey in [288] covers in particular their use for
continuous space domains and reinforcement learning problems.

9.6 Discussion and Bibliographic Notes 219

LAO* is developed in [469] as an extension of AO* [856]. The Find&Revise schema
was proposed in [157], together with several instantiation of this schema into heuristic
search algorithms such as HDP [157], LRTDP [158] and LDFS [160]. A few other
heuristic algorithms are presented in their recent textbook [392, chap. 6 & 7]. RTDP
has been introduced in [99]. The domain-configurable control technique presented in
Section 9.3 was developed in [658].

The FF-Replan planner has been developed in [1208] in the context of the Interna-
tional Planning Competition. A critical analysis of its replanning technique appears
in [723], together with a characterization of “probabilistically interesting problems.”
These problems have dead ends and safe solutions. To take the latter into account,
an online receding horizon planner, called FF-Hindsight[1209] relies on estimates
through averaging and sampling over possible determinizations with a fixed looka-
head. The RFF algorithm has been proposed in [1087]; it has been generalized to
hybrid MDPs with continuous state variables [1085].

Linear programming was introduced as a solution method for MDPs in [293] in the
early 1960s. The book [34] provides a thorough account of linear programming and
other methods for solving C-MDPs. The i-dual heuristic search algorithm originates
from [1102], whereas the i2-dual algorithm and occupation measure heuristics were
described in [1104].

Monte Carlo rollouts (named after the casinos of Monte Carlo) have been used
very early in computational physics, e.g., quantum Monte Carlo methods and particle
physics simulations. Particle filtering techniques adapt these approaches to signal
processing [289]. Monte Carlo Tree Search techniques have been developed for
game trees [182]. MCTS won the computer Go tournament in 2005 [260]. Fur-
ther extensions and combination with neural networks lead to several developments
in planning, scheduling and games, and the well-known success of AlphaGo and
AlphaZero [1018, 1019].

The SLATE procedure is due to [595]. UCT was proposed in [623]. An AO* version
of it is described in [162]. UCT was implemented into a few MDP planners such as
PROST [597]. An extension of UCT addressing POMDPs is studied in [1015].

UCT converges on a indefinite horizon MDP: the probability of not finding the
optimal action at the root node goes to zero at a polynomial rate as the number of
rollouts grows to infinity (Theorem 6 in [623])

Several contributions have exploited determinization techniques in probabilistic
planning, e.g., for pruning unnecessary Bellman update [169], for performing Graph-
plan like reachabilitiy analysis [583], or for computing heuristics for the mGPT planner
[159]. Proposition 9.18 is demonstrated in the latter reference.

The regrouped operator-counting and the projection occupation-measure heuristics
were introduced in [1104]. The authors conjectured that both heuristics are actually
equivalent; was shown to be the case in [613]. The idea of deriving probabilistic
planning heuristics from general projections (beyond single variables) was explored
much later after the introduction of ℎpom in [612]. This paper developed probabilis-
tic pattern-database (PPDB) heuristics for MAX-PROB, where multiple projection
heuristics are combined via multiplication in place of addition. PPDB heuristics for
SSPs were introduced in [611]. Besides projections, literature has also studied more

220 9 Planning with Probabilistic Models

general types of probabilistic abstractions [614, 615].
For many planners, deep dead ends can lead to inefficiency or even to nontermina-

tion (for example, as in RTDP and LRTDP). Dead ends can be detected, but unreliably,
through heuristics. They are safely avoided through the unbounded growth of the
value function 𝑉 with positive costs, as in Find&Revise instances and other variants,
for example, [629], but this can be quite expensive. Allowing for real costs requires
algorithms able to check and avoid dead ends, as in [1089], or in the GSSP model
[631]. GSSP accounts for maximizing the probability of reaching the goal, which
is an important criterion, also addressed by other means in [919] and [1088]. The
approaches in [633] and [1086] for the S3P model goes one step further with a dual
optimization criterion combining a search for a minimal cost policy among policies
with the maximum probability of reaching a goal. An explanation-based learning
technique to acquire clauses that soundly characterizes dead ends is proposed in
[630]. These clauses are easily detected when states are represented as conjunction
of literals. They are found through a bottom-up greedy search and further tested to
avoid false positives. This technique can be usefully integrated into the generalized
Find&Revise schema proposed for the GSSP model [631].

9.6.2 Factored and Hierarchical MDPs

Dynamic programming techniques for MDPs with a structured or factored represen-
tation are studied in [171]. An elaborate and scalable techniques approximation for
MDPs represented with DBNs is studied in [452], with a value function as a linear
combination of basis functions for subsets of the state variables.

The PPDDL language [1212] is supported by planners such as mGPT [159] or
PFD [1056]. RDDL is partially supported by a few planners, e.g., GLUTTON [632],
BEAVER [928], SPUDD and PROST [598]. Their respective merits in various
benchmarks are analyzed in [937].

Symbolic techniques with binary and algebraic decision diagrams have also been
used in probabilistic planning, e.g., a symbolic Value Iteration in the SPUDD planner
[505]. These techniques are used in an RDTP algorithm [344], or a symbolic LAO*
[343]. The nondeterministic MBP planner have been extended to MDPs [768].

Several algorithms have been proposed to take advantage of the structure of a
probabilistic planning problem. This is the case, for example, for hierarchical MDPs
of the HiAO∗ algorithm [786]. Different methods can be used to hierarchize a domain,
e.g., [426]. Model minimization techniques have been studied in [284]. A kernel
decomposition approach has been developed in [281]. Approximate solutions to large
MDPs with macro actions, that is, local policies defined in particular regions of the
state space are studied in [485]. The DetH∗ algorithm [90] clusters a state space into
aggregates of closely connected states, then it uses a combination of determinization
at the higher level and Value Iteration at the lower level of a hierarchical MDP.

Sparse probabilistic domains have been studied in e.g., [192, 717]. The path
compression technique of Algorithm 9.20 is detailed in the latter reference.

9.6 Discussion and Bibliographic Notes 221

9.6.3 Continuous and Partially Observable MDPs

MDPs in continuous state and action spaces use generally a flat representation: 𝑆 ⊆ R𝑛
and 𝐴 ⊆ R𝑚. States and actions as vectors of real numbers, bounded in appropriate
intervals, are quite popular for modeling robotics and control problems, e.g., [685,
Sec.8.5.2]. When actuation is performed at discrete time points (e.g., at a fixed fre-
quency), we are still in the framework of discrete transition systems. This continuous
MDP model is equivalent to having a single parametrized action and the choice of the
parameter values to apply to the current actuation point.

Bellman equation is easily extended with probability density functions to continu-
ous MDPs for the bounded and the discounted infinite horizon cases. The planning
problem can be addressed by computing the value function at hyper-rectangles in
𝑆, the boundaries of which are defined by lower and upper bounds on the values
of each state variable. This is called the Rectangular Piecewise Constant (RPWC)
representation of 𝑉 [345]. RPWC is consistent with Bellman updates (with a caution
for adaptive discretization), allowing for algorithms similar to Value Iteration. RPWC
can be used to discretize the density functions instead of 𝑉 , with similar properties
[708]. When the cost function is linear, a Rectangular Piecewise Linear (RPWL)
discretization of 𝑉 is also amenable to Bellman updates with better results [729].

Monte Carlo Tree Search methods are a powerful alternative to Dynamic Program-
ming approaches for continuous MDPs. The so-called Action Progressive Widening
adapt the UCT sampling strategy to a continuous space [218]. An interesting vari-
ant systematically selects the minimum, median and maximum points of the multi-
dimensional action space before pursuing with random samples [259, 137].

Hybrid MDPs have continuous and discrete state variables. They have been ad-
dressed with extensions of the previous approaches, with various Linear Programming
techniques [484, 662], and with extensions of heuristics search methods, such as Hy-
brid AO∗ [788].

Other types of models are needed when actions are continuous functions of time.
For example, Time-dependent MDPs handle time continuous actions but assume
discrete transition probability distributions; they can be addressed with Dynamic
Programming methods [172]. The model of Generalized Semi-Markov Decision
Processes does not require discretization [1216]. It can handle uncertain action
durations, but it does not manage plan duration, an issue partly addressed with
exponential distributions in [753].

Partially Observable MDPs (introduced in Section 8.5.3) are MDPs in the belief
state, which is continuous. Many of the mentioned continuous MDP approaches
have been applied to POMDPs, e.g., the RPWC and RPWL approximations. When
𝑆 and 𝐴 are discrete, POMDPs with a discretized belief space draw much attention
and concerns for addressing its exponential size in |𝑆 |, which itself is exponential.
Dynamic Programming and Heuristic Search methods to discretized POMDPs have
been proposed [570, 1041]. Approximate methods that focus Bellman updates on a few
belief points (called point-based methods) are surveyed in [998]; they are compared
to an extension of RTDP [161]. Parametrized POMDPs have been addressed with
policy search techniques [846].

222 9 Planning with Probabilistic Models

Monte Carlo methods, which conveniently sample continuous domains, scale up
better than previous approaches. For example, the POMCP planner as been applied to
large POMDPs [1015]. The DESPOT planner combines sampling and anytime search
[1045]. The progressive widening techniques have been extended to POMDPs[1065,
719]. Online algorithms for POMDPs are surveyed in [961]. We already mentioned
the termination problem for goals expressed in the belief space. Fortunately this
problem that can be addressed with termination actions [466], in particular with
Monte Carlo methods.

Robotics offers many POMDP use cases [897, 367, 454]. However applications
often require a more flexible hybrid model, with observable state variables, as well
as non-observable ones. The latter are estimated, as in POMDPs, from indirect
observation variables. This model is called Mixed Observability MDPs (MOMDPs)
[858, 48]. It is attracting interest for, e.g., target tracking [279], navigation [290], or
conservation and natural resource management applications [888].

9.7 Exercises

9.1. Run Policy Iteration on the problem in Figure 9.10, starting with the policy
𝜋 = {(𝑠0, a), (𝑠1, c), (𝑠2, d), (𝑠3, f)}.

• Compute 𝑉 𝜋0 (𝑠) for the four non-goal states.
• What is the greedy policy of 𝑉 𝜋0?
• Iterate on the above two steps until reaching a fixed point.

s0 s2

b

a

e
s1

s3 s4f

c

d

g

½
½

½
½

goal

Figure 9.10. A simple SSP with unit cost actions.

9.2. Repeat Exercise 9.1 on the problem in Figure 9.11, starting from the following
policy: 𝜋0(𝑠1) = 𝜋0(𝑠2) = a, 𝜋0(𝑠3) = b, 𝜋0(𝑠4) = c.

9.3. Run Value Iteration on the problem in Figure 9.10, with 𝜂 = 0.1. Assume that
the foreach statement iterates through states in order of increasing subscripts, and
the argmin operator breaks ties by choosing the action that comes first alphabetically.

The heuristic function is 𝑉0(𝑠𝑖) =
{

0, if 𝑠𝑖 is a goal state,
𝑖, otherwise.

9.4. Repeat Exercise 9.3 on the problem in Figure 9.11 with 𝜂 = .5, with the following
two heuristic functions:

9.7 Exercises 223

6

s5

s4

s3
s2

s1

a

a

b

b
c cdc c

0.5

0.2

Figure 9.11. An SSP problem with five states and
four actions 𝑎, 𝑏, 𝑐, and 𝑑; only action a is non-
deterministic, with the probabilities shown in the
figure; the cost of a and b is 1, the cost of c and d
is 100; the initial state is 𝑠1; the goal is 𝑠5.

• 𝑉0(𝑠) = 0 in every state.
• 𝑉0(𝑠1) = 𝑉0(𝑠2) = 1 and 𝑉0(𝑠) = 100 for the two other states.

9.5. In the problem of Figure 9.11, add a self loop as a nondeterministic effect for
actions b, c, and d; that is, add 𝑠 in 𝛾(𝑠, 𝑎) for these three actions wherever applicable.
Assume that all the distributions are uniform. Solve the two previous exercises on
this modified problem.

9.6. Implement and run algorithm Value Iteration for a few problem instances of the
domain PAM𝑝 (Example 8.9). Up to how many containers does your implementation
scales up?

9.7. Run AO* on the domain of Figure 9.4 with the heuristics 𝑉1 of Section 9.3.

9.8. Modify the domain of Figure 9.4 by making the state 𝑠12 an immediate dead end
instead of a goal; run AO* with the heuristics 𝑉0 and 𝑉1 of Section 9.3.

9.9. Run LAO* on the problem in Figure 9.10, with the same 𝜂 and𝑉0 as in Exercise 9.3.
Assume that in the select statement, the tie-breaking rule is to select the state 𝑠𝑖 for
which 𝑖 is smallest.

9.10. Prove that algorithm LAO* is an instance of the Find&Revise schema.

9.11. Modify the domain of Figure 9.4 by changing 𝛾(𝑠9, a) = {𝑠3, 𝑠8} and making
the state 𝑠15 an immediate dead end instead of a goal. Run LAO* and ILAO* on this
problem and compare their computation steps.

9.12. Run RFF on the problem in Figure 9.10 with 𝜃 = 0.7, using a Forward-Search
algorithm that always returns a least-cost path to a goal state. Give the following:

(a) Each possible history and its probability. If there are more than four histories,
then say so and give the first four of them.

(b) The probability that the actor will reach the goal.

9.13. Run RFF on the problem of Figure 9.11 with 𝜃 = 0.7. Suppose the Det-Plan
subroutine calls the same Forward-Search algorithm as in the previous exercise, and
turns the plan into a policy. What is 𝜋 after one iteration of the “while” loop?

224 9 Planning with Probabilistic Models

9.14. Prove that algorithm RFF is complete when using a complete Det-Plan deter-
ministic planner.

9.15. Run Algorithm 9.20 on the problem of Figure 9.11; compare with the compu-
tations of RFF on the same problem.

9.16. Specify the SLATE procedure (Algorithm 9.25) as an anytime algorithm im-
plementing an incremental backup at each increase of the depth 𝑑. Implement and
test on a few domains.

10 Reinforcement Learning

Reinforcement learning (RL) is about learning to act with probabilistic models. RL
extends homeostasis regulation to complex behaviors. It parallels metaphorically
the adaptation mechanisms of natural beings to their environment, with on feedback
sensing and means for evaluating what’s good and what’s not. Adaptation is a key
feature of intelligence: an autonomous actor should be able to learn from its actions.
With continual learning, an actor can cope with a continually changing environment.

In the following, we first introduces the main principles and terminology of re-
inforcement learning. Section 10.2 presents a simple form of Q-learning, a generic
value-based RL algorithm. Section 10.3 addresses how to generalize a learned rela-
tion with a parametric representation. We then introduce neural network methods,
which play a major in learning and are needed for the remaining sections, about deep
RL (Section 10.5), and policy-based RL (Section 10.6). The issues of aided rein-
forcement learning with shaped rewards, imitation learning and inverse reinforcement
learning are addressed next. Section 10.8 is about probabilistic planning and RL. A
discussion, bibliographical notes, and exercises end this chapter. Appendix B recaps
the mathematical notations used.

10.1 Principles of RL

Reinforcement Learning (RL) interleaves acting and learning, possibly in a continual
learning framework, to improve an actor’s performance for a given task or goal by a
trial and error interactions with the world. RL may or may not have a domain model.
It relies on a reward function, which defines, in an indirect way, the actor’s purpose,
i.e., what it has to do. RL is used to find out how to do it. This reward function is
assumed to reflect a reliable and robust specification of the task to learn. This is an
important assumption that needs to be kept in mind.

The RL learner tries to remember from its past activity which actions in which states
led to higher rewards and which were bad, and, possibly, generalize this knowledge
in order to use it for taking good actions in the future. It seeks to learn how to act by
maximizing the long-term perceived benefit of its actions.

A learner on its own may not have a teacher. It relies solely on a feedback from the
environment following its actions. This feedback is a number: the reward for going
from a state 𝑠 to 𝑠′ with a performed action 𝑎. RL is an active learning mechanism:
the learner acts not only to achieve its task, but also to learn more about how best
to achieve it. For example, suppose our learner is a cook whose task is to cook a
paella; her reward is the number of likes from her guests. Should she stick to the
recipe she learned or should she try possible variants to improve her cooking? Such a
learner has to solve a tradeoff between exploitation and exploration: whether to stay

Free pre-publication, for personal use only. To be published by Cambridge University Press.

225

226 10 Reinforcement Learning

on a safe, well-known track or to take the risks and efforts to explore possibly better
unknown ones. Exploitation makes the best with what is already learned to maximize
the behavior benefits. To learn the best behavior, exploration has to try options that
are not known enough.

In general it is not feasible to try every possible action in every possible state.
Generalization is a major issue for RL, as well as for other learning approaches. It is
about extending what has been learned in one situation to ‘similar’ situations. The
holy grail is to learn much from a few trials. A further generalization ambition is to
transfer what has been learned for a given task to other ‘similar’ tasks.

The trial and error approach may entail a high risk, unacceptable in critical ap-
plications. With a domain simulator, part of the risk can be avoided: actions are
simulated before being performed in the real world. Current RL techniques remain
demanding, in computational as well as in sampling complexity, i.e., in the number
of trials required to learn a good policy. For that also, simulation is needed.

A learner may get help from a teacher, e.g., with demonstrations of good behaviors
in certain situations, or with advice about how to choose actions. Instead of (or in
addition to) rewards, the learner gets trajectories from a teacher’s demonstrations. A
pedagogical teacher may also shape the rewards such as to ease the learning.1 It may
organize the learner’s tasks into a teaching curricula. But even with a teacher, the
capability to generalize what has been learned remains essential.

The usual and convenient framework of RL is the probabilistic MDP representation.
Actions have probabilistic effects. The actor seeks to learn a policy which maximizes
the total expected reward. Many RL approaches consider stochastic policies, which
map states to probability distributions on actions. We focus here on deterministic
policies, which are simpler and easier to learn.

In a process maintenance MDP, the planner seeks a policy that optimizes the actor’s
behavior over a bounded or an infinite horizon (see Section 8.3.1). The learner seeks to
maximize the average reward per step or the total discounted reward over its lifetime.
In goal reachability or episodic tasks MDPs (i.e., SSPs), the planner searches an
optimal the policy that reaches the goal or performs the task. The learner seeks to
achieve the task to be learned while maximizing its total reward. The task is expressed
through a reward function. A learning episode is a trial for achieving the task. It
involves a finite number of steps and necessarily terminates when the task succeeds
or fails, on reaching a terminal state or a termination action.

This chapter is focused on indefinite horizon episodic RL, where learning seeks to
maximize the expected total reward for an episode. Hence we avoid the drawbacks of
discount factors (see Section 8.3.2). This formulation of RL for learning a task with
its associated reward function extends naturally to a goal-conditioned formulation, for
learning a policy for a given goal or set of goals (as per Definition 8.3).

RL in the MDP frameworks comes in many flavors, among which the following:

• Model-based vs model-free RL. In the latter, the learner does not have and does
not use the transition function 𝛾 nor the corresponding probability distributions;
it acts and observes its states and rewards. In model-based RL, an approximate

1Reward shaping is a wide spread practice, from animal trainers to school teachers and coaches.

10.2 Tabular Value-Based RL 227

world model is learned from acting, used as a proxy of the world by planning
actions good for that model, then improved by further acting. This progressively
learned model is used in the exploitation, and possibly the exploration stages.

• Value-based vs policy-based model-free RL. The latter estimates an optimal a
policy 𝜋∗ given its past experiences. The former estimate𝑉∗ or𝑄∗, the optimal
value or action-value functions. This is in a way similar to Value Iteration vs
Policy Iteration algorithms.

• On-policy vs off-policy RL. The former interleaves improving a policy and
using that same policy to act. The latter acts according to a policy different
from the one it is trying to optimize, which can be convenient for exploration.

We mostly focus here on model-free RL, with value-based methods (sections 10.2 to
10.5), and policy-based ones (Section 10.6).

10.2 Tabular Value-Based RL

In value-based RL the actor seeks to estimate from trial and errors, 𝑉∗ or 𝑄∗, from
which it easily derives a policy. This might be done in a batch mode from all
experiences, accumulated in a first costly stage. Preferably, learning can progress
incrementally, each new experience improves the current best value estimates, and
increases the quality of the actor’s behavior. In this mode, acting serves the task
achievement purpose as well as the learning purpose. We focus here on incremental
RL. At each stage, the learner progresses by updating its estimates with respect to
the difference of their values from 𝑡 to 𝑡 + 1. Because of these incremental updates,
the corresponding techniques are called temporal difference or TD learning methods,
exemplified with the Q-learning algorithm presented here. We first introduce the
main concepts in a very simple case. We then present Q-learning for a tabular
representation: the values learned incrementally are simply cached in memory as
a table and used as is. Other value-based algorithms and extension to a structured
representation are then discussed.

10.2.1 A First Intuition

To give a first idea about Q-learning and its main ingredients, let us warm up with a
very simple case. Consider an actor that has 𝑛 actions, anyone of them can be used
alone to perform the task at hand, with differing results. For this elementary actor,
each trial of an action is independent of the previous and following trials. The only
information available to the actor is a varying reward associated with performing an
action. The actor wants to learn what’s its best action in average for the task.

Example 10.1. Eva is a cook that knows three possible recipes 𝑎, 𝑎′, 𝑎′′ for making
a paella. She wants to know what is the best recipe giving the observed average
satisfaction of her fixed set of guests after several trials.2 After one trial of each of

2Eva may have a more demanding objective, such as maximizing the total expected satisfaction of
her guests over many meals. In this case Eva may end up with a strategy switching recipes. This
interesting case, related to the so-called n-arms bandit problem, will be discussed in Section 10.9.

228 10 Reinforcement Learning

the three recipes, the guests rank 𝑎, 𝑎′, 𝑎′′ respectively 7.2, 5.4, and 6.8, in a scale
[0, 10]. These ranks are the rewards Eva receives. Another trial of 𝑎′ is ranked 8;
𝑎′ moves up to an estimated “quality” of 1/2(5.4 + 8)=6.7. A following trial of 𝑎′ is
ranked 7.6, giving a current quality of 1/3(5.4 + 8+7.6)=7. This goes on until Eva is
confident about the evaluation of her three recipes. □

Let 𝑟 (𝑎, 𝑖) ∈ R be the reward received after running action 𝑎 the 𝑖𝑡ℎ time. The
actor estimates the value of an action 𝑎 that has been performed 𝑘 times by its average
reward:

𝑄𝑘 (𝑎) =
1
𝑘

𝑘∑︁
𝑖=1

𝑟 (𝑎, 𝑖)

=
1
𝑘
𝑟 (𝑎, 𝑘) + 𝑘 − 1

𝑘
𝑄𝑘−1(𝑎)

By dropping in the above formula the index of the current trial we get an incremental
update rule of 𝑄(𝑎) with respect to the last observed reward 𝑟 (𝑎):

𝑄(𝑎) ← 𝛼𝑟 (𝑎) + (1 − 𝛼)𝑄(𝑎). (10.1)

The parameter 𝛼 = 1
𝑘

is called the learning rate. There can be different learn-
ing rates for different actions, but one seek to try every action as often. When
∀𝑎, 𝑘 → ∞, the choice of the action which maximizes the average reward is given
by argmax𝑎{𝑄(𝑎)}. As long as the exploration of alternative actions has not been
sufficient, the actor needs to try other options according to some heuristics. These
can be expressed as a procedure Select, defined for example as:

Select =

{
argmax𝑎{𝑄(𝑎)} with probability (1 − 𝜖)
random 𝑎′ ≠ argmax𝑎{𝑄(𝑎)} with probability 𝜖,

(10.2)

where 𝜖 is decreasing with experience. Such a strategy is called 𝜖−greedy; it is most
often greedy in selecting the currently best option, except for a few exploration cases.
Alternatively, Select may choose an action according to a probabilistic sampling
distribution, e.g., the Boltzmann sampling, according to a probability distribution
proportional to 𝑒−𝑄 (𝑎)/𝜏 , where 𝜏 is decreasing with experience.

The simple update rule 10.1 appears in different forms and plays an important role
in reinforcement learning. It is referred to as the temporal difference update rule (the
current value of Q affects the learned next value). It leads to a family of temporal
difference RL approaches. The learning rate 𝛼 becomes too small for large 𝑘 . When
the environment is stationary, the update of 𝑄(𝑎) with 10.1 becomes increasingly
weak. If the environment is not stationary, one may keep 𝛼 < 1 constant.

The update rule 10.1 starts with some initial value 𝑄(𝑎) = 𝑞0 when 𝑎 has never
been tried. A high value for 𝑞0 can be a bonus for the exploration of new actions.

This basic case is too simple. It does not relate the quality of an action 𝑄(𝑎) to the
state in which 𝑎 is performed; nor does it consider the composition of several actions

10.2 Tabular Value-Based RL 229

for a task. In Example 10.1 a paella recipe is made of a dozen of actions all relevant
for the final quality of the dish. A given action may have no immediate reward but
a significant influence in the final reward. However, this simplistic example helps
introducing the main notions of Q-learning, developed next.

10.2.2 Q-learning for a Tabular Representation

Let us now consider the case where several interdependent nondeterministic actions
are needed to perform a task. In a standard reinforcement learning formulation, an
actor wants to learn a policy for performing the task at hand on the basis of rewards
from trial and error. The framework is that of MDP (Chapter 8). We want to synthesize
a solution policy to a goal-directed MDP problem (see Definition 8.3), where the goal
is to terminate the task. But we do not know the domain model. The actor learns by
repeatedly trying to achieve its task. Each trial terminates with success or failure after
a finite number steps. In each, an action 𝑎 applicable in current state 𝑠 is performed;
the next state 𝑠′ and a reward 𝑟 (𝑠, 𝑎, 𝑠′) ∈ R are observed.

In the planning chapter we sought to minimize the expected sum of the cost of the
actions obtained by following a solution policy 𝜋 from a state 𝑠 to a goal. Here we
seek to maximize the expected sum of rewards. Earlier we defined a value function 𝑉
with respect to action costs (Equation 8.3). We can define it analogously for rewards:

𝑉 𝜋 (𝑠) =
∑︁

𝑠′∈𝛾 (𝑠, 𝜋 (𝑠))
Pr(𝑠′ |𝑠, 𝜋(𝑠)) [𝑟 (𝑠, 𝜋(𝑠), 𝑠′) +𝑉 𝜋 (𝑠′)]

Similarly for 𝑄, called here to the action-value function:3

𝑄 𝜋 (𝑠, 𝑎) =
∑︁

𝑠′∈𝛾 (𝑠,𝑎)
Pr(𝑠′ |𝑠, 𝑎) [𝑟 (𝑠, 𝑎, 𝑠′) +𝑉 𝜋 (𝑠′)]

The Bellman equation for Q (Equation 9.4) can be restated in this context as:

𝑄(𝑠, 𝑎) =
∑︁

𝑠′∈𝛾 (𝑠,𝑎)
Pr(𝑠′ |𝑠, 𝑎) [𝑟 (𝑠, 𝑎, 𝑠′) +max

𝑎′
{𝑄(𝑠′, 𝑎′)}] (10.3)

Without prior knowledge of the domain model, i.e., without 𝛾, we cannot solve
Equation 10.3 with the algorithms seen earlier. Instead of that, we can estimate
𝑄(𝑠, 𝑎) from the statistics of trial and error with incremental updates, as we did in the
elementary case. However, the simple update rule 10.1 does not integrate in 𝑄 the
effect of a follow-up action 𝑎′. Here, the update on 𝑄(𝑠, 𝑎) has to take into account
the action-value of the following stage to maximize the total expected reward. This is
done, as in Bellman Equation 10.3, with the following update rule, at the core of the
Q-learning algorithm:

𝑄(𝑠, 𝑎) ← 𝛼[𝑟 (𝑠, 𝑎, 𝑠′) +max
𝑎′
{𝑄(𝑠′, 𝑎′)}] + (1 − 𝛼)𝑄(𝑠, 𝑎) (10.4)

3In Chapter 9, 𝑄 was called the cost-to-go. Here it is called the action-value function, since we no
longer have costs but rewards, and we move from minimization to maximization.

230 10 Reinforcement Learning

In the right hand side of Equation 10.4, 𝑄(𝑠, 𝑎) is the old value of 𝑄,
max𝑎′{𝑄(𝑠′, 𝑎′)} refers to the action to be executed next, the update term as per
Bellman equation is 𝑟 (𝑠, 𝑎, 𝑠′) +max𝑎′{𝑄(𝑠′, 𝑎′)}. The current gap in the estimated
value is the difference [𝑟 (𝑠, 𝑎, 𝑠′) +max𝑎′{𝑄(𝑠′, 𝑎′)} −𝑄(𝑠, 𝑎)].

Q-learning proceeds by repeatedly trying to perform the task a given number of time.
In each trial, called an episode, the algorithm starts from some initial state, randomly
drawn in a given set in 𝑆0 of possible initial states. An episode terminates after a finite
number of steps, when the task succeeds, fails, or some bound is reached. In each
step, a selected action 𝑎 is performed, the next state 𝑠′ and a reward 𝑟 (𝑠, 𝑎, 𝑠′) ∈ R are
observed. The algorithm is off-policy: the selected action (line 1) is not necessarily
the current policy given by argmax𝑎 𝑄 𝜃 . The online version given in Q-learning can
be transformed into a batch version of Q-learning which learns from a history of a
recorded number of episodes obtained with some exploration strategy.

Q-learning
initialize 𝑄
for each episode do

randomly draw a starting state 𝑠 from 𝑆0
until episode termination do

1 𝑎 ← Select(𝑠) // selects 𝑎 ∈ Applicable(𝑠)
2 perform action 𝑎
3 observe resulting state 𝑠′ and reward 𝑟 (𝑠, 𝑎, 𝑠′)
4 𝑄(𝑠, 𝑎) ← 𝛼[𝑟 (𝑠, 𝑎, 𝑠′) +max𝑎′{𝑄(𝑠′, 𝑎′)}] + (1 − 𝛼)𝑄(𝑠, 𝑎)
5 𝑠← 𝑠′

Algorithm 10.1. Q-learning algorithm

Q-learning implements 𝑄 as lookup table over 𝑆 × 𝐴. It uses a function Select(𝑠),
similar to the elementary case, which favors the action argmax𝑎{𝑄(𝑠, 𝑎)} among ap-
plicable actions, while allowing for the exploration of other actions with a frequency
decreasing with experience, controlled with the 𝜖 parameter. Large 𝜖 favors explo-
ration. The learning rate parameter 𝛼 ∈ [0, 1] is set empirically. When 𝛼 is close
to 1, 𝑄 follows the last observed rewards by weighting down previous experience
of 𝑎 in 𝑠; when 𝛼 is close to zero, the previous experience is more important and
Q changes marginally. If the environment is stationary (i.e., when the distributions
remain invariant over time), 𝛼 can be set decreasing with the number of instances
(𝑠, 𝑎) encountered. Here also, the initial values of 𝑄(𝑠, 𝑎) may favor exploration.

The main features of Q-learning are the following:
• it is model-free,
• it learns a policy (implicit in the pseudo-code) as 𝜋(𝑠) = max𝑎 𝑄(𝑠, 𝑎),
• it is off-policy: it acts with Select(𝑠) which may be different from learned

policy allowing for exploration,
• its update rule performs a local step at (𝑠, 𝑎) of policy evaluation and improve-

ment.

10.2 Tabular Value-Based RL 231

Q(s,a) Select

External World

Update

s

a

r(s,a,s’)
s’

Figure 10.1. A schematic view of Q-learning with a tabular value function 𝑄.

An episode terminates when the task succeeds, fails or a bound on the number
of steps is reached. The algorithm may be run with a fixed number of episodes, or
stoped when exploration is sufficient, i.e., when enough statistics have been gathered
for every pair (𝑠, 𝑎), allowing the learner to act with a policy 𝜋(𝑠) = max𝑎 𝑄(𝑠, 𝑎).
One can prove the asymptotic convergence of Q-learning to optimal policies when
each pair (𝑠, 𝑎) has been met infinitely often. Intuitively, the arguments for this
convergence combines those for the convergence of the simple update rule 10.1 to the
true vales and the Bellmann equation to the optimum.

But the convergence of the simple Q-learning is too slow for most practical applica-
tions, ruling out learning by performing actions in the real world. If learning can start
using a simulator, the actor might gather offline as much initial statistics as possible in
simulation. After that, it would get into a continual learning and acting stage: when
it needs to perform that same task, it would simply run lines 1 through 5 of Q-learning
and possibly decrease 𝛼 for future updates.

This algorithm is referred to as Q-learning for a tabular representation: it assumes
that 𝑄 is maintained in memory as a global data structure, i.e., a 2D table over all
(𝑠, 𝑎) pairs, and that 𝑆 and 𝐴 are sets of ground states and actions. We’ll see in
Section 10.3 how to overcome the limitations of the memory-based approach. There
are several variants of the memory-based Q-learning algorithm such as SARSA and
DYNA algorithms that will be discussed in Section 10.9.

RL with a simulator. Q-learning explores with an open “curiosity” possibly dan-
gerous transitions that may have high negative rewards. It has no means for avoiding
dead-ends. Learning with trial and error entails a risk incompatible with critical
applications, for which extensive modeling and testing are usually required. One does
not learn to build bridges through trial and error, but a bridge collapse is taken as an
unfortunate learning event to improve models.

A simulator reflects a model of domain, but there are differences between a model
implemented in a simulator and the one implicitly or explicitly learned by RL. To put
it briefly, the former is about know-what to do, while the latter is about know-how
to do things. A simulator model is a low level description of what might possibly
happen in a domain in response to some elementary actions. For example, in board
games, a simulator gives trivially the board state after a move. In robotics, a simulator

232 10 Reinforcement Learning

implements the robot and the environment geometry, kinematics, dynamics as well as
the physics of actuation and sensing to compute state updates after a robot command
or an event (see Part VII). The models of interest at the RL level are about how best
to act in order to win the game, or to perform a robotics task. None of that is available
in the simulator model.

As an analogy, consider the difference between a model of the ballistic of a thrown
dart and a model for dart playing. For a human player, the former remains often
intuitive, while the latter requires significant training. A robot with a simulator of a
dart dynamics would learn much faster how to play darts.

In a realistic domain, a simulator is necessary to a learner for convergence at a
practical cost. But a simulator may be wrong and ignore possibly relevant variables.
A good simulator is mandatory for critical domains with dead ends or possibly
dangerous actions, e.g., a robot should not get into a slippery zone near a cliff.

One way of interfacing Q-learning with a simulator is to use two stages. In a first
stage the learner runs a variant of Q-learning where lines 2 and 3 are replaced with:

(𝑠′, 𝑟 (𝑠, 𝑎, 𝑠′)) ← Simulate(𝑎, 𝑠)

where Simulate calls the simulator and returns the next state and the reward. When
sufficient simulated exploration has been performed, the learner starts in the second
stage acting and learning in the real world. To account for the limitations of the
simulation models, the learner improves its knowledge starting with a higher 𝛼.
At this second stage, an 𝜖-greedy Select may rely on argmax𝑎{𝑄(𝑎)} with some
confidence. However, it should not propose a different action without performing a
look-ahead with Monte Carlo rollout outs in order to avoid dubious explorations and
remain safe.

10.3 Parametric Value-Based RL

The Q-learning algorithm and other variants, as presented in the previous section,
have a huge drawback: they memorize the learned 𝑄 as lookup table and require
the knowledge of 𝑄(𝑠, 𝑎) for every (state, action) pair. Except for trivial cases, this
simply does not work. This is because of the size of the corresponding state and
action spaces (e.g., Example 8.9). More importantly, this is also because the learner
is unable to generalize from what it observes to unobserved cases: each experience
gives it only a single point in a huge space. Evidently, this drawback is not specific to
Q-learning, but holds for every memory-based representation.

10.3.1 Parametric vs Memory-Based Representations

Consider the simple case of a learner who observes a collection D of matching
pairs of points in some spaces 𝑋 and 𝑌 : D = {(𝑥 (𝑖) , 𝑦 (𝑖)) | 𝑥 (𝑖) ∈ 𝑋, 𝑦 (𝑖) ∈
𝑌, 1 ≤ 𝑖 ≤ 𝑁}. D is the learner’s training database. The learner assumes that
its observations are independent and identically distributed (the i.i.d assumption)
according to a relationship to be learned and from which the learner would like to

10.3 Parametric Value-Based RL 233

predict the value 𝑦 matching some new given 𝑥. If the learner can only rely on
its memory of the matching pairs in D, then it will be at loss for finding 𝑦, unless
by chance 𝑥 = 𝑥 (𝑖) , for some already experienced pairs in D, a highly improbable
situation when D is small compared to the dimension of 𝑋 and 𝑌 .

Now, assume that 𝑋 and (possibly) 𝑌 are metric spaces, endowed with a distance
𝛿 (see Section B.1). The learner can find the closest 𝑥 (𝑖) to 𝑥, according to 𝛿, and
estimate 𝑦 with respect to the corresponding 𝑦 (𝑖) . The nearest neighbor methods and
similar non parametric classification techniques rely on exactly this idea.4

If 𝑋 and 𝑌 are metric spaces, the learner might as well approximate the matching
relationship exemplified in D with an easily computable parametric function 𝑦 =

𝑓𝜃 (𝑥), for a vector of parameters 𝜽 ∈ R𝑚. A parametric function is a family of
functions varying with some parameters.5 One seeks the best parameter values for
some specific use. Given a value for 𝜃, 𝑓𝜃 will immediately provide an estimate of 𝑦
for a new 𝑥.

In the simple case where 𝑋 and 𝑌 are real numbers, a very well-known and widely
used instance of this approach is linear regression or line fitting. Linear regression
seeks an approximation with a straight line 𝑓𝜃 (𝑥) = 𝜃0 + 𝜃1𝑥. For each point (𝑥, 𝑦) in
D, this approximation will predict 𝑦̃ = 𝜃0 + 𝜃1𝑥 instead of 𝑦. A good approximation
would set the vector 𝜽 = [𝜃0, 𝜃1]⊤ such as to minimize some distance between the
predicted 𝑦̃ and the targeted 𝑦 over all pairs inD. This can be expressed as minimizing
the squared error empirical loss function for 𝑓𝜃 :6

Loss(𝑓𝜃) =
∑︁

(𝑥,𝑦) ∈D
(𝑓𝜃 (𝑥) − 𝑦)2 =

∑︁
(𝑥,𝑦) ∈D

(𝜃0 + 𝜃1𝑥 − 𝑦)2

In the case of linear regression, Loss(𝑓𝜃) is a convex function of 𝜃0 and 𝜃1. It has a
single minimum, reached when its partial derivatives 𝜕Loss(𝑓𝜃)

𝜕𝜃0
and 𝜕Loss(𝑓𝜃)

𝜕𝜃1
are null:

∑︁
(𝑥,𝑦) ∈D

(𝑓𝜃 (𝑥) − 𝑦) = 0, and
∑︁

(𝑥,𝑦) ∈D
(𝑓𝜃 (𝑥) − 𝑦)𝑥 = 0 (10.5)

These two equations are easily solved analytically, giving the optimal values of the
two parameters in a closed form.

Example 10.2. Consider the cook Eva of Example 10.1 who discovers the booknote
of a renown chef from which she wants to learn the “ideal” proportions of rice versus
fish and seafood to put in a paella recipe. The booknote tells about 3 experiences. In
the first one, the chef had 150𝑔 of fish and seafood for which he put 300𝑔 of rice. In
the following experiences, the proportion where 300 vs 400, then 450 vs 700.

Giving this setD = {(150, 300), (300, 400), (450, 700)}, Eva decides to model the
ideal proportions with a simple linear regression. She solves Equation 10.5 for the
estimated amount of rice given available fish and seafood as: 𝑦̃ = 1.33𝑥 + 66.6. With

4In classification and clustering problems, 𝑌 may not need to be a metric space.
5E.g., the families of polynomials 𝜃0 + 𝜃1𝑥 + . . . 𝜃𝑛𝑥𝑛 or gaussians 𝑒𝜃0+𝜃1𝑥+𝜃2𝑥

2 are parametric
functions.

6Loss is the square of the Euclidean distance

234 10 Reinforcement Learning

this relation, Eva generalizesD for any amount of 𝑥. She can also use it to easily find
how much rice, fish and seafood she would need for a paella of say 1500g.

Now the chef notebook may detail the amount of each of 12 ingredients in a paella,
e.g., white fish, mussels, shrimps, seashells, onion, tomato, peas, pepper, garlic, olive
oil, safran, sell and rice. Eva needs a model where 𝑓𝜃 is a function of 12 variables. □

When the space is 𝑋 = R𝑛, the above approach is called the multivariable linear
regression. A point x = [𝑥1, . . . , 𝑥𝑛]⊤ ∈ 𝑋 is a column vector; similarly for the
parameters 𝜽 = [𝜃0, . . . , 𝜃𝑛]⊤.7 The linear approximation function is:

𝑓𝜃 (x) = 𝜃0 +
∑︁

1≤ 𝑗≤𝑛
𝜃 𝑗𝑥 𝑗 , written as: 𝑓𝜃 (x) = 𝜽 · x (10.6)

In the convenient dot product notation, the bias term 𝜃0 corresponds to an augmented
x with a dummy constant element 𝑥0 = 1. The empirical loss is:

Loss(𝑓𝜃) =
∑︁

(x,𝑦) ∈D
(𝜽 · x − 𝑦)2

A slightly more general formulation is needed when y is also a vector, but 𝑓𝜃
remains a linear approximation. In that case Loss(𝑓𝜃) is still a convex function.
The optimal values of the parameters 𝜽∗ = argmin𝜃 {Loss(𝑓𝜃)} can also be derived
analytically from the partial derivates of Loss(𝑓𝜃).

When 𝑓𝜃 is not a linear function of 𝜽 , finding analytically the optimal parameters is
more complex and often not feasible. A general approach for computing numerically
the values of the parameters giving the minimal Loss is the gradient descent algorithm.

10.3.2 Gradient Descent

The idea is to search in the continuous parameter space for the minimum
𝜽∗ = argmin𝜃 {Loss(𝑓𝜃)} by following the direction given by the gradient of the loss
function we try to minimize. This direction is the gradient vector

∇Loss(𝑓𝜃) = [𝜕Loss(𝑓𝜃)/𝜕𝜃1, . . . , 𝜕Loss(𝑓𝜃)/𝜕𝜃𝑛]⊤.

This is done with a sequence of update steps. Each update changes the parame-
ters towards a direction decreasing the loss, i.e., with an update rule of the form
𝜽 ← 𝜽 − 𝛼∇Loss(𝑓𝜃).

Algorithm 10.2 is a simple instance of this general idea in the multivariable linear
regression case. Its argument is a collection of observed pairs (x(𝑖) , 𝑦 (𝑖)), which
is a subset of D. In each iteration of the main loop, it makes one update step on
each parameter 𝜃 𝑗 following the direction given by the partial derivative at this local
point. The update rule comes from 𝜕Loss(𝑓𝜃)

𝜕𝜃 𝑗
, the Loss being over all observed pairs

(x(𝑖) , 𝑦 (𝑖)) (integrating the constant factor from the partial derivatives in 𝛼). On
reaching in some 𝜃 𝑗 the minimum (which is global since in the linear case Loss is
convex), the partial derivative is null. This 𝜃 𝑗 stays at a fixed point. The convergence

7The transpose ⊤ of a row vector is a column vector (see Section B.2).

10.3 Parametric Value-Based RL 235

GradientDescent({(x(𝑖) , 𝑦 (𝑖)) | 1 ≤ 𝑖 ≤ 𝑁})
until convergence do

foreach 0 ≤ 𝑗 ≤ 𝑛 do
𝜃 𝑗 ← 𝜃 𝑗 − 𝛼

∑
1≤𝑖≤𝑁 (𝜽 · x(𝑖) − 𝑦 (𝑖))𝑥

(𝑖)
𝑗

// Update rule

Algorithm 10.2. Pseudo code of a simple gradient descent algorithm.

criteria estimates how close to this fixed point for all 𝑗 the gradient descent is. The
learning rate 𝛼 can be a fixed constant, but not too large to avoid over shooting. It can
be set to a decreasing rate, together with the decreasing value of the gradient of Loss,
until convergence.

When 𝑓𝜃 is linear, GradientDescent is guarantee to converge to the optimal pa-
rameters 𝜽∗ = argmin𝜃 {Loss(𝑓𝜃)} with and appropriately chosen decreasing learning
rate. In many cases, unfortunately, the matching relationship in D is not linear and
cannot be approximated with a linear function. Consider for example the relations
(age, weight) of a person, or (age, reliability) of an equipment. These are an in-
creasing, then stable then decreasing functions, for which linear approximation are
inadequate. Fortunately, the parametric approach, as just outlined, remains feasible
with any family of functions, e.g., the polynomials or other exotic functions. As long
as 𝑓𝜃 is differentiable, Algorithm 10.2 is adequate for finding its optimal parameters.
However, for a nonlinear approximation function Loss(𝑓𝜃) is no longer convex. The
algorithm can get stuck in local minima, requiring additional techniques for reaching
a good approximation function (see Section 10.9).

GradientDescent can be run incrementally, for each new observations (x, 𝑦) ac-
quired by the learner, instead of globally on the entire collection of data D (as in
the pseudo-code of Algorithm 10.2). The former is called the stochastic gradient
descent (SGD) mode, while the latter is the batch mode. SGD is computationally
demanding. Moreover, it may drive the estimate in a noisy way, leading to a high
error variance. But it is favorable for avoiding local minima, to which the batch mode
is prone. Alternatively, in a mini-batch mode, the algorithm is repeatedly run on
randomly sampled subsets of D, which offers a good compromise.

Let us summarize and underline the main points seen so far in this section:

• It is easy to learn from a data collection of observed matching pairsD = {(x, 𝑦)}
by approximating the relationship in D with a parametric function 𝑦 = 𝑓𝜃 (x).

• The optimal parameters 𝜽∗ = argmin𝜃 {Loss(𝑓𝜃)} can be computed with the
GradientDescent algorithm as long as 𝑓𝜃 is differentiable, with a caveat about
local minima when Loss(𝑓𝜃) is not convex.

• The merits of the approach are

– to generalize what has been observed in D to new predictions;
– to easily compute a prediction of a 𝑦 from a new x;
– to improve the entire function 𝑓𝜃 on each new observed pair, instead of

just adding a new instance to the collection experienced by the learner.

236 10 Reinforcement Learning

Note however that for a pair (x(𝑖) , 𝑦 (𝑖)) ∈ D, in general 𝑓𝜃 (x(𝑖)) ≠ 𝑦 (𝑖) : we general-
izes and approximates the relation in D, but 𝑓𝜃 is not a faithful table-lookup.

To sum up, we can model a training set D with a parametric function 𝑓𝜃 . Finding
𝜽∗ given D is a learning problem. Symmetrically, finding 𝑦 = 𝑓𝜃 (x) given x and a
model 𝑓𝜃 is a prediction or inference problem.8

In RL we view D as being defined incrementally through acting and observing.
When D is a set of training data given a priori, this is called supervised learning.

10.3.3 Parametric Q-learning

We just saw how to generalize a finite set of observations D by representing the
corresponding relationship as a parametric function 𝑓𝜃 , and how to compute the
appropriate values of the parameters. Let us see how this can be used in Q-learning.

Earlier (Section 10.2) we addressed RL using a large table to store 𝑄(𝑠, 𝑎) for
every 𝑠 and 𝑎. This has two drawbacks: (i) it takes a huge amount of space, and (ii)
it doesn’t generalize, i.e., it doesn’t provide a way to estimate 𝑄 for pairs (𝑠, 𝑎) not
seen before. This is like keeping just D instead of 𝑓𝜃 . Here, we want to develop a
parametric function 𝑄 𝜃 that approximates 𝑄, and adjust the value of 𝜽 to provide the
best fit to the observed rewards.

Parametric techniques are widely used for learning in classification and clustering
problems. We can transpose them to action learning by seeking a parametric ap-
proximation of the relationship from the state space 𝑆, to the action space 𝐴. Such
a transposition fits naturally to a learning scenario where the learner observes (state,
action) pairs, as in learning from the demonstrations of a teacher (see Section 10.7).
However, in reinforcement learning, the learner does not observe target values as the
teacher’s actions, but the rewards from its own actions.

In general, parametric RL seeks a parametric approximation of 𝑉, 𝜋, or 𝑄, inte-
grating the rewards 𝑟 . In Q-learning, we parametrize the action-value as a function
𝑄 𝜃 (𝑠, 𝑎), with a vector of parameters 𝜽 . 𝑄 𝜃 is assumed to be differentiable with re-
spect 𝜽 . The optimal value 𝜽∗ = argmin𝜃 {Loss(𝑄 𝜃)} is still computed with gradient
descent. However the empirical loss is no longer defined on the difference between
predicted and observed, since no observation is available here. The loss is defined
with respect to the difference between 𝑄 𝜃 and an optimal 𝑄∗

𝜃
as given by the update

rule Equation 10.4 for the Bellman Equation 10.3. Namely, for a single observation
the target is:

𝑦 = 𝑟 (𝑠, 𝑎, 𝑠′) +max𝑎′{𝑄 𝜃 (𝑠′, 𝑎′)}, (10.7)

and the loss function is:

Loss(𝑄 𝜃) = [𝑦 −𝑄 𝜃 (𝑠, 𝑎)]2. (10.8)

Updating 𝑄 means updating its parameters 𝜽 . The gradient of Loss(𝑄 𝜃) is:

∇𝜃Loss(𝑄 𝜃) = −(𝑦 −𝑄 𝜃 (𝑠, 𝑎)) [. . . ,
𝜕𝑄 𝜃 (𝑠, 𝑎)
𝜕𝜃 𝑗

, . . .]⊤

8Note that learning is an inverse problem, while prediction is a direct problem.

10.3 Parametric Value-Based RL 237

= −(𝑦 −𝑄 𝜃 (𝑠, 𝑎))∇𝜃𝑄 𝜃 (𝑠, 𝑎)

From 𝑦 in Equation 10.7, the update rule of Section 10.3.2 for an element of 𝜃 is :

𝜃 𝑗 ← 𝜃 𝑗 + 𝛼[𝑟 (𝑠, 𝑎, 𝑠′) +max𝑎′{𝑄 𝜃 (𝑠′, 𝑎′)} −𝑄 𝜃 (𝑠, 𝑎)]
𝜕𝑄 𝜃 (𝑠, 𝑎)
𝜕𝜃 𝑗

(10.9)

This can be expressed in a vector form, easily parallelizable, as:

𝜽 ← 𝜽 + 𝛼[𝑟 (𝑠, 𝑎, 𝑠′) +max𝑎′{𝑄 𝜃 (𝑠′, 𝑎′)} −𝑄 𝜃 (𝑠, 𝑎)]∇𝜃𝑄 𝜃 (𝑠, 𝑎) (10.10)

Parametric Q-learning tries performing the task a given number of episodes. In
each episode, it starts from an initial state randomly drawn from 𝑆0, and runs over a
finite number of steps. In each step, a selected action 𝑎 is performed, the next state
𝑠′ and a reward 𝑟 (𝑠, 𝑎, 𝑠′) ∈ R are observed. The target 𝑦 for this observation is
computed, and the parameters are updated. The algorithm follows a policy given by
Select; it is off-policy.

Parametric Q-learning
initialize 𝜽
for each episode do

randomly draw a starting state 𝑠 from 𝑆0
until episode termination do

1 𝑎 ← Select(𝑠) // selects 𝑎 ∈ Applicable(𝑠)
2 perform action 𝑎
3 observe resulting state 𝑠′ and reward 𝑟 (𝑠, 𝑎, 𝑠′)
4 𝑦 ← 𝑟 (𝑠, 𝑎, 𝑠′) +max𝑎′{𝑄 𝜃 (𝑠′, 𝑎′)}
5 𝜽 ← 𝜽 + 𝛼[𝑦 −𝑄 𝜃 (𝑠, 𝑎)]∇𝜃𝑄 𝜃 (𝑠, 𝑎)
6 𝑠← 𝑠′

Algorithm 10.3. Parametric Q-learning algorithm.

The pseudo-code in Algorithm 10.3 updates the parameters at each observation, as
discussed for the stochastic mode of GradientDescent. Alternatively, in a mini-batch
mode we would perform updates with respect to the average difference to targets over
randomly sampled subset of previous observations.

In summary, Parametric Q-learning involves four stages :

(i) Parametrize the action-value as a function 𝑄 𝜃 ,
(ii) Experiment to acquire a set of pairs (𝑠, 𝑎) and corresponding rewards 𝑟 ,

(iii) Optimize the parameters with gradient descent towards a vector of values
𝜽∗ = argmin𝜃 {Loss(𝑄 𝜃)},

(iv) Predict good actions with max𝑎 𝑄 𝜃 (𝑠, 𝑎).
Stage (i) requires finding numeric features of the state and action spaces. Typically,

characteristic functions of the states and actions are assembled into a vector of numeric

238 10 Reinforcement Learning

Q𝜃(s,a) Select

External World

Update

s

a

r(s,a,s’)
s’

Target
y

Figure 10.2. A schematic view of Parametric Q-learning

features 𝝓 = [𝜙1, . . . , 𝜙𝑛]⊤, which allow the action-value function to be expressed
parametrically, e.g., linearly as:

𝑄(𝑠, 𝑎) =
∑︁

1≤𝑖≤𝑛
𝜃𝑖𝜙𝑖 (𝑠, 𝑎) = 𝜽 · 𝝓(𝑠, 𝑎)

Stages (ii), (iii) and (iv) are interleaved within incremental learning and acting.
Parametric Q-learning differs from memory-based Q-learning on the following

points:

• An update following an experienced pair (𝑠, 𝑎) does not change locally𝑄(𝑠, 𝑎)
for that pair, it improves globally the function 𝑄 𝜃 .

• In an exploitation stage, Select(𝑠) can easily predict a good action from
max𝑎 𝑄 𝜃 (𝑠, 𝑎) without prior experience with the pair (𝑠, 𝑎); i.e., the learner
generalizes from what it experienced.

• In an exploration stage, the learner can steer an active learning strategy with
more powerful heuristics than the 𝜖-greedy rule of Equation 10.2. When
looking an alternative to argmax𝑎 𝑄 𝜃 (𝑠, 𝑎) for exploration, Select may seek an
informative action that is in poorly sampled areas of 𝑄 𝜃 .

Seeking a good parametric function 𝑄 𝜃 (𝑠, 𝑎) from states and actions to R is not
straightforward. This is certainly easier when 𝑆 and possibly 𝐴 are metric spaces,
e.g., vectors in R𝑛, each component of which being a continuous state variable. This
is illustrated in the following example with state and control variables in robotics.

When the state variables are essentially symbolic, meaningful numeric features of
the states have to be sought and used in the parametrization. This leads to representing
states in a metric space, as illustrated next.

Parametric RL requires first to parametrize the action-value function. For that
neural networks happen to be excellent parametric function approximators, with
powerful tools for learning the needed parameters. Let us first introduce briefly
neural nets before considering their use value-based RL.

10.4 Neural Parametric Function Approximators 239

10.4 Neural Parametric Function Approximators

We mentioned earlier a few families of parametric functions 𝑓𝜃 that can be used
to model a training set D. Neural networks are also such a family of parametric
functions. In RL, they are referred to a neural function approximators. They offer
powerful optimization algorithms to find 𝜽∗ = argmin𝜃 {Loss(𝑄 𝜃)}), and allow for
simple prediction of 𝑓𝜃 (𝑥). Multilayered neural networks (also called Deep Neural
Nets, DNN) can take as input high dimensional raw data for 𝑆. This simplifies the
stage (i) (p. 237) for finding appropriate features.

Let us introduce briefly neural nets by focusing on simple feedforward networks
for our needs in Deep reinforcement learning.

10.4.1 Simple Feedforward Neural Nets

Cells of neural nets. A neural network is an organized collection of computational
units, called cells (or artificial neurons). A cell in a NN is an extension of linear
regression. Recall that multivariable linear regression gives as output a scalar 𝑦̃ = 𝜽 ·x
(in vector notation). A neural cell is also a parametric function 𝑓𝜃 (𝑥) = 𝑔(𝜃 ·𝑥), where
𝑔 is a nonlinear activation function.9 Possible activation functions are, for example
(see Figure 10.3):

• the logistic (or sigmoid) function: 𝑔1(𝑧) = 1
1+𝑒−𝑧 ,

• the rectified linear function (ReLU): 𝑔2(𝑧) = max{0, 𝑧} ,
• the softplus function: 𝑔3(𝑧) = log(1 + 𝑒𝑧) .

All these functions are nondecreasing, i.e., their derivative are nonnegative. They
have a threshold effect: they reduce their output for a negative or small input 𝜽 · x,
and are neutral for large input.

z

g1(z)

g3(z)g2(z)

Figure 10.3. Examples of nonlinear activation functions.

A cell in a NN (pictured in Figure 10.4(a)) is a mapping from a vector to a scalar. It
has as many parameters as its input vector, plus one for the bias, implicitly integrated
into a dummy input in vector notation (as in Equation 10.6).

9By reference to a biological neuron, which activates when its total input stimulus is beyond a threshold.

240 10 Reinforcement Learning

<latexit sha1_base64="zDYyQL5VUfv0gTJnarGflhli+XA=">AAAFjHicjVRdb9MwFA1j5aN8bfDIi0XLNBBUzWAwQEiVkCaQeACxwaS6mhz3prFmO8F2RivL/AVe4afxb7CTbGq2PWApyvW95557rnPjpOBMm+Hw76WVy6udK1evXe/euHnr9p219btfdV4qCvs057k6SIgGziTsG2Y4HBQKiEg4fEuO3oX4t2NQmuVyzywKmAgykyxllBjv2u/PD2X/cK03HAyrhc4bcWP0omZ9Olxf/Y6nOS0FSEM50XocDwszsUQZRjm4Li41FIQekRmMvSmJAD2xlVqHHnrPFKW58o80qPIuZ1gitCAme+LfJhPhpRcicagFCgiT51y7brucSXcmlsmiNCBpXS0tOTI5Cv2jKVNADV94g1DFvGBEM6IINf6UWlR2pkiRMTpv9WOh0CYvpmnbO9feAq+xizX4ryBnJrPYwNz8YFOTOfuKiqBUwg+Qx0zlMhye/fjhy56zOIEZkzZ8br/xzXPex0nJOZi+6yKE7DIph9QIonyGs9tCVAC0DCiI8sKcHV4UZAZEFY0vivrOTlNdUxrktJZ2gf6C5lNwFnVrGpqX0p+jLcI4epbA0DRniG+IKDdOJnZk8REoiQY7IJwa2Z+Oj2x48JO6KNrYwHj8dHuwDfNJIHc2MAUlJzzBWeuhuRDER3CRAZm6cTypwBhhUXL/fXNeCmmfORtqONuL3WnistouVrDMZjJo2sAq964GdraoKjhJgJ+WVZBqA8UZbh/IqgmxOGWcV44qL8jxm81qVJixIf9xpfHR+Uo+VtX5H3TsdeMN733Ycg9P3O2TO4JFxYxxL34dwu14mNFa/2Mb+0F27bA+rpODKp22TrhB+HEVYV5PIM3+DE+qZg3E97armJyBw82f5S+p+OyVdN74ujWIXwyef97qjXaa6+padD96EG1GcfQyGkXvo0/RfkQjFv2Kfkd/Orc7zztvOm9r6MqlJude1Fqd3X9Tmuf9</latexit>xn

<latexit sha1_base64="gaPzQ12AptAAvEYbmLgt3Y2Y+5s=">AAAFjHicjVRdb9MwFA1j5aN8bfDIi0XLNBBUzWAwQEiVkCaQeACxwaS6mhz3prFmO8F2RivL/AVe4afxb7CTbGq2PWApyvW95557rnPjpOBMm+Hw76WVy6udK1evXe/euHnr9p219btfdV4qCvs057k6SIgGziTsG2Y4HBQKiEg4fEuO3oX4t2NQmuVyzywKmAgykyxllBjv2u/PD+P+4VpvOBhWC5034sboRc36dLi++h1Pc1oKkIZyovU4HhZmYokyjHJwXVxqKAg9IjMYe1MSAXpiK7UOPfSeKUpz5R9pUOVdzrBEaEFM9sS/TSbCSy9E4lALFBAmz7l23XY5k+5MLJNFaUDSulpacmRyFPpHU6aAGr7wBqGKecGIZkQRavwptajsTJEiY3Te6sdCoU1eTNO2d669BV5jF2vwX0HOTGaxgbn5waYmc/YVFUGphB8gj5nKZTg8+/HDlz1ncQIzJm343H7jm+e8j5OSczB910UI2WVSDqkRRPkMZ7eFqABoGVAQ5YU5O7woyAyIKhpfFPWdnaa6pjTIaS3tAv0FzafgLOrWNDQvpT9HW4Rx9CyBoWnOEN8QUW6cTOzI4iNQEg12QDg1sj8dH9nw4Cd1UbSxgfH46fZgG+aTQO5sYApKTniCs9ZDcyGIj+AiAzJ143hSgTHCouT+++a8FNI+czbUcLYXu9PEZbVdrGCZzWTQtIFV7l0N7GxRVXCSAD8tqyDVBooz3D6QVRNicco4rxxVXpDjN5vVqDBjQ/7jSuOj85V8rKrzP+jY68Yb3vuw5R6euNsndwSLihnjXvw6hNvxMKO1/sc29oPs2mF9XCcHVTptnXCD8OMqwryeQJr9GZ5UzRqI721XMTkDh5s/y19S8dkr6bzxdWsQvxg8/7zVG+0019W16H70INqM4uhlNIreR5+i/YhGLPoV/Y7+dG53nnfedN7W0JVLTc69qLU6u/8AGbrnwA==</latexit>x1

<latexit sha1_base64="T4rDlxp+pURDi2BpTciIH1Lsx54=">AAAFj3icjVRLb9QwEE6hC2V5tXDkYrHbqlRltSmUFg5oJSREJQ5F9CWtV5XjnWys2k6wnT5kmR/BFf4Y/wY7m1abtgcsRRnP45tvxmMnBWfa9Pt/5+7cnW/du7/woP3w0eMnTxeXnh3ovFQU9mnOc3WUEA2cSdg3zHA4KhQQkXA4TE4+BfvhKSjNcrlnLgoYCTKRLGWUGK866mKTgSHd48VOv9evFropxLXQieq1e7w0/wOPc1oKkIZyovUw7hdmZIkyjHJwbVxqKAg9IRMYelESAXpkK8IOLXvNGKW58p80qNLORlgitCAmW/d/k4nw0xcicajhFDxMnnPt2s10Jt0eWSaL0oCk02xpyZHJUWgBGjMF1PALLxCqmCeMaEYUocY3qgFlJ4oUGaPnjXosFNrkxThtas+1l8BzbGMN/iDkxGQWGzg3Z2xsMmffUxGYSjgDecpULkPz7Ned73vO4gQmTNpw4n7ji+e8i5OSczBd10YI2VlQDqkRRPkIZzeFqBzQrENBlCfmbP82IzMgKmt8m9VXdhXq6tQgx1Nqt/AvaD4GZ1F7CkPzUvo+2iJMpEcJCHVxhviCiHLDZGQHFp+Akqi3DcKpgf3p+MCGD69Pk6KVFYyHrzd7m3A+CuDOBqTA5BInKKd8aC4E8RZcZEDGbhiPKmeMsCi5P9+cl0LaN86GHM52YncVOMu2jRXMovm7UZeBVe5Vtdv1pKrgJAF+lVZBqg0U17C9IasmxOKUcV4pqrhAx29Wq1Fhxob4tYrjq5uZvK3K8z/eseeNV7x2uaHuX6qbnTuBiwoZ4078IZib9jCjU/5rNvaD7JpmfToNDqx02uhw7eHHVYR5vXSp99dwUjWpXXxtnxWTE3C4vln+kYqvP0k3hYONXvyu9/bbRmewXT9XC9GL6GW0GsXRVjSIvkS70X5EIx79in5Hf1pLra3Wx9Zg6npnro55HjVWa+cf307pSA==</latexit>

✓

<latexit sha1_base64="TLD6sUY5Eto0yImycLOBc3yJgoc=">AAAFnHicjVRbbxQ3FB4u28KWlkAekZDVTaKAYLVDSRt4WqkItQKkoOaCtF5FHs+ZHSu+DLYn2ZVl/kpf25/Ev8GenUQ7SR6wNJrjc/nOd46PnVWcGTsafb1x89bt3g8/3rnb/+nez7/cX3vw8NCoWlM4oIor/SkjBjiTcGCZ5fCp0kBExuEoO/kz2o9OQRum5L5dVDAVZCZZwSixQXW8tr4x28a2BEsQprmyaP5k43htMBqOmoWuCmkrDJJ27R0/uP0Z54rWAqSlnBgzSUeVnTqiLaMcfB/XBipCT8gMJkGURICZuoa9R5tBk6NC6fBJixrtaoQjwghiy2fhb0sRf2YhMo86TtHDKsWN73fT2WJ36pisaguSLrMVNUdWodgPlDMN1PJFEAjVLBBGtCSaUBu61oFyM02qktF5px4HlbGqyouudm6CBIFjHxsIpyJntnTYwtyesdyW3r2iIjKVcAbylGklY/Pc+7//2fcOZzBj0sXjD5tQPOcbOKs5B7vh+wghtwrKobCC6BDh3Y4QjQNadaiIDsS8G11nZBZEY02vs4bKLkJ9mxpkvqR2Df+Kqhy8Q/0lDFW1DH10VRzPgBIR2uIsCQUR7SfZ1I0dPgEt0XAXhNdj98XzsYsffrZMira2MJ483xnuwHwawb2LSJHJOU5ULvlQJQQJFlyVQHI/SaeNM0ZY1Dycr+K1kO4372IO7wapvwhcZdvHGlbRwiVpy8BaBVXrdjmprjjJgF+k1VAYC9Ul7GAomwlxuGCcN4omLtIJm+1mVJh1Mf5pw/HJ1UzB1uT5Hu808MZbQbvZUY/O1d3OncCiQcZ4kL6O5q49zuiS/1OXhkH2XbM5XQZHVqbodLj1COMq4ryeu7T7SziFnrUuoba3mskZeNzerPBIpZefpKvC4Yth+vvw5ccXg/Fu+1zdSR4lvybbSZr8kYyTv5K95CChySL5N/kv+b/3uPem9673Yel680Ybs550Vu/wG4HM7V0=</latexit>

g(✓ · x)

<latexit sha1_base64="gdQb1NIWD/PFMmf2oxDrmusCij4=">AAAFj3icjVRLb9QwEA6PhbK8WjhysdhSFQSrTaG0cEArISGQOICgpdJ6hRxnsrHqR7CdPmSZH8EV/hj/BjubVpu2ByxZGc/jm2/GE2cVZ8aORn8vXb5ytXft+tKN/s1bt+/cXV65t2tUrSnsUMWV3suIAc4k7FhmOexVGojIOHzL9t9G+7cD0IYp+dUeVzAVZCZZwSixQbW3inmurFn9vjwYDUfNQueFtBUGSbs+fV+5+gPnitYCpKWcGDNJR5WdOqItoxx8H9cGKkL3yQwmQZREgJm6hrBHj4ImR4XSYUuLGu1ihCPCCGLLp+FrSxE/5lhkHnWcoodVihvf76azxfbUMVnVFiSdZytqjqxCsQUoZxqo5cdBIFSzQBjRkmhCbWhUB8rNNKlKRo869TiojFVVXnS1RyZIEDj2sYFwEXJmS4ctHNlDltvSu1dURKYSDkEeMK1kbJ77+OHLV+9wBjMmXbzxcAjFc76Ks5pzsKu+jxByi6AcCiuIDhHebQrROKBFh4roQMy70UVGZkE01vQia6jsNNS3qUHmc2oX8K+oysE71J/DUFXL0EdXxYkMKBGhLc6SUBDRfpJN3djhfdASDbdBeD12Pz0fu7jx03lStLaG8eTZ5nATjqYR3LuIFJmc4ETlnA9VQpBgwVUJJPeTdNo4Y4RFzcP9Kl4L6Z57F3N4N0j9aeAi2z7WsIhmS2jLwFoFVet2NqmuOMmAn6bVUBgL1RnsYCibCXG4YJw3iiYu0gmH9WZUmHUx/knD8fH5TMHW5Pkf7zTwxmtB+6ijHp2ou53bh+MGGeNB+jqau/Y4o3P+T1waBtl3zeZgHhxZmaLT4dYjjKuI83ri0p7P4BR61rqE2t5pJmfgcftnhUcqPfsknRd2N4bpy+GLzxuD8Xb7XC0lD5KHyXqSJlvJOHmffEp2Eprw5FfyO/nTW+lt9d70xnPXy5famPtJZ/U+/AMxlelY</latexit> ..
.

(a)

<latexit sha1_base64="zDYyQL5VUfv0gTJnarGflhli+XA=">AAAFjHicjVRdb9MwFA1j5aN8bfDIi0XLNBBUzWAwQEiVkCaQeACxwaS6mhz3prFmO8F2RivL/AVe4afxb7CTbGq2PWApyvW95557rnPjpOBMm+Hw76WVy6udK1evXe/euHnr9p219btfdV4qCvs057k6SIgGziTsG2Y4HBQKiEg4fEuO3oX4t2NQmuVyzywKmAgykyxllBjv2u/PD2X/cK03HAyrhc4bcWP0omZ9Olxf/Y6nOS0FSEM50XocDwszsUQZRjm4Li41FIQekRmMvSmJAD2xlVqHHnrPFKW58o80qPIuZ1gitCAme+LfJhPhpRcicagFCgiT51y7brucSXcmlsmiNCBpXS0tOTI5Cv2jKVNADV94g1DFvGBEM6IINf6UWlR2pkiRMTpv9WOh0CYvpmnbO9feAq+xizX4ryBnJrPYwNz8YFOTOfuKiqBUwg+Qx0zlMhye/fjhy56zOIEZkzZ8br/xzXPex0nJOZi+6yKE7DIph9QIonyGs9tCVAC0DCiI8sKcHV4UZAZEFY0vivrOTlNdUxrktJZ2gf6C5lNwFnVrGpqX0p+jLcI4epbA0DRniG+IKDdOJnZk8REoiQY7IJwa2Z+Oj2x48JO6KNrYwHj8dHuwDfNJIHc2MAUlJzzBWeuhuRDER3CRAZm6cTypwBhhUXL/fXNeCmmfORtqONuL3WnistouVrDMZjJo2sAq964GdraoKjhJgJ+WVZBqA8UZbh/IqgmxOGWcV44qL8jxm81qVJixIf9xpfHR+Uo+VtX5H3TsdeMN733Ycg9P3O2TO4JFxYxxL34dwu14mNFa/2Mb+0F27bA+rpODKp22TrhB+HEVYV5PIM3+DE+qZg3E97armJyBw82f5S+p+OyVdN74ujWIXwyef97qjXaa6+padD96EG1GcfQyGkXvo0/RfkQjFv2Kfkd/Orc7zztvOm9r6MqlJude1Fqd3X9Tmuf9</latexit>xn

<latexit sha1_base64="gaPzQ12AptAAvEYbmLgt3Y2Y+5s=">AAAFjHicjVRdb9MwFA1j5aN8bfDIi0XLNBBUzWAwQEiVkCaQeACxwaS6mhz3prFmO8F2RivL/AVe4afxb7CTbGq2PWApyvW95557rnPjpOBMm+Hw76WVy6udK1evXe/euHnr9p219btfdV4qCvs057k6SIgGziTsG2Y4HBQKiEg4fEuO3oX4t2NQmuVyzywKmAgykyxllBjv2u/PD+P+4VpvOBhWC5034sboRc36dLi++h1Pc1oKkIZyovU4HhZmYokyjHJwXVxqKAg9IjMYe1MSAXpiK7UOPfSeKUpz5R9pUOVdzrBEaEFM9sS/TSbCSy9E4lALFBAmz7l23XY5k+5MLJNFaUDSulpacmRyFPpHU6aAGr7wBqGKecGIZkQRavwptajsTJEiY3Te6sdCoU1eTNO2d669BV5jF2vwX0HOTGaxgbn5waYmc/YVFUGphB8gj5nKZTg8+/HDlz1ncQIzJm343H7jm+e8j5OSczB910UI2WVSDqkRRPkMZ7eFqABoGVAQ5YU5O7woyAyIKhpfFPWdnaa6pjTIaS3tAv0FzafgLOrWNDQvpT9HW4Rx9CyBoWnOEN8QUW6cTOzI4iNQEg12QDg1sj8dH9nw4Cd1UbSxgfH46fZgG+aTQO5sYApKTniCs9ZDcyGIj+AiAzJ143hSgTHCouT+++a8FNI+czbUcLYXu9PEZbVdrGCZzWTQtIFV7l0N7GxRVXCSAD8tqyDVBooz3D6QVRNicco4rxxVXpDjN5vVqDBjQ/7jSuOj85V8rKrzP+jY68Yb3vuw5R6euNsndwSLihnjXvw6hNvxMKO1/sc29oPs2mF9XCcHVTptnXCD8OMqwryeQJr9GZ5UzRqI721XMTkDh5s/y19S8dkr6bzxdWsQvxg8/7zVG+0019W16H70INqM4uhlNIreR5+i/YhGLPoV/Y7+dG53nnfedN7W0JVLTc69qLU6u/8AGbrnwA==</latexit>x1

<latexit sha1_base64="CT98i9be+uNxz8yeACMXLvvjn+Y=">AAAFk3icjVRbb9MwFM7GCqPcNhBPvFh0mwYaVTMYDHipACGQQAKxMaS6TI570li1nWA7u8gyP4NX+Fv8G+w0m5ptD1iKcnwu3/nO8bGTgjNter2/c/OXFlqXryxebV+7fuPmraXl2191XioKuzTnufqWEA2cSdg1zHD4ViggIuGwl0xeB/veASjNcrljjgsYCjKWLGWUGK/CK9hkYMj3eD9e2V/q9Lq9aqHzQlwLnahen/aXF37gUU5LAdJQTrQexL3CDC1RhlEOro1LDQWhEzKGgRclEaCHtiLt0KrXjFCaK/9JgyrtbIQlQgtisg3/N5kIP30sEocaTsHD5DnXrt1MZ9LtoWWyKA1IOs2WlhyZHIU2oBFTQA0/9gKhinnCiGZEEWp8sxpQdqxIkTF61KjHQqFNXozSpvZIewk8xzbW4A9Djk1msYEjc8hGJnP2ORWBqYRDkAdM5TI0z354/2XHWZzAmEkbTt1vfPGcr+Ck5BzMimsjhOwsKIfUCKJ8hLNbQlQOaNahIMoTc7Z3kZEZEJU1vsjqKzsNdXVqkKMptQv4FzQfgbOoPYWheSl9H20RptKjBIS6OEN8QUS5QTK0fYsnoCTqboNwqm9/Ot634cMb06RobQ3jwaOt7hYcDQO4swEpMDnBCcopH5oLQbwFFxmQkRvEw8oZIyxK7s8356WQ9rGzIYezndidBs6ybWMFs2j+ftRlYJV7Ve12NqkqOEmAn6ZVkGoDxRlsb8iqCbE4ZZxXiiou0PGb9WpUmLEh/mHF8cH5TN5W5fkf79jzxmteu9pQ907Uzc5N4LhCxrgTvwjmpj3M6JT/Qxv7QXZNsz6YBgdWOm10uPbw4yrCvJ641PszOKka1y6+treKyTE4XN8s/0jFZ5+k88LXzW78tPvk82anv10/V4vRveh+tB7F0bOoH72LPkW7EY2K6Ff0O/rTutt62XrVejN1nZ+rY+5EjdX6+A9SueqP</latexit>

✓1
1

<latexit sha1_base64="gdQb1NIWD/PFMmf2oxDrmusCij4=">AAAFj3icjVRLb9QwEA6PhbK8WjhysdhSFQSrTaG0cEArISGQOICgpdJ6hRxnsrHqR7CdPmSZH8EV/hj/BjubVpu2ByxZGc/jm2/GE2cVZ8aORn8vXb5ytXft+tKN/s1bt+/cXV65t2tUrSnsUMWV3suIAc4k7FhmOexVGojIOHzL9t9G+7cD0IYp+dUeVzAVZCZZwSixQbW3inmurFn9vjwYDUfNQueFtBUGSbs+fV+5+gPnitYCpKWcGDNJR5WdOqItoxx8H9cGKkL3yQwmQZREgJm6hrBHj4ImR4XSYUuLGu1ihCPCCGLLp+FrSxE/5lhkHnWcoodVihvf76azxfbUMVnVFiSdZytqjqxCsQUoZxqo5cdBIFSzQBjRkmhCbWhUB8rNNKlKRo869TiojFVVXnS1RyZIEDj2sYFwEXJmS4ctHNlDltvSu1dURKYSDkEeMK1kbJ77+OHLV+9wBjMmXbzxcAjFc76Ks5pzsKu+jxByi6AcCiuIDhHebQrROKBFh4roQMy70UVGZkE01vQia6jsNNS3qUHmc2oX8K+oysE71J/DUFXL0EdXxYkMKBGhLc6SUBDRfpJN3djhfdASDbdBeD12Pz0fu7jx03lStLaG8eTZ5nATjqYR3LuIFJmc4ETlnA9VQpBgwVUJJPeTdNo4Y4RFzcP9Kl4L6Z57F3N4N0j9aeAi2z7WsIhmS2jLwFoFVet2NqmuOMmAn6bVUBgL1RnsYCibCXG4YJw3iiYu0gmH9WZUmHUx/knD8fH5TMHW5Pkf7zTwxmtB+6ijHp2ou53bh+MGGeNB+jqau/Y4o3P+T1waBtl3zeZgHhxZmaLT4dYjjKuI83ri0p7P4BR61rqE2t5pJmfgcftnhUcqPfsknRd2N4bpy+GLzxuD8Xb7XC0lD5KHyXqSJlvJOHmffEp2Eprw5FfyO/nTW+lt9d70xnPXy5famPtJZ/U+/AMxlelY</latexit> ..
.

1,1

1,m

2,1

2,k

<latexit sha1_base64="gdQb1NIWD/PFMmf2oxDrmusCij4=">AAAFj3icjVRLb9QwEA6PhbK8WjhysdhSFQSrTaG0cEArISGQOICgpdJ6hRxnsrHqR7CdPmSZH8EV/hj/BjubVpu2ByxZGc/jm2/GE2cVZ8aORn8vXb5ytXft+tKN/s1bt+/cXV65t2tUrSnsUMWV3suIAc4k7FhmOexVGojIOHzL9t9G+7cD0IYp+dUeVzAVZCZZwSixQbW3inmurFn9vjwYDUfNQueFtBUGSbs+fV+5+gPnitYCpKWcGDNJR5WdOqItoxx8H9cGKkL3yQwmQZREgJm6hrBHj4ImR4XSYUuLGu1ihCPCCGLLp+FrSxE/5lhkHnWcoodVihvf76azxfbUMVnVFiSdZytqjqxCsQUoZxqo5cdBIFSzQBjRkmhCbWhUB8rNNKlKRo869TiojFVVXnS1RyZIEDj2sYFwEXJmS4ctHNlDltvSu1dURKYSDkEeMK1kbJ77+OHLV+9wBjMmXbzxcAjFc76Ks5pzsKu+jxByi6AcCiuIDhHebQrROKBFh4roQMy70UVGZkE01vQia6jsNNS3qUHmc2oX8K+oysE71J/DUFXL0EdXxYkMKBGhLc6SUBDRfpJN3djhfdASDbdBeD12Pz0fu7jx03lStLaG8eTZ5nATjqYR3LuIFJmc4ETlnA9VQpBgwVUJJPeTdNo4Y4RFzcP9Kl4L6Z57F3N4N0j9aeAi2z7WsIhmS2jLwFoFVet2NqmuOMmAn6bVUBgL1RnsYCibCXG4YJw3iiYu0gmH9WZUmHUx/knD8fH5TMHW5Pkf7zTwxmtB+6ijHp2ou53bh+MGGeNB+jqau/Y4o3P+T1waBtl3zeZgHhxZmaLT4dYjjKuI83ri0p7P4BR61rqE2t5pJmfgcftnhUcqPfsknRd2N4bpy+GLzxuD8Xb7XC0lD5KHyXqSJlvJOHmffEp2Eprw5FfyO/nTW+lt9d70xnPXy5famPtJZ/U+/AMxlelY</latexit> ..
.

<latexit sha1_base64="gdQb1NIWD/PFMmf2oxDrmusCij4=">AAAFj3icjVRLb9QwEA6PhbK8WjhysdhSFQSrTaG0cEArISGQOICgpdJ6hRxnsrHqR7CdPmSZH8EV/hj/BjubVpu2ByxZGc/jm2/GE2cVZ8aORn8vXb5ytXft+tKN/s1bt+/cXV65t2tUrSnsUMWV3suIAc4k7FhmOexVGojIOHzL9t9G+7cD0IYp+dUeVzAVZCZZwSixQbW3inmurFn9vjwYDUfNQueFtBUGSbs+fV+5+gPnitYCpKWcGDNJR5WdOqItoxx8H9cGKkL3yQwmQZREgJm6hrBHj4ImR4XSYUuLGu1ihCPCCGLLp+FrSxE/5lhkHnWcoodVihvf76azxfbUMVnVFiSdZytqjqxCsQUoZxqo5cdBIFSzQBjRkmhCbWhUB8rNNKlKRo869TiojFVVXnS1RyZIEDj2sYFwEXJmS4ctHNlDltvSu1dURKYSDkEeMK1kbJ77+OHLV+9wBjMmXbzxcAjFc76Ks5pzsKu+jxByi6AcCiuIDhHebQrROKBFh4roQMy70UVGZkE01vQia6jsNNS3qUHmc2oX8K+oysE71J/DUFXL0EdXxYkMKBGhLc6SUBDRfpJN3djhfdASDbdBeD12Pz0fu7jx03lStLaG8eTZ5nATjqYR3LuIFJmc4ETlnA9VQpBgwVUJJPeTdNo4Y4RFzcP9Kl4L6Z57F3N4N0j9aeAi2z7WsIhmS2jLwFoFVet2NqmuOMmAn6bVUBgL1RnsYCibCXG4YJw3iiYu0gmH9WZUmHUx/knD8fH5TMHW5Pkf7zTwxmtB+6ijHp2ou53bh+MGGeNB+jqau/Y4o3P+T1waBtl3zeZgHhxZmaLT4dYjjKuI83ri0p7P4BR61rqE2t5pJmfgcftnhUcqPfsknRd2N4bpy+GLzxuD8Xb7XC0lD5KHyXqSJlvJOHmffEp2Eprw5FfyO/nTW+lt9d70xnPXy5famPtJZ/U+/AMxlelY</latexit> ..
.

<latexit sha1_base64="JCmw7o8kI4U4s57C6+rSut/HsIc=">AAAFk3icjVRbb9MwFM7GCqPcNhBPvFh0mwYaVTMYDHipACGQQAKxMaS6TI570li1nWA7u8gyP4NX+Fv8G+w0m5ptD1iKcnwu3/nO8bGTgjNter2/c/OXFlqXryxebV+7fuPmraXl2191XioKuzTnufqWEA2cSdg1zHD4ViggIuGwl0xeB/veASjNcrljjgsYCjKWLGWUGK/CK9hkYMj3eF+s7C91et1etdB5Ia6FTlSvT/vLCz/wKKelAGkoJ1oP4l5hhpYowygH18alhoLQCRnDwIuSCNBDW5F2aNVrRijNlf+kQZV2NsISoQUx2Yb/m0yEnz4WiUMNp+Bh8pxr126mM+n20DJZlAYknWZLS45MjkIb0IgpoIYfe4FQxTxhRDOiCDW+WQ0oO1akyBg9atRjodAmL0ZpU3ukvQSeYxtr8Ichxyaz2MCROWQjkzn7nIrAVMIhyAOmchmaZz+8/7LjLE5gzKQNp+43vnjOV3BScg5mxbURQnYWlENqBFE+wtktISoHNOtQEOWJOdu7yMgMiMoaX2T1lZ2Gujo1yNGU2gX8C5qPwFnUnsLQvJS+j7YIU+lRAkJdnCG+IKLcIBnavsUTUBJ1t0E41bc/He/b8OGNaVK0tobx4NFWdwuOhgHc2YAUmJzgBOWUD82FIN6CiwzIyA3iYeWMERYl9+eb81JI+9jZkMPZTuxOA2fZtrGCWTR/P+oysMq9qnY7m1QVnCTAT9MqSLWB4gy2N2TVhFicMs4rRRUX6PjNejUqzNgQ/7Di+OB8Jm+r8vyPd+x54zWvXW2oeyfqZucmcFwhY9yJXwRz0x5mdMr/oY39ILumWR9MgwMrnTY6XHv4cRVhXk9c6v0ZnFSNaxdf21vF5Bgcrm+Wf6Tis0/SeeHrZjd+2n3yebPT366fq8XoXnQ/Wo/i6FnUj95Fn6LdiEZF9Cv6Hf1p3W29bL1qvZm6zs/VMXeixmp9/AeHdOrL</latexit>

✓1
m

<latexit sha1_base64="/VEuI6oUj8ogD87weEGoxxq5IEY=">AAAFk3icjVRbb9MwFA6wcim3AeKJF4tu05hG1QwGA14qQAgkkEBsMKkuk+OeNFZtJ9jO6GSZn8Er/C3+DXaaTU23ByxFOT6X73zn+NhJwZk2vd7fc+cvLLUuXrp8pX312vUbN5dv3f6i81JR2KM5z9V+QjRwJmHPMMNhv1BARMLhazJ5FexfD0Fplstdc1TAUJCxZCmjxHgVXsEmA0O+bR1MVg6WO71ur1rotBDXQieq18eDW0vf8SinpQBpKCdaD+JeYYaWKMMoB9fGpYaC0AkZw8CLkgjQQ1uRdmjVa0YozZX/pEGVdj7CEqEFMdmm/5tMhJ8+EolDDafgYfKca9dupjPpztAyWZQGJJ1lS0uOTI5CG9CIKaCGH3mBUMU8YUQzogg1vlkNKDtWpMgYnTbqsVBokxejtKmdai+B59jGGvxhyLHJLDYwNT/YyGTOPqMiMJXwA+QhU7kMzbPv333edRYnMGbShlP3G1885ys4KTkHs+LaCCE7D8ohNYIoH+HsthCVA5p3KIjyxJztnWVkBkRljc+y+spOQl2dGuRoRu0M/gXNR+Asas9gaF5K30dbhKn0KAGhLs4QXxBRbpAMbd/iCSiJujsgnOrbn473bfjw5iwpWlvDePBwu7sN02EAdzYgBSbHOEE540NzIYi34CIDMnKDeFg5Y4RFyf355rwU0j5yNuRwthO7k8B5tm2sYB7N34+6DKxyr6rdFpOqgpME+ElaBak2UCxge0NWTYjFKeO8UlRxgY7frFejwowN8RsVxwenM3lbled/vGPPG6957WpD3TtWNzs3gaMKGeNO/DyYm/YwozP+Gzb2g+yaZn04Cw6sdNrocO3hx1WEeT12qfcLOKka1y6+tjeKyTE4XN8s/0jFi0/SaeHLVjd+0n38aavT36mfq8vRveh+tB7F0dOoH72NPkZ7EY2K6Ff0O/rTutt60XrZej1zPX+ujrkTNVbrwz+CUerK</latexit>

✓2
k

<latexit sha1_base64="vao/VeZDbOK64zR2OjGZribHbZo=">AAAFk3icjVRbb9MwFM7GCqPcNhBPvFh0mwYaVTMYDHipACGQQAKxMaS6TI570li1nWA7u8gyP4NX+Fv8G+w0m5ptD1iKcnwu3/nO8bGTgjNter2/c/OXFlqXryxebV+7fuPmraXl2191XioKuzTnufqWEA2cSdg1zHD4ViggIuGwl0xeB/veASjNcrljjgsYCjKWLGWUGK/CK9hkYMj3zf14ZX+p0+v2qoXOC3EtdKJ6fdpfXviBRzktBUhDOdF6EPcKM7REGUY5uDYuNRSETsgYBl6URIAe2oq0Q6teM0JprvwnDaq0sxGWCC2IyTb832Qi/PSxSBxqOAUPk+dcu3YznUm3h5bJojQg6TRbWnJkchTagEZMATX82AuEKuYJI5oRRajxzWpA2bEiRcboUaMeC4U2eTFKm9oj7SXwHNtYgz8MOTaZxQaOzCEbmczZ51QEphIOQR4wlcvQPPvh/ZcdZ3ECYyZtOHW/8cVzvoKTknMwK66NELKzoBxSI4jyEc5uCVE5oFmHgihPzNneRUZmQFTW+CKrr+w01NWpQY6m1C7gX9B8BM6i9hSG5qX0fbRFmEqPEhDq4gzxBRHlBsnQ9i2egJKouw3Cqb796Xjfhg9vTJOitTWMB4+2ultwNAzgzgakwOQEJyinfGguBPEWXGRARm4QDytnjLAouT/fnJdC2sfOhhzOdmJ3GjjLto0VzKL5+1GXgVXuVbXb2aSq4CQBfppWQaoNFGewvSGrJsTilHFeKaq4QMdv1qtRYcaG+IcVxwfnM3lbled/vGPPG6957WpD3TtRNzs3geMKGeNO/CKYm/Ywo1P+D23sB9k1zfpgGhxY6bTR4drDj6sI83riUu/P4KRqXLv42t4qJsfgcH2z/CMVn32SzgtfN7vx0+6Tz5ud/nb9XC1G96L70XoUR8+ifvQu+hTtRjQqol/R7+hP627rZetV683UdX6ujrkTNVbr4z9X4OqQ</latexit>

✓2
1

<latexit sha1_base64="swFH49p/5Z5dzKwCrUJsdaNwIhc=">AAAFk3icjVTdbtMwFM5ghVH+NhBX3Fh0TIBG1QwGA24qQAgkkEAwQKqryXFOGqu2E2xnW2WZx+AWXou3wU6zqdl2gSUrx+fnO985PnFScqbNYPB36dz55c6FiyuXupevXL12fXXtxlddVIrCLi14ob4nRANnEnYNMxy+lwqISDh8S6avgv3bPijNCvnFzEoYCzKRLGOUGK/C69gwngKa7cXre6u9QX9QL3RaiBuhFzXr497a8g+cFrQSIA3lROtRPCjN2BJlGOXgurjSUBI6JRMYeVESAXpsa9IO3fWaFGWF8lsaVGsXIywRWhCTb/qvyUX46JlIHGo5BQ9TFFy7bjudyXbGlsmyMiDpPFtWcWQKFNqAUqaAGj7zAqGKecKI5kQRanyzWlB2okiZM3rYqsdCqU1Rpllbe6i9BJ5jF2vwlyEnJrfYwKE5YKnJnX1GRWAq4QDkPlOFDM2z7999/uIsTmDCpA237g++eM7XcVJxDmbddRFCdhGUQ2YEUT7C2W0hage06FAS5Yk5OzjLyAyI2hqfZfWVHYe6JjXIdE7tDP4lLVJwFnXnMLSopO+jLcNUepSA0BRniC+IKDdKxnZo8RSURP0dEE4N7U/HhzZsvDlPijY2MB493O5vw+E4gDsbkAKTI5ygnPOhhRDEW3CZA0ndKB7XzhhhUXF/vwWvhLSPnA05nO3F7jhwkW0XK1hEMzk0ZWBVeFXjdjKpKjlJgB+nVZBpA+UJbG/I6wmxOGOc14o6LtDxh3v1qDBjQ/yDmuP905m8rc7zP96x5403vPZuSz04Urc7N4VZjYxxL34ezG17mNE5/wc29oPs2ma9Pw8OrHTW6nDj4cdVhHk9cmnOJ3AyNWlcfG1vFJMTcLj5s/wjFZ98kk4LX7f68ZP+409bveFO81ytRLejO9G9KI6eRsPobfQx2o1oVEa/ot/Rn86tzovOy87rueu5pSbmZtRanQ//AHFe6pU=</latexit>

ỹ1

<latexit sha1_base64="I2Od7g2ogPB5YOYjKGgnfQRm6XY=">AAAFk3icjVTdbtMwFM7GCqP8DRBX3Fh0TIBG1QCDATcVIAQSSCDYQKqryXFOGqu2E2xnW2WZx+AWXou3wU6zqdl2gSUrx+fnO985PnFScqbNYPB3afncSuf8hdWL3UuXr1y9tnb9xq4uKkVhhxa8UN8TooEzCTuGGQ7fSwVEJBy+JdPXwf5tH5RmhfxqZiWMBZlIljFKjFfhdWwYTwHN9qbre2u9QX9QL3RaiBuhFzXr0971lR84LWglQBrKidajeFCasSXKMMrBdXGloSR0SiYw8qIkAvTY1qQduus1KcoK5bc0qNYuRlgitCAm3/Rfk4vw0TORONRyCh6mKLh23XY6k22PLZNlZUDSebas4sgUKLQBpUwBNXzmBUIV84QRzYki1PhmtaDsRJEyZ/SwVY+FUpuiTLO29lB7CTzHLtbgL0NOTG6xgUNzwFKTO/ucisBUwgHIfaYKGZpnP7z/8tVZnMCESRtu3R988Zyv46TiHMy66yKE7CIoh8wIonyEs1tC1A5o0aEkyhNzdnCWkRkQtTU+y+orOw51TWqQ6ZzaGfxLWqTgLOrOYWhRSd9HW4ap9CgBoSnOEF8QUW6UjO3Q4ikoifrbIJwa2p+OD23YeHOeFG1sYDx6uNXfgsNxAHc2IAUmRzhBOedDCyGIt+AyB5K6UTyunTHCouL+fgteCWkfOxtyONuL3XHgItsuVrCIZnJoysCq8KrG7WRSVXKSAD9OqyDTBsoT2N6Q1xNiccY4rxV1XKDjD/fqUWHGhvgHNcf7pzN5W53nf7xjzxtveO3dlnpwpG53bgqzGhnjXvwimNv2MKNz/g9s7AfZtc16fx4cWOms1eHGw4+rCPN65NKcT+BkatK4+NreKiYn4HDzZ/lHKj75JJ0Wdh/146f9J58f9YbbzXO1Gt2O7kT3ojh6Fg2jd9GnaCeiURn9in5Hfzq3Oi87rzpv5q7LS03Mzai1Oh//AZvP6s8=</latexit>

ỹk

<latexit sha1_base64="gdQb1NIWD/PFMmf2oxDrmusCij4=">AAAFj3icjVRLb9QwEA6PhbK8WjhysdhSFQSrTaG0cEArISGQOICgpdJ6hRxnsrHqR7CdPmSZH8EV/hj/BjubVpu2ByxZGc/jm2/GE2cVZ8aORn8vXb5ytXft+tKN/s1bt+/cXV65t2tUrSnsUMWV3suIAc4k7FhmOexVGojIOHzL9t9G+7cD0IYp+dUeVzAVZCZZwSixQbW3inmurFn9vjwYDUfNQueFtBUGSbs+fV+5+gPnitYCpKWcGDNJR5WdOqItoxx8H9cGKkL3yQwmQZREgJm6hrBHj4ImR4XSYUuLGu1ihCPCCGLLp+FrSxE/5lhkHnWcoodVihvf76azxfbUMVnVFiSdZytqjqxCsQUoZxqo5cdBIFSzQBjRkmhCbWhUB8rNNKlKRo869TiojFVVXnS1RyZIEDj2sYFwEXJmS4ctHNlDltvSu1dURKYSDkEeMK1kbJ77+OHLV+9wBjMmXbzxcAjFc76Ks5pzsKu+jxByi6AcCiuIDhHebQrROKBFh4roQMy70UVGZkE01vQia6jsNNS3qUHmc2oX8K+oysE71J/DUFXL0EdXxYkMKBGhLc6SUBDRfpJN3djhfdASDbdBeD12Pz0fu7jx03lStLaG8eTZ5nATjqYR3LuIFJmc4ETlnA9VQpBgwVUJJPeTdNo4Y4RFzcP9Kl4L6Z57F3N4N0j9aeAi2z7WsIhmS2jLwFoFVet2NqmuOMmAn6bVUBgL1RnsYCibCXG4YJw3iiYu0gmH9WZUmHUx/knD8fH5TMHW5Pkf7zTwxmtB+6ijHp2ou53bh+MGGeNB+jqau/Y4o3P+T1waBtl3zeZgHhxZmaLT4dYjjKuI83ri0p7P4BR61rqE2t5pJmfgcftnhUcqPfsknRd2N4bpy+GLzxuD8Xb7XC0lD5KHyXqSJlvJOHmffEp2Eprw5FfyO/nTW+lt9d70xnPXy5famPtJZ/U+/AMxlelY</latexit> ..
.

(b)

Figure 10.4. (a) a cell of a neural net; (b) a simple feedforward two layers NN. Bias terms
are implicit.

Multilayered neural nets. A feedforward NN organizes several cells into layers.
All cells at layer 1 take as common input the elements of a vector x. The output of
the cells at layer 𝑙 are given as input to the cells at 𝑙 + 1. The last layer gives a global
output vector ỹ matching the input 𝑥. Intermediate layers, except for the first and last
ones, are called hidden layers.

Consider the two layers NN in Figure 10.4(b), which has 𝑚 cells in the first layer,
and 𝑘 in the second. Their parameters are the vectors 𝜽1

1 to 𝜽1
𝑚, and 𝜽2

1 to 𝜽2
𝑘
.

The input common to the cells in the first layer is the vector x = [𝑥1, . . . , 𝑥𝑛]⊤.
Their respective output are 𝑚 scalars which we can write collectively as a vector
[𝑔(𝜽1

1 · x), . . . , 𝑔(𝜽
1
𝑚 · x)]⊤.

It is convenient not only to write the input and output of a layer of cells as vectors,
but also to write their parameters as matrices. Let Θ1 be an (𝑚, 𝑛 + 1) matrix whose
rows are the vectors 𝜽1

1 to 𝜽1
𝑚, that is, Θ1

(𝑚,𝑛+1) = [𝜃
1
𝑖, 𝑗
] is the matrix of the parameters

of the first layer cells, 𝜃1
𝑖, 𝑗

being the 𝑗 𝑡ℎ parameter of 𝜽1
𝑖

connecting 𝑥 𝑗 to the 𝑗 𝑡ℎ cell
of the first layer.

In matrix notation (see Section B.2), the product of matrix Θ1
(𝑚,𝑛+1) and vector

x(𝑛+1,1) is a vector of dimension 𝑚: 𝑔(Θ1 × x) = [𝑔(𝜽1
1 · x), . . . , 𝑔(𝜽

1
𝑚 · x)]⊤. It is

the output of the first layer. It has as many elements as cells in the first layer. We
implicitly add to the output of the first layer 𝑔(Θ1 × x) a dummy element for the bias
(as for the input 𝑥).

The same formulation is applied to the second layer. An output of this layer is:
𝑦̃𝑖 = 𝑔(𝜽2

𝑖
· 𝑔(Θ1 × x)), for 1 ≤ 𝑖 ≤ 𝑘 . Writing the parameters of the second layer as a

matrix Θ2
(𝑘,𝑚+1) whose rows are the vector 𝜽2

1 to 𝜽2
𝑘
, we get the global output of this

network for the input 𝑥 as the vector:

ỹ = 𝑓Θ(𝑥) = 𝑔(Θ2 × 𝑔(Θ1 × x)) (10.11)

where Θ is a short hand notation for the pair of matrices (Θ1,Θ2) with all the
parameters.

This network has 𝑚 + 𝑘 cells, which all use the same activation function 𝑔. It
has [(𝑛 + 1)𝑚 + (𝑚 + 1)𝑘] parameters. The optimal value of these parameters

10.4 Neural Parametric Function Approximators 241

Θ∗ = argminΘ{Loss(𝑓Θ)} can be computed as in the previous section. We can take
for example the empirical loss as the mean squared error between the estimated ỹ and
the targeted y for a given pair (x, y), that is : ∥ 𝑓Θ(x) −y∥2.10 This gives, for the entire
collection of matching pairs D, the following Loss:

Loss(𝑓Θ) =
∑︁
(x,y) ∈D

∥ 𝑓Θ(x) − y∥2 (10.12)

Here too, the minimum of Loss(𝑓Θ) is computed from the equation ∇Loss(𝑓𝜃) =
[𝜕Loss(𝑓𝜃)

𝜕𝜃𝑙
𝑖, 𝑗

] = 0, over all the parameters in the network. Gradient descent is the mean
for estimating this minimum when 𝑔, hence 𝑓 , are differentiable. In a multiple layer
nets, it has to take into account the function compositions, as explained next.

10.4.2 Backpropagation Gradient Descent

The idea here is to optimize the network parameters for a training database. Given a
target y and a network computed estimate ỹ = 𝑓Θ(x), the problem is to change Θ such
as to reduce the Loss(𝑓Θ). This is done as in Section 10.3.2 by making an update of
Θ following the gradient vector. This update is computed first with respect to the last
layer of the network, then it is back propagated step by step to the first layer.

Consider a feedforward network of 𝐿 layers whose cells have the same activation
function 𝑔. Let Θ𝑙 be the matrix of parameters of the cells at layer 𝑙. Equation 10.11
generalizes to:

ỹ = 𝑓Θ(x) = 𝑔(Θ𝐿 × 𝑔(Θ𝐿−1 × 𝑔(. . . 𝑔(Θ1 × x)) (10.13)

The partial derivatives of Loss(𝑓𝜃) are computed using the chain rule for the derivative
of a composite function. Namely, for a composed function 𝑔(𝑧(𝜃)), the derivative is
𝜕𝑔

𝜕𝜃
=

𝜕𝑔

𝜕𝑧
𝜕𝑧
𝜕𝜃

. Now, this network of 𝐿 layers and 𝑛 cells per layer has 𝑛2𝐿 parameters.
Working the derivative chain rule on Equation 10.13 through all the layers and pa-
rameters of the network can be quite complicated. It needs to be efficiently organized.
The Backpropagation gradient descent algorithm does it over two paths:

• a forward path which compute ỹ from layer 1 to L with Equation 10.13 for a
given 𝑥, and caches the intermediate results needed for the second path, and

• a backward path which propagate the derivatives for the loss of ∥ỹ − y∥2 and
the updates of all the parameters from layer 𝐿 to 1.

To simplify the computation, we’ll introduce a set of vectors: x𝑙, for 1 ≤ 𝑙 ≤ 𝐿.
The x𝑙 will allow us to decompose Equation 10.13 into 𝐿 operations:

• x1 = x,
• x𝑙+1 = 𝑔(Θ𝑙 × x𝑙) is the output vector of layer 𝑙.

The final output of the network is the vector x𝐿+1 = 𝑓Θ(x) = ỹ.
In order to compute the partial derivative of ∥ỹ − y∥2 with respect to the parameters

let us focus on the last layer for a single parameter:
10Other loss functions are, e.g., the cross entropy loss: Loss =

∑
𝑖 𝑦̃𝑖 𝑙𝑜𝑔𝑦𝑖 ; see Exercise 10.2.

242 10 Reinforcement Learning

∥ỹ − y∥2 =
∑︁
𝑖

[𝑔(𝜽𝐿
𝑖 · x𝐿) − 𝑦𝑖]2 =

∑︁
𝑖

[𝑔(
∑︁
𝑗

𝜃𝐿𝑖, 𝑗𝑥
𝐿
𝑗) − 𝑦𝑖]2

Hence, considering the loss for a single observation (x, y):

𝜕∥ỹ − y∥2

𝜕𝜃𝐿
𝑖, 𝑗

= 2
∑︁
𝑖

[𝑔(𝜽𝐿
𝑖 · x𝐿) − 𝑦𝑖]

𝜕 [𝑔(∑ 𝑗 𝜃
𝐿
𝑖, 𝑗
𝑥𝐿
𝑗
) − 𝑦𝑖]

𝜕𝜃𝐿
𝑖, 𝑗

The derivative of the composed 𝑔(𝑧(𝜽)) give the last term in the above equation as
𝜕𝑔 (∑ 𝑗 𝜃

𝐿
𝑖, 𝑗

𝑥𝐿
𝑗
)

𝜕𝑧
𝑥𝐿
𝑗
= 𝑔′(∑ 𝑗 𝜃

𝐿
𝑖, 𝑗
𝑥𝐿
𝑗
)𝑥𝐿

𝑗
. Hence, the update of 𝜃𝐿

𝑖, 𝑗
is:

𝜃𝐿𝑖, 𝑗 ← 𝜃𝐿𝑖, 𝑗 − 𝛼
∑︁
𝑖

[𝑔(𝜽𝐿
𝑖 · x𝐿) − 𝑦𝑖]𝑔′(

∑︁
𝑗

𝜃𝐿𝑖, 𝑗𝑥
𝐿
𝑗)𝑥𝐿𝑗 (10.14)

In matrix notations we can extend this computation over all the parameters Θ𝐿 of
layer 𝐿 in a more readable (and parallizable) way. This is done by defining a vector
𝜹𝐿+1 and an update rule for Θ𝐿 which extends the rule for a single parameter 𝜃𝐿

𝑖, 𝑗
:

𝜹𝐿+1 = (x𝐿+1 − y) × 𝑔′(Θ𝐿 × x𝐿) (10.15)
Θ𝐿 ← Θ𝐿 − 𝛼[𝜹𝐿+1 ⊗ (x𝐿)⊤]

Note that the outer product gives a matrix of the same dimension as Θ𝐿 .
Performing this computation one step back on a parameter 𝜃𝐿−1

𝑖, 𝑗
of layer 𝐿 − 1

shows how to define 𝜹𝐿 as a function of 𝜹𝐿+1 (see Exercise 10.1) and the update rule
for Θ𝐿−1:

𝜹𝐿 = [(Θ𝐿)⊤ × 𝜹𝐿+1] × 𝑔′(Θ𝐿−1 × x𝐿−1)
Θ𝐿−1 ← Θ𝐿−1 − 𝛼[𝜹𝐿 ⊗ (x𝐿−1)⊤]

This extends backward over the entire network until 𝛿2 and Θ1 to update the entire
matrix Θ.

Backpropagation is a sequence of a forward path to compute the x𝑙 vectors, then
a backward path to compute the 𝜹𝑙 vectors and to update on the Θ𝑙 matrices (Algo-
rithm 10.4).

Backpropagation can be run, as the gradient descent, in different modes:

• in a stochastic mode, incrementally on each new pair (x, y),
• in a batch mode, over all data pairs (x, y) in D, or
• in a mini-batch mode, over a subsets of pairs randomly drawn from D. In this

mode the term 𝛿𝐿+1 in Equation 10.15 is summed and averaged out over for
all pairs in a mini-batch, then propagated just once (to be illustrated in Deep
Q-learning).

10.5 Deep Value-Based RL 243

Backpropagation(x, y)
x1 ← x
for 𝑙 = 1 to 𝐿 do // Forward path

x𝑙+1 ← 𝑔(Θ𝑙 × x𝑙)
𝜹𝐿+1 ← (x𝐿+1 − y) × 𝑔′(Θ𝐿 × x𝐿)
Θ𝐿 ← Θ𝐿 − 𝛼[𝜹𝐿+1 ⊗ (x𝐿)⊤]
for 𝑙 = 𝐿 to 2 do // Backward path

𝜹𝑙 ← [(Θ𝑙)⊤ × 𝜹𝑙+1] × 𝑔′(Θ𝑙−1 × x𝑙−1)
Θ𝑙−1 ← Θ𝑙−1 − 𝛼[𝜹𝑙 ⊗ (x𝑙−1)⊤]

Algorithm 10.4. Back propagation algorithm for a feedforward neural net with
incremental update from a single observation (x, y).

In summary, a neural function approximator is a powerful mean for estimating a
complex input/output relation from a collection of pairs (input, target output) examples
using Backpropagation. In many ways, the use of DNN in RL is similar to their use in
supervised learning, whereD is an apriori given collection of training data (the most
frequent application case of DNN). The specifics of Deep RL are discussed next.

10.5 Deep Value-Based RL

We introduced earlier parametric Q-learning to handle large state spaces, and neural
nets to efficiently find the parameters of a model. Let us combine here the two in an
algorithm called Deep Q-learning.

Deep Reinforcement Learning is a parametric Q-learning that uses multilayered
neural networks. It’s a model-free RL: the learner has no prior model of 𝛾 and Pr. It
observes states and rewards from its actions. Its learning method relies on the four
stages summarized page 237.

In principle, what we saw for Parametric Q-learning in Section 10.3.3 applies to
the case where 𝑄 𝜃 is estimated with a neural net. Recall that the target value for Q-
learning is 𝑦 = 𝑟 (𝑠, 𝑎, 𝑠′) +max𝑎′{𝑄 𝜃 (𝑠′, 𝑎′)} (Equation 10.7). Hence the difference
between the target 𝑦 and the estimated 𝑦̃ = 𝑄 𝜃 (𝑠, 𝑎) is given as in the update rule of
Equation 10.9. A neural net Q-learning algorithm uses the Backpropagation procedure
to update the network parameters.

10.5.1 Network Organization for Deep RL

To work out these principles into a pseudo-code for Deep Q-learning, let us first
discuss a few important network organization issues.

Network Input and Output. A first issue is about the input/output of the neural
net. A direct transposition of Section 10.3.3 would take 𝑠 and 𝑎 (or more precisely
an adequate coding of 𝑠 and 𝑎) as the network input and require 𝑄 𝜃 (𝑠, 𝑎) as a scalar

244 10 Reinforcement Learning

output, that is to make the function 𝑓𝜃 computed by the network be 𝑓𝜃 = 𝑄 𝜃 . An
alternative is to input 𝑠 and to output a vector of values [𝑄 𝜃 (𝑠, 𝑎1), . . . , 𝑄 𝜃 (𝑠, 𝑎𝑚)]⊤
for all ground actions 𝑎𝑖 of the domain. The latter approach, used in Deep Q-learning,
is computationally more efficient.

Target Values. Another important point is that the target value 𝑦 computed with
Equation 10.7 uses the neural net. Hence it depends on the network parameters.
While this is not a problem for Q-learning, in neural nets, the target y should be taken
as independent of 𝜽 (see Equation 10.12).11 This can be dealt with by updating the
parameters at an iteration 𝑘 of Algorithm 10.3 with a target y that uses the parameters
of the previous iteration 𝑘 − 1. But in that case, an update that increases 𝑄 at
iteration 𝑘 may increases 𝑦 at the next iteration, leading possibly to oscillations. The
intuition, confirmed empirically, is that this approach introduces a close link between
the estimates ỹ and the targets y, resulting in an instable or even a non-converging
learning process. The solution for diminishing this link is to use two networks.

The idea is to copy the original NN after a number 𝜐 of updates, and use it to
compute the target 𝑦 for the current 𝑠, in order to update only the original network
with respect to this target. This copy is called the target network. Targets will use
stable and older version of 𝜽 and will not be affected by ongoing updates. This “delay”
𝜐 updates does not need to be too large, just enough to avoid oscillations.12

Experience replay and mini-batch updates. A related issue is about the stochas-
tic mode of back propagation. Recall that the online Q-learning formulation of
Section 10.3.3 performs learning updates incrementally after each new experience,
whose result is then discarded. But one may store a series of experiences then re-use
their results in batch updates, as seen in back propagation which can be performed
in batch or in stochastic mini-batches. Applications in games and a few other do-
mains show that it may be better to cache a series of the last 𝑁 steps, possibly over
several episodes, in a buffer called a replay-memory, and perform updates on random
mini-batches drawn from this replay memory. This is motivated by the following
points:

• successive steps in an episode are generally correlated, in particular when Select
returns argmax𝑎 𝑄 (exploitation is more frequent then exploration), hence the
assumption of independent and identically distributed observations does not
hold,

• updates can be less frequent than observations, and in mini-batches, a given
observation may be potentially used for several updates.

The random selection of a mini-batch in the replay memory does not need to be
uniform; it may follow a more elaborate strategy, such a prioritized sweeping. In the
latter, a queue is maintained of every state-action pair whose estimated value changes
11In supervised learning, the target is given a priori before learning starts.
12This is akin from a control theory methods for handling instabilities: introduce a delay such as to

increase the time constant of a system. The equivalent of a delay here is lag between the updates of
the targets and the estimates.

10.5 Deep Value-Based RL 245

if updated, prioritized by the size of the change. When the top pair in the queue is
updated, the effect on each of its predecessor pairs is computed. If the effect is greater
than some threshold, then the pair is inserted in the queue with the new priority.

10.5.2 Deep Q-learning Algorithm

The Deep Q-learning is a parametric Q-learning algorithm using neural nets that
follows the above ideas. It seeks to synthesize a near-optimal function 𝑄 𝜃 : 𝑆 → 𝐴,
and hence a policy for the task at hand 𝜋(𝑠) = argmax𝑎 𝑄 𝜃 (𝑠, 𝑎). The learning
proceeds by repeating (with a simulator or in the real world) a number of trials
for that task. In each trial, called an episode, the learner starts from some initial
state, randomly drawn from a given set 𝑆0 of possible initial states. As said earlier
(Section 10.2.2), we assume that each trial terminates after a finite but variable number
of steps, when the task finishes. In each step, an action 𝑎 is performed, the next state
𝑠′ and a reward 𝑟 (𝑠, 𝑎, 𝑠′) are observed. The algorithm is off-policy: the selected
action (line 1) is not necessarily the current policy given by argmax𝑎 𝑄 𝜃 . Recall that
this allows Select to combine exploitation with exploration.

Deep Q-learning
initialize 𝜽 for network [𝑄 𝜃] and replay-memory R𝑀

[𝑄̂ 𝜃−] ← [𝑄 𝜃] // target network
for all episodes do

randomly draw a starting state 𝑠 from 𝑆0
until episode termination do

1 𝑎 ← Select(𝑠) // selects 𝑎 ∈ Applicable(𝑠)
perform action 𝑎
observe resulting state 𝑠′ and reward 𝑟 (𝑠, 𝑎, 𝑠′)
push((𝑠, 𝑎, 𝑠′, 𝑟 (𝑠, 𝑎, 𝑠′)),R𝑀) // FIFO replay memory
B ← set of 𝑘 tuples uniformly sampled from R𝑀

𝜹← [0, . . . , 0]
forall tuples (𝑠, 𝑎, 𝑠′, 𝑟 (𝑠, 𝑎, 𝑠′)) ∈ B do

2 y← 𝑟 (𝑠, 𝑎, 𝑠′) +max𝑎′{𝑄̂ 𝜃− (𝑠′, 𝑎′)}
3 𝜹← 𝜹 + 1/𝑘 [𝑦 −𝑄 𝜃 (𝑠, 𝑎)]∇𝜃𝑄 𝜃 (𝑠, 𝑎)
4 𝜽 ← 𝜽 + 𝛼𝜹 // update with Backpropagation

𝑠← 𝑠′

5 every 𝜈 steps reset [𝑄̂ 𝜃−] ← [𝑄 𝜃] // update target net

Algorithm 10.5. Deep Q-learning algorithm.

Deep Q-learning uses a main neural net, denoted [𝑄 𝜃]. Its input is a coding of
the current state 𝑠. Its output is a vector [𝑄 𝜃 (𝑠, 𝑎1), . . . , 𝑄 𝜃 (𝑠, 𝑎𝑚)]⊤ over available
actions. This network is used to compute the 𝑄 𝜃 vector and to learn its parameters.
The network [𝑄 𝜃] is periodically copied into a target network denoted [𝑄̂ 𝜃−], which
is used solely to compute the target value 𝑦 = 𝑟 (𝑠, 𝑎, 𝑠′) + max𝑎′{𝑄 𝜃− (𝑠′, 𝑎′)} with

246 10 Reinforcement Learning

the parameters 𝜃−, corresponding to previous values of the parameters of [𝑄 𝜃]. This
allows avoiding oscillations due to a target too close to the estimate (see p.244).

The algorithm keeps a replay-memory R𝑀 as a FIFO list recording the last 𝑁
steps, where new observations remplace old ones. Hence R𝑀 covers successive
episodes, possibly several if 𝑁 is taken large enough. A mini-batch B of 𝑘 tuples is
sampled uniformly from the replay-memory R𝑀 . More elaborate sampling strategy
are feasible, e.g., prioritized sweeping.

The parameters of [𝑄 𝜃] are updated (line 4) with Backpropagation algorithm, as
in Equation 10.10, with an error term averaged out over the 𝑘 tuples in the mini-batch
B:

𝜽 ← 𝜽 + 𝛼
𝑘

∑︁
(𝑠,𝑎,𝑠′ ,𝑟) ∈B

[𝑦 −𝑄 𝜃 (𝑠, 𝑎)]∇𝜃𝑄 𝜃 (𝑠, 𝑎)

The update term 𝜹 is computed in the forall loop. Note that 𝑦 and𝑄 𝜃 (𝑠, 𝑎) are scalar
(from respectively the output of [𝑄̂ 𝜃−] and [𝑄 𝜃] for action 𝑎), while ∇𝜃𝑄 𝜃 (𝑠, 𝑎) and
𝜹 are vectors of the same dimension as 𝜽 . Parameter updates in the pseudo-code
are performed at each observation, but they can be less frequent since updates are
computationally costly.

[Q𝜃] Select

External World

Update

s

a

r(s,a,s’)
s’

Target
y, 𝛿

Q𝜃(s,a)

[Q𝜃-]^
copy

Figure 10.5. A schematic view of Deep Q-learning showing the main neural net [𝑄 𝜃] and
the target network [𝑄̂ 𝜃−]. The replay-memory and mini-batch buffers are not depicted.

Algorithm Deep Q-learning, as all the other Q-learning algorithms seen so far in
this chapter, are intended for finite state and action spaces. However, Deep Q-learning
can easily handle a high dimensional state space, such as images in video-game
applications.13 Images are handled with Convolution Neural Nets. Deep Q-learning
can also handle a continuous state space such as vectors in R𝑛. However, the action
space is necessarily finite and rather low-dimensional, since its dimension impacts
the network size. We’ll see how to cope with a high dimensional and a continuous
action space in sections 10.6.2 and 22.1 .

13An image of 𝑛 × 𝑚 pixels, each ranging over k values, covers a space in 𝑘𝑛×𝑚.

10.5 Deep Value-Based RL 247

10.5.3 Network Engineering for Deep RL

Deep Q-learning integrates the ingredients seen so far for value-based reinforcement
learning together with the power of neural nets for learning and incrementally updating
a parametric function 𝑄 𝜃 . It has been used with very good performances in video
games and similar applications. However, its successful deployment requires adequate
choices and careful tuning of several parameters. Let us discuss the main engineering
issues related to this algorithm.

Controlling the learning rates. The setting of the learning rate 𝛼 (in Backpropaga-
tion) is delicate issue. Imagine moving back and forth along a U-shaped curve (when
Loss is convex) towards its minimal value. Large steps may trigger oscillations around
the minima, while small steps will slow down learning. The strategy of reducing 𝛼
as learning progresses has to be informed about the shape of the Loss function to
be minimized. Furthermore, learning does not progress for all the parameters at the
same rate. One may consider a different learning rate for each parameter, but that
would be too complicated. A more easily informed tuning strategy sets a different
value of 𝛼 for each layer of the DQN. A few methods, such as RMSProp, combine
this tuning with mini-batch selection methods.

Architecting the network. The network architecture is a critical issue. Significant
research in NN learning is devoted to architecting networks for specific needs. A
coverage of main NN architectures is beyond the scope of this chapter. The reader
should however keep in mind that there are many network types, other than the
feedforward nets introduced earlier, that can be relevant to a learning actor, among
which Convolution Nets are very popular. There are also many different loss functions,
adapted to specific needs, e.g., the cross entropy loss for classification problems (see
Exercise 10.2).

Of particular interest are convolution Neural Nets (CNN), which are prescribed
when images are taken as input or as part of the network input. For example, video
game applications take generally as input the raw color bitmap screen of the game;
robotics or self-driving car applications may take the output of cameras and lidars
as part of the input state 𝑠. In general, a convolution is an operation, denoted 𝑓 ∗ 𝑔,
on two functions which modifies the shape of 𝑓 with respect to that of 𝑔. In image
processing, a convolution filter is an operation applied to sequences of overlapping
windows in an image to extract salient features that are robust to translation and scaling
transformations. A CNN organizes the connectivity of the cells of its first layers as
such windows on an input image. The remaining layers can be fully connected and
used for classification or estimate of the 𝑄 values. Other NN architectures are briefly
discussed Section 10.9.

Hyperparameters. These and other issues lead to several choices and settings, usu-
ally referred to as the hyperparameters of a network, which can affect the performances
of a DQN implementation. Among these are:

• 𝜖 in the 𝜖-greedy Select function,

248 10 Reinforcement Learning

• the delay 𝜈 of the target network,
• the sizes of the Replay-memory and the Mini-batch,
• the parameters for controlling the learning rates 𝛼,
• the number of episodes.

The use of a simulator entails other settings such as initializations, random restarts,
possibly a bound on the length of tried trajectories, and experimental verifications.

10.6 Policy-Based RL

We move here from the value-based techniques, seen so far in this chapter, to policy-
based techniques. The dual role of value and policy has been illustrated in several
planning algorithms in Chapter 9, in particular in Value Iteration and Policy Iteration.
A value function gives a policy and symmetrically a policy correspond to a value func-
tion. In RL, the main differences between value-based and policy-based approaches
are the following:

• A value-based RL approach is a search in the value space, towards a good
approximation of 𝑄∗

𝜃
. A policy-based RL is a search in the policy space; it

seeks to progressively improve a policy 𝜋 towards an optimal 𝜋∗, taking into
account the observed rewards of the trial-and-error experiments.

• A parametric value-based algorithm as Deep Q-learning can handle a high-
dimensional state space, it is limited to a finite low-dimensional action space
since the number of ground actions is a dimension of the network. A policy-
based RL is to able to handle continuous and high-dimensional action spaces.

There are generally stronger convergence guaranty results for policy-based approaches
than for value-based one, although the latter in practice can be faster. But it is easier
to integrate and benefit from prior knowledge in the policy-based techniques than in
the value-based ones.

Let us discuss the principles of policy-based approaches before proposing a partic-
ular algorithm.

10.6.1 Principles of Policy-Based RL

A search in the policy space has already been illustrated for planning with the Policy
Iteration algorithm. Recall that this search involves two successive stages:

• a policy evaluation stage and
• a policy improvement stage.

We also discussed in Section 9.1.2 the Generalized Policy Iteration scheme, which
interleaves the stages of partial policy evaluation and improvement.

We rely here on Generalized Policy Iteration for policy-based RL. This scheme
allows evaluating then improve a policy locally and incrementally, after each learning
trial or mini-batch of a few trials. Policy-based RL also uses parametric approaches
to approximate a policy and its value with parametric functions. These functions are
conveniently learned and expressed as neural function approximators.

10.6 Policy-Based RL 249

Let us consider how to perform the two evaluation and improvement stages:

• The policy evaluation stage cannot rely on the planning methods seen in Sec-
tion 9.1.2 for evaluating𝑉 𝜋 , since in model-free RL we do not know the domain
model. Instead, we can estimate the value𝑉 𝜋 or the action-value𝑄 𝜋 with local
Bellman-updates, as seen in the value-based approaches.

• The policy improvement stage updates the policy with respect to the updated
value or action-value functions. This might be done with a greedy maximisation
over the set of actions. But with a high-dimensional continuous action space,
this would require a complex maximisation over the action space at every update
step. Rather than maximizing, a simpler method updates the policy parameters
in the direction of the expected gradient of𝑉 𝜋 or𝑄 𝜋 , towards a maximal policy.

These are the main principles of policy-based RL: a policy evaluation stage with
local Bellman-updates, and a policy improvement stage with gradient ascent.14 Work-
ing out these principles into a mathematically sound and efficient RL algorithm is
however quite tricky. It involves several choices, e.g., between learning a deterministic
policy or a stochastic policy (the latter maps a state to a parametric probability distri-
bution over the action space), or between an on-policy or an off-policy strategy. Let
us illustrate a deterministic policy gradient algorithm with an off-policy exploration.
We’ll discuss its advantages later.

10.6.2 A Deterministic Policy Gradient Algorithm

Consider an MDP task with high dimensional possibly continuous state and action
spaces; typically 𝑆 ⊆ R𝑛 and 𝐴 ⊆ R𝑚. A policy-based RL for this task parametrize
the policy as well as the action-value function with two sets of parameters. Let
𝝅𝜃 : 𝑆 → 𝐴 be a safe deterministic policy for that task parametrized with 𝜽 , and
𝑄𝜔 (𝑠, 𝑎) an approximation of the action-value function for the policy 𝜋𝜃 parametrized
with 𝝎. The Policy Gradient algorithm uses two neural nets referred to as the critic
and the actor nets:

• a critic network, denoted [𝑄𝜔], is used for the policy evaluation stage. It learns
an approximation of the action-value function 𝑄𝜔 (𝑠, 𝑎), 𝝎 being the critic’s
vector of parameters. It takes vectors 𝑠 and 𝑎 as input and gives a scalar as
output.

• an actor network, denoted [𝝅𝜃], is used for the policy improvement stage. It
learns a parametric policy 𝝅𝜃 , 𝜽 being the actor’s parameters. It takes as input
the state vector 𝑠 ∈ R𝑛, and gives as output the action vector 𝑎 = 𝝅𝜃 (𝑠) ∈ R𝑚.

These two network learn in parallel, each is updated with data from the other. For
a trial (𝑠, 𝑎, 𝑠′, 𝑟 (𝑠, 𝑎, 𝑠′)), the update-rules for these two nets are respectively:

𝝎← 𝝎 + 𝛼𝜔 [𝑟 (𝑠, 𝑎, 𝑠′) +𝑄𝜔 (𝑠′, 𝝅𝜃 (𝑠′)) −𝑄𝜔 (𝑠, 𝑎)]∇𝜔𝑄𝜔 (𝑠, 𝑎) (10.16)
𝜽 ← 𝜽 + 𝛼𝜃∇𝜃𝝅𝜃 (𝑠) × ∇𝑎𝑄𝜔 (𝑠, 𝜋𝜃 (𝑠)) (10.17)

14This is a gradient ascent not descent: we are maximizing a value, not minimizing a loss.

250 10 Reinforcement Learning

The rule 10.16 is the policy evaluation update of the critic network. It is similar
to what we saw earlier. The main difference is that the target 𝑦 = 𝑟 (𝑠, 𝑎, 𝑠′) +
𝑄𝜔 (𝑠′, 𝝅𝜃 (𝑠′)) is defined with respect to the current policy 𝝅𝜃 from the actor network,
not with respect to argmax𝑎 𝑄𝜔 .15 Here ∇𝜔𝑄𝜔 is a vector of the same dimension as
𝝎; [𝑦 −𝑄𝜔 (𝑠, 𝑎)] is a scalar.

The rule 10.17 is the gradient ascent update of the actor net. It implements the
product of a matrix ∇𝜃𝝅𝜃 (𝑠), of dimension (𝑝, 𝑚), with a vector of dimension 𝑚,
for 𝑝 the number of parameters of the actor net and 𝑚 the dimension of the action
space. Note that ∇𝑎𝑄𝜔 (𝑠, 𝜋𝜃 (𝑠)) is the gradient vector for the critic net with respect
to its action vector input (not the gradient with respect to the network parameters
∇𝜔𝑄𝜔 (𝑠, 𝑎)). Since 𝝅𝜃 is a vector of dimension 𝑚, ∇𝜃𝜋𝜃 (𝑠) is a Jacobian matrix
where the 𝑖𝑡ℎ column is the gradient with respect to 𝜽 of 𝑖𝑡ℎ action component of the
policy 𝜋.

Policy Gradient
initialize the actor and critic networks [𝑄𝜔] and [𝝅𝜃]
for all episodes do

randomly draw a starting state 𝑠 from 𝑆0
until Termination do

1 𝑎 ← Select(𝑠) // selects 𝑎 ∈ Applicable(𝑠)
perform action 𝑎
observe resulting state 𝑠′ and reward 𝑟 (𝑠, 𝑎, 𝑠′)
𝑦 ← 𝑟 (𝑠, 𝑎, 𝑠′) +𝑄𝜔 (𝑠′, 𝝅𝜃 (𝑠′))

2 𝝎← 𝝎 + 𝛼𝜔 [𝑦 −𝑄𝜔 (𝑠, 𝑎)]∇𝜔𝑄𝜔 (𝑠, 𝑎) // update critic net
3 𝜽 ← 𝜽 + 𝛼𝜃∇𝜃𝜋𝜃 (𝑠) × ∇𝑎𝑄𝜔 (𝑠, 𝜋𝜃 (𝑠)) // update actor net

𝑠← 𝑠′

Algorithm 10.6. Policy Gradient deterministic Policy Gradient algorithm.

The Deterministic Policy Gradient implements these two rules (lines 2 and 3)
incrementally after each trial with respect to the observed reward and resulting state.
These two rules use different learning rates 𝛼𝜔 and 𝛼𝜃 Note that the exploration
strategy is off-policy according to a Select function (line 1), which may blend the
current policy 𝝅𝜃 with random noise.

An important issue with this algorithm is that the evaluation stage does not strictly
speaking evaluate the current policy: 𝑄𝜔 is an approximation estimate of the action-
value for 𝜋𝜃 . How to make sure that this estimate does not bias the gradient ascent
updates of Equation 10.17? Fortunately, if some compatibility conditions are met, then
policy gradient respond to this concern. These conditions involve a linear function
approximator that estimates the action-value from features of the policy 𝜋𝜃 . They can
be met with a modification of the update rules 10.16 and 10.17 (see paragraph 10.9).
There are additional issues similar to those discussed in Deep Q-learning, to which
we’ll come back in Chapter 22 for learning sensory-motor skills.

15Recall that this is to avoid the maximization of the action space.

10.7 Aided Reinforcement Learning 251

10.7 Aided Reinforcement Learning

RL requires guidance about desirable behaviors, which may not be available or rather
sparse. Aided reinforcement learning supplements RL with means to help the learner
progress. These means are for example a hierarchical break down of the task to
learn into subtasks, or additional informations about the reward feedback received
after an action trial. The former is the topic of Hierarchical Reinforcement Learning,
briefly discussed on page 261 and further developed in Section 16.2 about learning
hierarchical refinement methods. This section focuses on aids to RL through rewards,
demonstrations and advices.

Previous RL algorithms indicates “observe reward 𝑟 (𝑠, 𝑎, 𝑠′)”. But rewards are
seldom directly given by the environment and observable in every state. One must
provide the means to estimate the progress of the task from what is perceived. Some-
times a function 𝑟 (𝑠, 𝑎, 𝑠′) derives naturally from the features of simple tasks. This
is the case, for example, for domains that have “ideal” states and a deviation distance
from these states, e.g., the deviation from equilibrium for a cartpole stabilization task,
or the distance from the target for a tracking task. In a process maintenance problem,
such as keeping tidy an area, one may decompose the reward into local returns over
subareas and beneficial activities.

In complex tasks, defining a meaningful reward function can be difficult. For
example, specifying the reward function for a robotics search-and-rescue task, or for
a car driving task, is complicated. In goal reachability tasks, it is easy to check that a
goal has been reached (as long as it is observable). But it is hard to appreciate in the
middle of the task how much an action is progressing towards a goal, and rewarding
it consequently in the learning process. Defining rewards as zero everywhere and
1 at goal states is theoretically acceptable, but seldom practical. These are called
sparse rewards domains. They do not give much feedback to the leaner and make the
convergence of RL very slow.

Sparse rewards can be alleviated by defining heuristics allowing to shape rewards
for the domain and task at hand (Section 10.7.1). In imitation or apprenticeship
learning, aids can be given by a teacher as demonstrations or advises, from which
the apprentice may extract a guiding policy or appropriate rewards as a parametrized
function 𝑟𝜃 , e.g., in a supervised learning framework (Section 10.7.2). Similarly,
in inverse RL, the reward function is synthesized from a teacher’s demonstrations
(Section 10.7.3).

10.7.1 Reward Shaping and Learning Heuristics

As introduced in Section 8.3.2, shaping refers to a general property that allows modi-
fying the cost or reward parameters of a domain without changing its optimal solution.
Consider the transformation of an SSP domainΣ into a domainΣ′ identical toΣ except
for the cost function, replaced by: cost′(𝑠, 𝑎, 𝑠′) = cost(𝑠, 𝑎, 𝑠′) − ℎ(𝑠) + ℎ(𝑠′), for any
function ℎ : 𝑆 → R. It is easy to check that the function 𝑄′(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − ℎ(𝑠)
meets the Bellman equation for Σ′, i.e.,

252 10 Reinforcement Learning

𝑄′(𝑠, 𝑎) =
∑︁

𝑠′∈𝛾 (𝑠,𝑎)
Pr(𝑠′ |𝑠, 𝑎) [cost′(𝑠, 𝑎, 𝑠′) +min

𝑎′
{𝑄′(𝑠′, 𝑎′)]}

Hence, the optimal policy 𝜋′∗ for Σ′ is:

𝜋′∗(𝑠) = argmin
𝑎

𝑄′(𝑠, 𝑎) = argmin
𝑎

[𝑄(𝑠, 𝑎) − ℎ(𝑠)] = argmin
𝑎

𝑄(𝑠, 𝑎) = 𝜋∗(𝑠).

Consequently, Σ and Σ′ have the same optimal policy regardless the function ℎ used
to shape the cost. The same argument applies to the dual formulation which seeks to
maximize the total expected rewards. It also applies to indefinite horizon MDP with a
discounted shaping, i.e., cost′(𝑠, 𝑎, 𝑠′) = cost(𝑠, 𝑎, 𝑠) − ℎ(𝑠) + 𝛿ℎ(𝑠′), with 0 ≤ 𝛿 ≤ 1.

Shaping can be very convenient in a goal reachability task. Recall that the immedi-
ate reward of an action can be meaningless while its influence on the task considerable.
Consider a domain with sparse rewards: 𝑟 (𝑠, 𝑎, 𝑠′) = 0 everywhere, except for goal
states, for which the reward is 1. If the designer knows about a domain-independent
or domain-specific heuristic function ℎ : 𝑆 → R estimating how close a state 𝑠 is to
a goal, this heuristic can be used to shape the reward and guide the learner. If no
such heuristic is known a priori but a domain simulator is available, then a problem-
specific parametrized heuristic ℎ𝜃 can be learned, using a planning algorithm from
Chapter 9, then a NN estimator, trained on the𝑉 (𝑠) values obtained by such a planner.
A heuristic learning approach can benefit from a sampling strategy of the domain,
together with the Monte Carlo rollout techniques seen in Section 9.5.4.

Note that when ℎ is a monotone heuristic (see Definition 9.8), shaping decreases the
cost. In the dual formulation, it increases the reward. Note also that the value function
𝑉 plays the role of a heuristic function in planning (see Section 9.2). Symmetrically,
a heuristics estimates a value function, which can be used as initialization in RL.

Finally, in some cases a user may find it easier to provide its guiding knowledge
informally in natural language, instead of a heuristic function ℎ. Reward shaping in
natural language is getting more interest with the development of Large Language
Models (see Section 23.2.3).

10.7.2 Imitation Learning

In imitation learning, the learner has a reward function. In addition, it re-
ceives an aid from a teacher in the form of demonstrations about what to do
for the task at hand in some states. These demonstrations are a collection of
trajectories D = {𝜎1, . . . , 𝜎𝑁 }, where a trajectory is a finite sequence of pairs
𝜎𝑗 = ⟨(𝑠 𝑗1 , 𝜋𝑑 (𝑠 𝑗1)), . . . , (𝑠 𝑗𝑚 , 𝜋𝑑 (𝑠 𝑗𝑚)⟩. In a simplified formulation of imitation
learning, the learner starts with the demonstrated policy 𝜋𝑑 , tries to generalize 𝜋𝑑 into
a policy over 𝑆, then improve this policy from the observed rewards of its actions.

We just saw how to generalize a demonstrated policy 𝜋𝑑 with a parametric function
𝜋𝜃 using a supervised learning approach. A DNN with 𝑠 as input and 𝜋 as output is
trained on all instances of 𝜋𝑑 in D in order to estimate a function 𝜋𝜃 . But such an
estimate might not be satisfactory. Indeed, a teacher’s time is costly; one can only

10.7 Aided Reinforcement Learning 253

expect sparse demonstrations given the typical size of 𝑆 and 𝐴. Unless the domain
is very simple, the generalization from 𝜋𝑑 to 𝜋𝜃 will be too brittle. It needs to be
improved by the learner.

In a model-free RL approach, one may use 𝜋𝜃 in the Select procedure of Algo-
rithm 10.3 to guide the exploration and learning of 𝑄 𝜃 . Select(𝑠) will choose among
three options:

Select(𝑠) =


𝜋𝜃 (𝑠) when confidence in 𝑄 𝜃 is low,
argmax𝑎{𝑄(𝑎)} when confidence in 𝑄 𝜃 is higher,
random alternative 𝑎′ with probability 𝜖 .

(10.18)

The initial set of trials will be focused on actions selected with 𝜋𝜃 . When more
confidence on a parametrized𝑄 𝜃 is reached, the learner would more frequently select
argmax𝑎 𝑄(𝑠, 𝑎), while exploring occasionally other informative trials.

In a model-based RL framework, the learner acts initially according to 𝜋𝜃 . It
acquires statistics about the domain to estimate its model 𝛾 and Pr, from which
it computes 𝑉 𝜋𝜃 (with Equation 8.1), which estimates how good is the policy 𝜋𝜃
generalized from the teacher demonstrations. At that point, the learner can improve
locally 𝜋𝜃 from its experience, using Proposition 9.1. Notice that the idea is not to
stay as close as possible to 𝜋𝑑 , but to use its generalized form 𝜋𝜃 as a good starting
policy for acquiring the model on which to base an optimal policy. This is illustrated
in the following procedure.

MI-learning(D, 𝑠)
extract 𝜋𝑑 from D
generalize 𝜋𝑑 into 𝜋𝜃 with supervised learning
𝜋 ← 𝜋𝜃
until Termination do

1 𝑎 ← 𝜋(𝑠)
perform action 𝑎 and observe resulting state 𝑠′
update estimate of the model 𝛾 and Pr

2 compute 𝑉 𝜋 and 𝑄 𝜋

3 ∀𝑠, 𝜋′(𝑠) ← argmax𝑎 𝑄
𝜋 (𝑠, 𝑎) // greedy policy for 𝑉 𝜋

𝜋 ← 𝜋′; 𝑠← 𝑠′

Algorithm 10.7. MI-learning, a model-based imitation learning procedure

The steps 2 and 3 of MI-learning correspond to an incremental version of policy
iteration (Algorithm 9.1). In PI, the actor starts with a full knowledge of the domain,
from which it searches for an optimal policy. Here the actor/learner starts with 𝜋𝜃 ,
obtained from the demonstrated 𝜋𝑑 . It progressively acquire the model and improve
𝜋. Note that step 1 may rely on Select to keep some level of exploration.

There is no clear cut of which is preferable, the model-free or the model-based
approach. Several domain-dependent considerations interfere, taking into account

254 10 Reinforcement Learning

that acting and learning are interleaved in RL. If a good simulator is available, then
the model-based approach can start acting in the real world with a good estimate of
the model and an improved policy. On the other hand, if the demonstrated policy 𝜋𝑑
provides a good coverage of the domain, then the model-free approach can start with
more confidence a Q-learning procedure.

The preceding approaches assume that the learner is given a reward function which
is consistent with the teacher’s demonstrations, i.e., the teacher illustrates how best to
maximize the expected reward in the demonstrated cases. Otherwise, the learner may
either start off track if the demonstrations are not good, or it may modify its policy
far from what it is supposed to imitate if its reward function does not express what’s
the desired behavior. This consistency problem, well known in human interactions,16

is avoided in inverse reinforcement learning.

10.7.3 Inverse RL

In inverse reinforcement learning (IRL), no a priori reward function is given to the
learner. It is assumed that the reward function is reflected in the optimal behavior
illustrated in the teacher’s demonstrations. Instead of imitating the demonstrated
policy, the learner seeks to acquire the underlying reward function that drives the
teacher’s behavior. The rational is to go beyond a simple imitation, since it is brittle
and does not allow the learner to grasp what is sought. Learning what the teacher is
trying to maximise, what motivates its actions, gives a better leverage for performing
the task at hand in varying contexts.

IRL usually assumes that (i) a domain model is available, except for the reward
function, and (ii) the demonstrated trajectories D provide the optimal policy 𝜋∗(𝑠)
for all 𝑠 in D. A simple statement of the IRL problem is the following:

• find a function 𝑟 (𝑠, 𝑎, 𝑠′) such that ∀𝑠 ∈ D, argmax𝑎 𝑄(𝑠, 𝑎) = 𝜋∗(𝑠), with
• 𝑄(𝑠, 𝑎) =

∑
𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎) [𝑟 (𝑠, 𝑎, 𝑠′) + max𝑎′{𝑄(𝑠′, 𝑎′)}] (Equa-

tion 10.3).

Even if D covers the entire state space, this formulation is under-specified. It
has an infinite number of solutions. Beyond the equivalence of reward functions
through shaping, many of the possible solutions have no interest. For example, an
unvarying action-value function, 𝑄(𝑠, 𝑎) = 𝑞(𝑠) for all applicable 𝑎, meets to above
specifications with a useless reward function.

This issue, common to all inverse problems, is generally addressed through opti-
mization. For example, the learner may seek a reward that maximizes the “sharpness”
of 𝑄, i.e., the difference between 𝑄(𝑠, 𝜋∗(𝑠)) and 𝑄(𝑠, 𝑎) for any other action. The
problem statement can be extended with

• maximize
∑

𝑠 [𝑄(𝑠, 𝜋∗(𝑠)) −max𝑎≠𝜋∗ (𝑠)𝑄(𝑠, 𝑎)].

In a memory-based representation, this problem can be solved by linear programming.
As discussed earlier in this chapter, parametric representations are significantly

more powerful for learning. In parametric IRL we define the reward as a function

16The meta-advice “do as I say, but not as I do” illustrates advisers’ awareness of their inconsistencies.

10.7 Aided Reinforcement Learning 255

𝑟𝜃 , usually linear, of 𝑠 and 𝑎, and seek to estimate its parameters. Let 𝜋𝜃 be a near
optimal policy for the reward function 𝑟𝜃 , and 𝜋𝑑 the demonstrated policy. A general
schema for parametric IRL is the following:

IRL(𝑆, 𝐴, 𝛾, Pr)
1 define a function 𝑟𝜃 of 𝑆 and 𝐴 for some initial vector of parameters 𝜃

until termination do
2 compute 𝜋𝜃 , a near optimal policy for 𝑟𝜃
3 update 𝜃 to reduce the deviation of 𝜋𝜃 from 𝜋𝑑

Algorithm 10.8. IRL, a general schema for a parametric imitation learning.

Step 1 of IRL requires the definition of a vector of features 𝝓 = [𝜙1, . . . , 𝜙𝑛]⊤
that are characteristic functions of the states and actions which allow expressing
parametrically the reward function as:

𝑟𝜃 (𝑠, 𝑎, 𝑠′) =
∑︁

1≤𝑖≤𝑛
𝜃𝑖𝜙𝑖 (𝑠, 𝑎, 𝑠′) = 𝜽 · 𝝓(𝑠, 𝑎, 𝑠′)

Hence the designer does not need to provide 𝑟𝜃 , but she needs to specify meaningful
features for its parametric decomposition. For example, in a robotics task involving
navigation, a feature can be the Euclidian distance to a goal. Step 2 can use an
incremental planning algorithm. The critical part in IRL is step 3. Comparing directly
two policies is not meaningful: a difference in just one or a few states could have a
critical impact for achieving the task. The idea is to estimate the deviation of 𝜋𝜃 from
𝜋𝑑 from the difference between the two corresponding value functions 𝑉 𝜋𝜃 and 𝑉 𝜋𝑑 ,
or the action-value functions𝑄 𝜋𝜃 and𝑄 𝜋𝑑 . One approach, among many, decomposes
𝑉 𝜋 with respect to the features 𝝓. Recall that:

𝑉 𝜋 (𝑠 𝑗1) = E[
∑︁
𝜎

𝑟𝜃 (𝑠, 𝑎, 𝑠′)] over trajectories 𝜎𝑗 = ⟨(𝑠 𝑗1 , 𝜋(𝑠 𝑗1)), . . . , (𝑠 𝑗𝑚 , 𝜋(𝑠 𝑗𝑚)⟩

= E[
∑︁
𝜎

∑︁
𝑖

𝜃𝑖𝜙𝑖 (𝑠, 𝑎, 𝑠′)]

Let the expected value of the feature 𝜙𝑖 in 𝑠 for 𝜋 be 𝜇𝜋
𝑖
(𝑠) = E[∑𝜎 𝜙𝑖 (𝑠, 𝜋(𝑠), 𝑠′)].

We can rewrite 𝑉 𝜋 as:

𝑉 𝜋 (𝑠) =
∑︁

1≤𝑖≤𝑛
𝜃𝑖𝜇

𝜋
𝑖 (𝑠) = 𝜽 · 𝝁𝜋 (𝑠)

Hence, we can assess the deviation between 𝜋𝜃 and 𝜋𝑑 from the difference between
𝜇𝜋𝜃 and 𝜇𝜋𝑑 . The latter is estimated from the demonstrated trajectories in D as:

𝜇
𝜋𝑑
𝑖
(𝑠 𝑗1) =

1
𝑁

∑︁
𝜎∈D

∑︁
𝑘

𝜙(𝑠 𝑗𝑘 , 𝜋𝑑 (𝑠 𝑗𝑘), 𝑠 𝑗𝑘+1)

256 10 Reinforcement Learning

The computation of 𝝁𝜋𝜃 can be integrated into step 2 since, as we saw in Chapter 9,
𝑉 and 𝜋 remain computationally related.

As the reader might guess from Algorithm 10.8, IRL is an offline computationally
demanding task. Now, acquiring a good reward function 𝑟𝜃 can be amortized by
further reinforcement learning and improving the actor’s behavior for the task across
the domain, in particular when this domain is not stationary. Note however that this
IRL formulation requires a good initial knowledge of the domain (𝑆, 𝐴, 𝛾, Pr and the
features 𝝓) in addition to the teacher’s demonstrations. Ongoing research is exploring
model-free and deep learning for IRL in specific tasks.

10.8 Acting, Planning and Reinforcement Learning

Reinforcement learning is tightly linked to acting and planning. On the one hand,
RL interleaves naturally acting and learning, at least in principle: this is explicit in
the steps “perform action 𝑎” in previous RL procedures. On the other hand, MDP
planning and RL have many commonalities. Both rely on the same representation and
concepts of probabilistic state transition systems. Both seek a policy for achieving a
task optimizing an expected utility or cumulative reward. The depart in a few ways:

• planning requires a predictive model of the domain, while RL learns a model
from trial and error,

• planning can address any task in the domain, while learning acquires with a
model specific to a given task.

However, in many practical settings, these differences are not substantial. We al-
ready mentioned that sampling complexity of RL is high and that trial and error in the
real world is very costly, even unfeasible in critical domains. In practice, RL requires a
simulator. A simulator is also needed for online MDP planning with a generative sam-
pling model as given by the function Sample (see Definition 9.26). If we redefine the
function Sample to returns pairs Sample(𝑠, 𝑎) = (𝑠′, 𝑟 (𝑠, 𝑎, 𝑠′)), then it is straightfor-
ward to restate these MDP planning algorithms as maximizing expected cumulative
rewards, instead of minimizing expected costs. We can also rephrase the steps in
previous RL procedures saying “perform action 𝑎”, and “observe resulting state and
reward” into the step used in planning algorithm, that is: “(𝑠, 𝑟) ← Sample(𝑠, 𝑎)”.
This would allow specifying a common algorithmic framework describing in a similar
way the main steps of MDP planning and RL algorithms, e.g., for exploration, backup
and update,

The purpose of this section however is not to develop these notions (briefly refer-
enced in next section), but to discuss how a planner can be of help in RL and used in
a continual online acting, planning and learning framework.

Planning for RL. Two ideas are of interest for coupling a planner with RL:
• Parametric RL allows generalizing, across high dimensional state and action

spaces, what has been learned in some samples to neighboring cases.
• Monte Carlo sampling, MCTS and UCT algorithms allow for a receding horizon

controllable and focused search that is very informative for a given state.

10.8 Acting, Planning and Reinforcement Learning 257

To keep the desirable generalization capability, let us rely on RL to acquire a
parametric value function 𝑄 𝜃 that can be of use for planning and acting as well. Let
us also rely on an MDP planner in two main steps of a parametric RL procedure such
as Deep Q-learning:

• the exploration strategy: instead of a Select function choosing with a random
𝜖-greedy (or Boltzman) distribution, a look-ahead search will rule out efficiently
inappropriate options and focus the learning on the most promising ones.

• the target value computation: recall that the target 𝑦 results from a one step
maximization in Parametric Q-learning or Deep Q-learning, the latter requiring a
target network [𝑄̂ 𝜃−]. A look-ahead planning implements such a maximization
in a focused deeper search. It provides a more informed target.

These two steps should be coupled in a single call to a planner to guide the explo-
ration and provide the corresponding target. At an early learning stage, the planning
look-ahead can be extensive (large 𝑑 in MCTS or UCT). Increased learning may pro-
gressively lead to shallower planning searches, until eventually no more search nor
even learning are needed when the current𝑄 𝜃 is systematically very close to the target
(assuming a stationary domain).

[Q𝜃]

Select

Sample

Update
s

a
r(s,a,s’)

s’

Target
y, 𝛿

Q𝜃(s,a)

MCTS

Figure 10.6. A schematic view of Deep Q-learning with an MCTS MDP planner replacing
the target network, driving the exploration strategy, and interacting with a generative
sampling model. The link from the neural net [𝑄 𝜃] to Select gets stronger when more is
learned about the task.

The schematic view of Deep Q-learning in Figure 10.5 can be modified in Fig-
ure 10.6 with the introduction of an online sampling planner as MCTS, instead of
the [𝑄̂ 𝜃−] network. The expected benefit of replacing the target network with MCTS
sampling is not in computational efficiency. It is mainly in a better learning ex-
ploration strategy and more informed target values. Both should speed-up learning.
In this schema, the planner/learner interact with a generative sampling model. The
approach is compatible with the use of replay-memory and minibatch buffers for
back-propagation updates in [𝑄 𝜃]. MCTS is initialized with the current 𝑄 𝜃 and uses
the associated policy argmax𝑄 𝜃 to drive Rollout. The updates in MCTS (Line 3)
remain local; only the final returned value 𝑄(𝑠𝑟 , 𝜋(𝑠𝑟)) affects 𝑄 𝜃 as the target 𝑦.
We leave the specification of a detailed pseudo-code of this schema to the reader (see

258 10 Reinforcement Learning

Exercise 10.3).

Continual online acting and learning. Having learned with a generative sampling
model a function 𝑄 𝜃 , we can use it to act in the real world. However, a simulator
is never perfect. It can depart from the real world in many ways, e.g., Sample may
ignore possible outcomes, follow a biased distribution, or return erroneous rewards.
Furthermore, the real world is seldom stationary while the simulator is. It is better to
keep improving what has been learned while acting.

There may be less incentives to keep planning at this stage. On the one hand, the
actor is no longer in an exploration stage, it is mostly in an exploitation stage. On
the other hand, we now seek to go beyond about what the generative sampling model
gives, to which planning is limited.

In summary, the actor first uses a plan-and-learn schema with a simulator as in
Figure 10.6. When it is confident enough, it moves to a continual act-and-learn
schema as Figure 10.5. The latter should be adapted to online acting, i.e., multiple
episodes starting from random states, replay-memory and mini-batch buffers are no
longer needed. But possible discrepancies between estimates 𝑄 𝜃 and targets 𝑦 have
to be monitored to trigger more offline learning with, possibly an improved simulator.

10.9 Discussion and Bibliographic Notes

In this section we discuss reinforcement learning techniques presented this chapter,
refer to their sources and additional material. A broad view of RL can be found in
e.g., the book of [1070] or the surveys [569, 1161].

Foundations. The study of reinforcement learning started well before AI in the
mid-nineteenth century with early work in animal training and psychology. Examples
are the well-known work of Pavlov about conditioned dog reflexes with reinforcement
stimulus, or the work of Thorndike who proposed a “law of effect” of reinforcing
events on animals actions [1095]. These early contributions where extensively devel-
oped in experimental and behavioral psychology, e.g., with Skinner’s “principle of
reinforcement” and his apparatus to measure a reinforcement strength [1032].

The principles of punishments and rewards for intelligent machines have been
mentioned by Turing [1108]. Early implementation of trial and error approaches go
back to ‘cybernetic turtles’ of Shannon [1000] for the exploration of mazes. Shannon
considered learning capabilities for his chess player [999]. These capabilities where
developed by Samuel [976] as an early temporal difference update method with a
parametric approximation in his checker player, the first program that was able to
learn enough to defeat its designer.

RL and MDP. The modern formulation of RL in an MDP framework goes back to
the seventies with contributions from Werbos [1167], Sutton [1068], Barto et al. [98]
and others. A theoretical formalisation is developed in Bertsekas and Tsitsiklis [131].

10.9 Discussion and Bibliographic Notes 259

There are many links between MDP planning and reinforcement learning. This is
in particular the case for Monte Carlo planning techniques (Section 9.5.5) and RL.
Their links, discussed [1143], have been illustrated in several developments, e.g., the
Texplore MCTS-based system [499]. These links are also strong between planning
and model-based RL. The latter estimates and progressively improves the underlying
MDP model of domain [799]. A common algorithmic framework giving jointly the
main steps of planning and RL algorithms has been proposed in [798].

The classical task-oriented RL formulation can be extended to a goal-oriented
formulation. Given a set of goal states 𝑆𝑔, the action-value function is conditioned
on the goal state: 𝑄(𝑠, 𝑎, 𝑠𝑔) for 𝑠𝑔 ∼ 𝑆𝑔. The update rule of Equation 10.4 in
Q-learning with this 𝑄 function optimizes the total expected reward over policies
reaching a goal. This approach has been successfully tested in several works, e.g.,
[565] (which minimizes the expected sum of actions costs), or [984, 43, 456] in
various other settings.

Most RL formalizations introduce a discount factor, which is needed for summing
up over an infinite horizon. In this chapter, as well as in the two previous ones,
we do not need to introduce a discount factor. We take the task achievement or
goal reachability view instead of the process maintenance view (see Section 8.3.1).
Tasks have a finite number of steps; too long tasks need to be broken down into short
subtasks for RL to converge; unlimited loops need to be detected and stoped as failures.
Furthermore, the practical setting of a value for a discount factor is problematic. Its
value changes significantly the solution [569]. For a robotics RL problem, a small
discount leads to unstable control [622]. Taking a discount close to 1 is equivalent to
optimizing for the expected average-reward, i.e., limℎ→∞𝐸 [1/ℎ

∑
𝑖 𝑟𝑖].

Value-Based RL. The Q-learning algorithm studied in this chapter was proposed
by Watkins and Dayan [1158]. SARSA (for State, Action, Reward, State, Action)
is a similar value-based RL [964]. It takes into account a sequence of two steps
(𝑠, 𝑎, 𝑠′, 𝑎′) before performing the update of the estimated quality of 𝑎 in 𝑠. The
update term of 𝑄 in Equation 10.4 is no longer with max𝑎′{𝑄(𝑠′, 𝑎′)} but with
𝑄(𝑠′, 𝑎′) for the actually taken action 𝑎′ in 𝑠′.

Other value-based RL proceed by updating 𝑉 (𝑠) rather then
𝑄(𝑠, 𝑎). Updates are performed over tuples (𝑠, 𝑎, 𝑠′) in a similar way:
𝑉 (𝑠) ← 𝑉 (𝑠) + 𝛼[𝑟 (𝑠, 𝑎, 𝑠′) +𝑉 (𝑠′) −𝑉 (𝑠)]. This algorithm called 𝑇𝐷 (0), is
part of a family of algorithms 𝑇𝐷 (𝜆) which perform updates over previously visited
states, with a decreasing weight depending on the frequency of meeting each state
[1092].

Let us also mention the DYNA algorithm and its variants that combine model-
based and model-free RL [1069]. DYNA maintains and updates an estimate of
transition probabilities 𝑃(𝑠′ |𝑠, 𝑎) and rewards 𝑟 (𝑠, 𝑎, 𝑠′). At each step two up-
dates are performed, a Q-learning type with 𝑄(𝑠, 𝑎) ← ∑

𝑠′ 𝑃(𝑠′ |𝑠, 𝑎) [𝑟 (𝑠, 𝑎, 𝑠′) +
max𝑎′{𝑄(𝑠′, 𝑎′)}], for the current 𝑠 and 𝑎, and a Value Iteration type for other pairs
(state, action) chosen randomly or according to certain priority rules, taking into
account new estimates. Here, the experience allows estimating the model and the
current policy. The estimated model in turn allows improving the policy. Each step

260 10 Reinforcement Learning

is more computationally expensive than in Q-learning, but the convergence occurs
more rapidly in the number of update steps.

Parametric value-based RL appeared very early using various methods. A good
illustration is a backgammon player that defeated the human world champion [1091].
Several contributions developed parametric RL in continuous state spaces, e.g.,
[1072]. Recently, neural nets became dominant in parametric RL.

Neural Nets and Deep RL. Neural networks go back to the pioneering work of
McCulloch and Pitts [772]. Since the Deep NN successes of the early 2010 in image
classification, the field has extended over a huge literature, the history of which is
beyond the scope of this section. The AI textbook of [967] gives a good introductory
coverage of deep learning. There are several specialized technical books about neural
nets, including those of [438], [217] or [12]. Numerous tutorials, online courses,
tools, and cloud-based platforms are available, with a main focus on image, speech
and natural language applications.

Deep neural nets have been widely adopted in RL since 2010. DQN was developed
in [797] and improved in e.g., in [449]. Several analyses of DQN mechanisms such
as memory reply and target nets have been undertaken, e.g., in [9, 338]. Stochastic
mini-batches selection methods such as prioritized sweeping techniques are discussed
in [806, 41, 1154]. Batch normalization methods have been proposed to avoid data
distribution variations [541]. The RMSProp learning rate control method is discussed
in [606]. Dropout techniques, i.e., temporarily removing random units from the
network, have been developed to address overfitting problems [1050]. Other deep RL
techniques are covered in these surveys [53, 458, 688].

Parametrized RL approaches with DNN offer powerful generalization capabilities.
They suffer however from several drawbacks, among which opacity, brittleness, and
sampling complexity. A broad set of very active investigations are addressing these
issues. Let us mention in particular the neurosymbolic approaches. These seek to
merge prior explicit knowledge, in various differentiable representations, with NN
parametric approximation techniques. The purpose is to leverage the added knowl-
edge for extending the learning domain, guiding the learning, reducing drastically
the sampling complexity, and being able to explain, verify and prove the learned be-
havior. Logic-based neurosymbolic approaches are illustrated with techniques such
as logic tensor networks [995, 74], neural logic machines [303], and several other
approaches, e.g., [383, 38]. Programmatic reinforcement learning methods explore
a programming-based neurosymbolic approach [1131, 1133, 923]. They use a do-
main specific programming language to express high-level constraints on the policy
to be learned. A key issue is how to approximate this knowledge into a differentiable
program amenable to NN learning.

Among the variety of NN architectures, some are well adapted to a uniform and
systematic organization, e.g., convolution nets for images [645], or Recurrent nets
for temporal sequences in natural language processing. A few other architectures
appear to be more adapted for handling a collections of relations, as typically used in
a structured state representation. Among the latter, notably Graph Neural Networks
(GNNs) operate directly on graph-structured data. A GNN is a network whose cells

10.9 Discussion and Bibliographic Notes 261

are organized as the graph or hypergraph of a set of relations. Learning with a GNN
can be about the vertices, edges, or the graph structure [462]. RL with GNN has been
tried in a variety of approaches, e.g., [1052, 441, 470, 1152].

Finally, let us mention that the task of choosing and tuning NN architectures for a
given learning problem can also be learned with NN. This is the idea of Differentiable
Architecture Search (DARTS) [727, 1220], which has been mostly demonstrated
in image and langage processing, but was also found relevant for Programmatic
Reinforcement Learning and aided RL.

Policy-Based RL. Policy-based approaches have been widely studied for learning,
particularly in robotics and control applications, for their ability to cope with high
dimensional continuous action spaces. The policy gradient idea is due to [1176]. A
fundamental result is the “stochastic policy gradient theorem” of [1071], which ex-
pressed the gradient∇𝑉 𝜋 as a fonction of∇𝜋 and∇𝑄, and also stated the compatibility
conditions for unbiased action-value estimates. Convergence, optimality and other
properties of policy-gradient algorithms have been studied [1176, 1071, 889, 135].

RL with parametric policy iteration methods where developed with a variety of
parametrization approaches, e.g., least squares temporal difference methods [666], or
random forest classifiers [667].

The actor/critic architecture received many contributions, such as [634, 890, 136,
287]. These contributions, as most of the dominant methods in policy-based ap-
proaches, relied for a while on stochastic policies, which map a state to a probability
distribution over the action space. Stochastic policies are appealing for their ex-
ploration capability and the smooth effects of parameter updates on action values.
However, the stochastic gradient integrates over the state space as well as the action
space. The latter is not needed in the deterministic policy gradient case. Hence,
stochastic policy gradient RL requires extensive trials and is less efficient than the
deterministic case.

Deterministic policy gradient approaches gained favor with [1017], which proved
an equivalent and simpler deterministic policy gradient theorem and the correspond-
ing compatibility conditions. This paper also proposed and empirically tested several
actor/critic on-policy and off-policy methods, among which the COPDAC-GQ al-
gorithm which combines compatible updates with a gradient Q-learning critic. A
theoretical analysis of DPG is developed in [1190], which establishes its convergence
rate toward a near optimal policy under different conditions.

Several additional techniques have been proposed to improve and accelerate policy-
gradient methods, such as importance sampling [700], the use of the so-called ‘natural
gradient’ which provides steeper updates [571, 890, 796], constraints for guiding the
policy optimization [990], or their variants with an objective function that enables
multiple epochs of minibatch updates [991]. Gradient-free random search alternatives
such as [1073] have been proposed Some of these and other policy-base RL techniques
are surveyed in [53, 448] and, more specifically for robotics, in [622, 288].

Hierarchical and relational RL. When the task to learn involves long sequences
of primitive actions, the sampling complexity of RL becomes too high, and makes

262 10 Reinforcement Learning

learning hardly tractable. A natural idea is to try breaking long sequences into a hier-
archy of shorter ones corresponding to a hierarchy of tasks and subtasks. Hierarchical
RL (HRL) has attracted a large amount of contributions, surveyed in [871].

Most work in HRL considers the task hierarchy to be given as input. Among
these, the MAXQ is an interesting approach [297] which proceeds by decomposing
the Q-value function into separate functions for the subtasks. A subtask may use
primitive actions or other subtasks. MAXQ seeks optimal policies for the subtasks,
but not for overall hierarchical policy. An alternative approach relies on a hierarchy
of stochastic finite state-machines [39, 75]. It generalizes “Partial programming”
techniques, where specified partial programs leave out unspecified steps to be learned
by reinforcement [870].

A similar idea is explored in the “Policy sketches” idea [42], which seeks to learn
composable policies for multiple tasks that have common subtasks. The learner has
access to a domain simulator and is given a high-level abstract sketch for each task as
a finite sequence of symbols ⟨𝑏1, 𝑏2, . . .⟩. A symbol 𝑏 refers to a subtask that will be
achieved with a policy 𝜋𝑏 to be learned, which will be common to all tasks sharing 𝑏.
Learning uses an actor/critic approach together with a curriculum learning guidance.
It has been evaluated on a few synthetic domains such as a 2D Minecraft game.

A few approaches do not take the task hierarchy as input. Some seek to synthesize
it, e.g., the MAXQ hierarchy [781]. Others seek a unified learning method that jointly
learns the subtasks and the associated hierarchical policy. Graph-based techniques
are discussed in [783]. A broader coverage is given in the survey [871].

Relational RL is akin to hierarchical RL; it relies on structured or factored MDP
(Section 8.2). It uses a relational representation to exploit background knowledge and
ease generalization. It is related to learning Dynamic Bayes nets, for which there is
an extensive literature, e.g., [960, 1146]. For example, [1060] learns a DBN structure
and parameters as part of the RL procedure. An overview of Relational RL is given in
[1074]. Relational RL with deep neural nets led to a few developments, e.g., [1219]
which demonstrated its results in the StarCraft video game.

Transfer and Multitask Learning. As said earlier, RL focuses on a single task in a
single domain. Generalizing what has been learned for a given task and environment
to other similar tasks and environments has been studied by psychologists for decades;
it remains today a significant challenge in RL.

In the narrowest sense, transfer learning seeks to extend the learned model to ‘real
data’, which may differ from the distribution of the training data. This is typically
an issue for data classification tasks, dominant in the transfer learning literature.
A related issue is the “sim-to-real” transfer, of interest in particular in robotics or
autonomous driving, e.g., [867, 89, 711], and the survey [1228]).

More specifically for RL, transfer learning is about leveraging a model learned for
a source task in order to more efficiently learn other target tasks. A simple idea in
parametric RL would start learning a model for, e.g., a video game, from a parameter
distribution learned in another similar game, instead of initializing the parameters with
a random distribution. One may also use the source model to drive the exploration
for learning the target task.

10.9 Discussion and Bibliographic Notes 263

Multitask learning addresses a similar concern from a different perspective: the
learner is initially confronted with several tasks in the domain and handles them
jointly. A hierarchical Bayesian approach is illustrated in [1177]. The frontier with
transfer RL is not crisp; several techniques can be used for both.

Numerous elaborate multitask and transfer RL methods have been proposed for
various cases of how the target differs from the source task. When the source and
target are within the same state and action spaces and vary only in their goals and
reward functions, transfer may rely for example on policy reuse or reward shaping.
It is made easier with hierarchical RL. One may also use the MCTS planning/RL
combination, as in Section 10.8, to explore with the source knowledge learning the
target model.

Transfer across distinct domains is more complex. When the actions spaces are
dissimilar, mappings from the source’s actions to the target’s are sought, e.g., [1083].
Different state spaces require finding invariants across states, or abstracting states, as in
the meta-RL approaches. Good examples are Meta-Q learning [337], AdaRL [526],
and RoML [445]. An alternative relies on logic tensor networks to leverage prior
knowledge across domains [73]. Other relavant approaches are [746, 936, 140, 693]

A comprehensive summary of this very broad area of transfer and multitask learning
is beyond the scope of this brief discussion. We refer the reader to several surveys,
such as, for a global view on transfer [1100], for a map of transfer methods in RL
[1082, 687], and [1231] transfer with neural net techniques.

Aided RL. Section 10.7 illustrates a few among the many approaches that seek
to give a feedback to a learner about desirable behaviors, to reduce the sampling
complexity of RL and improve learning performance with additional information
from a human. Let us discuss some of these approaches here.

Techniques for overcoming sparse rewards that hinder many applications, par-
ticularly in goal reachability domains, include shaping, credit assignment, transfer
learning, and a variety of heuristics. The reward shaping property is due to [847].
Many contributions to heuristics for RL have been proposed, with or without shaping,
e.g., [138, 139, 228, 394]. Reward shaping with natural language input has been
initially investigated in [442]; it is further discussed in Section 23.2.3.

Credit assignment is about rewarding actions that may not achieve the goal but
contribute to reaching it. Supervised learning and other approaches are explored for
estimating these assignments, e.g., [473, 55, 1106, 51], including for the purpose of
transfer learning [355].

RL techniques leveraging aids from a teacher includes reinforcement learning from
demonstrations (RLfD), apprenticeship and learning from advices, imitation learning,
and inverse RL. These categories of methods have significant overlaps. RLfD is a
very active area of investigation, particularly in robotics. When demonstrations take
place physically and are performed directly by a person (as opposed for example to
teleoperated demonstrations), the learner has first to perceive and interpret what the
teacher is doing, which may lead to activity and plan recognition issues, then it has
to map the observed actions from the teacher sensori-motor space to the learner’s,
and to generalize what it has been demonstrated. The following contributions [636,

264 10 Reinforcement Learning

851, 1121] and surveys [50, 938] illustrate some approaches. A different focus
arises when demonstrations are assumed to be given in an abstract form, as the set
D of Section 10.7.2, or as a teacher’s interactions with a computer. For example,
a Q-learning from demonstration algorithm called DQfD is proposed in [500]; a
shaping approach to RLfD is developed in [186]; a state-space abstraction approach is
considered in [245]; while [1226] relies on Bayes nets extracted from demonstrations.

Imitation learning is closely related to RLfD. It also relies on demonstrations,
but often in a narrower sense. It seeks to map the teacher’s behavior into a policy,
used afterward mainly in a greedy exploitation mode, without much exploration. An
overview of imitation learning is proposed in [61]. Imitation policies tend to be brittle
and drift over long term. These drawbacks are addressed for example with SQIL, a
Q-learning approach which seeks to stay close to demonstrated states [939], or with
Propel, an imitation programmatic RL relying on prior domain knowledge [1132].

An alternative is to learn the reward function that drives the teacher’s behavior
instead of the resulting policy. It is generally more robust to imitate the teacher’s
motivations then its policy. This is inverse reinforcement learning (IRL), which,
like imitation learning, is akin to inverse optimal control. However, while imitation
learning maps demonstrated trajectories to a policy, IRL maps them to a reward
function. IRL was proposed by [965], a broad historical perspective from inverse
optimal control to IRL is given in [2]. Contributions to IRL include [848, 3, 838,
839, 361], and others to be discussed next (paragraph 10.9). Several IRL methods are
surveyed in [52].

IRL learns first a reward function, then uses that function to learn how to act.
Generative Adversarial Imitation Learning (GAIL) aims at merging the two learning
stages into a single one [503].17 It uses a maximum entropy IRL method [1235] with
an approach akin to Generative Adversarial Nets [439].

Learning from advices fit into a broad class of interactive or “human-in-the-loop”
RL. Contributions related to interactive RL methods include systems such as TAMER
[1156], COACH [54], and others [745, 1224]. Some approaches demonstrate learn-
ing from sparse human feedback without access to a reward function, e.g., from
preferences about trajectories to the goal [233], from supervision feedback [1159],
or guidance in natural language [741]. A broad set of interactive RL techniques are
surveyed in [828, 56].

Finally, let us mention approaches (discussed in Chapter 16) that help the learner
by organizing the learning task, as with developing a learning curricula.

Offline RL. RL algorithms are fundamentally online: they interact through trial and
error with either a domain simulator or through real experiments. The latter are often
too costly or risky. In some cases, simulators are unavailable and cannot be developed,
but plenty of data about the outcome of past actions is accessible. This holds for e.g.,
most health care applications. Offline RL seeks to address these cases for learning
a behavior in a purely data-driven way, without exploration nor interaction with the
domain.

17see also: https://uscresl.github.io/humanoid-gail/

https://uscresl.github.io/humanoid-gail/

10.9 Discussion and Bibliographic Notes 265

For small problems with low dimensional data, batch RL approaches apply suc-
cessfully the usual off-policy RL algorithms to a training datasetD = {(𝑠, 𝑎, 𝑟, 𝑠′)} of
comprehensive samples [679]. But since exploration is impossible, offline RL cannot
succeed if the training set D does not cover well enough high-reward and high-risk
regions of the domain; which is a real challenge for complex domains. Moreover,
batch RL approaches suffer from a distributional shift issue: one learns a different
policy, hopefully better, then the training behavior in D. This shift about of how
much the learned policy differ from the training one. Different approaches, such as
off-policy importance sampling or regularization of the𝑄 function, are being explored
to handle offline RL issues. A detailed survey is given in [701].

Continual learning. The learner in CL updates its model from a continuous stream
of information throughout time such as to adapt to a changing environment. CL
is very important in nonstationary domains. As most parametric ML techniques, it
suffers from “catastrophic forgetting”. The latter refers to parameter updates that
erase part of previous knowledge. Forgetting can be mitigated with various rehearsal
and replay methods [1112, 45], and methods inspired from transfer learning [457]. A
comprehensive survey of CL issue is given in [869].

RL applications in games. Despite several celebrated success stories and impres-
sive lab demonstrations, RL is not as widely deployed as, for example, supervised
learning in image, speech and language applications. This is due to the high sampling
complexity of most RL methods and, consequently, to the necessity of a simulator
or an equivalent generative sampling function. Because of this last requirement, RL
has been mostly applied in games, and in robotics, often for control tasks in motion,
manipulation and navigation.

We already mentioned the early TD-Gammon backgammon player [1091]. On
video games, the DQN system [797] successfully demonstrated the level of a pro-
fessional human player on most Atari games. An exception with low performance
is the ‘Montezuma’s revenge’, a complex and huge state space labyrinth exploration
game with treasures, enemies, traps, etc. This game required elaborate exploration
capabilities which were addressed by systems such as h-DQN [652], Go-Explore
[318], or DeepSynth [474]. Dota 2 and Starcraft are two even more challenging video
games with a huge action spaces, partial observability and a long horizon play; they
were successfully addressed with self play RL by respectively OpenFive [122] and
AlphaStar [1142], the latter combining self play with imitation learning.

For board games, Deep RL methods reached fame with the AlphaGo system [1018]
by beating in 2016 and 2017 the world best go professional players. AlphaGo was
subsequently improved by its designers as AlphaGo Zero [1019], then AlphaZero
[1020]. The latter demonstrated superior learning performances also in chess and in
shogi, a Japanese variant of chess. The RL method in AlphaZero relies on self-play
training with MCTS. However, instead of performing a rollout to assess a position in a
leaf 𝑠 of the MCTS tree (step 3 in Algorithm 9.26), it uses a neural net to estimates for
this leaf the expected value function 𝑉𝜃 (𝑠), as well as a stochastic policy distribution
𝜋𝜃 (𝑠). The leaf 𝑠 is developed with a move 𝑎 that combines 𝑉𝜃 (𝑠) (averaged over

266 10 Reinforcement Learning

follow-up positions), 𝜋𝜃 (𝑠) and less frequently tried moves (i.e., 𝑛(𝑠, 𝑎) in MCTS).
The MCTS search returns to the root node 𝑠𝑟 a stochastic policy 𝜋 which is used to
select and play a move in 𝑠𝑟 , either greedily or with exploration (using 𝑛(𝑠𝑟 , 𝑎)). The
neural net is trained on self-play with the reward obtained on a terminal state. The
network parameters are updated to minimize the error between the predicted 𝑉𝜃 and
the game outcome, and to maximize the similarity of the estimated 𝜋𝜃 to the MCTS
policy 𝜋 (actually, the loss function in AlphaZero is the sum of the mean-squared
error for 𝑉 and the cross-entropy loss for 𝜋; conceptually, one may view the NN part
as two networks estimating respectively the value function and the policy).

RL has been applied successfully to other types of games, such as:

• puzzles, usually solved with search methods but for which RL can be compet-
itive, as in the Rubik’s cube, addressed with an approach combining MCTS
with a joint value–policy network [769];

• chance card games such as poker, for which a multiplayer system called Pluribus
has defeated professional players relying on a strategy learned offline with self-
play, and refined online [181].

RL applications in robotics. The development of RL in robotics responds to strong
practical needs. It alleviates the hard task of robot programming. Furthermore, prior
knowledge of adequate robot movements is seldom available as such; it requires
elaborate modeling, planning and optimization (see Part VII). RL in Robotics started
in the eighties and early nineties with low-level cart balancing or box pushing tasks,
e.g., [748]. Numerous robotics RL developments have been proposed, often tested
on classical benchmarks such as the cartpole, inverted pendulum, unicycle or bicycle
control problems [653, 862]. These developments, further detailed in Chapter 22, are
discussed in several surveys, among which [622, 643, 910, 195, 600].

Application-wise, RL has been demonstrated in robotics in many tasks, e.g.,

• outdoor navigation in complex terrain with a tight coupling of perception and
motion [1016];

• wheelchair path planning in a social environment [605];
• bipedal walking [711, 314] and control [691], quadrupedal walking [1038] and

navigation [963];
• helicopter aerobatics flying, a very difficult task for human pilots, [4, 244, 6];
• dexterous manipulation [216]; manipulating and solving the Rubik’s cube with

the finger movements of a single hand [21];
• autonomous driving in various configurations, see the survey [608].

Often, these developments relied on elaborate simulators, such as MuJoCo [1098].
They required extensive training (e.g., several runtime months for the dexterous
Rubik’s cube manipulation), and sim-to-real transfer.

In conclusion, learning from simulation, self play and trial and error experiments
makes RL very appealing, although very costly in sampling complexity, and compu-
tational expenses.18 RL is appealing because it spares the hard task of developing
18The training of the Rubik’s cube dexterous manipulation consumed about 2.8 GWh of energy, corre-

10.10 Exercises 267

and testing formal domain models. But this has drawback. Indeed, while possible
errors and failures in game applications may be inconsequential, other areas, like
most robotics applications have strong safety requirements. They demand for the de-
ployment of validation, verification and certification methods, as well as explanation
capabilities for a trustful use. For that, formal models are needed. Significant research
is still required for their efficient integration to RL approaches.

10.10 Exercises

10.1. Detail the computation of the partial derivative 𝜕∥ 𝑦̃−𝑦 ∥2
𝜕𝜃𝐿−1

𝑖, 𝑗

for a parameter 𝜃𝐿−1
𝑖, 𝑗

in row 𝐿 − 1. Derive an update rule for this parameter, equivalent to Equation 10.14.
Show how the proposed definition of 𝛿𝐿 and the update of Θ𝐿−1 are entailed from
this computation.

10.2. The loss function ∥ỹ − y∥2 considered in Section 10.4 is very convenient for
regression problems. For classification problems, the target y is a “one-hot” vector,
i.e., a vector of zeros except for its 𝑖th component equal to 1 for training instances of the
𝑖th class. In that case, a more appropriate loss function is the cross entropy measure of
the error between a predicted probability ỹ and the label which represents the actual
class given by y. The cross entropy is defined as the dot product Loss(𝑓𝜃) = −y·logỹ.
Compute the partial derivatives and revise the Backpropagation pseudo-code for this
loss function.

10.3. Develop the schema of Figure 10.6 into a detailed pseudo-code relying on the
Deep Q-learning and UCT procedures.

sponding to about 1000 tons of CO2, the equivalent of a european household consumption over 7000
months. The OpenFive training for the Dota 2 game required about the double energy. Hopefully
these figures should be significantly decreasing in the futur with more sampling efficient methods and
better hardware [875]

Part IV

Nondeterministic Models

We see that in the course of time, the most
unexpected things will happen. Seas will
displace themselves, mountains will
collapse, and some huge river will pour its
water into the desert.

Lucretius, De Rerum Natura, 1st
century BCE, likely between 58 and
55 BCE

Nondeterministic models, like probabilistic models (see Part III), drop the assump-
tion that an action applied in a state leads to only one state. The main difference with
probabilistic models is that nondeterministic models do not have information about
the probability distribution of transitions. In spite of this, the main motivation for
acting, planning, and learning using nondeterministic models is the same as those
of probabilistic approaches, namely, the need to model uncertainty: Most often, the
future is never entirely predictable without uncertainty.

Nondeterministic models might be considered as a special case of probabilistic
models with a uniform probability distribution. This is not the case. In nondetermin-
istic models we do not know that the probability distribution is uniform, we simply do
not have any information about such distribution. This is indeed a main conceptual
difference, and there are some main reasons to choose a nondeterministic model rather
than a probabilistic one:

• In several cases we do not have information about the probability of an outcome.
Unless we have some detailed and extensive statistics about the result of action
applications, assigning probabilities to outcomes can be difficult and, in some
cases, even misleading. Most of the probabilistic approaches tend to reduce the
planning problem to an optimization problem that depends on the probability
distribution of action transitions (see Chapter 9). If we do not have enough
statistical data that provides an evidence of such distribution, planning with
probabilities can produce misleading results.

268
Free pre-publication, for personal use only. To be published by Cambridge University Press.

269

• Similarly, reinforcement learning reduces the learning problem to an optimiza-
tion problem that highly depends on how rewards are assigned, a task that in
many cases is far from obvious and natural, and whose difficulty is often un-
derestimated. If we do not have enough information and details about rewards,
reinforcement learning can produce misleading results.

• In safety-critical applications, even outcomes with very low probabilities to
occur must be considered, and they have the same importance as highly probable
ones. For instance, even if a failure in the energy distribution of an airplane has
low probability to occur, it is a key requirement do deal with such event. Even
if a failure in bank transaction has low probability to occur, we must act, plan,
and learn taking such failure into account.

• In many cases, our focus is not on finding an optimal policy with respect to some
utility function. Instead, we are concerned with satisfying certain criteria, such
as ensuring specific behaviors across the system. Traditional approaches based
on Value Iteration or Policy Iteration (see Section 8.1.3) aim to minimize the
cost of reaching a goal. However, in many applications, minimizing cost may
not be the primary objective. Instead, the solution may need to satisfy certain
logical properties. For example, we may prioritize a solution that guarantees
safety, even if achieving this comes at a higher cost.

• In probabilistic approaches, safe solutions (safe policies in Section 8.1.2) may
not represent satisfactorily safety requirements. Indeed, a safe policy is defined
as the policy that has probability one to reach the goal (Definition 8.6). This
definition does not take into account interesting differences that such safe poli-
cies can have. For instance, suppose we have a policy such that the application
of an action to a state either results nondeterministically in the same state (no
progress at all), or leads to the goal from the given state. This policy has prob-
ability one to reach the goal. It has the same probability of a different policy
that applies a different action that leads to states from which we are guaranteed
to reach the goal. However, while both policies have the same probability to
reach the goal, the two solutions are very different, since the former involves a
possible loop (and allows the possibility to get stuck in such loop), while the
second does not.

These main conceptual differences lead to important practical and technical dif-
ferences in acting, planning, and learning. For instance, we can use specific and
effective techniques for acting, such as automata, Behavior Trees (BTs), or Petri Nets
(PNs)(Chapter 11). We can address the planning problem (Chapter 12) with tech-
niques (see, e.g., Section 12.3) that factorize the different possible outcomes in a
compact representation of the set of possible outcomes, thus allowing us to deal with
very large state spaces. This is possible since we do not have to take into account
probabilities. In learning (see, e.g., Chapter 13), we can devise techniques that learn
action schema by extending the approach presented in Chapter 4.

In this part of the book, we explore various approaches to using nondeterministic
models to handle the uncertainty and nondeterminism in acting, planning and learning:

• The following chapter (Chapter 11) describes some main different representa-

270

tions of nondeterministic models and how they can be used for acting: Non-
deterministic state transition systems and policies (Section 11.1), automata
(Section 11.2), Behavior Trees (Section 11.3), and Petri Nets (Section 11.4).

• Chapter 12 is devoted to planning techniques with nondetermistic domains:
And/Or graph search (Section 12.1), planning based on on determinization tech-
niques (Section 12.2), planning via symbolic model checking (Section 12.3),
planning by synthesis of input/output automata (Section 12.4), techniques for
behavior-tree generation (Section 12.5).

• Finally, Chapter 13 is dedicated to learning with nondeterministic models. We
describe some open challenges in learning action schema for nondeterministic
models.

11 Acting with Nondeterministic Models

In this chapter we introduce different representations and techniques for acting with
nondeterministic models: Nondeterministic state transition systems (Section 11.1),
automata (Section 11.2), Behavior Trees (Section 11.3), and Petri Nets (Section 11.4).

11.1 State Transition Systems

Nondeterministic state transition systems allow for actions that lead from one state to
one of many possible different states, representing in this way the uncertainty in the
actual outcome of action applications. In this section, we recall the notion of policy
that maps states to actions as defined in Part III for the probabilistic approaches. We
define the notion of unsafe, safe cyclic, and safe acyclic policies depending of whether
policies guarantee to lead to a goal state with different strength (e.g., just in some
cases or in all possible cases). Acting with policies is a simple loop that observes
the current state and applies the action specified by the policy for that state. Policies
allow for acting in a conditional way depending on the actual action outcome and to
repeat the application of actions in some states until the action leads to a different
state.

Nondeterministic state transition systems relax the assumption that 𝛾(𝑠, 𝑎) returns
a single state. Then for every state 𝑠 and action 𝑎, either 𝛾(𝑠, 𝑎) = ∅ (i.e., the action
is not applicable) or 𝛾(𝑠, 𝑎) is the set of states that may result from the application of
𝑎 to the state 𝑠, that is, 𝛾 : 𝑆 × 𝐴→ 2𝑆 .

A nondeterministic state transition system can therefore be described in terms of
a finite set of states 𝑆, a finite set of actions 𝐴, and a transition function 𝛾(𝑠, 𝑎) that
maps each state 𝑠 and action 𝑎 into a set of states.A nondeterministic state transition
system Σ is the tuple (𝑆, 𝐴, 𝛾), where 𝑆 is the finite set of states, 𝐴 is the finite set
of actions, and 𝛾 : 𝑆 × 𝐴 → 2𝑆 is the state transition function. An action 𝑎 ∈ 𝐴 is
applicable in state 𝑠 ∈ 𝑆 if and only if 𝛾(𝑠, 𝑎) ≠ ∅. Applicable(𝑠) is the set of actions
applicable in state 𝑠.

Example 11.1. In Figure 11.1, we show a simple example of nondeterministic model,
inspired by a management facility for a harbor, where an item (e.g., a container, a car)
is unloaded from the ship, stored in some storage area, possibly moved to transit areas
while waiting to be parked, and delivered to gates where it is loaded on trucks. In this
simple example, we have just one state variable, pos(item), which can range over nine
values: on_ship, at_harbor, parking1, parking2, transit1, transit2, transit3, gate1, and
gate2. For simplicity, we label each state in Figure 11.1 only with the value of the
variable pos(item).

In this example, we have just five actions. Two of them are deterministic, unload
and back, and three are nondeterministic, park, move, and deliver. Action unload

Free pre-publication, for personal use only. To be published by Cambridge University Press.

271

272 11 Acting with Nondeterministic Models

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Figure 11.1. A simple nondeterministic planning domain model.

unloads the item from the ship to the harbor, its preconditions are pos(item) = on_ship,
and its effects pos(item) ← at_harbor. Action back moves the item back from any
position in the harbor to the position pos(item) = at_harbor. To keep the figure simple,
in Figure 11.1 we show only two instances of actions back from the state where
pos(item) = parking2 and the state where pos(item) = gate1, but a back arrow should
be drawn from each state where the position is parking1, parking2, transit1, transit2,
transit3, gate1, and gate2.

The actions park, move, and deliver are nondeterministic. In the case of action park,
we represent with nondetermism the fact that the storage areas parking1 and parking2
may be unavailable for storing items, for example, because they may be closed or full.
Whether an area is available or not cannot be predicted, because there are other actors
parking and delivering items, for example from different ships. However, we assume
that it is always possible either to park the item in one of the two parking areas or to
move it to transit area transit1. The item waits in transit1 until one of the two parking
areas are available, and it can be stored by the action move. Also in the case of move,
we use nondeterminism to represent the fact that we do not know a priori which one
of the two areas may become available.1 From the two parking areas, it is possible
to deliver the container and load them on trucks or to a transit area, from which it is
necessary to move the container into either one of the two parking areas. The deliver

1In general, if an action’s outcome depends on something that is unknown to the actor, then it is
sometimes useful for the actor to think of the possible outcomes as nondeterministic. As an analogy,
we think of random number generators as having nondeterministic outcomes, even though many of
these generators are deterministic.

11.1 State Transition Systems 273

action moves containers from parking1 to one of the two gates where trucks are loaded
or to a transit area from which it is necessary to move the container again to load
trucks in one of the two gates.2 The same action from parking2 may lead to gate1 or
to another transit area. □

11.1.1 Acting with Policies

We recall the definition of policy in Section 8.1. A policy is a partial function that
maps states into actions. Intuitively, if 𝜋(𝑠) = 𝑎, it means that we should perform
action 𝑎 in state 𝑠. Let Σ = (𝑆, 𝐴, 𝛾) be a nondeterministic model. Let 𝑆′ ⊆ 𝑆. A
policy 𝜋 for a nondeterministic model Σ is a function 𝜋 : 𝑆′ → 𝐴 such that, for every
𝑠 ∈ 𝑆′, 𝜋(𝑠) ∈ Applicable(𝑠). It follows that Domain(𝜋) = 𝑆′.

We call our policies memoryless policies. A policy with memory is a mapping from
a history of states to an action. Policies with memory allow for performing different
actions in the same state, depending on the states visited so far. Moreover, our policies
are (partial) functions, i.e. we restrict to deterministic policies that map a state to a
single action. Nondeterministic policies, i.e., policies that map a state to more than
one action, or probabilistic policies that map a state to a probability distribution over
actions, can be useful in case we may need to select one among many different actions
depending on. e.g., given, constraints. See, e.g., [291, 292].

Example 11.2. In the nondeterministic model of Example 11.1 shown in Figure 11.1,
let 𝜋1, 𝜋2, and 𝜋3 be the following policies:3

𝜋1 = {(on_ship, unload), (at_harbor, park), (parking1, deliver)}

𝜋2 = {(on_ship, unload), (at_harbor, park), (parking1, deliver),
(transit1,move), (transit2,move), (parking2, back), (gate1, back)}

𝜋3 = {(on_ship, unload), (at_harbor, park), (parking1, deliver),
(transit1,move), (transit2,move), (parking2, deliver), (transit3,move)} □

Acting with nondeterministic models can be realized by a procedure that, given the
current state, applies the action returned by the policy. It consists of observing the
current state 𝑠, performing the corresponding action 𝜋(𝑠), and repeating these two
steps until the state is no longer in the domain of 𝜋. See Algorithm 11.1, which is is
similar to Algorithm 8.1, but it simply acts on the states policy and independently of
any goal.

In spite of the fact that nondeterministic models can model the world more accu-
rately than deterministic ones (and to plan for recovery mechanisms at design time),
they are not necessarily perfect models of the world. Indeed, no model is perfect and
the world is seldom completely predicable. As a consequence, if an actor applies
the actions of a policy, there is no guarantee that they will all be applicable, nor that
they will produce the states predicted by the policy. All the problems mentioned in

2Notice that deliver action has two possible effects in one instance and three in another. This is allowed
because the degree of nondeterminism can depend on the state in which an action is performed.

3For the rest of this chapter, we will use the same names for the states as shown in the figure.

274 11 Acting with Nondeterministic Models

Acting with Policy(𝜋)
𝑠← observe the current state
while 𝑠 ∈ Domain(𝜋) do

perform action 𝜋(𝑠)
𝑠← observe the current state

Algorithm 11.1. Acting with policies

on_ship at_harbor

parking2

parking1

transit1

transit2

gate1

gate2

Figure 11.2. Reachability graph for policy 𝜋1.

Chapter 2 can still occur, like execution failures, unexpected events, incorrect and
partial information, etc. Similarly to the case of deterministic models, actors need
ways to change the policy and to apply different actions when problems are detected.
Similarly to what we have done in Chapter 2 for deterministic models, when we
encounter a problem, we can generate a new policy (e.g., by replanning).

11.1.2 Unsafe, Cyclic Safe, and Acyclic Safe Policies

From Section 8.1, we recall the notions of the transitive closure of 𝛾(𝑠, 𝜋(𝑠)) and the
reachability graph Graph(𝑠, 𝜋) that connects the reachable states from state 𝑠 through
a policy 𝜋. We use a slightly different notion of the leaves of a policy 𝜋 from state
𝑠, because we need to guarantee that the leaf node can be reached from 𝑠. We let
leaves(𝑠, 𝜋) = {𝑠′ | 𝑠′ ∈ 𝛾̂(𝑠, 𝜋) and 𝑠′ ∉ Domain(𝜋)}. Notice that leaves(𝑠, 𝜋) can
be empty, that is, there may be no leaves. This is the case of policies that cycle on the
same set of states. If 𝜋 is empty, then leaves(𝑠, 𝜋) = {𝑠}.

Example 11.3. Let 𝜋1, 𝜋2, and 𝜋3 be as in Example 11.2. Their leaves from the state

11.1 State Transition Systems 275

on_ship at_harbor

parking2

parking1

transit1

move

transit2

gate1

gate2

Figure 11.3. Reachability graph for policy 𝜋2.

on_ship at_harbor

parking2

parking1

transit1

transit2

move

gate1

gate2

transit3

Figure 11.4. Reachability graph for policy 𝜋3.

on_ship are:4

leaves(on_ship, 𝜋1) = {parking2, transit1, gate1, gate2, transit2}
leaves(on_ship, 𝜋2) = {gate2}
leaves(on_ship, 𝜋3) = {gate1, gate2}

4In this case, the value on_ship of the state variable pos(item) identifies a single state.

276 11 Acting with Nondeterministic Models

Figures 11.2, 11.3, and 11.4 show the reachability graphs of 𝜋1, 𝜋2, and 𝜋3 from the
state on_ship. Notice that in each case, all states are reachable from on_ship. □

Given these preliminary definitions, we can now introduce formally the notion of
a problem and solution policy in a nondeterministic model. Solutions for nondeter-
ministic models can be defined with respect to an initial state 𝑠0

5 and a set of goal
states 𝑆𝑔:

• A policy 𝜋 is a solution policy if and only if 𝑙𝑒𝑎𝑣𝑒𝑠(𝑠0, 𝜋) ∩ 𝑆𝑔 ≠ ∅
• A policy 𝜋 is a safe policy if and only if ∀𝑠 ∈ 𝛾̂(𝑠0, 𝜋) (𝑙𝑒𝑎𝑣𝑒𝑠(𝑠, 𝜋) ∩ 𝑆𝑔 ≠ ∅)
• Let 𝜋 be a solution policy. Then 𝜋 is an unsafe policy if it is not safe.
• Let 𝜋 be a solution policy for Σ. Then 𝜋 is a cyclic safe policy if

and only if 𝑙𝑒𝑎𝑣𝑒𝑠(𝑠0, 𝜋) ⊆ 𝑆𝑔 ∧ (∀𝑠 ∈ 𝛾̂(𝑠0, 𝜋)) (𝑙𝑒𝑎𝑣𝑒𝑠(𝑠, 𝜋) ∩ 𝑆𝑔 ≠

∅) ∧ Graph(𝑠0, 𝜋) is cyclic.
• Let 𝜋 be a solution policy for Σ. Then 𝜋 is an acyclic safe policy if and only if
𝑙𝑒𝑎𝑣𝑒𝑠(𝑠0, 𝜋) ⊆ 𝑆𝑔 ∧ Graph(𝑠0, 𝜋) is acyclic.

Solution policies may lead to a goal. They can achieve the goal in different ways,
with different levels of guarantee, and with different strengths. The requirement we
impose on a policy to be a solution is that at least one state of its leaves is a goal state.
Safe policies are policies in which the goal is reachable from the initial state.6 Unsafe
policies either have a leaf that is not in the set of goal states or there exists a reachable
state from which it is not possible to reach a leaf state. Intuitively, unsafe policies
may achieve the goal but are not guaranteed to do so. If an agent tries to perform the
actions dictated by the policy, the agent may end up at a nongoal state or end up in a
“bad cycle” where it is not possible to go out and reach the goal.

Acyclic Safe Policies are safe policies that are guaranteed to terminate and to achieve
the goal despite nondeterminism. They are guaranteed to reach the goal in a bounded
number of steps, and the bound is the length of the longest path in Graph(𝑠0, 𝜋).
Notice that acyclic and cyclic safe solutions are very different! To guarantee reaching
the goal in a bounded number of steps, i.e., without allowing for the possibility to get
stuck in a loop, we need acyclic solutions. Cyclic policies may loop forever without
reaching the goal!

Notice that, while the notion of safe and unsafe solutions are similar with those in
Chapter 8, the definition of safe policies as policies that have probability one to reach
the goal (see Definition 8.6) does not allow us to guarantee reaching the goal in a
bounded number of steps without excluding the case in which we get stuck in a loop
and therefore never reaching the goal.

5Notice that we have a single initial state 𝑠0 rather than a set of initial states 𝑆0 ⊆ 𝑆. A set of initial
states represents partially specified initial conditions, or in other words uncertainty about the initial
state. However, restricting to a single initial state is not a limitation, because a domain with a set of
initial states 𝑆0 is equivalent to a domain where we have a single initial state 𝑠0 ∉ 𝑆 and an additional
action 𝑎𝑜 ∉ 𝐴 such that 𝛾(𝑠0, 𝑎0) = 𝑆0.

6Notice that, in general, they are not policies in which the goal is reachable from any state of the
domain of the policy (Domain(𝜋)), because we may have a state in Domain(𝜋) that is not the initial
state and from which we do not reach the goal.

11.1 State Transition Systems 277

Solutions

Unsafe Solutions Safe Solutions

Cyclic Solutions Acyclic Solutions

Figure 11.5. Different kinds of solutions: class diagram.

Figure 11.5 depicts in a class diagram the different forms of solutions. In principle,
unsafe Policies are not of interest, because they do not guarantee to achieve the goal.
However, as we will see in Section 12.2, planning for (possibly unsafe) solutions can be
used by planning algorithms to guide the search for Safe Solutions. In general, we are
interested in safe (cyclic and acyclic) solutions, because they provide (with different
strengths) some assurance to achieve the goal despite nondeterminism. Acyclic Safe
Policies are the best solutions because they can really ensure that we get to the
goal. Cyclic Safe Policies provide a weaker degree of assurance to achieve the goal:
assuming that sooner or later execution will get out of possibly infinite loops, they
are guaranteed to achieve the goal. They guarantee that there is always a possibility
to terminate the loop. However, for some applications, this may be not enough. For
example, if an electrical device has an unreliable power button, then you might need
to press the button repeatedly to turn the device on. But if the button is completely
broken, then pressing it repeatedly will never turn the device on. In safety critical
applications, safe cyclic policies may not be acceptable.

Example 11.4. Consider the three policies 𝜋1, 𝜋2, and 𝜋3 in Example 11.2. Consider
the the model Σ described in Example 11.1, initial state 𝑠0 where on_ship, and goal
states 𝑆𝑔 = {gate1, gate2}.

All three policies are solutions for the problem; indeed there exists at least one leaf
state that is in the set of goal states.

Policy 𝜋1 is an unsafe solution because there are leaves that do not belong to 𝑆𝑔 from
which it is impossible to reach the goal: such leaves are the states where parking2, or
transit1, or transit2.

Policies 𝜋2 and 𝜋3 are safe solutions. Policy 𝜋2 is a safe cyclic solution because
from each state in its graph it is possible to reach a state in the goal (gate2). Policy 𝜋3
is a safe acyclic solution because it is guaranteed to reach one of the two gates, gate1
or gate2, without the danger of getting trapped in cycles.

Notice that for the same domain, the same initial state, but with goal 𝑆𝑔 = {gate2},
a safe acyclic solution does not exist, and the safest solution we can find is the safe
cyclic solution 𝜋2. □

A remark is in order. We require that solution policies have some leaf states. In
this way, we do not consider policies that lead to the goal and then loop inside the set
of goal states. One may argue that such policies might be considered as solutions.
However, notice that for any solution of this kind, there exists a solution according to

278 11 Acting with Nondeterministic Models

our definition. It is indeed enough to eliminate the states in the policy that lead to the
loop inside the set of goal states.

In the following, we specify the relations among different kinds of policies.

unsafe policies ∪ safe policies = policies
cyclic safe policies ∪ acyclic safe policies = safe policies
unsafe policies ∩ safe policies = ∅
cyclic safe policies ∩ acyclic safe solutions = ∅

11.2 Automata

In this section, we introduce the notion of finite state nondeterministic automata, also
called Finite State Machines. We focus on input/output automata, i.e., on automata
that, beyond states and transitions, represent inputs to and outputs from automata.
The underlying intuition is that input/output automata act and evolve by receiving
inputs from the environment, sending output to the environment, and by internal
transitions. Acting is performed by making the automaton evolve: interacting with the
environment by receiving inputs and sending outputs, and through internal transitions.
Input/output automata have different ways to represent and deal with nondeterministic
models:

• An input/output automaton can specify the different inputs that it may receive
from the environment in a given state. Each of them may lead to a different
state. However, the automaton cannot control which input it will actually
receive. For instance, different inputs can be different data from sensors, like
different images sensed by a camera of a robot, or different choices made by a
user, or different moves by an opponent.

• Internal transitions may be nondeterministic, i.e., lead to one among possibly
many states. This is similar to what happens in nondeterministic state transition
systems. For instance, an automaton can represent with a nondeterministic
internal action the nondeterministic success or failure of an action by a robot,
or the internal check for the availability of a room of the hotel, or the availability
of a seat in a flight.

Outputs are controlled by an input/output automaton, i.e., the automaton can decide
to send different outputs in different states. They correspond to commands that an
acting automaton can send to an execution platform. According to the input output
automata view, acting is a continuous stream of interactions between an actor and the
environment: the actor acts by sending outputs to the environment, receives inputs
from the environment and reacts to such nondeterministic uncontrollable inputs by
evolving through internal transitions and by sending further outputs, and so on and so
forth.

Input/Output automata allow for specifying distributed systems: An actor can be
described as a set of input output automata interacting among themselves and with the
environment. Therefore inputs and outputs, beyond being received and sent from/to
the environment, can be received from and sent to other automata.

11.2 Automata 279

We define the notion of control automaton, i.e., an automaton that acts by controlling
the behavior of possibly many different automata that interact among themselves and
with the environment.

11.2.1 Input Output Automata

We introduce the intuitions underlying input/output automata through some simple
examples. We start with Example 11.5, an example of harbor management. A system
dealing with unloading containers from a ship, parking them and delivering them to
gates. Example 11.5 allows us to show the similarities and differences with the state
transition system representation in Example 11.1, Section 11.1,

Example 11.5. In Figure 11.6, a DWR robot performs the operations for unloading,
parking and delivering containers. It interacts with an harbor management system,
which in this case, from the point of view of the AVS, acts as the environment. The
AVS unloads a container (a deterministic internal action), then asks the management
system to have permission to park the container in one of the two parking lots through
the output transition parking. The AVS waits for three possible inputs from the
environment indicating that either the container can be parked in one of the two
parking lots (parking1 or parking2) or it should wait in a transit area (transit1). Here is
how the nondeterminism of the state transition system in Example 11.1, Section 11.1
is represented, i.e. waiting for one of different possible inputs from the environment.
From the parking lots the AVS asks for a permission to deliver the container to a gate,
and again nondeterminism is represented with inputs received by the environment
(transit2, transit3 gate1, gate2) □

unload

on_ship

transit1

move

move

at_harbor

parking

parking2

parking1

transit

parking2

transit2

move

gate1

gate2

transit3

deliver

deliver
transit

gate2

transit

gate1

parking1

Figure 11.6. Input/output automaton for harbor management.

Let us now illustrate distributed input/output automata. Suppose a robot navigates
in an environment with different kinds of doors that can be opened differently, e.g.,

280 11 Acting with Nondeterministic Models

by pulling, by pushing, or sliding. To go through a door, the robot needs recognize
its type. Rather than equipping the robot with this recognition capability, assume
that doors are able to informe about their type.7 In some way, we “distribute the
intelligence” in the environment. The task for the robot becomes much simpler, and
it can be described in the following example.

Example 11.6. In Figure 11.7, the robot gets the door’s type, for example, by sending
a request to the door, which replies with information about the way the door can be
opened. Notice that we have three different kinds of transitions in the nondeterministic
model triggered by the request sent by the robot to the door, the output message
(door_type), and the answer received from the door, the input messages (pulling,
pushing, and sliding). This is a way to define a nondeterministic model through
outputs sent by the automaton and inputs received by the automaton. □

S0 S1 S4

S3

S5

grasp

sliding

move

move

move

door_type

S2

pushingpulling

S9S7

S6

S8

push

pull

slide

Figure 11.7. Input/output automaton for opening a door

As introduced informally in Example 11.5 and Example 11.6, the idea is to spec-
ify nondeterministic models as input/output automata, the main feature of which is
to model components that interact with each other through inputs and outputs. In-
put/output automata allow for modeling distributed systems where each automaton is
a component that interacts with other components through inputs and outputs. They
make it possible to simplify the design process by abstracting away the details of their
internal representation.

Formally, input/output automata are very similar to nondeterministic models de-
scribed in Section 11.1, with the following differences. Input/output automata can
evolve to new states by receiving inputs from other automata and sending outputs to
other automata. Moreover, they can evolve with internal transitions without sending
outputs and receiving inputs. Internal transitions can be nondeterministic.8

7E.g., with an RFID stick, cheaper than automating doors.
8In automata theory, the symbol 𝜏 is used to denote internal transitions, which are called 𝜏-transitions.
The reason is that usually internal transitions are not visible to other automata. In our representation,
we distinguish internal transitions that are triggered by different actions.

11.2 Automata 281

Definition 11.7. (Input/Output Automaton) An input/output automaton is the tuple
Aut = (𝑆, 𝑆0, 𝐼, 𝑂, 𝐴, 𝛾), where

• 𝑆 is a finite set of states;
• 𝑆0 ⊆ 𝑆 is the set of possible initial states in which the automaton can start;
• 𝐼 is the set of inputs, 𝑂 is the set of outputs, and 𝐴 is a set of actions, with 𝐼, 𝑂,

and 𝐴 disjoint sets;
• 𝛾 : 𝑆 × (𝐼 ∪𝑂 ∪ 𝐴) → 2𝑆 is the nondeterministic state transition function. □

The distinction between inputs and outputs is a main characteristics of input/output
automata. The intended meaning is that outputs are under the full control of the
automaton, that is, the automaton can decide when and which output to send. In
contrast, inputs are not under its control. If and when they are received, which input is
received (among many different ones) from other automata cannot be determined by
the automaton receiving inputs. An automaton can wait for the reception of an input,
but whether it will receive it, and when it will receive it, is not under its control.

While acting, the different possible evolutions of an input/output automaton can be
represented by its set of possible runs.

Definition 11.8. (Run of input/output automaton) A run of an input/output au-
tomaton Aut = (𝑆, 𝑆0, 𝐼, 𝑂, 𝐴, 𝛾) is a sequence 𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . such that 𝑠0 ∈ 𝑆0,
𝑎𝑖 ∈ 𝐼 ∪𝑂 ∪ 𝐴, and 𝑠𝑖+1 ∈ 𝛾(𝑠𝑖 , 𝑎𝑖). □

A run may be either finite or infinite.

Control Automaton

An input/output automaton can behave in different ways depending on the inputs it
receives. For instance, the automaton in Figure 11.7 opens the door either by pushing,
pulling, or sliding the door, on the basis of the input it receives. In order to control (a
set of)em, e.g., to reach some desired states. to restrict their evolutions in a desired
way, we define a a controller or control automaton, that is, an automaton that interacts
with them by reading their outputs and sending them inputs. A control automaton
Aut𝑐 for an input/output automaton Aut is an input/output automaton whose inputs
are the outputs of Aut and whose outputs are the inputs of Aut. Formally: Let
Aut = (𝑆, 𝑆0, 𝐼, 𝑂, 𝐴, 𝛾) be an input/output automaton. A control automaton for Aut
is an input/output automaton Aut𝑐 = (𝑆𝑐, 𝑆0

𝑐, 𝑂, 𝐼, 𝐴𝑐, 𝛾𝑐).

Example 11.9. Figure 11.8 shows a control automaton for the automaton in Fig-
ure 11.7. Notice that the inputs and outputs of the automaton in Figure 11.8 are the
outputs and inputs of the automaton in Figure 11.7, respectively. The control automa-
ton receives a request about the door type (input door_type), determines the door type
with the action sense(door), and sends the proper input to the controlled automaton.
The information acquisition about the door type can be done in different ways. The
nondeterministic action sense(door) can activate a module of an “intelligent” door
that replies to requests by the robot, or sense(door) can be a request to a centralized
database that may have apriori the information about the door, or sense(door) might

282 11 Acting with Nondeterministic Models

σ0 σ3

σ2

σ4

sliding

door_type

σ1

pushing

pulling

σ5
sense(door)

Figure 11.8. Input/Output (I/O) automaton to control the robot I/O automaton.

activate a different module that has some perception capabilities to detect the kind of
door. □

Controlled Automaton

A control automaton can control more than one input/output automata. This is the
way in which we can control a distributed system. We will address this issue in
Section 11.2.2. For simplicity, let us consider a control automaton controlling a
single automaton. It is interesting to understand the behavior of an automaton when
controlled by a control automaton, that is, the behavior of the controlled system.
The controlled system should be able to satisfy some desired property. Indeed, a
control automaton is designed with a goal in mind. For instance, the automaton in
Example 11.9 has been defined with the requirement in mind to open the door in the
right way. In the automaton in Figure 11.7, it means to end up in state 𝑠9. Notice
that such automaton just represents the nominal case. If it receives a wrong input, for
example, to pull a door that should be pushed, then the move action will fail. Consider
the following example, which helps us to give an intuition of the desired behavior of
a controlled system

Example 11.10. In Figure 11.9, the input/output automaton of the robot checks
whether it is close enough to the door (action sensedistance) and sends outputs
accordingly. If it is far, it can receive the input either to wait or to move (state s3).
Let us suppose the goal is to make the automaton reach state s5. It is clear that a
control automaton that receives the input far from the automaton in Figure 11.9 and
sends output wait does not satisfies the goal, while the one that sends the sequence of
outputs move and then grasp does.

Notice that we may have a control automaton that never makes the controlled
automaton reach state s5, or that do it only in one of the two cases in which the robot

11.2 Automata 283

S5

wait
far

sensedistanceS0

S1

S2

S3

S4

close grasp

move

wait

Figure 11.9. Input/output automaton for approaching a door.

is close or far, or that do it in both cases. All of this resembles the idea of unsafe and
safe (cyclic and acyclic) policies introduced in Section 11.1.2. □

As shown in the previous example, we would like that a control automaton Aut𝑐 that
interacts with an input/output automaton Aut satisfies some goal 𝑔. In this section, we
restrict to reachability goals.9 Let us then define now the automaton describing the
behaviors of Aut when controlled by a control automaton Aut𝑐 , that is, the controlled
system Aut𝑐 ▷ Aut.

Definition 11.11. (Controlled System) Let Aut = (𝑆, 𝑆0, 𝐼, 𝑂, 𝐴, 𝛾) be an in-
put/output automaton. Let Aut𝑐 = (𝑆𝑐, 𝑆0

𝑐, , 𝑂, 𝐼, 𝐴𝑐, 𝛾𝑐) be a control automaton
for Aut. Let 𝑠, 𝑠′ ∈ 𝑆, 𝑠𝑐, 𝑠′𝑐 ∈ 𝑆𝑐, 𝑎 ∈ 𝐴, and 𝑎𝑐 ∈ 𝐴𝑐. The controlled system
Aut𝑐 ▷ Aut, describing the behavior of Aut when controlled by Aut𝑐, is defined as:
Aut𝑐 ▷ Aut = (𝑆𝑐 × 𝑆, 𝑆0

𝑐 × 𝑆0, 𝐼, 𝑂, 𝐴▷, 𝛾▷), where:

• ⟨𝑠′𝑐, 𝑠⟩ ∈ 𝛾▷(⟨𝑠𝑐, 𝑠⟩, 𝑎𝑐) if 𝑠′𝑐 ∈ 𝛾𝑐 (𝑠𝑐, 𝑎𝑐),
• ⟨𝑠𝑐, 𝑠′⟩ ∈ 𝛾▷(⟨𝑠𝑐, 𝑠⟩, 𝑎) if 𝑠′ ∈ 𝛾(𝑠, 𝑎),
• for any 𝑖 ∈ 𝐼 from Aut𝑐 to Aut,
⟨𝑠′𝑐, 𝑠′⟩ ∈ 𝛾▷(⟨𝑠𝑐, 𝑠⟩, 𝑖) if 𝑠′𝑐 ∈ 𝛾𝑐 (𝑠𝑐, 𝑖) and 𝑠′ ∈ 𝛾(𝑠, 𝑖),

• for any 𝑜 ∈ 𝑂 from Aut to Aut𝑐,
⟨𝑠′𝑐, 𝑠′⟩ ∈ 𝛾▷(⟨𝑠𝑐, 𝑠⟩, 𝑜) if 𝑠′𝑐 ∈ 𝛾𝑐 (𝑠𝑐, 𝑜) and 𝑠′ ∈ 𝛾(𝑠, 𝑜). □

The set of states of the controlled system are obtained by the Cartesian product of the
states of Aut and those of Aut𝑐. In Definition 11.11, the first two items specify that
the states of the controlled system evolve according to the internal evolutions due to
the execution of both actions of Aut𝑐 (first item) and of actions of Aut (second item).
The third and fourth items regard the evolutions that depend on inputs and outputs.

9As usual, we consider goals as partial assignments to state variables.

284 11 Acting with Nondeterministic Models

In this case, the state of the controlled system ⟨𝑠𝑐, 𝑠⟩ evolves by taking into account
the evolutions of both Aut and Aut𝑐.

A remark is in order. We need to rule out controllers that can get trapped in
deadlocks. We need to rule out the case in which an automaton sends outputs that
the other automaton is not able to receive. If an automaton sends an output, then the
other automaton must be able to consume it, either immediately or after executing
internal commands that lead to a state where the input is consumed. In other words,
an automaton Aut in a state 𝑠 must be able to receive as one of its inputs 𝑖 ∈ 𝐼 the
output 𝑜′ ∈ 𝑂′ of another automaton Aut′, or for all the possible executions of actions
𝑎 ∈ 𝐴 of automaton Aut, there exists a successor of 𝑠 where 𝑜′ can be received as an
input 𝑖.

Given this notion, we define intuitively the notion of a deadlock-free controller for
a controlled input/output automaton. It is a control automaton such that all of its
outputs can be received by the controlled automaton, and vice versa, all the outputs
of the controlled automaton can be received by the controller.

Solution Control Automata

We aim at designing a control automaton Aut𝑐 such that the controlled system Aut𝑐 ▷
Aut satisfies a goal 𝑔, that is, we have to design an Aut𝑐 that interacts with Aut by
making Aut reach some desired state. In other words, a control automaton Aut𝑐 is a
solution for a goal 𝑔 if every run of the controlled system Aut𝑐 ▷Aut ends up in a state
where 𝑔 holds.

Definition 11.12. (Satisfiability). Let 𝑔 be a partial state variable assignment
𝑥𝑖 = 𝑣𝑖 , . . . , 𝑥𝑘 = 𝑣𝑘 , for each 𝑥𝑖 , . . . , 𝑥𝑘 ∈ 𝑋 , and each 𝑣𝑖 ∈ Range(𝑥𝑖), . . . , 𝑣𝑘 ∈
Range(𝑥𝑘). Let Aut be an input/output automaton. Aut satisfies 𝑔, denoted with
Aut |= 𝑔, if

• there exists no infinite run10 of Aut, and
• every final state 𝑠 of Aut satisfies 𝑔. □

We can now define when a control automaton is a solution for an input/output
automaton with respect to a goal, that is, when it controls the automaton satisfying
our desired requirement.

Definition 11.13. (Solution Control Automaton). A control automaton Aut𝑐 is a
solution for the goal 𝑔 and an input/output automaton Aut, if the controlled system
Aut𝑐 ▷ Aut |= 𝑔 and Aut𝑐 is a deadlock-free controller for Aut. □

11.2.2 Distributed Input Output Automata

In the previous section, we did not exploit the real advantage of the distributed and
asynchronous nature of input/output automata. Indeed, Example 11.6 may include
two input/output automata, one for the robot and one for the door. The two automata
interact by sending/receiving inputs/outputs. The main characteristic of a model based
10See Definition 11.8 for the definition of run of an automaton

11.2 Automata 285

S0 S1

I-open
S2

S3

cmd-open

S5

O-fail-open

S6

S7

I-done

I-cancel

S4

cmd-closeO-success-open
S8

DOOR IO AUTOMATON

S0 S1

I-move
S2

S3

cmd-move

S5

O-fail-move

S6

S7

I-done

I-cancel

S4

cmd-stopO-success-move
S8

ROBOT IO AUTOMATON

Figure 11.10. Robot and door interacting input/output automata.

on input/output automata is that a complex model can be obtained as the “composition”
of much simpler components, thus providing the following advantages:

• the ability to simplify the design process, starting from simple components
whose composition defines a model of a complex system;

• the ability to model distributed domains naturally, that is, domains where we
have different components with their own behaviors;

• the ability to model naturally dynamic environments when different components
join or leave the environment;

• the composition of different components can be localized, that is, each compo-
nent can get composed only with the components that it needs to interact with,
thus simplifying significantly the design task, and

• for each component, we can specify how other components need to interact with
the component itself, abstracting away the details of their internal operations.

Example 11.14. We continue with our example of opening a door, but we reduce the
tasks that can be performed by the robot while we enrich the autonomy capabilities
of the door. Consider indeed two active devices that interact with the environment,
a navigation robot able to move but without any manipulation capabilities, and an
active door, which is able to open and close itself on request.

286 11 Acting with Nondeterministic Models

S0

door:open

S4

robot:move

open-fail

S2

S1

S3

open-succeed

move-fail

S6

S5

move-succeed

robot:done

S8

door:done

S9

door:cancel

S7

Figure 11.11. A controller for the robot and door input/output automata.

In Figure 11.10, the door and the robot are modeled as two input/output automata.
The door receives a request to open (the input I-open). It then activates its engines
to open (the actions cmd-open). The action may either succeed or fail, and the door
sends outputs accordingly (O-succes-open or O-fail-open). If the action succeeds,
then the door waits for two possible inputs, one indicating that the door can be closed
(because, e.g., the robot passed successfully), that is, the input I-done, or that there
is a problem and the door should stop with failure, that is, I-cancel. The (I-move),
then it moves (cmd-move). If the operation succeeds, then it waits for an input stating
either that everything is fine (I-done) and it can stop (cmd-stop) or that a failure from
the environment occurred (I-cancel). □

Notice that with this model, the robot and any other actor in the environment do
not even need to know whether the door is a sliding door or a door that can be
opened by pulling/pushing, because this is hidden in the action cmd-open of the door
input/output automaton. This abstraction mechanism is one of the advantages of a
model based on multiple input/output automata.

Given a model with two or more input/output automata, we generalize the idea
presented for controlling a single automaton, that is, a controller that interacts with
the different input/output automata and satisfies some goal. Consider the following
example.

Example 11.15. Figure 11.11 shows an input/output automaton representing a con-
troller that makes the robot and the door interact in a proper way. It requests that
the door open, and if the request succeeds, it then requests the robot to move. If the
moving operation also succeeds, it then asks the door and the robot to finish the job,
that is, the robot should stop and the door should close. □

In the rest of this section, we formalize the problem of defining a controller that
interacts with a set of input/output automata Aut1, . . . ,Aut𝑛 and satisfies some desired
goal. We have:

• A finite set of automata Aut1, . . . ,Aut𝑛. This set can be dynamic and can be
determined at run-time.

• A requirement 𝑔 that is defined as a partial state variable assignment.

11.3 Behavior Trees 287

Informally, we want to design a controller Aut𝑐 that interacts with Aut1, . . . ,Aut𝑛 in
such a way to make the automata Aut1, . . . ,Aut𝑛 to reach some states where the re-
quirement 𝑔 is satisfied. We introduce first the product of the automata Aut1, . . . ,Aut𝑛:

Aut∥ = Aut1∥ . . . ∥Aut𝑛

Such product is a representation of all the possible evolutions of automata
Aut1, . . . ,Aut𝑛, without any control by Aut𝑐.

We formally define the product of two automata Aut1 and Aut2, which models the
fact that the two automata may evolve independently. In the following definition, we
assume that the two automata do not send messages to each other, that is, the inputs of
Aut1 cannot be outputs of Aut2 and vice versa. This is a reasonable assumption in our
case, where we suppose that each available automaton Aut1, . . . ,Aut𝑛 interacts only
with the controller Aut𝑐. The assumption can, however, be dropped by modifying in
a suitable way the definition of product.

Definition 11.16. (Product of Input/Output Automata) Let Aut1 =

(𝑆1, 𝑆
0
1, 𝐼1, 𝑂1, 𝐴1, 𝛾1) and Aut2 = (𝑆2, 𝑆

0
2, 𝐼2, 𝑂2, 𝐴2, 𝛾2) be two automata with

(𝐼1 ∪ 𝑂1 ∪ 𝐴1) ∩ (𝐼2 ∪ 𝑂2 ∪ 𝐴2) = ∅. The product of Aut1 and Aut2 is
Aut1∥Aut2 = (𝑆, 𝑆0, 𝐼1 ∪ 𝐼2, 𝑂1 ∪𝑂2, 𝐴1 ∪ 𝐴2, 𝛾), where:

• 𝑆 = 𝑆1 × 𝑆2,
• 𝑆0 = 𝑆0

1 × 𝑆
0
2,

• ⟨𝑠′1, 𝑠2⟩ ∈ 𝛾(⟨𝑠1, 𝑠2⟩, 𝑎) if 𝑠′1 ∈ 𝛾1(𝑠1, 𝑎), and
• ⟨𝑠1, 𝑠

′
2⟩ ∈ 𝛾(⟨𝑠1, 𝑠2⟩, 𝑎) if 𝑠′2 ∈ 𝛾2(𝑠2, 𝑎) □

The automaton Aut∥ = Aut1∥ . . . ∥Aut𝑛 represents all the possible ways in which
automata Aut1, . . . ,Aut𝑛 can evolve without any control. We can therefore define
the automaton describing the behaviors of Aut∥ when controlled by a controller Aut𝑐
that interacts with Aut1, . . . ,Aut𝑛, that is, the controlled system Aut𝑐 ▷ Aut∥ , simply
by recasting the definition of controlled system (see Definition 11.11) by replacing
the single automaton Aut with Aut∥ . We can therefore apply all the considerations,
definitions, and algorithms that we have discussed for the case of a single automaton.

In Section 12.4 we will show how to synthesize a controller by planning with
nondeterministic models.

11.3 Behavior Trees

Behavior Trees (BTs) provide a graphical representation, equivalent in expressiveness
to finite state automata. They do not represent states explicitly; they focus instead on
state changes or “behaviors”. They allow for an intuitive and modular specification of
reactive control mechanisms. Acting is performed by repeatedly visiting a BT from
the root until reaching a leaf node that triggers test conditions or primitive actions and
returns its execution status (running, failure, or success). Acting with BTs can deal
with exogenous events and some form of uncertainty about the environment.

288 11 Acting with Nondeterministic Models

11.3.1 Behavior Tree Representation

A Behavior Tree is a directed rooted tree. Each node 𝑣 can be a leaf or a non-leaf
or interior node. A leaf node can be of type Cond or Act: type(𝑣) ∈ {Cond, Act}. A
leaf node of type Cond corresponds to a condition that can be tested in the observed
current state of the world. A leaf node type Act corresponds to a primitive action. A
non-leaf/interior node 𝑣 has type(𝑣) ∈ {And, Or}11 and has a totally ordered list of
children, Children (𝑣)=⟨𝑣1, . . . , 𝑣𝑘⟩.

For each node 𝑣 there is a function exec-status (𝑣) that returns a value in {Running,
Success, Failure}. How exec-status(𝑣) is computed depends on type(𝑣):

• exec-status(𝑣) for leaf nodes is computed as follows:

1. If type(𝑣) = Cond, then a call to exec-status(𝑣) returns Success if the
condition is true, or Failure if the condition is false. If type(𝑣) = Cond,
then exec-status(𝑣) is never equal to Running, meaning that conditions
are immediately computed.

2. If type(𝑣) = Act, then the first call to exec-status(𝑣) triggers the action
and returns Running. Each subsequent call returns Running if the action
is still running, or Success or Failure if the action has finished.

• exec-status(𝑣) for non-leaf/interior nodes is computed as a control function
over 𝑣’s children:

– If type(𝑣) = And, then exec-status(𝑣) returns Success if ∀𝑣𝑖 ∈
Children(𝑣), exec-status(𝑣𝑖) = Success. If ∃𝑣𝑖 such that exec-status(𝑣𝑖)
is Failure or Running, the computation stops at the first such 𝑖; it returns
exec-status(𝑣𝑖) without testing the remaining children.

– If type(𝑣) = Or, then exec-status(𝑣) returns Failure if ∀𝑣𝑖 ∈
Children(𝑣), exec-status(𝑣𝑖) = Failure. If ∃𝑣𝑖 such that exec-status(𝑣𝑖) is
Success or Running, the computation stops at the first such 𝑖 and returns
exec-status(𝑣𝑖), without evaluating the rest of 𝑣’s children12

Example 11.17. Consider a Versatile Service Robot (VSR) domain where a robot
has to serve a simple jobshop by bringing parts from an input stock to a machining
station. Let us use a BT to model the activity in which the robot takes a part in the
input stock (stock) and brings it to the machining station (mach). We assume that
the the robot can perform the following primitive actions that will be modeled as leaf
nodes of type Act in the BT:

• goto(𝑟, 𝑙): robot 𝑟 goes to position 𝑙. There are two possible positions: 𝑙 =
stock, where a part may be picked up, and 𝑙 = mach, where the part can be fed
into the machining station.

• take(𝑟, 𝑝): robot 𝑟 takes part 𝑝 from stock.
• put(𝑟, 𝑝): robot 𝑟 puts part 𝑝 into mach.

11In the BT literature, And and Or nodes are called sequence and fallback nodes, respectively.
12Notice that And and Or nodes do not represent primitive operations, in the sense that one can be

defined in terms of the other one

11.3 Behavior Trees 289

Figure 11.12 gives a BT specification of robot 𝑟’s activity. If the part 𝑝 is already
in the machine, then the task is done. Otherwise the following And node (node1 in
Figure 11.12), through successor Or nodes, checks if 𝑟 holds 𝑝 and if 𝑟’s position is
the machining station (nodes 2 and 3), in which case 𝑟 puts 𝑝 in mach. If 𝑟 is not
holding 𝑝, its arm is free (node 4), and it is at stock, then it takes 𝑝. If 𝑟 is not at
stock but stock is reachable (node 6 and 7), then 𝑟 goes to that position. Similarly,
if the condition pos(𝑟)=mach does not hold, 𝑟 moves to the machining station (node
5). Additional nodes would be needed, for example, to handle the case where the
condition hold(𝑟)=free does not hold (see Exercise 11.10).

This BT is reactive to exogenous events; e.g., if an obstacle makes stock or mach
unreachable, then 𝑟 will keep trying until they become reachable (a fancier robot would
try to remove the obstacle or ask for help). Similarly, if 𝑟 takes the part but it slips
from 𝑟’s arm, 𝑟 will repeat its take action (here too a diagnosis of why the previous
grasp failed would be needed). The BT is also reactive to favorable conditions, e.g.,
if 𝑟 is already at stock then it does need to move there. □

⋁

⋁

⋁

⋁

⋀

⋀

⋀

⋀
in(p)=mach ?

hold(r)=free ?

pos(r)=mach ?

hold(r)=p ?

reachable(r, mach) ?

reachable(r, stock) ?

pos(r)=stock ?

goto(r,stock)

goto(r,mach)

take(r, p)

put(r, p)

node1

node3

node2

node4

node5

node6

node7

Figure 11.12. A behavior tree specification of the robot activity in Example 11.17. And
and Or nodes are respectively labelled ∧ and ∨, condition nodes are in ovals, actions in
rectangles.

11.3.2 An Acting Engine for Behavior Trees

Acting with a BT consists of calling BTAE on the root node repeatedly until it returns
either Success or Failure. A call is propagated recursively from the root down in
the tree until reaching a leaf. A leaf node triggers the corresponding condition or
primitive actions and returns its execution status. A Running status is propagated back
in the tree up to the root; Failure or Success cases are also propagated back, but may

290 11 Acting with Nondeterministic Models

BTAE(𝑣)
if Type(𝑣) ∈ {Cond, Act} then return exec-status (𝑣)
⟨𝑣1, . . . , 𝑣𝑘⟩ ← Successors(𝑣)
for 𝑣𝑖 = 𝑣1 to 𝑣𝑘 do

status← BTAE(𝑣𝑖)
if status=Running then return status
if (Type(𝑣𝑖)=And) and (status=Failure) then return status
if (Type(𝑣𝑖)=Or) and (status=Success) then return status

return status

Algorithm 11.2. A Behavior Tree Acting Engine, BTAE

trigger possible progress in the sequence of siblings in an interior node, depending
on its type. A few remarks are in order:

• The BT execution engine will call 𝑣 (and hence its children) repeatedly, without
retaining any memory of what happened in previous calls. This may work well
if one wants the actor to make choices that depend only on the current state
(e.g., to keep moving forward until it reaches a goal), but it provides no way for
the actor to make choices that depend on past events, unless information about
those past events is stored explicitly in the current state.

• Calling 𝑣1 again if it previously returned Success or Failure allows to be reactive
to changes of a condition. However, if the BT does not contain all of the relevant
information about the action’s effects and preconditions when it was previously
triggered, it might be unclear whether it should be retriggered.

• A BT may trigger concurrent actions, but offers no explicit means for handling
this concurrency. For example, suppose a child 𝑣 𝑗 of 𝑣 returns Running because
of an action 𝑎 that has not yet finished. The next time 𝑣 is called, a child 𝑣𝑖
that precedes 𝑣 𝑗 may trigger another action 𝑎′ without checking how 𝑎′ may
interfere with the ongoing action 𝑎. Note that in this case 𝑎′ has already been
triggered in a previous call.

Additional types of interior nodes with memory have been proposed to handle
some of the above issues. However, these memory nodes are not much used since
they reduce the reactivity of the BT. Instead, the main fix is a BT programming style
that systematically puts a condition node as the first child of each interior node, as
illustrated in the following example.

Some of the issues about the repeated calls to the same nodes are handled with the
BT specification style illustrated in Example 11.17. This style requires an action node
to be preceded by other nodes that test the action’s intended effects and preconditions.
For a subtree starting in a node 𝑣 that is intended to achieve a sequence of actions
𝜋 = ⟨𝑎𝑖 , . . . , 𝑎 𝑗⟩, with Children(𝑣)=⟨𝑣1, . . . , 𝑣𝑘⟩, there are two cases:

• if 𝑣 is an Or node, then 𝑣1 is a condition node or a subtree that tests the intended
effects of 𝜋,

• if 𝑣 is an And node, then 𝑣1 and possibly its following sibling are nodes or

11.4 Petri Nets 291

subtree that test or achieve the preconditions of 𝜋.

Acting with a BT relies on a single grounded tree that specifies the entire behavior.
This global tree can be composed of several subtrees that specify different subtasks.
The composition operation requires condition nodes or subtrees to be carefully set
up. Further, BTs are not as flexible as that of the refinement methods in Section 14.2.

In summary, BTs are a simple graphical representation, equivalent to finite state
automata. It is possible to automatically map a BT into the equivalent automaton and
use related methods for its analysis. The main advantages of BTs are their intuitive
programming style and the capability to generate a tree online, interleaving acting and
planning. This idea will be developed in Section 12.5.

11.4 Petri Nets

Petri Nets (PNs) are an expressive class of automata and a graphical representation
that has been developed for modeling asynchronous concurrent state transition sys-
tems. They can model activities with concurrency, precedence and synchronisation
constraints and analyze their correctness. A PN is a directed graph with anonymous
labels on vertices called tokens. The current state of a system modeled by a PN is
given by the token distribution in the net. The edges connecting vertices describe
what state transitions may take place. Formal developments have led to powerful
methods for analyzing the correctness of PN models and proving properties such as
liveliness, boundedness and reachability conditions. These theoretical and practical
analysis tools ease the development and debugging of models of acting systems where
concurrency is important. They provide an advantage in safety critical applications.

In this section we introduce the PN representation, present a PN acting system,
illustrate how to model actions and tasks with PNs, then briefly discuss verification
and validation issues.

11.4.1 Petri Net Representation

A Petri Net is a directed graph with two classes of vertices, called places and tran-
sitions. It is a bipartite directed graph: there are no edges between vertices of the
same class, only from places to transitions, or from transitions to places. A place can
hold zero or several tokens. A transition is enabled if all its parent places hold at
least one token. When an enabled transition is fired, the tokens are decreased by one
in each parent, and increased by one in each successor. In general, no conservation
is required in the total number of tokens from parents to successors. The firing of
enabled transitions models the dynamics of a discrete-event system.

More formally, let G = (Places, Transitions, Edges, 𝜇) be a bipartite directed graph
whose vertices are Places ∪ Transitions such that:

• 𝐸𝑑𝑔𝑒𝑠 ⊆ (Places × Transitions) ∪ (Transitions × Places), we denote In(t) the
parent places of a transition t, Out(t) are its successors; and

• 𝜇 : Places → N is a marking of G, that is a distribution of tokens in Places,
𝜇(𝑝) ∈ N is the current number of tokens in the place 𝑝.

292 11 Acting with Nondeterministic Models

Firing transitions. The markings of a Petri Net G evolve according to the following
rules:

(i) a transition t is enabled if 𝜇(𝑝) ≥ 1 for ∀𝑝 ∈ In(t),
(ii) firing an enabled transition changes 𝜇 into 𝜇′ such that

– ∀𝑝 ∈ In(t), 𝜇′(𝑝) = 𝜇(𝑝) − 1 ,
– ∀𝑝 ∈ Out(t), 𝜇′(𝑝) = 𝜇(𝑝) + 1, and
– ∀𝑝 ∉ In(t) ∪ Out(t), 𝜇′(𝑝) = 𝜇(𝑝)

(iii) enabled transitions are fired sequentially, only one at a time.

Note that if 𝑝 ∈ In(t) ∩ Out(t) (a loop) then 𝜇′(𝑝) = 𝜇(𝑝).
At any time, there may be several enabled transitions in a PN that can be fired.

Two transitions 𝑡 and 𝑡′ that are enabled at the same time by common parents, i.e.,
𝐼𝑛(𝑡) ∩ 𝐼𝑛(𝑡′) ≠ ∅, are called conflicting transitions. If 𝑡 and 𝑡′ are not conflicting,
firing 𝑡 does not disable 𝑡′, which can be fired next. But if 𝑡 and 𝑡′ are conflicting,
choosing nondeterministically and firing 𝑡 may disable 𝑡′. With such a mechanism, a
PN can represent the dynamics of a nondeterministic state transition system.

Marking graph. A Petri Net (like a behavior tree) does not represent states explicitly
but through the token distribution given by 𝜇. The marking 𝜇 characterize the current
state. 𝜇 can be written as a state vector of |Places| integers.13 The 𝑖𝑡ℎ component
𝜇(𝑝𝑖) models a state variable ranging over the integers.

To each PN corresponds a marking graph, i.e., a graph whose nodes are possible
markings and edges given by a transition function 𝛾 defined as follow:

𝛾(𝜇, t) = 𝜇′, the marking obtained by firing a transition t enabled in 𝜇;
𝛾(𝜇, t) = nil if t is not enabled in 𝜇.

The state space of a PN is its marking graph. It may be infinite. For example, in a
PN with a loop of two edges from 𝑝 to 𝑡 and from 𝑡 to 𝑝, and an edge from 𝑡 to 𝑝′,
firing 𝑡 when enabled keeps 𝜇(𝑝) stable but increases 𝜇(𝑝′) indefinitely.

Binary Petri Nets Let us now focus on a class of binary Petri Nets where 𝜇(𝑝) is
restricted to {0,1}. Here a transition of 𝑡 is enabled if all its parents hold a token.
Firing an enabled transition sets all its parents to 0 and all its successors to 1, regardless
of their previous values. If 𝑝 is the parent as well as the successor of 𝑡 (a loop), 𝑝
remains at 1 when 𝑡 is fired. Binary PNs can model on/off activities or processes with
places, and events with transitions. An activity is on when it holds a token.

Edges that have several parents or several successors allow modeling different state
transition mechanisms, as illustrated in the following example.

Example 11.18. Figure 11.13 shows three binary PNs. Places and transitions are
depicted respectively as circles and rectangles; tokens as dots within a place. The
figures illustrate three cases of multiple parents or successors.
13Firing rules are easily expressed as vector operations, convenient for verification purposes.

11.4 Petri Nets 293

1

p1 p2

t1

p4

t2

t3

●

p1

t1

p3

p2 t2

t3

●

p2

t1

p4

p5
t2

t3

●

●

p1 p3

p3

p4

p5
(a)

1

p1 p2

t1

p4

t2

t3

●

p1

t1

p3

p2 t2

t3

●

p2

t1

p4

p5
t2

t3

●

●

p1 p3

p3

p4

p5
(b)

1

p1 p2

t1

p4

t2

t3

●

p1

t1

p3

p2 t2

t3

●

p2

t1

p4

p5
t2

t3

●

●

p1 p3

p3

p4

p5

(c)

Figure 11.13. Three binary PNs: (a) t1 is a fork transition that triggers two concurrent
processes; (b) t1 is a join transition between two concurrent processes; (c) models a
nondeterministic choice: after t1 is fired, both t2 and t3 are enabled, but only one them
can be fired.

Figure 11.13(a) models a fork transition. t1 is enabled. When fired, it triggers two
concurrent processes p2 and p3, which will be followed respectively by p4 and p5.

Figure 11.13(b) models a join transition: p1 then p3 runs concurrently with p2 then
p4. At that point t1 is enabled. It triggers a single activity in p5.

Figure 11.13(c) models nondeterminism: after the firing of t1 both t2 and t3 are
enabled but conflicting. A nondeterministic choice has to be made on pursuing with
either p3 or p4. Note that in the PNs (a) and (b), both t2 and t3 may be enabled but
they are not conflicting; the order in which they are fired is not critical.

The case (not depicted) of a place 𝑝 with two parent transitions models a disjunction
of two events either of which tiggers the activity corresponding to 𝑝. □

It is convenient to note a marking 𝜇 of a binary PN by the subset of places that hold
a token in 𝜇, as illustrated next

p1 p2

t1
●

t2

p6

p3 p4

p7

t7

p8

p9
p5

p11

t8

t10

p10 t9

p12

●

t11

p0

t12

Figure 11.14. A binary Petri Net modeling two simple concurrent processes and a non-
deterministic choice.

Example 11.19. Figure 11.14 models a simple packaging domain. A token in p1
means that a new order arrives. This order is preprocessed (p2) followed by two
concurrent processes, machining (from p3 to p5), and package preparation (from p6
to p8). When both finishes, p9 holds a token. It corresponds to an inspection activity.
Depending on its result, the package is either shipped (p10) or recycled (p11).

Let us analyze how the marking of this PN evolves. The initial marking 𝜇0,1 shown
in Figure 11.14 enables only t1, since t8 and t11, successors of p0, have parents without

294 11 Acting with Nondeterministic Models

tokens. After firing t1, transition t2 is enabled. It has two successors. t2 is a fork
allowing the two subnets starting in p3 and p6 to run concurrently. Symmetrically, t7
has two parents. It synchronizes the ending of the two concurrent subnets (machining
and package preparation) into a join, enabled when both p5 and p8 have a token.
Sequential firing resumes with t7, leading to the marking 𝜇0,9 with one token in p9
and the original one in p0.

The two successors of p9 are enabled in 𝜇0,9, but conflicting; only one transition
can be fired. The nondeterministic choice between t8 and t10 may be conditioned on
an external test (e.g., the inspection activity in the packaging domain), or it may rely
on a heuristic, or a look-ahead to tell which choice is preferable on the long run for a
utility criteria or for reaching some goal marking.

Place p0 has two successors as well as two parents. It might also involve a
nondeterministic choice if both p9 and p11were marked, enabling the conflicting t8
and t11. But this situation cannot happen from the marking 𝜇0,1, which can only lead
to 𝜇0,9, from which the PN reaches a stop after firing either ⟨t8, t9⟩ or ⟨t10, t11,t12⟩.

Figure 11.15 gives the marking graph of the previous PN (marking are denoted by
the places holding a token). Any path in that graph from node 𝜇0,1 to 𝜇0,9 is possible,
hence markings such as 𝜇0,3,8 or 𝜇0,4,7 may or may not be reached. This marking
graph is acyclic: it stops at 𝜇0. But in general marking graphs are cyclic. □

0,1 0,2 0,3,6

0,3,7

0,4,6

0,3,8

0,4,7

0,5,6

0,4,8

0,5,7
0,5,8 0,9

10 0

0,11
12

Figure 11.15. Marking graph of the PN in Figure 11.14. A node is a marking 𝜇 labeled
with the subset of places that hold a token.

In summary, a PN models activities and events with simple sequences
⟨place, transition, place, . . .⟩ and with:

1. fork transitions followed by concurrent processes, e.g., the fork t2 in previous
example,

2. join transitions, synchronizing processes, e.g., the join t7,
3. nondeterministic choices between follow up processes, e.g., the between t8 and

t10 in p9,
4. disjunctions of events that may lead to a state, e.g., t9 or t12 for 𝜇0.

In some cases a place does not represent an entire process, but possibly its beginning,
its end or a logical condition, such as p0 that ends the PN activity. For that reason
transition with two successor places may be a particular fork. For example, if we add
in the PN of Figure 11.14 two edges (t9, p1) and (t11, p1), the process goes back to
its initial marking 𝜇0,1 once it reaches its marking 𝜇0, instead of stopping.

11.4 Petri Nets 295

11.4.2 An Acting Engine for Petri Nets

The basic PN interpretation described above defines a state transition system with
instantaneous transitions from a marking 𝜇 to a marking 𝛾(𝜇, t). It does not distinguish
between a place just receiving a token and place ready to transfer the token to the next
marking. Let us see how to extend this interpretation.

Consider a binary PN where transitions are instantaneous events, e.g., the starting of
an action, and places model durative activities, e.g., performing an action, computing,
testing a condition, reading a sensor. The activity starts when a place 𝑝 receives a
token. When the activity finishes, this is signaled by some mean, e.g., a flag, telling
that 𝑝 is ready to pass over the token to the next marking. It may stay ready for a
while until all other places in In(𝑡) are also ready and allow the firing of 𝑡.

This mechanism is easily extended to nonbinary PN. It can be implemented by
revising the firing rules (i) to (iii) with the notion of a firable transition conditioned
of the transition being enabled and its parents ready. We add the rule:

(i)’ a transition t is firable if it is enabled and all the places in In(t) are ready.

Only firable transition can be fired: 𝛾(𝜇, t) = nil unless t is firable in 𝜇.
PNAE is a simple nondeterministic algorithm for acting with a PN. If there are

no enabled transitions, the PN has reached a termination state or a deadlock (e.g.,
the marking 𝜇0 of Figure 11.14). PNAE returns the current marking from which
the termination or deadlock can be identified. If there are enabled but no firable
transitions, then one transition may eventually become firable when all its input
places are ready; PNAE loops. The Select procedure in step 2 has to distinguish
conflicting from non-conflicting transitions. If 𝑡 is not conflicting with any other
transition in Firable, then firing 𝑡 does not reduce Enabled nor Firable; the other
firable transitions will be fired in the following iterations. If 𝑡 is conflicting, there is
an exclusive and critical choice of a transition in the conflict set to fire.

PNAE(𝜇)
while True do

Enabled← {𝑡 ∈ Transitions | 𝑡 is enabled in 𝜇}
1 if Enabled =∅ then return 𝜇

Firable← {𝑡 ∈ Enabled | 𝑡 is firable}
if Firable ≠ ∅ then

2 𝑡 ← Select(Firable)
𝜇← 𝛾(𝜇, 𝑡) // 𝑡 is fired

Algorithm 11.3. A Petri Net Acting Engine, PNAE.

In a sequence of firings, PNAE may trigger concurrent activities in different places,
but not simultaneously. For example, after firing t2 in Figure 11.14, the algorithm
pursues either in p3 or p6, while both may start running simultaneously. In other
words, there is no edge (0, 3, 6) to (0, 4, 7) in the marking graph of Figure 11.15. Often,
the difference between starting sequentially or simultaneously concurrent subnets may

296 11 Acting with Nondeterministic Models

not be important, since firing is supposed to be instantaneous and PNEA loop is very
simple. However in other cases, sequential firing may not lead to concurrent activities
in parallel places. In some cases, one may want to allow concurrent branches to start
simultaneously when there are no synchronization constraint. This can be emulated
with PNAE by ordering Firable such that whenever possible concurrent branches
are progressed alternatively, following a “fairness” principle. A dynamic ordering
of Firable at each iteration is preferable to the fixed ordering of all transitions (as
usually assumed in PN literature), but it requires some scheduling mechanism. This
emulation of simultaneous concurrent triggering by ordering transitions is however
rather constrained in distributed systems. A concurrent version of PNAE allowing non-
conflicting transitions to trigger simultaneously may be preferable (see Exercise 11.8).

11.4.3 Modeling an Acting Domain with Petri Nets

Modeling an action. To model a primitive action 𝑎𝑖 with a PN, we need at least
two transitions t𝑠𝑡𝑎𝑟𝑡

𝑖
and t𝑒𝑛𝑑

𝑖
separated by a place p𝑟𝑢𝑛𝑛𝑖𝑛𝑔

𝑖
. The latter holds a token

as long as 𝑎𝑖 is executing; it becomes ready when execution finishes. It is also
convenient to have a place before t𝑠𝑡𝑎𝑟𝑡

𝑖
and a place after t𝑒𝑛𝑑

𝑖
in order to link 𝑎𝑖 with

whatever takes place before and after 𝑎𝑖 . In general, 𝑎𝑖 may succeed or fail. This can
be modeled with a nondeterministic choice in p𝑟𝑢𝑛𝑛𝑖𝑛𝑔

𝑖
(see Figure 11.16(a)). The

branching over the two successor transitions is conditioned on a value returned when
𝑎𝑖 finishes. The same construct can be used to model different outcomes of 𝑎𝑖 , e.g.,
for a sensing action.

tstart
tend

tfail
prunningpready

pdone

pfail

ai

(a)

ploop
pend

aj pjready

ai
piready

(b)

Figure 11.16. (a) A PN model for an action with two possible outcomes; (b) A PN model
for a loop over two actions.

Combining actions into tasks. A sequence of two actions ⟨𝑎𝑖 , 𝑎 𝑗⟩ can be modeled
by merging p𝑑𝑜𝑛𝑒

𝑖
with p𝑟𝑒𝑎𝑑𝑦

𝑗
: the transition t𝑠𝑡𝑎𝑟𝑡

𝑗
can be triggered as soon as

p𝑑𝑜𝑛𝑒
𝑖

has a token, meaning that 𝑎𝑖 finishes and 𝑎 𝑗 starts. To model the concurrent
execution of 𝑎𝑖 and 𝑎 𝑗 , we use a fork transition with two successors p𝑟𝑒𝑎𝑑𝑦

𝑖
and

p𝑟𝑒𝑎𝑑𝑦
𝑗

. A conditional execution of an action is modeled with a place followed by a
nondeterministic choice. This is illustrated in Figure 11.16(b) for modeling a loop:

11.4 Petri Nets 297

here 𝑎 𝑗 follows 𝑎𝑖 conditioned on the branching in p𝑙𝑜𝑜𝑝 which tests some external
condition and either loops over 𝑎 𝑗 or exits to p𝑒𝑛𝑑 .

Composition of PNs. The composition of several PNs representing individual tasks
is an essential operation for a modular design. PNs can be composed in different ways.

A composition, called PN chaining, merges two places from two PNs, as we did
for the sequence of two actions. These merged places have to meet a few conditions
allowing for a proper dynamic of the composed network. For example, one could
merge the place p𝑒𝑛𝑑 in Figure 11.16(b) with a place p𝑟𝑒𝑎𝑑𝑦 of a sequence of actions.

Another type of PN composition, called synchronous products, merges transitions.
This is particularly convenient for composing concurrent activities by merging their
triggering transitions into a fork, as illustrated in Example 11.20.

More complex compositions can be performed through the simultaneous merging
of several pairs of places and/or transitions of two networks.

Let us illustrate with a simple example composition of PN by merging transition.tmach

parts in
stock

tmach Part in
machine

machining Part
ready

tinsp

machine
idle

trecyc

robot
idle

tinsp

tmach

tdeliv

Part in
inspect.

assembly

inspect.
idle

tinsp inspection

good
tdeliv

faulty
trecyc

(a)

tmach

parts in
stock

tmach Part in
machine

machining Part
ready

tinsp

machine
idle

trecyc

robot
idle

tinsp

tmach

tdeliv

Part in
inspect.

assembly

inspect.
idle

tinsp inspection

good
tdeliv

faulty
trecyc

(b)

Figure 11.17. (a) A PN model of the activity performed by the robot; (b) a PN model of
the machining cycle.

Example 11.20. Here, we extend VSR domain of Example 11.17. The robot has to
serve a simple jobshop by bringing parts from an entry stock to a machining station,
then an assembly and inspection station, then to a delivery dock or to a recycling bin,
depending on the result of the inspection of the part. Four PNs model the domain.

At the highest level, a PN has one place, stating that the robot is free, and four
transitions models the robot’s activity (Figure 11.17(a)) :

• t𝑚𝑎𝑐ℎ: the robot takes a part from the entry stock to the machining station,
• t𝑖𝑛𝑠𝑝: it takes a machined part to the assembly and inspection station,
• t𝑑𝑒𝑙𝑖𝑣 : it takes a good assembled part to the delivery dock,
• t𝑟𝑒𝑐𝑦𝑐: it takes a faulty assembled part to the recycling bin.

Each of these transitions correspond to a task to be hierarchically refined into subnets
(see Exercise 11.6). Other places will be added as predecessors of these transitions
to condition their firing in a varying and context depend order.

Transition t𝑚𝑎𝑐ℎ requires to have parts available in the entry stock and the machining
station to be ready to take a new part. These two conditions are modeled with two PNs

298 11 Acting with Nondeterministic Models

showed respectively in Figure 11.18(a) and Figure 11.17(b). The first one assumes
an infinite number of parts in the entry stock; a more realistic model would use a
nonbinary PN and handle the replenishing of the stock. The second PN models the
machining action and loops through t𝑖𝑛𝑠𝑝 to an additional place in In(t𝑚𝑎𝑐ℎ).

The PN in Figure 11.18(b) models similarly the assembly and inspection stage
with a branching conditioned on whether the finished part is good or faulty; the
corresponding places are connected respectively to t𝑑𝑒𝑙𝑖𝑣 and t𝑟𝑒𝑐𝑦𝑐𝑙.

The global PN for this example is obtained by merging their four identically named
transitions: t𝑚𝑎𝑐ℎ, t𝑖𝑛𝑠𝑝𝑒𝑐, t𝑑𝑒𝑙𝑖𝑣 and t𝑟𝑒𝑐𝑦𝑐 (see Exercise 11.5). The next modeling
step is to refine hierarchically each of these four transitions into a more detailed PN
that describes what the robot does (see Exercise 11.6). □

tmach

parts in
stock

tmach Part in
machine

machining Part
ready

tinsp

machine
idle

trecyc

robot
idle

tinsp

tmach

tdeliv

Part in
inspect.

assembly

inspect.
idle

tinsp inspection

good
tdeliv

faulty
trecyc

(a)

tmach

parts in
stock

tmach Part in
machine

machining Part
ready

tinsp

machine
idle

trecyc

robot
idle

tinsp

tmach

tdeliv

Part in
inspect.

assembly

inspect.
idle

tinsp inspection

good
tdeliv

faulty
trecyc

(b)

Figure 11.18. (a) A PN model of the entry stock ; (b) a PN model of the assembly and
inspection cycle.

Hierarchical PNs. Hierarchization is another important operation for a modular
specification of a domain. A hierarchical Petri Net can be defined by expanding a
place into a subnetwork starting and finishing with a place. For example the place
p𝑟𝑢𝑛𝑛𝑖𝑛𝑔 in Figure 11.16(a) can be expanded as the network in Figure 11.16(b):
p𝑟𝑢𝑛𝑛𝑖𝑛𝑔 may eventually become ready when a token in Figure 11.16(b) reaches p𝑒𝑛𝑑 .
Not every place can be expanded into any subnetwork, e.g., p𝑙𝑜𝑜𝑝 can be expanded
only in a network that allows for a choice of pursuing or finishing the loop. Similarly,
a high level transition can be refined, as for a task, into a subnetwork starting and
finishing with a transition.

11.4.4 Verification and Validation of Petri Nets

The analysis of a Petri Net G seeks to prove various correctness properties of a
system modeled by G. Let ⟨𝜇0, 𝜇1, . . .⟩ be a sequence of markings corresponding to
a sequence of legal firings of transitions in G. For a given application, the following
questions can be of interest:

• is there a sequence ⟨𝜇0, . . . , 𝜇𝑔⟩ that leads from 𝜇0 to a goal marking 𝜇𝑔? Is G
re-initializable, i.e., can G be brought from any marking 𝜇 back to 𝜇0?

11.4 Petri Nets 299

• is there a deadlock in G, that is a marking from which no transition is enabled?
is such deadlock reachable from 𝜇0?

• is there a dead transition 𝑡 in G that will never be enabled from 𝜇0? Conversely,
is 𝑡 potentially alive, i.e., does a sequence ⟨𝜇0, . . . , 𝜇⟩ exist such that 𝜇 enables
𝑡? Is 𝑡 alive, i.e., potentially live for any 𝜇 reachable from 𝜇0?

• is G bounded starting from 𝜇0, i.e., is there a constant 𝑘 such that no place in
G will hold more than k tokens in any sequence starting from 𝜇0? Is G always
bounded?

When G is always bounded then its state space is finite. Note that a binary PN is
bounded by definition; its transition graph is of size in 𝑂 (2 |𝑃𝑙𝑎𝑐𝑒𝑠 |).

There are two main classes of methods for analyzing PN: structural analysis tech-
niques and reachability analysis techniques. Structural analysis focuses on the ‘struc-
ture’ or topological properties of the PN graph. These are usually formulated as place
invariance or transition invariance properties. Structural analysis techniques are com-
putationally fast but never complete: they can fail to prove a true property of a PN.
Reachability analysis explores (part of) the state space, i.e., the marking graph of a
PN. They are computationally expensive but complete. Implicit exploration methods,
such as model checking, allow scaling up reachability analysis in many applications.
Note however that correctness properties are not preserved by composition nor hier-
archical refinement, i.e., proving the correctness of each PN component in a modular
design does not guarantee that the composed PN is correct.

The basic PN representation considered in this section is implicitly “grounded”:
it refers to constant objects, values and propositions. Generalizing the domain of
Example 11.20 with several robots, locations and working stations, as in Example 14.4,
would demand extensive modeling for each fully grounded instance of such a domain.

The basic PN representation can be extended in different ways, for example:

• PNs with integer weights on arcs, specifying the number of tokens a transition
consumes and produces when it fires (these weights replace “1” in the firing
rules (i) and (ii) of Section 11.4.1);

• PNs with temporal constraints specifying an interval for the duration of an activ-
ity in a place, or how long a transition can remain enabled once its predecessors
have tokens without being fired;

• PNs with typed tokens and labels on transitions, conditioning their firing to the
testing an external predicate.

• Colored Petri Nets where tokens are programming objects of different classes
permitting various computational operations in places that hold them. Colored
PN are Turing complete.

Conversely, we may restrict the basic PN model in different ways, for example:

• PN where every transition is preceded and followed by only one place, that
is |In(𝑡) | = |Out(𝑡) | = 1. This class of PN, called state machines, has the
expressiveness of finite state automata

• PN where every place is preceded and followed by at most one transition. This
class, called marked graphs, exclude nondeterministic choices.

300 11 Acting with Nondeterministic Models

The analysis of these restricted classes is simpler, but their expressiveness is limited.
An extensive literature discusses the properties of the mentioned types of PNs

(see next section). For our purpose here, the important point to underline is that the
formalism of PN is very rich, with the following caveats:

• Modeling a domain with PN requires significant engineering efforts. There are
only a few contribution to the synthesis of PN models. To our knowledge, there
is no easy way for mapping a factored representation of a state space into a PN
whose marking graph represents such a state space. Nor is there conversely an
easy way of going from a PN to the factored representation it represents. One
has to specify the two in parallel and make sure that they map consistently.

• The correctness analysis of PN is a significant advantage for the development
of safety critical applications; it pays for the modeling effort. Tools such
as TINA [123] or CPN [549], allow for a modular design and perform quite
efficiently their analysis on the composed PN (since correctness is not preserved
by composition). Generalized PN are more complex to analyze.

11.5 Discussion and Bibliographic Notes

Finite State Automata. FSA have been used as acting models in which a primitive
action is represented as an FSA whose transitions are labelled with sensory-motor
signals and commands. For example, FSA have been used jointly with a temporal
planner IxTeT [219]. PLEXIL illustrates a FSA representation in which nodes are
computational abstractions [1136]. A node can monitor events, execute commands,
or assign values to variables. It may refer hierarchically to a list of lower level nodes.
Execution is controlled by constraints (start, end), guards (invariant), and conditions.
SMACH [150], the execution system of the Robot Operating System, ROS, also
implements an automata-based approach. The user writes a set of hierarchical state
machines. Each state corresponds to the execution of a particular command. The
interface with ROS actions, services, and topics is very natural, but the semantics of
constructs available in SMACH is limited for reasoning on goals and states.

There is a vast literature on the specification, verification, and synthesis of au-
tomata, including works on automata theory. For a nice introduction to automata
theoretic approach to linear temporal logic see [1116]. The techniques presented in
Section 11.2 for acting with input/output automata are based on the work on planning
with asynchronous processes, which have has been first proposed in [902] and then
formalized and extensively evaluated in [129]. Such techniques have been extended
to deal with service oriented applications in [188].

Behavior Trees. BTs expressiveness is equivalent to that of finite state automata,
but BTs have been found more convenient for supporting task hierarchy, reactivity to
events, and modular design. They were first introduced for computer gaming to control
automated opponents [544], and applied in the video games industry [762, 365]. They
have been further developed in other areas, notably in robotics, and extended with
planning and learning capabilities (see Chapter 11). A comprehensive coverage of

11.6 Exercises 301

BT is given in [252] and the survey [542]. Several development tools and BT libraries
are listed in [542]. BTs have been extended for parallel execution [250], runtime
verification [254], and for handling concurrency [251].

Acting systems with BT are becoming popular, particularly in robotics. For exam-
ple, the open robotics navigation package NAV2 (a successor of the navigation stack
of ROS) supports BT for reconfiguration and adaptation to the specifics of a robotics
application.14 Other systems uses BT as an acting system for ground robots, e.g.,
[757, 876], aerial robots [678, 206], or underwater robots [1047].

Petri Nets. PNs have been proposed in the early sixties by Petri [893] as a represen-
tation for studying communicating automata. They have been widely developed as
a formal model for the specification and analysis of event based systems, convenient
for their ability to express concurrency and synchronization with constraints, such as
conflicts and mutual exclusion.

The basic PN model was extended in may directions, e.g., transitions with priorities
and/or timing constraints, typed tokens, labels depicting conditions on places and
tokens (colored PN), and probabilistic firing delays on transitions (stochastic PN).
Research on PN is very active, with a yearly conference [117], and numerous surveys
and text books, e.g., [892, 548, 296]. Example 11.20 is inspired from [204]. The
automated synthesis of PN models has received a few contributions, e.g., [72].

PN developments have been associated with several software tools to support
the specification, modeling and analysis of systems. The Petri Nets community
maintains a repository of references and services,15 including an extensive database
of software packages, among which TINA [123] and CPN [549] offer extensive
verification capabilities for timed and colored PN.

In the context of acting and planning, concurrency and synchronization issues very
frequently arise at the primitive action level. They have been addressed with PNs in a
several approaches, e.g., to model the proper order of the execution of actions and their
required coordination [1148]. The model can be used in simulation for verification and
performance testing. ASPiC [696] is an acting system which models robot’s skills
(i.e., primitive actions) using a specific colored PN representation [911]; it offers
some soundness and safety verification capabilities. Other PN-based approaches have
been pursued, e.g., to specify acting systems whose properties can be validated with
reachability and deadlock analysis [82, 1237]. Planning techniques based on Petri
Nets are proposed in e.g., [166, 1237].

11.6 Exercises

11.1. Can all (memoryless) policies be written as contingent plans, that is, plans with
conditional tests? Vice versa? Explain the answer with some examples.

11.2. Consider Figure 11.19.
14See https://www.behaviortree.dev/
15see https://www.informatik.uni-hamburg.de/TGI/PetriNets/index.php

https://www.behaviortree.dev/
https://www.informatik.uni-hamburg.de/TGI/PetriNets/index.php

302 11 Acting with Nondeterministic Models

move(r1,l1,l4)

s2

s1 s4

at(r1,l4)

move(r1,l2,l3)

s3

at(r1,l1)

at(r1,l2)
at(r1,l5)

at(r1,l3)

s5

Figure 11.19. A nondeterministic state-transition system.

(a) Give an example of an unsafe solution 𝜋1, a cyclic safe solution 𝜋2 and an
acyclic safe solution 𝜋3 to the problem of moving from s1 to s5, if one exists.
Draw their reachability graphs, circling the leaves.

(b) Suppose the initial state was s2 instead of s1. Are 𝜋1, 𝜋2, and 𝜋3 solutions? If
so, what kinds?

11.3. Prove that a policy 𝜋 is an unsafe solution iff

∃𝑠 ∈ leaves(𝑠0, 𝜋) s.t. 𝑠 ∉ 𝑆𝑔 ∨ ∃𝑠 ∈ 𝛾̂(𝑠0, 𝜋) s.t. leaves(𝑠, 𝜋) = ∅

11.4. Rewrite the definitions of safe cyclic and acyclic solutions (see Section 11.1.2)
to ensure that these solutions reach the goal and then continue looping within the
set of goal states. Additionally, define solutions that traverse the set of goal states
infinitely often.

11.5. Define the global PN obtained by composing the four nets given in Exam-
ple 11.20.

11.6. Define a PN for refining each of the four transitions of Example 11.20:

• t𝑚𝑎𝑐ℎ: the robot goes to the entry stock, takes a part and brings it to the
machining station,

• t𝑖𝑛𝑠𝑝: it goes to the machining station, takes a machined part and brings the
assembly and inspection station,

• t𝑑𝑒𝑙𝑖𝑣 : it goes to the inspection station, takes a good assembled part and brings
it to the delivery dock,

• t𝑟𝑒𝑐𝑦𝑐: it goes to the inspection station, takes a faulty assembled part and brings
it to the recycling bin.

11.7. Is there a dead transition in the PN of Figure 11.20 from the marking shown?
Does this PN have a deadlock?

11.6 Exercises 303

Figure 11.20. Example PN for Exercise 11.7.

11.8. This exercise is about the study of CoPNAE, a PN acting algorithm that handles
concurrency. We assume that a concurrent execution in a PN starts only after the firing
of a transition explicitly labelled as a fork. The concurrent subnets following a fork
may have links to the rest of a PN, in particular they may have incoming and outgoing
edges, e.g., to bring tokens from, or to constrain a synchronization with, other parts
of a PN. We do however assume that the set of places and the set of transitions in each
concurrent subnet are proper to that subnet, i.e., there is no overlap with the places or
transitions in the rest of the PN (the fork and possibly the join transition are no within
the concurrent subnet). We also assume that there are no conflicts across subnets, i.e.,
any conflicting pair (𝑡, 𝑡′) is either within a subnet or outside of it. This is in particular
to permit a choice in a conflict that remains local in a subnet.

We associate to a fork 𝑡 followed by 𝑘 concurrent branches a partition of the set
Transitions into Fork(𝑡) = {𝐵𝑡1, . . . , 𝐵𝑡𝑘 , 𝐵𝑡0}, where the 𝐵𝑡𝑖 for 1 ≤ 𝑖 ≤ 𝑘 are
the disjoint subsets of transitions corresponding to the concurrent subnet branches
starting at 𝑡, and 𝐵𝑡0 = Transitions \ ∪𝑖=1,𝑘𝐵𝑇𝑖 . For example, if t2 in Figure 11.14 is
labeled as a fork, then Fork(t2) = {{t3, t4}, {t5, t6}, Transitions \ {t3, t4, t5, t6}},

CoPNAE(𝜇, Transitions)
while True do

Enabled← {𝑡 ∈ Transitions — 𝑡 is enabled in 𝜇}
1 if Enabled =∅ then return(𝜇)

Firable← {𝑡 ∈ Enabled — 𝑡 is firable}
2 𝑡 ← Guide (Firable)

𝜇← 𝛾(𝜇, 𝑡) // 𝑡 is fired
if 𝑡 is a fork then

Mu← ∅
for each Bt ∈ Fork(𝑡) concurrently do

3 Mu← Mu ∪ {CoPNAE(𝜇, 𝐵𝑡)}
4 𝜇← Update(𝜇, 𝑀𝑢)

Algorithm 11.4. A Concurrent Petri Net Acting Engine, CoPNAE

After firing a fork transition 𝑡, algorithm CoPNAE (Algorithm 11.4) pursue con-

304 11 Acting with Nondeterministic Models

currently the execution in every concurrent subnet following 𝑡, as well as in the
remaining part of the network, focusing on the transitions specific to each component
of the partition Fork(𝑡). Mu is the set of firings returned by the concurrent calls. It
used by Update to compute a marking 𝜇 identical to the one obtained by advancing
sequentially on the components of Fork(𝑡), assuming that conflicts, if any, would be
solved in identical ways in the concurrent as well as the sequential cases.

Prove that Update can be expressed in the vector notation of markings as:∑︁
𝜇𝑖∈𝑀𝑢

𝜇𝑖 − 𝑘 × 𝜇

(Here 𝜇 is a vector of |Places| integer components, with the usual sum and scalar
multiplication over vectors)

Run CoPNAE on the PN of Figure 11.14. Compare with PNAE.

11.9. Let 𝑣 be an interior BT node with Children(𝑣) = ⟨𝑣1, . . . , 𝑣𝑛⟩, and suppose
exec-status(𝑣𝑖) ∈ {Success, Failure} for every 𝑣𝑖 ∈ Children(𝑣).

(a) Suppose we assign the following numeric values to execution statuses:
Success = 1, and Running = Failure = 0. Prove that if type(𝑣) = And,
then

exec-status(𝑣) ≡ min(exec-status(𝑣1), . . . , exec-status(𝑣𝑛)). (11.1)

(b) Suppose we assign the following numeric values to execution statuses:
Success = Running = 1, and Failure = 0. Prove that if type(𝑣) = Or, then

exec-status(𝑣) ≡ max(exec-status(𝑣1), . . . , (exec-status(𝑣𝑛)). (11.2)

(c) Suppose we assign the following numeric values to execution statuses:
Success = 1, Running = 0.5, and Failure = 0. Then do (11.1) and (11.2)
still hold? Why or why not?

11.10. Develop the behavior tree in Figure 11.12 the handle the case where the
condition hold(𝑟)=free does not hold by having the robot move it needed to the
recycling bin and putting what it holds there.

12 Planning with Nondeterministic
Models

In this Chapter, we propose different approaches to planning with nondeterminis-
tic models. We describe three techniques for planning with nondeterministic state
transition systems: And/Or graph search (Section 12.1), planning based on on de-
terminization techniques (Section 12.2), and planning via symbolic model checking
(Section 12.3). We then present techniques for planning by synthesis of input/output
automata (Section 12.4). We finally discuss briefly techniques for Behavior Trees
generation (Section 12.5).

12.1 And/Or Graph Search

A nondeterministic model can be represented as an And/Or graph (see Appendix A)
in which each Or-branch corresponds to a choice among the actions that are applicable
in a state, and each And-branch corresponds to the possible outcomes of the chosen
action. In this section, we present algorithms that search And/Or graphs to find
solutions.

Find-Solution (Σ, 𝑠0, 𝑆𝑔)
𝜋 ← ∅; 𝑠← 𝑠0; Visited← {𝑠0}
loop

if 𝑠 ∈ 𝑆𝑔 then return 𝜋
𝐴′ ← Applicable(𝑠)
if 𝐴′ = ∅ then return failure
nondeterministically choose 𝑎 ∈ 𝐴′
nondeterministically choose 𝑠′ ∈ 𝛾(𝑠, 𝑎)
if 𝑠′ ∈ Visited then return failure
𝜋(𝑠) ← 𝑎; Visited← Visited ∪ {𝑠′}; 𝑠← 𝑠′

Algorithm 12.1. Planning for solutions by forward search.

We first present a simple algorithm that finds a solution by searching the And/Or
graph forward from the initial state. Find-Solution (see Algorithm 12.1) is guaranteed
to find a solution if it exists. The solution may be either safe or unsafe. It is a simple
modification of forward state-space search algorithms for deterministic models (see
Section 3.1). The main point related to nondeterminism is in the “progression” line
(nondeterministically choose 𝑠′ ∈ 𝛾(𝑠, 𝑎)), where we nondeterministically search
for all possible states generated by 𝛾(𝑠, 𝑎). Find-Solution simply searches the And/Or

Free pre-publication, for personal use only. To be published by Cambridge University Press.

305

306 12 Planning with Nondeterministic Models

graph to find a path that reaches the goal, without keeping track of which states are
generated by which action. In this way, Find-Solution ignores the real complexity of
nondeterminism in the model. It deals with the And-nodes as if they were Or-nodes,
that is, as if it could choose which outcome would be produced by each action.

Recall that the nondeterministic choices “nondeterministically choose 𝑎 ∈ 𝐴′”
and “nondeterministically choose 𝑠′ ∈ 𝛾(𝑠, 𝑎)” correspond to an abstraction for
ignoring the precise order in which the algorithm tries actions 𝑎 among all the
applicable actions to state 𝑠 and alternative states 𝑠′ among the states resulting from
performing 𝑎 in 𝑠.

Example 12.1. Consider the problem described in Example 11.1. Let the initial
state 𝑠0 be on_ship, and let the set of goal states 𝑆𝑔 be {gate1, gate2}. Find-Solution
proceeds forward from the initial state on_ship. It finds initially only one applica-
ble action, that is, unload. It then expands it into at_harbor, one of the possible
nondeterministic choices is 𝑠′ = parking1, which gets then expanded to gate2; 𝜋1
(see Example 11.2) is generated in one of the possible nondeterministic execution
traces. □

Find-Safe-Solution (Σ, 𝑠0, 𝑆𝑔)
𝜋 ← ∅
Frontier← {𝑠0}
for every 𝑠 ∈ Frontier \ 𝑆𝑔 do

Frontier← Frontier \ {𝑠}
if Applicable(𝑠) = ∅ then return failure
nondeterministically choose 𝑎 ∈ Applicable(𝑠)
𝜋 ← 𝜋 ∪ (𝑠, 𝑎)
Frontier← Frontier ∪ (𝛾(𝑠, 𝑎) \ Domain(𝜋))
if has-unsafe-loops(𝜋, 𝑎,Frontier) then return failure

return 𝜋

Algorithm 12.2. Planning for safe solutions by forward search.

Algorithm 12.2 Find-Safe-Solution is a simple algorithm that finds safe solutions.
The algorithm performs a forward search and terminates when all the states in Frontier
are goal states. Find-Safe-Solution fails if the last action introduces a “bad loop”, that
is, a state from which no state in Frontier is reachable. The routine has-unsafe-loops
checks whether a “bad loop” is introduced. A “bad loop” is introduced when the set
of states resulting from performing action 𝑎, which are not in the domain of 𝜋, will
never lead to the frontier:

has-unsafe-loops(𝜋, 𝑎,Frontier) iff
∃𝑠 ∈ (𝛾(𝑠, 𝑎) ∩ Domain(𝜋)) such that 𝛾̂(𝑠, 𝜋) ∩ Frontier = ∅.

Algorithm 12.3 Find-Acyclic-Solution is a simple algorithm that finds safe acyclic
solutions. The algorithm is the same as Find-Safe-Solution, but in the failure condition.

12.1 And/Or Graph Search 307

Find-Acyclic-Solution (Σ, 𝑠0, 𝑆𝑔)
𝜋 ← ∅
Frontier← {𝑠0}
for every 𝑠 ∈ Frontier \ 𝑆𝑔 do

Frontier← Frontier \ {𝑠}
if Applicable(𝑠) = ∅ then return failure
nondeterministically choose 𝑎 ∈ Applicable(𝑠)
𝜋 ← 𝜋 ∪ (𝑠, 𝑎)
Frontier← Frontier ∪ (𝛾(𝑠, 𝑎) \ Domain(𝜋))
if has-loops(𝜋, 𝑎,Frontier) then return failure

return 𝜋

Algorithm 12.3. Planning for safe acyclic solutions by forward search.

It fails if the last action introduces a loop, that is, a state from which the state itself is
reachable by performing the plan:

has-loops(𝜋, 𝑎,Frontier) iff
∃𝑠 ∈ (𝛾(𝑠, 𝑎) ∩ Domain(𝜋)) such that 𝑠 ∈ 𝛾̂(𝑠, 𝜋)

Example 12.2. Consider the problem 𝑃 with nondeterministic model Σ described in
Example 11.1, initial state on_ship, and set of goal states 𝑆𝑔 as {gate1, gate2}. Find-
Acyclic-Solution starts from the initial state on_ship, for every state 𝑠 in the frontier
expands the frontier by performing 𝛾(𝑠, 𝑎). A successful trace of execution evolves
as follows1:

Step0 : on_ship
Step1 : at_harbor
Step2 : parking2, parking1, transit1
Step3 : transit3, gate1, gate2, transit2
Step4 : gate1, gate2

□

We introduce now a technique that is based on a cost model of actions. Recall cost
models defined in Section 2.2. We assign a cost to each action that is performed in
a state, 𝑐𝑜𝑠𝑡 (𝑠, 𝑎). Weighting actions with cost can be useful in some application
domains, where, for instance, actions consume resources or are more or less difficult
or expensive to perform. Algorithm 12.4 Find-Acyclic-Solution-by-MinMax uses costs
to identify which may be the best direction to take. It starts from the initial state
and selects actions with minimal costs among the ones that are applicable. We
are interested in finding a solution with the minimum accumulated cost, that is, the
minimum of the costs of each action that is selected in the search. Because the domain
model is nondeterministic and 𝛾(𝑠, 𝑎) results in different states, we want to minimize

1For simplicity, in the following we use on_ship, at_harbor, and so on, as names of states rather than a
state variable notation.

308 12 Planning with Nondeterministic Models

Find-Acyclic-Solution-by-MinMax (Σ,𝑆0,𝑆𝑔)
return Compute-worst-case-for-action(𝑆0, 𝑆𝑔,∞, ∅)

Compute-worst-case-for-action(𝑆, 𝑆𝑔, 𝛽, ancestors)
𝑐′ ← −∞
𝜋′ ← ∅
// if S is nonempty, this loop will be executed at least once:
for every 𝑠 ∈ 𝑆

if 𝑠 ∈ ancestors then
return (𝜋′,∞)

(𝜋,𝑐)← Choose-best-action(𝑠, 𝑆𝑔, 𝛽, ancestors ∪{𝑠})
𝜋′← 𝜋 ∪ 𝜋′
𝑐′← max(𝑐′, 𝑐)
if 𝑐′ ≥ 𝛽 then

break
return (𝜋′, 𝑐′)

Algorithm 12.4. Planning for safe acyclic solutions by MinMax Search.

the worst-case accumulated cost, that is, the maximum accumulated cost of each of
the possible states in 𝛾(𝑠, 𝑎). This is given by the following recursive formula:

𝑐(𝑠) =
{

0 if 𝑠 is a goal,
min𝑎∈Applicable(𝑠) (cost(𝑎) +max𝑠′∈𝛾 (𝑠,𝑎) 𝑐(𝑠′)) otherwise.

For this reason, the algorithm is said to perform a “MinMax search.” While per-
forming the search, the costs of actions that are used to expand the next states are
accumulated, and the algorithm checks whether the accumulated cost becomes too
high with respect to alternative selections of different actions. In this way, the accu-
mulated cost is used to find an upper bound in the forward iteration.

Find-Acyclic-Solution-by-MinMax (Algorithm 12.4) finds safe acyclic solutions for
nondeterministic models that may have cycles. It returns a pair (𝜋,𝑐), where 𝜋 is a safe
acyclic solution that is worst-case optimal, that is, the maximum cost of executing 𝜋
is as low as possible, and 𝑐 is the maximum cost of executing 𝜋.

Find-Acyclic-Solution-by-MinMax implements a depth-first search by minimizing
the maximum sum of the costs of actions along the search. It alternates recursively
between calls to Choose-best-action (Algorithm 12.5) and Compute-worst-case-for-
action. The former calls the latter on the set of states 𝛾(𝑠, 𝑎) resulting from the
application of actions 𝑎 that are applicable to the current state 𝑠, where Compute-
worst-case-for-action returns the policy 𝜋′ and its corresponding cost 𝑐′. Visited states
are accumulated in the “ancestors” variable. Choose-best-action then updates the cost
of 𝜋 with the cost of the action (𝑐 = 𝑐′ + 𝑐𝑜𝑠𝑡 (𝑠, 𝑎)), and updates the policy with
the selected action in the current state (𝜋 = 𝜋′ ∪ (𝑠, 𝑎)). In the Choose-best-action
procedure, 𝛽 keeps track of the minimum cost of alternative policies computed at
each iteration, which is compared with the maximum cost computed over paths in 𝜋

12.2 Determinization Techniques 309

Choose-best-action(𝑠, 𝑆𝑔, 𝛽, ancestors)
if 𝑠 ∈ 𝑆𝑔 then

return (∅, 0)
else if Applicable(𝑠) = ∅ then

return (∅,∞)
else do
𝑐 = ∞
// this loop will always be executed at least once:
for every 𝑎 ∈ Applicable(𝑠) do
(𝜋′, 𝑐′) ← Compute-worst-case-for-action(𝛾(𝑠, 𝑎), 𝑆𝑔, 𝛽, ancestors)
if 𝑐 > 𝑐′ + 𝑐𝑜𝑠𝑡 (𝑠, 𝑎) then do
𝑐 ← 𝑐′ + 𝑐𝑜𝑠𝑡 (𝑠, 𝑎)
𝜋(𝑠) ← 𝑎

𝛽← 𝑚𝑖𝑛(𝛽, 𝑐)
return (𝜋, 𝑐)

Algorithm 12.5. The policy with minimal cost over actions.

by Compute-worst-case-for-action (see the instruction 𝑐′ = 𝑚𝑎𝑥(𝑐′, 𝑐)). If the current
children’s maximum cost 𝑐′ is greater than or equal to the current minimum cost 𝛽,
then the policy 𝜋′ gets discarded and control gets back to Choose-best-action which
chooses a different action.

Indeed, while we are considering each state 𝑠′ ∈ 𝛾(𝑠, 𝑎), the worst-case cost of a
policy that includes an action 𝑎 is greater than the maximum cost at each 𝑠′ visited so
far. We know that elsewhere in the And/Or graph there exists a policy whose worst
case cost is less than 𝛽. If the worst-case cost of a policy that includes 𝑎 is greater or
equal to 𝛽, then we can discard 𝑎.

Find-Acyclic-Solution-by-MinMax’s memory requirement is linear in the length of
the longest path from 𝑠0 to a goal state, and its running time is linear in the number
of paths from 𝑠0 to a goal state.

Find-Acyclic-Solution-by-MinMax ignores the possibility of multiple paths to the
same state. If it comes to a state 𝑠 again along a different path, it does exactly the same
search below 𝑠 that it did before. One could use memoization techniques to store these
values rather than recomputing them – which would produce better running time but
would require exponentially more memory. See Exercise 12.5.

12.2 Determinization Techniques

Determinization techniques address the problem of planning with nondeterministic
models by determinizing the nondeterministic model. Intuitively the idea is to consider
one of the possible many outcomes of a nondeterministic action at a time, using an
efficient classical planning technique to find a plan that works in the deterministic
case. Then different nondeterministic outcomes of an action are considered and a new

310 12 Planning with Nondeterministic Models

plan for that state is computed, and finally the results are joined in a contingent plan
that considers all the possible outcomes of actions. Of course, it may be that when
a partial plan is extended to consider new outcomes, no solution is possible, and the
algorithm must find an alternative solution with different actions.

12.2.1 Guided Planning for Safe Solutions

Before getting into the details, we show a basic idea underlying determinization tech-
niques. Safe solutions can be found by starting to look for (possibly unsafe) solutions,
that is, plans that may achieve the goal but may also be trapped in states where no ac-
tion can be executed or in cycles where there is no possibility of termination. The idea
here is that finding possibly unsafe solutions is much easier than finding safe solutions.
Compare indeed the algorithm for finding solutions Find-Solution and the one for find-
ing safe solutions Find-Safe-Solution in Section 12.1. Whereas Find-Solution does
not distinguish between And-branches and Or-branches, Find-Safe-Solution needs to
check that there are no unsafe loops, and this is done with the has-unsafe-loops
routine.

Guided-Find-Safe-Solution (Σ,𝑠0,𝑆𝑔)
if 𝑠0 ∈ 𝑆𝑔 then return(∅)
if Applicable(𝑠0) = ∅ then return(failure)
𝜋 ← ∅
loop
𝑄 ← leaves(𝑠0, 𝜋) \ 𝑆𝑔
if 𝑄 = ∅ then do
𝜋 ← 𝜋 \ {(𝑠, 𝑎) ∈ 𝜋 | 𝑠 ∉ 𝛾̂(𝑠0, 𝜋)}
return(𝜋)

select arbitrarily 𝑠 ∈ 𝑄
𝜋′ ← Find-Solution(Σ, 𝑠, 𝑆𝑔)
if 𝜋′ ≠ failure then do
𝜋 ← 𝜋 ∪ {(𝑠, 𝑎) ∈ 𝜋′ | 𝑠 ∉ Domain(𝜋)}

else for every 𝑠′ and 𝑎 such that 𝑠 ∈ 𝛾(𝑠′, 𝑎) do
𝜋 ← 𝜋 \ {(𝑠′, 𝑎)}
make 𝑎 not applicable in 𝑠′

Algorithm 12.6. Guided planning for safe solutions.

Algorithm 12.6 Guided-Find-Safe-Solution is based on this idea, that is, finding safe
solutions by starting from possibly unsafe solutions that are found by Find-Solution.
Guided-Find-Safe-Solution takes in as input a problem in a nondeterministic model
Σ with initial state 𝑠0 and goal states 𝑆𝑔. If a safe solution exists, it returns the safe
solution 𝜋. The algorithm checks first whether there are no applicable actions in
𝑠0. If this is the case, it returns failure. In the loop, 𝑄 is the set of all nongoal leaf
states reached by 𝜋 from the initial state. If there are no nongoal leaf states, then
𝜋 is a safe solution. When we have the solution, we get rid of the part of 𝜋 whose

12.2 Determinization Techniques 311

states are not reachable from any of the initial state (we say we “clean” the policy).
If there are instead nongoal leaf states reached by 𝜋, then we have to go on with the
loop. We select arbitrarily one of the nongoal leaf states, say, 𝑠, and find a (possibly
unsafe) solution from initial state 𝑠with the routine Find-Solution, see Algorithm 12.1.
If Find-Solution does not return failure, then 𝜋′ is a (possibly unsafe) solution, and
therefore we add to the current policy 𝜋 all the pairs (𝑠, 𝑎) of the (possibly unsafe)
solution 𝜋′ that do not have already a state 𝑠 in 𝜋. If a (possibly unsafe) solution does
not exists (the else part of the conditional) this means we are trapped in a loop or a
dead end without any possibility of getting out. We therefore get rid from 𝜋 of all
the pairs (𝑠′, 𝑎) that lead to dead-end state 𝑠. We implement this by making action
𝑎 not applicable in 𝑠′.2 In this way, at the next loop iteration, we will not have the
possibility to become stuck in the dead end.

12.2.2 Planning for Safe Solutions by Determinization

The idea underlying the Guided-Find-Safe-Solution algorithm is to use possibly-unsafe
solutions to find safe solutions. Find-Solution returns a path to the goal by considering
only one of the many possible outcomes of an action. Looking for just one action out-
come and finding paths inspires the idea of determinization. If we replace each action
𝑎 leading from state 𝑠 to 𝑛 states 𝑠1, . . . , 𝑠𝑛 with 𝑛 deterministic actions 𝑎1, . . . , 𝑎𝑛,
each one leading to a single state 𝑠1, . . . , 𝑠𝑛, we obtain a deterministic model, and we
can use classical efficient planners to find solutions in the nonderministic model as
sequences of actions in the deterministic model. We will have then to transform a se-
quential plan into a corresponding policy, and to extend it to consider multiple action
outcomes. According to this idea, we define a determinization of a nondeterministic
model.3

Algorithm 12.7 exploits model determinization and replaces Find-Solution in
Guided-Find-Safe-Solution with search in a deterministic model. Here we use the
simple forward search algorithm Forward-Search presented in Section 3.1, but we
could use a more sophisticated classical planner, as long as it is complete (i.e., it finds
a solution if it exists). This algorithm is similar to the first algorithm for planning by
determinization proposed in literature.

Find-Safe-Solution-by-Determinization is like Guided-Find-Safe-Solution, except for
the following steps:

1. The determinization step: We add a determinization step. The function
mk-deterministic returns a determinization of a nondeterministic model.

2This operation can be done in different ways, and depends on which kind of representation we use for
the domain. This operation may not be efficient depending on the implementation of Σ. For example,
if our domain is represented using an explicit the action representation, then modifying the domain
can take exponential time in the worst case. If we have access to the source code for Find-Solution,
then a better approach is to modify it to take an additional argument that’s a “nogood table”, i.e., a
hash table of state-action pairs that the planner should never use.

3The operation of transforming each nondeterministic action into a set of deterministic actions is
complicated by the fact that we have to take into account that in different states the same action can
lead to a set of different states. Therefore, if the set of states has exponential size with respect to the
number of state variables, then this operation would generate exponentially many actions.

312 12 Planning with Nondeterministic Models

Find-Safe-Solution-by-Determinization (Σ,𝑠0,𝑆𝑔)
if 𝑠0 ∈ 𝑆𝑔 then return(∅)
if Applicable(𝑠0) = ∅ then return(failure)
𝜋 ← ∅
Σ𝑑 ← mk-deterministic(Σ)
loop
𝑄 ← leaves(𝑠0, 𝜋) \ 𝑆𝑔
if 𝑄 = ∅ then do
𝜋 ← 𝜋 \ {(𝑠, 𝑎) ∈ 𝜋 | 𝑠 ∉ 𝛾̂(𝑠0, 𝜋)}
return(𝜋)

select 𝑠 ∈ 𝑄
𝑝′ ← Forward-Search (Σ𝑑 , 𝑠, 𝑆𝑔)
if 𝑝′ ≠ failure then do
𝜋′ ← Plan2policy(𝑝′, 𝑠)
𝜋 ← 𝜋 ∪ {(𝑠, 𝑎) ∈ 𝜋′ | 𝑠 ∉ Domain(𝜋)}

else for every 𝑠′ and 𝑎 such that 𝑠 ∈ 𝛾(𝑠′, 𝑎) do
𝜋 ← 𝜋 \ {(𝑠′, 𝑎)}
make the actions in the determinization of 𝑎 not applicable in 𝑠′

Algorithm 12.7. Planning for safe solutions by determinization.

Plan2policy(𝑝 = ⟨𝑎1, . . . , 𝑎𝑛⟩,𝑠)
𝜋 ← ∅
for 𝑖 from 1 to 𝑛 do
𝜋 ← 𝜋 ∪ (𝑠, det2nondet(𝑎𝑖))
𝑠← 𝛾𝑑 (𝑠, 𝑎𝑖)

return 𝜋

Algorithm 12.8. Transformation of a sequential plan into a corresponding policy.

2. The classical planner step: We apply Forward-Search on the deterministic
model Σ𝑑 rather than using Find-Solution on the nondeterministic model Σ. In
general, we could apply any (efficient) classical planner.

3. The plan2policy transformation step: We transform the sequential plan
𝑝′ found by Forward-Search into a policy (see routine Plan2policy, Algo-
rithm 12.8), where 𝛾𝑑 (𝑠, 𝑎) is the 𝛾 of Σ𝑑 obtained by the determinization of
Σ. The routine det2nondet returns the original nondeterministic action corre-
sponding to its determinization 𝑎𝑖 .

4. The action elimination step: We modify the deterministic model Σ𝑑 rather
than the nondeterministic model Σ.

12.3 Planning via Symbolic Model Checking 313

12.3 Planning via Symbolic Model Checking

The conceptually simple extension led by nondeterminism causes a practical difficulty.
Because one action can lead to a set of states rather than a single state, planning
algorithms that search for safe (cyclic and acyclic) solutions need to analyze all the
states that may result from an action. Planning based on symbolic model checking
attempts to overcome the difficulties of planning with nondeterministic models by
working on a symbolic representation of sets of states and actions. The underlying
idea is based on the following ingredients:

• Algorithms search the state space by working on sets of states, rather than single
states, and on transitions from sets of states through sets of actions, rather than
working separately on each of the individual transition.

• Sets of states, as well as sets of transitions, are represented as propositional
formulas, and search through the state space is performed by logical transfor-
mations over propositional formulas

• Specific data structures, Binary Decision Diagrams (BDDs), are used for the
compact representation and effective manipulation of propositional formulas

Example 12.3. In this example we give a first intuition on how a symbolic representa-
tion of sets of states can be advantageous. Consider the planning problem 𝑃 with the
nondeterministic model Σ described in Example 11.1, the initial state 𝑠0 is the state
labeled in Figure 11.1 as on_ship, and goal states 𝑆𝑔 = {gate1, gate2}. The states of
this simple nondterministic model can be described by a single state variable indicat-
ing the position of the item, for example, a container. The state variable pos(item)
can assume values on_ship, at_harbor, parking1, parking2, transit1, transit2, transit3,
gate1, and gate2.

Now let’s suppose that at each position, the item can be either on the ground or on
a vehicle for transportation. We would have a second variable loaded, the value of
which is either on_ground or on_vehicle.

Let’s also suppose that we have a variable that indicates whether a container is
empty, full, or with some items inside. The model gets to 54 states.

Now, if we want to represent the set of states in which the container is ready
to be loaded onto a truck, this set can be compactly represented by the formula
gate1 ∨ gate2. This is a symbolic, compact representation of a set of states. Now

suppose that further 10 state variables are part of the model. There may be many states
in which the container is ready to be loaded onto a truck, while their representation is
the same as before: gate1 ∨ gate2.

BDDs provide a way to implement the symbolic representation just introduced.
A BDD is a directed acyclic graph (DAG). The terminal nodes are either “truth”
or “falsity” (alternatively indicated with 0 and 1, respectively). The corresponding
BDDis in Figure 12.1. □

In the rest of this section, we describe the algorithms for planning via symbolic
model checking both as operation on sets of states and as the corresponding symbolic
transformations on formulas.

314 12 Planning with Nondeterministic Models

gate1

10

10

0 1

1

gate2

Figure 12.1. BDD for gate1 ∨ gate2

12.3.1 Symbolic Representation

A state variable representation, where each variable 𝑥𝑖 can have a value 𝑣𝑖 𝑗 ∈
Range(𝑥𝑖), can be mapped to an equivalent representation based on propositional
variables. We can represent a state by means of assignments to propositional vari-
ables rather than assignments to state variables: For each state variable 𝑥𝑖 and for each
value 𝑣𝑖 𝑗 ∈ Range(𝑥𝑖), we have a binary variable that is true if 𝑥𝑖 = 𝑣𝑖 𝑗 , and 𝑥𝑖 = 𝑣𝑖𝑘
is false for each 𝑘 ≠ 𝑗 .

In symbolic model checking, a state is represented by means of propositional
variables (that is, state variables that have value either true (T) or false (F)) that
hold in that state. We write 𝑃(𝑠) a formula of propositional variables whose unique
satisfying assignment of truth values corresponds to 𝑠. Let 𝑥𝑥𝑥 be a vector of distinct
propositional variables.

This representation naturally extends to any set of states 𝑄 ⊆ 𝑆. We associate a set
of states with the disjunction of the formulas representing each of the states.

𝑃(𝑄) =
∨
𝑠∈𝑄

𝑃(𝑠).

The satisfying assignments of 𝑃(𝑄) are the assignments representing the states of 𝑄.

Example 12.4. In Example 11.1, consider the case in which the item (e.g., a car) that
needs to be moved to a parking area may get damaged. Moreover, the parking area
can be either open or closed, and the area can be either full or have a slot where the
item can be stored. We can represent the set of states of this nondeterministic model
with three propositional variables in 𝑥𝑥𝑥:

𝑥1 : status(car) = damaged
𝑥2 : areaavailability = open
𝑥3 : areacapacity= full

The set of states 𝑆 of the model has eight states. The single state 𝑠1 in which the
item is not damaged, the storage area is open, and there is a slot available for storage

12.3 Planning via Symbolic Model Checking 315

can be represented by the assignment of truth values to the three proposition variables

𝑥1 ← F
𝑥2 ← T
𝑥3 ← F

or analogously by the truth of the formula

𝑃(𝑠1) = ¬𝑥1 ∧ 𝑥2 ∧ ¬𝑥3.

The four states in which the car is undamaged is represented by the single variable
assignment

𝑥1 ← F

or analogously by the truth of the formula

𝑃(𝑄) = ¬𝑥1.

□

The main effectiveness of the symbolic representation is that the cardinality of the
represented set is not directly related to the size of the formula. As a further advantage,
the symbolic representation can provide an easy way to ignore irrelevant information.
For instance, in the previous example, notice that the formula ¬𝑥1, because it does
not say anything about the truth of 𝑥2 and 𝑥3, represents four states, where the item
is not damaged in all of them. The whole state space 𝑆 (eight states) can thus be
represented with the propositional formula that is always true, T, while the empty
set can be represented by falsity, F. These simple examples give an intuitive idea of
one of the main characteristics of a symbolic representation of states: the size of
the propositional formula is not directly related to the cardinality of the set of states
it represents. If we have one billion propositional variables to represent 2109 states,
with a proposition of length one, for example, 𝑥, where 𝑥 is one of the propositional
variables of 𝑥𝑥𝑥, we can represent all the states where 𝑥 is true.

For these reasons, a symbolic representation can have a dramatic improvement
over an explicit state representation which enumerates the states of a state transition
system.

Another advantage of the symbolic representation is the natural encoding of set-
theoretic transformations (e.g., union, intersection, complementation) with proposi-
tional connectives over propositional formulas, as follows:

𝑃(𝑄1 ∪𝑄2) = 𝑃(𝑄1) ∨ 𝑃(𝑄2)
𝑃(𝑄1 ∩𝑄2) = 𝑃(𝑄1) ∧ 𝑃(𝑄2)
𝑃(𝑆 −𝑄) = 𝑃(𝑆) ∧ ¬𝑃(𝑄)

We can use a vector of propositional variables, say 𝑦𝑦𝑦, to name actions. Naming
actions with a binary string of 𝑦𝑦𝑦 bits will allow us to use BDDs at the implementation
level in the next sections. If we have 𝑛 actions, we can use ⌈log 𝑛⌉ propositional
variables in 𝑦𝑦𝑦. For instance, in the previous example, we can use variables 𝑦1 and 𝑦2

316 12 Planning with Nondeterministic Models

in 𝑦𝑦𝑦 to name actions park, move, and deliver. We can use for instance the following
encoding:

𝑃(park) = ¬𝑦1 ∧ ¬𝑦2 𝑃(move) = 𝑦1 ∧ ¬𝑦2 𝑃(deliver) = ¬𝑦1 ∧ 𝑦2.

Now we represent symbolically the transition function 𝛾(𝑠). We will call the
states in 𝛾(𝑠) the next states. To represent next states, we need a further vector of
propositional variables, say, 𝑥𝑥𝑥′, of the same dimension of 𝑥𝑥𝑥. Each variable 𝑥′ ∈ 𝑥𝑥𝑥′
is called a next-state variable. We need it because we need to represent the relation
between the old and the new variables. Similarly to 𝑃(𝑠) and 𝑃(𝑄), 𝑃′(𝑠) and 𝑃′(𝑄)
are the formulas representing state 𝑠 and the set of states 𝑄 using the next state
variables in 𝑥𝑥𝑥′. A transition is therefore an assignment to variables in 𝑥𝑥𝑥, 𝑦𝑦𝑦, and 𝑥𝑥𝑥′

Example 12.5. Consider Example 12.4 and Example 11.1. Suppose the item to be
moved is a car. The unloading operation may damage the car, and the parking area
may be closed and full,4 We have therefore some level of nondeterminism. Let 𝑥4 and
𝑥5 be the propositional variable for pos(car)=on_ship and pos(car)=at_harbor. The
transition pos(car)=at_harbor ∈ 𝛾(pos(car)=on_ship, unload) can be symbolically
represented as5

𝑥4 ∧ (¬𝑦1 ∧ ¬𝑦2) ∧ 𝑥′5,

which means that in the next state the car is at the harbor and may or may not be
damaged. □

We define now the transition relation 𝑅 corresponding to the transition function 𝛾
(this will be convenient for the definition of the symbolic representation of transition
relations):

∀𝑠 ∈ 𝑆,∀𝑎 ∈ 𝐴,∀𝑠′ ∈ 𝑆 (𝑅(𝑠, 𝑎, 𝑠′) ⇐⇒ 𝑠′ ∈ 𝛾(𝑠, 𝑎)).

In the rest of this section, we adopt the following notation:6

• Given a set of states 𝑄, Q(𝑥𝑥𝑥) is the propositional formula representing the set
of states 𝑄 in the propositional variables 𝑥𝑥𝑥;

• 𝑅(𝑥𝑥𝑥, 𝑦𝑦𝑦, 𝑥𝑥𝑥′) is the propositional formula in the propositional variables 𝑥𝑥𝑥, 𝑦𝑦𝑦, and
𝑥𝑥𝑥′ representing the transition relation.

We also adopt a QBF-like notation, the logic of Quantified Boolean Formulas, a
definitional extension of propositional logic in which propositional variables can be
universally and existentially quantified. According to this notation, we have:

• ∃𝑥𝑄(𝑥𝑥𝑥) stands for 𝑄(𝑥𝑥𝑥) [𝑥 ← T] ∨ 𝑄(𝑥𝑥𝑥) [𝑥 ← F], where [𝑥 ← T] stands for
the substitution of 𝑥 with T in the formula;

• ∀𝑥𝑄(𝑥𝑥𝑥) stands for 𝑄(𝑥𝑥𝑥) [𝑥 ← T] ∧𝑄(𝑥𝑥𝑥) [𝑥 ← F].
4This nondeterminism models the fact that we do not know at planning time whether the parking area
will be available.

5Here we omit the formalization of the invariant that states what does not change.
6Recall that a set of states is represented by a formula in state variables in x.

12.3 Planning via Symbolic Model Checking 317

Let us show how operations on sets of states and actions can be represented symboli-
cally. Consider the set of all states 𝑠′ such that from every state in 𝑄, 𝑠′ is a possible
outcome of every action. The result is the set of states containing any next state 𝑠′
that for any state 𝑠 in 𝑄 and for any action 𝑎 in 𝐴 satisfies the relation 𝑅(𝑠, 𝑎, 𝑠′): 7

{𝑠′ ∈ 𝑆 | ∀𝑠 ∈ 𝑄 and ∀𝑎 ∈ 𝐴. 𝑅(𝑠, 𝑎, 𝑠′)}.

Such set can be represented symbolically with the following formula, which can be
represented directly as a BDD:

(∃𝑥𝑥𝑥𝑦𝑦𝑦(𝑅(𝑥𝑥𝑥, 𝑦𝑦𝑦, 𝑥𝑥𝑥′) ∧𝑄(𝑥𝑥𝑥))) [𝑥′ ← 𝑥] .

In this formula, the “and” operation symbolically simulates the effect of the application
of any applicable action in 𝐴 to any state in 𝑄. The explicit enumeration of all the
possible states and all the possible applications of actions would exponentially blow
up, but symbolically we can compute all of them in a single step.

Policies are relations between states and actions, and can therefore be represented
symbolically as propositional formulas in the variables 𝑥𝑥𝑥 and 𝑦𝑦𝑦. In the following, we
write such a formula as 𝜋(𝑥𝑥𝑥, 𝑦𝑦𝑦).

We are now ready to describe the planning algorithms based on symbolic model
checking. In the subsequent sections, we consider an extension of the definition of
planning problem where we allow for a set of initial states rather than a single initial
state.

12.3.2 Planning for Safe Solutions

In Find-Safe-Solution-by-ModelChecking, Algorithm 12.9, univpol is the so-called
“universal policy,” that is, the set of all state-action pairs (𝑠, 𝑎) such that 𝑎 is applicable
in 𝑠. Notice that starting from the universal policy may appear unfeasible in practice,
because the set of all state-action pairs can be very large. We should not forget,
however, that very large sets of states can be represented symbolically in a compact
way. Indeed, the symbolic representation of the universal policy is:

univpol = ∃𝑥𝑥𝑥′𝑅(𝑥𝑥𝑥, 𝑦𝑦𝑦, 𝑥𝑥𝑥′),

which also represents the applicability relation of an action in a state.
Find-Safe-Solution-by-ModelChecking calls the SafePlan routine that refines the

universal policy by iteratively eliminating pairs of states and corresponding actions.
This is done in two steps. First, line (i) removes from 𝜋′ every state-action pair
(𝑠, 𝑎) for which 𝛾(𝑠, 𝑎) includes a nongoal state 𝑠′ that has no applicable action
in 𝜋′. Next, line (ii) removes from 𝜋′ every state-action pair (𝑠, 𝑎) for which 𝜋′

contains no path from 𝑠 to the goal. This second step is performed by the routine
PruneUnconnected (see Algorithm 12.10). PruneUnconnected repeatedly applies the
intersection between the current policy 𝜋 and the “preimage” policy, that is, preimgpol
applied to the domain of the current policy and the goal states. The preimage policy,

7The formula is equivalent to
⋃

𝑠∈𝐴,𝑎∈𝐴 𝛾(𝑠, 𝑎).

318 12 Planning with Nondeterministic Models

Find-Safe-Solution-by-ModelChecking(Σ, 𝑠0, 𝑆𝑔)
univpol← {(𝑠, 𝑎) | 𝑠 ∈ 𝑆 and 𝑎 ∈ Applicable(𝑠) }
𝜋 ← SafePlan(univpol, 𝑆𝑔)
if 𝑠0 ∈ (𝑆𝑔 ∪ Domain(𝜋)) then return 𝜋
else return(failure)

SafePlan(𝜋0,𝑆𝑔)
𝜋 ← ∅
𝜋′ ← 𝜋0
while 𝜋 ≠ 𝜋′ do
𝜋 ← 𝜋′

𝜋′ ← 𝜋′ \ {(𝑠, 𝑎) ∈ 𝜋′ | 𝛾(𝑠, 𝑎) ⊈ (𝑆𝑔 ∪ Domain(𝜋′))} (i)
𝜋′ ← PruneUnconnected(𝜋′, 𝑆𝑔) (ii)

return RemoveNonProgress(𝜋′, 𝑆𝑔) (iii)

Algorithm 12.9. Planning for safe solutions by symbolic model checking.

PruneUnconnected(𝜋,𝑆𝑔)
Old𝜋 ← fail
New𝜋 ← ∅
while Old𝜋 ≠ New𝜋 do

Old𝜋 ← New𝜋
New𝜋 ← 𝜋 ∩ preimgpol(𝑆𝑔 ∪ Domain(New𝜋))

return New𝜋

Algorithm 12.10. PruneUnconnected: Removing unconnected states.

given a set of states 𝑄 ⊆ 𝑆, returns the policy that has at least one out-coming state to
the given set of states:

preimgpol(𝑄) = {(𝑠, 𝑎) | 𝛾(𝑠, 𝑎) ∩𝑄 ≠ ∅}.

preimgpol(𝑄) is represented symbolically as a formula in the current state variables
𝑥𝑥𝑥 and the action variables 𝑦𝑦𝑦:

preimgpol(𝑄) = ∃𝑥𝑥𝑥′(𝑅(𝑥𝑥𝑥, 𝑦𝑦𝑦, 𝑥𝑥𝑥′) ∧𝑄(𝑥𝑥𝑥′)).

The pruning of outgoing and unconnected states is repeatedly performed by the while
loop in SafePlan until a fixed point is reached. Then in line (iii), SafePlan removes
states and corresponding actions in the policy that do not lead toward the goal.
This is done by calling the RemoveNonProgress routine (see Algorithm 12.11) that
repeatedly performs the pruning in two steps. First, the preimage policy pre𝜋 that
leads to the domain of the policy or to the goal state in computed (“preimage policy”
step). Then the states and actions that lead to the same domain of the preimage policy

12.3 Planning via Symbolic Model Checking 319

RemoveNonProgress(𝜋,𝑆𝑔)
Old𝜋 ← fail
New𝜋 ← ∅
while Old𝜋 ≠ New𝜋 do

pre𝜋← 𝜋 ∩ preimgpol(𝑆𝑔 ∪ Domain(New𝜋))
Old𝜋 ← New𝜋
New𝜋 ← PruneStates(pre𝜋, 𝑆𝑔 ∪ Domain(New𝜋))

return New𝜋

Algorithm 12.11. RemoveNonProgress: Removing states/actions that do not
lead towards the goal.

or to the goal are pruned away by the PruneStates routine (let 𝑄 ⊆ 𝑆):

PruneStates(𝜋, 𝑄) = {(𝑠, 𝑎) ∈ 𝜋 | 𝑠 ∉ 𝑄}.

The routine PruneStates that eliminates the states and actions that lead to the same
domain of a policy is computed symbolically as follows:

PruneStates(𝜋, 𝑄) = 𝜋(𝑥𝑥𝑥, 𝑦𝑦𝑦) ∧ ¬𝑄(𝑥𝑥𝑥)).

SafePlan thus returns the policy 𝜋 that has been obtained from the universal policy by
removing outgoing, unconnected and nonprogressing actions. Find-Safe-Solution-by-
ModelChecking finally tests whether the set of states in the returned policy union with
the goal states contains all the initial states. If this is the case, 𝜋 is a safe solution;
otherwise no safe solution exists.

Example 12.6. Let us consider the problem on the model described in Example 11.1,
initial state 𝑠0 where pos(car)=on_ship, and goal states 𝑆𝑔 = {pos(car)=gate2}. The
“elimination” phase of the algorithm does not remove any policy from the universal
policy. Indeed, the goal state is reachable from any state in the model, and therefore
there are no outgoing actions. As a consequence, function RemoveNonProgress
receives in input the universal policy and refines it, taking only those actions that
may lead to a progress versus the goal. The sequence 𝜋𝑖 of policies built by function
RemoveNonProgress is as follows (in the following we indicate with parking1 the
state where pos(car)=parking1, etc.):

Step 0 : ∅
Step 1 : 𝜋1(parking1) = deliver; 𝜋1(transit2) = move
Step 2 : 𝜋2(parking1) = deliver; 𝜋2(transit2) = move; 𝜋2(at_harbor) = park;

𝜋2(transit1) = move
Step 3 : 𝜋3(parking1) = deliver; 𝜋3(transit2) = move; 𝜋3(at_harbor) = park;

𝜋3(transit1) = move; 𝜋3(parking2) = back; 𝜋3(transit3) = back;
𝜋3(gate1) = back; 𝜋3(on_ship) = unload

Step 4 : 𝜋3
□

320 12 Planning with Nondeterministic Models

Find-Acyclic-Solution-by-ModelChecking(Σ, 𝑆0, 𝑆𝑔)
𝜋0 ← failure
𝜋 ← ∅
while (𝜋0 ≠ 𝜋 and 𝑆0 ⊈ (𝑆𝑔 ∪ Domain(𝜋))) do

strongpre𝜋 ← strongpreimgpol(𝑆𝑔 ∪ Domain(𝜋))
𝜋0 ← 𝜋

𝜋 ← 𝜋 ∪ PruneStates(strongpre𝜋, 𝑆𝑔 ∪ Domain(𝜋))
if (𝑆0 ⊆ (𝑆𝑔 ∪ Domain(𝜋)))

then return 𝜋
else return failure

Algorithm 12.12. Planning for acyclic solutions by symbolic model checking

A remark is in order. Algorithm 12.9 can find either safe cyclic or safe acyclic
solutions. It can be modified such that it looks for a safe acyclic solution, and only if
there is no such solution does it search for a safe cyclic solution (see Exercise 12.7).

12.3.3 Planning for Safe Acyclic Solutions

Find-Acyclic-Solution-by-ModelChecking (Algorithm 12.12) performs a backward
breadth-first search from the goal toward the initial states. It returns a safe acyclic
solution plan 𝜋 if it exists, otherwise it returns failure. The policy 𝜋 is constructed
iteratively by the while loop. At each iteration step, the set of states 𝑆 for which a safe
acyclic policy has already been found is given in input to the routine strongpreimgpol,
which returns a policy that contains the set of pairs (𝑠, 𝑎) such that 𝑎 is applicable in
𝑠 and such that 𝑎 leads to states which are all in 𝑄 ⊆ 𝑆:

strongpreimgpol(𝑄) = {(𝑠, 𝑎) | 𝑎 ∈ Applicable(𝑠) and 𝛾(𝑠, 𝑎) ⊆ 𝑄}.

The routine strongpreimgpol, which returns a policy that contains the set of pairs
(𝑠, 𝑎) such that 𝑎 is applicable in 𝑠 and such that 𝑎 leads to states which are all in
𝑄 ⊆ 𝑆:

strongpreimgpol(𝑄) = ∀𝑥𝑥𝑥′(𝑅(𝑥𝑥𝑥, 𝑦𝑦𝑦, 𝑥𝑥𝑥′) → 𝑄(𝑥𝑥𝑥′)) ∧ ∃𝑥𝑥𝑥′𝑅(𝑥𝑥𝑥, 𝑦𝑦𝑦, 𝑥𝑥𝑥′),

which states that any next state must be in 𝑄 and the action represented by 𝑦𝑦𝑦 must
be applicable. Notice that both preimgpol(𝑄) and strongpreimgpol(𝑄) are computed
in one step. Moreover, policies resulting from such computation may represent an
extremely large set of state-action pairs.

The routine PruneStates that eliminates the states and actions that lead to the same
domain of a policy,

PruneStates(𝜋, 𝑄) = {(𝑠, 𝑎) ∈ 𝜋 | 𝑠 ∉ 𝑄}

can be represented symbolically very simply by the formula

𝜋(𝑥𝑥𝑥, 𝑦𝑦𝑦) ∧ ¬𝑄(𝑥𝑥𝑥)).

12.3 Planning via Symbolic Model Checking 321

PruneStates removes from strongpre𝜋 the pairs (𝑠, 𝑎) such that a solution is already
known. This step is what allows finding the worst-case optimal solution.

Example 12.7. Let us consider the problem on the nondeterministic model
described in Example 11.1, initial set of states 𝑆0 = {on_ship}, and goal
states 𝑆𝑔 = {gate1, gate2}. The sequence 𝜋𝑖 of policies built by algorithm
Find-Acyclic-Solution-by-ModelChecking is as follows:

𝜋0 : ∅
𝜋1 : 𝜋1(transit3) = move; 𝜋1(transit2) = move
𝜋2 : 𝜋2(transit3) = move; 𝜋2(transit2) = move;

𝜋2(parking1) = deliver; 𝜋2(parking2) = deliver
𝜋3 : 𝜋3(transit3) = move; 𝜋3(transit2) = move;

𝜋3(parking1) = deliver; 𝜋3(parking2) = deliver;
𝜋3(transit1) = move

𝜋4 : 𝜋4(transit3) = move; 𝜋4(transit2) = move;
𝜋4(parking1) = deliver; 𝜋4(parking2) = deliver;
𝜋4(transit1) = move; 𝜋4(at_harbor) = park

𝜋5 : 𝜋5(transit3) = move; 𝜋5(transit2) = move;
𝜋5(parking1) = deliver; 𝜋5(parking2) = deliver;
𝜋5(transit1) = move; 𝜋5(at_harbor) = park;
𝜋5(on_ship) = unload

𝜋6 : 𝜋5

Notice that at the fifth iteration, PruneStates removes from 𝜋5 all the state-action pairs
that move the container back (action back) from states such that a solution is already
known. For instance, 𝜋5(parking2) = back, 𝜋5(gate1) = back, and so on. □

12.3.4 BDD-based Representation

In the previous section, we showed how the basic building blocks of the planning
algorithm can be represented through operations on propositional formulas. In this
section, we show how specific data structures, Binary Decision Diagrams (BDDs) ,
can be used for the compact representation and effective manipulation of propositional
formulas.

A BDD is a directed acyclic graph (DAG). The terminal nodes are either True or
False (alternatively indicated with 0 and 1, respectively). Each nonterminal node is
associated with a boolean variable and with two bdds, which are called the left and
right branches. Figure 12.2 (a) shows a BDD for the formula (𝑎1 ↔ 𝑏1) ∧ (𝑎2 ↔
𝑏2) ∧ (𝑎3 ↔ 𝑏3).

Given a BDD, the value corresponding to a given truth assignment to the variables is
determined by traversing the graph from the root to the leaves, following each branch
indicated by the value assigned to the variables. A path from the root to a leaf can
visit nodes associated with a subset of all the variables of the BDD. The reached leaf
node is labeled with the resulting truth value. If 𝑣 is a BDD, its size |𝑣 | is the number

322 12 Planning with Nondeterministic Models

of its nodes.8 If 𝑛 is a node, we will use 𝑣𝑎𝑟 (𝑛) to denote the variable indexing node
𝑛. BDDs are a canonical representation of boolean formulas if

• there is a total order < over the set of variables used to label nodes, such that
for any node 𝑛 and correspondent nonterminal child 𝑚, their variables must be
ordered, 𝑣𝑎𝑟 (𝑛) < 𝑣𝑎𝑟 (𝑚), and

• the BDD contains no subgraphs that are isomorphic to the BDD itself.

The choice of variable ordering may have a dramatic impact on the dimension of
a BDD. For example, Figure 12.2 depicts two BDDs for the same formula (𝑎1 ↔
𝑏1) ∧ (𝑎2 ↔ 𝑏2) ∧ (𝑎3 ↔ 𝑏3) obtained with different variable orderings.9

True False

a1

b1

a2

b2 b2

a3

b3 b3

b1

a1

b1 b1

a2

b2 b2

a3

b3 b3

True False

b1b1b1b1b1b1b1b1

a3 a3 a3 a3

a2a2

a1

b3 b3

b2b2b2b2

FalseTrue

 b3

a3

a1

a2 a2

a3

b1 b1

b3

True False

a3 a3

b1 b1b1 b1 b1b1

b2 b2

 b2

b2

b3

Figure 12.2. Two BDDs for the formula (𝑎1 ↔ 𝑏1) ∧ (𝑎2 ↔ 𝑏2) ∧ (𝑎3 ↔ 𝑏3).

BDDs can be used to compute the results of applying the usual boolean operators.
Given a BDD that represents a formula, it is possible to transform it to obtain the BDD
representing the negation of the formula. Given two BDDs representing two formulas,
it is possible to combine them to obtain the BDD representing the conjunction or the
disjunction of the two formulas. Substitution and quantification on boolean formulas
can also be performed as BDD transformations.

8Notice that the size can be exponential in the number of variables. In the worst case, BDDs can be
very large. We do not search through the nodes of a BDD, however, but rather represent compactly
(possibly very large) sets of states and work on such a representation of sets of states.

9A state variable representation can lead to a variable ordering in which closely related propositions
are grouped together, which is critical to good performance of BDD exploration.

12.4 Synthesis of Automata 323

Comparison among different planning approaches The main advantage of deter-
minization techniques with respect to other approaches is the possibility of exploiting
fast algorithms for finding solutions that are not guaranteed to achieve the goal but
just may lead to the goal, that is, unsafe solutions. Indeed, finding an unsafe solution
in Σ can be done by finding a sequential plan in Σ𝑑 . Then the sequence of actions can
be easily transformed into a policy. Fast classical planners can then be used to find
efficiently a solution which is unsafe for the nondeterministic model. Determinization
techniques tend to work effectively when nondeterminism is limited and localized,
whereas their performances can decrease when nondeterminism is high (many pos-
sible different outcomes of several actions) and in the case nondeterminism cannot
be easily reconducted to exceptions of the nominal case. For these reasons, several
techniques have been proposed to improve the performances when there is a high level
of nondeterminisms, from conjunctive abstraction (a technique to compress states in
a similar way to symbolic model checking) to techniques that exploit state relevance
(see Section 12.6). With such improvements, determinization techniques have been
proven to be competitive with, and in certain cases to outperform, both techniques
based on And/Or search and techniques based on symbolic model checking. Finally,
determinization techniques have mainly focused until now on safe cyclic planning and
extensions to safe acyclic planning.

The basic idea underlying symbolic model checking techniques is to work on sets.
Routines for symbolic model checking work on sets of states and on transitions from
sets of states through sets of actions, rather than on single states and single state
transitions. Also policies are computed and managed as sets of state-action pairs.

The symbolic model checking approach is indeed advantageous when we have a
high degree of nondeterminism, that is, the set of initial states is large and several
actions have many possibly different outcomes. Indeed, in these cases, dealing
with a large set of initial states or a large set of outcomes of an action may have
even a simpler and more compact symbolic representation than a small set. The
symbolic approach may instead be outperformed by other techniques, for example,
determinization techniques, when the degree of uncertainty is lower, for example, in
the initial state or in the action outcomes.

12.4 Synthesis of Automata

In Section 11.2 we have defined input/output automata and how to control them
with control automata (Section 11.2.1). We can specify the control automata offline
once for all by hand by means of a proper programming language. It is interesting,
however, to generate control automata automatically, either offline (at design time) or
at run-time. Indeed, such automated synthesis, when feasible, can provide important
advantages. In realistic cases, the manual specification of controllers can be difficult,
time-consuming, and error prone. Moreover, in most highly dynamic domains, it is
difficult if not impossible to predict all possible cases and implement a fixed controller
that can deal with all of them. Synthesis of controllers at run-time can provide a way
to act with deliberation taking into account the current situation and context.

In the rest of this section, we introduce a technique for the automated generation

324 12 Planning with Nondeterministic Models

of a control automaton that interacts with (possibly several distributed) input/output
automata and satisfies some desired goal, representing the objective the controller has
to reach.

Consider the automaton in Figure 11.9, Section 11.2.1. We want to generate a
controller Aut𝑐 with the goal that the controlled automaton Aut reaches state s5. In
order to map the synthesis problem to a planning problem as defined in Section 11.1,
we must consider the fact that Aut models a domain that may be only partially
observable by Aut𝑐. That is, at execution time, Aut𝑐 generally has no way to find
out what Aut’s current state is.10 For instance, if Aut is the input/output automaton
for approaching the door in Figure 11.9, a controller Aut𝑐 that interacts with Aut has
no access to the values of Aut’s internal variables, and can only deduce their values
from the messages it receives. Aut𝑐 cannot know whether or not Aut has executed the
action sensedistance in Figure 11.9, that is, whether Aut is still in state 𝑠0 (the state
before executing the command) or in one of 𝑠1 or 𝑠2, the two states after the action
has been executed. This uncertainty disappears only when one of the two outputs (far
or close) is sent by Aut and received by the controller Aut𝑐.

We take into account this uncertainty by considering evolutions of the controlled
system Aut𝑐▷Aut11 in terms of sets of states rather than states, each of them containing
all the states where the controlled system could be. We have therefore to deal with
sets of states rather than single states. This is a way to deal with partial observability
while still making use of algorithms that work in fully observable domains.

The initial set of states is updated whenever Aut performs an observable input or
output transition. If 𝐵 ⊆ 𝑆 is the current set of states and an action 𝑖𝑜 ∈ 𝐼 ∪ 𝑂 is
observed, then the new set 𝐵′ = 𝑒𝑣𝑜𝑙𝑣𝑒(𝐵, 𝑖𝑜) is defined as follows: 𝑠 ∈ 𝑒𝑣𝑜𝑙𝑣𝑒(𝐵, 𝑖𝑜)
if and only if, there is some state 𝑠′ reachable from 𝐵 by performing a sequence of
commands, such that 𝑠 ∈ 𝛾(𝑠′, 𝑖𝑜). That is, in defining 𝑒𝑣𝑜𝑙𝑣𝑒(𝐵, 𝑖𝑜), we first
consider every evolution of states in 𝐵 by internal transitions, and then, from every
state reachable in this way, their evolution caused by 𝑖𝑜.

Under the assumption that the execution of actions terminates, that is, that actions
cannot be trapped in loops, we can define an Abstracted System whose states are sets
of states of the automaton and whose evolutions are over sets of states.

Definition 12.8. (Abstracted System) Let Aut = (𝑆, 𝑆0, 𝐼, 𝑂, 𝐴, 𝛾) be an automaton.
The corresponding abstracted system is Σ𝐵 = (𝑆𝐵, 𝑆0

𝐵
, 𝐼, 𝑂, 𝛾𝐵), where:

• 𝑆𝐵 are the sets of states of Aut reachable from the set of possible initial states
𝑆0,

• 𝑆0
𝐵
= {𝑆0},

• if 𝑒𝑣𝑜𝑙𝑣𝑒(𝐵, 𝑎) = 𝐵′ ≠ ∅ for some 𝑎 ∈ 𝐼 ∪𝑂, then 𝐵′ ∈ 𝛾𝐵 (𝐵, 𝑎). □

An abstracted system is an input/output automaton with a single initial state and
no internal transitions. To define a synthesis problem in terms of a planning
10There might be applications in which the controller Aut𝑐 might have access to the state of the controlled

automaton Aut. However, in general, the advantage of a representation based on input/output automata
is to hide or abstract away the details of the internal operations.

11Aut can be the parallel product of distributed automata Aut1∥ . . . ∥Aut𝑛, see Section 11.2.2 and
specifically Definition 11.16

12.4 Synthesis of Automata 325

wait
far

close grasp

move

wait

B3

B4 B5

B1

Figure 12.3. Abstracted system for the I/O automaton in Figure 11.9.

problem in nondeterministic state transitions, we need to transform an automaton
Aut = (𝑆, 𝑆0, 𝐼, 𝑂, 𝐴, 𝛾) into a nondeterministic state transition system Σ. To do this
transformation, we first transform the automaton into its corresponding abstracted sys-
tem. This is necessary to handle partial observability and apply planning algorithms
for fully observable nondeterministic models.

Example 12.9. In Figure 12.3, we show the abstracted system for the controlled
automaton in Figure 11.9. States 𝑠0, 𝑠1, and 𝑠2 generate the set of states 𝐵1 =

{𝑠0, 𝑠1, 𝑠2} because there is no way for the controller to distinguish them until it
receives either input far or input close by the controlled automaton. We have 𝐵3 =

{𝑠3}, 𝐵4 = {𝑠4}, and 𝐵5 = {𝑠5}. □

Given the generated abstracted system, output actions of the controlled automaton
are those that cause nondeterminism. We therefore move output actions from transi-
tions into the states of the domain and replace output transitions with nondeterministic
internal transitions.

Example 12.10. In Figure 12.4, we show the nondeterministic state transition system
for the automaton in Figure 12.3. We have moved the output far in state 𝐵3 and the
output close in state 𝐵4, and transformed the two (deterministic) output transitions
into one nondeterministic internal transition. Now we have the nondeterministic
state transitions system Σ = (𝑆, 𝐴, 𝛾), with states 𝑆 = {𝐵1, 𝐵3, 𝐵4, 𝐵5}, and actions
𝐴 = {farclose,wait,move, grasp}, where farclose is nondeterministic. The policy

𝜋(𝐵1) = farclose
𝜋(𝐵3) = move
𝜋(𝐵4) = grasp

is a safe acyclic solution for the planning problem 𝑃 = (Σ, 𝐵1, 𝐵5), where 𝐵1 is the
initial state and 𝐵5 is the goal state. From 𝜋 we can easily construct the control
automaton Aut𝑐 that controls Aut in Figure 11.9 and satisfies the reachability goal
𝑠5. □

326 12 Planning with Nondeterministic Models

wait

grasp

move

wait

B3

B4 B5

B1 farclose

Figure 12.4. Nondeterministic model for the I/O automaton in Figure 11.9.

The synthesis problem can thus be solved by generating a nondeterministic model
and by planning for a safe, possibly acyclic, policy (see Section 11.1.2) i.e., by
generating a policy 𝜋 that is guaranteed to reach the goal independently of the outcomes
of nondeterministic transitions that are due to internal transitions and output actions
of automata Aut.

This means that we can automate the synthesis by planning with nondetermistic
models and that can find safe (acyclic) solutions, for example, planning with And/Or
search (see Section 12.1), planning by symbolic model checking (see Section 12.3),
and planning by determinization (see Section 12.2).

12.5 Generating Behavior Trees

Behavior Trees (BTs) have been used mainly as a high level programming language
for acting, as explained in Section 11.3. BTs do not model nondeterminism explicitly
but handle non-nominal executions. Hence, the generation of a BT boils down to
generating a deterministic plan and augmenting the plan with appropriate conditionals.
We can therefore generate BTs by planning with deterministic models, once we
rely on some assumptions. Intuitively, the BT generation problem is to synthesize
automatically a BT that, when executed, has the possibility to satisfy a given goal.
We need to make precise what we mean by “has the possibility to satisfy the goal”.
Let us say that given a classical planner and planning problem, the BT generation
problem seeks to synthesize a BT of root 𝑣 such that BTAE(𝑣) achieves the goal or
returns failure. With this simple specification, we can devise different approaches to
solve the BT generation problem. Here, we describe two simple approaches based
on classical planning (Section 12.5.1), and a simple technique for interleaving BT
generation and acting (Section 12.5.2).

12.5 Generating Behavior Trees 327

12.5.1 BT Generation by Classical Planning

Given a classical model Σ = (𝑆, 𝐴, 𝛾) and a classical planner, BTclassic generates a
behavior tree bt for a problem (Σ, 𝑠, 𝑔), with 𝑠 the current state at the moment of plan
generation. The routine makeornode(𝑔, 𝜋) constructs a BT 𝑏𝑡 whose root node is an
Or node whose children are the goal 𝑔 and the plan 𝜋. The plan 𝜋 can be represented
as an And node whose children are actions of the plan in the given planned order (see
Figure 12.5):

Figure 12.5. The BT generated by BTgen-by-classical-planning.

BTclassic(Σ, 𝑔)
𝑠← observe the current state
𝜋 ← classical planner(Σ, 𝑠, 𝑔)
if 𝜋 = failure then return failure
𝑏𝑡 ← makeornode(𝑔, 𝜋)

Algorithm 12.13. BT generation by classical planning

It is easy to show that Algorithm 12.13 solve the BT generation problem: if
Algorithm 11.2 BTAE(𝑣) does not returns failure, where 𝑣 is the root node of 𝑏𝑡, then
BTAE(𝑣) satisfies the goal.

The BT generated by Algorithm 12.13 is not very rich, i.e., there is no reactivity
to events conditioning the applicability of actions at execution time. It is easy to
generalize Algorithm 12.13 by adding in the BT each atomic precondition of each
action of the generated sequential plan, and generating a plan achieving each atomic
precondition, until a given desired depth in this recursive process is reached. For
instance, the BT depicted in Figure 12.5 gets expanded by BTrecursive in the BT
represented in Figure 12.6

However, an interesting idea for Behavior Trees is to interleave planning and acting.
A different approach is to devise an algorithm that simply tries to select a primitive
action 𝑎 whose effects achieve a goal, if the action fails due to unsatisfied precon-
ditions of 𝑎, the algorithm can generate an action 𝑏 that is supposed to achieve the
preconditions of the action 𝑎 and then tries to execute the action (see Exercise 12.9).

Alternatively we may want to generate a deterministic domain Σ from the speci-
fication of Behavior Trees. The assumption is that for each node of type action we

328 12 Planning with Nondeterministic Models

BTrecursive(Σ, 𝑔)
𝑠← observe the current state
𝜋 = ⟨𝑎1 . . . 𝑎𝑛⟩ ← classical planner(Σ, 𝑠, 𝑔)
if 𝜋 = failure then return failure
for 𝑖 = 1, . . . 𝑛 expand 𝑎𝑖 with an And-node whose children are the literals
of the preconditions of 𝑎𝑖 and finally 𝑎𝑖

for each literal 𝑙 of the preconditions of 𝑎𝑖 call recursively BTrecursive(Σ, 𝑙)
until a termination condition is reached

Algorithm 12.14. BT generation by recursive classical planning

have a simple behavior tree of the form depicted in Figure 12.7, where, for simplicity,
we assume that we have atomic preconditions and effects. In general, to represent a
deterministic action with a BT, we would need a child of the And node for each literal
in the preconditions, and a BT for any atomic literal in the goal. Notice that this
representation is a simple rewriting of an action specification with its preconditions
and effects.

We can therefore generate a corresponding deterministic model Σ from the basic
BTs representing actions (Figure 12.7). We can then use a classical planner to generate
a sequential plan that we can translate back to a BT. This is essentially what does
Algorithm 12.15 BTgen-from-basic BTs, a simple modification of Algorithm 12.13.
BT is the set of basic BTs of the form represented in Figure 12.7, one for each action.
BTgen-from-basic BTs organizes the basic BTs in BT into a plan to achieve the goal.
Notice that applying BTAE recursively over the family of BT would not guarantee to
achieve the goal.

BTgen-from-basic BTs(BT , 𝑔)
𝑠← observe the current state
Generate Σ = (𝑆, 𝐴, 𝛾) from BT
apply any of the BT generation algorithm presented in this section to (Σ, 𝑔)
if BTAE over the generated BT fails then return failure
return the obtained BT

Algorithm 12.15. BT generation from basic BTs

12.5.2 BT Planning and Acting

In this section we report the simple algorithm BTplanningacting for interleaving plan-
ning and acting without the need to go through a classical specification of a deter-
ministic model Σ but directly working on behaviour trees. Here we assume that a set
of simple basic behaviour trees of the form depicted in Figure 12.7 is available. BT
and G are a set of basic BTs and a set of atomic goals (a conjunction of atomic goals),
respectively.

12.5 Generating Behavior Trees 329

(a)

(b)

Figure 12.6. A few steps of the recursive expansion and planning by BTrecursive: (a) The
first action a1 of the plan 𝜋 in BT in Figure 12.5 gets expanded into an and node with all
the literals l11 . . . l1k of the precondition of a1; a classical planner generates plans 𝜋11
. . . 𝜋1k to achieve the goals that are the literals f the precondition of a1: l11 . . . l1k.

Figure 12.7. A basic BT representing an action a.

330 12 Planning with Nondeterministic Models

BTplanningacting(BT ,G)
1 BT ′ ← replace all 𝑔𝑖 ∈ G with a 𝑏𝑡𝑖 ∈ BT having 𝑔𝑖 as effect

foreach 𝑏𝑡𝑖 ∈ BT ′ do
𝑣𝑖 ← the root of 𝑏𝑡𝑖
while BTAE(𝑣𝑖) returns failure do

2 replace one of the atomic preconditions 𝑙 of 𝑏𝑡𝑖 returning failure
with a 𝑏𝑡 𝑗 ∈ BT whose effect is 𝑙

Algorithm 12.16. BT planning and acting

Notice some limitations of this algorithm. It is indeed possible we have many
possible 𝑏𝑡𝑖 that have the effects that satisfy a goal 𝑔𝑖 , each with different preconditions
(Line 1). BTplanningacting randomly selects one. This is the case also for the basic
BT 𝑏𝑡 𝑗 that replaces the atomic precondition 𝑙 (Line 2). Trying to satisfy a goal or
in general a condition before another may cause the impossibility to satisfy the next
goal, a well-known problem in classical planning. One can provide an extension of
BTplanningacting that takes this problem into account (see Section 12.6).

12.6 Discussion and Bibliographic Notes

Nondeterministic models are considered unavoidable in several areas of computer
science, including computer-aided verification, model checking, control theory, and
game theory.

Different techniques for planning with nondeterministic models have been devel-
oped based on different assumptions. One dimension is the degree of observability:
planning with full observability (Fully Observable Nondeterminism - FOND), with
partial observability (POND), and with null observability. Planning with FOND and
POND is often referred as contingent planning or conditional planning, since the
generated plans are conditional in the sense that sense the actual (set of) state(s) at
execution time and provide a conditional plan depending on the actual (set of) state(s)
resulting after execution. Planning with null observability generates sequential plans
(no sensing is possible) and is often referred as conformant planning.

A second dimension is the the kind of goals: planning for reachability goals, i.e., a
set of states to be reached, or for (temporally) extended goals, i.e., conditions the plan
should satisfy all along the possible generated sequences of states.

A third dimension is the kind of approach and technique adopted to address the prob-
lem of planning with nondeterministic models, including different kinds of extensions
of techniques for planning in deterministic models, deductive planning approaches,
planning via (symbolic) model checking, techniques based on determinization, plan-
ning with belief states, planning based on temporal logic.

Probabilistic Versus Nondeterministic Approaches In Part III and Part IV, we
studied two types of nondeterministic models, with and without probabilities. These

12.6 Discussion and Bibliographic Notes 331

models have several similarities but also differences. Let us discuss which of the two
approaches to choose when faced with a practical problem where nondeterminism
requires modeling and can be expressed explicitly.

Probability and cost parameters enrich the description of a domain and allow for
choosing a solution according to some optimization criterion. However, estimating
costs and probabilities adds a significant burden to the modeling step. There are
domains in which modeling transitions with costs and probabilities is difficult in
practice, for example, when not enough statistical data are available. Probabilistic
approaches may also lead a modeler to hide qualitative preferences and constraints
through arbitrary quantitative measures.

But there is more to it than just adding or removing parameters from one type of
model to the other, as illustrated in the following example.

Example 12.11. Consider the simplistic domain in Figure 12.8 that has two policies
𝜋𝑎 and 𝜋𝑏. 𝜋𝑎 (𝑠0) = 𝑎; 𝑎 leads to a goal with probability 𝑝 in one step, or it
loops back on 𝑠0. 𝜋𝑏 starts with action 𝑏 which has a few possible outcomes, all
of them lead to a goal after several steps without loops, that is, Graph(𝑠0, 𝜋𝑏) is
acyclic, all its leaves are goal states and its paths to goals are of length ≤ 𝑘 . Both
𝜋𝑎 and 𝜋𝑏 are safe policies; 𝜋𝑎 is cyclic, whereas 𝜋𝑏 is acyclic. The value of 𝜋𝑎 is
𝑉𝑎 = 𝑐𝑜𝑠𝑡 (𝑎)∑𝑖=0,∞(1 − 𝑝)𝑖 =

𝑐𝑜𝑠𝑡 (𝑎)
𝑝

. The value 𝑉𝑏 of 𝜋𝑏 is the weighted sum of
the cost of the paths of Graph(𝑠0, 𝜋𝑏). □

3

s0
a

b

p

Figure 12.8. A simple domain for comparing features of probabilistic and nondetermin-
istic models.

In this example, the probabilistic approach compares 𝑉𝑎 to 𝑉𝑏 and chooses the
policy with the minimum expected cost. If 𝑐𝑜𝑠𝑡 (𝑎)/𝑝 < 𝑉𝑏, then 𝜋𝑎 is preferred to
𝜋𝑏, because 𝜋𝑏 is a more expensive solution in average. However, 𝜋𝑏 can be preferable
in the worst case because it has bounded horizon, while for 𝜋𝑏 it is indefinite.

The nondeterministic approach does not handle probabilities and expected costs,
but it distinguishes qualitatively acyclic from cyclic solutions. There are applications
in which an acyclic solution like 𝜋𝑏 is clearly preferable whatever the values of the
parameters are. This is particularly the case when these parameters are unknown or
difficult to estimate. This is also the case for safety critical applications in which
worst case is more meaningful than average cost.

Finally, nondeterministic approaches allow for a higher level of factorization, for
example, in the case of symbolic representations.

332 12 Planning with Nondeterministic Models

To summarize, probabilistic approaches require parameters but are able to make
fine choices on the basis of average case considerations; they allow choosing among
unsafe solutions when optimizing the probability to reach a goal. Nondeterminis-
tic approaches do not need parameters and their costly estimation step; they select
solutions according to a qualitative criteria

Extensions to Classical Planning. The idea of planning with nondeterministic
models was first addressed in the 1980s. The first attempts to deal with nondetermin-
ism were based on some pioneering work on conditional planning [1157, 886, 917].
This work was based on extensions to plan-space planning by extending classical
planning operators to have several mutually exclusive sets of outcomes.

More recently, techniques that were originally devised for classical planning in
deterministic models have been extended to deal with nondeterministic models. Plan-
ning graph techniques [146] have been extended to deal with conformant planning
[1034] and some limited form of partial observability [1165]. Planning as satisfiability
[591] has been extended to deal with nondeterministic models in [208, 207, 352, 423].
the work in [393] proposes a SAT encoding for planning with nondeterministic models
under full observability, and an iterative SAT-based planner that effectively handles
the uncertainty of FOND planning.

Different languages for representing nondeterministic actions have been investi-
gated in [985], which defines different nondeterministic versions of PDDL, condi-
tional STRIPS, and action languages, and the different complexity for different kinds
of queries.

Deductive planning approaches. Different approaches have addressed the prob-
lem of planning with nondeterministic models in a theorem proving setting, such as
techniques based on situation calculus [362] and the Golog Language [698, 777],
which have also been devised for the conformant planning problem. Planning based
on Quantified Boolean Formulas (QBF) has addressed the problem of conformant
planning and contingent planning under partial observability [944, 947, 946]. Ac-
cording to this approach, a bounded planning problem, that is, a planning problem
where the search is restricted to plans of maximum length 𝑛, is reformulated as a QBF
formula. QBF formulas are not encoded with BDDs, instead a QBF solver is used
to generate a plan. This approach can tackle several different conditional planning
problems. In QBF planning, like in planning as satisfiability, it is impossible to decide
the nonexistence of a solution plan.

Planinng via (symbolic) model checking. The idea of planning by using explicit
state model checking techniques has been around since the work by Kabanza [564]
and SimPlan, a planner that addresses the problem of planning under full observability
for temporally extended goals expressed in (an extension of) Linear Temporal Logic
(LTL) [325].

The idea of planning via symbolic model checking was first introduced in [234, 425].
Planning for safe acyclic solutions was first proposed in [236], and planning for safe
cyclic solutions was first proposed in [235] and then revised in [271]. A full formal

12.6 Discussion and Bibliographic Notes 333

account and an extensive experimental evaluation of the symbolic model checking
approach has been presented in [237]. The framework has been extended to deal with
partial observability [125] and with extended goals [899, 901, 269]. The approach
has been extnded to deal with preferences in [1002]. All the results described in the
works cited have been implemented in the Model Based Planner (MBP) [124], the
first planner based on the idea of planning via symbolic model checking using Binary
Decision Diagrams (BDDs).

There have been various proposals along this line. The work by Jensen and Veloso
[550] exploits the idea of planning via symbolic model checking as a starting point
for the work on the UMOP planner. Jensen and Veloso have extended the framework
to deal with contingent events in their proposal for adversarial planning [552]. They
have also provided a novel algorithm for strong (safe acyclic) and strong cyclic (safe
cyclic) planning which performs heuristic based guided OBDD-based search for non-
deterministic models [551]. GAMER [609], the winner of the FOND track at IPC
(2008), is a symbolic planner based on BDDs for safe cyclic and acyclic solutions.
The planner is based on a translation of the nondeterministic planning problem into
a two-player game, where actions can be selected by the planner and by the environ-
ment. Techniques for planning in nondeterministic domain models have been used
to interleave reasoning about processes and ontology reasoning [903]. The Yoyo
planner [660] does hierarchical planning with nondeterministic models by combining
an HTN-based mechanism for constraining the search and a Binary Decision Dia-
gram (BDD) representation for reasoning about sets of states and state transitions. In
[935, 274], the synthesis of controllers from a set of components is accomplished by
planning for safe acyclic solutions through model checking techniques. The work in
[934] combines symbolic model-checking techniques and forward heuristic search.

Other approaches are related to model checking techniques. The work in [67] uses
explicit-state model checking to embed control strategies expressed in LTL in TLPlan.
The work in [434, 431, 435] presents a method where model checking with timed
automata is used to verify that generated plans meet timing constraints.

Determinization Techniques. Some work on planning for cyclic safe solutions in
fully observable nondeterministic domains (FOND) has focused on determinization
techniques. This approach was first proposed in [659] with the NDP planner. A com-
plete formal account and extensive experimental evaluation is presented in [25]. The
planner NDP2 finds cyclic safe solutions (strong-cyclic solutions) by using a classical
planner (FF). NDP2 makes use of a procedure that rewrites the original planning
problem to an abstract planning problem, thus improving performances. NDP2 is
compared with the MBP planner. The work in [25] shows how the performances of
the two planners depend on the amount of nondeterminism in the planning domain,
how the NPD2 can use effectively its abstraction mechanisms, and whether the domain
contains dead ends.

A lot of interesting work has been proposed along the lines of NDP. The work
in [763] proposes a planner based on the And/Or search algorithm LAO* and the
pattern database heuristics to guide LAO* toward goal states. In [376], the FIP
planner builds on the idea of NDP and shows how such technique can solve all of the

334 12 Planning with Nondeterministic Models

problems presented in the international planning competition in 2008. Furthermore,
FIP improves its performance by avoiding re-exploration of states that have been
already encountered during the search (this idea is called state reuse). The work
in [818], implemented in the PRP planner, devises a technique to focus on relevant
aspects of states for generating safe cyclic solutions. Such technique manages to
improve significantly the performance of the planner. Another study [816] extends
the work to conditional effects. The work in [982] proposes a technique for conformant
planning through a reduction from nondeterministic models to classical planning to
find a candidate plan, and by verifying the validity of the plan with a SAT solver.

Planning based on Heuristic Search. The work in [155, 156, 159] introduced
the idea of planning in belief space (i.e., the space of sets of states) using heuristic
forward search. The conformant planning problem has been addressed by using
SAT to reason about the effects of an action sequence and heuristic search based
on FF relaxation techniques [175, 509]. The technique has been extended to deal
with contingent planning in [508]. Partially observable contingent planning is further
addressed in [749], a work that interleaves conformant planning with sensing actions
and uses a landmark-based heuristic for selecting the next sensing action, together with
a projection method that uses classical planning to solve the intermediate conformant
planning problems. Another work [163] studies the complexity of belief tracking for
planning with sensing both in the case of deterministic actions and uncertainty in the
initial state as well as in the case of nondeterministic actions. In [887], an iterative
depth-first search algorithm generates safe cyclic policies for FOND problems by
exploiting the benefits of heuristic functions to make the algorithm more effective
during the iterative searching process.

Planning based on Temporal Logic. Beyond the work on explicit state model
checking based on Linear Time Temporal Logic (LTL) [564, 67], recent works have
addressed the problem of planning in nondeterministic domains with Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces (LTLf and LDLf) [418], see, e.g.,
[417, 419, 416, 1230, 420, 153, 152, 1184].

Online approaches. Online approaches that interleave planning and acting, similar
to the techniques described in Section 9.5, have been proposed also to deal with
nondetermnistic models. A notable work on interleaving planning and execution in
nondeterministic domains is presented in [627, 626]. These authors propose different
techniques based on real-time heuristic search. Such algorithms are based on distance
heuristics in the search space. The inMax Learning Real Time A* algorithm has been
proposed in [626]. Indeed, algorithms devised for probabilistic planning can be used
in nondeterministic domains without taking into account the probabilistic distribution.
This is the case of algorithms based on sparse sampling lookahead (see Section 9.5).
On one hand, these techniques allow for dealing with large planning domains that
cannot be addressed by offline algorithms. On the other hand, they work on the
assumption of “safely explorable” domains, that is, domains that do not contain dead
ends. The work in [127] proposes a different technique based on symbolic model

12.6 Discussion and Bibliographic Notes 335

checking for partially observable domains, which guarantees termination in non-
safely-explorable domains, still not guaranteeing to reach the goal in the unlucky case
a dead end is reached. The work in [1003] focuses on fully observable domains and
shows a technique that is able to interleave planning and execution in a very general
and efficient way by using symbolic model checking techniques and by expressing
goals that contain procedural statements (executable actions and plans) and declarative
goals (formulas over state variables).

Planning as Synthesis of Controllers. The technique for the synthesis of con-
trollers presented in Section 11.2 shares some ideas with work on the automata-based
synthesis of controllers (see, e.g., [905, 906, 907, 1117, 592, 656, 655, 1115]).

In Section 12.4 we dealt with the problem of planning under partial observability
by encoding in different states the different possible values of variables that cannot be
observed. Work in planning under partial observability has been done in the frame-
work of planning via symbolic model checking [128, 127, 126], real-time heuristic
search [626], and heuristic search [749].

Further Recent Approaches. Some recent work addresses the FOND planning
problem under explicitly provided fairness assumptions [955]. It provides a formal-
ization of string and strong cyclic planning under a suitable fairness assumption;
strong planning is represented through adversarial (or “unfair”) nondeterminism;
strong-cyclic planning through fair nondeterminism under the assumption that none
of the possible outcomes of a non-deterministic action can be skipped forever.

A best-first heuristic search algorithm that searches the policy-space of a FOND
model has been developed in [955]. The authors generalize the concepts of optimality,
admissibility, and goal-awareness to the case of FOND. In [1013], the authors address
the problem of planning with unavoidable deadends, i.e., deadens that cannot be
avoided by resorting to a different plan. Contingent offline and online planning is
used to identify and handle unavoidable deadends. In [817], the authors propose a set
of novel techniques for FOND planning to scale up to large state spaces.

The work in [780] deals with action reversibility in nondeterministic models. It
defines the notions of weak and strong reversibility for non-deterministic action,
i.e., whether ”all effects might be undone” (weak reversibility) and “all the effects
can always be undone” (strong reversibility). It proposes techniques to determine
whether an agent can always undo all possible effects of the action, or whether some
of the effects can never be undone. The approach is based on the idea of encoding
the concept of action reversibility into classical (deterministic) planning, to deal with
weak reversibility; and FOND planning, to deal with strong reversibility.

The work in [134] proposes a ”verification via planning” approach where FOND
planning is used to verify hyperproperties, i.e., properties that relate multiple paths
of a computational system.

Behavior Tree Generation. Behavior Trees have been exploited with success
mainly as a high level programming language for acting, as explained in Section 11.3
and discussed in Section 11.5. They have also been advocated as an approach to create

336 12 Planning with Nondeterministic Models

deliberative agents. The BTplanningacting algorithm is an adaptation of a simple al-
gorithm reported in [252], which calls simple BTs Postcondition-Precondition-Action
BT (PPA-BT). [252] describes different extensions of the simple algorithm presented
in Section 12.5.2.

Synthesis of Petri Nets. The synthesis of PNs is developed in [72]. [166, 1237]
describe techniques for planning based on Petri Nets.

12.7 Exercises

12.1. Provide a definition of a “worst-case optimal” safe acyclic solution, that is, a
solution that results in a path with the minimal longest distance from the goal. Rewrite
algorithms for finding safe acyclic solutions (see Algorithm 12.3) by replacing the
nondeterministic choice and guaranteeing that the solution is worst-case optimal.

12.2. Write deterministic algorithms for Find-Safe-Solution and Find-Acyclic-Solution,
see Algorithm 12.2 and Algorithm 12.3.

12.3. Figure 12.9 is a domain model for a washing problem. To make the domain
nondeterministic, suppose we assume that sometimes the start action may either
succeed or fail. If it fails, it will not change the state. The run and finish actions are
guaranteed to succeed. Also, say that the set of goal states 𝑆𝑔 are all the states where
{clean(clothes)= T, clean(dishes)= T} are satisfied.

(a) Draw the state-transition system. (Hint: It can be rather large. To make it easier
to draw, do not give names to the states, and use abbreviated names for actions.)

(b) Trace the execution of Find-Solution on this problem by drawing the And/Or
search tree. The nondeterministic choices are left to the reader.

(c) Do the same for Find-Safe-Solution.
(d) Suppose 𝐴 and 𝐴𝑑 represent the set of actions in the nondeterministic model

and the determinized model, respectively. Compute |𝐴| and |𝐴𝑑 |.
(e) Write down a plan 𝜋𝑑 from the initial state to a goal state using the determinized

model.

12.4. Prove that an acyclic safe solution 𝜋 to the problem 𝑃 = (Σ, 𝑠0, 𝑆𝑔) satisfies the
condition

(∀𝑠 ∈ 𝛾̂(𝑠0, 𝜋) (leaves(𝑠, 𝜋) ∩ 𝑆𝑔 ≠ ∅)) ⇐⇒ leaves(𝑠0, 𝜋) ⊆ 𝑆𝑔 .

12.5. Notice that Find-Acyclic-Solution-by-MinMax ignores the possibility of multiple
paths to the same state. If it comes to a state 𝑠 again along a different path, it does
exactly the same search below 𝑠 that it did before. Modify Find-Acyclic-Solution-by-
MinMax such that it avoids reperforming the same search in already visited states by
storing remembering the already visited states and storing the obtained solutions.

12.6. Determinization techniques rely on a transformation of nondeterministic actions
into a sets of deterministic actions. Write a definition of a procedure to transform

12.7 Exercises 337

Objects: Items ∪ Machines ∪ Booleans ∪ Statuses ∪ Availability
Items = {dishes, clothes},
Machines = {dw, cw} (i.e., dishwasher and clothes washer),
Booleans = {T, F},
Statuses = {idle, filling, running},
Availability = {free, using}

State variables (where i ∈ Items and m ∈ Machines):
clean(i) ∈ Booleans, status(m) ∈ Statuses, water ∈ Availability

Initial state and goal:
s0 = {clean(dishes) = F, clean(clothes) = F, loc(dishes) = dw, loc(clothes) = cw,

status(dw) = idle, status(cw) = idle, water = free}
g = {clean(dishes) = T, clean(clothes) = T}

Action schemas (where i ∈ Items and m ∈ Machines):

run(m)
Pre: status(m) = filling
Eff: status(m) = running, water = free

start(m)
Pre: status(m) = idle, water = free
Eff: status(m) = filling, water = using

finish(m,i)
Pre: status(m) = running, loc(i) = m
Eff: status(m) = idle, clean(i) = T

Figure 12.9. A planning domain in which there are two devices that use water: a washing
machine and a dishwasher. Because of water pressure problems, only one device can
use water at a time.

a nondeterministic domain into a deterministic one. Notice that this operation is
complicated by the fact that we have to take into account that in different states, the
same action can lead to a set of different states. Therefore, if the set of states has
exponential size with respect to the number of state variables, then this operation
would generate exponentially many actions.

12.7. The algorithm for planning for safe solutions by symbolic model checking
presented in this chapter (see Algorithm 12.9) can find either safe cyclic or safe
acyclic solutions. Modify the algorithm such that it finds a safe acyclic solution, and
only if one does not exist, does it search for a safe cyclic solution.

12.8. Consider the definition of controlled system: Definition 11.11. A control
automaton 𝐴𝑐 may be not adequate to control an automaton 𝐴∥ . Indeed, we need
to guarantee that, whenever 𝐴𝑐 sends an output, 𝐴∥ is able to receive it as an input,
and vice versa. A controller that satisfies such condition is called a deadlock-free
controller. Provide a formal definition of a deadlock-free controller. Suggestion: see
the paper [902] where automata are defined without commands but with 𝜏-actions.

12.9. Write an algorithm that uses classical planning to interleave planning and acting
(see Section 12.5.1)

13 Learning Nondeterministic Models

Learning for nondeterministic models can take advantage of most of the techniques
developed for probabilistic models (Chapter 10). Indeed, notice that in Reinforcement
Learning (RL), probabilities of action transitions are not needed, so RL techniques can
be applied to nondeterministic models too. For instance, we can use the algorithms
for Q-learning (Algorithm 10.1, Q-learning), parametric Q-learning (Algorithm 10.3,
Parametric Q-learning), and Deep Q-learning (Algorithm 10.5, Deep Q-learning).
However, these algorithms do not give explicit description models of actions.

In this section, we discuss therefore some intuitions and also some challenges of
how the techniques for learning deterministic action specifications (Section 4.2) could
be extended to deal with nondeterministic models. Notice however that learning lifted
action schema in nondeterminism models is still an open problem. In this section,
we do not present solutions, but give an idea of the research challenges and possibly
directions to address such challenges in future research.

In Section 13.1, we first extend the notion of action schema to nondeterministic
models. In Section 13.2, we then focus on extending the algorithms for offline
action learning described in Section 4.2.1 and showing some challenges still to be
addressed. The case of online action learning for nondeterministic domains might
be approached in a similar way by trying to extend the algorithms presented for
deterministic models (see Section 4.2.2). However an online learning approach
should solve the challenge to define what is an informative state-action pair (see
Algorithm 4.12) in nondeterministic models, and how to use techniques for planning
in nondeterministic domains (see Algorithm 4.12 for the deterministic version) to do
planning to learn actions schema. All these issues are still open problems (see also
Exercise 13.3).

13.1 Nondeterministic Action Schema

In nondeterministic models, the definition of action schema (Definition 2.7, Sec-
tion 2.3) must be extended to deal with different possible effects of actions. In
Section 4.2, pre(𝛼(𝒛)) and eff(𝛼(𝒛)) denote the sets of preconditions and effects of
action 𝛼, each of them being a set of lifted assignments of the form x(𝒛) = 𝑧′, where
x(𝒛) is a lifted state variable (also called structured object variable).

Action schema for nondeterministic models must be extended to take into account
that actions might have different effects:

Definition 13.1. Eff(𝛼(𝒛)) is a nonempty set {eff1(𝛼(𝒛)), . . . , eff𝑚(𝛼(𝒛)} of 𝑚 sets
of lifted assignments containing only the parameters 𝒛. □

338

Free pre-publication, for personal use only. To be published by Cambridge University Press.

13.2 Offline Action Learning 339

The intuition is that Eff(𝛼(𝒛)) is a set of the possible different 𝑚 outcomes of
the application of action 𝛼(𝒛). Each outcome is in its turn represented with a set
of lifted assignments. If Eff(𝛼(𝒛)) contains just one element (just one set of lifted
assignments), then 𝛼 is deterministic. If Eff(𝛼(𝒛)) contains more than one element,
then 𝛼 is nondeterministic.

Notice that ∅ ∈ Eff(𝛼(𝒛) represents a transition that leads to the same state. If
Eff(𝛼(𝒛)) = {∅}, then 𝑎 is an action that does nothing. This should not be confused
with Eff(𝛼(𝒛)) = ∅, which is not admitted in the current formalization.

13.2 Offline Action Learning

Nondet-Action-Incremental-Learning(𝑇)
for 𝑎 action name that appears in 𝑇 do

pre(𝑎(𝒛)) ← U
𝑆 ← ∅
𝑖 ← 1
Eff(𝑎(𝒛)) ← eff1(𝑎(𝒛)) ← ∅

while 𝑇 ≠ ∅ do
choose (𝑠, 𝑎(𝒄), 𝑠′) ∈ 𝑇
pre(𝑎(𝒛)) ← 𝑝𝑟𝑒(𝑎(𝒛)) ∩ 𝑠(𝒛)
if1 𝑠 ∈ 𝑆 and there exists an assignment

x(𝒛) = 𝑧′ ∈ 𝑠′(𝒛) s.t. x(𝒛) = 𝑧′′ ∈ eff𝑖 (𝑎(𝒛)) with 𝑧′ ≠ 𝑧′′ then
𝑖 ← 𝑖 + 1
eff𝑖 (𝑎(𝒛)) ← eff𝑖−1(𝑎(𝒛)) \ {x(𝒛) = 𝑧′ ∈ eff𝑖−1(𝑎(𝒛)) s.t. 𝑧′ ≠
𝑧′′ with x(𝒛) = 𝑧′′ ∈ 𝑠′(𝒛)} ∪ 𝑠′(𝒛) \ 𝑠(𝒛)

Eff(𝑎(𝒛)) ← Eff(𝑎(𝒛)) ∪ eff𝑖 (𝑎(𝒛))
else

2 for 𝑘 ← 1 to 𝑖 do
Eff(𝑎(𝒛)) ← Eff(𝑎(𝒛)) ∩ eff𝑖 (𝑎(𝒛))
eff𝑖 (𝑎(𝒛)) ← eff𝑖 (𝑎(𝒛)) ∪ 𝑠′(𝒛) \ 𝑠(𝒛)
Eff(𝑎(𝒛)) ← Eff(𝑎(𝒛)) ∪ eff𝑖 (𝑎(𝒛))

𝑆 ← 𝑆 ∪ {𝑠}
𝑇 ← 𝑇 ∩ (𝑠, 𝑎(𝒄), 𝑠′)

Algorithm 13.1. A simple algorithm for Incremental Nondeterministic Action
Learning.

In this section, we present a first naive attempt to extend Algorithm 4.6 Action-
Incremental-Learning-Simple to account for nondeterminism. This simple exten-
sion does not fully address the problem of learning correct nondeterministic action
schemas, and it introduces new challenges for further research.

The underlying idea of Algorithm 13.1 Nondet-Action-Incremental-Learning is a

340 13 Learning Nondeterministic Models

very simple one: an action is nondeterministic when from the same state the action
leads to different states. 𝑆 is the set of states visited so far. If a state 𝑠 has been
already encountered in a transition (𝑠, 𝑎(𝒄), 𝑠′), and some effect (x(𝒛) = 𝑧′ ∈ 𝑠′(𝒛))
is different from previous effects (Line 1), then the action is nondeterministic and we
add a new set of effects to Eff(𝑎(𝒛)). If this is not the case, Algorithm 13.1 updates
the current set of effects eff𝑖 in the same way as in the deterministic case (Line 2).

However, this proposed approach has several problems. Indeed, Algorithm 13.1 de-
tects that an action is nondeterministic when two action applications in the same state
lead to different states, i.e., when 𝑇 contains two transitions (𝑠, 𝑎, 𝑠′) and (𝑠, 𝑎, 𝑠′′)
with 𝑠′ ≠ 𝑠′′. But this is not a necessary condition. Indeed it should be possible to
infer that an action is nondeterministic even when this condition does not hold, like
illustrated by the following example.

Example 13.2. Consider the following simple trace, with just two transitions:

x=1 x=2 x=2
set(x,2) set(x,3) (13.1)

Notice that in the the first transition, the action set(𝑥, 2) succeeds and the effect is
𝑥 = 2. In the second transition, set(𝑥, 3) fails and the value of 𝑥 remains unchanged.
We should be able to infer from the above transitions that the lifted action set(𝑧1, 𝑧2)
is nondeterministic. This should be inferred even if the action is applied to differ-
ent states. The action schema that generates the above transitions should have the
following preconditions and effects:

pre(set(𝑧1, 𝑧2)) = ∅
Eff(set(𝑧1, 𝑧2)) = {∅, {𝑧1 = 𝑧2}}

However, Algorithm 13.1 does not learn the above nondeterministic effects. It er-
roneously learns that set(𝑧1, 𝑧2) is a deterministic action that leads to inconsistent
effects, something that is not possible at all!

pre(set(𝑧1, 𝑧2)) = ∅
Eff(set(𝑧1, 𝑧2)) = {{𝑧1 = 𝑧2,∅}}

□

One possibility to remedy to the problem shown in Example 13.2, could be to extend
Algorithm 13.1 by adding a condition to check whether the difference between the
value of a state variable changes from the initial to the final state of the transition, i.e.,
whether 𝑧 ≠ 𝑧′, with x(𝒛) = 𝑧 ∈ 𝑠(𝑎(𝒛)) and x(𝒛) = 𝑧′ ∈ 𝑠′(𝑎(𝒛)) (see Exercise 13.1)

But this should be done with care. See the following example.

Example 13.3. In this set of transitions, in spite of the fact that the second action does
not change the state, while the first does, there is no evidence of nondeterminism:

13.3 Discussion and Bibliographic Notes 341

x=1 x=2 x=2
set(x,2) set(x,2) (13.2)

Indeed, an action schema that has only the effect of setting the value of 𝑥 to 2, such
as

pre(set(𝑧1, 𝑧2)) = ∅
Eff(set(𝑧1, 𝑧2)) = {{𝑥 = 𝑧2}}

can generate such a set of transitions. □

13.3 Discussion and Bibliographic Notes

While there has been a lot of work on learning action schema for deterministic models
(Section 4.3) and for learning in the case of probabilistic models (Section 10.9) we are
not aware of works for learning action schema in the case of nondeterministic models.
Section 13.1 provides some hints about the difficulties and possible approaches to
address this problem.

There is a large body of work on learning automata, from the pioneering work
in [428, 44] to recent work, see, e.g., [196, 1110, 185]. Learning nondeterministic
automata can be used to generate nondeterministic models Σ = (𝑆, 𝐴, 𝛾), where 𝛾
is nondeterministic. However, notice that these approaches do not generate action
schema, the resulting state transition system is specified through ground actions.

Different works deal with the problem of learning Behavior Trees, see, e.g., [253,
542] for an extensive survey, including learning BTs by genetic programming [1061,
543], generating BTs by Monte Carlo search [986], generating BTs for manipulation
tasks [1135], and learning Behavior Trees based on LLMs [200].

13.4 Exercises

13.1. Modify Algorithm 13.1 to solve the problem described in Example 13.2.

13.2. Modify Algorithm 13.1 to solve the problem described in Example 13.3.

13.3. Consider the problem of extending the algorithms for online action learning in
deterministic models Section 4.2.2 to deal with nondeterministic models. Describe
possible approaches and open challenges.

Part V

Hierarchical Refinement Models

Let it be your constant method to look into
the design of people’s actions, and see what
they intend to accomplish.

Marcus Aurelius, Meditation (Book
X), circa 180

This part of the book is devoted to acting, planning and learning with operational
models of actions expressed with a hierarchical task-oriented representation. We
briefly discussed in Chapter 1 descriptive versus operational models of actions. The
latter are valuable for acting. They allow for detailed descriptions of complex actions
handling dynamic environments with exogenous events.

The representation relies on hierarchical refinement methods which describe al-
ternative ways to handle tasks and react to events. A method can be any complex
algorithm, decomposing a task into subtasks and primitive actions. Subtasks are re-
fined recursively. Actions trigger the execution of sensory-motor procedures in closed
loops that query and change the world stochastically.

The representation extends that of Part II with more expressive methods and non-
determinism. Because we consider actions with probabilistic outcomes, planning and
learning methods rely on those seen in Part III.

In Chapter 14, we describe the representation and develop an acting system, called
RAE, which uses hierarchical refinement methods that are manually specified. RAE
chooses the appropriate method for the task and context at hand heuristically or with
the help of a planner. In Chapter 15 we present such a planner, called UPOM, which
allows for informed choices of appropriate methods for the tasks and contexts at hand.
This planner uses an anytime Monte Carlo Tree Search approach, suitable for online
planning. Techniques for learning heuristics to guide UPOM and for syntesizing task
refinement methods are presented in Chapter 16.

342

Free pre-publication, for personal use only. To be published by Cambridge University Press.

14 Acting with Hierarchical Refinement

This chapter is about a Refinement Acting Engine (RAE) using on a hierarchical task-
oriented representation. It relies on an expressive, general-purpose language which
offers rich programming control structures for online decision-making. A collection
of refinement methods describes alternative ways to handle tasks and react to events.
A method can be any complex algorithm, decomposing a task into subtasks and
primitive actions. Subtasks are refined recursively. Actions trigger sensory-motor
procedures that query and change the world nondeterministically. We assume that the
methods are manually specified, and that RAE chooses the appropriate method for the
task and context at hand heuristically.

RAE can handle dynamic environments and exogenous events due to other causes
than the actor’s own actions. It can also deal with partial and imperfect information.
The value of some state variables can be unknown. A simple notation extends the
range of every state variable to include a special symbol, unknown, which can be the
default value of a state variable that has not been set or updated to definite value. The
range of a state variable can be finite or nonfinite, discrete or continuous. Specific
procedures for handling approximate values can be introduced in methods when
needed.

Primitive actions may have multiple possible outcomes due to, e.g., sensing and
information gathering actions, interfering exogenous events, or accidents. With RAE,
the actor systematically observes which outcome actually occurs to respond accord-
ingly. Refinement methods provide ways to condition the behavior on the observed
state. However, RAE with a heuristic choices of methods, does not reason specifically
on the nondeterminism of actions. It needs the planning-based look-ahead techniques
of the following chapter.

Actions triggered by RAE take time to complete; multiple actions may proceed
simultaneously. RAE manages an agenda of concurrent activities. In this chapter,
facts are not time stamped but simply refer to the current state of the world. RAE has
a limited capability for handling temporal conditions, such as temporal triggers and
deadlines. Section 14.3 and Part VI discuss how to extend the representation with an
explicit temporal model.

14.1 Representation

Let us define the building blocks of the task refinement methods representation.

Free pre-publication, for personal use only. To be published by Cambridge University Press.

343

344 14 Acting with Hierarchical Refinement

14.1.1 Events, Tasks and Actions

An event designates an observable occurrence of some type to which the actor may
have to react; it corresponds to an exogenous change in the environment relevant for
the missions and tasks of the actor and for which it has appropriate reaction models.
It can be for example the activation of a typed emergency signal. It has the form
event-name(args).

A task is a label naming an activity to be performed. It has the form task-
name(args), where task-name designates the task considered, its arguments args
is an ordered list of objects and values. Tasks are hierarchically organized; root tasks
are refined with methods into subtasks, with possible recursion.

An action is a primitive function with parameters that can be executed by the actor
through sensory-motor commands. It has the form action-name(args), where action-
name designates the action considered, arguments args is an ordered list of objects
and values. An action may have nondeterministic effects. When the actor triggers
an action 𝑎 for addressing some task or event, it waits until 𝑎 terminates or fails
before pursuing that task or event. To follow its execution progress, when action 𝑎 is
triggered, there is a state variable, denoted exec-status(𝑎) ∈ {running, done, failed},
which expresses the fact that the execution of 𝑎 is going on, has succeeded or failed.
A terminated action returns a value of some type, which can be used to branch over
various followup of the activity.

Example 14.1. Consider the Dock Worker Robot (DWR) domain where robot is
servicing a harbor navigating in a topological map, searching for a particular container.
The sets of typed objects are:

• Robots={r1, r2, . . . },
• Locations={loc1, loc2, . . . },
• Containers={c1, c2, . . . }.

The following state variables are kept up-to-date by the robot’s execution platform:

• location(𝑟) ∈ Locations, for 𝑟 ∈ Robots,
• place(𝑐) ∈ Robots ∪ Locations, for 𝑐 ∈ Containers,
• cargo(𝑟) ∈ Containers ∪ {empty}, for 𝑟 ∈ Robots,
• view(𝑙) ∈ {T, F} indicates if the robot has perceived the content of location 𝑙.

When view(𝑙) = T then for every container 𝑐 in 𝑙, pos(𝑐) = 𝑙 is a fact in 𝜉.

The robot’s platform can execute the following primitive actions:

• move-to(𝑟, 𝑙): robot 𝑟 goes to adjacent location 𝑙,
• take(𝑟, 𝑐, 𝑙): 𝑟 takes container 𝑐 at location 𝑙,
• put(𝑟, 𝑐, 𝑙): 𝑟 puts 𝑐 in 𝑙,
• perceive(𝑟, 𝑙): 𝑟 perceives which containers are in its location 𝑙.

These actions are applicable under some conditions, for example, move-to requires
the destination 𝑙 to be adjacent from the current location, and take, put and perceive
require 𝑟 to be in 𝑙. Upon the completion of an action, the platform updates the

14.1 Representation 345

corresponding state variables. For example, when perceive(𝑟, 𝑙) terminates, view(𝑙) =
T and pos(𝑐) = 𝑙 for every container 𝑐 in 𝑙.

Possible tasks for this domain can be:

• navigate(𝑟, 𝑙): robot 𝑟 goes to a reachable location 𝑙,
• fetch(𝑟, 𝑐): 𝑟 goes to where is container 𝑐 and takes it,
• deliver(𝑟, 𝑐, 𝑙): 𝑟 delivers container 𝑐 to a location 𝑙.

□

For the purpose of acting, we assume that we know how to perform an action, but
we do not need to have an explicit model of its possible effects. These effects are
observed then dealt with in methods through branches conditioned on the observed
states after an action terminates or fails. In the following chapter, we’ll assume
given a simulator to sample through possible effects of actions in order to perform a
look-ahead and allow for informed acting choices.

14.1.2 Hierarchical Refinement Methods

A refinement method is specified as a parameterized template with a name and list of
arguments method-name(arg1, . . . , arg𝑘), a role, a precondition and a body. The role
is either a task or an event; it tells what the method is about. When the precondition
holds in the current state, the method is applicable for addressing the task or event
in its role by running a program given in the method’s body. This program refines
the task or event into a sequence of subtasks, actions, and assignments. It may use
recursions and iteration loops; its sequence of steps is assumed to be finite.1

A ground method is obtained by the substitution of its arguments by constants that
are objects and values of state variables in the domain. The instance is applicable for
a task if its role matches a current task or event, and its preconditions are satisfied
by the current values of the state variables. A method may have several applicable
instances for a current state, task, and event. An applicable instance of a method, if
executed, addresses a task or an event by refining it, in a context dependent manner,
into subtasks, actions, and possibly state updates.

The body of a method is a program that refers to state variables.2 It is also
convenient to define in a body local variables, which are generally derived from other
variables. For example, one might use stable(𝑜, pose) ∈ {⊤,⊥}, to designate that
object 𝑜 in some particular pose is stable; this property results from some geometric
and dynamic computation. Local variables are updated by assignment statements
inside methods. An assignment statement is of the form 𝑦 ← expr, where expr may
be either a ground value in Range(𝑦), or a computational expression that returns a

1One way to enforce such a restriction would be as follows. For each iteration loop, one could require
it to have a loop counter to terminate after a finite number of iterations. For recursions, one could
use a level mapping (e.g., see [329, 502]) that assigns to each task 𝑡 a positive integer ℓ(𝑡), and
require that for every method 𝑚 whose task is 𝑡 and every task 𝑡′ that appears in the body of 𝑚,
ℓ(𝑡′) < ℓ(𝑡). However, in most cases it is straightforward to write methods that don’t necessarily
satisfy this property but still don’t produce infinite recursion.

2State variable can be viewed as global variables during the execution of the body of methods.

346 14 Acting with Hierarchical Refinement

ground value in Range(𝑦). Such an expression may include, for example, calls to
specialized software packages.

The body of a method is a sequence of lines with the usual programming control
structure (if-then-else, while loops, etc.), and test on the current values of state
variables. A simple test has the form (𝑥 ◦ 𝑣), where 𝑥 is a variable, ◦ ∈ {=,≠, <, >},
and 𝑣 a constant in the Range(x). A compound test is a negation, conjunction, or
disjunction of simple or compound tests. Tests are evaluated with respect to the
current state 𝜉. In tests, the symbol unknown is not treated in any special way; it is
just one of the state variable’s possible values.

Example 14.2. Consider the task for the DWR robot in Example 14.1 to fetch a
particular container 𝑐. The robot may know the place of 𝑐 (i.e., this information may
be in 𝜉), in which case the robot goes to that location to take 𝑐. Otherwise, the robot
will have to look at locations whose content is unknown until it finds what it is looking
for. This is expressed through the two following refinement methods:

m1-fetch(𝑟, 𝑐)
task: fetch(𝑟, 𝑐)
pre: place(𝑐) ≠ unknown

body: if location(𝑟) = place(𝑐) then take(𝑟, 𝑐, pos(𝑐))
else do

navigate(𝑟, place(𝑐))
take(𝑟, 𝑐, place(𝑐))

m2-fetch(𝑟, 𝑐)
task: fetch(𝑟, 𝑐)
pre: place(𝑐) = unknown

body: if ∃ 𝑙 ∈ Locations such that view(𝑙) = F then do
navigate(𝑟, 𝑙)
perceive(𝑟, 𝑙)
if place(𝑐) = 𝑙 then take(𝑟, 𝑐, 𝑙)
else fetch(𝑟, 𝑐)

else fail

□

The above example illustrates task refinement methods. Let us provide the robot
with a method for reacting to an event.

Example 14.3. Suppose that a robot of the previous example may have to react to an
emergency call by stopping its current activity and going to the location from where
the emergency originates. Let us represent this with an event emergency(𝑙, 𝑖) where
𝑙 is the emergency origin location and 𝑖 ∈ N is an identification number of this event.
We also need an additional state variable: emergency-handling(𝑟) ∈ {T, F} indicates
whether the robot 𝑟 is engaged in handling an emergency.

14.1 Representation 347

m-emergency(𝑟, 𝑙, 𝑖)
event: emergency(𝑙, 𝑖)

pre: emergency-handling(𝑟) = F
body: emergency-handling(𝑟) ← T

if cargo(𝑟) ≠ nil then put(𝑟, load(𝑟), location(𝑟))
move-to(𝑙)
address-emergency(𝑙, 𝑖)

This method is applicable if robot 𝑟 is not already engaged in handling an emergency.
In that case, the method sets its emergency-handling state variable; it unloads whatever
the robot is loaded with, if any; it triggers the action to go the emergency location, then
it sets a task for addressing this emergency. Other methods are supposed to switch back
emergency-handling(𝑟) when 𝑟 has finished with the task address-emergency. □

Let us now illustrate methods for the VSR domain for tasks such as opening a door.
We consider a one-arm robot and assume that the door is unlocked (exercises 14.10
and 14.11 cover other cases of this domain).

Example 14.4. Let us endow the robots in the VSR domain with methods for opening
doors. In addition to the state variables location, place, cargo, pose, we need to
characterize the opening status of the door and the position of the robot with respect
to it. The two following state variables fill that need:

• location(𝑟) ∈ Locations, for 𝑟 ∈ Robots,
• reachable(𝑟, 𝑜) ∈{T, F}: indicates that robot 𝑟 is within reach of object 𝑜, here
𝑜 is the door handle;

• door-status(𝑑) ∈ {closed, cracked, open, unknown}: gives the opening status
of door 𝑑, a cracked door is unlatched.

The following rigid relations are used:

• adjoining(𝑙, 𝑑): means that location 𝑙 is adjoining to door 𝑑;
• handle(𝑑, 𝑜): 𝑜 is the handle of door 𝑑;
• direction(𝑙, 𝑑, toward) or direction(𝑙, 𝑑, away): location 𝑙 is on the hinge or

“toward” side of door 𝑑, or on the “away” side;
• side(𝑑, left) or side(𝑑, right): door 𝑑 turns or slides to left or to the right

respectively with respect to the “toward” side of the door.
• type(𝑑, rotates) or type(𝑑,slide): door 𝑑 rotates or slides;

The primitive actions needed to open a door are the following:

• move-close(𝑟, 𝑜): robot 𝑟 moves to a position where reachable(𝑟, 𝑜)=T;
• move-by(𝑟, 𝜆): 𝑟 performs a motion given by vector 𝜆;
• grasp(𝑟, 𝑜): robot 𝑟 grasps object 𝑜;
• ungrasp(𝑟, 𝑜): 𝑟 ungrasps 𝑜;
• turn(𝑟, 𝑜, 𝛼): 𝑟 turns a grasped object 𝑜 by angle 𝛼 ∈ [−𝜋, +𝜋];
• pull(𝑟, 𝜆): 𝑟 pulls its arm by vector 𝜆;
• push(𝑟, 𝜆): 𝑟 pushes its arm by 𝜆;
• monitor-status(𝑟, 𝑑): 𝑟 focuses its perception to keep door-status updated;

348 14 Acting with Hierarchical Refinement

• end-monitor-status(𝑟, 𝑑): terminates the monitoring action.

We assume that actions that take absolute parameters stop when an obstacle is detected,
for example, turn(𝑟, 𝑜, 𝛼) stops when the turning reaches a limit for the rotation of 𝑜,
similarly for move-by.

m-opendoor(𝑟, 𝑑, 𝑙, 𝑜)
task: opendoor(𝑟, 𝑑)
pre: location(𝑟) = 𝑙 ∧ adjoining(𝑙, 𝑑) ∧ handle(𝑑, 𝑜)

body: while ¬reachable(𝑟, 𝑜) do
move-close(𝑟, 𝑜)

monitor-status(𝑟, 𝑑)
if door-status(𝑑)=closed then unlatch(𝑟, 𝑑)
throw-wide(𝑟, 𝑑)
end-monitor-status(𝑟, 𝑑)

m-opendoor is a method for the opendoor task. It moves the robot close to the door
handle, unlatches the door if it is closed, then pulls it open while monitoring its status.
It has two subtasks: unlatch and throw-wide.

m1-unlatch(𝑟, 𝑑, 𝑙, 𝑜)
task: unlatch(𝑟, 𝑑)
pre: location(𝑟, 𝑙)∧ direction(𝑙, 𝑑, toward)∧ side(𝑑, left)∧ type(𝑑, rotate)

∧ handle(𝑑, 𝑜)
body: grasp(𝑟, 𝑜)

turn(𝑟, 𝑜, alpha1)
pull(𝑟, val1)
if door-status(𝑑)=cracked then ungrasp(𝑟, 𝑜)
else fail

m1-throw-wide(𝑟, 𝑑, 𝑙, 𝑜)
task: throw-wide(𝑟, 𝑑)
pre: location(𝑟, 𝑙)∧ direction(𝑙, 𝑑, toward)∧ side(𝑑,left)∧ type(𝑑, rotate)

∧ handle(𝑑, 𝑜)∧ door-status(𝑑)=cracked
body: grasp(𝑟, 𝑜)

pull(𝑟, val1)
move-by(𝑟, val2)

The preceding two methods are for doors that open by rotating on a hinge, to the left
and toward the robot. Other methods are needed for doors that rotate to the right,
doors that rotate away from the robot, and sliding doors (see Exercise 14.8).

The method m1-unlatch grasps, turns, then pulls the door handle before ungrasping.
The method m1-throw-wide grasps the handle, pulls, then moves backward. Here
alpha1 is a positive angle corresponding to the maximum amplitude of the rotation
of a door handle (e.g., about 1.5 rad), val1 is a small vector toward the robot (an
amplitude of about 0.1 meter), and val2 is a larger vector backward (of about 1 meter).
Other methods would survey the grasping status of what the robot is grasping, or turn
the handle in the opposite direction before ungrasping it (see Exercise 14.9). □

14.2 Refinement Acting Engine 349

14.1.3 Acting Domain

An acting domain is modeled as a tuple Σ = (Ξ,T ,M, 𝐴) where:

• Ξ is the set of world states the actor may be in;
• T is the set of tasks and events the actor may have to deal with;
• M is the set of methods for handling tasks or events in T , and Applicable(𝜉, 𝜏)

the ground methods applicable to 𝜏 in state 𝜉.
• 𝐴 is the set of nondeterministic primitive actions the actor may perform.

Note that we do not need actions schemas and do not introduce in Σ the state transition
function 𝛾 (defined by action schemas) . The dynamic of the domain is observed by
performing actions in 𝐴.

Given Σ and a task or event 𝜏 ∈ T , the actor has to choose a “good” method
𝑚 ∈ Applicable(𝜉, 𝜏) to perform 𝜏 in a current state 𝜉, and to follow-up the steps in
the body of 𝑚, while possibly handling other tasks and events that may be requested.
The actor does not require a plan, i.e., an organized set of actions or a policy: its
plan for 𝜏 is given by the method 𝑚 it chooses. It requires a selection procedure
which designates for each task or subtask at hand the “good” method for pursuing the
activity in the current context. RAE relies on a selection procedure, denoted Guide,
which chooses in Applicable(𝜉, 𝜏) an appropriate method. This choice can be done
heuristically or on the basis of a planner (developed in Chapter 15).

14.2 Refinement Acting Engine

The Refinement Acting Engine (RAE) reacts to tasks and events through hierarchical
refinements specified by a library of methods. RAE maintains an Agenda consisting
of a set of refinement stacks, one for each root task or event that needs to be addressed.
A refinement stack stack is a LIFO list of tuples of the form (𝜏, 𝑚, 𝑖, tried) where 𝜏
is an identifier for the task or event; 𝑚 is a ground method to refine 𝜏 (set to nil if no
method has been chosen yet); 𝑖 is a pointer to a step in the body of 𝑚, initialized to
1 (first line in the body); and tried is a set of ground methods already tried for 𝜏 that
failed to accomplish it. The refinement stack is handled with the usual push, pop and
top functions.

When RAE addresses a task 𝜏, it must choose a ground method 𝑚 for 𝜏. This is
performed by the function Guide (lines 3 in RAE, 5 in Progress and 1 in Retry). The
first three arguments of Guide are the current state 𝜉, task 𝜏, and stack stack; the latter
contains the list tried such as to choose a ground method which has not been already
tried. Guide is defined precisely in Chapter 15 with the help of a planner (the last two
arguments 𝑑max and 𝑛ro are control parameters used by the planner). At this stage, let
us assume that it returns a heuristic choice.

The choice of the appropriate method is with respect to the current world state 𝜉,
which is updated not from prediction but from observation (lines 2 and 6 in RAE, 4 in
Progress, and 109 in Retry). If Applicable(𝜉, 𝜏) ⊆ tried, then Guide returns ∅, i.e.,
there is no applicable ground method for 𝜏 that has not already been tried, meaning a
failure to address 𝜏.

350 14 Acting with Hierarchical Refinement

RAE
Agenda← empty list
while True do

1 for each new task or event 𝜏 to be addressed do
2 observe current state 𝜉
3 𝑚 ← Guide(𝜉, 𝜏, ⟨(𝜏, nil, 1,∅)⟩, 𝑑max, 𝑛ro)
4 if 𝑚 = ∅ then output(𝜏, “failed”)

else Agenda← Agenda ∪ {⟨(𝜏, 𝑚, 1,∅)⟩}
5 for each stack ∈ Agenda do
6 observe current state 𝜉

stack← Progress(stack, 𝜉)
7 if stack = ∅ then

Agenda← Agenda \ stack
output(𝜏, “succeeded”)

8 else if stack =failure then
Agenda← Agenda \ stack
output(𝜏, “failed”)

Algorithm 14.1. RAE, a Refinement Acting Engine

The first inner loop of RAE (line 1) reads each new root task or event 𝜏 to be
addressed and adds to the Agenda its refinement stack, initialized to ⟨(𝜏, 𝑚, 1,∅)⟩, 𝑚
being the ground method returned by Guide, if there is one. The root task 𝜏 for this
stack will remain at the bottom of stack until solved; the subtasks in which 𝜏 refines
will be pushed onto stack along with the refinement. For each stack in Agenda, the
second loop of RAE progresses the topmost method by one step.

To progress a refinement stack, Progress focuses on the tuple (𝜏, 𝑚, 𝑖, tried) at the
top of stack. If the current step 𝑚 [𝑖] is an action already triggered, then the execution
status of this action is checked. If the action 𝑚 [𝑖] is still running, this stack has to
wait, but RAE goes on for other pending stacks in the Agenda. If 𝑚 [𝑖] failed, Retry
examines alternative ground methods. Otherwise the action 𝑚 [𝑖] is done: RAE will
proceed in the following iteration with the next step in the method 𝑚, as defined by
the function Next.

Next(stack, 𝜉) advances within stack, as well as in the body of the topmost ground
method 𝑚 in stack. If 𝑖 is the last step in the body of 𝑚, the current tuple is removed
from stack: 𝑚 has successfully addressed 𝜏. The next tuple in stack is then considered.
If 𝜏 is a root task (line 1), then Next and Progress return ∅, meaning that 𝜏 succeeded;
its stack stack is removed from the Agenda. If 𝑖 is not the last step of𝑚, RAE proceeds
to the next step 𝑗 . Normally 𝑗 is the next step after 𝑖, but if that step is a control
instruction (e.g., an if or while) then 𝑗 is the step to which the control instruction
directs us (which of course may depend on the current state 𝜉).

Starting from line 3 in Progress, 𝑖 points to the next step of 𝑚 to be processed. If
𝑚 [𝑖] is an assignment, the corresponding update of 𝜉 if performed; RAE proceeds

14.2 Refinement Acting Engine 351

Progress(stack, 𝜉)
(𝜏, 𝑚, 𝑖, tried) ← top(stack)

1 if 𝑚 [𝑖] is an already triggered action then // 𝑖 is the current step of 𝑚
case exec-status (𝑚 [𝑖])=

running: return stack
2 failed: return Retry(stack)

done: return Next(stack, 𝜉)
3 else // 𝑖 is the next step of 𝑚

if 𝑚 [𝑖] is an assignment step then
update 𝜉 according to 𝑚 [𝑖]
return Next(stack, 𝜉)

if 𝑚 [𝑖] is an action 𝑎 then
trigger the execution of action 𝑎
return stack

if 𝑚 [𝑖] is a task 𝜏′ then
4 observe current state 𝜉
5 𝑚′ ← Guide(𝜉, 𝜏′, push((𝜏′, 𝑛𝑖𝑙, 1, 0), stack), 𝑑max, 𝑛ro)

if 𝑚′ = ∅ then return Retry(stack)
else return push((𝜏′, 𝑚′, 1,∅), stack)

Algorithm 14.2. Progress updates and returns stack taking into account the
execution status of ongoing action or the type of the next step in method 𝑚.

Next(stack, 𝜉)
repeat
(𝜏, 𝑚, 𝑖, tried) ← top(stack)
pop(stack)

1 if stack = ⟨⟩ then return ∅
until 𝑖 is not the last step of 𝑚
𝑗 ← step following 𝑖 in 𝑚 depending on 𝜉
return push((𝜏, 𝑚, 𝑗 , tried), stack)

Algorithm 14.3. Next step in a ground method 𝑚 for a given stack.

with the next step. If 𝑚 [𝑖] is an action 𝑎, its execution is triggered; RAE will wait
until 𝑎 finishes to examine the Next step of 𝑚. If 𝑚 [𝑖] is a task 𝜏′, a refinement with
a ground method 𝑚′, returned by Guide, is performed. The corresponding tuple is
pushed on top of stack. If no applicable ground method is relevant for 𝜏′, then the
current method 𝑚 has failed to accomplish 𝜏, so Retry is performed to find untried
alternatives for 𝑚.

Retry adds the failed method𝑚 to the set of ground methods that have been tried for
𝜏 and failed. It removes the corresponding tuple from stack. It retries refining 𝜏 with
another ground method 𝑚′, given by Guide, which has not been already tried (line 1).

352 14 Acting with Hierarchical Refinement

Retry(stack)
(𝜏, 𝑚, i, tried) ← pop(stack)
tried← tried ∪ {𝑚} // 𝑚 failed
observe current state 𝜉
𝑚′ ← Guide(𝜉, 𝜏, stack, 𝑑max, 𝑛ro)

1 if 𝑚′ ≠ ∅ then return push((𝜏, 𝑚′, 1, tried), stack)
2 else if stack ≠ ∅ then return Retry(stack)

else return failure

Algorithm 14.4. Retry examines untried alternative ground methods, if any, and
returns an updated stack.

If there is no such 𝑚′ and if stack is not empty (line 2), Retry calls itself recursively
on the topmost stack element, which is the one that generated 𝜏 as a subtask: retrial
is performed one level up in the refinement tree. If stack is empty, then 𝜏 is the root
task or event: RAE failed to accomplish 𝜏.

RAE fails either when there is no ground method applicable to the root task in
the current state (line 4 of RAE), or when all applicable ground methods have been
tried and failed (line 8). A method fails either when one of its actions fails (line 2 in
Progress), or when all applicable ground methods for one of its subtasks have been
tried and failed (line 2 in Retry).

Note that Retry is not a backtracking procedure: it does not go back to a previ-
ous computational node to pick up another option among the candidates that were
applicable when that node was first reached. It finds another ground method among
those that are now applicable for the current state of the world. RAE interacts with a
dynamic world: it cannot rely on the set Applicable(𝜉, 𝜏) computed earlier, because
𝜉 has changed, new ground methods may be applicable. However, a ground method
that failed earlier may succeed later and may merit retrials. We discuss this issue in
the next section.

14.3 Extending the Refinement Acting Engine

It is possible to extend RAE with a few capabilities, and possibly simplify the specifi-
cation of its methods. For example it can be desirable to control the progress of tasks,
e.g., to suspend, resume, or stop a task depending on specific conditions, including
with respect to time. An application may require refining a task into concurrent
subtasks, or controlling the order in which the agenda is progressed. It can also
be desirable to have methods achieving a goal instead of performing a task. Let us
discuss these extensions of RAE.

14.3.1 Goals in RAE

In some cases, an actor’s objectives are more easily expressed through goals, i.e., to
reach a state where some condition 𝑔 holds, than through performing tasks. We can

14.3 Extending the Refinement Acting Engine 353

extend the task refinement method approach of RAE in order to handle goals in a
restricted way. A method as a triple (role, precondition, body). We can define role
to be either a task, an event or a goal. A goal 𝑔 is specified syntactically by the
construct achieve(𝑔). A few modifications to RAE are sufficient to enable it to use
such methods.

This goal extension is restricted since RAE does not search for sequences of actions
that can achieve a goal. Instead, it just chooses opportunistically among the methods
in M whose roles match 𝑔. IfM does not contain such a method, then 𝑔 will not
be reachable by RAE. The same actor, with the same set of actions and execution
platform, might be able to reach the goal 𝑔 if M contains a richer collection of
methods. A planner is needed to overcome this limitation (see Chapter 15).

Example 14.5. Consider the task fetch of Example 14.2. Instead of refining fetch
with another task, we may choose to refine it with a goal of making the position of
the container 𝑐 known using the following methods:

m-fetch(𝑟, 𝑐)
task: fetch(𝑟, 𝑐)
pre:

body: achieve(pos(𝑐) ≠ unknown)
move-to(pos(𝑐))
take(𝑟, 𝑐)

m-find-where(𝑟, 𝑐)
goal: achieve(pos(𝑐) ≠ unknown)
pre:

body: while there is a location 𝑙 such that view(𝑙) = F do
move-to(𝑙)
perceive(𝑙)

The last method tests its goal condition and succeeds as soon as condition is met in
current state. The position of 𝑐 may become known by some other means than the
perceive action, e.g., if some other actor shares this information with the robot. These
two methods are simpler than those in Example 14.2. □

The construct achieve(𝑔) it is processed by RAE as a task, since it has the semantics
and limitations of tasks. Its main advantage is to allow the monitoring of the condition
𝑔 in the current state. For a method𝑚whose role is achieve(𝑔), RAE can check whether
𝑔 holds in current 𝜉 before starting 𝑚, while progressing it and when it finishes. If the
test succeeds, then the goal is achieved, and the method stops. If the test fails when
the progression finishes, then the method has failed, and Retry is performed.

In the previous example, nothing needs to be done if pos(𝑐) is known initially; if
not, the method m-find-where stops if that position becomes known at some point of the
while loop. The monitoring test is easily implemented by making three modifications
to the Progress procedure:

• When the previous step𝑚 [𝑖] is an action that returns failure: a Retry is performed
only when 𝑔 does not hold in the current 𝜉.

354 14 Acting with Hierarchical Refinement

• When 𝑖 is the last step of 𝑚: if 𝑔 is met in the current 𝜉, then the top tuple
is removed from the stack (success case); if not a Retry on current stack is
performed.

• After 𝑖 is updated with nextstep(𝑚, 𝑖): if 𝑔 is met in the current 𝜉, then the top
tuple is removed from current stack without pursuing the refinement further.

Note that if the previous step is an action that is still running, we postpone the test
until it finishes (no progress for the method in that case).

The monitoring capability can be extended for tasks by adding an extra field in
methods: (role, precondition, expected-results, body). The expected-results field is a
condition to be tested in the same way as a goal.

14.3.2 Controlling the Progress of Tasks.

The need for controlling the progress of tasks is illustrated in Example 14.3. The
method m-emergency is not supposed to be running in parallel with other previously
started tasks. The state variable emergency-handling, when set to true, should suspend
other currently running tasks.

A simple extension for controlling the progress of a task is to generalize the condi-
tion field in methods: the designer should be able to express not only preconditions,
as seen earlier, but also conditions under which RAE is required to stop, suspend, or
resume the progress of a task. The needed modifications are the following:

• The preconditions of a method 𝑚 are checked once to define the applicable
Instances(M, 𝜏, 𝜉); the stop and suspend conditions of 𝑚, if any, have to be
tested at each call of Progress for a stack where 𝑚 appears.

• This test has to be performed not only for the method 𝑚 on top of the stack, but
also for the methods beneath it: stopping or suspending a task means stopping
or suspending the subtasks in which it is currently being refined, that is, those
that are above it in the stack.

• When a task is stopped the corresponding stack is removed from the agenda;
when a task is suspended, the corresponding stack remains pending with no
further progress, but its resume condition is tested at each iteration of RAE to
eventually pursue its progression.

Some actions may be running when a stop or suspend condition is set on: RAE
has to trigger the corresponding stop or suspend orders for these actions when this is
feasible.

It can be convenient to express control statements with respect to relative or absolute
time. Let us assume that the value of the current time is maintained in 𝜉 as a state
variable called now. Alarms, watchdog timers, periodic actions, and other temporal
statements can be expressed in the body of methods, for example by conditioning the
progress of a task (suspend, resume, stop) with respect to values of now. Because
the main loop of RAE progresses by just one step in the top-most methods of pending
stacks, it is possible to implement a real-time control of tasks at coarse level of
reactivity (see Section 14.4).

14.3 Extending the Refinement Acting Engine 355

14.3.3 Retrial in RAE

As mentioned earlier, Retry is not a backtracking procedure. Since RAE interacts
with a dynamic world, Retry cannot go back to a previous state. It selects a ground
method among those applicable in the current world state, except for those that have
been tried before and failed. This latter restriction may not always be necessary, since
the same ground method that failed at some point may succeed later on. It can be
complicated to analyze the conditions responsible for failures and ascertain whether
they still hold. However, RAE can be adapted to retrial of ground methods if they are
vulnerable to noisy sensing, or if the execution context is one in which they should
be retried. For example, one may give the methods additional parameters that are not
needed for the logic of the ground method but that characterize the context (e.g., the
pose of a sensor that may have changed between trials), while bounding the number
of retrials.

Retrial can be applied more easily for actions. In RAE, a ground method fails
when one of its actions fails. But if an action has nondeterministic outcomes, it may
be worthwhile retrying the action as assessed by its expected utility. This may be
implemented simply with an ad-hoc loop on the execution-status of the actions that
merit retrials. It may also rely on the computation of a near-optimal MDP policy if a
probabilistic model is available.3 Furthermore, the body of a method is a procedure in
which one can specify complex retrial loops. For example, a grasp may need several
of ⟨move, sense, grasp⟩ sequences before succeeding or failing.

14.3.4 Refining into Concurrent Subtasks.

RAE refines a task into sequential subtasks. It can be desirable to allow for concurrent
subtasks in a refinement step. For example, a robot may have to tour a location
exhaustively while concurrently performing appropriate sensing actions to correctly
accomplish a perceive action.

A concurrent refinement a step in the body of a method can be expressed with a
“concurrent” operator as follows:
{concurrent: ⟨𝜈1,1, . . . , 𝜈1,𝑛⟩, ⟨𝜈2,1, . . . , 𝜈2,𝑚⟩, . . . ⟨𝜈𝑘,1, . . . , 𝜈𝑘,𝑙⟩}

where each ⟨𝜈𝑖,1, . . . , 𝜈𝑖, 𝑗⟩ is a sequence of steps as seen so far.
The refinement of a concurrent step splits the control flow of a method into 𝑘

parallel branches. The corresponding stack is split into 𝑘 substacks. There is an
important difference with what we saw earlier for the concurrent progression of
several stacks in the agenda. The latter correspond to independent tasks that may
succeed or fail independently of each others. Here, all the 𝑘 substacks in which
a concurrent refinement splits have to succeed before considering that concurrent
refinement step as being successful.

It can also be convenient to allow RAE to order opportunistically its agenda. In
Algorithm 14.1, all stacks in the agenda are progressed at each iteration. The ordering
of stacks may rely on general heuristics, e.g., reacting to events first, then addressing

3This can be done with dummy state variables fail𝑎 ∈ N. The failure of 𝑎 sets fail𝑎 ← fail𝑎 + 1; two
actions are applicable to a state where fail𝑎 ≠ 0: 𝑎 and stop-with-failure.

356 14 Acting with Hierarchical Refinement

new tasks, before progressing on older ones. Application specific heuristics can
provide precise ordering choices. More elaborate scheduling approaches may be
considered to manage the agenda.

RAE’s Agenda contains several refinement stacks, one for each top-level task, its
main loop progresses these stacks concurrently. However, RAE has no built-in way
to manage possible conflicts and needed synchronizations. These can be managed
by the refinement methods, using semaphores. Alternatively RAE can be extended
with synchronization constructs, such as those used in systems like TCA and TDL
(discussed next).

14.3.5 Acting with Probabilistic Refinement Methods

An acting domain Σ can be seen globally as an MDP. We have not introduced
a probabilistic transition function in the definition of Σ because RAE does not it.
It explores this MDP reactively with hierarchical refinement methods. The MDP
framework will useful for planning and learning in the following chapters.

Here we consider the case of a focused MDP for a particular task with probabilistic
refinement methods. Instead of methods with bodies to condition RAE on the observed
outcomes of actions, we may use probabilistic methods that implement a policy,
without refinements. Let a method 𝑚 = (role, precondition, body) be such that its
body is a policy for an SSP problem Σ𝑚 = (𝑆𝑚, 𝐴𝑚, 𝛾, Pr, cost), where 𝐴𝑚 is the set
of actions for 𝑚 and 𝑆𝑚 is the acting state space reduced to state variables needed in
𝑚. To address a task with a probabilistic method 𝑚 we need:

(i) to find a policy 𝜋𝑚 relevant for the states where 𝑚 is applicable, and
(ii) to run 𝜋𝑚 with procedures Run-Policy or MDP-Lookahead.

Since 𝜋𝑚 is without refinement, problem (ii) is straightforward: Run-Policy or
Run-Lookahead directly trigger actions 𝜋𝑚(𝑠). We can address (i) as a planning or a
learning problem. If the probability and cost distributions can be acquired offline and
are stable, and if the computation time remains compatible with acting constraints,
planning algorithms of Section 9.2 can be used to compute a near optimal policy.
However, these conditions are not often met. The online lookahead techniques of
Section 9.5 are usually more adapted to acting with probabilistic models. This is
particularly the case when a generative sampling model is available. Sampling tech-
niques, when combined with informed heuristics 𝑉0, are able to drive efficiently
lookahead techniques. Alternatively, addressing (i) as a learning problem is advan-
tageous to relieve the actor from online planning or lookahead, but also to acquire
hierarchical policies with refinements (see Chapter 16).

Example 14.6. Consider Example 14.4 of opening a door. We can specify the
corresponding action with a single refinement method, the model of which is partly
pictured in Figure 14.1. For the sake of simplicity, the acting states are simply labeled
instead of a full definition of their state variables, as described in Example 14.4. For
example, 𝑠2 corresponds to the case in which a door is closed; in 𝑠3, it is cracked;
locked and blocked are two failure cases, while open is the goal state. Furthermore,
the figure does not give all applicable actions in a state, for example, there are several

14.4 Discussion and Bibliographic Notes 357

grasps in 𝑠2 and 𝑠3 (left or right hand, on “T” shaped or spherical handle) and several
turns in 𝑠4. Parameter values are also not shown. □

16

s0

open

move s1 s2

s3

s4 s5

s6 s7

blocked

locked
monitor

grasp

turn pull

pull

grasp

move

Figure 14.1. Probabilistic model for an open-door method.

Finally, note that RAE has to refine tasks but also to react to events. Probabilistic
models and techniques are quite relevant when the role of a method is an event
instead of a task. Probabilistic methods can be convenient for specifying reactions to
unexpected events.

14.4 Discussion and Bibliographic Notes

We already discussed in Section 11.5 acting systems using automata, Petri nets and
Behavior trees. Let us focus here on other representations, closer to refinement
methods, that have been used for acting.

Early planning and acting systems relied on a uniform action representation with
action schema. Planned actions were assument to be directly executable without
refinement. This is exemplified in Planex [358], one of the first acting systems, which
was coupled STRIPS. Planex assumes correct and complete state updates after each
action execution; it detects failures and new opportunities for pursuing a plan. It relies
on triangle tables to monitor the progress of a plan with respect to the goal.

The lack of robustness of this and similar systems was addressed by various ap-
proaches for specifying operational models of actions and techniques for context-
dependent refinement into primitive actions. Among these, procedure-based systems
are quite popular. RAP [363] is an early example. Each procedure is in charge of
satisfying a particular goal, corresponding to a planned action. Deliberation chooses
the appropriate package according to the current context.

RAE is inspired from the PRS system [540], a widely used procedure-based action
refinement and monitoring system. In PRS one writes procedures to achieve goals or
react to particular events and observations. The system commits to goals and tries
alternative procedures when needed.

TCA [1024] and TDL by [1026] extend the capabilities of procedure-based systems
with a wide range of synchronization constructs between commands and temporal

358 14 Acting with Hierarchical Refinement

constraints management. These and other timeline-oriented acting systems, such as
RMPL of [536] are further discussed in Section 18.7.

XFRM [104] uses transformation rules to modify hand written conditional plans
expressed in a representation called Reactive Plan Language [103]. It searches in
plan space to improve its refinements, using simulation and probabilities of possible
outcomes. It replaces the currently executed plan on the fly if it finds another one
more adapted to the current situation. This approach is extended with more elaborate
reactive controllers in [102].

Other procedure-based approaches have been proposed, such as IPEM by [36],
EXEC by [823], or CPEF by [826]. Note also the recent ProSkill acting language
[537], which maps formally to a verifiable model. Procedures in ProSkill can be
proved with a formal verification system.

A few acting systems rely on logical clauses and inference mechanisms for express-
ing high-level specifications. Examples are the Temporal Action Logic approach of
[301] for monitoring (but not action refinement) and the situation calculus approach.
The latter is exemplified in GOLEX by [461], an execution system for the GOLOG
planner. In GOLOG and GOLEX, the user specifies respectively planning and act-
ing knowledge in the situation calculus representation. GOLEX provides Prolog
hand-programmed “exec” clauses that explicitly define the sequence of commands a
platform has to execute. It also provides monitoring primitives to check the effects of
executed actions. GOLEX executes the plan produced by GOLOG, but even if the two
systems rely on the same logic programming representation, they remain completely
separated, limiting the interleaving of planning and acting. The Platas system [241]
relies on GOLOG with a mapping between the PDDL langage and the Situation Cal-
culus. The Readylog language [353], a derivative of GOLOG, combines planning
with programming. It relies on a decision-theoretic planner used by the actor when
a problem needs to be solved. The actor monitors and perceives the environment
through passive sensing, and acts or plans accordingly.

An approach based on the Business Process Execution Languages [340]), proposes
to plan and compose asynchronous software services represented as state transition
systems [902]. The approach produces a controller that takes into account uncertainty
and the interleaving of the execution of different processes. It is extended in [188] to
deal at run-time with a hierarchical representation that includes abstract actions; the
problem of automated synthesis and run-time monitoring of processes is addressed
in [900]. This work is further discussed in Part IV.

Many of the above systems have been used for acting as well as monitoring. This
function fits naturally for RAE through methods for handling alarms and surveilled
events. Fault detection, identification and recovery systems, e.g., in space and critical
applications [531, 895], can benefit from this approach.

RAE, together with a planner and a learner, have been implemented as an open-
source package with a few simulated application domains.4

4Available at https://bitbucket.org/sunandita/upom/

https://bitbucket.org/sunandita/upom/

14.5 Exercises 359

14.5 Exercises

road = {(1, 2), (1, 5), (2, 4), (3, 2),
(4, 1), (5, 3), (5, 6), (6, 4)}.

Figure 14.2. A road network, and a rigid relation that represents it.

14.1. Suppose RAE controls a robot that travels on the network of one-way roads
shown in Figure 14.2. Let the robot’s current location be given by a state variable
loc ∈ Locations = {1, 2, 3, 4, 5, 6}. For 𝑝, 𝑞 ∈ Locations, let RAE have the following
action move(𝑝, 𝑞): if loc = 𝑝 and road(𝑝, 𝑞) then the robot moves from 𝑝 to 𝑞 (hence
loc← 𝑞) and the action returns success. Otherwise the action returns failure.

Let goto(𝑞) be the task of going to location 𝑞. Let RAE’s methods for that task be:

m0(𝑞)
// already at 𝑞
task: goto(𝑞)
pre: loc= 𝑞

body: // empty

m1(𝑝, 𝑞)
// move directly to 𝑞
task: goto(𝑞)
pre: loc= 𝑝

∧ road(𝑝, 𝑞)
body: move(𝑝, 𝑞)

m2(𝑝, 𝑞, 𝑝′)
// move to 𝑝′ then go to 𝑞
task: goto(𝑞)
pre: loc= 𝑝 ∧ 𝑝 ≠ 𝑞

∧ road(𝑝, 𝑝′)
body: move(𝑝, 𝑝′),

goto(𝑞)

Suppose loc = 1 in the current state, and we give RAE the task goto(4). Draw the
refinement tree for the shortest solution RAE can find.

14.2. Modify the m-fetch methods of Exercise 14.1 to refine a fetch into a search task
of a location that has the searched container. Write an m-search methods by assuming
it uses a planning function, plan-path, which computes an optimized sequence of
locations with content that is not yet known; the search proceeds according to this
sequence.

14.3. Complete the methods of Example 14.2 by considering that move-to is not an
action but a task addressed by a method that calls a motion planner, which returns a
trajectory, then controls the motion of the robot along that trajectory.

14.4. Complete the methods of Example 14.2 by considering that perceive is not an
action but a task that requires calling a perception planner that returns a sequence of
observation poses. Define two methods: (i) for a complete survey of a location where
perceive goes through the entire sequence of observation poses and (ii) for a focus
perception that stops when the searched object is detected.

14.5. Analyze how the methods in Exercises 14.2, 14.3, and 14.4 embed planning
capabilities in refinement methods at the acting level.

360 14 Acting with Hierarchical Refinement

14.6. Combine the two scenarios of Examples 14.2 and 14.3: while the robot is
searching for a container, it has to react to an emergency. What needs to be done to
ensure that the robot returns to its search when the task address-emergency finishes
(see Section 14.3)?

14.7. In the body of the method m-opendoor of Example 14.4, why is the first word
“while” rather than “if”?

14.8. Complete the methods of Example 14.4 for refining the tasks unlatch(𝑟, 𝑑) and
throw-wide(𝑟, 𝑑) when the door turns to the right, when the door opens away from the
robot, and when the door slides.

14.9. Complete the methods of Example 14.4 with appropriate steps to survey the
grasping status of whatever the robot is grasping and to turn the handle in the opposite
direction before ungrasping it.

14.10. Extend Example 14.4 for a robot with two arms: the robot uses its left (or
right) arm if the door turns or slides to the left (or right, respectively). Add a method
to move an object from one of the robot’s hands to the other that can be used if the
hand holding the object is needed for the opening the door.

14.11. Extend Example 14.4 for the case in which the door might be locked with an
RFID lock system and the robot’s RFID chip is attached to its left arm.

14.12. Redefine the pseudocode of RAE, Progress, and Retry to implement the ex-
tensions discussed in Section 14.3 for controlling the progress of a task.

14.13. Implement and test the fetch task of Example 14.2 in RAE library. 5 Integrate
the results of Exercise 14.2 in your implementation; use for plan-path a simple Dijkstra
graph-search algorithm. Is it possible to extend your implementation to handle the
requirements stated in Exercise 14.6? Compare your implementation to the domain
“exploreEnv” of RAE library where Robots and UAV move through an area and
collects various data.

14.14. Here is a domain-specific acting algorithm to find near-optimal solutions for
blocks world problems, where “optimal” means the smallest possible number of
actions. 𝑠0 is an initial state in which holding = nil, and 𝑔 is a set of loc atoms such
that:

• For each block 𝑏, if 𝑔 contains an atom of the form loc(𝑏) = 𝑐, then goal(𝑏) = 𝑐.
If there is no such atom, then goal(𝑏) = nil.

• A block 𝑏 is unfinished if 𝑠0(loc(𝑏)) ≠ goal(𝑏) and goal(𝑏) ≠ nil, or if
𝑠0(loc(𝑏)) is an unfinished block. Otherwise 𝑏 is finished.

• A block 𝑏 is clear if top(𝑏) = nil.

Here is the acting algorithm:

5Available at https://bitbucket.org/sunandita/upom/

https://bitbucket.org/sunandita/upom/

14.5 Exercises 361

Stack-blocks(𝑠0, 𝑔)
while there is at least one unfinished block do

if there is an unfinished clear block 𝑏 such that
goal(𝑏) = table or goal(𝑏) is a finished clear block

then
move 𝑏 to goal(𝑏)

else
choose a clear unfinished block 𝑏
move 𝑏 to table

(a) What sequence of actions will this algorithm produce for the following problem:

Objects = Blocks ∪ {hand, table, nil},Blocks = {a, b, c}
𝑠0 = {top(a)=c, top(b)=nil, top(c)=nil, holding=nil,

loc(a)=table, loc(b)=table, loc(c)=a}
𝑔 = {loc(a)=b, loc(b)=c}

(b) Write a set of refinement methods that encode this algorithm. You may assume
that there is already a function finished(𝑏) that returns true if 𝑏 is finished and
false otherwise.

15 Hierarchical Refinement Planning

This chapter is about planning with hierarchical refinement methods. Our purpose
is to guide the acting engine RAE with informed choices about the best methods for
the task and context at hand. RAE uses the function Guide to choose its refinement
methods. In a reactive mode, Guide performs heuristic choices. With the help of a
planner, more informed and better choices can be achieved.

We consider an optimizing planner to find methods maximizing a utility function.
In principle, the planner may rely on an exact dynamic programming optimization
procedure. Instead, an approximation approach is more adapted to the online guid-
ance of an actor. We describe a Monte Carlo Tree Search planner, called UPOM,
parameterized for rollout depth and number of rollouts. It relies on a heuristic func-
tion for estimating the remaining of a rollout when the depth is bounded. UPOM is
an anytime planner used in a receding horizon manner.

This chapter relies on chapters 8, 9 and 14. The next section presents refinement
planning domains and outlines the approach. Section 15.2 proposes utility functions
and an optimization procedure. The planner is developed in Section 15.3.

15.1 Refinement Planning Domains and Problems

A hierarchical refinement planning domain Σ = (𝑆,T ,M, 𝐴) is defined using the
same notations as an acting domain (see Section 14.1.3), with state abstraction:

• The states in 𝑆 are abstractions of the acting states in Ξ. Let Abstract(𝜉) ∈ 𝑆
denote the abstraction of an acting state. For example a location 𝑙 can be a
precise metric point in Ξ and the corresponding topological label in 𝑆 (see
Example 14.2). Basically, Abstract(𝜉) drops some state variables or reduces
their ranges. Note that we do not have to restrict 𝑆 to be finite, since we will
rely on sampling.

• T ,M, and 𝐴 are respectively the sets of tasks, methods and primitive actions,
as in Σ.

Actions in 𝐴 are nondeterministic. They are defined with a generative sampling
model expressed as a function Sample: 𝑆×𝐴→ 𝑆×R. Sample (𝑠, 𝑎) returns a state 𝑠′
randomly drawn among the possible outcomes of 𝑎 in 𝑠, and a reward 𝑟 (𝑠, 𝑎, 𝑠′) ∈ R
for performing 𝑎 from 𝑠 to 𝑠′. Sample (𝑠, 𝑎) may also return a token failed to account
for possible failures of 𝑎.1

We assume (as in Definition 9.26) that calls to Sample are randomly distributed
according to the probability distribution characterizing 𝑎. If Pr(𝑠′ |𝑠, 𝑎) is available,

1An actor needs to know more about a failure state to react appropriately, but a simple failed token is
sufficient to handle a rollout in planning.

362

Free pre-publication, for personal use only. To be published by Cambridge University Press.

15.2 Utility Criteria and Optimal Approach 363

Sample can be implemented with random draws in this distribution. Otherwise, Sam-
ple relies on a probabilistic simulator that is assumed to reflect the true distributions.

A planning problem for the domain Σ = (𝑆,T ,M, 𝐴) is a tuple (Σ, 𝜏, 𝑠), for 𝜏 ∈ T
and 𝑠 ∈ 𝑆. Planning for problem (Σ, 𝜏, 𝑠) runs multiple simulations starting from 𝑠

for the task 𝜏 and its subtasks with the methods inM.
A simulation of a ground method 𝑚 for task 𝜏 goes successively through the steps

of 𝑚, as required by its control flow for the current context, and generates a sequence
of simulated states: ⟨𝑠, 𝑠1, . . . , 𝑠𝑖 , . . .⟩, until simulated failure, termination, or end of
a rollout. It takes into account the deterministic pseudo-code in the body of 𝑚 as well
as the nondeterministic outcomes of its actions, as given by Sample (see Figure 15.1).

Simulation during planning does not Retry, as in RAE, but it handles a possible
failure returned by Sample. Further, the planner does not observe the external world
as RAE does, nor does it consider possible real world changes during a simulation.
These changes are dealt with at the acting level through the main loop of RAE, which
remains concurrently active during planning.

Example 15.1. Simulating the method m2-fetch(𝑙, 𝑟) in Example 14.2 requires sam-
pling the actions move-to(𝑟, 𝑙) and perceive(𝑟, 𝑙), possibly several times. It then
samples action take(𝑟, 𝑐, 𝑙) when in simulation place(𝑐) = 𝑙. □

15.2 Utility Criteria and Optimal Approach

We define here the expected utility of a method from the cumulative rewards of its
actions. We’ll consider two different reward functions addressing different application
requirements. An optimal utility will be derived, with respect to which we’ll briefly
discuss how may find the optimal method for a task.

15.2.1 Expected Utility of Methods

Let 𝑈 : 𝑆 × M → R be the expected utility function of a method in a state, and
𝑟 : 𝑆 × 𝐴 × 𝑆 → R the reward of an action in a state transition. 𝑈 (𝑠, 𝑚) is computed
from the cumulative rewards of the actions that 𝑚 is using in a particular run. For
commodity, we require 𝑈 (𝑠, 𝑚) = 0 when 𝑚 fails. Recall that 𝑚 fails if anyone of its
actions fails. To easily meet this requirement, we will not cumulate the action rewards
with a simple sum, but with an operator ⊕ that can be redefined for various reward
functions, and such that ⊕ is associative and leads to 0 for a failed action; let I denote
the identity element, i.e., 𝑟 (𝑠, 𝑎, 𝑠′) ⊕ I = I ⊕ 𝑟 (𝑠, 𝑎, 𝑠′) = 𝑟 (𝑠, 𝑎, 𝑠′).

In order to compute the expected utility of a method𝑚 we need to consider possible
traces of the execution of 𝑚 for a task 𝜏. In RAE, an execution trace is conveniently
represented though the evolution of stack for the task 𝜏. In planning, we similarly
use stack as defined in RAE, i.e., a LIFO list of tuples (𝜏, 𝑚, 𝑖, tried).2 For a given
planning problem (𝜏, 𝑠), the stack corresponding to a ground method 𝑚, applicable
to 𝜏 in 𝑠, is initialized as stack = ⟨(𝜏, 𝑚, 1,∅)⟩. We progress in the simulation of 𝑚

2We do not need for the moment to keep track of already tried ground methods, but we’ll see in a
moment the usefulness of this term.

364 15 Hierarchical Refinement Planning

step by step using the function Next, pushing in stack a new tuple when a step requires
a refinement into a subtask.

Let top(stack) be the stack tuple (𝜏, 𝑚, 𝑖, tried). The utility of a particular simula-
tion of 𝑖𝑡ℎ step of 𝑚 for 𝜏 takes into account the following cases (as in Progress):

• An assignment step changes the state from 𝑠 to 𝑠′ but does not change the utility.
• An action 𝑎 changes the state nondeterministically to 𝑠′; the utility is the

cumulative reward of 𝑎 with the utility of the remaining steps (operation ⊕).
Note that the operator ⊕ is associative

• A refinement step does not change the state; it leads to refining 𝜏 into 𝜏′ with
𝑚′.

• The function Next moves to the following step, and to the empty stack at the
end of every simulated execution.

These cases correspond to the following equation:3

𝑈stack (𝑠, 𝑚) =



𝑈Next(stack,𝑠) (𝑠′, 𝑚) if 𝑚 [𝑖] is an assignment,

𝑟 (𝑠, 𝑎, 𝑠′) ⊕ 𝑈Next(stack,𝑠) (𝑠′, 𝑚)
if 𝑚 [𝑖] is an action 𝑎,

𝑈push((𝜏′ ,𝑚′ ,1,∅) ,Next(stack,𝑠)) (𝑠, 𝑚′)
if 𝑚 [𝑖] is a subtask 𝜏′,

I if stack = ∅,
(15.1)

Let us now consider two possible action reward functions that can be used in
Equation 15.1.

15.2.2 Actions Efficiency Reward

We define the efficiency reward of an action from the reciprocal of its cost. Let
cost : 𝑆 × 𝐴 × (𝑆 ∪ {failed}) → R+ be the cost of performing action 𝑎 in state 𝑠 when
the outcome is 𝑠′. We assume the cost of an action 𝑎 to be finite even when 𝑎 fails.
This is generally the case since an actor is able to figure out that an attempted action
failed to limit its cost. However, a failed action 𝑎 in a method 𝑚 leads to the failure
of 𝑚; its efficiency is simply 0. The efficiency reward function is:

𝑟𝑒 (𝑠, 𝑎, 𝑠′) =
{

0 if 𝑠′ = “failed”,
1/cost(𝑠, 𝑎, 𝑠′) otherwise.

(15.2)

The cumulative efficiency of two successive actions whose efficiency rewards are
𝑟𝑒1 = 1/𝑐1 and 𝑟𝑒2 = 1/𝑐2 is

𝑟𝑒1 ⊕ 𝑟𝑒2 = 1/(𝑐1 + 𝑐2) = 1/
(

1
𝑟𝑒1
+ 1

𝑟𝑒2

)
= 𝑟𝑒1 × 𝑟𝑒2/(𝑟𝑒1 + 𝑟𝑒2). (15.3)

Note that ⊕ is associative; its identity is I = ∞, corresponding to a cost of 0. Indeed,
if 𝑟𝑒1 = I, then 𝑟𝑒1 ⊕ 𝑟𝑒2 = 𝑟𝑒2. If either of the two actions fails than 𝑟𝑒1 ⊕ 𝑟𝑒2 = 0, as
required in Equation 15.1.

3Formally𝑈 is a function of 𝑆,M and the set of stacks, we keep the notation simple with a subscript.

15.2 Utility Criteria and Optimal Approach 365

15.2.3 Actions Success Reward

We define the success reward of an action to be 0 when it fails, and 1 if it succeeds.

𝑟𝑠 (𝑠, 𝑎, 𝑠′) =
{

0 if 𝑠′ = “failed”,
1 otherwise.

(15.4)

The cumulative rewards for two actions whose success reward are 𝑟𝑠1 and 𝑟𝑠2 is

𝑟𝑠1 ⊕ 𝑟𝑠2 = 𝑟𝑠1 × 𝑟𝑠2. (15.5)

Again ⊕ is associative; its identity is I = 1, corresponding to success. The failure of
either actions lead to a cumulative reward of zero.

15.2.4 Optimal Methods

We can replace in Equation 15.1 the function 𝑟 with 𝑟𝑒 or 𝑟𝑠, or any other action reward
function that meet the requirements for ⊕. From this equation, we derive the maximal
expected utility of 𝑚 for 𝜏 by maximizing recursively over all possible refinements in
𝑚 and averaging over all possible outcomes of actions, including failures:

𝑈∗stack (𝑠, 𝑚) =



𝑈∗Next(stack,𝑠) (𝑠
′, 𝑚) if 𝑚 [𝑖] is an assignment,∑

𝑠′∈𝛾 (𝑠,𝑎) Pr(𝑠′ |𝑠, 𝑎) [𝑟 (𝑠, 𝑎, 𝑠′) ⊕ 𝑈∗Next(stack,𝑠) (𝑠
′, 𝑚)]

if 𝑚 [𝑖] is an action 𝑎,

max𝑚′∈Applicable(𝑠,𝜏′)𝑈
∗
push((𝜏′ ,𝑚′ ,1,∅) ,Next(stack,𝑠)) (𝑠, 𝑚

′)
if 𝑚 [𝑖] is a subtask 𝜏′,

I if stack = ∅.
(15.6)

Here 𝛾(𝑠, 𝑎) is the probabilistic state transition function, including the token
“failed”. It serves to define 𝑈∗ even if in practice 𝛾 is not known and remains
implicit in a sampling function.

The optimal ground method for a task 𝜏 in a state 𝑠 for the utility𝑈∗ is:

𝑚∗𝜏,𝑠 = argmax𝑚∈Applicable(𝑠,𝜏)𝑈
∗
⟨ (𝜏,𝑚,1,∅) ⟩ (𝑠, 𝑚) (15.7)

If Applicable(𝑠, 𝜏) = ∅ then max𝑚∈Applicable(𝑠,𝜏)𝑈
∗ = 0, meaning a refinement failure.

If the the probabilistic state transition function 𝛾(𝑠, 𝑎) and the distribution
Pr(𝑠′ |𝑠, 𝑎) are known, it is conceivable to map Equation 15.6 into a recursive back-
tracking optimization algorithm, akin to dynamic programming. This algorithm
would return 𝑚∗𝜏,𝑠, as defined above. However, this knowledge of 𝛾 and the distribu-
tion Pr is not needed for RAE; it can be difficult to acquire. Moreover, the optimal
planner will computationally demanding. It would not meet the needs for the online
guidance of RAE. Instead, it is preferable to seek an approximately optimal method
with an anytime controllable procedure. Such a procedure is developed next using a
Monte Carlo Tree Search algorithm in the space of operational models.

366 15 Hierarchical Refinement Planning

15.3 An MCTS Planning Algorithm

UPOM is a Monte Carlo Tree Search procedure which finds an approximation 𝑚̃ of
𝑚∗. It performs 𝑛ro rollouts, down to a depth 𝑑max in the refinement tree for a task 𝜏.
It is an anytime iterative-deepening algorithm, controlled by the procedure Guide.

15.3.1 Iterative-Deepening Guidance for RAE

Recall that RAE uses Guide to choose the appropriate method. Guide receives five
parameters: 𝜉, 𝜏, stack𝑎, and two control parameters 𝑑max, the maximum rollout
depth, and 𝑛ro, the number of rollouts. stack𝑎 is RAE’s current stack when calling
Guide On a new root task 𝜏, stack𝑎 = ⟨(𝜏, 𝑛𝑖𝑙, 1,∅)⟩. Guide triggers simulations
starting with a stack that is a copy of stack𝑎, and a state 𝑠 that is an abstraction of the
current execution state 𝜉. Guide returns 𝑚̃, an approximately optimal ground method
for 𝜏, or ∅ if no ground method is found, that is, if there are no applicable ground
methods for 𝜏 in 𝜉 except for those already tried by RAE for this task.

Guide relies on a method-value function,𝑄stack (𝑠, 𝑚), which approximates the util-
ity 𝑈∗stack (𝑠, 𝑚). This method-value function is heuristically initialized as 𝑄0(𝑠, 𝑚).
If no planning time is available, this initialization provides a fallback policy de-
fined as 𝑚̃ = argmax𝑚𝑄0(𝑠, 𝑚). Otherwise, Guide computes 𝑄stack (𝑠, 𝑚) through
a succession of simulations at progressively deeper refinement levels calling UPOM
for 𝑛ro rollouts to evaluate the utility of a candidate ground method. 𝑄stack (𝑠, 𝑚)
is maintained as a global data structure computed and updated in UPOM roll-
outs. The iterative-deepening loop (Line 2) is pursued until reaching the maxi-
mum depth or the search time is over. Guide returns the best method found so far:
𝑚̃ = argmax𝑚∈𝑀 𝑄stack (𝑠, 𝑚).

Guide(𝜉, 𝜏, stack𝑎, 𝑑max, 𝑛ro)
(𝜏, 𝑚, 𝑖, tried) ← top(stack)
𝑀 ← Applicable(𝜉, 𝜏) \ tried
if 𝑀 = ∅ then return ∅
if |𝑀 = {𝑚}| = 1 then return 𝑚
𝑠← Abstract(𝜉)
stack← copy of stack𝑎; 𝑑 ← 0

1 𝑚̃ ← argmax𝑚∈𝑀𝑄0(𝑠, 𝑚) // initialize 𝑚̃
2 repeat // iterative-deepening loop

𝑑 ← 𝑑 + 1
3 for 𝑛ro times do

UPOM (𝑠, push((𝜏, 𝑛𝑖𝑙, 1,∅), stack), 𝑑)
𝑚̃ ← argmax𝑚∈𝑀 𝑄stack (𝑠, 𝑚)

until 𝑑 = 𝑑max or search time is over
return 𝑚̃

Algorithm 15.1. An iterative-deepening procedure calling UPOM to find an
approximately optimal ground method.

15.3 An MCTS Planning Algorithm 367

15.3.2 A Hierarchical Refinement Planner

The procedure UPOM called by Guide performs MCTS rollouts to explore a refinement
tree rooted at a planning problem (𝜏, 𝑠). It follows a path along the steps of chosen
methods with a sampled branch from each nondeterministic node (i.e., an outcome of
an action) down to depth 𝑑max.

Example 15.2. Consider for example the planning problem in Figure 15.1. A rollout
for 𝜏 with 𝑚 can be the sequence of nodes marked in the figure as 1 (first step of
𝑚 with a sample of 𝑎1), 2 (first step of a chosen 𝑚1 for the refinement of 𝜏1), . . . 𝑗
(subsequent steps for this refinement), 𝑗 + 1 (next step of 𝑚1), . . . 𝑛 (third step of 𝑚
with a sample of 𝑎2), 𝑛 + 1 (first step of a chosen 𝑚2 for the refinement of 𝜏2), etc. □

!1

⋁
⋀
∴

disjunction node

sequence node

sampling node

⋁

⋀

∴ ∴⋁

⋀ ⋀ ⋀ ⋀

a

τ

m′
 ⋀

 ⋁

′′

m

2
1 m 2m m m

1a 2

1

. . . .

 (k samples)

1 2ττ

1

2

j

j+1

n

n+1

Figure 15.1. Search space for the hierarchical refinement planner. The refinement tree
has three types of nodes: disjunction nodes for tasks over possible ground methods,
sequence nodes for ground methods over all their steps, and sampling nodes for actions
over their possible outcomes.

The rationale of UPOM is entailed from Equation 15.6:

• at an action node of a method 𝑚 in the refinement tree, it averages the action
rewards over the rollouts;

• at a task node, it chooses the refinement ground method with the highest
expected utility;

• starting from the depth 𝑑 given in Guide, it decreases 𝑑 along recursive calls
for a refinement step or an action step, but not in an assignment step;

• it takes a heuristic estimate of the utility of the remaining refinements at the tip
of a rollout when reaching 𝑑 = 0;

• it stops a rollout at a failure of an action or a refinement, and returns a value
𝑈Failure = 0 for the corresponding method;

• it stops when the stack is empty and return𝑈Success = I.

368 15 Hierarchical Refinement Planning

UPOM(𝑠, stack, 𝑑)
if stack = ⟨⟩ then return𝑈Success
(𝜏, 𝑚, 𝑖, tried) ← top(stack)

1 if 𝑑 = 0 then return 𝑄0(𝑠, 𝑚)
2 if 𝑚 ≠ 𝑛𝑖𝑙 and 𝑚 [𝑖] is an assignment then // assignment step

𝑠′ ← state 𝑠 updated according to 𝑚 [𝑖]
return UPOM(𝑠′,Next(stack, 𝑠′), 𝑑)

3 if 𝑚 ≠ 𝑛𝑖𝑙 and 𝑚 [𝑖] is an action 𝑎 then // action step
(𝑠′, 𝑟 (𝑠, 𝑎, 𝑠′)) ← Sample(𝑠, 𝑎)
if 𝑠′ = failed then return𝑈Failure

4 else return 𝑟 (𝑠, 𝑎, 𝑠′) ⊕ UPOM(𝑠′,Next(stack, 𝑠′), 𝑑 − 1)
5 if 𝑚 = 𝑛𝑖𝑙 or 𝑚 [𝑖] is a task 𝜏′ then // refinement step

if 𝑚 ≠ 𝑛𝑖𝑙 then 𝜏 ← 𝜏′

if 𝑁 (𝑠, 𝜏) is not yet initialized then
𝑀 ← Applicable(𝑠, 𝜏) \ tried
if 𝑀 = 0 then return𝑈Failure
𝑁 (𝑠, 𝑚′) ← 0
for 𝑚′ ∈ 𝑀 do

𝑁 (𝑠, 𝑚′) ← 0 ; 𝑄stack (𝑠, 𝑚′) ← 0

Untried← {𝑚′ ∈ 𝑀 |𝑁 (𝑠, 𝑚′) = 0}
6 if Untried ≠ ∅ then

𝑚𝑐 ← random selection from Untried
7 else 𝑚𝑐 ← argmax𝑚∈𝑀 {𝑄stack (𝑠, 𝑚)+

𝐶 × [log 𝑁 (𝑠, 𝜏)/𝑁 (𝑠, 𝑚)]1/2}
8 𝜆← UPOM(𝑠, push((𝜏, 𝑚𝑐, 1,∅),Next(stack, 𝑠)), 𝑑 − 1)
9 𝑄stack (𝑠, 𝑚𝑐) ←

[𝑁 (𝑠, 𝑚𝑐) ×𝑄stack (𝑠, 𝑚𝑐) + 𝜆]/[1 + 𝑁 (𝑠, 𝑚𝑐)]
𝑁 (𝑠, 𝑚𝑐) ← 𝑁 (𝑠, 𝑚𝑐) + 1
𝑁 (𝑠, 𝜏) ← 𝑁 (𝑠, 𝜏) + 1
return 𝜆

Algorithm 15.2. Monte Carlo tree search procedure UPOM; performs one roll-
out recursively down the refinement tree of a ground method to compute an
estimate of its optimal utility.

UPOM takes as arguments a simulation state 𝑠, a stack, and the rollout depth 𝑑. It
performs one rollout over recursive calls for a ground method 𝑚 and its refinements.
On the first call of a rollout, 𝑚 = 𝑛𝑖𝑙, meaning that no ground method has yet been
chosen. A ground method 𝑚𝑐 is chosen among untried ground methods (Line 6). If
all ground methods have been tried, 𝑚𝑐 is chosen according to a tradeoff between
exploration and exploitation (Line 7). This is the same tradeoff as in UCT for the
choice of an action given in Equation 9.13. It takes into account the number 𝑁 (𝑠, 𝑚)
of rollouts performed from 𝑠 with 𝑚, initialized to 0, and the total number 𝑁 (𝑠, 𝜏)

15.3 An MCTS Planning Algorithm 369

of rollouts for a task 𝜏. Here 𝑁 (𝑠, 𝑚) and 𝑁 (𝑠, 𝜏) play the same role as respectively
𝑁 (𝑠, 𝑎) and 𝑁 (𝑠) in UCT. The constant 𝐶 > 0 is similarly used as in UCT. It fixes the
tradeoff between the exploration less sampled ground methods (high 𝐶) versus the
exploitation or more promising ones (low 𝐶).

The method-value function 𝑄stack (𝑠, 𝑚) approximates the utility 𝑈∗stack (𝑠, 𝑚). Its
computation follows Equation 15.6. For an assignment step, no value update is
needed, but instead a state update (Line 2). For an action step, UPOM combines the
sampled action reward with the utility of the remaining part of a rollout returned by
the recursion (Line 4). The action reward 𝑟 (Line 4) is either 𝑟𝑒 or 𝑟𝑠 depending on the
chosen utility function, efficiency or success ratio. For both function,𝑈Success = I and
𝑈Failure = 0. For a refinement step, 𝑄stack (𝑠, 𝑚) is updated (in Line 9) by averaging
over all rollouts. This update is similar to that performed by MCTS (in Line 3) or UCT
(in Line 2) for 𝑄(𝑠, 𝑎).

How UPOM departs from Equation 15.6. The pseudocode in Algorithm 15.2
departs from the specifications of Equation 15.6 in a few ways. A first one is about
the use of Monte Carlo sampling instead of averaging with probability distributions,
which may not be known. A second point regards the restriction of Applicable ground
methods to those that have not already been tried by RAE for the same task. This is a
conservative strategy, because at this point the actor has no means for distinguishing
failures of tried methods that require retrials, because the world has changed, from
those that don’t and would fail again. We’ll come back to a retrial strategy in
Section 15.4.

Furthermore, Equation 15.6 does not take into account the online receding horizon
usage of Guide by RAE, while UPOM does. Assume that RAE needs guidance for a
root task 𝜏 (see Figure 15.1). Here the evaluations of UPOM will be similar to that of
Equation 15.7 and would return, say, method 𝑚, together with its refinements 𝑚1 for
𝜏1 and 𝑚2 for 𝜏2. The latter choices are expressed in the method-reward function Q.
Now, at acting time, when running 𝑚 and reaching its refinement step of 𝜏1, the actor
may ask again for guidance. It may rely on what was planned before, i.e., 𝑚1. But
since it as acting in dynamic world, it should better assess again its options. Here,
Equation 15.6 looks down from 𝜏1 and does not consider the siblings of 𝜏1 in 𝑚. But
this is not satisfactory. One should consider the utility of the methods for 𝜏1, as well
as their impact on the remaining steps in 𝑚, i.e., on 𝑎2 and 𝜏2 in this example. In
other words, the actor 5164 requires the best ground method for 𝜏1 in the context of its
current execution state, taking into account the remaining steps of the method 𝑚 it is
executing. This best method for 𝜏1 may be different from that given by Equation 15.7.

The need to keep track of the acting context with pending tasks and methods is
taken care of by running Guide and UPOM with a copy of the current stack in RAE up
to the root task at hand. Note however, that this does not lead to reconsider previously
made choices of ground methods the actor is currently executing, e.g., in Figure 15.1,
𝑚′ and other options for 𝜏 are not reassessed when seeking the best method for 𝜏1.
Note also that UPOM does not pursue a rollout at an internal refinement node with the
ground method maximizing the current utility evaluation 𝑄, but with the best ground
method according to the UCT exploration/exploitation tradeoff (Line 7).

370 15 Hierarchical Refinement Planning

15.3.3 Properties and Control of UPOM

Monte Carlo Tree Search approach is well adapted to planning with hierarchical
refinement methods, giving an efficient and flexible anytime planner. Let us briefly
discuss some of the main properties and control issues of UPOM.

Asymptotic convergence. It is possible to prove the asymptotic convergence of
UPOM towards an optimal method as 𝑛ro → ∞. The proof assumes no depth cut-off
(𝑑max = ∞) and static domains, i.e., domains without exogenous events. It is basically
an extension of the UCT asymptotic convergence demonstration to the hierarchical
refinement search space.

Control parameters. The effects of the two control parameters 𝑑max and 𝑛ro are
not independent. This is due to the search exploration with a UCT strategy used in
UPOM; it examines an untried ground method before pursuing a rollout on an already
tried one. Exploration is complete if 𝑛ro > 𝜇, where:

𝜇 =
∑

𝜏𝑖 is a subtask max𝑠{|Applicable(𝑠, 𝜏𝑖) |}.

The sum is over all subtasks 𝜏𝑖 in the refinement tree, down to the refinement depth
of the root task. 𝜇 increases with 𝑑max. It is preferable to keep a large constant 𝑛ro
and increase 𝑑 in the iterative-deepening loop until the max depth 𝑑max.

An alternative control of Guide can be the following:

• for a given 𝑑, pursue the rollouts (Line 3 of Guide) until there are 𝐾 successive
exploitation rollouts, i.e., for which𝑈𝑛𝑡𝑟𝑖𝑒𝑑 = ∅;4

• pursue the iterative-deepening loop (Line 2) until no subtask is left unrefined
for the 𝐾 exploitation rollouts or until the search time is over.

This is an adaptive control strategy that requires only two constants 𝐾 and 𝐶 for the
exploitation/exploration tradeoff.

Search depth. UPOM, as the Monte Carlo Tree Search algorithms of Section 9.5,
runs its rollouts to some depth 𝑑. While in MDP algorithms 𝑑 has only one possible
meaning, here two possible definitions of 𝑑 may be considered: (i) 𝑑 is the number of
task refinement steps of a rollout, or (ii) 𝑑 is the number of refinement and action steps
of a rollout. The pseudocode in Algorithm 15.2 takes the former option: 𝑑 decreases
at every recursive call, for an action step as well as for a task refinement step. The
advantage is that the cutoff at 𝑑 = 0 stops the current evaluation. The difficulty is
that the root method, and possibly its refinements, are only partially evaluated. For
example in Figure 15.1, if 𝑗 > 𝑑max, steps 𝑎2 and 𝜏2 of 𝑚 will never be considered;
similarly for the remaining steps in 𝑚1: a rollout might go in a deep path and never
assess all the steps of evaluated ground methods. The value returned by UPOM can
be arbitrarily far from 𝑈∗ for small values of 𝑑. The other issue of this strategy is

4The probabilistic roadmap motion planning algorithms of Chapter 21 uses a similar idea to stop after
𝐾 configuration samples unsuccessful for augmenting the roadmap.

15.4 Discussion and Bibliographical Notes 371

that the heuristic estimate has to take into account remaining refinements lower down
the cutoff point as well as remaining steps higher up in the refinement tree, i.e., what
remains to be evaluated in stack.

In the alternative option, 𝑑 decreases at a task refinement step only, not at an action
step. The advantage is to allow each rollout to go through all the steps of every
developed ground method. Furthermore, the heuristic estimate at a cutoff is focused
in this case on a subtask and its applicable ground methods, whose simulation will
not be started (nondeveloped ground methods). The disadvantage is that one needs an
estimate of the state following the achievement of a task with a nondeveloped ground
method in order to pursue the sibling steps. For example, in Figure 15.1 with 𝑑 = 1,
𝜏1 will not be refined; 𝑎2 and remaining steps of 𝑚 will be based on an estimated state
following the achievement of 𝜏1.

It is not easy to specify what might be possible default states following the achieve-
ments of a task without simulating one of its methods. If domain dependent knowledge
allows such a specification, the modifications needed in UPOM to implement option
(ii) are as follows:

• In order to be able to go back to higher levels of 𝑑 when the simulation is
pursued in parent ground methods after a cutoff, it is convenient to maintain 𝑑
as part of the simulation stack: a fifth term 𝑑 is added in every tuple of stack.

• The arguments of UPOM are modified according to the previous point.
• UPOM has to pursue in Line 1 the evaluation higher up in stack:

if 𝑑 = 0 then
return ℎ(𝜏, 𝑚, 𝑠) ⊕ UPOM(𝑔(𝑠, 𝜏, 𝑚), 𝑝𝑜𝑝(stack), 𝑏, 𝑘),

here 𝑔(𝑠, 𝜏, 𝑚) is a default state after the achievement of 𝜏 with 𝑚 in 𝑠.

A mixture of the two options takes 𝑑 as the number of task refinement steps in
a rollout, but it stops the simulation of a method when reaching 𝑑 = 0, without
considering its remaining steps for which it takes heuristic estimates. This has the
disadvantage of a partial evaluation, but it does not require estimates of following
states. It requires heuristics which can be more easily defined or learned.

15.4 Discussion and Bibliographical Notes

Hierarchical refinement planning merges two techniques: MDP planning with Monte
Carlo Tree Search methods (Chapter 9) and HTN planning (Chapter 5). For the latter,
there is in particular a relevant link to nondeterministic HTN planning, for which
[221] propose a formalization and a complexity analysis.

We already stressed the links of RAE to the goal-directed PRS system [540]. A
planner called Propice-Plan [295, 538] has been developed for PRS. It performs
classical planning assuming deterministic descriptive models (i.e., precond/effect) for
its methods. It also performs simulations of the operational models of the methods
to anticipate execution paths leading to failure. This planner has been demonstrated
with PRS in mobile robotics and for the management of a blast furnace.

372 15 Hierarchical Refinement Planning

The UPOM planner is detailed in [872], where its performance over several domains
has been analyzed. An open-source version of the code and test domains is available
online.5 This system was used in a prototype application for security monitoring
and recovery from attacks on Software-Defined Networks (SDN), which has been
evaluated by SDN experts successfully [873].

A significant requirement for the deployment of UPOM is the need to acquire
complex domain models in order to simulate methods and actions. Once refinement
methods are specified, their simulation is not an issue. Actions are given by the Sample
function, which requires a simulator of the execution platform and its environment. It
is not straightforward to develop a reliable simulator that reproduces the dynamics of
a nondeterministic uncertain environment. In some cases, available simulation tools
are very useful, e.g., physics-based simulations [149, 342, 178], robotic simulations
[789, 695, 997], automated manufacturing simulations [546, 815], etc. Some of these
tools are often used early on for the specification and design of an execution platform,
which may simplify their later use for the development of a simulator. A fallback
option, easily applicable in most cases, would be to define the procedure Sample by
sampling the possible outcomes of every action from probability distributions, which
are initialized by a human expert, then refined by learning and experiments. It is
possible to combine detailed simulations for critical actions, for which tools might be
available, and shallow simulations for the remaining actions.

The hierarchical refinement representation is very expressive, but it has nonetheless
several limitation. For example, time and temporal primitives are missing. Simple
temporal construct are widely used in several reactive langages, such as TCA/TDL
or Petri Net based systems. Integrating similar facilities in RAE would be easy, but
the extensions in UPOM will require more work. Similarly, space and movement
actions are needed in robotics applications. The corresponding construct can be
added in RAE, e.g., as external functions conditioning particular actions. Some of
the sampling algorithms in Chapter 21 can be part of the simulations performed in
UPOM.

15.5 Exercises

15.1. Define an action reward function that combines its success rate 𝑟𝑠 with its
efficiency 𝑟𝑒. Specify the ⊕ operation and I element for this function? Does this
reward function meet the requirements of the expected utility𝑈 of Equation 15.1.

15.2. Specify the pseudocode of an algorithm akin to dynamic programming to
compute the optimal method 𝑚∗𝜏,𝑠 as defined in Equation 15.7.

15.3. Run RAE with the UPOM planner on the domain of Exercise 14.1 extended with
additional methods for the tasks goto, fetch and goto, as per Exercise 14.2.

15.4. Run RAE with the UPOM planner on the domain of Exercise 14.1 extended with
the methods discussed in exercises 14.3 to 14.4.

5https://bitbucket.org/sunandita/upom/

https://bitbucket.org/sunandita/upom/

15.5 Exercises 373

15.5. Extend the analysis of Exercise 14.5 about the planning capability that can be
programmed in methods with those provided generically by UPOM.

15.6. Run RAE with the UPOM planner on the domain of Example 14.4 extended
with the methods of exercises 14.8 to 14.11.

15.7. Assume that a domain has deterministic actions for which descriptive models are
available. Revise UPOM to exploit this knowledge when all actions are deterministic.
What can be done when only some actions are deterministic while others are not.

16 Learning Hierarchical Refinement
Models

The hierarchical refinement approach in the previous two chapters requires a priori
domain knowledge of the methods and action models and the heuristics used by
RAE and UPOM. The topic of this chapter is to use machine learning techniques to
synthesize part of this domain knowledge. Let us discuss what can be done with the
learning techniques already seen:

• Action models. The algorithms of Chapter 4 can be extended to learn descriptive
models of probabilistic action, using Sample as the oracle for online learning.
One may expect these descriptive models to be faster predictors than Sample.
For actions not covered by Sample, one may learn, online or offline, the models
from traces. But obtaining traces may not be easy.

• Method models. The techniques for learning HTN methods in Chapter 7 may
possibly be extended for learning refinement methods whose bodies are re-
stricted to sequences of refinement steps and probabilistic actions. This might
be of interest for planning (as HTN methods are mostly beneficial to planning),
but the restriction can be a disadvantage for acting.

• Task know-how. The reinforcement learning algorithms of Chapter 10 can be
used to synthesize policies for tasks (assuming actions have reward functions).
Furthermore, we can use hierarchical RL techniques to synthesize for a task a
collection of methods whose bodies are policies (see Section 14.3.5).

The details of all these options would require extensive developments. We focus
instead this chapter on learning heuristics and methods using operational models with
a Sample function. Section 16.1 considers learning domain-dependent heuristics to
guide RAE and UPOM. It offers an illustration of the “planning to learn” idea: given
methods and a Sample function, UPOM generates the near-optimal choices that are
taken as targets by a deep Q-learning procedure. Section 16.2 synthesizes methods
for tasks using hierarchical reinforcement techniques.

16.1 Learning to guide RAE and UPOM

Assume a hierarchical refinement domain Σ = (𝑆,T ,M,A) is given. 𝑆 may have
state variables that are reals or vectors over the reals, e.g., images. As seen in
Section 10.5, high-dimensional data can be handled with relevant sampling and
continual learning.

Recall that RAE relies on Guide to choose its methods. If there is no time to call

374

Free pre-publication, for personal use only. To be published by Cambridge University Press.

16.1 Learning to guide RAE and UPOM 375

UPOM, Guide returns a fallback policy 𝜋(𝑠) = 𝑚̃, with:

𝑚̃ = argmax
𝑚

𝑄0(𝑠, 𝑚)

where 𝑄0 is a heuristic estimate of the method-value function. Otherwise, UPOM
performs a series of progressively deeper rollouts. At the end of each rollout (that
is, when 𝑑 = 0), UPOM uses 𝑄0(𝑠, 𝑚) as an estimate of the utility of the remaining
refinements, to compute the method-value function 𝑄stack (𝑠, 𝑚) for the methods
applicable to the task at hand.

Recall that the function𝑄0 : 𝑆×M → R+ approximates the method-value function
𝑄 for a state, a method and its corresponding task.1 𝑄0 ignores the details of pending
activities in a stack, if any.2 However, it is of direct use for acting reactively in Guide,
as well as for planning with UPOM.

Consequently, learning a good𝑄0 function is very beneficial. This can be done from
a representative training set of state-method pairs, using a planner with simulation.
Simulation is at the core of the hierarchical refinement approach, sinceM provides
the simulation code for the refinements and A is defined with Sample through a
simulator. The problem is formulated as a supervised or self-supervised regression
learning problem, for which one can use neural networks and apply the techniques in
Chapter 10. The next section describes the main stages for addressing this problem.

16.1.1 Training set generation

Let us call UPOM on randomly generated planning problems (𝜏, 𝑠) with stack =

⟨(𝜏, 𝑛𝑖𝑙, 1,∅)⟩ and, if possible, 𝑑 = ∞, otherwise with 𝑑 very large and an arbitrary
initial function 𝑄0. For each problem (𝜏, 𝑠), we record the method-value function
𝑄stack (𝑠, 𝑚) computed by UPOM for all ground methods applicable in 𝑠. This gives
the following training set, where 𝑚 is a ground method:

D = {((𝑠, 𝑚), 𝑄stack (𝑠, 𝑚)) | 𝑚 is applicable to (𝜏, 𝑠) ∈ Training}.

It is easy to restrict the training set generation to states for which the task 𝜏 has
applicable methods. Note that for the same state, there may be several ground methods
applicable to a task. For example, in Example 14.3 the method m-emergency(𝑟, 𝑙, 𝑖)
has as many instances as there are available robots. Knowledge about the set of states
in which a task is most relevant can be very helpful for learning from a focused and
appropriate training set.

We need to keep the training set D as representative as possible of the actual
distribution of the problems that RAE/UPOM will see. This means that the randomly
generated problems (𝜏, 𝑠) must follow such a distribution. It can be difficult to
estimate such a distribution and to draw instances accordingly (especially when 𝑆 is
high-dimensional, e.g., for domain with visual sensing state variables). Fortunately,
continual learning will allow us to compensate for a partial or biased training set D.

1Recall that a method is specific to a single task.
2There are no pending activities for a root task, for which stack = ⟨(𝜏, 𝑛𝑖𝑙, 1,∅)⟩).

376 16 Learning Hierarchical Refinement Models

16.1.2 Data encoding

The training pairs (𝑠, 𝑚) will be taken as input by a learner; they need to be appropri-
ately encoded as vectors of numeric features 𝝓 = [𝜙1, . . . , 𝜙𝑛]⊤ for parametric neural
net approximators. A popular encoding for symbolic state variables in the input is the
so-called One-Hot binary encoding. For example, if a variable has 𝑛 possible values
{𝑣1, . . . , 𝑣𝑛}, then each 𝑣𝑖 is encoded as a binary vector of length 𝑛 in which the 𝑖’th
value is 1 and all other values are 0.

Other more efficient encodings of symbolic variables can be used that are akin to
word embeddings and require a prior learning step specific to D. Furthermore, a
number of data processing techniques have been developed to improve the encoding.
These include, for example, feature-selection techniques to reduce the size of the
input vectors, feature normalization to reduce the variability of the data, and feature
representation in domain adaptation methods. These data processing techniques are
briefly discussed in Section 16.3.

16.1.3 Neural Net Training

Several domain-dependent design choices (discussed in Chapter 10) have to be made
for this supervised regression learning problem. A network architecture has to be
chosen, such as a feedforward net with a number of hidden layers, with the inputs
being vectors 𝝓 that encode the pairs (𝑠, 𝑚), and the outputs being scalars for the
targets𝑄stack (𝑠, 𝑚). Nonlinear neural triggering functions and a loss function have to
be chosen.

A version of the Backpropagation gradient descent algorithm, in mini-batch mode
with appropriate hyperparameters, can be used for estimating the neural net parame-
ters.

In addition to the training setD, we need a qualification set to assess the quality of
the resulting network and improve the learning as needed. This qualification set can
be generated with UPOM simulations, as done for the synthesis of D.

16.1.4 Continual Online Incremental Learning

Even with good simulators and expert knowledge to drive the sampling of training
problems, the training data may not reflect an actor’s specific working conditions.
This is a well known and important problem in machine learning.

There are two issues for the problem considered here:

• State variables are not independent, i.e., sampling assuming independence can
be biased, and tasks may naturally arise only in specific states.

• The assumption that Sample (𝑠, 𝑎) reflects the true distribution is hard to meet
precisely, leading to possible gaps between the estimated method-value function
𝑄stack (𝑠, 𝑚) and the true utility function.

These issues can be addressed by continual reinforcement learning. A procedure to
do so can be the following.

16.1 Learning to guide RAE and UPOM 377

Initialization:
• Rely on simulated data for the offline learning, as described above, of a neural

net denoted [𝑄 𝜃].
• Use [𝑄 𝜃] to compute the estimates𝑄0(𝑚, 𝑠) when needed in Guide and UPOM.

Online acting, planning and incremental learning:
• Act online with RAE and UPOM using [𝑄 𝜃], and
• Continually update the parameters of [𝑄 𝜃] using CORL algorithm.

CORL
initialize network [𝑄 𝜃] and replay-memory R𝑀 with simulated data
[𝑄̂ 𝜃−] ← [𝑄 𝜃] // target network
while True do

1 record pair (𝑠, 𝑚) when RAE calls Guide in 𝑠 and gets 𝑚
2 record resulting pair (𝑠′,𝑈 (𝑠, 𝑚)) when RAE terminates with 𝑚

push((𝑠, 𝑚, 𝑠′,𝑈 (𝑠, 𝑚)),R𝑀) // FIFO replay memory
B ← set of 𝑘 tuples uniformly sampled from R𝑀

𝜹← [0, . . . , 0]
forall tuples (𝑠, 𝑚, 𝑠′,𝑈 (𝑠, 𝑚)) ∈ B do

3 y← 𝑈 (𝑠, 𝑚) +max𝑚′{𝑄̂ 𝜃− (𝑠′, 𝑚′)}
4 𝜹← 𝜹 + 1/𝑘 [𝑦 −𝑄 𝜃 (𝑠, 𝑚)]∇𝜃𝑄 𝜃 (𝑠, 𝑚)
5 𝜽 ← 𝜽 + 𝛼𝜹 // update with Backpropagation
6 every 𝜈 steps reset [𝑄̂ 𝜃−] ← [𝑄 𝜃] // update target net

Algorithm 16.1. CORL continual Online RL algorithm for RAE.

CORL (Continual Online RL) is a modified version of Deep Q-learning where
actions are replaced with methods, and rewards are replaced with the utility function
𝑈 (𝑠, 𝑚) as computed with Equation 15.1 at the end of a method run.3

Whenever RAE calls Guide for a new task or subtask, CORL records the returned
method 𝑚 (in Line 1). Recall that the choice of 𝑚 by Guide results from calls to the
planner UPOM. When RAE finishes executing 𝑚, the resulting state 𝑠′ and observed
reward𝑈 (𝑠, 𝑚) for this run are also recorded (in Line 2). The tuple (𝑠, 𝑚, 𝑠′,𝑈 (𝑠, 𝑚))
is pushed in the replay memory R𝑀 , which is managed as a FIFO list recording the
last 𝑁 trials. A mini-batch B is sampled from R𝑀 ; its records are used to update the
parameter of [𝑄 𝜃] using a target network. The latter follows [𝑄 𝜃] with some delays.

Note that this is another instance of the “planning to learn” paradigm (Figure 1.2).
The planner feeds CORL with initial training data. When online, RAE’s calls to UPOM
through Guide use the continually updated network [𝑄 𝜃] but do not immediately affect
its updates. These are filtered out through what has been actually achieved. Only
online runs by the actor in the real world are used for these updates.

3Equation 15.1 computes𝑈stack (𝑚, 𝑠) with reference to a current stack. We neglect the possible effects
of other pending activities, as we did for 𝑄0.

378 16 Learning Hierarchical Refinement Models

An actor’s runs may not be as frequent as wished for learning quickly. It is possible
to augment actual experiences with simulations. However, these simulations should
be based on problems (𝜏, 𝑠) that have actually been encountered, not on randomly
generated ones. Moreover, the learning targets should not be the method-value
function computed by UPOM, but the rewards 𝑈 (𝑠, 𝑚) simulated with RAE with
different methods. This simulation-augmented training makes it possible to broaden
the learning on focused and realistic problems with inexpensive and safer simulated
exploration while acting remains on cautious exploitation.

16.2 Learning Hierarchical Refinement Methods

A hierarchical refinement domain Σ = (𝑆,T ,M,A) for RAE/UPOM can be seen
globally as an MDP (see Section 14.3.5). Let us elaborate on this remark.

Learning policies for tasks. Assume that the set T of tasks and events in Σ is
given as annotated tasks (see Section 7.2). Each 𝜏 ∈ T can be formulated as an SSP
problem from the set of states pre(𝜏) to the goal states eff (𝜏). Instead of seeking
methods for a task 𝜏, we can solve this SSP problem with the planning algorithms
of Chapter 9 to obtain a good policy with respect to a cost or reward criteria. In a
simulation-based approach with a Sample function, we do not need to estimate the
probability distributions; we use Monte Carlo sampling techniques. An alternative
to planning is to use reinforcement learning (see Chapter 10). We’ll again end up
with a policy, or equivalently, with a 𝑄 function. RL can be combined in a continual
learning framework with acting.

These quite feasible approaches have a drawback: they give policies instead of
hierarchical refinement methods. The latter are procedures with local variables,
assignments and control structures, in addition to refinement and action steps. They
are computationally more general than policies.

Learning control policies for methods. An approach that combines the advantages
of refinement methods with learning is to use the idea of partial programming with
hierarchical RL. A partial program specifies a program using the usual programming
constructs, in addition to “choose” steps that offer open choices of a local variable
within some ranges. A choose step is to be addressed with a control policy that maps
the current state of the world and state of the program to an adequate choice for this
variable. This control policy is to be learned with reinforcement learning.

The learner is given a refinement domain Σ = (𝑆,T ,M, 𝐴) where:

• T is a set of annotated tasks;
• 𝐴 is a set of primitive actions defined through a Sample function;
• M is a set of partially specified hierarchical refinement methods.

We are already familiar with the first two items; let us develop the latter. In addition to
the usual primitive actions, task refinements, assignment and control steps, the body

16.2 Learning Hierarchical Refinement Methods 379

of a method inM has nondeterministic choose steps:

choose 𝑥 ∈ Range𝑥 ,where 𝑥 is a local variable and range𝑥 a finite set.

The learner has to synthesize a near-optimal deterministic control policy that gives
the best value 𝑥 ∈ Range𝑥 for the current world and control states.

Example 16.1. Consider the door-opening tasks of Example 14.4. The method m1-
unlatch requires two constant values, a turning angle alpha1 and a pulling vector val1.
We’d like to learn adequate values for this door. Furthermore, this method is rather
coarse: either it succeeds on the first trial or it fails permanently. It would be good to
learn if more than one trial is needed for this door.

mc-unlatch(𝑟, 𝑑, 𝑙, 𝑜)
task: unlatch(𝑟, 𝑑)
pre: location(𝑟, 𝑙)∧ toward-side(𝑙, 𝑑)∧ side(𝑑, left)∧ type(𝑑, rotate)

∧ handle(𝑑, 𝑜)
body: choose 𝑘 in {1, 2, 3}

grasp(𝑟, 𝑜)
while (door-status(𝑑) ≠ cracked or 𝑘 > 0) do

choose alpha1 in {.8, 1, 1.2}
turn(𝑟, 𝑜, alpha1)
choose val1 in {.1, .2, .3}
pull(𝑟, val1)
𝑘 ← 𝑘 − 1

if door-status(𝑑)=cracked then ungrasp(𝑟, 𝑜)
else fail

The method mc-unlatch has three choose steps, for the number 𝑘 of trials, the turning
angle (in radians), and the pulling distance (in meters). We may also consider
revising the method for the opendoor task in order to learn the features of a door 𝑑
(i.e., its type, side and direction) instead of requiring it to be coded in the domain (see
Exercise 16.1). □

With choose steps, M defines a hierarchy of partial programs for achieving the
tasks in T . A control policy giving good choices for those choose steps would allow
RAE, to use the methods inM without the need of guidance from UPOM. Recall that
UPOM was needed to choose among applicable alternative ground methods. Here,
we can instead associate to each task 𝜏 a “root” method with a choose step over all
the methods for 𝜏, as illustrated next.

Example 16.2. Consider the DWR domain of Example 14.1 and 14.2. Assume that
the navigate task can be achieved with three different strategies, depending on the area
the robot is navigating in, e.g., with or without GPS localization, in a paved or dirt
road, etc. The robot may have to switch from one strategy to another if its navigation
takes it to a different area. We may discriminate among the navigation methods
through their preconditions if the various areas in the environment are already well

380 16 Learning Hierarchical Refinement Models

characterized and clearly delimited with respect to this robot capability. But adapting
the environment to the robot is not a good idea. Alternatively, we may let the robot
learn the best strategy to apply to its current area with the following “root” method:

mr-navigate(𝑟, 𝑙)
task: navigate(𝑟, 𝑙)
pre: location(𝑟) ≠ 𝑙

body: choose nav in {strategy1, strategy2, strategy3}
stepnav(𝑟, 𝑙, nav)
navigate(𝑟, 𝑙)

Here nav is a variable characterizing the chosen navigation strategy, stepnav is a
partial navigation task that uses the navigation strategy to go towards 𝑙. The methods
for stepnav would stop after a few steps, depending on the strategy and the current
state, to allow the robot to change its navigation strategy. □

Let us now discuss how to use hierarchical RL to learn a control policy for the
partially specified methods of a domain Σ = (𝑆,T ,M, 𝐴). We keep the presentation
as informal as possible, but we need some additional notations:

• 𝜔 = (𝑆,A) is the global MDP associated with Σ.
• 𝜋∗𝜔 is an optimal policy for MDP 𝜔 with the distributions implicit in Sample

and a reward function (as in UPOM). The policy 𝜋∗𝜔 is independent of the
methods inM.

• CM is the union of the ranges of all choose steps inM. It is the set of control
actions, each being a deterministic control for a chosen 𝑥 ∈ Range𝑥 . A control
action leads to different states depending on the outcomes of the follow-up
actions in 𝐴 a refinement leads to.

• EM is the Cartesian product of the set of the world states 𝑆 and the set of
control states ofM. The latter set corresponds to the data structure stack of
RAE/UPOM encoding which step in which method the control is. A choice in
a choose step is a function on the current joint state in EM .

Note that one may act in 𝜔 by following the methods inM; let 𝜋𝜔/M be a policy
for 𝜔 that followsM. It can be demonstrated that:

• 𝜅 = (EM , CM) is an MDP that corresponds to acting in 𝜔 by following the
methods ofM.4 𝜅 is the control MDP forM, with the distributions and reward
functions of Σ, and zero reward for the control actions of CM .

• An optimal control policy 𝜋∗𝜅 for the MDP 𝜅 is an optimal policy 𝜋𝜔/M for 𝜔
that followsM.

Consequently, if we are given partially specified hierarchical refinement methods,
the domain learning problem is no longer about which action in A to perform next
for the task at hand, i.e., for the MDP 𝜔, but about the control policy for the choose
steps in M, i.e., for the MDP 𝜅. The state space EM can be very large, but with

4More precisely 𝜅 is a Semi-Markov Decision Process. SMDP take into account that several states
may occur between two consecutive actions. The difference is irrelevant when the discount factor is
equal to one, for goal or task oriented MDPs.

16.2 Learning Hierarchical Refinement Methods 381

reinforcement learning and the Sample function, we do not need to explicit 𝜅. Here
RL is hierarchical thanks to the guidance of the hierarchy of methods.

A simple approach for learning a control policy adapt the Q-learning algorithm for
an adapted value function 𝑄 : EM × CM → R. Now, the update rule takes place
between two consecutive choose steps when runningM for a task 𝜏. It is adapted
from Equation 10.4 as follows:

𝑄(𝑠, 𝜎, 𝑥) ← 𝛼[(
𝜎′∑︁
𝜎

𝑟 (𝑎𝑖)) +max
𝑥′
{𝑄(𝑠′, 𝜎′, 𝑥′)}] + (1 − 𝛼)𝑄(𝑠, 𝜎, 𝑥) (16.1)

where 𝑥 and 𝑥′ are two control actions in two consecutive choose steps, 𝜎 and 𝜎′
are the respective states of the stack in these steps, 𝑠 and 𝑠′ the corresponding world
states, the reward term is the sum of the rewards of all actions in A between the two
steps. Recall that for the MDP 𝜅, a control action 𝑥 has zero reward, and the follow-up
sequence of actions in A depends onM and the nondeterministic outcome of these
actions.

Additional minor adaptations are needed in Q-learning:

• Line 1: select a control action 𝑥 in a choose step;
• Line 2: followM for a sequence of steps according to the choice of 𝑥 until the

next choose step;
• Line 3: accumulates the rewards between the two steps and observes the world

and stack states.

Learning a control policy forM proceeds as follows:

• extract the task hierarchy fromM; order the set of tasks in T bottom-up, from
the lowest level tasks in this hierarchy to the root tasks;

• for each 𝜏 ∈ T in this bottom-up order, run the adapted Q-learning from random
states in 𝑆0 =pre(𝜏) to eff(𝜏) or to a failure termination.

The learned 𝑄 function defines the following control policy for the partially speci-
fied methods: 𝜋𝜅 (𝑠, 𝜎) = argmax𝑥{𝑄(𝑠, 𝜎, 𝑥)}.

To sum up, the learner in this approach gets more information than for learning
policies for the global MDP 𝜔 for the tasks in T (see Section 14.3.5). InM, it gets a
task hierarchy as well as a guiding structure about which subtasks and actions can be
relevant to which task and how. This can be seen as a specification burden. But the
partially specified refinement methods are often naturally entailed from the definition
of the tasks; they are easy to obtain and do not need a fine tuning thanks to the choose
steps that are left open. Moreover, the approach has two advantages:

• it provides rich operational models with actions, refinements, local variables,
assignments and control structures;

• it speeds up learning significantly giving good policies and enabling the transfer
of learned tasks to others.

The basic Q-learning algorithm can be improved in a few ways, in particular to take
into account the transitions in 𝜔 between two choose steps, which are not meaningful
for 𝜅. The resulting algorithm (called HAMQ-INT in the literature) brings additional

382 16 Learning Hierarchical Refinement Models

learning speed-up. Other variants of the approach have been successfully developed.
To our knowledge, none uses a parametric form of Q-learning nor neural nets. This is
feasible and possibly important: the control action space CM is generally small, but
not the state space EM .

16.3 Discussion and Bibliographic Notes

The basic techniques for this chapter are those of reinforcement learning and neural
net estimators. Their references are discussed in Section 10.9.

The presented method for learning to guide RAE and UPOM is detailed [872]. This
work compares the performances of different approaches, including for the choice of
method parameters, on a few synthetic domains; it demonstrates significant efficiency
and quality gains in the guidance of task refinements.

The technique for learning control policy for partially specified hierarchical refine-
ment methods corresponds to the Hierarchical Abstract Machine (HAM) approach
[870, 39, 756]. HAM proposes a programming language, ALisp, for partial program-
ming with open choice steps which is modeled formally with finite state automata and
SMDPs. The Adaptive Behavior Language approach of [1028] proposes a similar
idea for writing adaptive software in game programming. The formal results men-
tioned here are proved in [870]. The HAMQ-INT algorithm using Moore automata
is developed in [75]. Practical results are presented in these references, favorable
comparisons to other hierarchical refinement approaches, such as [297], are given.
An alternative similar approach to the HAM is proposed in [42] with policy sketches.
Sketches annotate tasks with sequences of subtasks; the learner synthesizes with an
actor–critic algorithm policies for subtasks maximizing the joint reward.

16.4 Exercises

16.1. Revise Example 14.4 with methods than can learn with choose steps the direc-
tion, side and type properties of the doors of a domain.

Part VI

Temporal Models

What then is time? If no one asks me, I
know what it is. If I wish to explain it to
him who asks, I do not know.

Augustine of Hippo, Confessions
(Book 11, Chapter XIV), circa 398

An action may requite different kinds of resources, to be borrowed (e.g., space,
tools) or consumed (e.g., energy). Time is a resource needed by every action, different
from other resources. It flows independently from the actions being performed. It can
be shared ad infinitum by independent actors as long as their actions do not interfere
with each other.

In previous chapters, we left time implicit in our models: an action produced an
instantaneous transition from one state to the next. However, deliberative acting often
requires explicit temporal models. These models must specify when preconditions
are required and when effects take place. For example, a robot moving from a location
to a destination does not require the latter to be accessible at the outset but just shortly
before it arrives.

Actions may, and sometimes must, overlap even if their conditions and effects are not
independent. A robot may move from 𝑙 to 𝑑 while another one is concurrently moving
from 𝑑 to 𝑙. Opening a door that has a knob and a spring latch that controls the knob
requires two tightly synchronized steps (i) pushing and maintaining the latch, while (ii)
turning the knob. Modeling concurrency requires an explicit representation of time.
Additional motivations for explicit time are about goals constrained with deadlines, or
events expected to occur at future time periods, for example, the arrival of scheduled
ships at a harbor. Actions may have to be located in time with respect to expected
events or deadlines. Time can be required qualitatively, to handle synchronization
with actions and events, and quantitatively, to model the duration of actions with
respect to various parameters.

In summary, the motivations for making time explicit are the following:

• modeling the duration of actions;

Free pre-publication, for personal use only. To be published by Cambridge University Press.

383

384

• modeling the effects, conditions, and resources borrowed or consumed at vari-
ous moments along an action duration, and its delayed effects;

• handling concurrent actions that have interacting and joint effects;
• handling goals with relative or absolute temporal constraints;
• planning and acting with respect to exogenous events that are expected to occur

at a future time; and
• planning with actions that maintain a value while being executed, as opposed

to just changing that value (e.g., tracking a moving target, or keeping a spring
latch in some position).

This part of the book is about planning, acting, and learning approaches in which
time is explicit. It describes several algorithms and methods for handling durative
and concurrent activities with respect to a predicted dynamics. It is interesting to
note that acting with temporal models raises dispatching and temporal controllability
issues that heavily rely on planning concepts. Because of that, we depart here from
the outline of other parts in this book with the planning chapter before the acting one.

Chapter 17 introduces a knowledge representation for modeling actions and tasks
with temporal variables and temporal refinement methods, an extension of the meth-
ods seen earlier. Temporal planning problems and temporal plans are defined as
chronicles, that is, collections of assertions and tasks with explicit temporal con-
straints. A planning algorithm with temporal refinement methods is developed in
Section 17.2. The basic techniques for managing temporal and domain constraints
are then presented in Section 17.3.

Chapter 18 considers the dynamic controllability of a temporal plan at acting time
and presents a dispatching algorithm. Acting problems and methods with temporal
domain models are then discussed for different types of operational models. Finally,
Chapter 19 addresses learning heuristics for temporal planning and learning temporal
action and task models.

17 Temporal Representation and Planning

This chapter is about planning approaches with explicit time in the descriptive and
operational models of actions, as well as in the models of the expected evolution of the
world not caused by the actor. It describes a planning algorithm that handles durative
and concurrent activities with respect to a predicted dynamics.

Section 17.1 presents a knowledge representation for modeling actions and tasks
with temporal variables using temporal refinement methods. Temporal plans and
planning problems are defined as chronicles, that is, collections of assertions and tasks
with explicit temporal constraints. A planning algorithm with temporal refinement
methods is developed in Section 17.2. The basic techniques for managing temporal
and domain constraints are then presented in Section 17.3.

17.1 Temporal Representation

An representation of time for planning and acting can be either:

• “State-oriented”: one keeps the notion of global states of the world, as we have
done so far, and includes time explicitly in the model of the transitions between
states (e.g., as in timed automata). The dynamics of the world is modeled as a
collection of global snapshots, each of which gives a complete description of
the domain at some time point.

• “Time-oriented”: one represents the dynamics of the world as a collection of
partial functions of time, describing local evolutions of state variables. Instead
of a state, the building block here is a timeline (horizontal slice in Figure 17.1)
that focuses on one state variable and models its evolution in time. Time-
oriented approaches use as actions either instants or intervals , with qualitative
and/or quantitative relations.

We use here a time-oriented approach with quantitative relations on time points (see
Section 18.7 for a discussion of state-oriented approaches). The proposed representa-
tion relies on timelines and temporal assertions to model actions, tasks, methods and
chronicles.

17.1.1 Assertions and Timelines

A quantitative discrete model of time is described by a collection of temporal variables,
𝑡, 𝑡′, 𝑡1, 𝑡2, . . .; each variable designates a time point. For simplicity, we assume that
temporal variables range over the set of integers.1 An interval is a pair [𝑡, 𝑡′] such

1This assumption avoids some minor issues regarding closed versus open intervals.

Free pre-publication, for personal use only. To be published by Cambridge University Press.

385

386 17 Temporal Representation and Planning

1

time

st
at

e
va

ri
ab

le
s

st
at

e
s

timeline2

timeline1

st
at

e
s’

t t’

Figure 17.1. State-oriented versus time-oriented views.

that 𝑡 < 𝑡′; its duration is 𝑡′ − 𝑡 > 0. We also use open intervals, for example, [𝑡, 𝑡′),
meaning in our case [𝑡, 𝑡′ − 1].

Temporal variables are not instantiated at planning time into numeric values. They
are constrained with respect to other temporal variables or constants. Temporal
constraints are specified with the usual arithmetic operators (<, ≤, =, etc.) between
temporal variables and integer constants, e.g., 𝑡 < 𝑡′ says that 𝑡 is before 𝑡′; 𝑑 ≤
𝑡′ − 𝑡 ≤ 𝑑′ constrains the duration of the interval [𝑡, 𝑡′] between the two bounds 𝑑
and 𝑑′. These constraints have to be maintained consistent. The value of a temporal
variable is set at acting time when actions and observations are performed. To sum
up, a temporal variable remains constrained but uninstantiated as long as it refers to
the future. It is instantiated with a value corresponding to the current time when
the fact this variable qualifies takes place, either controlled or observed by the actor.
After that point, the variable refers to the past. Each state variable 𝑥 is a function of
time. The evolution of its value over time is represented with temporal assertions.

Definition 17.1. A temporal assertion on a state variable 𝑥 is either a persistence or
a change:

• A persistence, denoted [𝑡1, 𝑡2] 𝑥 = 𝑣, specifies that 𝑥 has the value 𝑣 over the
interval [𝑡1, 𝑡2].

• A change, denoted [𝑡1, 𝑡2] 𝑥 : (𝑣1, 𝑣2), specifies that the value of 𝑥 changes over
the interval [𝑡1, 𝑡2] from 𝑣1 at 𝑡1 to 𝑣2 at 𝑡2, with 𝑣1 ≠ 𝑣2. □

As a shorthand, [𝑡] 𝑥 = 𝑣 stands for [𝑡, 𝑡 + 1] 𝑥 = 𝑣, and [𝑡] 𝑥 : (𝑣, 𝑣′) stands for
[𝑡, 𝑡 + 1] 𝑥 : (𝑣, 𝑣′). The former gives the value of 𝑥 at a single time point and the
latter expresses a transition from 𝑣 to 𝑣′ over two consecutive time-points. In general,
and assertion [𝑡, 𝑡′] 𝑥 : (𝑣, 𝑣′) does not model how the change takes place within the
interval [𝑡, 𝑡′]; it can be gradual over possibly intermediate values or instantaneous at
any moment in [𝑡, 𝑡′]. However, if 𝑡′ = 𝑡 + 1, then the value of 𝑥 changes discretely
from 𝑣 at time 𝑡 to 𝑣′ at time 𝑡 + 1.

For example, the assertion [𝑡1, 𝑡2] loc(r1) : (loc2,loc3) says that r1’s location changes
from loc2 to loc3. The precise moments of this change and intermediate values
of loc(r1) are not stated by this assertion. Their values will be established by the
command that performs the change from loc2 to loc3.

17.1 Temporal Representation 387

Temporal assertions can be parameterized, for example, [𝑡1, 𝑡2] loc(𝑟) : (𝑙, loc1)
states that some robot 𝑟 moves from a location 𝑙 to loc1. The values of 𝑟 and 𝑙 will be
fixed at some planning or acting stage; the values of 𝑡1 and 𝑡2 are instantiated only at
acting time.

Definition 17.2. A timeline is a pair (T , C) where T is a conjunction of temporal
assertions on a state variable, possibly parameterized with object variables, and C is
a conjunction of constraints on the temporal variables and the object variables of the
assertions in T . □

A temporal planner maintains and updates timelines by adding new assertions or
constraints, and testing their consistency properties, explained next. Definition 17.2
allows for parameterized state variables. For example T may contain assertions
referring to loc(r1) and loc(𝑟), which (depending on 𝑟) may refer either to one or
two timelines. We assume T to refer to a single timeline as long as 𝑟 ≠ r1 cannot
be entailed from C. Hence a timeline may be separated into several timelines if
instantiation constraints are added to C.
T and C are denoted as sets of assertions and constraints. Constraints on temporal

variables are unary and binary inequalities and equalities. If T contains a persistence
[𝑡1, 𝑡2] 𝑥 = 𝑣 or a change [𝑡1, 𝑡2] 𝑥 : (𝑣1, 𝑣2), then the constraint 𝑡1 ≤ 𝑡2 is in C, implicit
for ease of notation. Constraints on object variables are with respect to rigid relations,
for example, connected(𝑙,loc1), or binding constraints, as in the following example.

Example 17.3. The whereabouts of the robot r1, as depicted in Figure 17.2, can be
expressed with the following timeline:

({[𝑡1, 𝑡2] loc(r1) : (loc1, 𝑙), [𝑡2, 𝑡3] loc(r1)= 𝑙, [𝑡3, 𝑡4] loc(r1) : (𝑙, loc2)},
{𝑡1 < 𝑡2 < 𝑡3 < 𝑡4, 𝑙 ≠ loc1, 𝑙 ≠ loc2})

In this timeline, T has three assertions: one persistence and two changes; C has
temporal and object constraints. The constraints are in this particular case entailed
from the three intervals and two change assertions in T . Instances of the timeline are
substitutions of possible values in these assertions for the five variables 𝑙, 𝑡1, . . . , 𝑡4.

Note that this timeline does not say what happens between 𝑡1 and 𝑡2; all we know
is that r1 leaves loc1 at or after 𝑡1, and it arrives at 𝑙 at or before 𝑡2. To say that
these two changes happen exactly at 𝑡1 and 𝑡2, we can add the following assertions in
the timeline: [𝑡1, 𝑡1 + 1] loc(r1) : (loc1,route) and [𝑡2 − 1, 𝑡2] loc(r1) : (route, 𝑙), where
route is some intermediate location. These assertions say that [𝑡1] loc(r1)= loc1,
[𝑡1 + 1] loc(r1)= route, [𝑡2 − 1] loc(r1)= route, and [𝑡2] loc(r1)= 𝑙. □

Temporal assertions in a timeline (T , C) are expressed with temporal and object
variables that can be instantiated within their respective domains with the usual
unification mechanisms. Not every instance of a timeline makes sense as a possible
consistent evolution. A pair of temporal assertions on a state variable 𝑥 is conflicting if
it can have two different values for 𝑥 at the same time; otherwise, it is nonconflicting.
Since change assertions do not give the precise point at which a change occurs, the
two assertions [𝑡1, 𝑡2] 𝑥 : (𝑣1, 𝑣2) and [𝑡′1, 𝑡

′
2] 𝑥 : (𝑣′1, 𝑣

′
2) are conflicting if they overlap

388 17 Temporal Representation and Planning

1

time
lo
c(
r1
)

loc1

loc2

l

t1 t2 t3 t4

Change

Persistence

Figure 17.2. A timeline for the state variable loc(r1). The positions of the points on the
two axes are qualitative; the rough lines do not necessarily represent linear changes.

in time, unless they are strictly identical, or the overlap is only at their endpoints, i.e.,
𝑣2 = 𝑣′1 and 𝑡2 = 𝑡′1, or 𝑣′2 = 𝑣1 and 𝑡′2 = 𝑡1.

Definition 17.4. A ground instance of (T , C) is consistent if it satisfies all the
constraints in C and does not have a pair of conflicting assertions. A timeline (T , C)
is consistent if its set of consistent instances is not empty. □

A separation constraint for a pair of conflicting assertions is a conjunction of
constraints on object and temporal variables that exclude inconsistent instances. The
set of separation constraints for a conflicting pair of assertions contains all possible
conjunctions that exclude inconsistent instances.

Example 17.5. The two persistence assertions {[𝑡1, 𝑡2] loc(𝑟) = loc1,
[𝑡3, 𝑡4] loc(r1)= 𝑙} are conflicting, because they can have inconsistent instances. For
example, if 𝑟 = r1, 𝑙 ≠ loc1 and either 𝑡1 ≤ 𝑡3 ≤ 𝑡2 or 𝑡1 ≤ 𝑡4 ≤ 𝑡2, then the robot r1
would have to be at loc1 and at 𝑙 ≠ loc1 simultaneously.

The pair of assertions {[𝑡1, 𝑡2] loc(r1)= loc1, [𝑡2, 𝑡3] loc(r1) : (loc1, loc2)} is noncon-
flicting: they have no inconsistent instances.

The pair {[𝑡1, 𝑡2] loc(r1)= loc1, [𝑡3, 𝑡4] loc(r1) : (𝑙, 𝑙′)} is conflicting. A separation
constraint is (𝑡2 = 𝑡3, 𝑙 = loc1).

The set of separation constraints for that pair is:
{(𝑡2 < 𝑡3), (𝑡4 < 𝑡1), (𝑡2 = 𝑡3, 𝑙 = loc1), (𝑡4 = 𝑡1, 𝑙

′ = loc1)}. □

A set of assertions is conflicting if any pair of the set is. A separation constraint for a
set of conflicting assertions is a consistent conjunction of constraints that makes every
pair of the set nonconflicting. A set of assertions may have separation constraints for
every pair while there is no consistent conjunction of separation constraints for the
entire set.

Example 17.6. Consider the set of assertions {[𝑡1, 𝑡2] loc(r1) : (loc1, loc2),
[𝑡2, 𝑡3] loc(r1)= 𝑙, [𝑡3, 𝑡4] loc(r1) : (loc3, loc4)}. The constraint 𝑙 = loc2 is a sepa-
ration for the first two assertions, while the constraint 𝑙 = loc3 is required for the last
two assertion. □

The consistency of a timeline (T , C) is a stronger notion than just satisfying the
constraints in C. It also requires the assertions in T to have a nonconflicting instance

17.1 Temporal Representation 389

that satisfies C. A timeline is inconsistent if in particular there are no separation
constraints, or none that is consistent with C. A convenient case is when C includes
the separation constraints needed by T . For such a case, satisfying the constraints in
C guarantees the consistency of the timeline. This is the notion of secure timelines.

Definition 17.7. A timeline (T , C) is secure if and only if it is consistent and every
instance that meets the constraints in C is consistent. □

In a secure timeline (T , C), no instance that satisfies C specifies different values
for the same state variable at the same time. In other words, every pair of assertions in
T is either nonconflicting or has a separation constraint entailed from C. A consistent
timeline may possibly be augmented with separation constraints to make it secure.

Example 17.8. The timeline ({[𝑡1, 𝑡2] loc(r1) = loc1, [𝑡3, 𝑡4] loc(r1) : (loc1, loc2)},
{𝑡2 < 𝑡3}) is secure; its assertions are nonconflicting. The timeline
({[𝑡1, 𝑡2] loc(𝑟) = loc1, [𝑡3, 𝑡4] loc(r1)= 𝑙}, {𝑡1 < 𝑡2, 𝑡3 < 𝑡4}) is consistent but not
secure; when augmented with either (𝑟 ≠ r1) or (𝑡2 < 𝑡3) it becomes secure. □

Another important notion is that of the causal support of an assertion in a timeline.
Timelines are used to reason about the dynamic evolution of a state variable. An
actor’s reasoning about a timeline requires every element in this evolution to be either
given by its observation or prior knowledge (e.g., for the initial state), or explained by
some reason due the actor’s own actions or to the dynamics of the environment. For
example, looking at the timeline in Figure 17.2, the locations of the robot in 𝑙, then in
loc2, are explained by the two change assertions in that timeline. However, nothing
explains how the robot got to loc1; we have to state an assertion saying that it was
there initially or brought there by a move action.

Definition 17.9. An assertion [𝑡, 𝑡′] 𝑥 = 𝑣 or [𝑡, 𝑡′] 𝑥 : (𝑣, 𝑣′) in a timeline is causally
supported if the timeline contains another assertion [𝑡′′, 𝑡] 𝑥 = 𝑣 or [𝑡′′, 𝑡] 𝑥 : (𝑣′′, 𝑣)
that asserts the value 𝑣 at time 𝑡. □

Note that by definition of the intervals [𝑡′′, 𝑡] and [𝑡, 𝑡′] we have 𝑡′′ < 𝑡 < 𝑡′. Hence
this definition excludes circular support, that is, assertion 𝛼 cannot support assertion
𝛽 while 𝛽 supports 𝛼, regardless of whether this support is direct or by transitivity via
some other assertions.

Example 17.10. In Example 17.3 assertion [𝑡2, 𝑡3] loc(r1)= 𝑙 is supported by
[𝑡1, 𝑡2] loc(r1) : (loc1, 𝑙). Similarly, assertion [𝑡3, 𝑡4] loc(r1) : (𝑙, loc2) is supported by
[𝑡2, 𝑡3] loc(r1)= 𝑙. However, the first assertion in that timeline is unsupported: nothing
asserts [𝑡1] loc(r1) = loc1. □

It may be possible to support an assertion in a timeline by adding con-
straints on object and temporal variables. For example, [𝑡1, 𝑡2] loc(r1) : (loc1,loc2)
can be supported by [𝑡, 𝑡′] loc(𝑟) = 𝑙 if the following constraints are added to
the timeline: (𝑡′ = 𝑡1, r=r1, 𝑙 = loc1). Another way of supporting an as-
sertion is by adding a persistence condition. For example, in the timeline
({[𝑡1, 𝑡2] loc(r1) : (loc1,loc2), [𝑡3, 𝑡4] loc(r1):(loc2,loc3)}, {𝑡1 < 𝑡2 < 𝑡3 < 𝑡4}),

390 17 Temporal Representation and Planning

the second assertion can be supported by adding the following persistence:
[𝑡2, 𝑡3] loc(r1) = loc2. Adding a change assertion can also be used to support as-
sertions. As we’ll see in Section 17.2.3, adding a new action to a plan results in new
assertions that can provide the required support.

Let us extend to sets of timelines the previous definitions. If T is a set of temporal
assertions on several state variables and C is a set of constraints, then the pair (T , C)
corresponds to a set of timelines {(T1, C1), . . . , (T𝑘 , C𝑘)}. (T , C) is consistent or
secure if each of its timelines is.

While reasoning about actions and their effects, an actor will perform the following
operations on a set of timelines (T , C):

• add constraints to C, to secure a timeline or support its assertions; for example,
for the first timeline in Example 17.8, the constraint 𝑡2 = 𝑡3 makes the assertion
[𝑡3, 𝑡4] loc(r1) : (loc1, loc2) supported.

• add assertions to T , for example, for the timeline in Figure 17.2 to take into
account additional motions of the robot.

• instantiate some of the variables, which may possibly split a timeline of the set
with respect to different state variables, for example, assertions related to loc(𝑟)
and loc(𝑟 ′) refer to the same state variable, but that timeline will be split if 𝑟 is
instantiated as r1 and 𝑟 ′ as r2.

17.1.2 Actions

An action is modeled as a collection of timelines. More precisely, an action schema
is a triple (head,T , C), where head is the name and arguments of the action, and
(T , C) is a set of timelines. This representation is an extension of the action schemas
of Chapter 2 with explicit time expressing conditions and effects at different moments
during the time span of an action.

Example 17.11. Suppose several robots are moving in a connected network of roads
servicing loading docks. Fixed in each dock are one crane and several piles where
containers are stacked. A dock can contain at most one robot at a time. Robots and
cranes can carry at most one container at a time. Waypoints in roads guide the robot
navigation; two waypoints are connected if there is a path through the road network
between them.

The objects in this domains are: 𝑟 ∈ Robots, 𝑘 ∈ Cranes, 𝑐 ∈ Containers, 𝑝 ∈
Piles, 𝑑 ∈ Docks, 𝑤 ∈ Waypoints.

The invariant structure of the domain is given by three rigid relations:

attached ⊆ (Cranes ∪ Piles) × Docks
adjacent ⊆ Docks ×Waypoints
connected ⊆ Waypoints ×Waypoints

The domain is described with the following state variables:

loc(𝑟) ∈ Docks ∪Waypoints for 𝑟 ∈ Robots
freight(𝑟) ∈ Containers ∪ {empty} for 𝑟 ∈ Robots

17.1 Temporal Representation 391

grip(𝑘) ∈ Containers ∪ {empty} for 𝑘 ∈ Cranes
pos(𝑐) ∈ Robots ∪ Cranes ∪ Piles for 𝑐 ∈ Containers

stacked-on(𝑐) ∈ Containers ∪ {empty} for 𝑐 ∈ Containers
top(𝑝) ∈ Containers ∪ {empty} for 𝑝 ∈ Piles

occupant(𝑑) ∈ Robots ∪ {empty} for 𝑑 ∈ Docks.

The constant empty means that a robot, a crane, a pile, or a dock is empty, or that a
container is not stacked on any other container.

The task in this example is to bring containers from their current position to a
destination pile. It is specified with actions, tasks, and methods (to which we’ll come
back in the next section). The actions are the following:

leave(𝑟, 𝑑, 𝑤) : robot 𝑟 leaves dock 𝑑 to an adjacent waypoint 𝑤,
enter(𝑟, 𝑑, 𝑤) : 𝑟 enters 𝑑 from an adjacent waypoint 𝑤,

navigate(𝑟, 𝑤, 𝑤′) : 𝑟 navigates from waypoint 𝑤 to 𝑤′,
stack(𝑘, 𝑐, 𝑝) : crane 𝑘 holding container 𝑐 stacks it on top of pile 𝑝,

unstack(𝑘, 𝑐, 𝑝) : crane 𝑘 unstacks a container 𝑐 from the top of pile 𝑝,
put(𝑘, 𝑐, 𝑟) : crane 𝑘 holding a container 𝑐 and puts it onto 𝑟,

take(𝑘, 𝑐, 𝑟) : crane 𝑘 takes container 𝑐 from robot 𝑟.

A descriptive model of leave is specified by the following schema:

leave(𝑟, 𝑑, 𝑤)
assertions: [𝑡𝑠, 𝑡𝑒] loc(𝑟) : (𝑑, 𝑤)

[𝑡𝑠, 𝑡𝑒] occupant(𝑑) : (𝑟, empty)
constraints: 𝑡𝑒 ≤ 𝑡𝑠 + 𝛿1

adjacent(𝑑, 𝑤)

This expression says that the leave action changes the location of 𝑟 from dock 𝑑 to
the adjacent waypoint 𝑤, with a delay smaller than 𝛿1 after the action starts at 𝑡𝑠; the
dock 𝑑 is empty when the action ends at 𝑡𝑒.

Similarly, enter is defined by the following action schema:

enter(𝑟, 𝑑, 𝑤)
assertions: [𝑡𝑠, 𝑡𝑒] loc(𝑟) : (𝑤, 𝑑)

[𝑡𝑠, 𝑡𝑒] occupant(𝑑) : (empty, 𝑟)
constraints: 𝑡𝑒 ≤ 𝑡𝑠 + 𝛿2

adjacent(𝑑, 𝑤)

The take action is specified as follows:

take(𝑘, 𝑐, 𝑟)
assertions: [𝑡𝑠, 𝑡𝑒] pos(𝑐) : (𝑟, 𝑘)

[𝑡𝑠, 𝑡𝑒] grip(𝑘) : (empty, 𝑐)
[𝑡𝑠, 𝑡𝑒] freight(𝑟) : (𝑐, empty)
[𝑡𝑠, 𝑡𝑒] loc(𝑟) = 𝑑

constraints: attached(𝑘, 𝑑), attached(𝑝, 𝑑)

392 17 Temporal Representation and Planning

The assertions in this action say that a container 𝑐 loaded on 𝑟 at 𝑡𝑠 is taken by
crane 𝑘 at 𝑡𝑒; 𝑟 remains in the same dock as 𝑘 .

Similar specifications are required for the actions put(𝑘, 𝑐, 𝑟), to put a container on
𝑟 , stack(𝑘, 𝑐, 𝑝), to put the container 𝑐 held by 𝑘 on top of pile 𝑝, unstack(𝑘, 𝑐, 𝑝), to
take with 𝑘 the top container 𝑐 of pile 𝑝, and navigate(𝑟, 𝑤, 𝑤′) to navigate between
connected waypoints (see Exercise 17.2).

Note that actions leave, enter, take, and so on, are said to be action at the planning
level, but they will be refined at the acting level. We’ll see in Example 18.8 how to
further refine them into executable commands. □

As illustrated in Example 17.11, actions are specified as assertions and constraints
on temporal variables and object variables. By convention, 𝑡𝑠 and 𝑡𝑒 denote the starting
point and ending point of each action. The temporal variables of an action schema are
not in its list of parameters because we are going to handle them differently from the
object variables. The planner will instantiate object variables, but it will only constrain
the temporal variables with respect to other time points. Their instantiation into
constants is performed at acting time, from the triggering of actions and observation
of events (as controllable and uncontrollable time points, see Chapter 18).

This representation does not use two separate fields for preconditions and effects. A
change in a action, such as [𝑡𝑠, 𝑡] grip(𝑘) : (empty, 𝑐), expresses both the precondition
that crane 𝑘 should be empty at time 𝑡𝑠 and the effect that 𝑘 holds container 𝑐 at time 𝑡.
The temporal assertions in a action refer to several instants, not necessarily ordered,
within the timespan of an action.

Temporal and object variables in a action are free variables. To make sure that
different instances of a action, say take, refer to different variables 𝑡𝑠, 𝑡𝑒, 𝑘, 𝑟, 𝑐, we
rely on the usual variable renaming, to be detailed later.

17.1.3 Methods and Tasks

A task is a label naming an activity to be performed and temporal qualification, written
as : [𝑡, 𝑡′]task. This expression means that task starts at or after 𝑡, and finishes at or
before 𝑡′. It does not require task to persist throughout the entire interval (contrarily
to a persistence condition on a state variable).

A task is refined into subtasks and actions using temporal refinement methods.
A method is a tuple (head, task, refinement, T , C), where head is the name and
arguments of the methods, task gives the task to which the method applies, refinement
is the set of temporally qualified subtasks and actions in which it refines task, T are
assertions and C constraints on temporal and object variables. A temporal refinement
method does not need a separate precondition field, as in the methods of previous
chapter. This is because temporal assertions may express conditions as well as effects
in a flexible way and at different moments, as illustrated next.

Example 17.12. The task of bringing containers to destination piles in Example 17.11
can be modeled with the following tasks: bring, move, uncover, load, and unload. A
possible method for bring is:

17.1 Temporal Representation 393

m-bring(𝑟, 𝑐, 𝑝, 𝑝′, 𝑑, 𝑑′, 𝑘, 𝑘 ′)
task: bring(𝑟, 𝑐, 𝑝) # 𝑟 brings container 𝑐 to pile 𝑝

refinement: [𝑡𝑠, 𝑡1] move(𝑟, 𝑑′)
[𝑡𝑠, 𝑡2] uncover(𝑐, 𝑝′)
[𝑡3, 𝑡4] load(𝑘 ′, 𝑟, 𝑐, 𝑝′)
[𝑡5, 𝑡6] move(𝑟, 𝑑)
[𝑡7, 𝑡𝑒] unload(𝑘, 𝑟, 𝑐, 𝑝)

assertions: [𝑡𝑠, 𝑡3] pile(𝑐) = 𝑝′
[𝑡𝑠, 𝑡3] freight(𝑟) = empty

constraints: attached(𝑝′, 𝑑′), attached(𝑝, 𝑑), 𝑑 ≠ 𝑑′

attached(𝑘 ′, 𝑑′), attached(𝑘, 𝑑)
𝑡1 ≤ 𝑡3, 𝑡2 ≤ 𝑡3, 𝑡4 ≤ 𝑡5, 𝑡6 ≤ 𝑡7

This method refines bring into five subtasks to move the robot to 𝑑′ then to 𝑑, to
uncover container 𝑐 to have it at the top of pile 𝑝′, to load the robot in 𝑑′ and unload it
in 𝑑 in the destination pile 𝑝. As depicted in Figure 17.3, the first move and uncover
are concurrent (𝑡2 and 𝑡3 are unordered). When both tasks finish, the remaining tasks
are sequential. Container 𝑐 remains in its original pile, and robot 𝑟 remains empty
until the load task starts.

1

move

t3

t1

t2

ts

uncover

pile(c)=p’

freight(r)=nil

load

move

unload

t4 t6t5 t7 te

bring

Figure 17.3. Assertions, actions and subtasks of a refinement method for the bring task.
The diagonal arrows represent precedence constraints.

m-move1(𝑟, 𝑑, 𝑑′, 𝑤, 𝑤′)
task: move(𝑟, 𝑑) #moves a robot 𝑟 to a dock 𝑑

refinement: [𝑡𝑠, 𝑡1] leave(𝑟, 𝑑′, 𝑤′)
[𝑡2, 𝑡3] navigate(𝑟, 𝑤′, 𝑤)
[𝑡4, 𝑡𝑒] enter(𝑟, 𝑑, 𝑤)

assertions: [𝑡𝑠, 𝑡𝑠 + 1] loc(𝑟) = 𝑑′
constraints: adjacent(𝑑, 𝑤), adjacent(𝑑′, 𝑤′), 𝑑 ≠ 𝑑′

connected(𝑤, 𝑤′)
𝑡1 ≤ 𝑡2, 𝑡3 ≤ 𝑡4

394 17 Temporal Representation and Planning

This method refines the move to a destination dock 𝑑 into three successive steps:
leave the starting dock 𝑑′ to an adjacent waypoint𝑤′, navigate to a connected waypoint
𝑤 adjacent to the destination and enter the destination 𝑑, which is required to be
empty only when the robot gets there. The move task requires additional methods to
address cases in which the robot starts from a road or when it is already there (see
Exercise 17.3).

m-uncover(𝑐, 𝑝, 𝑘, 𝑑, 𝑐′, 𝑝′)
task: uncover(𝑐, 𝑝) #un-pile 𝑝 until its top is 𝑐

refinement: [𝑡𝑠, 𝑡1] unstack(𝑘, 𝑐′, 𝑝)
[𝑡2, 𝑡3] stack(𝑘, 𝑐′, 𝑝′)
[𝑡4, 𝑡𝑒] uncover(𝑐, 𝑝)

assertions: [𝑡𝑠, 𝑡𝑠 + 1] pile(𝑐) = 𝑝
[𝑡𝑠, 𝑡𝑠 + 1] top(𝑝) = 𝑐′
[𝑡𝑠, 𝑡𝑠 + 1] grip(𝑘) = empty

constraints: attached(𝑘, 𝑑), attached(𝑝, 𝑑),
attached(𝑝′, 𝑑), 𝑝 ≠ 𝑝′, 𝑐′ ≠ 𝑐
𝑡1 ≤ 𝑡2, 𝑡3 ≤ 𝑡4

This method refines uncover into unstacking the container at the top of pile 𝑝,
moving it to a nearby pile 𝑝′ and then invoking uncover again if the top of 𝑝 is not
𝑐. Another method should handle the case where 𝑐 is at the top of 𝑝. Task load can
be refined into action unstack and put; task unload is similarly refined into take and
stack (see Exercise 17.3). □

Assertions in methods specify conditions as well as effects at any moment during
the duration of the task. Note that the specific assertions conditioning the subtasks
and actions of a task 𝜏 should be expressed in their respective definitions, not in the
methods handling task 𝜏. Redundancy between conditions in methods, and conditions
in subtasks and actions is not desirable. For example, the action enter has the assertion
[𝑡𝑠, 𝑡𝑒] occupant(𝑑) : (empty, 𝑟); the same assertion (with different variables that will
be unified with 𝑡𝑠, 𝑡𝑒, 𝑑 and 𝑟) may appear in the method m-move1, but it is not needed.
Redundancy, as well as incomplete specifications, are sources of errors.

Planning and acting procedures will view tasks as labelled networks with associated
contraints. For example, a task bring in Example 17.12 can be the root of a task network
whose first successor with method m-bring is a task move, which in turn leads with
m-move1 to the action leave. A leaf in a task network is a action. An inner node is a
task, which, at some point in the planning and/or acting process, is either:

• refined : it is associated with a method; it has successors labelled by subtasks
and actions as specified in the method with the associated constraints; or

• unrefined: its refinement with an applicable method is pending.
The refinement mechanism takes place with a data structure called a chronicle.

17.1.4 Chronicles

A chronicle expresses a planning problem or a partial plan. It is a collection of
temporally qualified tasks, actions, and assertions with associated constraints. It

17.1 Temporal Representation 395

specifies:

(i) the tasks to be performed;
(ii) the a priori given and known facts about the current state and predicted future

that will take place independently of the planned activities; and
(iii) the assertions to be achieved, which are constraints on future states of the world

that planning will have to satisfy.

The elements in (ii) are also expressed as temporal assertions, we refer to them as the
a priori known supported assertions to distinguish them from assertions in (iii), which
require support from the planned activities. More formally:

Definition 17.13. A chronicle is a tuple 𝜙 = (A,K,T , C) where A is a set of tem-
porally qualified actions and tasks, K is a set of a priori known supported assertions,
T is a set of assertions, and C is a conjunction of constraints on the temporal and
object variables in A,K, and T . □

Example 17.14. Assume in Example 17.12 that a pile 𝑝 can be on a ship, and
that a crane 𝑘 on a dock 𝑑 can unstack containers from that pile 𝑝 only when the
corresponding ship is docked at 𝑑 (see Exercise 17.4).

Consider the case in which this domain has two robots r1 and r2, initially in dock1
and dock2, respectively. A ship ship1 is expected to be docked at dock3 at a future
interval of time; it has a pile, pile-ship1, the top element of which is a container c1.
The problem is to bring container c1 to dock4 using any robot and to have the two
robots back at their initial locations at the end. This problem is expressed with the
following chronicle:

𝜙0 :
tasks: [𝑡, 𝑡′] bring(𝑟, c1, 𝑝)

supported: [𝑡𝑠] loc(r1)=dock1
[𝑡𝑠] loc(r2)=dock2
[𝑡𝑠] top(pile-ship1)=c1
[𝑡𝑠] pos(c1)=pallet
[𝑡𝑠 + 10, 𝑡𝑠 + 𝛿] docked(ship1)=dock3

assertions: [𝑡𝑒] loc(r1) = dock1
[𝑡𝑒] loc(r2) = dock2

constraints: 𝑡𝑠 < 𝑡 < 𝑡′ < 𝑡𝑒, 20 ≤ 𝛿 ≤ 30, 𝑡𝑠 = 0
attached(𝑝, dock4)

𝑡𝑠 and 𝑡𝑒 denote the starting and end points of a chronicle. The planning problem is
specified by taking 𝑡𝑠 the origin of the clock. Here 𝑡𝑠 is grounded with respect to the
current time for the predicted future given in the last supported assertion. The goal
of bringing c1 to dock4 is expressed through the task bring(r, c1,p) and the constraint
attached(𝑝, dock4). □

Chronicles also express partial plans that will be progressively transformed by a
planner into complete solution plans.

396 17 Temporal Representation and Planning

Example 17.15. Consider the two robots r1 and r2 of Example 17.12 performing
concurrent actions where each robot moves from its dock to the other robot’s dock as
depicted in Figure 17.4. The following chronicle (where K and T are not detailed)
expresses this set of coordinated actions:

𝜙 :
tasks: [𝑡0, 𝑡1] leave(r1,dock1,w1)

[𝑡1, 𝑡2] navigate(r1,w1,w2)
[𝑡3, 𝑡4] enter(r1,dock2,w2)
[𝑡′0, 𝑡

′
1] leave(r2,dock2,w2)

[𝑡′1, 𝑡
′
2] navigate(r2,w2,w1)

[𝑡′3, 𝑡
′
4] enter(r2,dock1,w1)

supported: K
assertions: T

constraints: 𝑡′1 < 𝑡3, 𝑡1 < 𝑡
′
3, 𝑡𝑠 < 𝑡0, 𝑡𝑠 < 𝑡

′
0, 𝑡4 < 𝑡𝑒, 𝑡

′
4 < 𝑡𝑒

adjacent(dock1,w1), adjacent(dock2,w2)
connected(w1,w2)

3

time

r1

leave
dock1

t1 t3 t4t0

navigate enter
dock2

r2

leave
dock2

t’1 t’2 t’4t’0

navigate
enter
dock1

t2

t’3

Figure 17.4. Temporally qualified actions of two robots, r1 and r2. The diagonal arrows
represent the precedence constraints 𝑡′1 < 𝑡3 and 𝑡1 < 𝑡′3.

This chronicle says that r1 leaves dock1 before r2 enters dock1 (𝑡1 < 𝑡′3); similarly,
r2 leaves dock2 before r1 gets there (𝑡′1 < 𝑡3). Each action navigate starts when the
corresponding leave finishes (𝑡1 and 𝑡′1). However, an enter may have to wait until the
navigate finishes (𝑡2 to 𝑡3) and the way is free. □

The set T of assertions in a chronicle 𝜙 = (A,K,T , C) contains all the assertions
of the actions already in A, for example, leave and enter in Example 17.15. When a

17.2 A Hybrid Temporal Planner 397

task 𝜏 ∈ A is refined with a method 𝑚, 𝜏 is replaced inA by the subtasks and actions
specified in 𝑚, and T and C are augmented with the assertions and constraints of 𝑚
and those of its actions.

When a task is refined, the free variables in methods and actions are renamed
and possibly instantiated. For example, enter is specified in Example 17.11 with
the free variables 𝑟, 𝑑, 𝑤, 𝑡𝑠, 𝑡𝑒. In the first instance of enter in the chronicle of
Example 17.15, these variables are respectively bound to r1, dock2, w2, 𝑡3, and 𝑡4. In
the second instance of enter, they are bounded to r2, dock1, w1, 𝑡′3, 𝑡

′
4. The general

mechanism for every instance of a action or a method is to rename the free variables in
its schema to new names, then to constrain and/or instantiate these renamed variables
when needed.

When refining a task and augmenting the assertions and contraints of a chronicle, as
specified by a method, we need to make sure that (T , C) remains secure. Separation
constraints will be added to C to handle conflicting assertions. A planner has to
maintain the consistency of the resulting constraints and to support all the assertions
of a chronicle.

17.2 A Hybrid Temporal Planner

This section presents TemPlan, a temporal planner for addressing problems defined
with tasks to be performed as well as goals to be reached, in addition to what the
tasks achieves. TemPlan performs refinement planning (as in HTN) and generative
planning (as in plan-space planning). For this reason, we qualify it as a hybrid planner

A temporal planning domain Σ is defined by giving the sets of objects, rigid
relations and state variables of the domain, and by specifying the actions and methods
for the tasks of the domain.

A planning problem is defined as a pair (Σ, 𝜙0), where Σ is a temporal planning
domain and 𝜙0 = (A,K,T , C) is a chronicle. This chronicle gives the tasks to
perform, the additional goals to achieve, and the initially supported assertions in the
current state of the world and future states that are expected to occur independently of
the activities to be planned for. The pair (T , C) in 𝜙0 is required to be secure. Note
that the planning problem 𝜙0 is defined in terms of tasks as well as goals. Planning
proceeds by refinement of tasks as well as by generative search for goals.

Partial plans are also expressed as chronicles. A chronicle 𝜙 defines a solution
plan when all its tasks have been refined and all its assertions are supported. At that
point, 𝜙 contains all the actions initially in 𝜙0 plus those produced by the refinement
of the tasks in 𝜙0, according to methods in Σ, and those possibly needed to support
the assertions in 𝜙0 or required by the task refinements. It also contains the assertions
and constraints in 𝜙0 plus those of the actions in 𝜙, and the methods used in the task
refinements, with their constraints and possible separations. More formally:

Definition 17.16. A chronicle 𝜙 is a valid solution plan of the temporal planning
problem (Σ, 𝜙0) if and only if the following conditions hold:

(i) 𝜙 does not contain unrefined tasks;

398 17 Temporal Representation and Planning

(ii) all assertions in 𝜙 are causally supported, either by supported assertions initially
in 𝜙0 or by assertions from methods and actions in the plan; and

(iii) the chronicle 𝜙 is secure. □

Condition (i) says that all tasks in 𝜙0 have been refined down into actions. Con-
dition (ii) extends to temporal domains the notion of causal link seen in Section 3.4.
Condition (iii) guarantees that the solution chronicle cannot have inconsistent in-
stances, since is may have non-instantiated temporal and object variables, which will
instantiated at execution time (see Chapter 18).

17.2.1 Temporal Planning Algorithm

A temporal planning algorithm proceeds by transforming the initial chronicle 𝜙0 with
refinement methods and the addition of actions and separation constraints until the
preceding three conditions are met. Let 𝜙 be the current chronicle in that transforma-
tion process; 𝜙 may contain three types of flaws with respect to the requirements of a
valid plan in Definition 17.16:

• 𝜙 has unrefined tasks : violates condition (i)
• 𝜙 has unsupported assertions : violates condition (ii), and
• 𝜙 has conflicting assertions : violates condition (iii).

Because 𝜙 is obtained by transforming 𝜙0, when 𝜙 does not contain unrefined tasks,
then assertions not supported in 𝜙 are additional goals to be reached by adding in a
generative way actions to the chronicle.

A flaw of one of the preceding three types is addressed by finding its resolvers,
i.e., ways of resolving that flaw. The planning algorithm chooses a resolver nondeter-
ministically and transforms the current chronicle accordingly. This is repeated until
either the current chronicle is without flaws, that is, it is a valid solution or a flaw has
no resolver, in which case the algorithm must backtrack to previous choices. This is
specified in the pseudocode of TemPlan.

TemPlan(𝜙, Σ)
while True do

Flaws← set of flaws of 𝜙
if Flaws=∅ then return 𝜙

1 arbitrarily select 𝑓 ∈ Flaws
2 Resolvers← set of resolvers of 𝑓

if Resolvers = ∅ then return failure
3 nondeterministically choose 𝜌 ∈ Resolvers
4 𝜙← Transform(𝜙, 𝜌)

Algorithm 17.1. A schema of a chronicle temporal planner.

In TemPlan, Line 1 is a heuristic choice of the order in which the resolvers of a
given flaw are searched. This choice affects the performance but not the completeness

17.2 A Hybrid Temporal Planner 399

of the algorithm; Line 3 is a backtracking point in a deterministic implementation of
TemPlan: all resolvers for a flaw may need to be tried to ensure completeness.

In addition to several design choices, the main technical issues for the implemen-
tation of this pseudocode into a temporal planner are the following:

• How to find the flaws in 𝜙 and their resolvers, and how to transform 𝜙 with a
resolver 𝜌, that is, the Transform subroutine in TemPlan. This is discussed for
the different types of flaws in Sections 17.2.2 to 17.2.4.

• How to organize and explore the search space efficiently. This is discussed in
Section 17.2.5.

• How to check and maintain the consistency of the constraints in 𝜙. This is
discussed in Section 17.3.

An analogy with what was presented earlier can be helpful: resolving a unrefined
task is like applying a method in HTN planning (Chapter 5); resolving an unsupported
assertion is analogous to an open-goal flaw in Plan-Space Planning (Section 3.4); and
resolving conflicting assertions is like resolving a threat in Plan-Space Planning.

17.2.2 Resolving Unrefined Tasks

An unrefined task is easy to detect in the current 𝜙. A resolver for a flaw of that type
is an applicable instance of a temporal refinement method for the task. An instance
is obtained by renaming all variables in the method and instantiating some of these
variables with the task parameters and with the variables and constraints of the current
chronicle 𝜙.

An instance 𝑚 of a method is applicable to a chronicle 𝜙 when its task matches a
task in 𝜙 and all the constraints of 𝑚 are consistent with those of 𝜙. Transforming
𝜙 = (A,K,T , C) with such a resolver 𝑚 consists of transforming 𝜙 is follows:

• replace the task in A with the subtasks and actions of 𝑚;
• add the assertions of 𝑚 and those of the actions in 𝑚 either to K if these

assertions are causally supported, or else to T ;
• add to C the constraints of 𝑚 and those of its actions.

An applicable instance of a method 𝑚 may have assertions that are not causally
supported by 𝜙. For instance, in Example 17.12, the method m-bring is applicable
for refining a task bring(𝑟, 𝑐, 𝑝) if m-bring has an instance such that the constraints
(attached(𝑝′, 𝑑′), attached(𝑝, 𝑑), 𝑑 ≠ 𝑑′, 𝑡2 ≤ 𝑡1, 𝑡3 ≤ 𝑡1) are consistent with those
of current 𝜙, given the current binding constraints of these variables. However,
the assertion [𝑡𝑠, 𝑡1] freight(𝑟) = empty in that method may or may not be already
supported by another assertion in 𝜙. If it is not, then refining a task in 𝜙 with m-bring
adds a unsupported assertion in the current chronicle.

17.2.3 Resolving Unsupported Assertions

Unsupported assertions in 𝜙 = (A,K,T , C) are those initially in 𝜙0 plus those from
the refinement of tasks and the insertion of actions. The three ways to support an
assertion 𝛼 ∈ T and move it to K are the following:

400 17 Temporal Representation and Planning

• add constraints to C on object and temporal variables;
• add to K a persistence assertion; and
• add toA an action that brings an assertion supporting 𝛼, or a task with a method

that brings such an assertion.

The last type of resolver corresponds to a generative planning mode. An unsup-
ported assertion 𝛼 is equivalent to a goal to be reached; 𝛼 may be supported by either
a primitive action or a method for a task. In both cases this introduces new tasks or
new actions which do not result from the refinement of tasks. The use of an action as
a resolver for supporting an unsupported assertion is similar to what we have seen for
generative plan-space planners. Let us assume at this point that all actions in Σ can
be freely used to augment a plan for supporting assertions, as well as through task
refinement methods. We’ll discuss this assumption in Section 17.2.7.

17.2.4 Resolving Conflicting Assertions

Flaws corresponding to conflicting assertions are more easily handled in an incremen-
tal way by maintaining 𝜙 as a secure chronicle and keeping track of what is needed
for it to remain secure. The mechanisms here are a generalization of those used in
Section 3.4 for handling threats in plan-space planning. There are, however, several
substantial differences (see Exercise 17.8).

All assertions in 𝜙0 are required to be nonconflicting. Every transformation of 𝜙
by refinement, addition of persistence assertions or constraints, or addition of tasks
or actions requires detecting and marking as flaws potential conflicts between newly
added assertions and those of current 𝜙. Resolvers for a potential conflict are sets of
separation constraints consistent with the constraints in the current 𝜙, as discussed in
Section 17.1.1. The conflict is resolved by adding the chosen separation constraints
to those of 𝜙. One way of keeping the current 𝜙 secure is to detect and solve potential
conflicts at every transformation step. However, other flaw selection strategies can be
applied.

17.2.5 Search Space

The search space of TemPlan is a directed acyclic graph in which search states are
chronicles. An edge (𝜙, 𝜙′) in this graph is such that 𝜙′ = Transform(𝜙, 𝜌), 𝜌 being
a resolver for some flaw in 𝜙. The graph is acyclic because each edge augments the
previous chronicle with additional constraints, actions, and/or assertions and there is
no removal transformation. In general, however, the search space is not finite: it can
grow indefinitely from the addition of new actions and tasks. It can be made finite by
the specification of global constraints, such as the total duration of the plan.

Starting from 𝜙0, TemPlan explores a subtree of this complex search space. The
problems for organizing and exploring this space are in many aspects similar to those
of plans-space planning. Both follow the same approach of transforming a partial
plan by finding flaws and repairing them. But their types of flaws are different. Flaws
corresponding to unrefined tasks do no exist in PSP. The unsupported assertion

17.2 A Hybrid Temporal Planner 401

flaws extend the open goal flaws of PSP to temporal domains. Similarly, conflicting
assertions generalize what we referred to as threats in PSP.

Both TemPlan and PSP algorithms use a dynamic constraint-satisfaction approach
in which new constraints and variables are repeatedly added during the search for a so-
lution. The constraint-satisfaction problem (CSP) approach is very general and allows
taking into account not only time and variable binding constraints, as in TemPlan,
but also resource constraints, which are quite often part of planning problems. The
Meta-CSP framework, which expresses the disjunctions of possible resolvers for flaws
as (meta) constraints, can help formalize the integration of several types of constraints
related to time and resources and possibly help in their resolution (see Section 17.4).

The basic heuristics for TemPlan are similar to those of PSP. These are basically
variants of the variable-ordering and value-ordering heuristics of CSP. A heuristic
analogous to variable-ordering chooses a flaw 𝑓 that has the smallest number of
resolvers (step (i) of TemPlan). For a heuristic analogous to value-ordering, the idea
is to choose a resolver 𝜌 that is the least constraining for the current chronicle 𝜙. This
notion is more difficult to assess; it leads to take into account differently resolvers that
add constraints, assertions, or refinement methods, from those that add new tasks or
actions. Adding new tasks and actions augments the size of the problem at hand and
requires the use of more elaborate heuristics.

Advanced heuristics rely on elaborate extensions of domain transition graphs,
reachability graphs and some of the techniques of Section 3.2. They can be in-
tegrated within various search strategies such as iterative deepening or A*-based
search. These considerations are essential for designing an efficient implementation
of TemPlan. Possible options for heuristics and search strategies are briefly discussed
in Section 17.4.

TemPlan is sound when it is implemented with sound subroutines for finding flaws,
resolvers and transforming chronicles. When a global constraint on the plan to find
is set, such as the total duration of that plan or its maximum number of actions,
then TemPlan is also complete, that is, at least one of its execution traces returns
a solution plan, if there is one. These properties are conditioned on the soundness
and completeness of the constraint handling procedures used in TemPlan, which are
detailed in Section 17.3.

17.2.6 Illustration

Let us illustrate some of the steps of TemPlan on a detailed example.

Example 17.17. Consider the problem depicted in Figure 17.5 for the domain of
Example 17.11 where two robots, r1 and r2, are servicing four docks, d1 to d4,
connected with four roads, as illustrated. Starting from the initial state shown in the
figure, the task is to bring the containers c1 to pile p3 and c2 to p4, with no constraint
on the final robot locations. Hence, the initial chronicle 𝜙0 has two unrefined tasks
and no unsupported assertion (see Exercise 17.5).

At the first recursion of TemPlan, there are two flaws in current 𝜙: the unrefined
tasks bring(𝑟, c1, p3) and bring(𝑟 ′, c2, p4). Suppose the method m-bring is used
to refine the first task into move, uncover, load, move and unload. At this point,

402 17 Temporal Representation and Planning

1

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34
r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

w31

w21

w32

w43

Figure 17.5. A planning problem involving two robots, r1 and r2, servicing four docks,
d1 to d4; the task is to bring the containers c1 from pile p’1 to p3 and c2 from p’2 to p4.

𝑐, 𝑝, 𝑝′, 𝑑, 𝑑′, 𝑘, 𝑘 ′ can be instantiated,2 respectively, to c1, p3, p’1, d3, d1, k1, k3;
𝑟 is constrained to be in {r1, r2} and the time points are constrained as depicted in
Figure 17.3.

At the following recursion, there are six unrefined tasks in 𝜙. Assume m-bring
is similarly used to refine bring(𝑟 ′, c2, p4). Now the resulting chronicle contains
ten unrefined tasks (two uncovers, loads and unloads, and four moves) as well as
conflicting assertions related to the loc(𝑟) and loc(𝑟 ′) assertions in the four load and
unload tasks. Separation constraints are either 𝑟 ≠ 𝑟 ′ or precedence constraints such
that the tasks are run sequentially.

If the former separation is chosen, a final solution plan would be, for example, to
have r1 navigate to d2 while r2 navigates to d1. At the same time, k1 uncovers c1
while k2 uncovers c2. Two synchronizations then take place: before load(k2, r1, c2,
p’2) and, concurrently, before load(k1, r2, c1, p’1) (as in Figure 17.3). These two
concurrent actions are then followed by move(r1,d4) concurrently with move(r2,d3),
and finally with the two unload actions. The details of the remaining steps for reaching
a solution are covered in Exercise 17.6.

If we assume that navigation is constrained on the traversal of docks, that no dock
can contain more than one robot at a time, then additional synchronizations will be
required for the motion of the two robots (see Exercise 17.7). □

2An implementation may choose to instantiate partially the parameters of m-bring, but this would be
more complicated to handle and may not pay off in efficiency.

17.3 Constraint Management 403

17.2.7 Free Versus Task-Dependent Actions

The hybrid TemPlan integrates of a task refinement approach with a generative goal-
oriented search approach. A chronicle 𝜙0 = (A,K,T , C) specifies (in A) the tasks
to perform as well as (in T) the goals to achieve in the form of temporal assertions.
However, this flexible representation may limit the performance of the algorithm if the
domain has few methods to depend on and relies significantly on generative search.

There is another issue regarding the use of actions to support assertions that relates
to the specification style of a domain. An action 𝑎 is specified as a collection of
assertions and constraints; it is also a temporally qualified component of one or
several methods. A method 𝑚 using 𝑎 may contain additional assertions and actions
that can be needed for performing 𝑎. A domain may or may not allow 𝑎 to be freely
used in a generative approach, independently of methods that refine a task into several
actions, including 𝑎.

These considerations motivate a distinction between free and task-dependent ac-
tions. An action is free if it can be used alone for supporting assertions. An action
is task-dependent if it can be used only as part of a refinement method in generative
planning. Such a property is a matter of design and specification style of the planning
domain.

Example 17.18. The designer of the domain in Example 18.4 may consider that the
actions unload, load, stack, and unstack are free. These actions can be performed
whenever their specified conditions are met; they can be inserted in a plan when their
assertions are needed to support unsupported assertions. However, the actions leave
and enter can be specified as being task-dependent; they should necessarily appear as
the result of a decomposition of a move task. Here, the designer does not foresee any
reason to perform actions leave or enter except within move tasks that require leaving
or entering a place. □

The use of a task-dependent action branches over the choice of which task to use
if the same action appears in the decomposition of several tasks. It introduces an
unrefined task flaw, which branches over several methods for its decomposition. Note
that if all actions in a domain are free, then the refinement in TemPlan is limited to
the tasks in the initial chronicle. But if all actions are task-dependent, then refinement
will be needed for every unsupported assertion that cannot be supported by constraints
and persistence assertions.

17.3 Constraint Management

At each recursion of TemPlan, we have to find resolvers for current flaws and transform
the current chronicle 𝜙 by refinement and insertion of assertions, constraints, actions,
and tasks. Each transformation must keep the set C of constraints in 𝜙 consistent;
it must detect conflicts in the set of assertions in 𝜙 and find separation constraints
consistent with C. The steps (ii) and (iv) of TemPlan require checking the consistency
of the constraints in C.

404 17 Temporal Representation and Planning

There are two types of constraints in C: temporal constraints and object constraints.
Let us assume that these two types of constraints are decoupled, that is, there is no
constraint that restricts the value of a time point as a function of object variables, or
vice versa. For example, we introduced constant parameters 𝛿𝑖 in Example 17.11;
there would be a coupling if these delays where not constant but functions of which
robot 𝑟 is doing the leave or which crane the unload actions. With this simplifying
assumption, C is consistent if and only if the object constraints and the temporal
constraints are consistent. Constraint checking relies on two independent constraint
managers for the two types of constraints, discussed next.

17.3.1 Consistency of Object Constraints

A temporal planner must check and maintain the consistency of unary and binary
constraints on object variables that come from binding and separation constraints
and from rigid relations. This corresponds to maintaining a general CSP over finite
domains, the consistency checking of which is an NP-complete problem. Restrictions
on the representation that can give a tractable CSP are not practical; even inequality
constraints, such as 𝑥 ≠ 𝑦 in a separation constraint, make consistency checking
NP-complete.

Filtering techniques, such as incremental arc or path consistency, are not complete,
but they are efficient and offer a reasonable trade-off for testing the consistency of
object constraint networks. Indeed, if TemPlan progresses with an inconsistent set
of object constraints, it will later detect that some variables do not have consistent
instantiations; it will have to backtrack. Incomplete consistency checking in each
search node does not reduce the completeness of the algorithm, it just may not prune
earlier some nodes in the search tree. There is trade-off between (i) running a complete
but costly consistency checking at each search node for early pruning, and (ii) doing
a fast incremental constraint filtering, postponing a complete variable instantiation
checking to the end of the search, which may require further backtracking.3

A good principle for balancing this trade-off is to perform low complexity pro-
cedures at each search node, and to keep more complex ones as part of the search
strategy. In that sense, filtering techniques efficiently remove many inconsistencies
and reduce the search space at a low cost. They may be used jointly with complete
algorithms, such as forward-checking at regular stages of the search. Such a complete
consistency check has to be performed on the free variables remaining in the final plan.
Other trade-offs, such as choosing flaws that lead to instantiate object variables, are
also relevant for reducing the complexity of maintaining variable binding constraints.

17.3.2 Consistency of Temporal Constraints

Simple Temporal Networks (STNs) provide a convenient framework for handling
temporal constraints. An STN is a pair (V, E), where V is a set of temporal

3As an analogy with plan-space planning (Section 3.4), PSP checks the consistency of the relation
≺, but ignores other constraints that are less easily checked. For example, suppose PSP constrains
𝑑 ≠ d1, 𝑑 ≠ d2, 𝑑 ≠ d3, if Range(𝑑) = {d1, d2, d3}, PSP will discover the inconsistency only through
search.

17.3 Constraint Management 405

variablesV = {𝑡1, 𝑡2, . . . , 𝑡𝑛}, and E is a set of binary constraints of the form:

𝑎𝑖 𝑗 ≤ 𝑡 𝑗 − 𝑡𝑖 ≤ 𝑏𝑖 𝑗 , where 𝑎𝑖 𝑗 and 𝑏𝑖 𝑗 are integers.

We use the notation 𝑟𝑖 𝑗 = [𝑎𝑖 𝑗 , 𝑏𝑖 𝑗] for 𝑡 𝑗 − 𝑡𝑖 ∈ [𝑎𝑖 𝑗 , 𝑏𝑖 𝑗]. Note that 𝑟𝑖 𝑗 entails
𝑟 𝑗 ,𝑖 = [−𝑏𝑖 𝑗 ,−𝑎𝑖 𝑗]. To represent unary constraints (i.e., constraints on one variable
rather than two), we use a fixed time point 𝑡0 = 0. The constraint 𝑎 ≤ 𝑡 𝑗 ≤ 𝑏 is
denoted 𝑟0 𝑗 = [𝑎, 𝑏].

A solution to an STN (V, E) gives an integer value to each variable in V. The
STN is consistent if it has a solution that meets all the constraints in E. It is minimal
if every value in each interval 𝑟𝑖 𝑗 belongs to a solution (see exercises 17.10 to 17.14).

TemPlan proceeds by transforming a chronicle 𝜙 = (A,K,T , C) such as to meet
the conditions of a solution plan. These transformations add in C constraints of meth-
ods for refining tasks, constraints for supporting assertions, and separation constraints
for conflicting assertions. Each transformation should keep C consistent. The set
of temporal constraints in C is an STN, which evolves by adding new variables and
constraints while staying consistent. TemPlan has to check incrementally that this
STN remains consistent when more variables and contraints are added to it. This is
more easily done when the network it is also maintained minimal, as explained next.

Two operations are essential for checking the consistency of E:

• composition: 𝑟𝑖𝑘 • 𝑟𝑘 𝑗 = [𝑎𝑖𝑘 + 𝑎𝑘 𝑗 , 𝑏𝑖𝑘 + 𝑏𝑘 𝑗], which corresponds to the
transitive sum of the two constraints from 𝑖 to 𝑗 through 𝑘:
𝑎𝑖𝑘 ≤ 𝑡𝑘 − 𝑡𝑖 ≤ 𝑏𝑖𝑘 and 𝑎𝑘 𝑗 ≤ 𝑡 𝑗 − 𝑡𝑘 ≤ 𝑏𝑘 𝑗 ;

• intersection: 𝑟𝑖 𝑗 ∩ 𝑟 ′𝑖 𝑗 = [max{𝑎𝑖 𝑗 , 𝑎′𝑖 𝑗},min{𝑏𝑖 𝑗 , 𝑏′𝑖 𝑗}], which is the conjunc-
tion of two constraints on (𝑡𝑖 , 𝑡 𝑗): 𝑎𝑖 𝑗 ≤ 𝑡 𝑗 − 𝑡𝑖 ≤ 𝑏𝑖 𝑗 and 𝑎′

𝑖 𝑗
≤ 𝑡 𝑗 − 𝑡𝑖 ≤ 𝑏′𝑖 𝑗 .

Three constraints 𝑟𝑖𝑘 , 𝑟𝑘 𝑗 , and 𝑟𝑖 𝑗 are consistent when 𝑟𝑖 𝑗 ∩ (𝑟𝑖𝑘 • 𝑟𝑘 𝑗) ≠ ∅.

1

t2

[1, 2]

t1

t3

[3, 4]

[2, 3]

Figure 17.6. A simple temporal network.

Example 17.19. Consider the network in Figure 17.6 where vertices are time points
and edges are labelled with temporal constraints: 𝑟12 = [1, 2] , 𝑟2,3 = [3, 4] and
𝑟13 = [2, 3]. Then

𝑟12 • 𝑟23 = [1 + 3, 2 + 4] = [4, 6],
so 𝑟13 ∩ (𝑟12 • 𝑟23) = [2, 3] ∩ [4, 6] = ∅,

so the network is inconsistent.

406 17 Temporal Representation and Planning

Next, suppose that 𝑟12 = [1, 2] and 𝑟2,3 = [3, 4] as above, but 𝑟13 = [2, 5]. Then

𝑟13 ∩ (𝑟12 • 𝑟23) = [2, 5] ∩ [4, 6] = [4, 5],

so we can make 𝑟13 minimal by assigning 𝑟13 ← [4, 5]. From this, we can compute

𝑟12 ∩ (𝑟13 • 𝑟32) = [4 − 4, 5 − 3] ∩ [1, 2] = [1, 2],
𝑟23 ∩ (𝑟21 • 𝑟13) = [4 − 2, 5 − 1] ∩ [3, 4] = [3, 4],

so 𝑟12 and 𝑟23 are already minimal. Thus the entire network is minimal. □

The path-consistency algorithm PC (Algorithm 17.2) tests all triples of variables
in V with a transitive update operation: 𝑟𝑖 𝑗 ← 𝑟𝑖 𝑗 ∩ (𝑟𝑖𝑘 • 𝑟𝑘 𝑗). If a pair (𝑡𝑖 , 𝑡 𝑗)
is not constrained, then we take 𝑟𝑖 𝑗 = (−∞, +∞); in that sense, an STN corresponds
implicitly to a complete graph.

PC(V, E)
for 𝑘 = 1, . . . , 𝑛 do

foreach 𝑖 ≠ 𝑘 and 𝑗 ≠ 𝑘 such that 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 do
𝑟𝑖 𝑗 ← 𝑟𝑖 𝑗 ∩ [𝑟𝑖𝑘 • 𝑟𝑘 𝑗]
if 𝑟𝑖 𝑗 = ∅ then return inconsistent

Algorithm 17.2. PC path consistency algorithm for simple constraint networks

PC is complete and returns the minimal network. Its complexity is O(𝑛3). It is
easily transformed into an incremental version. Assume that the current network
(V, E) is consistent and minimal; a new constraint 𝑟 ′

𝑖 𝑗
is inconsistent with (V, E)

if and only if 𝑟𝑖 𝑗 ∩ 𝑟 ′𝑖 𝑗 = ∅. Furthermore, when 𝑟𝑖 𝑗 ⊆ 𝑟 ′𝑖 𝑗 the new constraint does
not change the minimal network (V, E). Otherwise 𝑟𝑖 𝑗 is updated as 𝑟𝑖 𝑗 ∩ 𝑟 ′𝑖 𝑗 and
propagated over all constraints 𝑟𝑖𝑘 and 𝑟𝑘 𝑗 with the transitive update operation; any
change is subsequently propagated. Incremental path consistency is in O(1) for
consistency checking and in O(𝑛2) for updating a minimal network.

1

t2

[1, 2]

[1, 2]
t1 t4

t3

t5

[3, 4]

[6, 7] [4, 5]

Figure 17.7. A consistent STN.

17.4 Discussion and Bibliographic Notes 407

Example 17.20. Let us give the network in Figure 17.7 as input to PC. The first itera-
tion for 𝑘 = 1 with 2 ≤ 𝑖 < 𝑗 ≤ 5 does not change the constraints 𝑟23, 𝑟24, 𝑟25, 𝑟34, 𝑟35;
it updates 𝑟25 as follows: 𝑟25 ← 𝑟25 ∩ [𝑟21 • 𝑟15] = (−∞, +∞) ∩ [−2,−1] • [6, 7] =
[4, 6]. The remaining iterations confirm that this network is consistent and minimal
(see Exercise 17.10). □

The consistency of STNs can also be maintained with the Floyd-Warshall all-
pairs minimal distance algorithm. Here, a network (V,E) is transformed into a
distance graph, the vertices of which are again the time points inV. Each constraint
𝑟𝑖 𝑗 = [𝑎𝑖 𝑗 , 𝑏𝑖 𝑗] of the network defines two edges in the graph: (i) an edge from 𝑡𝑖 to
𝑡 𝑗 labelled with a distance 𝑏𝑖 𝑗 , and (ii) an edge from 𝑡 𝑗 to 𝑡𝑖 labelled with a distance
−𝑎𝑖 𝑗 . The original network is consistent if and only if there is no negative cycle
in this distance graph. The Floyd-Warshall algorithm checks the consistency and
computes minimal distances between all pairs of vertices in the graph in 𝑂 (𝑛3) time.
An incremental version of this algorithm has been devised for planning. Another
alternative is the Bellman-Ford algorithm which computes the single source distances
in the distance graph. It can be used for consistency checking with a complexity in
O(𝑛×𝑚), where 𝑛 is the number of vertices and𝑚 the number of edges of the distance
graph. The graph is kept sparse (𝑚 < 𝑛2), but the algorithm does not maintain a
minimal network. There is also an incremental version of this algorithm.

When TemPlan returns a valid solution plan 𝜙, the temporal variables in 𝜙 are con-
sistently constrained and non-instantiated. They are instantiated at acting time. Some
of these variables can be freely chosen by the actor within their consistency intervals,
e.g., when to trigger an action. But other variables will be set by the environment and
can only be observed, e.g., when an action finishes. These uncontrollable variables
raise additional consistency issues at acting time, that will be addressed in the next
chapter.

17.4 Discussion and Bibliographic Notes

Temporal Representation and Reasoning Temporal models are widely used in AI
well beyond planning. Numerous studies are devoted to knowledge representations
and reasoning techniques for handling time, in particular, for dealing with change,
events, actions, and causality; see e.g., [29, 773, 1012, 1011, 977], and the handbook
of [364].

Most of the work cited above relies on a state-oriented view based on various tempo-
ral logics. The timeline approach, developed in this chapter, decomposes a reasoning
task into a specialized solver say a planner and a temporal reasoner, that maintains,
through queries and updates, a consistent network of temporal references. In addition
to planning, this approach is used in other applications, such as temporal databases
[184], monitoring [925], diagnosis [183, 689], multi-media document management
[341, 10], video interpretation [1144], and process supervision [308, 307].

Temporal networks can use as primitives either time points or intervals. They
manage either qualitative or quantitative constraints. A synthetic introduction to
temporal networks can be found in [410, chapter 13] or [93].

408 17 Temporal Representation and Planning

Qualitative approaches to temporal reasoning were introduced by [31] with a spe-
cific algebra over intervals and a path consistency filtering algorithm. The time point
algebra is introduced in [1140]. Tractable subclasses of the interval or the time point
algebra have been studied [1141, 782, 835, 309]. Other authors studied representations
integrating time points and intervals and their tractable subclasses [716, 437, 559].

Quantitative approaches to handling time relied initially on linear equations and
linear programming techniques, e.g., [750]. Temporal constraint satisfaction problems
and the STN tractable subclass, used in this chapter, were introduced by [286]. Several
improvements have been proposed, e.g., for the incremental management of STNs
[212, 904]. Various extensions to STNs have been studied, with preferences [601] or
specific constraints in [644].

Constraints in planning play an important role. Authors have sought ways to effi-
ciently structure them, e.g., with meta-CSPs. A meta-CSP is a CSP above lower-level
CSPs. Its meta-variables are the lower level constraints; their values are alternative
ways to combine consistently these constraints. For example, with disjunctive tem-
poral constraints the values correspond to possible disjuncts. Meta-CSPs have been
used in different settings, e.g., the management of preferences in temporal reasoning
[802, 801, 93]. They have been applied to temporal planning by several authors,
e.g., [401, 956, 446]. The approach appears elegant for handling temporal and other
constraints on different kind of resources [752], but is not easily scalable.

Temporal Planning. There is a long history of research in temporal planning.
Numerous temporal planners have been proposed, starting from early temporal HTN
planners such as Deviser [1128], SIPE [1171], FORBIN [283] or O-PLAN [265].
These planners integrate temporal extensions to HTN representations and algorithms.

The state-oriented view in temporal planning extends the classical model of in-
stantaneous precondition-effect transitions with durative actions. The basic model
considers a start point and a duration. It requires preconditions to hold at the start
and effects at the end of an action. This is illustrated in TGP [1033] or in TP4 [477].
Extensions of this model with conditions that prevail over the duration of the action,
(as in the model of [978]) have been proposed, for example, in the SAPA planner
[299] or in PDDL2.1 [370] and other temporal extensions of PDDL [481, Chapter 5].
Several planners rely on the latter representation, such as HS [477], TPSYS [388] and
CRIKEY [248].

A few planners using the durative action model adopt the plan-space approach,
notably Zeno [882] which relies on linear programming techniques, or VHPOP [1214]
which uses STN algorithms. Some planners pursue the HTN approach, as the earlier
planners mentioned above, or more recently SHOP2 [833] or Siadex [209]. The latter
is also hybrid.

Many durative actions planners rely on state-based search techniques. A few are
based on temporal logic approaches. Among these are TALplanner [300, 661], a
model-checking based planner [321], or a SAT-based planner [528]. Significant
effort has been invested in generalizing classical state-space planning heuristics to the
durative action case. The action compression technique, which basically abstract the
durative transition to an instantaneous one for the purpose of computing a heuristic,

17.4 Discussion and Bibliographic Notes 409

is quite popular, for example in [398] or [336]. Various temporal extensions of the
relaxed planning graph technique (Section 3.2.3), as in Metric RPG [506], have been
proposed, e.g., [477, 733, 248] and [475]. Sampling over a duration interval with
action compression has also been investigated [604].

A few durative action planners handle hybrid discrete-continuous change. Some
planners address continuous effects through repeated discretization, for example,
UPMurphy [885]. Linear programming techniques, when the continuous dynamics
is assumed to be linear, have been used since ZENO [882] by several planners. A
recent and elaborate example is COLIN [249]. The Kongming planner [705] relies
on domain specific dynamic models.

While the durative action model led to quite performant planners, it usually has a
weak notion of concurrency that basically requires independence between concurrent
actions. Interfering effects, as discussed in Example 17.15, can be addressed by a few
of the above mentioned planners, for example, notably COLIN [249]. Alternatively,
interfering effects can be addressed with the time-oriented view.

Planning along the time-oriented view was introduced [33] in a planner based on
the interval algebra and plan-space search [32, 30]. The Time-Map Manager of [282]
led to the development of a few planners [283, 147] and several original ideas related
to temporal databases and temporal planning operators.

Planning with chronicles was introduced in IxTeT [408, 406]. The IxTeT kernel
is an efficient manager of time point constraints [407]. IxTeT handles concurrent
interfering actions, exogenous events and goals situated in time. It uses distance-
based heuristics [381] integrated to abstraction techniques in plan-space planning. Its
performance and scalability were improved by several other timeline oriented planners
using similar representations. These are notably ParcPlan [323, 713], ASPEN [926],
PS [558], IDEA [824], EUROPA [372], APSI of [375], and T-REX [920, 929, 931].4
Elaborate heuristics, generalizing the reachability and dependency graphs of state-
space planning, have been designed for these representations, for example, by [121].
A few of the mentioned planners have been deployed in demanding applications, for
example, for controlling autonomous space systems and underwater vehicles.

An interesting development has been brought by the Action Notation Modeling
Language (ANML) [1037]. ANML is timeline-based expressive representation, as
presented in this chapter, which allows to specify hybrid temporal planning problem
with tasks and goals. FAPE [316, 143] is a hybrid planner and acting system based
on ANML. Note also the representation called HDDL2.1 [881] which extends HDDL
with temporal constructs; there HTN methods correspond to temporal task networks
specifying temporal constraints for task decompositions.

Refinement methods reduce the search complexity by providing domain-specific
knowledge, but they do not palliate the need of good heuristics. Some temporal
logic based planners, like TALplan, rely on control rules. Most state-based temporal
planners referred to earlier exploit the techniques of Section 3.2. The use of classical
planning heuristics has been an important motivation for the state-oriented view of
temporal planning. These techniques have been extended to plan-space planning

4The terminology of “Timeline planning” often refers to a particular case of chronicle planning where
temporal constraints are restricted to qualitative temporal interval algebra.

410 17 Temporal Representation and Planning

(e.g., in RePop [849] and VHPOP [1214]) and further developed for timeline based
planners. There is notably the mutual exclusion technique [118] and the dependency
graph approach [121]. Dependency graphs record relationship between possible
activities in a domain. They are based on activity transition graphs [119, 120], which
are a direct extension of the domain transition graphs of state variables [490]. These
techniques have been successfully demonstrated in EUROPA2 [120, 121].

Temporal planning has naturally been associated with resources handling capa-
bilities. Several of the planners mentioned above integrate planning and scheduling
functions, in particular with constraint-based techniques, which where introduced
early in IxTeT by [665]. Algorithmic issues for the integration of resource scheduling
and optimization in planning attracted numerous contributions [1036, 213, 664, 1129].
A global overview of scheduling and resource planning is proposed in [81].

17.5 Exercises

17.1. Here are temporal versions of the blocks-world actions from Exercise 2.4:

pickup(𝑥)
assertions: [𝑡𝑠, 𝑡𝑒]holding : (nil, 𝑥)

[𝑡𝑠, 𝑡𝑒]pos(𝑥) : (table, nil)
[𝑡𝑠, 𝑡𝑒]clear(𝑥) = T

constraints: 𝑡𝑠 < 𝑡𝑒

putdown(𝑥)
assertions: [𝑡𝑠, 𝑡𝑒]holding : (𝑥, nil)

[𝑡𝑠, 𝑡𝑒]pos(𝑥) : (nil, table)
constraints: 𝑡𝑠 < 𝑡𝑒

unstack(𝑥, 𝑦)
assertions: [𝑡𝑠, 𝑡𝑒]holding : (nil, 𝑥)

[𝑡𝑠, 𝑡𝑒]pos(𝑥) : (𝑦, nil)
[𝑡𝑠, 𝑡𝑒]clear(𝑥) = T
[𝑡𝑠, 𝑡𝑒]clear(𝑦) : (F, T)

constraints: 𝑡𝑠 < 𝑡𝑒

stack(𝑥, 𝑦)
assertions: [𝑡𝑠, 𝑡𝑒]holding : (𝑥, nil)

[𝑡𝑠, 𝑡𝑒]pos(𝑥) : (nil, 𝑦)
[𝑡𝑠, 𝑡𝑒]clear(𝑦) : (T, F)

constraints: 𝑡𝑠 < 𝑡𝑒

Each of the following chronicles has exactly one flaw. For each of them, tell:

(a) What the flaw is.
(b) What resolver to use. If there is more than one candidate, choose the one that

leaves the fewest flaws in the chronicle.
(c) What changes the resolver will make to the chronicle.
(d) What flaws the chronicle will have after the resolver has been applied.

𝜙0:
supported: [𝑡0]pos(a) = b

[𝑡0]pos(b) = table
[𝑡0]clear(a) = T
[𝑡0]clear(b) = F
[𝑡0]holding= nil

assertions: [𝑡1]pos(a) = b
constraints: 𝑡0 < 𝑡1

𝜙1:
supported: [𝑡0]pos(a) = b

[𝑡0]pos(b) = table
[𝑡0]clear(a) = T
[𝑡0]clear(b) = F
[𝑡0]holding= nil

assertions: [𝑡1]pos(a) = table
constraints: 𝑡0 < 𝑡1

17.5 Exercises 411

17.2. Specify the actions stack, unstack and navigate of Example 17.11. For the
latter, assume that navigation between connected waypoints is unconstrained.

17.3. For the domain in Example 17.12, define methods for the tasks load and unload.
For the task bring, define additional methods to cover the following cases:

• the destination pile is at the same dock as the source pile,
• the robot 𝑟 is already loaded with container 𝑐,
• container 𝑐 is already in its destination pile.

Similarly, define other methods for the task move to cover the cases where the robot
starts from a waypoint or when it is already at destination, and another method for the
task uncover when the container 𝑐 is at the top of pile 𝑝.

17.4. Augment the domain of Example 17.12 by considering that a pile 𝑝 can be
attached to a ship and that a crane 𝑘 on a dock 𝑑 can unstack containers from a pile 𝑝
only when the corresponding ship is docked at 𝑑.

17.5. Specify the initial chronicle 𝜙0 for the problem of Example 17.17 and Fig-
ure 17.5.

17.6. In Example 17.17, develop the steps of TemPlan until reaching a solution to the
planning problem.

17.7. For the domain in Example 17.12, redefine navigate as a task which refines into
the traversal of roads and the crossing to docks. The navigation between two roads
adjacent to a dock 𝑑 requires crossing 𝑑 which should not be occupied during the
crossing interval. For example, in Figure 17.5 the navigation from d4 to d1 requires
the traversal of d3 which should be empty when the robot gets there. Analyze the
conflicting assertions that result from this modification in the first few steps of TemPlan
for Example 17.17 and find resolvers for the corresponding flaws.

17.8. Analyse the commonalities and differences between the notion of threats in
Section 3.4 and that of conflicting assertions. Notice that the former relate actions
while the latter are with respect to assertions. Since a threat is a menace to a causal
link, can there be conflicting assertions without a causal support? If the answer is
affirmative, give an example.

17.9. In Example 17.17, implement the modification introduced in Exercise 17.5:
consider that piles p’1 and p’2 are not fixed in their respective docks but attached to
two ships that will be docked respectively to d1 and d2 at two future intervals of time
[𝑡1, 𝑡1+𝛿1] and [𝑡2, 𝑡2+𝛿2]. How is modified the solution found in Exercise 17.6 when
these two intervals do not overlap. What happens when [𝑡1, 𝑡1 + 𝛿1] and [𝑡2, 𝑡2 + 𝛿2]
are overlapping?

17.10. Run the algorithm PC on the networks in Figure 17.7. Show that it adds the
constraints 𝑟1,3 = [1, 3], 𝑟24 = [1, 2] and 𝑟45 = [2, 3].

17.11. Show that the set of solutions of the following network include (𝑡2 − 𝑡1, 𝑡3 −
𝑡2, 𝑡3 − 𝑡1) ∈ {(1, 1, 2), (1, 2, 3), (2, 1, 3), (2, 2, 4)}.

412 17 Temporal Representation and Planning

59Nau – Lecture slides for Automated Planning and Acting

Time Constraints

● Solution to an STN:
▸ any assignment of integer values to the time points

such that all the constraints are satisfied
● Consistent STN: has a solution

● Minimal STN:
for every arc (ti,tj) with label [a,b],

for every t ∈ [a,b],
there’s at least one solution such that tj − ti = t

▸ If we make any of the time intervals shorter,
we’ll exclude some solutions

● Solutions:
▸ (t2–t1, t3–t2, t3–t1) ∈

{(1,1,2), (1,2,3), (2,1,3), (2,2,4)}

t1

t2

t3

[1,2] [1,2]

[0,100]

t1

t2

t3

[1,2] [1,2]

[2,4]

17.12. Find the minimal network corresponding to the previous example

17.13. Is this network consistent?

60Nau – Lecture slides for Automated Planning and Acting

Time Constraints
● Solution to an STN:

▸ any assignment of integer values to the time points
such that all the constraints are satisfied

● Consistent STN: has a solution

● Minimal STN:
for every arc (ti,tj) with label [a,b],

for every t ∈ [a,b],
there’s at least one solution such that tj − ti = t

▸ If we make any of the time intervals shorter,
we’ll exclude some solutions

t1

t2

t3

[1,2] [3,4]

[1,7]

Poll: Is this network minimal?

Poll: Is this network consistent?

t1

t2

t3

[1,2] [3,4]

[2,3]

17.14. Is this network minimal?

60Nau – Lecture slides for Automated Planning and Acting

Time Constraints
● Solution to an STN:

▸ any assignment of integer values to the time points
such that all the constraints are satisfied

● Consistent STN: has a solution

● Minimal STN:
for every arc (ti,tj) with label [a,b],

for every t ∈ [a,b],
there’s at least one solution such that tj − ti = t

▸ If we make any of the time intervals shorter,
we’ll exclude some solutions

t1

t2

t3

[1,2] [3,4]

[1,7]

Poll: Is this network minimal?

Poll: Is this network consistent?

t1

t2

t3

[1,2] [3,4]

[2,3]

17.15. Specify and implement an incremental version of the PC algorithm; use it to
analyze how the network in Figure 17.7 evolves when are added to it successively
𝑡6, 𝑟36 = [5, 8] , 𝑟56 = [2, 5] then 𝑡7, 𝑟47 = [3, 6] , 𝑟67 = [1, 7].

17.16. Run algorithm PC on the networks in Figure 18.1 and Figure 18.2 and compute
all the implicit constraints entailed from those in the networks; show that both networks
are minimal.

17.17. Prove that the minimal network in Figure 18.3 is such that
[𝑏 − 𝑣, 𝑎 − 𝑢] ⊆ [𝑝, 𝑞].

17.18. Consider the minimal network in Figure 18.3 for the case where 𝑢 ≥ 0 and
[𝑏 − 𝑣, 𝑎 − 𝑢] = ∅. Prove that this network is not dynamically controllable.

17.19. Consider the temporal network associated with the solution of Exercise 17.6:
under what condition is it dynamically controllable?

17.20. For all the actions in Example 17.11, define atemporal acting refinement
methods similar to the two given in Example 18.8.

17.21. Run algorithm Dispatch for the solution plan found in Exercise 17.6 assuming
that robot r1 is much faster than r2.

18 Acting with Temporal Controllability

Consider an actor that has to follow a temporal plan 𝜙 = (A,ST ,T , C) associated
with a consistent temporal network C. The time points in C are only constrained, they
are not precisely set in advance by a planner. They are instantiated at acting time and
depend on how execution is pursued by the platform given temporal uncertainties.

The actor is faced with a controllability issue: not all time points in C are under
its control. It chooses freely, within the allowed bounds, when to trigger an action.
The action’s duration will also be within the bounds in C (assuming a correct model).
But in general, the actor cannot choose when precisely an action finishes. It can
only observe the value of that instant.1 This observed value further contrains the
network C and may interfere with its consistency. In addition to durations, the time
occurrence of an expected contingent event is not controllable. The actor needs a
dynamically controllable network, that remains consistent for all possible values,
within the modeled bounds, of uncontrollable time points. If C meets this property,
the actor uses a dispatching algorithm to trigger the controllable time points such as
to keep the rest of the plan feasible.

Given a dynamically controllable plan 𝜙, the actor may execute it as is, or use
refinement methods to further refine the actions in 𝜙 opportunistically at acting time.
If no plan is given or if it fails, the actor may use temporal refinement methods to act
reactively without a plan (as in Chapter 14), or use them with Monte Carlo rollouts to
perform guiding lookahead (as in Chapter 15).

This chapter addresses the issues of dynamic controllability (Section 18.1), dis-
patching (18.2), execution and refinement of a temporal plan (18.3), acting with
a reactive temporal refinement engine (18.4), planning with Monte Carlo rollouts
(18.5), and integrating planning and acting (18.6).

18.1 Controllable Temporal Networks

Let 𝑡𝑠 and 𝑡𝑒 be the start and end time points of an action 𝑎 in a plan 𝜙. The actor can
trigger 𝑎 at any time according to the constraints on 𝑡𝑠. The precise triggering moment
of 𝑎 is under its control. However, the moment at which the action terminates, and the
other intermediate instants while the action is taking place, are generally not under
its control. These time points are observable: the execution platform reports when
the action terminates and when the intermediate time points in the action model are
reached. But they are uncontrollable, and said to be contingent.

Let us see how to deal with contingent points. The path consistency procedure PC
(Algorithm 17.2) checks a temporal network by squeezing intervals until reaching a

1It may interrupt the action, but generally this is a failure case.

Free pre-publication, for personal use only. To be published by Cambridge University Press.

413

414 18 Acting with Temporal Controllability

minimal network: it reduces intervals with the update operation 𝑟𝑖 𝑗 ← 𝑟𝑖 𝑗∩(𝑟𝑖𝑘 •𝑟𝑘 𝑗).
This does not work for contingent points. Consider an action 𝑎 in [𝑡𝑠, 𝑡𝑒] has a
constraint: 𝑙 ≤ 𝑡𝑠 − 𝑡 ≤ 𝑢. This requirement on 𝑡𝑠 can be met by choosing freely
the starting point in the range [𝑙, 𝑢] after observing 𝑡. If required for meeting other
constraints, this interval can be squeezed into any other nonempty interval [𝑙′, 𝑢′] ⊆
[𝑙, 𝑢]. However, a constraint on the end point of action 𝑎 such as 𝑙 ≤ 𝑡𝑒 − 𝑡𝑠 ≤ 𝑢, has
a different meaning; it says that the duration of the interval [𝑡𝑠, 𝑡𝑒] is a contingent
value in the range [𝑙, 𝑢]. This duration will be observed once 𝑎 terminates. It will
range in the uncertainty interval [𝑙, 𝑢]. The actor has no freedom for the choice of 𝑡𝑒.
A duration is seldom controllable, while PC works as if it is.

These considerations are not specific to action durations. They hold for any con-
tingent time points and constraints. They apply in particular to contingent expected
events that can be specified in the initial chronicle (as in Example 17.14). The time dis-
tance between an absolute reference point and an expected event is an uncontrollable
duration, similar to an action duration.

Example 18.1. Consider the robot of Example 17.12 that has to achieve a task,
denoted bring&move, that will take it to dock1. Concurrently, a crane at dock1 has
to uncover a container that will be loaded on the robot. The duration of bring&move
from 𝑡1 to 𝑡2 is specified in the model of the task to be in [30, 50] time units; task
uncover from 𝑡2 to 𝑡3 takes 5 to 10 time units. Further, the initial chronicle requires
the two tasks to be synchronized such that neither one lags after the other by more
than 5 time units, that is: −5 ≤ 𝑡4 − 𝑡2 ≤ 5 (see Figure 18.1(a)).

2

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

bring&move

uncover

(a)

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

(b)

Figure 18.1. An uncontrollable network. Tasks are depicted as plain arrows, synchro-
nization constraints as dashed arrows.

A direct application of PC to the network in Figure 18.1(a) shows that this network
is consistent; it returns the minimal network in Figure 18.1(b) (see Exercise 17.16).
Suppose this network is used by an actor who only controls the triggering of the two
tasks, that is, 𝑡1 and 𝑡3. It is clear that 𝑡1 should precede 𝑡3 because [𝑡1, 𝑡3] ⊆ [15, 50].
Suppose the first task is triggered at time 𝑡1 = 0. When should the second task be
triggered such as to meet the synchronization constraint between 𝑡2 and 𝑡4?

Let 𝑑 and 𝑑′ be the respective durations of the two tasks. The synchronization
constraint says −5 ≤ 𝑡4 − 𝑡2 ≤ 5, that is, −5 ≤ 𝑡3 + 𝑑′ − 𝑑 ≤ 5. The choice of 𝑡3 should
satisfy the constraints 𝑑 − 𝑑′ − 5 ≤ 𝑡3 and 𝑡3 ≤ 𝑑 − 𝑑′ + 5 for all possible values of 𝑑
and 𝑑′ in their respective intervals, which is not feasible (e.g., 𝑑 = 50, 𝑑′ = 5 entails
40 ≤ 𝑡3, while 𝑑 = 30, 𝑑′ = 10 requires 𝑡3 ≤ 25).

18.1 Controllable Temporal Networks 415

Earlier, we said that PC finds this STN consistent. But PC assumes full control
over every variable, which is not the case here. One can easily check that there is
no problem in meeting all the constraints if one can freely choose 𝑑 and 𝑑′ in their
intervals, for example, 𝑑 = 30, 𝑑′ = 10 leaves 𝑡3 ∈ [15, 25].

The actor does not control the end points of actions. However, it can observe them,
and may devise a conditional strategy based on what it observes. For example, it may
start uncover at most 40 units after 𝑡1, or earlier if bring&move finishes before 𝑡1. In
this particular example, such a strategy does not work, but if the actor can observe an
intermediate time point between 𝑡1 and 𝑡2, this may make its synchronization problem
controllable, as explained next. □

Simple Temporal constraint Networks with Uncertainty. STNUs extend STNs
by partitioning time points and constraints into controllable ones and contingent ones.

Definition 18.2. An STNU is a tuple (V, Ṽ, E, Ẽ), whereV and Ṽ are disjoint sets
of time points, and E and Ẽ are disjoint sets of binary constraints on time points. V
and E are said to be controllable; Ṽ and Ẽ are said to be contingent. If [𝑙, 𝑢], with
0 < 𝑙 < 𝑢 < ∞, is a contingent constraint in Ẽ on the time points [𝑡𝑠, 𝑡𝑒], then 𝑡𝑒 is a
contingent point in Ṽ. □

The intuition is that elements in Ṽ denote the ending time points of actions, while
contingent constraints in Ẽ model the positive nonzero durations of actions, predicted
with uncertainty. If [𝑡𝑠, 𝑡𝑒] ⊆ [𝑙, 𝑢] is a contingent constraint, then the actual duration
𝑡𝑒 − 𝑡𝑠 is also a contingent variable whose value will be observed within [𝑙, 𝑢], once
the corresponding action terminates. The actor controls 𝑡𝑠; it assigns a value to it.
It only observes 𝑡𝑒, knowing in advance that it will be within the bounds set for the
contingent constraint on 𝑡𝑒 − 𝑡𝑠. An STNU cannot have a contingent variable 𝑡𝑒 that
is the end point of two contingent constraints.

The controllability issue is to make sure (at planning time) that there exist values
for the controllable variables such that for any observed value of the contingent vari-
ables within their bounds, the contraints will be satisfied. One can view controllable
variables as being existentially quantified, while contingent ones are universally quan-
tified. However, the actor does not need to commit to values for all of its controllable
variables before starting to act. It can choose a value for a controllable variable only
when the value is needed at acting time. It can make this choice as a function of the
observed values of past contingent variables.

Definition 18.3. A dynamic execution strategy for an STNU (V, Ṽ, E, Ẽ) is a pro-
cedure for assigning, at acting time, values to controllable variables 𝑡 ∈ V consistent
with E such that all the constraints in E related to 𝑡 are satisfied, given that the values
of all contingent variables in Ṽ preceding 𝑡 are known and fit the constraints in Ẽ.
An STNU is dynamically controllable if it has a dynamic execution strategy. □

The actor’s interaction with its environment can be modeled game-theoretically as
follows. For 𝑖 = 0, 1, 2, . . . ,

416 18 Acting with Temporal Controllability

1. The actor chooses a set of unassigned controllable variables V𝑖 ⊆ V (that is,
actions to start at time 𝑖) that all can be assigned the value 𝑖 without violating
any constraints in E. These variables are set to 𝑖.

2. The world chooses a set of unassigned contingent variables Ṽ𝑖 ⊆ Ṽ (that
is, events observed at time 𝑖) that can have the value 𝑖 without violating any
constraints in Ẽ. The actor observes that these variables are set to 𝑖.

3. The process ends with failure if any of the constraints in E ∪ Ẽ are violated.
These might include violations that neitherV𝑖 nor Ṽ𝑖 caused individually.

4. The process ends with success if all variables in V ∪ Ṽ have values and no
constraints are violated.

In this model, the actor’s dynamic execution strategy is the algorithm that it uses to
choose each set Ṽ𝑖 in step 1. The STNU (V, E, Ṽ, Ẽ) is dynamically controllable
if there exists a dynamic execution strategy such that the game ends with success
regardless of the world’s choices in step 2.

3

t’

t3

t2

t4

[15, 20]

[5, 10]

[-5, 5]

t1 t[15, 25] [0, 5]
move

uncover

bring

Figure 18.2. A dynamically controllable STNU.

Example 18.4. The STNU in Figure 18.1(a) is not dynamically controllable. Let us
modify it by breaking bring&move in two tasks: bring from 𝑡1 to 𝑡 then move from 𝑡′

to 𝑡2, to produce the STNU shown in Figure 18.2. The total duration [𝑡1, 𝑡2] remains
in [30, 50], but the new STNU is dynamically controllable. A dynamic execution
strategy for it is to trigger 𝑡1, observe 𝑡, assign 𝑡′ at any time in [𝑡, 𝑡 + 5] then 𝑡3
at 𝑡′ + 10. Regardless of the durations of the three tasks are within the bounds, the
constraint [−5, +5] on the end points 𝑡2 and 𝑡4 will be satisfied. □

How can we make sure that the STNU for a temporal a plan 𝜙 is dynamically
controllable? It turns out that this can be done by an extension of the consistency-
checking algorithm. This extension is technically involved, but fortunately it does not
change the computational complexity of consistency checking.

A first step runs PC on an STNU as an ordinary STN. If the transitive update
operation (𝑟𝑖 𝑗 ← 𝑟𝑖 𝑗 ∩ (𝑟𝑖𝑘 • 𝑟𝑘 𝑗)) reduces any contingent constraint, then the network
is not dynamically controllable. If none is reduced, then the STNU is pseudo-
controllable. This condition is necessary but not sufficient for dynamic controllability.

Testing dynamic controllability. Dynamic controllability can be analyzed with
three basic constraints between two controllable points 𝑡𝑠 and 𝑡 and a contingent one
𝑡𝑒 (Figure 18.3). This network is assumed to be consistent and minimal. It may or may

18.1 Controllable Temporal Networks 417

4

ts te

t

[a, b]

[p, q] [u, v]

Figure 18.3. Basic constraints for dynamic controllability, where 𝑡𝑒 and [𝑎, 𝑏] are contin-
gent.

not be dynamically controllable: depending on the values of the parameters and the
eventual observation of 𝑡𝑒, there may be cases in which it is possible to choose 𝑡 while
meeting the constraints. For that, further reductions on the controllable constraints
might be needed, which conditions the dynamic controllability. These reductions
would have to be propagated to other time points that may possibly be related to 𝑡𝑠, 𝑡𝑒,
and 𝑡.

The position of 𝑡 with respect to 𝑡𝑒 fits into three main cases:

(i) 𝑣 < 0: 𝑡 necessarily follows 𝑡𝑒; the observation of 𝑡𝑒 allows the choice of 𝑡
while meeting the constraint [𝑢, 𝑣].

(ii) 𝑢 ≥ 0: 𝑡 is before or simultaneous with 𝑡𝑒. Thus 𝑡 has to be chosen before
observing 𝑡𝑒, in an interval that meets all the constraints regardless of the value
of 𝑡𝑒, if such an interval exists. The constraint on [𝑡, 𝑡𝑒] requires 𝑡𝑒 − 𝑣 ≤ 𝑡 ≤
𝑡𝑒 − 𝑢. At the latest, 𝑡𝑒 is such that 𝑡𝑒 = 𝑡𝑠 + 𝑏; at the earliest, 𝑡𝑒 = 𝑡𝑠 + 𝑎. Hence
𝑡𝑠 + 𝑏 − 𝑣 ≤ 𝑡 ≤ 𝑡𝑠 + 𝑎 − 𝑢. If this inequality can be satisfied, then the choice
of 𝑡 in [𝑏 − 𝑣, 𝑢 − 𝑎] after 𝑡𝑠 meets all the constraints. The constraint [𝑝, 𝑞]
has to be reduced to [𝑏 − 𝑣, 𝑎 − 𝑢]. Note that [𝑏 − 𝑣, 𝑎 − 𝑢] ⊆ [𝑝, 𝑞] since the
network is minimal. However, [𝑏 − 𝑣, 𝑎 − 𝑢] can be empty, in which case the
network is not dynamically controllable (see Exercise 17.17 and 17.18).

(iii) 𝑢 < 0 and 𝑣 ≥ 0: 𝑡 may either precede or follow 𝑡𝑒. A dynamic execution
strategy should wait until some point, and make different choices for 𝑡 depending
on whether 𝑡𝑒 has occurred. As in case (ii), 𝑡 cannot be earlier than 𝑡 ≥ 𝑡𝑠 +𝑏−𝑣
when 𝑡𝑒 does not occur before. The waiting point is 𝑡𝑠 + 𝑏 − 𝑣. If 𝑎 < 𝑏 − 𝑣
then either [𝑡𝑠, 𝑡𝑒] occurs in [𝑎, 𝑏 − 𝑣]: the wait will make 𝑡 follow 𝑡𝑒, and we
are back to case (i); or [𝑡𝑠, 𝑡𝑒] occurs in [𝑏 − 𝑣, 𝑏]: 𝑡 is before 𝑡𝑒 which is case
(ii). If 𝑎 ≥ 𝑏 − 𝑣, then 𝑡𝑒 cannot occur before the wait expires.

The preceding analysis gives the constraints to be reduced to satisfy dynamic
controllability. For example [𝑝, 𝑞] is reduced to [𝑏−𝑣, 𝑎−𝑢] in case (ii). It exhibits a
ternary wait relation: 𝑡 should wait until either 𝑡𝑒 or 𝑡𝑠 + 𝑏− 𝑣. The trick is to consider
this wait as a particular binary relation on the pair [𝑡𝑠, 𝑡]: the corresponding edge in
the network is labelled with a constraint denoted ⟨𝑡𝑒, 𝑏 − 𝑣⟩. Specific propagation
rules for jointly handling these wait constraints and the normal ones in a network need
to be devised.

These propagation rules are given in Figure 18.4. A row in this table is similar

418 18 Acting with Temporal Controllability

to the propagated contraint (𝑟𝑖𝑘 • 𝑟𝑘 𝑗) from 𝑖 to 𝑗 through 𝑘 that we used in PC.
The left column gives the conditions under which a propagation rule applies, and
the right column states the constraint to be added to the network according to that
rule. Double arrows represent contingent constraints, and angle brackets are wait
constraints. The first and second rules implement, respectively, the cases (ii) and (iii).
The third rule adds a lower bound constraint to a wait, which follows directly from the
above argument. The last two rules correspond to transitive propagations of a wait.

Figure 18.4. Constraint propagation rules for dynamic controllability, where 𝑎′ = 𝑎 −
𝑢, 𝑏′ = 𝑏 − 𝑣, double arrows are contingent constraints, and ⟨𝑡, 𝛼⟩ are wait constraints.

Conditions Propagated constraint

𝑡𝑠
[𝑎,𝑏]
======⇒ 𝑡𝑒 , 𝑡

[𝑢,𝑣]
−−−−−→ 𝑡𝑒 , 𝑢 ≥ 0 𝑡𝑠 −→ [𝑏′, 𝑎′] 𝑡

𝑡𝑠
[𝑎,𝑏]
======⇒ 𝑡𝑒 , 𝑡

[𝑢,𝑣]
−−−−−→ 𝑡𝑒 , 𝑢 < 0 , 𝑣 ≥ 0 𝑡𝑠 −→ ⟨𝑡𝑒, 𝑏′⟩ 𝑡

𝑡𝑠
[𝑎,𝑏]
======⇒ 𝑡𝑒 , 𝑡𝑠

⟨𝑡𝑒 ,𝑢⟩−−−−−−→ 𝑡 𝑡𝑠 −→ [𝑚𝑖𝑛{𝑎, 𝑢},∞] 𝑡

𝑡𝑠
⟨𝑡𝑒 ,𝑏⟩−−−−−−→ 𝑡 , 𝑡′

[𝑢,𝑣]
−−−−−→ 𝑡 𝑡𝑠 −→ ⟨𝑡𝑒, 𝑏′⟩ 𝑡′

𝑡𝑠
⟨𝑡𝑒 ,𝑏⟩−−−−−−→ 𝑡 , 𝑡′

[𝑢,𝑣]
======⇒ 𝑡 , 𝑡𝑒 ≠ 𝑡 𝑡𝑠 −→ ⟨𝑡𝑒, 𝑏 − 𝑢⟩ 𝑡′

It can be shown that a modified path consistency algorithm relying on these rules
is correct: a network is dynamically controllable if and only if it is accepted by the
algorithm. Furthermore, the reduced controllable constraints obtained in the final
network give a dynamic execution strategy. The transposition of the wait constraints
as a distance graph allows the incremental testing of dynamic controllability with an
algorithm in O(𝑛3).

Synthesis of dynamically controllable plans. We need to add to the requirements
of Definition 17.16 a fourth condition stating that the temporal constraints in chronicle
𝜙 define a dynamically controllable STNU. This requirement can be met by checking
dynamic controllability whenever TemPlan adds a resolver to current 𝜙 with a con-
tingent constraint, and rejecting the resolver if the resulting STNU is not dynamically
controllable.

This strategy can be demanding in computational resources. The complexity
growth of dynamic controllability checking is polynomial, but the constant factor is
high. A possible compromise is to maintain solely the pseudo-controllability of 𝜙.
The standard PC algorithm already tests whether a network is pseudo-controllable:
no contingent constraint should be reduced during propagation. This is a necessary
condition for dynamic controllability that filters out incrementally resolvers that make
the STNU not pseudo-controllable. Dynamic controllability is checked before termi-
nating with a complete solution or at a few regular stages. As for any incremental
filtering strategy, the risk of excessive backtracking has to be assessed empirically.

18.2 A Dispatching Algorithm 419

18.2 A Dispatching Algorithm

When an actor is given a temporal plan with a dynamically controllable STNU
(V, Ṽ, E, Ẽ), it has to trigger elements of V at the right moment, given the ob-
servation of elements of Ṽ and the progress of time, while keeping the rest of the
network dynamically controllable. A dispatching algorithm is in charge of finding
which controllable points are ready to be triggered, how to handle the wait constraints
in the STNU, and how to propagate the values of observed and triggered time points.
The network remains dynamically controllable as long as there is no violation of
contingent constraints: observed durations of actions and expected events fit within
their stated bounds. A violation of a contingent constraint can be due to a delay that
exceeds the modeled upper bound, or to a failure of an action. It can lead to a failure
of the plan.

In addition to end points of actions, there can be several other contingent time
points in an STNU, e.g., for expected events and intermediate point such as 𝑡 in the
definition of leave or unstack in Example 17.11. Constraints on these contingent
points are propagated (e.g., as waits) for the dynamic controllability of the network.
But unless there is a wait constraint on such a contingent point, it does not interfere
with dispatching and can be ignored.

Example 18.5. To follow the plan in Figure 17.4, an actor has to perform the actions
leave(r1,dock1), navigate(r1,w1,w2), enter(r1,dock2) and the symmetrical actions for
r2. The actor may trigger the two leave actions concurrently in any order. As soon as
an exit is free, the robot moves to the corresponding way and immediately starts its
navigation. When a navigation finishes, the enter action is triggered only when the
other robot has left its original position. □

A temporal network is grounded when at least one of its temporal variables receives
an absolute value with respect to current time. Before starting the execution, the STNU
may or may not be grounded, but as soon as the execution of a plan starts, the network
is necessarily grounded. In a grounded network, every time point 𝑡 is bounded within
an absolute interval [𝑙𝑡 , 𝑢𝑡] with respect to the current time, which we will denote by
now. As time goes by, some time points in the network have occurred (i.e., triggered
by the actor for controllable points or observed for contingent ones), and others remain
in the future. Dispatching is concerned with the latter and more precisely with enabled
time points.

Definition 18.6. A controllable time point 𝑡 ∈ [𝑙𝑡 , 𝑢𝑡] that remains in the future is
alive if the current time now ∈ [𝑙𝑡 , 𝑢𝑡]. Furthermore, 𝑡 is enabled if (i) 𝑡 is alive,
(ii) for every precedence constraints 𝑡′ < 𝑡, 𝑡′ has occurred, and (iii) for every wait
constraint ⟨𝑡𝑒, 𝛼⟩, either 𝑡𝑒 has occurred or 𝛼 has expired. □

Recall that in a wait constraint ⟨𝑡𝑒, 𝛼⟩, 𝛼 is defined with respect to a controllable
time point 𝑡𝑠. Thus 𝛼 has expired when 𝑡𝑠 has occurred and 𝑡𝑠 + 𝛼 ≤ now.

The Dispatch algorithm controls when to start each action. In Line 1, it sets now
and triggers when to start the plan, which grounds the network if it is not already
grounded. It then triggers enabled points whose upper bound is now; these cannot wait

420 18 Acting with Temporal Controllability

longer. Dispatch has the flexibility to trigger any other enabled point. The arbitrary
choice in Line 3 can be made with respect to domain-specific considerations. The
values of the triggered points are then propagated in the network. Because the STNU
is dynamically controllable, this propagation is guaranteed to succeed and keep the
network dynamically controllable as long as contingent constraints are not violated.
Monitoring that no such violation occurs can be added in Line 2 (see Exercise 18.1)

Dispatch(V, Ṽ, E, Ẽ)
1 initialize the network

while there are elements inV that have not occurred do
update now

2 update contingent points in Ṽ that have been observed
enabled← set of enabled time points
foreach 𝑡 ∈ enabled such that now= 𝑢𝑡 do

trigger 𝑡
3 arbitrarily choose other points in enabled and trigger them

propagate in the network the values of triggered points

Algorithm 18.1. Dispatch, a dispatching algorithm.

The propagation step is the most costly one in Dispatch. Its complexity is in
𝑂 (𝑛3), where 𝑛 is the number of remaining future points in the network. Ideally,
this propagation should be fast enough to allow iterations and updates of now that are
consistent with the temporal granularity of the plan. As discussed next about action
refinement, this step is faster when actions are not at too fine a granularity.

Example 18.7. Let us extend Example 18.5 by requiring robot r1 to bring a container
c1 from dock d2 to some destination. Figure 18.5 shows part of the plan. For
simplicity, the values of the constraints and parameters are omitted; the end point of
an action starting at 𝑡𝑖 is implicitly named 𝑡′

𝑖
. Note that some of the object variables are

instantiated, but some are not (e.g., 𝑐′); temporal variables in 𝜙 are not instantiated.
The initial step in Dispatch triggers 𝑡1. When 𝑡′1 is observed, 𝑡2 is enabled and

triggered, which make 𝑡3 and 𝑡4 enabled. The algorithm triggers 𝑡3 far enough in
advance to free dock d2 so that r1 can get in (at 𝑡5). Similarly for the subtask of
uncovering container c, which is triggered at 𝑡4. When 𝑡′2 and 𝑡′3 are observed, 𝑡5
becomes enabled and triggered. When 𝑡′5 and 𝑡′6 are observed, this enables 𝑡7. The
rest of the plan follows linearly. □

Let us now consider how to integrate dispatching into an actor’s deliberations.

18.3 Acting without Temporal Refinement

We consider here successively two acting modalities when given a temporal plan:
without any refinement, then with atemporal refinement.

18.3 Acting without Temporal Refinement 421

12

t2

navigate(r1)leave(r1,d1)

stack(k,c’)unstack(k,c’)

putdown(k,c1,r1)unstack(k,c1)

leave(r2,d2)

enter(r1,d2)

leave(r1,d2)

t1

t3

t4

t5

t6

t7 t9t8

Figure 18.5. Dispatching of part of a temporal plan.

18.3.1 Acting with a Detailed Plan without Refinement

Suppose we are given a temporal plan 𝜙with a dynamically controllable STNU whose
actions are primitives to be executed on the platform without refinement. The actor
needs a simple execution engine without refinement, which has only actions and
events in its input agenda, with deadline handling mechanisms.

The Dispatch algorithm is easily integrated into this engine. Triggering an action
𝑎 means putting 𝑎 in the input agenda. The upper bound on the duration of 𝑎 is taken
as a deadline for terminating 𝑎. Action failures have to be addressed as plan repairs.
For a deadline failure, the repair can take two forms:

• stopping the delayed action and seeking alternate ways to achieve the plan from
the current state, as for other types of failure, or

• finishing the action despite the delay, and repairing the remaining part of the
plan by taking in account the delay.

The latter option is preferable when the violated contingent constraint can be resolved
at the STNU propagation level. For example, if navigate(r1) in Figure 18.5 takes
slightly longer than the maximum duration specified, the entire plan will still be
feasible with a delay, which is possibly acceptable. However, if this navigation is
taking longer than expected because robot r1 broke down, a better option is to seek
another robot to perform the task. Such domain-specific considerations must be
integrated into the actor’s monitoring function.

Plan repair in case of a failure has to be performed with respect to the current state,
remaining predicted events, and tasks whose achievement is still in the future. The
repair can be local or global. In the latter case, full replanning is performed. A local
repair can benefit from TemPlan’s plan-space planning approach, by removing the
failed action from the remaining chronicle 𝜙 together with all the assertions coming
from that action schema. This removal introduces flaws in 𝜙 with respect to which
TemPlan iterates. This can lead to other flaws (including for the task that led to the
failure). It may or may not succeed in finding a repair and may require replanning.
Monitoring should help assess the failure and decide whether to try a local repair.

422 18 Acting with Temporal Controllability

18.3.2 Acting with Atemporal Refinement Methods

Here we assume that actions in the given temporal plan 𝜙 need to be further refined
by the actor. For example, actions leave, enter, stack and unstack in Example 17.11
are primitives for TemPlan, but they need to be refined into executable commands
with appropriate refinement methods for the acting context. If instead we had planned
with these lower level primitives, this would have increased the planning complexity,
required finer action models and made the plan fragile.

Hence, acting refinement is motivated by complexity, environment dynamics, and
modeling issues. It goes one level down in the representation hierarchy. In many
cases, an actor may refine the actions in a temporal plan with atemporal methods,
meaning that the duration of an action 𝑎 in the given plan is not broken down further
with this acting refinement.

Example 18.8. Here are two atemporal methods to refine actions leave and unstack
of Example 17.11 into commands:

m-leave(𝑟, 𝑑, 𝑤, 𝑒)
task: leave(𝑟, 𝑑, 𝑤)
pre: loc(𝑟) = 𝑑, adjacent(𝑑, 𝑤), exit(𝑒, 𝑑, 𝑤)

body: until empty(𝑒) wait(1)
goto(𝑟, 𝑒)

m-unstack(𝑘, 𝑐, 𝑝)
task: unstack(𝑘, 𝑐, 𝑝)
pre: pos(𝑐) = 𝑝, top(𝑝) = 𝑐, grip(𝑘) = empty

attached(𝑘, 𝑑), attached(𝑝, 𝑑)
body: locate-grasp-position(𝑘, 𝑐, 𝑝)

move-to-grasp-position(𝑘, 𝑐, 𝑝)
grasp(𝑘, 𝑐, 𝑝)
until firm-grasp(𝑘, 𝑐, 𝑝) ensure-grasp(𝑘, 𝑐, 𝑝)
lift-vertically(𝑘, 𝑐, 𝑝)
move-to-neutral-position(𝑘, 𝑐, 𝑝)

The method m-leave waits until the exit 𝑒 from dock 𝑑 toward waypoint 𝑤 is
empty, then it moves the robot to that exit. The method m-unstack locates the
grasping position for container 𝑐 on top of a pile 𝑝, moves the crane to that position,
grasps it, ensures the grasp (e.g., closes latches) to guarantee a firm grasp, raises
the container slowly above the pile, then moves away to the neutral position of
that crane.These methods have not temporal variables. They handle time implicitly
through the procedures in their body.

It is interesting to compare these methods with the descriptive models of the same
primitives in Example 17.11. Effects are not stated; they will be observed from the
execution of commands. The operational models given in these methods detail with
conditionals and loops how to perform the action. □

Atemporal refinement methods do not break down the temporal qualifications used
in planning into finer temporal requirements. As illustrated in the preceding example,

18.4 A Temporal Refinement Acting Engine 423

the temporal qualification [𝑡𝑠, 𝑡𝑒] of an action 𝑎 in 𝜙 is not detailed into smaller
durations for the commands in which 𝑎 is refined.

An important motivation for refining a temporal plan with atemporal methods,
instead of temporal ones, is the uncertainty in the duration of actions. It makes sense
to reason about contingent constraints at an abstract planning level. But at the lower
fine grained level, one may take into account a global constraint without refining it
into bounds that can be even more uncertain, more difficult to model and control in a
meaningful way. For example, it may be useful to account for the time needed to open
a door, which can be assessed from statistics. However, breaking this duration into
how long it takes to reach for the handle and how long to turn the handle introduces
noisy data in operational models.

Chapter 14 explains how to refine tasks with atemporal methods. To follow a
temporal plan 𝜙 by refining its actions with atemporal methods, the actor can use RAE
augmented with the Dispatch algorithm. The latter is easily integrated with RAE.
Triggering the starting point of an action 𝑎 means putting 𝑎 as a task in the input
agenda of RAE, that is, starting a new stack for progressing on the refinement of 𝑎.
The upper bound on the duration of 𝑎 is taken as a deadline for terminating this stack.
Progress and eventually Retry will pursue refinements in this stack until the action
succeeds or fails, or until the deadline is reached, which is another failure condition.
The distance to the deadline can be used as a heuristics for prioritizing the most urgent
tasks.

18.4 A Temporal Refinement Acting Engine

In the previous section we discussed two simple acting modalities: without refinement
and with atemporal refinement. Here we address the more complex modality of
temporal refinement, with or without a plan. An actor may not have a plan for the
task at hand. This may happen because a plan is implicit in the available methods of
task, or because the descriptive models of actions are unreliable, or the environment
is too dynamic and acting with retrials is not critical. Without a temporal plan, it is
still meaningful to reason about time at the acting level, in particular when acting has
to be synchronized with future predicted event.

Temporal refinement methods can be used for acting. For that, we restrict the
general representation of Section 17.1.3 to methods that do not specify unsupported
assertions, i.e., goals requiring generative planning.

The approach is similar to that of Chapter 14 where the acting engine reacted to
tasks using refinement methods. Here we modify RAE as TRAE to obtain a temporal
refinement acting engine. The refinement methods used by this engine differ from
those of RAE in a few important ways:

• The methods’ bodies are not procedures with tasks, actions, assignments, and
control steps, but instead are sequences of temporally qualified tasks, assertions,
and constraints.

• They do not have specific precondition fields. Instead, their preconditions result
from temporal assertions (e.g., as in the methods of Example 17.12).

424 18 Acting with Temporal Controllability

• They do not deal with probabilistic actions, but deterministic ones with uncer-
tain durations and contingent expected events.

• They do not transform the current state sequentially, step by step, but they
progress on a time line by triggering and observing concurrent changes.

RAE evaluates a conditional expression with respect to the current observed state.
TRAE requires an acting context integrating the current state to timelines with future
predicted exogenous variables and past values of state variables. For example, a
method may allow a robot to visit a location l1 only if it has gone through a location
l2 in the recent past. Instead of expressing this and similar constraints as temporal
assertions extending over the past history, we may express them with additional state
variables.2

With this modeling caveat, let us assume that the acting context does not extend
in the past beyond when each state variable acquired its current value. Our interest
in the past is satisfied by keeping track for each state variable 𝑥 that the value 𝑥 = 𝑣

since holds from 𝑡 to now: In other words, the following assertion holds:

[𝑡, now]𝑥 = 𝑣,where now it the value of current time.

Note that such an extended state allows the handling of assertions such as
[𝑡1, 𝑡2] loc(r1)=l2, (𝑡2 − 𝑡1) > 𝛿.

The acting context for TRAE corresponds to a chronicle 𝜙𝜉 giving the current
present and the predicted exogenous future. 𝜙𝜉 is similar to the initial chronicle
𝜙0 of TemPlan with an essential difference. 𝜙0 contains tasks to refine as well as
assertions to support, which may express goals to reach, in addition to the effects of
the refined tasks. Unsupported assertions are allowed by the hybrid TemPlan since it
is a refinement as well as a generative planner. But TRAE is only a refinement acting
engine. It works similarly to RAE: it is given only tasks to perform, but no goals to
reach, and it uses methods that do not introduce additional goals to reach.

TRAE gets as input the tasks to perform. For each task 𝜏, it findsM(𝜏), the set
of methods whose task is 𝜏. It chooses a method 𝑚 in M(𝜏) that is applicable to
the current state 𝜉. It refines 𝜏 according to the subtasks specified in 𝑚. This is
performed similarly to resolving for an unrefined task in TemPlan, with an update
𝜙𝜉 ← Transform(𝜙𝜉 , 𝑚): 𝜙𝜉 is augmented with the subtasks, assertions and con-
straints in 𝑚 (see Section 17.2.2). The requirements for a method to be applicable are
however different here.

Definition 18.9. An instance in a method 𝑚 ∈ M(𝜏) is applicable to the current
acting state 𝜉 if and only if:

• every assertion in 𝑚 is causally supported by and consistent with 𝜉, and
• the constraints in 𝑚 are consistent with 𝜉 and define with the temporal con-

straints in 𝜙𝜉 a dynamically controllable STNU. □

The first condition requires that 𝑚 does not introduce goals to reach. For example,
an assertions in 𝑚 such as [𝑡, 𝑡′] 𝑥 = 𝑣 or [𝑡, 𝑡′] 𝑥 : (𝑣, 𝑣′), where 𝑡 < 𝑡𝑠 ≤ 𝑡′ and 𝑡𝑠 is

2This is akin to how we may model a domain as Markovian (see Example 8.1).

18.4 A Temporal Refinement Acting Engine 425

the starting point of 𝑚, would need to be supported before any action issued from the
refinement of 𝑚 can begin. Assertions in 𝑚 about the future have to be supported by
predictions in 𝜙𝜉 . The acting engine is not inserting (in a generative way) additional
actions to satisfy the requirements of a method. Assertions that require to be supported
by the effects of additional actions are not allowed in the methods of TRAE.3

The second condition guarantees that the application of this instance of𝑚 to 𝜉 gives
a consistent chronicle whose temporal constraints are dynamically controllable. The
latter point is only about the explicit constraints in Transform(𝜙𝜉 , 𝑚). The recursive
refinements of the subtasks in 𝑚 may lead later to an uncontrollable network, but
TRAE cannot detect it in advance.

Example 18.10. Consider the domain specified in Example 17.11. Assume that
TRAE is given a set of methods to handle the tasks bring, move, and uncover of
Example 17.12, in addition to methods for leave, enter, navigate, unload, load, stack,
and unstack, as illustrated in the previous section.

The task is to bring a container c1, which is now in pile p1 in dock d1, to a pile p2 in
d2. There is an empty robot r1 in d3. An instance of the method m-bring is applicable
to this task with 𝑐 = c1, 𝑝 = p2, 𝑝′ = p1, 𝑑 = d2, 𝑑′ = d1, 𝑟 = r1; 𝑡𝑠 can be instantiated
to now: TRAE concurrently triggers the tasks move(r1,d1) and uncover(c1). The
constraints 𝑡2 ≤ 𝑡1 and 𝑡3 ≤ 𝑡1 require the other tasks to wait until both move and
uncover finish.

The method m-move1 is applicable to move(r1,d1). TRAE triggers action leave.
When leave finishes, navigate is triggered, followed by enter.

Concurrently with this process, TRAE addresses the uncover task: method m-
uncover is applicable; it leads to triggering a succession of unstack and stack actions
until d1 is at the top of pile p1. The termination of the last actions issued from the
refinement of move(r1,d1) and uncover(c1) set the time points 𝑡2 and 𝑡3 of m-bring,
allowing the method to pursue the remaining subtasks load, move and unload. □

To sum up, TRAE uses on temporal refinement methods without unsupported asser-
tions. It takes as input tasks to perform. It maintains an acting context corresponding
to a chronicle 𝜙𝜉 with the current state and the predicted exogenous events.

To progress in the refinement of a method 𝑚, TRAE has to handle concurrency,
as specified in 𝑚, and to monitor observed expected changes for contingent time
points. This is done with the Dispatch algorithm for the chronicle 𝜙𝜉 , which triggers
controllable time points in 𝜙𝜉 that are enabled with respect to now. Contingent
points in 𝜙𝜉 (termination of actions, expected events) are monitored with a deadline
corresponding to the wait constraints introduced while testing the applicability of 𝑚.

The refinement of 𝑚 by TRAE may fail when either (i) a triggered action fails,
(ii) a wait constraint on a contingent point fails, or (iii) a refinement of a subtask
𝜏′ in 𝑚 fails because there is no applicable method for 𝜏′ or all method instances
have been tried and failed. Cases (i) and (iii) are as in RAE. Case (ii) is specific to
dynamic controllability when contingent constraints or deadlines are violated. TRAE
can implement a Retry procedure for trying alternative methods if the chosen one

3A less restrictive Definition 18.9 would allow in 𝑚 assertions and constraints to be supported by the
subtasks and actions of 𝑚, but checking if 𝑚 is applicable would be difficult.

426 18 Acting with Temporal Controllability

fails: a Retry is possible as long as upper bounds on a task and its refinements have
not been violated.

The limitations of TRAE are due to its lack of lookahead. As underlined earlier
TRAE does not handle reachability goals, but only task refinements. Moreover, the
network corresponding to the entire refinement tree of a task 𝜏 and its subtasks is
not guaranteed to be dynamically controllable. Additional points and constraints are
discovered progressively by TRAE as tasks and actions are achieved, and effects and
events are observed. This may lead to situations where no method for a subtask gives
a controllable STNU. The designer may try to specify (with the help of the techniques
presented in Section 18.1) temporal methods that often refine into dynamically con-
trollable networks. But it is easier and preferable to endow TRAE with a lookahead
mechanism, as presented next.

18.5 An MCTS Temporal Planner

We study here how to transpose the lookahead mechanism of RAE to TRAE. The former
relied on UPOM that we transpose here to UTEMP. Recall that UPOM performs Monte
Carlo rollouts with value updates to optimize a value function and guide the choices
of RAE with good methods. UPOM relies on two essential means: a simulation of
method bodies, and a sampling function that returns a possible result of probabilistic
actions.

These two means are feasible for TRAE. Simulation of temporal refinement methods
is sightly more complex because of concurrency and the dispatching mechanism. The
sampling function is about sampling the outcome of actions as success or failure, and
contingent time points within allowed intervals.

Let us informally present the MCTS planner UTEMP by comparison to UPOM.

Common features of UTEMP and UPOM. These are the following:
• they work with a set of states 𝑆 which is an abstraction of the detailed action

states Ξ;
• they update a value function 𝑄(𝑠, 𝑚) initialized heuristically;
• they use a procedure Guide which improves 𝑄 through a number of 𝑛ro pro-

gressively deeper rollouts;
• they are anytime planners;
• they progress in each rollout by managing a stack initialized to the current

acting stack𝑎;
• they rely on a UCT-like procedure to update the value function𝑄 along a rollout

for the stack at hand.
The specifics of UTEMP with respect to UPOM are about (i) the search space and

the stack data structure, (ii) the temporal dispatching in the progress of a rollout, (iii)
the utility and value functions, and (iv) the Sample function.

Search space of UTEMP. A state 𝑠 in UTEMP is temporally extended. As in TRAE,
it corresponds to a chronicle 𝜙𝑠 giving the current present and predicted future. To

18.5 An MCTS Temporal Planner 427

simulate in a rollout a method 𝑚, 𝜙𝑠 is augmented with the subtasks, assertions and
constraints in 𝑚, with the update 𝜙𝑠 ← Transform(𝜙𝑠, 𝑚) explained earlier.

1

τ

⋁
𝜙
∴

disjunction node

chronicle node

sampling node

⋁

∴ ∴

⋁
⋁

𝜙 𝜙 𝜙 𝜙

τ2

m m’

a1

m1 m’1 m2 m’2
k samples

uncover

docked(ship)

move

load

t0

move
unload

τ1

𝜙

a2

t1

Figure 18.6. Part of the search space for UTEMP, disjunction nodes for possible methods
tasks, chronicle nodes for method instances with their temporally qualified tasks asser-
tions and constraints, and sampling nodes for possible occurrences of contingent points.
Solid arrows are tasks and actions, double are contingent activities, dotted are prece-
dences and wait constraints; all are labelled with temporal contraints is in Figure 18.2.

While UPOM handles a sequence of steps in a method body to simulate that method
in a rollout, UTEMP has to handle a sequence of chronicle updates. In UPOM, the
stack is a list of tuples (𝜏, 𝑚, 𝑖, tried), where 𝑖 is an index for the current step in 𝑚. In
UTEMP a stack tuple is of the form (𝜏, 𝑚, 𝜙𝑠, tried) where 𝜙𝑠 is the current chronicle
corresponding to 𝑚 for the current state and refinement step. The search space of
UTEMP, illustrated next, has disjunction, chronicle and sampling nodes (Figures 18.6
for UTEMP vs 15.1 for UPOM).

Example 18.11. Consider the task bring of Example 17.12 addressed with the method
m-bring in a state corresponding to the chronicle 𝜙0 of Example 17.14. 𝜙0 specifies
that the container to bring is on board of a ship to be docked in a given temporal
interval. The chronicle Transform(𝜙0,m-bring) is simulated using Dispatch, taking
the starting time 𝑡𝑠 as the beginning of the simulation, and advancing the current
time now by instantaneous steps to the next enabled points. Action move is triggered
immediately, the task uncover is refined after 𝑡0, the load action after uncover and
move, etc. At some point of a simulation, a rollout may fail through random sampling
for the same reasons as the possible failures of TRAE: a failed action or task refinement,
or a violated constraint on a contingent point. □

Temporal dispatching in the progress of a rollout. UTEMP progresses in a rollout
simulation as TRAE in real task refinement and acting. It uses Dispatch and triggers

428 18 Acting with Temporal Controllability

all enabled points at the earliest. There is however an important difference between
the two with respect to expected events grounded in real time (e.g., 𝑡0 and 𝑡1 in
Figure 18.6). We need to decouple simulated time from real time. This can be done
by estimating in advance a worst case duration of a task 𝜏, from which a deadline
for finishing UTEMP on a lookahead for 𝜏 is computed. Since UTEMP is an anytime
planner, as soon as the estimated deadline is reached, the deepening loop in Guide is
stoped and TRAE proceeds with the best method found so far.

Optimization criteria. The utility and value functions of UPOM can also be used
for UTEMP. We defined 𝑈 and its estimate 𝑄 using either 𝑣𝑒, the efficiency of an
action, or 𝑣𝑠, its success rate. Equation 15.1 applies to UTEMP with a minor change
(there are no assignments in temporal methods). However, these criteria are not quite
adequate for temporal models, for which one is usually interested in minimizing a
plan’s makespan or maximizing the slack time on the plan’s critical path, i.e., how
much the actions can be delayed without violating the plan constraints. An extension
of 𝑣𝑒 taking into account the duration of an action as well as its cost is straightforward.
However, this does not provide the makespan nor slack time of a rollout. These criteria
can only be roughly approximated with cumulative updates on partial rollouts. They
can be computed precisely on complete ones using the well-known techniques of
project network analysis.4 Implementing such an idea for minimizing the makespan
or the slack time requires revising in UPOM pseudocode the definition of𝑈Success and
the termination step (when stack = ⟨⟩) for UTEMP.

Sampling function. UTEMP samples on actions and contingent events. When an
action 𝑎 is triggered, Sample(𝑠, 𝑎) returns randomly a finish time and either failure
or 𝑠′ for the successful completion of the assertions in 𝑎. As usual, we assume that
calls to Sample are randomly distributed according to the probability distribution
characterizing 𝑎. Here too one may draw on project network techniques for defining
meaningful temporal distributions for an expected duration within the earliest and
latest finish times. The sampling of contingent event can be done on the initial
chronicle, before a rollout starts. It returns random occurence times within predicted
bounds of the events and their corresponding assertions. It is easier to assume
that predictions are deterministic but, if needed, one also sample for a possible
nonoccurrence of a predicted event, which may lead to failure.

It can be interesting to complement the MCTS strategy with non-random rollouts
that are meaningful for temporal domains. For example, temporally “pessimistic”
rollouts with worst case durations and event occurrences may allow seeking robust
methods, instead of near-optimal ones in average.

As underlined earlier, to our knowledge TRAE and UTEMP have not been imple-
mented and tested for scalability and performance issues. TRAE should be effective,
since it is a reactive engine. Its costly steps for testing the applicability of methods
and running Guide, involve only low order polynomial computations. Similarly for
each rollout of UTEMP. In addition, controllabily computations along a rollout may

4These are often referred to as Program Evaluation and Review Techniques (PERT).

18.6 Integrating Planning and Acting 429

be postponed, as explained in page 418. However, it is unclear how effective UTEMP
can be for a domain requiring a very large amount of rollouts. Learning for UTEMP
(discussed in the following chapter) should be effective. The interested reader is
encouraged to consider the material in this section as an invitation to further deepen
the proposed approach into detail code and analysis.

18.6 Integrating Planning and Acting

Previous sections present three main integration modalities of planning and acting:

• Planning with TemPlan with acting without refinement;
• Planning with TemPlan with acting atemporal refinement methods; and
• Acting with TRAE with UTEMP lookaheads.

The first one is for well modeled critical domains with low variability. The last one is
more reactive. It can better cope with variability. Moreover, TemPlan is a satisfycing
approach with correctness and controllability properties. UTEMP is an optimizing
approximation approach, with no guarantee, but its any time property is important in
temporal domains.

These integration modalities are not exclusive. If time allows, one may plan
at a sufficient granularity level for the task at hand using TemPlan, then act with
TRAE using refinement methods and the dynamically controllable STNU found at the
planning stage. Here, TRAE does not need to test the applicability of its methods with
the restrictive Definition 18.9. This testing is done at planning time by adding, when
and where needed, actions in the plan to support every assertions in the predicted
future. TRAE has to monitor that the current acting state is the one expected at
planning time. It has also to synchronize the subtasks and actions in the plan with
Dispatch according to the constraints in the dynamically controllable STNU. In case
of departure from the plan because of failure or violation of a contingent constraints,
TRAE may resort UTEMP to guide its reactive choices.

The main difference with respect to following a plan with atemporal refinements
is that here one is able to control the level at which refinement planning is pursued
in a context-dependent way. The idea is to allow TemPlan to decide not refine a
subtask. This can be done if TempPlan can evaluate the likely effects and temporal
bounds of that subtask and assess that they are sufficient to stop planning and start
acting on a partial plan that contains unrefined tasks. These can be refined at acting
time, by planning concurrently while acting on some other predecessor subtasks, or
even when an unrefined task is dispatched. In this modality, the interactions between
planning and acting are however more complex than the on-demand and anytime
guiding mechanisms of TRAE/UTEMP.

18.7 Discussion and Bibliographic Notes

Temporal controllability. The controllability issue and STNUs was introduced in
[1139]. Different levels of strong, weak and dynamic controllability were analyzed

430 18 Acting with Temporal Controllability

[1138]. Informally, an STNU is strongly controllable when the actor can freely
chose the assignments of controllable points in their bounds, and regardless of the
choices of the world for the contingent ones the execution strategy (in p.415) exit
with success. An STNU is weakly controllable when there exist values of contingent
points for which there are assignment of controllable ones that allow a successful
exit. The dynamic controllability, which allows the actor to adapt to its observations
and wait when needed, is more interesting in practice. Algorithms for the strong and
weak controllability cases appears in [239, 238]. State space planning with strong
controllability is studied in [240]. A polynomial algorithm for dynamic controllability
was proposed by [810] and improved in [812]. Incremental dynamic controllability
has been studied in [1055], and [854, 855] for the algorithm of cubic complexity.

Project networks. These are network of activities and events with constraints and
uncertainty in durations and occurrences. They are like chronicles but without a
generic representation for assertion, tasks and actions. A complete rollout of UTEMP
(without unrefined tasks) is in similar to a project network. Several techniques and
numerous software libraries have been developed for analyzing the properties of a
project network, finding its critical path, makespan or slack time, see e.g., [599].

Acting with Temporal Models. Several of the acting representations and systems
discussed in Section 14.4, based on procedures, rules, automata, Petri-nets or CSPs,
integrates directly or have been extended with temporal primitives and techniques for
handling explicit time. The PRS system of [540] or the RPL language of [774] offer
some mechanisms for handling real-time “watchdogs” and delay primitives. More
elaborate synchronization constructs are available in TCA [1025] and TDL [1026].

A few of the temporal planners discussed in paragraph 17.4 have been integrated to
and acting system. This is in particular the case for timeline oriented planners along
an approach akin to that of Section 18.3.2. For example, Cypress of [1173] is the
combination of SIPE for planning and PRS for acting. DS1/RAX of [823] implements
a procedure-based acting technique combined with the PS planner. Casper of [616] is
a temporal constraint-based executor for the ASPEN planner. IxTeT-Exec of [694] in-
tegrates IxTeT and PRS with plan repair and action refinement mechanisms. T-REX
of [929] follows a distributed approach over a set of “reactors” sharing timelines.
It has been used mostly with the EUROPA planner. The dispatchability property
studied in [822] and [811] requires simplifying the STNs resulting from the above
planners in order to rely on local propagation at acting time. This technique pro-
vides some improvements in the dispatching algorithm but does not handle dynamic
controllability.

The Reactive Model-based Programming Language (RMPL) of [536] follows an
approach more akin to that of Section 18.4. RMPL programs are transformed into
the Temporal Plan Networks (TPN) representation of [1174]. TPN extends STN
with symbolic constraints and decision nodes. Planning with a TPN is finding a
path in the explicit network that meets the constraints. [255] introduce choices
in the acting component of RMPL. TPNs with error recovery, temporal flexibility,
and conditional context dependent execution are considered in [322]. There, tasks

18.8 Exercises 431

have random variable durations with probability distributions. A particle-sampling
dynamic execution algorithm finds an execution guaranteed to succeed with a given
probability. Probabilistic TPNs with weak and strong consistency are proposed in
[980]. TPNUs of [702] add the notion of uncertainty for contingent decisions taken
by the environment and other agents. The acting system adapts the execution to
observations and predictions based on the plan. It has been illustrated with a service
robot which observes and assists a human.

18.8 Exercises

18.1. Revise the pseudocode of algorithm Dispatch by adding a monitoring step to
check that contingent constraints are not violated.

18.2. Detail the pseudo-code of TRAE specified in Section 18.4 as an extension of
RAE (see Chapter 14).

18.3. Detail the pseudo-code of UTEMP specified in Section 18.4 as an extension of
UPOM (see Chapter 15).

19 Learning for Temporal Acting and
Planning

Temporal models are quite rich. This an advantage for handling domains with con-
currency and temporal constraints. But this is also a bottleneck for the development
of the models, to be eased with machine learning techniques.

In this chapter, we first briefly address the problem of learning heuristics for tem-
poral planning (Section 19.1). We then consider the issue of learning durative action
schema and temporal methods (Section 19.2). The chapter outlines the proposed
approaches, based on techniques seen earlier in the book, without getting into detailed
description of the corresponding procedures.

19.1 Learning Heuristics for Temporal Planning

This section sketches how to learn heuristics for guiding TRAE and UTEMP, following
the approach used for RAE/UPOM (see Chapter 16).

Recall that TRAE relies on Guide to choose its methods. If there is no time to
call UTEMP, Guide returns a fallback method 𝑚̃ = argmax𝑚𝑄0(𝑠, 𝑚), where 𝑄0 is a
heuristic estimate of the method-value function. Otherwise UTEMP performs a series
of progressively deeper rollouts. At the end of each rollout (when 𝑑 = 0), UTEMP
uses𝑄0(𝑠, 𝑚) as an estimate of the utility of the remaining refinements to compute the
method-value function𝑄stack (𝑠, 𝑚) for the methods applicable to the task at hand and
its subtasks. The function 𝑄0 approximates the method-value function 𝑄 for a state,
a method and its corresponding task. It ignores the details of pending activities in a
stack, if any. 𝑄0 is of direct use for acting reactively in Guide, as well as for planning
with UTEMP. Learning a domain-dependent heuristic function 𝑄0 can significantly
improve the performance of the acting engine as well as those of the planner.

Since we defined TRAE and UTEMP as adaptations of RAE and UPOM, we can adapt
the learning approach for RAE/UPOM to learn 𝑄0 for TRAE/UTEMP. The following
adaptations are needed:

• Training set generation: we randomly generate a set of planning problems
(𝜏, 𝑠) with a temporally extended state 𝑠 as an initial chronicle. It can be
more difficult than in the atemporal case to come up with relevant problems
solely from random sampling. UTEMP is run for each training problem and
applicable method. The found near-optimal value of 𝑄stack (𝑠, 𝑚) is kept as a
learning target. Initial knowledge about interesting scenarios to learn from, or a
rich history of previously encountered cases, are needed, to be completed with
continual learning.

432
Free pre-publication, for personal use only. To be published by Cambridge University Press.

19.2 Learning Temporal Models 433

• Data encoding: the adaptions here are about encoding temporal qualifications
and temporal constraints as input to a neural net. The latter does not check
the consistency of the constraints nor solves them; it simply learn a mapping
from (𝜏, 𝑠, 𝑚) to 𝑄0. In principle, the encoding of symbolic variables of
Section 16.1.2 can be used here, possibly with add-hoc functions that have
been developed for interval constraints. It can also be worthwhile to investigate
the use of temporal graph neural networks.

• Neural Net Training: this stage is the same as discussed for RAE/UPOM if a
feedforward architecture is used. We briefly refer in the discussion section to
features specific to graph neural nets, in particular the pairwise message-passing
mechanism.

The learned network [𝑄 𝜃] resulting from the previous steps can be maintained
and improved in a continual learning framework. The reinforcement learning CORL
procedure applies to TRAE/UTEMP.

The approach briefly sketched here illustrates a possible method for learning heuris-
tics for temporal refinement acting and Monte Carlo planning. To our knowledge, it
remains to be implemented and tested in order to assess how effective it can be, and
in what categories of domains.

19.2 Learning Temporal Models

In this section, we briefly discuss two problems: learning durative action schema by
extending the approach presented in Section 4.2, and learning temporal methods with
the HTN learning techniques of Chapter 7.

19.2.1 Learning Durative Actions

This section deals with the problem of synthesizing durative action schema in a
restricted case allowing to rely on an extension of the methods of Chapter 4. The
learner gets as input time-stamped traces without overlapping or concurrent actions.
We assume that the preconditions of an action apply at its starting time; its effects hold
at the end point. Its duration is a scalar in some observed interval (not a function, to be
learned, of the action parameters). We therefore rely on a more limited representation
than the one based on timelines and chronicles, with state variables that may change
over time (as in Section 17.1).

Moreover, we focus on offline learning. Online learning requires a temporal exten-
sion of informative state-action pairs (see Algorithm 4.12), and the use of temporal
planning to learn action schemas. These issues remain an open problem.

Let 𝑡𝑠 and 𝑡𝑒 be the start and end time points of an action. Preconditions hold at
𝑡𝑠 and remain true until 𝑡𝑒; and effects hold at 𝑡𝑒. We assume an action duration to
be constant. With these assumptions, action schema are a simple extension of the
classical case (see Sections 2.3.2 and 4.2).

We learn primitive action models from time-stamped traces, ignoring time in a first
stage, seeking only preconditions and effects. Since we assume that the training traces

434 19 Learning for Temporal Acting and Planning

do not have concurrent or overlapping actions, the offline methods of Section 4.2.1
are applicable. In a second stage, time bounds are estimated from training traces.

The input to the offline learner is a set of time-stamped transitions (𝑡, 𝑠, 𝑎(𝒄), 𝑠′, 𝑡′),
where 𝑡 and 𝑡′ extend the (𝑠, 𝑎(𝒄), 𝑠′) transition of Section 4.2.1 with the start and end
time of this instance of 𝑎. Algorithm 19.1, Offline-Learning-Actions-with-Time, is an
extension of Algorithm 4.6. It computes the duration of an action 𝑎 as the maximum
of the durations that have been observed in the set of time-stamped transitions.

Offline-Learning-Actions-with-Time(𝑇)
for 𝑎 action name that appears in 𝑇 do

pre(𝑎(𝒛)) ← U
eff(𝑎(𝒛)) ← ∅
Δ𝑡 (𝑎) ← 0

while 𝑇 ≠ ∅ do
choose (𝑡, 𝑠, 𝑎(𝒄), 𝑠′, 𝑡′) ∈ 𝑇
pre(𝑎(𝒛)) ← pre(𝑎(𝒛)) ∩ 𝑠(𝒛)
eff(𝑎(𝒛)) ← eff(𝑎(𝒛)) ∪ 𝑠′(𝒛) \ 𝑠(𝒛)
Δ𝑡 (𝑎) ← max(Δ𝑡 (𝑎), 𝑡′ − 𝑡)
𝑇 ← 𝑇 ∩ (𝑡, 𝑠, 𝑎(𝒄), 𝑠′, 𝑡′)

Algorithm 19.1. Offline-Action-Learning-with-Time, a simple algorithm

Algorithm 19.1 can deal with preconditions that hold only at the starting time 𝑡𝑠 and
may change before the ending time 𝑡𝑒. It should be extended to deal with overlapping
concurrent actions in order to detect mutually exclusive actions, or actions that can
be applied only before, during or after the application of other actions. In an offline
approach, we can detect only the positive cases, e.g., that an action can be executed
overlapping with another one, or before, or after another one, and assume that if we
do not have actions that overlap, they cannot be executed in parallel. Moreover, we
should take into account the possible influences of preconditions and effects of actions
that overlap (see Exercise 19.3).

19.2.2 Learning Temporal Methods

This section sketches possible approaches for learning temporal refinement methods.
We use a simpler representation than the general one in Section 17.1.3. Specifically,
we consider temporal HTN methods in one of the following two forms:

• Basic temporal HTN methods: these are just like totally ordered HTN methods,
but with durative actions.

• Extended temporal HTN methods: these methods are specified with Simple
Temporal Networks (STNs) constraining possible refinements and allowing for
concurrency.

19.2 Learning Temporal Models 435

Learning basic temporal HTN methods. We use the techniques of Chapter 7. We
assume we are given:

• A set 𝐴 of durative actions represented with their descriptive models, as learned
with the approach of previous section.

• A set T of annotated tasks 𝜏 = (task(𝜏), pre(𝜏), eff(𝜏)), as in Chapter 7.
• A temporal planner such as TemPlan that can generate temporal plans using the

actions in A to reach goals.

The learner has to synthesize a setM of temporal methods for the tasks in T . The
outline of the approach is the following:

• Randomly generate a set of planning problems (𝑠0, 𝐴, eff(𝜏)), for each 𝜏 ∈ T
and for a collection of states 𝑠0 ∈ pre(𝜏).

• Run the planner on each problem (𝑠0, 𝐴, eff(𝜏)). If a plan 𝜋 achieving eff(𝜏)
from 𝑠0 is found, record the corresponding pair (𝑠0, 𝜋) in the training set Pairs.

• Run a version of Methods-from-Plans on the set Pairs to obtainM.
• Check if the learned methodsM allow planning any newly generated random

problem (𝑠0, 𝜏), for 𝜏 ∈ T and 𝑠0 ∈ pre(𝜏); extendM if needed.

Here, an incremental version of Methods-from-Plans integrating the steps of
Methods-from-Examples (instead of calling it on a collection 𝐸 of examples for all
the generated plans) would be desirable. This can be particularly beneficial if some
knowledge about the task hierarchy is given or can be derived from the desired ef-
fects eff(𝜏) for 𝜏 ∈ T . Learning would proceed bottom-up in this hierarchy. Learned
methods of subtasks would be used for planning higher level tasks (recall that a hybrid
planner such as TemPlan performs task refinement and goal reachability searches), as
well as for learning their methods. Since basic temporal HTNs assume totally ordered
decompositions, the temporal part with durative action plays no role in learning and
can be processed in a straightforward manner on learned methods.

Learning extended temporal HTN methods. Here, we want to synthesize methods
similar to those of partially ordered HTNs, but instead of a partial order of the steps in
a method, we specify a Simple Temporal Network (STN) on the starting and ending
points of these steps, as illustrated next.

Example 19.1. Consider the method m1-put-on-robot of Example 5.10. It refines a
task put-on-robot into three steps (t1, navigate), (t2, unstack) and (t3, load). The latter
starts only when the first two finish: t1≺ t3, t2≺ t3. But for an efficient handling of
the task, we do not want to start unstacking too late (it keeps the robot waiting), or
too early with respect to the possibly longer navigation step. This can be expressed
with an STN on the starting and ending points (denoted 𝑡𝑠 and 𝑡𝑒) of each step:

436 19 Learning for Temporal Acting and Planning

m1-put-on-robot(𝑘, 𝑐, 𝑐′, 𝑟, 𝑑, 𝑝)
task: put-on-robot(𝑐, 𝑟)
pre: cargo(𝑟) = nil, top(𝑝) = 𝑐, at(𝑝, 𝑑),

attached(𝑘, 𝑑), holding(𝑘) = nil
sub: (t1, navigate(𝑟, 𝑑)), // compound task

(t2, unstack(𝑘, 𝑐, 𝑐′, 𝑝, 𝑑)), // action
(t3, load(𝑘, 𝑐, 𝑟, 𝑑)) // action

stn: t1𝑒 < t3𝑠, t2𝑒 < t3𝑠, 5 ≤ t1𝑠 − t2𝑠 ≤ 10

Note that this STN is dynamically controllable □

The input to the learner is as in the basic case: a set 𝐴 of durative actions, a set
T of annotated tasks, and a temporal planner. However, we may consider temporally
richer task annotations: both pre(𝜏) and eff(𝜏) can be temporally extended states
with constraints (as in Section 18.5). The learner may rely on the same approach
as before: (i) generate random temporal planning problems for the tasks in T ; (ii)
generate temporal plans for these problems; (iii) synthesize a setM of methods from
these plans; (iv) check the learned methods on new problems, extendM if needed.

The generated temporal planning problems will not be as rich as the chronicles
of Section 17.1.4: each problem is focused on a single task 𝜏 with extended initial
states (supported assertions) in pre(𝜏), assertions to be achieved as in eff(𝜏) and
the constraints expressed in the annotation of 𝜏. A planner such as TemPlan would
generate for each problem a temporal plan as a set of primitive actions from 𝐴 together
with a dynamically controllable STN, if such a plan exists.

The synthesis of methods from temporal problems and plans may rely on an
extended basic HTN learning procedure. Recall that the latter has three main steps:

• Factorization: Find a contiguous subsequence of steps in a given plan 𝜋 of a
task 𝜏 that matches a plan of another task 𝜏′. In 𝜋, replace this subsequence
by 𝜏′ as a subtask of 𝜏. Repeat until no further subsequence replacements are
possible.1

• Lifting: Replace constants with variables in the resulting methods.
• Subsumption: Remove subsumed lifted methods.

In principle, the lifting and subsumption procedures for the basic case should
also work for the extended case, with a caveat regarding how STN subsumption is
defined. We may consider that an STN network 𝑛1 subsumes 𝑛2 if they have the
same set of nodes and if every instance that meets the constraints of 𝑛2 meets also the
constraints of 𝑛1. However, keeping the most general method, i.e., the one with the
least constraining network, might not be desirable in some cases. Alternate definitions
should be considered, possibly on the basis of the partial order entailed from an STN,
as explained next.

Changes required in the factorization procedure are substantial. We no longer
consider contiguous subsequences of a sequence of steps but an STN embedding
relationship.

1In this step, we are using the term “plan” loosely to mean a sequence of actions and tasks.

19.3 Discussion and Bibliographic Notes 437

Let Training be the set of temporal planning problems and plans from which we
want to synthesizeM. An element (𝑠0, 𝜏, 𝜋) ∈ Training is such that 𝑠0 is a temporally
extended instance of pre(𝜏) and the plan 𝜋 = (𝐴𝜋 , STN 𝜋) is the set of durative actions
in 𝜋 and the associated STN. Let (𝑠′0, 𝜏

′, 𝜋′) ∈ Training be another temporal plan for
a task 𝜏′, with 𝜋′ = (𝐴𝜋′ , STN 𝜋′), such that:

• 𝑡′𝑠 and 𝑡′𝑒 are two nodes either existent or to be added to STN 𝜋′ such that no
node in STN 𝜋′ precedes 𝑡′𝑠 and no node is after 𝑡′𝑒; let us augment STN 𝜋′ with
these two nodes and edges to make them the starting and ending points of 𝜋′.

• STN 𝜋 \STN 𝜋′ is a network in which we remove from STN 𝜋 all nodes and edges
of STN 𝜋′ and replace all edges to and from STN 𝜋′ to edges to 𝑡′𝑠 or from 𝑡′𝑒.

A method 𝑚 for 𝜏 from plan 𝜋 can take 𝜏′ as a subtask in 𝑚 if and only if 𝐴𝜋′ ⊂ 𝐴𝜋

and (STN 𝜋 \ STN 𝜋′) ∪ STN 𝜋′ is an equivalent network to STN 𝜋 .
Checking the latter condition on numerous pairs in Training is quite complex. It

would probably make the learning procedure impractical. A possible simplification
is to entail from each STN 𝜋 a partial order ≺𝜋 on 𝐴𝜋 . In ≺𝜋 we drop from STN 𝜋

synchronisation and numerical constraints and keep only precedence constraints be-
tween actions in 𝐴𝜋 . The embedding relation (≺𝜋 \ ≺𝜋′)∪ ≺𝜋′ , simplifying the
previous one on STNs, is computationally simpler. It may rely on preprocessing each
partial order into the recognizer automata of its subsequences.2 A final processing or
even hand tuning of the learned methods may retrieve from Training some the needed
temporal constraints.

The approach suggested here requires further investigation since it has not been, to
our knowledge, developed and tested.

19.3 Discussion and Bibliographic Notes

Learning durative actions. In [444], a temporal PDDL domain from traces is
learned by using grammar induction of classical plans, considered as regular lan-
guages, equivalent to Deterministic Finite Automata. Given a problem and a plan,
a simulator samples a set of (good and faulty) time stamped plan instances. Action
concurrency is allowed under the Single Hard Envelope (SHE) assumption: a durative
action may concurrently run only with another durative action (called the envelope)
which totally extends over it. The uses a two steps: an atemporal model is first learned
then temporal information is added afterwards.

A based Constraint Satisfaction (CSP) approach is proposed in [389] to learn action
specification from time-stamped traces. The work deals with causal-link relationships,
condition threats and effect interferences. Grounded action and propositions pairs are
associated with CSP variables and constraints with preconditions at start, duration,
and end time. Given this representation, a general CSP solver is used. A solution of
the CSP problem is a domain model consistent with observed traces.

2Note that “𝑏𝑑𝑒” or “𝑎𝑐𝑎” are subsequences of “𝑎𝑏𝑐𝑑𝑎𝑒” but not it substrings. A preprocessing in
𝑂 (𝑛2) builds the subsequence recognizer automata, which runs linearly for recognition.

438 19 Learning for Temporal Acting and Planning

Learning heuristics. Rather surprisingly, there has not been much work on learning
heuristics for temporal planning. The only paper we are aware of is [790], which pro-
poses a domain-independent learning and planning framework that, given a planning
domain and a set of training problems, synthesizes a temporal planning heuristic for
problems in the same domain. Reinforcement learning is used to construct a value
function represented as a neural network, which is mathematically converted to a
planning heuristic. In the proposed framework, a planning domain is defined with
predicates, durative actions with minimal and maximal duration, add effects, delete
effects and numeric effects as usual. In order to learn an approximation of the opti-
mal heuristic, the learning problem is formalized as a model-free RL problem on an
MDP encompassing the search spaces of the training instances. This encoding MDP
represents a set of planning instances to be solved, and the optimal value function
for the MDP is transformed into the optimal heuristic for all the planning problems.
The input to the neural network encoding uses a fixed-size vector representation of
the state of the MDP corresponding to a planning search state (assignment to the
fluents, running actions and time representation) and the planning problem objective
(the goal and the constants of the problem). The idea is to train the neural network
to approximate the optimal value function for the MDP, aiming at generalizing to
problems drawn from the same distribution as the training set.

Learning Chronicles. The chronicle representation is useful for planning as well
as for monitoring and diagnosis. Learning chronicles for the latter case takes as
input annotated logs of time stamp events. The learning approach of [404] relies on
easily computed automata of subsequences and their Cartesian product, together with
a clustering method based on longest common subsequences. Other contributions to
chronicle learning such as [261, 1118] extend this approach with e.g., frequency in-
formation or additional knowledge. A variant of STN embeddings, called continuous-
time dynamic network embeddings, have also been used for learning chronicles [692].
Some of these techniques can be relevant for learning extended temporal methods.

Temporal HTN. A few approaches have developed temporal extensions of HTN,
e.g., as in the SIADEX planner [209]. HDDL2.1 is proposal for a temporal extension
of the HDDL langage [881], where HTN methods are specified with an STN, as
in the extended case of Section 19.2.2. Learning temporal HTN models has not
received much attention. Note however an interesting application of SIADEX which
synthesizes HTN domain models for educational learning from an adequate labelling
of the learning domain repository [210].

Further works based on Neural Nets. Handling spatio-temporal data with neural
nets is a widely studied issues, but only a few contributions consider explicit temporal
variables and constraints. Specific functions to code and solve symbolic temporal
constraints with a neural net have been proposed in [610]. Temporal graph neural
nets have considered in several applications, in particular in social recommendation
systems [76], but in most cases time is simply a sequence of graphs, possibly with
some constraints [339].

19.4 Exercises 439

19.4 Exercises

19.1. Explain the challenge of extending the algorithms for online learning of action
schema in the deterministic case (see Algorithm 4.12) to take into account time.

19.2. Extend Algorithm 4.7 and Algorithm 4.8 presented in Section 13.2 to take into
account durative actions.

19.3. Extend Algorithm 19.1 to deal with concurrent overlapping actions.

Part VII

Motion and Manipulation Models in
Robotics

This movement was perfected after
arranging, calculating and repeated trials.

Ismail al-Jazari, The Book of
Knowledge of Ingenious Mechanical
Devices, circa 1106

Changes in the world are triggered by movements. Acting requires moving. Almost
all our everyday activities are based on motion and/or manipulation actions. Except
for communication and passive sensing, very few tasks can be achieved without
movements. The same holds for robots and embodied system that perceives, acts in
and reasons about the physical world. This part of the book is about acting, planning
and learning with motion and manipulation.

Planning in AI often focuses on the abstract parts of actions, leaving out their
motion/manipulation parts. In several applications, such as logistics (until the recent
development of logistic robots), actions are carried out by human drivers, pilots and
workers whose admirable dexterity and motion capabilities should not be constrained
nor interfered with. In these applications, movements do not need to be planned for.

Planning in robotics often focuses solely on motion and manipulation, leaving out
the task and goal oriented part of planning. Concerns in robotics have been focused
on their programming, allowing robots to find autonomously the adequate movements
for a task, while the task planning is devoted to the human programmer or user.

Robotics and AI have matured enough to allow for handling complex applications,
requiring autonomy in a diversity of tasks and changing environments. This require-
ment demands for the combined capabilities of reasoning on abstract actions as well as
on concrete motion and manipulation steps. In the robotics literature, this is referred
to as ‘task aware planning’, i.e., planning beyond motion and manipulation. In the
AI literature, it is referred to as ‘combined task and motion planning’ (TAMP).

This class of TAMP problems, which includes task, motion and manipulation
planning, is the topic of this part. The challenge in TAMP is the integration of
symbolic models for task planning to metric models for motion and manipulation.

440

Free pre-publication, for personal use only. To be published by Cambridge University Press.

441

Chapter 20 introduces the representations and techniques for achieving and control-
ling motion, navigation, and manipulation actions in robotics. Chapter 21 discusses
motion and manipulation planning algorithms, and their integration with task plan-
ning in TAMP problems. Chapter 22 covers learning for the combined task and
motion-manipulation problems. We generally assume here deterministic and fully
observable domains. We review in the discussion sections techniques that handle the
uncertainty of sensors and actuators.

20 Motion and Manipulation Actions

This chapter sets the foundation for the next two chapters. It introduces the reader
to the use of robotics platforms for the development of acting, planning and learning
functions. The mechanical design of robot platforms is a topic beyond our scope, for
which additional reading is given in the discussion.

The study of motion is deeply rooted in physics and astronomy. It goes back
to Archimedes. Newton, Leibniz, Lagrange, and Euler set the basis of classical
mechanics for the modeling of forces and their effects on mouvements. Motion is
also the topic of other disciplines, such as biomechanics to dynamic control. Robotics
builds up on this broad knowledge to master computational motion, navigation, and
manipulation over different types of devices and environments.

Robotic devices are informally introduced in the following section. Motion prob-
lems and the metric representations with continuous state variables needed for geo-
metric, kinematic and dynamic operational models are then presented. Section 20.3
introduces localization and navigation problems, followed by a section on manipula-
tion problems and their representations. The chapter ends with a general discussion
and a few exercises.

20.1 Robots

A robot is a machine able to perform a set of concrete tasks in a class of environments
by perceiving, moving, manipulating and interacting physically with its environment.1
A robot integrates several types of components, among which:

• actuators, e.g., motors, hydraulic linear actuators, artificial muscles; actuators
transform energy into forces and elementary motions;

• effectors, e.g., joints, grippers, wheels, legs, wings; effectors use actuators to
move the robot in the environment and manipulate objects;

• sensors: the proprioceptive ones estimate the robot state, e.g., odometer, inertial
measurement unit, GPS; the exteroceptive sensors estimate the environment,
e.g., camera, laser, radar, lidar, sonar, infrared, tactile and haptic sensors;

• computation and communication devices;
• sources of energy, e.g., battery, fuel cell.

There are several types of robots corresponding to different classes of applications,
environments and tasks. Well-known examples are:

• Manufacturing robots: arms with adapted sensors attached to fixed positions
for tasks such as painting, welding, assembly, loading and unloading a press or
a machine tool;

1Note that this definition excludes abstract machines such as chatbots.

442
Free pre-publication, for personal use only. To be published by Cambridge University Press.

20.1 Robots 443

• Service robots: mobile platforms in indoor environments for cleaning, surveil-
lance, transportation in a shop, a workshop, a warehouse, or a hospital;

• Exploration robots: ground vehicles in outdoor environments for mapping, soil
analysis, mining, intervention and exploration in remote areas or planets;

• Aerial and underwater drones, for exploration and intervention tasks from the
air or in the sea;

• Personal robots: mobile robots assisting people in professional environments
or at home;

• Medical robots: robots specialized in assisting surgeons, e.g., in “noninvasive”
or high precision surgery.

Other types of robots, such as exoskeletons, that restore or extend the sensory-motor
capability of a person, or robots for agriculture, construction, demining or military
operations give rise to specific developments. Teams of robots or human and robots
bring additional challenges for interaction and cooperation.

A robot performs its tasks through a perception–decision–action loop. For that, it
may be endowed with some level of cognitive autonomy, i.e., a capability to grasp
what it senses and decide on the basis of its perceptions how best to undertake and
pursue its task. The autonomy in energy, tools and other resources may constrain the
task achievement.

A key issue is the diversity of environments and tasks a robot must face, and
how flexible and versatile it must be. When there is no diversity, i.e., for a single
task or a single environment type, a robot can benefit from extended prior modeling
and engineering. It does not need much cognitive autonomy. Numerous successful
applications have been deployed, e.g., robots in the manufacturing industry, vacuum
cleaners, lawn mowers, or autonomous ground logistic vehicles used in warehouses,
hospitals, or electronic cleanrooms.

Diversity of environments and tasks requires either autonomous robots or a human
in the loop to drive the robot. Tele-operated robots benefit from human perception
and deliberation functions. They have been deployed in complex applications, e.g.,
surgery or planet exploration. Challenge are how to provide comprehensive sensory
feedback to a remote human operator to enable her to properly understand the state
of the environment and the task, and how to reliably translate human commands to
the robot actuators (e.g., give a haptic feedback to a surgeon and filter the signal from
the movements of her hands to obtain a precise and safe trajectory of the scalpel and
control its motion with respect to the movement of the operated organ).

Tele-operation, even when desirable, constrains the tasks that can be performed.
The early Mars rovers, Spirit and Opportunity, were initially tele-operated at the
motor control level; communication delays (up to 40 minutes) limited their remote
operation to a few meters per day. Curiosity, then Perseverance rovers benefited
from more autonomous motion; they are still tele-operated at the exploration task
level. When autonomy is not desired, it is often preferable to tele-operate a robot
at the task level, e.g., order it to make a precise line of surgical sutures, or to close
an underwater valve, but leave it up to the robot to translate the task into precise
motion and controlled commands, under the supervision of the operator. Here also,
the state of the art has reached some maturity, illustrated for example by robots used

444 20 Motion and Manipulation Actions

in hazardous environments. Telepresence robots are another illustration of task-level
tele-operation. These are mobile platforms carrying away the image and voice of
a user, giving her a visual and audio feedback, capable of simple tasks, e.g., find a
person, asking for an object and bringing it back.

The cognitive autonomy of a robot becomes critical when the diversity of environ-
ments and tasks is important, precluding extensive prior engineering for all the tasks,
and when tele-operation is too costly or not feasible (e.g., for a fleet of coordinated
drones). However, cognitive autonomy is not a binary property, either true or false.
The more a robot needs to be versatile and adaptive to its missions, the more it needs
to be autonomous. For example, autonomy at the task level would allow a robot
to perform precisely defined tasks in its usual range of environments. Autonomy
at the mission level would permit a robot to be given a mission in general terms,
at a high level of abstraction, possibly with a utility function, e.g., find and rescue
injured persons in the area. The mission takes place in an open environment, possibly
unknown and unusual to the robot, and may involve a collection of tasks. Human
interactions, as in personal robots, add specific uncertainty, and variability constraints
in the environments and tasks.

Autonomy at the mission level is easier when the environment is variable, but the
tasks are well structured and constrained. Driverless cars are a good illustration.
Autonomous underwater vehicles are another example, e.g., experimental AUVs have
been launched for a full day mission for mapping, sampling, oceanographic and
biological measurement.

Robotics research relies significantly on experiments. The advance of the field
has been conditioned by the availability of inexpensive reliable platforms with broad
functionalities that are easily deployable and programmable. Significant progress
has been witnessed in the last decade. A good illustration is provided by humanoid
robots. Many research groups experiment with complex biped robotic platforms of
human size, e.g., the ‘Pyrène’ robot in Figure 20.1. These robots demonstrate good
motor skills as well as impressive mechatronics. Platforms on wheels with two arms,
sometimes with an articulated trunk, also illustrate rich sensory-motor capabilities.
Platforms such as the ‘Justin’ robot (Figure 20.6(a)) are able for example to catch
simultaneously two balls thrown from few meters, to fold laundry or open doors.

Several research competitions stimulated the progress of the field. In addition to
autonomous driverless cars, there are several other competitions, e.g., in robotics
assembly, aerial robotics or humanoid robotics. The popular “RoboCup” competition
has several tracks, e.g., logistics with interesting workshop servicing tasks. Some
competitions started with oversimplified “micro-worlds” problems. However, their
effects in attractiveness, visibility, team commitment, and progress measurement
remain largely beneficial to the progress of robotics.

20.2 Motion

To control its movements, a robot needs to represent the shape of its environment and
of its limbs, and, for the latter, to represent how they are articulated, can move and
what forces they can exert. Representing shapes is the topics of geometry; motion is

20.2 Motion 445

(a)
Fig. 3. (left) Pyrène folding its arms in front. (right) Planning a
manipulation behavior

Joint Human body WALK-MAN TALOS ATLAS
Hip pitch -120.0,+ 10.0 -120.0,+ 60.0 -120.0,+ 45.0 -92.38, +37.68
Hip roll -40.0, + 30.0 - 50.0,+ 40.0 -30.0, + 30.0 -30.0, +30.0
Hip yaw -35.0, + 35.0 - 90.0,+ 50.0 -20.0, + 90.0 -10.0, +45.0

Knee 0.0, +145.0 0.0,+140.0 0.0, +150.0 0.0, +135.0
Ankle pitch -40.0, + 15.0 - 80.0,+ 60.0 -75.0, + 45.0 -57.0, +40.0
Ankle roll -30.0, + 30.0 - 45.0,+ 45.0 -30.0, + 30.0 -45.0, +45.0

TABLE II
RANGE OF THE LEG JOINTS OF DIFFERENT ROBOTS.

2) Shoulders: In contrast to HRP-2 and HRP-2 Kai,
Pyrène has been designed to have a maximum manipulability
in its front in order to perform drilling and screwing motions.
For this reason, the first axis of the shoulder, instead of being
along the pitch axis, is along the yaw axis. In this way, when
both shoulders are folded in the front (see Fig. 3-left) the
robot has a width of 550 mm instead of 775 mm. It becomes
then more narrow than HRP-2 Kai. In addition, HRP-2 has
only 6 DoFs in its arms, thus no redundancy to control
the 6d pose of the end-effector. While this simplifies the
computation of the inverse kinematics, it severely limits the
manipulability if additional constraints need to be handled.
The generalization of numerical methods to deal with the
problem of redundancy makes now the interest of analytical
solution weaker.

3) Hip and knee: From the kinematic viewpoint the
cantilever structure of HRP-2 is interesting to alternatively
put one foot in front of the other when going through narrow
spaces. However, this structure is not ideal for legs with
higher-powered motors because it puts more stress on the
mechanical structure and increases the width of the robot.
For these reasons, the two legs, although close to each other,
are designed not to collide while spanning a wide range of
motion.

B. Batteries

Pyrène is equipped with Li-CNM (Cobalt-Nickel-
Manganese) batteries, which are able to deliver 74V DC
with a capacity of 15 Ah. Compared to HRP-2 Kai the

motor

Bm, Dm

Harmonic drive

torque sensor

+ fixations

Bts, Dts link

⌧m

✓m = r✓ts

khd ⌧ts ✓ts kts ⌧l ✓l

Fig. 4. Structure of Pyrène actuator.

kts ⇡ 270 KNm/rad Torque sensor stiffness
khd ⇡ 540 KNm/rad HD stiffness

Bts = 0.033 kgm2 Inertia of the torque sensor
Bm Motor inertia

Dts = 0 Damping of the torque sensor
Dm = 0 Motor Damping

Tfr Friction of the HD
Km = 0.1 Motor torque constant
r = 100 HD reduction ratio

✓ts Position of the torque sensor
✓m Position of the motor
⌧l Load torque

R = 200 m⌦ Armature resistance
V Armature Voltage

Kb = 80 rpm/V Back-EMF constant
ia motor current

TABLE III
LIST OF ACTUATOR PARAMETERS.

capabilities of the batteries are 50 % higher. Finally, if
powerful motions are needed, the batteries are also able to
deliver peaks of 150 A. These capabilities are driven by the
work of Urata, which led to the S-One robot [9].

C. Actuators

The structure of Pyrène actuators is depicted in Fig. 4. A
brushless motor is connected to a Harmonic Drive (HD),
which is itself connected to a torque sensor. Finally the
torque sensor is connected to a link. Two high-precision
encoders (19 bits) measure the motor and joint positions,
✓m and ✓l respectively. This relationship gives rise to the
following set of equations linking the motion and the motor
parameters:

kts(✓ts � ✓l) = ⌧l

Bts✓̈ts + Dts✓̇ts + khd(✓l � ✓m
r) = ⌧ts

Tfr(⌧m, ⌧l, ✓m) + Bm✓̈m + Dm✓̇m � khd(
✓m
r � ✓ts)

= Kmia
V
R �

Kb
R ✓̇m = ia

Kmia = ⌧m

(1)
where the parameter definitions are given in Table III.

This model is very similar to the one found in [21]. In
practice we found out on HRP-2 that most of the problems
arised from: power limitation (P = V ia), temperature
overheating, limitation in torques from the motor (⌧m) or
the HD (⌧ts). The maximum peak motor torque given by the
data sheet is usually higher than the maximum peak torque
for the HD. In addition the peak motor and HD torques can

(b)

Figure 20.1. The ‘Pyrène’ robot (a) climbing stairs and (b) performing a manipulation
task with coordinated whole body motion planning [1054, 850].

described by kinematics, forces by dynamics. This section introduces the reader to
the basics of these three areas. For simplicity, we assume a static environment and
focus on the motion of the robot limbs and the movable objects it is in contact with.2

20.2.1 Geometry

Shapes are modeled with a geometric description of the following sets:

• W is the set of fixed and movable parts of a domain, i.e., walls, boundaries,
pieces of furniture, obstacles and objects. Let O ⊆ W be the set of movable
parts of the domain, i.e., objects and tools of interest to the task that can be
grasped, pushed, and moved.

• ℜ is the set of limbs and effectors (e.g., grippers, hands) of the robot performing
the task.

These sets are composed of three-dimensional parts described with CAD geometric
models in R3.

Convex polyhedra. A CAD model of rigid parts relies on the specification of
convex polyhedra. A polyhedron is described with a finite set of vertices, edges
and faces. Each vertex is a point in R3 located in space with respect to a Cartesian
reference frame F . An edge is an ordered pair of vertices. A face is a list of vertices,
ordered counterclockwise with respect to the outside normal to the face (vector ®𝑛 in

2In human-robot interaction and other domains, the robot motion has to take into account the movements
of others.

446 20 Motion and Manipulation Actions

Figure 20.2), together with the linear equation of the plane of this face in a Cartesian
frame. An edge as (𝑣2, 𝑣3) appears in the adjacent face in the opposite order.

3.2. RIGID-BODY TRANSFORMATIONS 97

Yaw

z

y

x

PitchRoll

γ

β

α

Figure 3.8: Any three-dimensional rotation can be described as a sequence of yaw,
pitch, and roll rotations.

represents a rotation followed by a translation (not the other way around). Each
primitive can be transformed using the inverse of T , resulting in a transformed
solid model of the robot. The transformed robot is denoted by A(xt, yt, θ), and
in this case there are three degrees of freedom. The homogeneous transformation
matrix is a convenient representation of the combined transformations; therefore,
it is frequently used in robotics, mechanics, computer graphics, and elsewhere.
It is called homogeneous because over R3 it is just a linear transformation with-
out any translation. The trick of increasing the dimension by one to absorb the
translational part is common in projective geometry [804].

3.2.3 3D Transformations

Rigid-body transformations for the 3D case are conceptually similar to the 2D case;
however, the 3D case appears more difficult because rotations are significantly more
complicated.

3D translation The robot, A, is translated by some xt, yt, zt ∈ R using

(x, y, z) "→ (x + xt, y + yt, z + zt). (3.36)

A primitive of the form

Hi = {(x, y, z) ∈ W | fi(x, y, z) ≤ 0} (3.37)

is transformed to

{(x, y, z) ∈ W | fi(x− xt, y − yt, z − zt) ≤ 0}. (3.38)

The translated robot is denoted as A(xt, yt, zt).

¬
v1

v2

v3
v4

<latexit sha1_base64="BmTsYoBFnYlRT2wvkHvXdxDaPjQ=">AAAFkXicjVTbjtMwEA2XwlLu8MiLRcsKEFQN0GWXpwokBIIHEOwuoq6Q404aq7YTbKe0ssxX8Ar/xd9gp+mqWRYJS1HsMzNnzkwmTgrOtOn3f586feZs69z5rQvti5cuX7l67fqNA52XisI+zXmuPiVEA2cS9g0zHD4VCohIOBwmsxfBfjgHpVkuP5plAWNBppKljBLjoc9di+dAkXTdL9c6/V6/WmhjM+jHezsximukE9Xr3ZfrZ7/iSU5LAdJQTrQexf3CjC1RhlEOro1LDQWhMzKFkd9KIkCPbSXZoTsemaA0V/6RBlXoZoQlQgtisgf+bTIRXnopEocaTsHD5DnXrt1MZ9LdsWWyKA1IusqWlhyZHIUmoAlTQA1f+g2hinnBiGZEEWp8qxpUdqpIkTG6aNRjodAmLyZpE11ovwOvsY01+E8hpyaz2MDCfGMTkzm7R0VQKuEbyDlTuQzNs29ff/joLE5gyqQN39wffPGcd3FScg6m69oIIbtJyiE1gigf4exAiMoBbToURHlhzvZPMjIDorLGJ1l9ZUehrk4NcrKSdoL+guYTcBa1VzQ0L6Xvoy3CTHqWwFAXZ4gviCg3SsZ2aPEMlES9XRBODe13x4c2PPjBKina3sZ49HDQG8BiHMidDUxByZongCs9NBeCeAsuMiATN4rHlTNGWJTcf9+cl0Lax86GHM52YncUuKm2jRVsspkM6jKwyj1Uux1PqgpOEuBHaRWk2kBxjNsbsmpCLE4Z5xVQxQU5/nC3GhVmbIi/X2m893cmb6vy/I937HXjbY/eacD9Ndzs3AyWFTPGnfhZMDftYUZX+u/b2A+ya5r1fBUcVOm00eHaw4+rCPO6dqnPx3hSNa1dfG0vFZNTcLj+s/wltb6J0L83B4968U7vyftHneFufV1tRbei29HdKI6eRsPoVfQu2o9oJKMf0c/oV+tma681bD1fuZ4+VcfcjBqr9eYPJCfqIA==</latexit>

~n

<latexit sha1_base64="WgQJ/PnWXq674c3kP7uaOHWpIU8=">AAAFlHicjVRbaxQxFJ5qV+t6axV88SW4balSl51qtYoPC8WiIFKxF2GzlEz2zE5okpkmmV4I8W/4qj/Lf2MyOy07bR8MhDk5l+985+RMkoIzbXq9vzM3bs62bt2eu9O+e+/+g4fzC4/2dF4qCrs057n6kRANnEnYNcxw+FEoICLhsJ8cbgb7/jEozXK5Y84KGAoylixllBivGi5iQUxGCbdbbvFgvtPr9qqFrgpxLXSiem0fLMwe4VFOSwHSUE60HsS9wgwtUYZRDq6NSw0FoYdkDAMvSiJAD23F2qElrxmhNFd+S4Mq7XSEJUIHdqv+azIRPvpMJA41nIKHyXOuXbuZzqQbQ8tkURqQdJItLTkyOQp9QCOmgBp+5gVCFfOEEc2IItT4bjWg7FiRImP0tFGPhUKbvBilTe2p9hJ4jm2swd+GHJvMYgOn5oSNTObsOyoCUwknII+ZymVonv3y+fuOsziBMZM2XLs/+OI5X8RJyTmYRddGCNlpUA6pEUT5CGfXhagc0LRDQZQn5mzvOiMzICprfJ3VV3YR6urUIEcTatfwL2g+AmdRewJD81L6PtoijKVHCQh1cYb4gohyg2Ro+xYfgpKouwHCqb796Xjfho1XJ0nR8jLGg5fr3XU4HQZwZwNSYHKOE5QTPjQXgngLLjIgIzeIh5UzRliU3N9vzksh7StnQw5nO7G7CJxm28YKptFMBnUZWOVeVbtdTqoKThLgF2kVpNpAcQnbG7JqQixOGeeVoooLdPxhpRoVZmyIf1FxfH41k7dVef7HO/a88bLXLjXUvXN1s3OHcFYhY9yJ3wdz0x5mdML/hY39ILumWR9PggMrnTY6XHv4cRVhXs9d6vMlnFSNaxdf25ZicgwO13+Wf6Tiy0/SVWFvrRu/6b7+ttbpr9XP1Vz0NHoWrURx9DbqR5+i7Wg3otFR9Cv6Hf1pPWl9aG22Pk5cb8zUMY+jxmp9/QcOEut2</latexit>F

<latexit sha1_base64="U3QhhqFLKj19FiaITM4rKdt+3VI=">AAACzHicfVHLbhMxFHWGVxleLSzZWCRIiEU0E9TS7iqxAQmhIpK2KB5VHudOYtX2jGxPoLK85QfYwifwQfwNNw9EigpHsnR1zrlXx/eWjZLOZ9nPTnLt+o2bt7Zup3fu3rv/YHvn4bGrWytgJGpV29OSO1DSwMhLr+C0scB1qeCkPH+10E/mYJ2szdBfNFBoPjWykoJ7pD722JzbZiZ7Z9vdrJ8tQTeK3Sw/2Mtpvma6ZI2js53ODzapRavBeKG4c+M8a3wRuPVSKIgpax00XJzzKYyxNFyDK8IycaRPkZnQqrb4jKdLdrMjcO3chS7Rqbmfub+1BXmVNm59tV8EaZrWgxGRpikz8AnMXNraLLKGt28+DJEPrISpNGGx40gDw5FK9VjZKgW+F1OKQBZwo2bqZ4EpqLzmFntieKH1ykE3HQ23GCSG/u6VsvSg/6f7uvkjx4gJwUxW+eLqG6LWmiPH3DyO8wJb4LN3Vejm6LhkGMbAZg6XAs9xnsB5eODfV6T/Lo4H/Xyvn78fdA8H61NvkcfkCXlGcvKSHJLX5IiMiCCafCXfyPfkXeKTkMSVNemsex6RS0i+/ALjCeCV</latexit>'

<latexit sha1_base64="kzQvIajsUWY+9rKx0lP/0h86sno=">AAACy3icfVHLbhMxFHWmPMrwamHJxiJBQiyimVQtdFepG5BAKiJpI8WjyuPcSazantHYk9K6XvIDbOEX+CD+hpsHIkWFI1m6Oufcq+N780pJ65LkZyvauHX7zt3Ne/H9Bw8fPd7afnJsy6YWMBClKuthzi0oaWDgpFMwrGrgOldwkp8dzvWTGdRWlqbvLirINJ8YWUjBHVLDDuOqmvLO6VY76SYL0LViN0n391Karpg2WeHodLv1g41L0WgwTihu7ShNKpd5XjspFISYNRYqLs74BEZYGq7BZn4RONAXyIxpUdb4jKMLdr3Dc23thc7Rqbmb2r+1OXmTNmpc8Sbz0lSNAyMCjWNm4BzMTNalmWf179996iPvWQ4Tafx8xYF6hiOV6rC8UQpcJ8QUgSzgQs3ETT1TUDjNa+wJfkfrpYOuOypeY5Dgu7s3ytKB/p/uyuqPHAImBDNe5gvLb4hSa44cs7MwSjNsgc/OFr6douOaoR88m1pcCrzCeQLn4YF/X5H+uzjuddO9bvqx1z7orU69SZ6R5+QlSclrckDekiMyIIIo8pV8I9+jD5GNLqOrpTVqrXqekmuIvvwCgEjgBw==</latexit>↵

<latexit sha1_base64="tMctuwJcS2ci1E/EZKFnJUEiAuY=">AAACynicfVHLbhMxFHWmPMrwamHJxiJBQiyimVQtsKvEBqQuWpE0lTKjyuPcSazYnpHtCUSWd/0BtvANfBB/w82jIkWFI1m6Oufcq+N7i1oK65LkVyvauXP33v3dB/HDR4+fPN3bf3Zuq8ZwGPBKVuaiYBak0DBwwkm4qA0wVUgYFrMPS304B2NFpftuUUOu2ESLUnDmkBp2sgIc61zutZNusgLdKg6T9P1RStMN0yYbnF7ut35m44o3CrTjklk7SpPa5Z4ZJ7iEEGeNhZrxGZvACEvNFNjcr/IG+gqZMS0rg087umK3OzxT1i5UgU7F3NT+rS3J27RR48p3uRe6bhxoHmgcZxq+gJ4LU+llVn/y6XMfeY//ngjtlxsO1Gc4UkpcRiMluE6IKQJZwH3qiZv6TELpFDPYE/yBUmsH3XbUzGCQ4LuHt8rCgfqf7qr6jxwCJgQ9XucL62/wSimGXGbnYZTm2AJfnS19O0XHDUM/+GxqcSnwBudxnIcHvr4i/Xdx3uumR930rNc+7m1OvUtekJfkNUnJW3JMPpJTMiCczMg38p38iE4iEy0iv7ZGrU3Pc3ID0dVvXBffkw==</latexit>

�

<latexit sha1_base64="K6kBHEXkj6n5FVR2PLRCD73Thi8=">AAAFmHicjVTbbtQwEA2FhbLcCrzBi8WWqlRltSm0FJ5WQuIi8cCtBWm9qhzvZGPVl2A7vcgyP8IrfBR/g51Nq00pEpai2GdmzpyZTJyVnBk7GPy+sHDxUufylcWr3WvXb9y8tXT7zq5RlaawQxVX+mtGDHAmYccyy+FrqYGIjMOXbP9ltH85AG2Ykp/tcQljQaaS5YwSG6C9pVvLWBBbUMLdK7+nlveWeoP+oF5obrM5SJ9vpShtkF7SrPd7ty99wxNFKwHSUk6MGaWD0o4d0ZZRDr6LKwMloftkCqOwlUSAGbtauUcPAzJBudLhkRbV6HyEI8JEfevhbQsRX+ZYZB61nKKHVYob322ns/n22DFZVhYknWXLK46sQrEXaMI0UMuPw4ZQzYJgRAuiCbWhYy0qN9WkLBg9atXjoDRWlZO8jR6ZsIOgsYsNhC8ip7Zw2MKRPWQTW3j3nIqoVMIhyAOmlYzNc+/efvrsHc5gyqSLnz4cQvGcL+Os4hzssu8ihNw8KYfcCqJDhHebQtQOaN6hJDoI825wnpFZELU1Pc8aKjsN9U1qkJOZtHP0l1RNwDvUndFQVcnQR1fG0QwskaEpzpJQENF+lI3d0OF90BL1t0F4PXTfPR+6+OD1WVK0soLx6PFmfxOOxpHcu8gUlZzwRHCmhyohSLDgsgAy8aN0XDtjhEXFw/dVvBLSPfEu5vCul/rTwHm1Xaxhns0W0JSBtQpQ43Y2qS45yYCfptWQGwvlGe5gKOoJcThnnNdAHRflhMNqPSrMuhi/Vmt89HemYKvz/I93GnTjlYA+bMGDE7jduX04rpkx7qUvorltjzM607/m0jDIvm02B7PgqMrkrQ43HmFcRZzXE5fmfIYn19PGJdT2SjM5BY+bPytcUic3Efr3Znejn271n37Y6A03mutqMbmfPEhWkzR5lgyTN8n7ZCehSZX8SH4mvzr3OsPO687bmevChSbmbtJanY9/AOPP7J8=</latexit>Fo

Figure 20.2. A simple convex polyhedron. The vertices, ordered edges and normal to
the upper face are marked; a local Cartesian frame F𝑜 attached to the polyhedron and a
global frame are shown.

Let 𝑓𝑖 (𝑥, 𝑦, 𝑧) = 𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖𝑧 + 𝑑𝑖 be the equation in a frame F of a planar face 𝑖,
i.e., 𝑓𝑖 (𝑥, 𝑦, 𝑧) = 0 for the points of the face and 𝑓𝑖 (𝑥, 𝑦, 𝑧) > 0 for any point in space
above the face with respect to the normal to this face. A convex polyhedron 𝑜 defined
with a set of faces 𝑓𝑖 , for 𝑖 ∈ 𝐼𝑜, is the solid corresponding to the set of 3D points

𝑜 = {(𝑥, 𝑦, 𝑧) in F | ∀𝑖 ∈ 𝐼𝑜, 𝑓𝑖 (𝑥, 𝑦, 𝑧) ≤ 0}. (20.1)

A non-convex polyhedron can be defined as the union of a finite set of possibly
overlapping convex polyhedra. The decomposition of a non convex polyhedron into
convex ones is not unique. It allows approximating any complex shape with cavities
and holes (with a caveat for the sense of the normals of polyhedral holes). Other
primitives than the polyhedron can also be used if needed in more complex CAD
models, e.g., cylinders, spheres, curved surfaces with splines and quadrics. Note that
the geometry of a domain may also rely partly on bitmap models. These decompose
with some resolution a surface or a volume into a 2D or a 3D grid, each cell of
which being associated with a scalar 𝑣 about the content of the cell. For example,
in a numerical model of an outdoor terrain, 𝑣 gives the elevation of each cell, in an
occupancy grid, 𝑣 may approximate the probability of having an obstacle in a cell.
Bitmaps can be conveniently acquired from a robot range sensors.

Pose in space. A rigid object 𝑜 defined with a polyhedron can be precisely positioned
in the 3D Euclidian space with a vector of 6 parameters q = [𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝜑], called
the pose of 𝑜 in space. The pose vector gives the coordinates in a global Cartesian
frame F of a reference point in 𝑜, and three angles, called roll, pitch and yaw, which
define the orientation of 𝑜 in F . These 6 parameters are called the degrees of freedom
(dof) of 𝑜 in space (see Figure 20.2).

It is convenient to associate with an object 𝑜 a local Cartesian frame F𝑜 attached
to 𝑜 in a reference point. The pose vector q = [𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝜑] can be defined as the

20.2 Motion 447

position and orientation of the local frame F𝑜 in the global frame F . Any point in 𝑜
is positioned in the local frame F𝑜 given the geometric model of 𝑜. The coordinates
of this point in a global F are computed from its coordinate in F𝑜 and its pose q with
simple rotation and translation operations as illustrated next.

<latexit sha1_base64="N9mn8mbU0gIRys4TOmvXD4dHoII=">AAAFlHicjVRtaxQxEN5qT+v51ir4xS/Bq6VKPW6rra344aBYFEQU+yJcjpLNzd6GJtltku0LIf4Nv+rP8t+Y7G3Lba1gYNnkmZlnnpmdTVJwpk2v93vm2vXZ1o2bc7fat+/cvXd/fuHBns5LRWGX5jxX3xKigTMJu4YZDt8KBUQkHPaTw61g3z8GpVkud8xZAUNBxpKljBLjoeEiFsRklHC77RYP5ju9bq9aaGqz1os312MU10gnqtfng4XZIzzKaSlAGsqJ1oO4V5ihJcowysG1camhIPSQjGHgt5II0ENbqXboqUdGKM2Vf6RBFTodYYnQQd2Kf5tMhJc+E4lDDafgYfKca9dupjPpxtAyWZQGJJ1kS0uOTI5CH9CIKaCGn/kNoYp5wYhmRBFqfLcaVHasSJExetqox0KhTV6M0iZ6qv0OvMY21uC/hhybzGIDp+aEjUzm7CYVQamEE5DHTOUyNM9+/PB1x1mcwJhJGz67P/jiOV/ESck5mEXXRgjZaVIOqRFE+Qhn14SoHNC0Q0GUF+Zs7yojMyAqa3yV1Vd2Eerq1CBHE2lX6C9oPgJnUXtCQ/NS+j7aIoylZwkMdXGG+IKIcoNkaPsWH4KSqLsBwqm+/e5434YHr0ySoqUljAcv1rprcDoM5M4GpqDknCeAEz00F4J4Cy4yICM3iIeVM0ZYlNx/35yXQtqXzoYcznZidxE4rbaNFUyzmQzqMrDKPVS7XU6qCk4S4BdpFaTaQHGJ2xuyakIsThnnFVDFBTn+sFyNCjM2xD+vND77O5O3VXn+xzv2uvGSR5824N453OzcIZxVzBh34jfB3LSHGZ3of25jP8iuadbHk+CgSqeNDtceflxFmNdzl/p8iSdV49rF17atmByDw/Wf5S+p85sI/Xuzt9qN17uvvqx2+qv1dTUXPY6eRMtRHL2O+tH76HO0G9HoKPoR/Yx+tR613ra2Wu8mrtdm6piHUWO1Pv0BfODrjA==</latexit>F

<latexit sha1_base64="50yw60cnyQT64Je5NaWD01ln850=">AAAFlXicjVRtaxQxEN5qT+v51uoHP/gleG3VUo/bamsrCAdKURBUtLZwOUs2N3sbmmTXJNsXQvwdftV/5b8x2duW21rBwLLJMzPPPDM7m6TgTJte7/fMpcuzrStX5661r9+4eev2/MKdLzovFYUdmvNc7SVEA2cSdgwzHPYKBUQkHHaTg1fBvnsISrNcfjYnBQwFGUuWMkqMh74uYkFMRgm32+7h4v58p9ftVQtNbdZ78dZGjOIa6UT1+rC/MPsNj3JaCpCGcqL1IO4VZmiJMoxycG1caigIPSBjGPitJAL00FayHVryyAilufKPNKhCpyMsETrIW/Vvk4nw0icicajhFDxMnnPt2s10Jt0cWiaL0oCkk2xpyZHJUWgEGjEF1PATvyFUMS8Y0YwoQo1vV4PKjhUpMkaPG/VYKLTJi1HaRI+134HX2MYa/OeQY5NZbODYHLGRyZzdoiIolXAE8pCpXIbm2XdvP312FicwZtKG7+4PvnjOF3FScg5m0bURQnaalENqBFE+wtl1ISoHNO1QEOWFOdu7yMgMiMoaX2T1lZ2Fujo1yNFE2gX6C5qPwFnUntDQvJS+j7YIc+lZAkNdnCG+IKLcIBnavsUHoCTqboJwqm+/O9634cGrk6RoeRnjwZP17jocDwO5s4EpKDnlCeBED82FIN6CiwzIyA3iYeWMERYl998356WQ9qmzIYezndidBU6rbWMF02wmg7oMrHIP1W7nk6qCkwT4WVoFqTZQnOP2hqyaEItTxnkFVHFBjj88qkaFGRviVyqNj//O5G1Vnv/xjr1uvOzRpQbcO4WbnTuAk4oZ4078Ipib9jCjE/0rNvaD7JpmfTgJDqp02uhw7eHHVYR5PXWpz+d4UjWuXXxt24rJMThc/1n+kjq9idC/N1/WuvFG99nHtU5/rb6u5qL70YPoURRHz6N+9Cb6EO1ENFLRj+hn9Kt1r/Wy9bq1PXG9NFPH3I0aq/X+D3LG670=</latexit>

F 0
<latexit sha1_base64="sKUtsd0ENheFjFRV7PKwDtVKLG4=">AAAFj3icjVTbbtQwEE2hC2W5tfDIi8W2VanKalPojQe0EhKiEg9F9CatV5XjnWys2k6wnV5kmY/gFX6Mv8HOptWmFAlLUewzM2fOTCZOCs606fV+z9y5O9u6d3/uQfvho8dPns4vPDvUeakoHNCc5+o4IRo4k3BgmOFwXCggIuFwlJx+CPajM1Ca5XLfXBYwFGQsWcooMR46XsSEFxlZPJnv9Lq9aqGpzUYv3tmMUVwjnaheeycLs9/wKKelAGkoJ1oP4l5hhpYowygH18alhoLQUzKGgd9KIkAPbSXYoSWPjFCaK/9Igyp0OsISoQUx2Zp/m0yEl74UiUMNp+Bh8pxr126mM+n20DJZlAYknWRLS45MjkIL0IgpoIZf+g2hinnBiGZEEWp8oxpUdqxIkTF60ajHQqFNXozSJnqh/Q68xjbW4D+EHJvMYgMX5pyNTObsDhVBqYRzkGdM5TI0z37e/brvLE5gzKQNX9wffPGcL+Kk5BzMomsjhOw0KYfUCKJ8hLMbQlQOaNqhIMoLc7Z3m5EZEJU1vs3qK7sOdXVqkKOJtFv0FzQfgbOoPaGheSl9H20RJtKzBIa6OEN8QUS5QTK0fYtPQUnU3QbhVN9+d7xvw4PXJknR8jLGg9cb3Q24GAZyZwNTUHLFE8CJHpoLQbwFFxmQkRvEw8oZIyxK7r9vzksh7RtnQw5nO7G7DpxW28YKptlMBnUZWOUeqt1uJlUFJwnw67QKUm2guMHtDVk1IRanjPMKqOKCHH9YqUaFGRviVyuNr/7O5G1Vnv/xjr1uvOzRpQbcu4KbnTuFy4oZ4078Lpib9jCjE/2rNvaD7JpmfTYJDqp02uhw7eHHVYR5vXKpzzd4UjWuXXxtHxWTY3C4/rP8JXV1E6F/bw7Xu/Fm9+2X9U5/vb6u5qIX0ctoJYqjragffYr2ooOIRjz6Ef2MfrUWWlut963+xPXOTB3zPGqs1u4f+cjpSA==</latexit>↵

<latexit sha1_base64="cPJllvjjGqvIFnm2iWNCpYUdTuU=">AAAFjHicjVRdaxQxFB2rq3X9qvroS3DboqUuM9XWqggLgij4UNF+wGYpmeydndAkMyaZdkuIf8FX/Wn+G5PZadmpFQyESe4999xzkztJS860iePfVxauXutcv7F4s3vr9p2795buP9jTRaUo7NKCF+ogJRo4k7BrmOFwUCogIuWwnx69C/79Y1CaFfKrOS1hJMhEsoxRYrxpd3l6GC8fLvXiflwPNLfYjJNXWwlKGksvasbO4f1r3/C4oJUAaSgnWg+TuDQjS5RhlIPr4kpDSegRmcDQLyURoEe2VuvQireMUVYoP6VBtXU+whKhBTH5uv+aXISPPhWpQy1QQJii4Np12+lMtj2yTJaVAUln2bKKI1OgUD8aMwXU8FO/IFQxLxjRnChCjT+lFpWdKFLmjE5b9VgotSnKcda2TrVfgdfYxRr8LciJyS02MDUnbGxyZ19REZRKOAF5zFQhw+HZTx+/fHUWpzBh0obr9htfPOfLOK04B7PsugghO0/KITOCKB/h7KYQNQDNA0qivDBn48uczICovcllXl/ZeahrUoMcz6Rdor+kxRicRd0ZDS0q6c/RlqEdPUtgaIozxBdElBumIzuw+AiURP1tEE4N7HfHBzZMvD5LilZXMR4+2+xvwnQUyJ0NTEHJGU8wzvTQQgjiPbjMgYzdMBnVYIywqLi/34JXQtrnzoYczvYSdx44r7aLFcyzmRyaMrAqvKmBXUyqSk5S4OdpFWTaQHmB2zvyukMszhjntaGOC3L85kndKszYEL9Wa3z6dybvq/P8DzrxuvGqt660zPGZuX1yR3BaM2PcS14Hd9sfenSmf80mvpFd262PZ8FBlc5aJ9wgfLuK0K9nkGZ/gSdTkwbia3uvmJyAw82f5R+ps5cI/Xuxt9FPtvovPm/0BhvNc7UYPYoeR0+iJHoZDaIP0U60G9GIRT+in9Gvzt3Oi86bztsZdOFKE/Mwao3O+z+BlefP</latexit>x0

<latexit sha1_base64="C5omv02Ylzf8rSS52n53ua4120w=">AAAFjHicjVRdaxQxFB2rq3X9qvroS3DboqUuM9XWqggLgij4UNF+wGYpmeydndAkMyaZtkuIf8FX/Wn+G5PZadmpFQyESe4999xzkztJS860iePfVxauXutcv7F4s3vr9p2795buP9jTRaUo7NKCF+ogJRo4k7BrmOFwUCogIuWwnx69C/79Y1CaFfKrmZYwEmQiWcYoMd60uzw9jJcPl3pxP64HmltsxsmrrQQljaUXNWPn8P61b3hc0EqANJQTrYdJXJqRJcowysF1caWhJPSITGDol5II0CNbq3VoxVvGKCuUn9Kg2jofYYnQgph83X9NLsJHT0XqUAsUEKYouHbddjqTbY8sk2VlQNJZtqziyBQo1I/GTAE1fOoXhCrmBSOaE0Wo8afUorITRcqc0dNWPRZKbYpynLWtp9qvwGvsYg3+FuTE5BYbODUnbGxyZ19REZRKOAF5zFQhw+HZTx+/fHUWpzBh0obr9htfPOfLOK04B7PsugghO0/KITOCKB/h7KYQNQDNA0qivDBn48uczICovcllXl/ZeahrUoMcz6Rdor+kxRicRd0ZDS0q6c/RlqEdPUtgaIozxBdElBumIzuw+AiURP1tEE4N7HfHBzZMvD5LilZXMR4+2+xvwukokDsbmIKSM55gnOmhhRDEe3CZAxm7YTKqwRhhUXF/vwWvhLTPnQ05nO0l7jxwXm0XK5hnMzk0ZWBVeFMDu5hUlZykwM/TKsi0gfICt3fkdYdYnDHOa0MdF+T4zZO6VZixIX6t1vj070zeV+f5H3TideNVb11pmeMzc/vkjmBaM2PcS14Hd9sfenSmf80mvpFd262PZ8FBlc5aJ9wgfLuK0K9nkGZ/gSdTkwbia3uvmJyAw82f5R+ps5cI/Xuxt9FPtvovPm/0BhvNc7UYPYoeR0+iJHoZDaIP0U60G9GIRT+in9Gvzt3Oi86bztsZdOFKE/Mwao3O+z+GvOfQ</latexit>y0

Figure 20.3. Geometric positioning of a 2D frame

Example 20.1. Consider for simplicity, a 2D local Cartesian frame F ′ located with
respect to a global frame F with a translation of its origine (𝑥0, 𝑦0) and a rotation 𝛼
in the trigonometric sense (Figure 20.3). In 2D, the pose of F ′ with respect to F is
defined with a vector q = [𝑥0, 𝑦0, 𝛼]. A point of coordinates [𝑥′, 𝑦′] in F ′ has the
coordinates [𝑥, 𝑦] in F that are computed as follow:

𝑥 = 𝑥0 + 𝑥′ cos𝛼 − 𝑦′ sin𝛼
𝑦 = 𝑦0 + 𝑥′ sin𝛼 + 𝑦′ cos𝛼

In matrix notation:

[𝑥, 𝑦]⊤ = 𝜌𝛼 × [𝑥′, 𝑦′]⊤ + [𝑥0, 𝑦0]⊤, for 𝜌𝛼 =

[
cos𝛼 − sin𝛼
sin𝛼 cos𝛼

]
.

If F ′ is attached to a polygonal object 𝑜 moving in F , every vertex, edge and point
of 𝑜 is fixed and located in F ′ with the equation of 𝑜. It can be positioned in F with
the above relation. □

Relative positioning and scene graphs. A local frame F𝑜 as associated with a
polyhedra 𝑜. The pose of 𝑜 in a global frame F is specified with the 6 parameters
q = [𝑥0, 𝑦0, 𝑧0, 𝛼, 𝛽, 𝜑], which correspond to a translation vector [𝑥0, 𝑦0, 𝑧0]⊤ for the
position in F of the origine point of F𝑜, and three rotation matrices 𝜌𝜑 , 𝜌𝛽 and 𝜌𝛼
(see Appendix B). These matrices define respectively the roll, pitch and yaw rotations
of F𝑜 with respect to the 𝑥, 𝑦 and 𝑧 axes of F (Figure 20.2). The mapping of a point
from coordinates [𝑥′, 𝑦′, 𝑧′]⊤ in F𝑜 to coordinates in F is given as:

[𝑥, 𝑦, 𝑧]⊤ = 𝜌𝛼 × 𝜌𝛽 × 𝜌𝜑 × [𝑥′, 𝑦′, 𝑧′]⊤ + [𝑥0, 𝑦0, 𝑧0]⊤

= Hq([𝑥′, 𝑦′, 𝑧′]) (20.2)

whereHq is the global transformation from F𝑜 to F when 𝑜 is in the pose q.3

3Hq can be defined as a matrix in the ‘homogeneous transformation’ notation.

448 20 Motion and Manipulation Actions

In summary, every object in the environmentW is specified with 3D CAD prim-
itives and located in F . A local Cartesian frame F𝑜 is located in F with the trans-
formationHq associated with a pose. An object pose changes over time and updated
given the achieved and/or observed motions.

The relations between local and global frames can be organized and maintained
hierarchically, e.g., frames for objects in a shelf or on a table, for shelves in a cabinet,
for cabinets and tables in a room, etc. This can be done with a convenient and
widely-used data structure, called a scene graph.

A scene graph is tree which relates the objects in a scene and allows tracing
their relative positions. To each object corresponds a node in the tree with a triple
(𝑜, parent, F𝑜):

• 𝑜 is the CAD geometric description of the object
• parent is a pointer link to the parent node
• F𝑜 is the local reference frame of the object with respect to its parent node.

The root node provides the global reference frame of the environment. The scene
graph can also refer to fixed areas in the environment, e.g., rooms, corridors, etc.

The description of geometric shapes of objects can be extended with other properties
of interest to the tasks, such as physical properties of objects, e.g., color, weight,
friction parameters for manipulation, or semantic and functional properties, e.g.,
types of objects (cups, plate, doors, tools). Note that some objects may be articulated,
e.g., a door (with two mobile parts, a panel and a knob) or a drawer; they require
a kinematic description (see Section 20.2.2). Furthermore, it is desirable to link to
geometric description of W to the topology of the environment, e.g., a map of a
building telling which room is connected to which other places.

Localization and collision testing. The global data structure description of a do-
main is designed for the efficient computation of frequent operations needed for
motion and manipulation actions, mainly:

• localization: where is an element 𝑜 ∈ W, and what are its geometric relations
to other parts of the domain, e.g., which face of 𝑜 is resting on which face of
which other element of the domain;

• collision testing: is a point in free space, or is it within or close to some object
ofW and which.

The latter is a highly frequent operation in motion and manipulation planning. Its
efficient implementation relies on scene graph and additional data structures, e.g.,
octrees or a hierarchy of bounding boxes such as to reduce the testing of Equation 20.1
from a linear complexity in the number of faces to a logarithmic one.

The representation needs to handle the bounded precision of the models and the
inaccuracy of the robot sensors and actuators, e.g., the uncertainty for grasping an
object on a table has to take into account the inaccuracy of the table and object models
and that of the robot perception system that located the object’s pose on the table.
Note also that the representation should allow maintaining consistency constraints,
e.g., objects cannot float in space or rest on less than three points. More complex

20.2 Motion 449

balance constraints may need to be maintained, e.g., instable or narrow faces, tilted
supports.

To sum up, geometric models describe the task space of the robot, in which it moves,
which is the Euclidian 3D space (sometime constrained to 2D for a robot moving on
a plane), associated with global and local Cartesian frames, with adequate geometric
transformation matrices between them. In addition to these geometric descriptions,
we need to specify how a robot can move, how to compute its motion, and what are
the associated constraints. This is the topic of kinematics.

20.2.2 Kinematics

Geometry describes the shapes of individual objects and parts and specifies the task
space of the robot. Kinematics considers movements of articulated chains of bodies.
Given the geometric description of the parts in an articulated chain, as well as the
specification of the articulation links between the parts, and the movement of one or a
few parts in the chain, kinematics allows computing the mouvements and positions of
the other parts. A robot moves because its articulations are actuated. The movement
is controlled through these actuations. A main issue is to relate the task space to
actuation space.

Joints and degrees of freedom. The limbs or parts of a robot are connected through
articulations, called joints, that can be of different types. Two parts 𝑃1 and 𝑃2 in an
articulated chain can be connected mainly through:

• a revolute joint: 𝑃2 rotates around a rotation axis fixed in a 𝑃1, e.g., the hinges
or the handle of a door;

• a prismatic joint: 𝑃2 slides along a translation axis fixed in a 𝑃1, e.g., a drawer
in a cabinet.

Recall that a solid free in space has 6 degrees of freedom (dof). A part linked
in a kinematic chain will loose some of its dof because of the constraining joint.
For example, a part connected with a revolute joint will have just one dof : the
rotation angle around the joint axis. Similarly a prismatic joint leaves only one
dof along the translation axis. The position of 𝑃2 with respect to 𝑃1 depends on
how they are connected with a joint 𝑗 , and on the current value, denoted 𝜃 𝑗 , of the
rotation or translation along the joint axis. This scalar value 𝜃 𝑗 is called the current
configuration of the joint 𝑗 . Given the position of 𝑃1 in a global Cartesian frame
and the configuration 𝜃 𝑗 of the joint with 𝑃2, the position of any point in 𝑃2 can be
computed using a transformationH𝜃 𝑗

(Equation 20.2).
This computation can be carried out transitively through a kinematic chain, i.e.,

from 𝑃1 to 𝑃2 then 𝑃3, etc. It can be simplified if a local Cartesian frame is adequately
positioned with respect to the joint axis, e.g., align axis 𝑧𝑜 with the axis of a revolute
joint.

To sum up, a joint 𝑗 is specified with its type, the position of its axis in the
two connected parts, its current angular or linear configuration 𝜃 𝑗 , and the limited
amplitude of the movement, i.e., the maximum and minimum values of 𝜃 𝑗 .

450 20 Motion and Manipulation Actions

The revolute and prismatic joints have a single axis. There are however other types
of joints that have several axes. They can be seen as the composition of two or more
revolute and prismatic joints. These are for example:

• the cylindrical joint that has two axes, a rotation and a translation;
• the universal joint, with two rotation axes;
• the planar joint with three axes: two translations and one rotation within a

plane;
• the spherical joint with three rotation axes corresponding to the roll, pitch and

yaw angles.

Let us take an intuitive example: the human skeleton. Many of our joints are spherical
(e.g., shoulder, elbow, hip), some are universal (wrist), a few are revolute joints (last
joints of the fingers); we do not have prismatic joints.4

A joint allows for as many dof as its number of axes. A screw is a particular
single-axis joint although it allows for both a rotation and a translation, but these two
movements are coupled; there can be a single translation value given a rotation and
vice versa, hence a single dof .

A1

A2
A3

A4

A5

A6

A7

Figure 20.4. The Franca Emika robot (©2024 Franka Robotics GmbH). This arm has 7
dof . Its first component is fixed to a base and linked serially to the other components
with 7 revolute joints around the axes labelled A1 to A7 in the figure. The gripper has
two fingers with one dof prismatic joint.

The number 𝑛 of dof of an unconstrained kinematic chain is the sum of the degrees
of its joints.5 A robot arm has usually 6 or 7 dof (e.g., Figure 20.4), not counting those
of the hand, which may have up to 20 degrees for a five-finger hand (two revolute and
one universal joints per finger). The Justin robot Figure 20.6(a) has 53 dof (7 per

4But we have some stretching capability, since our body is not composed of rigid links.
5Kinematic constraints can reduce 𝑛.

20.2 Motion 451

arm, 12 per hand, plus the base, the torso and the head).6 A complex biped humanoid
robot may have a hundred dof . The dof of a robot may be structured as a sequence
of links, as for a robot arm, or as a tree of links, as for a humanoid robots that has
several limbs, or event possibly as a graph with closed kinematic chains, e.g., two
arms holding the same object form a closed chain.

Let 𝜽 = [𝜃1, . . . , 𝜃𝑛] ∈ R𝑛 be the current configuration vector of the joints of
a robot. These 𝑛 dof may be constrained, i.e., it may not be possible to change a
configuration parameter 𝜃𝑖 independently of others. For example, a car has three
dof ; it can reach any position and orientation in a plane free of obstacles (like for
a planar joint), however a car cannot move sideway. This is called a holonomy
constraint.7 A non-holonomous robot may require elaborate movements to move
between two configurations. Consider for example the car maneuvers required to
perform a parallel parking in a tight space.

In a robot arm, the joints are serially connected. For a biped robot, the joints are
connected as a tree with several branches, for the legs, arms, torso and head, plus those
corresponding to the hands. In some robots, the kinematic connexions correspond to
a cyclic graph (chains with loops). These are for example Stewart platforms, which
consist of two plates connected with up to 6 prismatic joints. A robot carrying a
tray with two arms maintain a cyclic chain. Cyclic kinematic links entails additional
movement constraints.

In a robot arm, every dof is usually actuated, e.g., in Figure 20.4 a motor is
associated with each of the 7 revolute joints. However, some of the dof of an 𝑛 degrees
robot may not be actuated. For an actuated degree 𝑗 , the robot can apply a force to
change 𝜃 𝑗 . The movement of a non-actuated degree may be due to gravity forces, or
to the movement of other degrees and kinematic constraints. This movement can be
predicted but not directly actuated. For example, the early Hilare robot Figure 20.5
had a car-like kinematics, with three dof : a differential drive, i.e., two independently
actuated drive wheels, and a front caster wheel which rotates freely along its 𝑧 axis
under the movement of the drive wheels. Note that although this robot moves in the
3D space, it has the kinematics of a rigid body on a plane (see Figure 20.5(b)), it’s
task space is 2D (informally referred to as a 2.5D).

Configuration space. Let C ⊂ R𝑛 be the set of possible values of the configuration
vector 𝜽 = [𝜃1, . . . , 𝜃𝑛] of a robot ℜ with 𝑛 dof . C takes into account the limited am-
plitude of each degree 𝜃 𝑗 and the kinematic constraints. It is called the configuration
space of a robot.8 Let ℜ𝜽 be the space occupied by the robot when in configuration
𝜽 , i.e., the subset of R3 in the frame F occupied by ℜ. The robot end-effector, i.e.,
its hand or gripper, is of specific interest for handling object. Let qeff(𝜽) be the pose
in F of this end-effector when the robot is in configuration 𝜽 .

ℜ𝜽 and qeff(𝜽) are computed from the geometry of each robot part, and from the

6See https://www.dlr.de/en/rm/research/robotic-systems/humanoids/agile-justin
7A kinematic equivalent of the constraints seen earlier between state variables defining a state space 𝑆.
8As defined, this is more precisely the joint space. But the two are identical for serial or tree-structured
kinematics. In a closed kinematic chain, constraints entail less configuration parameters then joint
parameters.

https://www.dlr.de/en/rm/research/robotic-systems/humanoids/agile-justin

452 20 Motion and Manipulation Actions

(a)

<latexit sha1_base64="N9mn8mbU0gIRys4TOmvXD4dHoII=">AAAFlHicjVRtaxQxEN5qT+v51ir4xS/Bq6VKPW6rra344aBYFEQU+yJcjpLNzd6GJtltku0LIf4Nv+rP8t+Y7G3Lba1gYNnkmZlnnpmdTVJwpk2v93vm2vXZ1o2bc7fat+/cvXd/fuHBns5LRWGX5jxX3xKigTMJu4YZDt8KBUQkHPaTw61g3z8GpVkud8xZAUNBxpKljBLjoeEiFsRklHC77RYP5ju9bq9aaGqz1os312MU10gnqtfng4XZIzzKaSlAGsqJ1oO4V5ihJcowysG1camhIPSQjGHgt5II0ENbqXboqUdGKM2Vf6RBFTodYYnQQd2Kf5tMhJc+E4lDDafgYfKca9dupjPpxtAyWZQGJJ1kS0uOTI5CH9CIKaCGn/kNoYp5wYhmRBFqfLcaVHasSJExetqox0KhTV6M0iZ6qv0OvMY21uC/hhybzGIDp+aEjUzm7CYVQamEE5DHTOUyNM9+/PB1x1mcwJhJGz67P/jiOV/ESck5mEXXRgjZaVIOqRFE+Qhn14SoHNC0Q0GUF+Zs7yojMyAqa3yV1Vd2Eerq1CBHE2lX6C9oPgJnUXtCQ/NS+j7aIoylZwkMdXGG+IKIcoNkaPsWH4KSqLsBwqm+/e5434YHr0ySoqUljAcv1rprcDoM5M4GpqDknCeAEz00F4J4Cy4yICM3iIeVM0ZYlNx/35yXQtqXzoYcznZidxE4rbaNFUyzmQzqMrDKPVS7XU6qCk4S4BdpFaTaQHGJ2xuyakIsThnnFVDFBTn+sFyNCjM2xD+vND77O5O3VXn+xzv2uvGSR5824N453OzcIZxVzBh34jfB3LSHGZ3of25jP8iuadbHk+CgSqeNDtceflxFmNdzl/p8iSdV49rF17atmByDw/Wf5S+p85sI/Xuzt9qN17uvvqx2+qv1dTUXPY6eRMtRHL2O+tH76HO0G9HoKPoR/Yx+tR613ra2Wu8mrtdm6piHUWO1Pv0BfODrjA==</latexit>F

<latexit sha1_base64="50yw60cnyQT64Je5NaWD01ln850=">AAAFlXicjVRtaxQxEN5qT+v51uoHP/gleG3VUo/bamsrCAdKURBUtLZwOUs2N3sbmmTXJNsXQvwdftV/5b8x2duW21rBwLLJMzPPPDM7m6TgTJte7/fMpcuzrStX5661r9+4eev2/MKdLzovFYUdmvNc7SVEA2cSdgwzHPYKBUQkHHaTg1fBvnsISrNcfjYnBQwFGUuWMkqMh74uYkFMRgm32+7h4v58p9ftVQtNbdZ78dZGjOIa6UT1+rC/MPsNj3JaCpCGcqL1IO4VZmiJMoxycG1caigIPSBjGPitJAL00FayHVryyAilufKPNKhCpyMsETrIW/Vvk4nw0icicajhFDxMnnPt2s10Jt0cWiaL0oCkk2xpyZHJUWgEGjEF1PATvyFUMS8Y0YwoQo1vV4PKjhUpMkaPG/VYKLTJi1HaRI+134HX2MYa/OeQY5NZbODYHLGRyZzdoiIolXAE8pCpXIbm2XdvP312FicwZtKG7+4PvnjOF3FScg5m0bURQnaalENqBFE+wtl1ISoHNO1QEOWFOdu7yMgMiMoaX2T1lZ2Fujo1yNFE2gX6C5qPwFnUntDQvJS+j7YIc+lZAkNdnCG+IKLcIBnavsUHoCTqboJwqm+/O9634cGrk6RoeRnjwZP17jocDwO5s4EpKDnlCeBED82FIN6CiwzIyA3iYeWMERYl998356WQ9qmzIYezndidBU6rbWMF02wmg7oMrHIP1W7nk6qCkwT4WVoFqTZQnOP2hqyaEItTxnkFVHFBjj88qkaFGRviVyqNj//O5G1Vnv/xjr1uvOzRpQbcO4WbnTuAk4oZ4078Ipib9jCjE/0rNvaD7JpmfTgJDqp02uhw7eHHVYR5PXWpz+d4UjWuXXxt24rJMThc/1n+kjq9idC/N1/WuvFG99nHtU5/rb6u5qL70YPoURRHz6N+9Cb6EO1ENFLRj+hn9Kt1r/Wy9bq1PXG9NFPH3I0aq/X+D3LG670=</latexit>

F 0
<latexit sha1_base64="sKUtsd0ENheFjFRV7PKwDtVKLG4=">AAAFj3icjVTbbtQwEE2hC2W5tfDIi8W2VanKalPojQe0EhKiEg9F9CatV5XjnWys2k6wnV5kmY/gFX6Mv8HOptWmFAlLUewzM2fOTCZOCs606fV+z9y5O9u6d3/uQfvho8dPns4vPDvUeakoHNCc5+o4IRo4k3BgmOFwXCggIuFwlJx+CPajM1Ca5XLfXBYwFGQsWcooMR46XsSEFxlZPJnv9Lq9aqGpzUYv3tmMUVwjnaheeycLs9/wKKelAGkoJ1oP4l5hhpYowygH18alhoLQUzKGgd9KIkAPbSXYoSWPjFCaK/9Igyp0OsISoQUx2Zp/m0yEl74UiUMNp+Bh8pxr126mM+n20DJZlAYknWRLS45MjkIL0IgpoIZf+g2hinnBiGZEEWp8oxpUdqxIkTF60ajHQqFNXozSJnqh/Q68xjbW4D+EHJvMYgMX5pyNTObsDhVBqYRzkGdM5TI0z37e/brvLE5gzKQNX9wffPGcL+Kk5BzMomsjhOw0KYfUCKJ8hLMbQlQOaNqhIMoLc7Z3m5EZEJU1vs3qK7sOdXVqkKOJtFv0FzQfgbOoPaGheSl9H20RJtKzBIa6OEN8QUS5QTK0fYtPQUnU3QbhVN9+d7xvw4PXJknR8jLGg9cb3Q24GAZyZwNTUHLFE8CJHpoLQbwFFxmQkRvEw8oZIyxK7r9vzksh7RtnQw5nO7G7DpxW28YKptlMBnUZWOUeqt1uJlUFJwnw67QKUm2guMHtDVk1IRanjPMKqOKCHH9YqUaFGRviVyuNr/7O5G1Vnv/xjr1uvOzRpQbcu4KbnTuFy4oZ4078Lpib9jCjE/2rNvaD7JpmfTYJDqp02uhw7eHHVYR5vXKpzzd4UjWuXXxtHxWTY3C4/rP8JXV1E6F/bw7Xu/Fm9+2X9U5/vb6u5qIX0ctoJYqjragffYr2ooOIRjz6Ef2MfrUWWlut963+xPXOTB3zPGqs1u4f+cjpSA==</latexit>↵

<latexit sha1_base64="zo5Z6+GDc3UTvKmm9HMDwC1UAoI=">AAAFinicjVRdb9MwFM1g5aN8bfDIi0W3aSComkKBwUslEAKJhyE2QKqryXFvGqu2E2xntLLMP+AVfhv/BjvNpmYMCUtW7HvPPfdc+8ZJwZk2vd7vtQsX11uXLl+52r52/cbNWxubtz/pvFQUDmnOc/UlIRo4k3BomOHwpVBARMLhczJ7Ffyfj0FplssDsyhgLMhUspRRYrzp49Z862ij0+v2qoFWFoNevPc0RnFt6UT12D/aXP+KJzktBUhDOdF6FPcKM7ZEGUY5uDYuNRSEzsgURn4piQA9tpVWh7a9ZYLSXPkpDaqsqxGWCC2IyR76r8lE+OiFSBxqgALC5DnXrt1MZ9LnY8tkURqQdJktLTkyOQrVowlTQA1f+AWhinnBiGZEEWr8GTWo7FSRImN03qjHQqFNXkzSpnWu/Qq8xjbW4O9ATk1msYG5+cYmJnN2j4qgVMI3kMdM5TIcnn3/7uOBsziBKZM2XLbf+OI538JJyTmYLddGCNlVUg6pEUT5CGcHQlQAtAooiPLCnO2d52QGROWNz/P6yk5DXZ0a5GQp7Rz9Bc0n4CxqL2loXkp/jrYIzehZAkNdnCG+IKLcKBnbocUzUBJ1n4Nwami/Oz60YeKHy6RoZwfj0aNBdwDzcSB3NjAFJSc8wbjUQ3MhiPfgIgMycaN4XIExwqLk/n5zXgppHzsbcjjbid1p4KraNlawymYyqMvAKvemGnY2qSo4SYCfplWQagPFGW7vyKoOsThlnFeGKi7I8ZvdqlWYsSH+QaXx/t+ZvK/K8z/o2OvGO9663TD3TszNk5vBomLGuBO/CO6mP/ToUv8DG/tGdk23Pl4GB1U6bZxwjfDtKkK/nkDq/RmeVE1riK/tjWJyCg7Xf5Z/pE5eIvTvxad+N37affKh3xn26+fqSnQ3uhftRnH0LBpGb6P96DCi0TT6Ef2MfrWut/qtvdbLJfTCWh1zJ2qM1us/TxTnLA==</latexit>x

<latexit sha1_base64="lxJRI3ftnB3fjHRvlqrdXKCWfm0=">AAAFinicjVRdb9MwFA2Dwijj+5EXi44JplE1g40NXiqBEEg8gMY+pLqaHPemsWY7wXa2Vpb5B7zCb+PfYKfp1IwhYcmKfe+5555r3zgpONOm1/t9Zenqtdb1G8s327dWbt+5e+/+gwOdl4rCPs15ro4SooEzCfuGGQ5HhQIiEg6Hycnb4D88BaVZLr+aaQFDQcaSpYwS4017q9PV43udXrdXDbSw2OrFu9sximtLJ6rH5+P7177hUU5LAdJQTrQexL3CDC1RhlEOro1LDQWhJ2QMA7+URIAe2kqrQ0+8ZYTSXPkpDaqsixGWCC2IyTb812QifPRUJA41QAFh8pxr126mM+nO0DJZlAYknWVLS45MjkL1aMQUUMOnfkGoYl4wohlRhBp/Rg0qO1akyBidNOqxUGiTF6O0aZ1ovwKvsY01+DuQY5NZbGBiztjIZM7uUhGUSjgDecpULsPh2U8f9746ixMYM2nDZfuNL57zVZyUnINZdW2EkF0k5ZAaQZSPcHZLiAqAFgEFUV6Ys73LnMyAqLzxZV5f2Xmoq1ODHM2kXaK/oPkInEXtGQ3NS+nP0RahGT1LYKiLM8QXRJQbJEPbt/gElETdHRBO9e13x/s2TLwxS4rW1jAePN/qbsFkGMidDUxByZwnGGd6aC4E8R5cZEBGbhAPKzBGWJTc32/OSyHtC2dDDmc7sTsPXFTbxgoW2UwGdRlY5d5Uwy4mVQUnCfDztApSbaC4wO0dWdUhFqeM88pQxQU5fvO0ahVmbIhfrzQ++zuT91V5/gcde914zVufNMy9ubl5cicwrZgx7sSvg7vpDz06079uY9/IrunWp7PgoEqnjROuEb5dRejXOaTeX+BJ1biG+NreKybH4HD9Z/lHav4SoX8vDja78Xb35ZfNTn+zfq6Wo0fR4+hpFEevon70Ifoc7Uc0Gkc/op/Rr9ZKa7O123ozgy5dqWMeRo3RevcHVDnnLQ==</latexit>y

(b)

Figure 20.5. (a) The mobile Hilare robot developed at LAAS in the seventies, now exhib-
ited at the CNAM museum in Paris. It has a differential drive, i.e., two independently
actuated drive wheels and a front free wheel. (b) Simplified schema of Hilare’s kinemat-
ics with the (𝑥, 𝑦, 𝛼) parameters.

transformations H𝜽 𝑗
positioning part (𝑗 + 1) with respect to part 𝑗 when the joint

configuration is 𝜃 𝑗 .
The movements of a robot are computed and controlled in the configuration spaceC.

Consider for example the movement required to put the arm in Figure 20.4 in a position
allowing it to close its gripper for grasping the red peg. The robot will have to raise
its hand, and move it such as to have the gripper axis orthogonal to and centered with
respect to the red peg axis. This needs to be done while not getting in touch with the
obstacles, including the red cylinder. This movement is performed with appropriate
rotations around the axes A1 to A7 , i.e., in the configuration space. Finding the
appropriate movements can be formalized as finding a path in the configuration space
C from an initial configuration 𝜽 to a final one 𝜽 ′ that avoids the obstacles.

The movements of a robot are actuated and controlled in its configuration space
C, but its task (e.g., the red cylinder to be grasped) and its obstacles are in the task
space, i.e., R3 . How do we map the task space, in which the robot acts, into the
configuration space in which it moves C, and vice versa?

Forward and inverse problems. To answer the above question, let us first address
two simpler dual problems which consider a robot alone in space, ignoring for the
moment possible obstacles and collision constraints:

• the forward kinematic problem is to compute a mapping from the configu-
ration to the task spaces, i.e., from C to F : given a robot configuration
𝜽 = [𝜃1, . . . , 𝜃𝑛], what is the pose qeff(𝜽) = [𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝜑] of its end-effector
(or the pose of another part of interest of the robot) in the task space relative to
the frame F ;

• the inverse kinematic problem is to compute a mapping from the task to the
configuration spaces, i.e., from F to C: given a goal pose q𝑔 = [𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝜑]

20.2 Motion 453

(a) (b)

Figure 20.6. (a) The Justin robot of the DLR that has 53 dof [167]; (b) The YouBot, a
small omnidirectional platform with an arm totaling 8 dof , predecessor of today’s mobile
platforms of Kuka AG.

in the task space relative to F , is there a configuration 𝜽 which puts the robot
end-effector (or another part of interest in ℜ) in position qeff(𝜽) = q𝑔.

The forward problem can be stated with 𝑛 equations and 6 unknowns. It is solved
from the geometric and kinematic models by propagating the transformation equations
20.2 from one joint to the next. These computations are conveniently structured with
a scene graph (p. 447), extended with nodes for the robot’s joints and links. The pose
of each join is computed from the local frame of the robot and its configuration 𝜽 .

The inverse problem may or may not have a solution. It requires solving a system of
6 nonlinear equations with 𝑛 variables, usually with numeric approximation methods.
If the goal pose q𝑔 is within reach of the robot, there is one solution for 𝑛 = 6 and
infinitely many for 𝑛 > 6. The latter case corresponds to a robot that is kinematically
redundant, that is, it has more degrees of freedom than strictly needed, and can use a
preference criterion to choose a particular solution to the inverse problem.

The full specification of the geometric and kinematic models of a robot can be
a quite tedious task. Fortunately, this task is now greatly simplified thanks to a
standard Universal Robot Description Format (URDF) based on XML. Commercially
available robots come with their URDF computational models and a specification of
their reachability space (see Figure 20.7). These models use scene graphs. They can
be run for solving the forward and inverse problems with several efficient software

454 20 Motion and Manipulation Actions

tools (some are included the robotics middleware ROS9).

Figure 20.7. Part of the geometric specification and reachability workspace (side view)
of the Emika Franca robot (from the Franka Datasheet document).

The problem of mapping obstacles and the geometry of the environment from the
task space to the configuration space is unfortunately much more complex.

Example 20.2. Consider a planar robot arm that has just two dof with a circular
obstacle in its reachable space (Figure 20.8(a)). The projection of this simple 2D
obstacle in the simple 2D configuration space has an irregular shape (red area in
Figure 20.8(b)). It can be constructed by finding the set of configurations [𝜃1, 𝜃2]
which keep the arm in contact with the obstacle. If the amplitude of the first joint is
limited to −𝜋 ≤ 𝜃1 ≤ +𝜋, then this obstacle divides C into two subspaces: from A
the robot cannot reach point B. Moving the obstacle away from the base would open
a path from 𝐴 to 𝐵. □

Collision detection and distance to obstacles. In an environment with obstacles,
a robot movement should be actuated and controlled in the part of C not occupied
by obstacles. Let Cobs be the set of configurations in which the robot is in contact or
collision with obstacles, i.e., Cobs = {𝜽 ∈ C|ℜ𝜽 ∩W ≠ ∅}. The free configuration
space, denoted Cfree, is Cfree = C\Cobs. Finding Cobs requires mapping the obstacles
from the task space to the 𝑛-dimensional configuration space. The computation of
such a mapping is based on the idea of finding all possible contacts between a limb of
ℜ𝜽 and an obstacle inW. Even when all bodies in ℜ andW are convex polyhedra,
the procedure for computing the projection ofW into the robot configuration space
is very complex.

Fortunately, it is easier to test whether or not the robot ℜ𝜽 in a configuration 𝜽 is in
collision with, or at some distance from an object 𝑜 ∈ W, when 𝑜 is in a pose q.

9See the ROS tutorial on URDF: http://wiki.ros.org/urdf/Tutorials

http://wiki.ros.org/urdf/Tutorials

20.2 Motion 455

•

•

𝜃1

A

B

×

×

𝜃2

(a)

-π π

2π

0

𝜃1

𝜃2

A

B×

×

(b)

Figure 20.8. (a) A planar robot with two angular joints, 𝜃1 and 𝜃2, facing a red circular
obstacle. (b) The configuration space of this robot: the projection of the obstacle in C
shows that the two configuration 𝜽𝐴 and 𝜽𝐵 are not connected : if −𝜋 ≤ 𝜃1 ≤ +𝜋 no
possible motion takes the robot from points 𝐴 to 𝐵.

Let 𝑜𝑞 be the set of points in the task space occupied by 𝑜 when in pose q, and let

𝛿(ℜ𝜽 , 𝑜q) =
{
−∞ if ℜ𝜽 ∩ 𝑜q ≠ ∅
𝑚𝑖𝑛𝒙∈ℜ𝜽 , 𝒙′∈𝑜q ∥𝒙 − 𝒙′∥2 otherwise

(20.3)

where 𝒙 and 𝒙′ are the vector coordinate in the task space of two points in respectively
ℜ𝜽 and 𝑜, and ∥𝒙 − 𝒙′∥ is Euclidean distance between 𝒙 and 𝒙′. The value of
𝛿(ℜ𝜽 , 𝑜𝑞) indicates a collision or gives the closest distance obstacle 𝑜 of the robot
when in configuration 𝜽 .

The distance 𝛿 can be efficiently computed on the basis of a hierarchical decom-
position of ℜ𝜽 and 𝑜 as trees of bounding boxes, as in octrees. A bounding box is an
imaginary volume, e.g., a sphere, a cube, or a rectangular prism defined with three
intervals over the three axis of a frame F . The root of the tree is a global box that
includes all of the a robot. It is decomposed into boxes for the limbs, which are de-
composed into boxes for the limb parts, etc. Similarly for the trees of boxes bounding
objects. If two root boxes dot not intersect, there can be no collision, otherwise we’ll
have to check the descendent boxes.

Bounding boxes are chosen such as to be easily computed from the geometry of
a polyhedra (e.g., as with rectangular prisms), and such that the collision test and
distance computation between two boxes 𝑏 and 𝑏′ are computed in 0(1). A procedure
for computing 𝛿 starts from the boxes associated with the roots of the two trees
associated with ℜ and 𝑜. If the two root boxes overlap in space the procedure is
refined on their subtrees. At some pair of boxes, if 𝛿(𝑏, 𝑏′) > 𝜂, for 𝜂 an error margin
parameter, the procedure stops on this refinement branch. Otherwise it compares their

456 20 Motion and Manipulation Actions

respective child boxes. The procedure exits when a collision is detected on a branch.
At each level, hashing techniques can filter out collision free cases. An incremental
version of the procedure caches the results of previous collision tests given the planed
movements of the robot.

To sum up, a robot has to switch back and forth from its task space, where it moves
and where its obstacles and objects of interest lay, to its configuration space where its
motion paths are defined, where it is actuated and controlled. This mapping from task
to configuration spaces is difficult to do globally but is easily computable for each
given point.

Path in the free configuration space. A robot motion from an initial configuration
𝜽0 to a goal configuration 𝜽𝑔, both in Cfree, corresponds to a continuous path in
the free configuration space defined as a function ℘[𝜽0,𝜽𝑔] : [0, 1] → Cfree such that
℘[𝜽0,𝜽𝑔] (0) = 𝜽0 and ℘[𝜽0,𝜽𝑔] (1) = 𝜽𝑔.

Definition 20.3. A path in the configuration space between two configurations 𝜽0 and
𝜽𝑔, both in Cfree, is a continuous function ℘[𝜽0,𝜽𝑔] which maps a real 𝜁 ∈ [0, 1] ⊂ R
into free configurations, such that ℘[𝜽0,𝜽𝑔] (0) = 𝜽0 and ℘[𝜽0,𝜽𝑔] (1) = 𝜽𝑔. □

The parameter 𝜁 is the curvilinear coordinate along the path and ℘[𝜽0,𝜽𝑔] (𝜁) is the
robot configuration at that point. In the simplest case, a path may defined as a line
segment in the configuration space:

℘[𝜽0,𝜽𝑔] (𝜁) = 𝜽0 + 𝜁 (𝜽𝑔 − 𝜽0), for 𝜁 varying continuously from 0 to 1. (20.4)

Note that a segment in the configuration space is not a straight line in the task space.
For example, a line segment for the planar robot in Figure 20.8 from [−𝜋/4, 𝜋/4]⊤ to
[−𝜋/4,−𝜋/4]⊤ is a circular arc around 𝜃2.

C is a connected manifold, i.e., there exist a path between any pair of points in
C.10 However, because of obstacles, Cfree may have several connected components
(see Example 20.2). Paths exist only within each component, but not between them.
Hence, a collision-free path in Cfree exists only when 𝜽0 and 𝜽𝑔 are in the same
connected component. In the latter case, there will be a collision free path, but not
necessarily a segment path in Cfree. For example, if the obstacle in Figure 20.8 is
slightly moved away from the base, there will be a free path from 𝐴 to 𝐵 (e.g., rotate
𝜃2 towards −𝜋/2, then 𝜃1 towards 𝜋/2, then increase 𝜃2 while reducing 𝜃1), but not a
line segment in Cfree. We would need a more complex function than Equation 20.4 to
define a path, e.g., a sequence of line segments.

A significant advantage of the configuration space representation is to conceptually
simplify the motion of a complex articulated body in space as a continuous path of
the movement of a point 𝜽 in the free configuration space.

Assuming that a path ℘ exists and has been computed (see Chapter 21), how can
we move the robot along ℘? The simplest way would be to actuate the robot such as to
follow the configurations given by the path ℘[𝜽0,𝜽𝑔] (𝜁), when varying 𝜁 continuously

10A manifold is a space which is locally similar to (homeomorphic) the Euclidian space.

20.2 Motion 457

from 0 to 1. Since by definition ℘[𝜽0,𝜽𝑔] (𝜁) ∈ Cfree for 0 ≤ 𝜁 ≤ 1, there can be
no collision along this path in Cfree. However, such a movement in Cfree does not
account for the speed and acceleration of the robot along ℘, nor for the commands
needed to be given to the actuators of the robot in order to achieve this movement,
for their limitations, constraints, and the uncertainty on their effects. These issues are
discussed in the next section.

20.2.3 Dynamics

Kinematics provides a collision free path ℘ ∈ Cfree which ignores time as well as the
masses, inertia, forces, torques and balance constraints of the robot. A movement
that takes into account these constraints is called a “kinodynamic motion”. The
path description ℘ is extended with information about the dynamics. A trajectory
is a velocity function along a path ℘ which is feasible by the robot, i.e., a function
meeting its actuators and inertia constraints. A robust execution of a trajectory is
controlled with a feedback information from the robot sensors. Hence we need to
find a trajectory as well as a feedback control law to track this trajectory. To do
so, dynamic models integrate geometry and kinematics together with the masses,
moment of inertia and friction parameters of the robot components. Dynamics allow
computing the forces needed to move a robot along a path ℘while keeping it balanced
(e.g., as in Figure 20.1) and to determine its resulting acceleration and speed. It relies
on Newton classical mechanics and its computational developments.

The material needed to adequately cover dynamic models and control of robots
goes beyond the scope of this section. We give here an intuition of the main concepts
and problems involved in the design and use of a robot platform. Let us start with
simple issues.

Transition function. The movement of a robot can be considered as a state transition
system. In the discrete deterministic case we denoted 𝑠′ = 𝛾(𝑠, 𝑎) as the next state
reached from a state 𝑠with an action 𝑎. The equivalent of 𝑠 is here a configuration state
𝜽 ∈ C. The state variables are simply the components of vector 𝜽 . The equivalent
of 𝑎 is here a vector actuation command 𝑢 ∈ U, whose components are the joint
actuation variables in a continuous action space. The state transition function for the
movement is written as:

¤𝜽 = 𝛾(𝜽 , 𝑢), where ¤𝜽 =
𝑑𝜽

𝑑𝑡
is the velocity vector of ℜ. (20.5)

If ℜ has 𝑛 dof , Equation 20.5 corresponds to 𝑛 scalar equations, that is 𝛾 is an 𝑛
vector function.

Example 20.4. Consider the Hilare robot in Figure 20.5(b). It has 3 dof : 𝜽 = [𝑥, 𝑦, 𝛼].
It is actuated with two independent motors. Let us take 𝑢 = [𝑢𝑙, 𝑢𝑟], the rotation
velocities of the left and right wheels (in radians per second). Let 𝜌 be the radius of
the wheels, and 𝜈 be the width of the robot, i.e., the distance between its wheels. The
three components of the state transition function 𝛾 for this robot are:

¤𝑥 = 𝜌

2
(𝑢𝑙 + 𝑢𝑟)cos 𝛼, ¤𝑦 = 𝜌

2
(𝑢𝑙 + 𝑢𝑟)sin 𝛼, ¤𝛼 =

𝜌

𝜈
(𝑢𝑟 − 𝑢𝑙)

458 20 Motion and Manipulation Actions

When 𝑢𝑟 = 𝑢𝑙 the robot translates along a straight line. When 𝑢𝑟 = −𝑢𝑙 the robot
rotates around the center of its local frame, which remains fixed. Its rotation speed
is proportional to the wheel radius 𝜌, and inversely proportional to wheels distance
𝜈. Note that each component of 𝛾 is a function of both 𝑢𝑙 and 𝑢𝑟 . However, we can
redefine the actuation space as 𝑢 = (𝑢𝑡 , 𝑢𝑜), with 𝑢𝑡 = (𝑢𝑙 + 𝑢𝑟)/2 and 𝑢𝑜 = 𝑢𝑟 − 𝑢𝑙:

¤𝑥 = 𝜌𝑢𝑡cos 𝛼, ¤𝑦 = 𝜌𝑢𝑡sin 𝛼, ¤𝛼 =
𝜌

𝜈
𝑢𝑜 .

In this actuation space, 𝑢𝑡 and 𝑢𝑜 respectively translate and rotate the robot. □

Jacobian of a robot. An adequate model relating the actuation 𝑢, the acceleration ¥𝜽 ,
speed ¤𝜽 , and configuration 𝜽 , allows computing the velocity of the robot end-effector
(or of any other part of interest in ℜ) in the task space. Symmetrically, a required
velocity function of the end-effector needs to be mapped to the adequate actuation
in the configuration space. These two symmetric issues correspond to the already
mentioned forward and inverse kinematic problems, considered here at the dynamic
level. The forward problem is expressed as the following equation:

¤qeff(𝜽) = 𝐽 (𝜽) ¤𝜽 (20.6)

where ¤qeff(𝜽) = [¤𝑥, ¤𝑦, ¤𝑧, ¤𝛼, ¤𝛽, ¤𝜑]⊤ is the velocity vector of the end-effector in the task
space, that is the derivative of the already seen pose qeff(𝜽), and 𝐽 (𝜽) is the Jacobian
matrix of the robot. 𝐽 is a matrix of dimension 6× 𝑛, whose terms are functions of 𝜽 ,
defined as 𝐽 (𝜽) =

[
𝜕𝑣𝑖/𝜕𝜽 𝑗

]
, where 𝑣𝑖 is the ith component of 𝑣, for 1 ≤ 𝑖 ≤ 6, and

𝜽 𝑗 the jth component of 𝜽 for 1 ≤ 𝑗 ≤ 𝑛.

Example 20.5. Consider the simple planar robot of Example 20.2 and let us extend it
with a third revolute joint and a third component, giving a 3 dof configuration space:
𝜽 = [𝜃1, 𝜃2, 𝜃3]. Let 𝑙1, 𝑙2 and 𝑙3 be the respective distances between the three joints.
This robot being planar, the position of its end-effector in the task space is defined
with three parameters: (𝑥, 𝑦, 𝛼). The forward kinematic model of this simple robot
is:

𝑥 = 𝑙1cos 𝜃1 + 𝑙2cos (𝜃1 + 𝜃2) + 𝑙3cos (𝜃1 + 𝜃2 + 𝜃3)
𝑦 = 𝑙1sin 𝜃1 + 𝑙2sin (𝜃1 + 𝜃2) + 𝑙3sin (𝜃1 + 𝜃2 + 𝜃3)
𝛼 = 𝜃1 + 𝜃2 + 𝜃3

The Jacobian matrix of the robot is: 𝐽 (𝜽) =

𝜕𝑥/𝜕𝜃1 𝜕𝑥/𝜕𝜃2 𝜕𝑥/𝜕𝜃3
𝜕𝑦/𝜕𝜃1 𝜕𝑦/𝜕𝜃2 𝜕𝑦/𝜕𝜃3
𝜕𝛼/𝜕𝜃1 𝜕𝛼/𝜕𝜃2 𝜕𝛼/𝜕𝜃3


The partial derivative terms are easily computed, e.g.,

𝜕𝑥/𝜕𝜃1 = −𝑙1sin 𝜃1 − 𝑙2sin (𝜃1 + 𝜃2) − 𝑙3sin (𝜃1 + 𝜃2 + 𝜃3)
𝜕𝑦/𝜕𝜃2 = 𝑙2cos (𝜃1 + 𝜃2) + 𝑙3cos (𝜃1 + 𝜃2 + 𝜃3)
𝜕𝛼/𝜕𝜃1 = 𝜕𝛼/𝜕𝜃2 = 𝜕𝛼/𝜕𝜃3 = 1

□

20.2 Motion 459

The same method applies for computing the Jacobian of a more complex robot, as
the 7 dof robot of Figure 20.4. In the 3D task space, the partial derivatives for the
(𝑥, 𝑦, 𝑧) position parameters are usually easily computed, while it can be technically
tedious to find the partial derivatives for the (𝛼, 𝛽, 𝜑) angular parameters.

Singularities of a robot. From the statement of the forward problem with Equa-
tion 20.6, we can formulate the inverse problem as:

¤𝜽 = 𝐽−1(𝜽) ¤qeff(𝜽) (20.7)

where 𝐽−1 is the inverse of the Jacobian, when defined, or the pseudo-inverse matrix.
Recall that the inverse problem may or may not have one or an infinite number of
solutions. When 𝐽 is a square matrix, i.e., when 𝑛 = 6 for a 3D task space (or 𝑛 = 3 in
the 2D case as in Example 20.5), 𝐽 (𝜽) is invertible, that is 𝐽−1(𝜽) is well defined, iff
determinant(𝐽 (𝜽)) ≠ 0. In that case there is a single solution to the inverse problem,
solved with Equation 20.7.

When determinant(𝐽 (𝜽)) = 0, the matrix 𝐽 (𝜽) is said to be singular; there is no
solution to the inverse problem. The values of 𝜽 for which 𝐽 (𝜽) is singular are the
singularity configurations of a robot. In a singularity, the robot loses one or several
dof , its motion is restricted. It is important to plan the motion of a robot away from
obstacles, as well as from its singularities. For most manipulators and simple robots
(see Exercise 20.4 for the robot in Example 20.5), these singularities can be computed
analytically in advance and taken care of at a low-level control of the robot.

For a redundant robot (i.e., 𝑛 > 6), Equation 20.7 uses a pseudo-inverse Jaco-
bian (more precisely a Moore–Penrose inverse) computed by solving numerically an
optimization problem for some criteria, e.g., minimizing energy.

The main relations seen so far in this section, i.e., ¤𝜽 = 𝛾(𝜽 , 𝑢) and ¤qeff(𝜽) = 𝐽 (𝜽) ¤𝜽 ,
are about velocity, but do not deal with dynamics per se, i.e., forces, acceleration,
masses and inertia. This is done with the following ordinary differential equation:

𝜏 = 𝑀 (𝜽) ¥𝜽 + 𝐶 (𝜽 , ¤𝜽) ¤𝜽 + 𝑔(𝜽) (20.8)

Here 𝜏 is the torque vector in the configuration space. The first term in the right
hand side corresponds to the well-known Newton’s second law equation (a force is a
mass times acceleration); here the matrix 𝑀 (𝜽) corresponds to the apparent masses
of the links in a given configuration. The second term corresponds to the angular
momentum and Corriolis forces as a function of the configuration and velocity. The
last term is the gravitational forces for the current configuration.

For a slow moving robot, not handling objects and tools, Equation 20.8 is often
ignored or simplified. But for fast motions and complex interactions with the envi-
ronment, it has to be developed to know the forces and torques needed at the joints to
move the robot. This equation accounts only for a dynamic motion. When exerting
forces on the environment, a fourth torque term needs to be added in Equation 20.8.

Consider for example a robot handling a drill, a polishing or other tools requiring
a pushing force. What are the additional torques at the joints needed to produce the

460 20 Motion and Manipulation Actions

force vector 𝑓𝜽 (eff) at its end-effector? This question corresponds to the forward
dynamic problem addressed again with the Jacobian matrix:11

𝜏 = 𝐽 (𝜽)⊤ 𝑓𝜽 (eff) (20.9)

The inverse problem, i.e., a mapping from the joint torques to the end-effector forces,
raises the already discussed issues of inverse or pseudo-inverse of the Jacobian.

Generally, motor actuations correspond to torques and require complicated com-
putations with second order derivatives from Equation 20.8. However, it is often
convenient to express an ordinary differential equation with second or higher order
terms as a set of equations with only first order terms, as illustrated next.

Example 20.6. Let us go back to Example 20.4 and consider that a torque command
on a motor does not set directly it speed but accelerates it. Hence the actuations 𝑢𝑙
and 𝑢𝑟 accelerate the left and right motors, requiring an integration to get the left and
right motor speeds, denoted 𝜔𝑙 and 𝜔𝑟 . This gives the following second order model:

¤𝜔𝑙 = 𝑢𝑙, ¤𝜔𝑟 = 𝑢𝑟 ,

¤𝑥 = 𝜌

2
(𝜔𝑙 + 𝜔𝑟)cos 𝛼, ¤𝑦 = 𝜌

2
(𝜔𝑙 + 𝜔𝑟)sin 𝛼, ¤𝛼 =

𝜌

𝜈
(𝜔𝑟 − 𝜔𝑙).

This model needs to be completed with inertia and friction forces, that brake the
robot and require a traction force to keep constant the speed. □

20.2.4 Trajectory and Control

Recall the distinction between paths and trajectories. A path ℘ is a continuous function
in the free configuration space ignoring time, while a trajectory is a velocity function
along ℘meeting the actuation and dynamic constraints of the robot. How do we refine
a path into a trajectory?

Time scaling. A convenient method for mapping a path into a trajectory relies on a
time scaling function. Instead of taking a scalar 𝜁 ∈ [0, 1] as a coordinate argument
of ℘, let us define 𝜁 as a function of time: 𝜁 : [0, 𝑇] → [0, 1], where 𝑇 is the total
time given to the robot to perform the movement. We may have an apriori given
constraint to be met by the scaling function, i.e., 𝑇 ≤ 𝑇𝑚𝑎𝑥 , i.e., reach the final point
of the path in less than 𝑇𝑚𝑎𝑥 .

For simplicity, let us denote 𝜽 (𝜁 (𝑡)) the robot configuration at time 𝑡 on the path
℘. With these notations, the velocity and acceleration functions are:

¤𝜽 =
𝑑𝜽

𝑑𝜁
¤𝜁, ¥𝜽 =

¤𝜽
𝑑𝜁
¥𝜁 + 𝑑

2𝜽

𝑑𝜁2
¤𝜁2

To apply the above equations, the time scaling function 𝜁 and 𝜽 (𝜁) need to be
differentiable. In simple cases, the idea is to accelerate the robot as much as possible
11The power exerted by the robot is identical at its joints and at its end-effector, i.e., ¤𝜽⊤𝜏 = 𝑣⊤ 𝑓 .

Equation 20.6 gives 𝑣 as a function of ¤𝜽 , leading to: ¤𝜽⊤𝜏 = (𝐽 ¤𝜽)⊤ 𝑓 = ¤𝜽⊤𝐽⊤ 𝑓 , hence 𝜏 = 𝐽⊤ 𝑓 .

20.2 Motion 461

to a maximum speed, keep that speed constant in a cruse phase, then decelerate it to
end ℘ at a zero speed. Angular momentums may require deceleration in part of the
path, as in sharp turns for cars.

Example 20.7. A very simple 𝜁 function would start with a high impulse acceleration
¥𝜁 at 𝑡 = 0 then decelerate linearly until T. This would give a parabola for ¤𝜁 and a third
order polynomial for 𝜁 . The four parameters of this polynomial are determined with
the four constraints: 𝜁 (0) = 0, 𝜁 (1) = 𝑇, ¤𝜁 (0) = 0, ¤𝜁 (𝑇) = 0 (see Exercise 20.5). □

The drawback of the above simple time scaling function is the initial high impulse
acceleration: even when feasible and sufficient for moving along the path ℘, it is quite
agressive for motors. Higher order polynomials allow for smoother accelerations. S-
curve time scaling interpolates continuously between accelerated, constant speed, and
decelerated phases. Finally, B-spline functions allow for smooth trajectories defined
with control points along ℘, requiring the robot to stay within a convex hull close to
these configuration points, but not constraining it to pass through them.

Motion and force control. We are now able to define a desired trajectory for
performing a movement. But we have to expect differences between what is desired
and what is achieved. These differences are due to imperfect models and inaccurate
sensors and actuators. Control theory is used to track and reduce these differences as
much as possible through feedback mechanisms.

Motion control is the basic case if we want to solely control the motion of the robot
between two configurations, without doing anything. Force control seeks to control
the forces exerted by its end-effector. Hybrid control is the interesting case where
we need to control both the forces and the motion. Consider the example of a robot
opening a door. Here we need forces as well as motion for grasping and turning the
knob and for pushing the door while getting in. Similarly for a robot erasing a board:
the pushing forces have to be controlled along with the robot motion.

Let us first focus on the basic case of motion control. From a planned path
𝜎 and a trajectory specified with a scaling function 𝜁 , we can define the desired
configuration and velocity functions, denoted 𝜽𝑑 and ¤𝜽𝑑 . Let 𝜽𝑒 = 𝜽𝑑 − 𝜽 be the
feedback error or discrepancy between the desired and measured configurations. The
current configuration 𝜽 is usually measured with odometers, motor optical encoders
and displacement transducers. Angular rate sensors and gyroscopes can also be used
to estimate 𝜽 by integration.12

Let us first assume that the actuation variable 𝑢 allows setting the desired velocity
¤𝜽𝑑 (as in Example 20.4).

An open control actuates the robot by taking the transition function (Equation 20.5)
simply as ¤𝜽 = ¤𝜽𝑑 . An open loop control is a kind of blind movement that can end up
way off the path and be dangerous for the robot’s environment.

A closed loop control uses corrective terms as a function of the feedback error 𝜽𝑒
(Figure 20.9). In the simple case of a proportional controller, the actuation input is:

12The derivative of a signal is very noisy; hence position measures are not good for estimating ¤𝜽 .
Integration of a signal is quite robust but accumulates drift over time.

462 20 Motion and Manipulation Actions

¤𝜽 = ¤𝜽𝑑 + 𝐾𝜽𝑒, where 𝐾 = 𝐼 (𝑛,𝑛) 𝑘, for 𝐼 identity matrix.

When the scalar 𝑘 > 0, this controller allows 𝜽 to track the desired configuration 𝜽𝑑 .
The larger 𝑘 is, the faster 𝜽 goes to 𝜽𝑑 .13. But a too large 𝑘 exhausts the actuators,
which limit possible values.

This simple controller leaves a non-null remaining error, called the steady state (or
asymptotic) error. A proportional integrative (PI) controller gets rid of this error with
an additional term, computed from 𝜽𝑒:

¤𝜽 = ¤𝜽𝑑 + 𝐾𝜽𝑒 + 𝐾 ′
∫ 𝑡

0
𝜽𝑒𝑑𝑡

Here too 𝐾 ′ is a diagonal matrix: 𝐾 ′ = 𝐼 (𝑛,𝑛) 𝑘 ′; we require 𝑘 and 𝑘 ′ to be positive
for a stable tracking with no steady state error. A too large 𝑘 ′ leads to overshooting of
𝜽 with respect to 𝜽𝑑 , amortized with possible oscillations. A stability analysis shows
that a fast tracking response without overshooting is given with 𝑘 ′ = 𝑘2/4.

Note that this control takes place in the configuration space. It can however be
transposed to the task space, which is important in particular to minimize the error
for the pose of the end-effector.

Let us now consider the general case where the actuation sets the joint forces and
torques (as in Example 20.6). Let us assume that the robot motion is not too fast such
as to neglect the inertial and dynamic forces. The controlled torque for moving the
robot will be a function of 𝜽𝑒 and ¤𝜽𝑒, with ¤𝜽𝑒 = ¤𝜽𝑑 − ¤𝜽 . The desired ¤𝜽𝑑 is computed
from the scaling function, the measured ¤𝜽 is given by a speed sensor. A proportional
integrative derivative (PID) controller actuates the robot according to the following
equation:

𝜏 = 𝐾𝜽𝑒 + 𝐾 ′
∫ 𝑡

0
𝜽𝑒𝑑𝑡 + 𝐾 ′′ ¤𝜽𝑒 .

This popular PID controller is easy to tune and has generally good stability properties.

⊗ Controller Actuators

Sensors

𝜃𝜃e𝜃d

+ -

Figure 20.9. A simple closed-loop feedback control diagram with respect to a desired
trajectory. The output of the control is for example ¤𝜽 or 𝜏 given by the PI or PID
controllers.

If dynamic forces cannot be neglected, then Equation 20.8 has to be taken into
account. This is also the case for a force or hybrid controllers, where we end up

13𝐾 is the inverse of the tracking time constant.

20.2 Motion 463

controlling a torque combining Equation 20.8 and Equation 20.8:

𝜏 = 𝑀 (𝜽) ¥𝜽 + 𝐶 (𝜽 , ¤𝜽) ¤𝜽 + 𝑔(𝜽) + 𝐽 (𝜽)⊤ 𝑓𝜽 (eff)

The controller uses extension of the above methods. It relies on 𝜽𝑒, ¤𝜽𝑒, 𝑓𝑒 = 𝑓𝑑 − 𝑓
and the desired ¥𝜽𝑑 , as well as force and torque sensors to measure the exerted force
𝑓𝜽 (eff). More elaborate model predictive controllers rely on optimization techniques
to handle constraints and multi-objectives trad-offs.

20.2.5 Potential Fields

The previous approaches require a pre-planned path from 𝜽0 to 𝜽𝑔, as well as a
trajectory and a control law to actuate the robot along the chosen path. Instead of
that, the idea here is to define a potential function over Cfree which entails a field of
forces that drives the robot toward 𝜽𝑔 and away from obstacles. Imagine something
akin to the gravitational potential of a planet which drives the movement of a free
particle in space. To parallel what was seen in previous parts of the book, the path
related approaches are similar to acting with a sequential plan, while here the potential
function defines a continuous policy over the entire space. As any other policy, the
potential corresponds to a closed loop control.

A potential field is a differentiable function 𝜙 : Cfree → [0, +∞[. For a given goal
𝜽𝑔 and environment, we can take 𝜙 as the sum of:

• 𝜙𝑎, an attractive field towards 𝜽𝑔, regardless of obstacles, and
• 𝜙𝑟 a repulsive field away from obstacles, regardless of the goal.

𝜙(𝜽) = 𝜙𝑎 (𝜽) + 𝜙𝑟 (𝜽). The forces entailed by a potential field are defined as:

𝐹 (𝜽) = −
[𝜕𝜙
𝜕𝜽𝑖

]
= −∇𝜙(𝜽) = −∇(𝜙𝑎 (𝜽) + 𝜙𝑟 (𝜽)) = 𝐹𝑎 (𝜽) + 𝐹𝑟 (𝜽)

A simple attractive potential is 𝜙𝑎 (𝜽) = ∥𝜽 − 𝜽𝑔∥2 ; hence 𝐹𝑎 (𝜽) = −2(𝜽 − 𝜽𝑔).
This potential is a parabola whose minimum is 𝜽𝑔. A control following 𝐹𝑎 is simply
a greedy gradient descent toward the minimum.

For the definition of a repulsive potential, let 𝑜𝜽 be the closest obstacle to ℜ𝜽

and 𝛿(𝜽 , 𝑜𝜽) be the distance given by Equation 20.3. The repulsive potential can be
defined as:

𝜙𝑟 (𝜽) =
{

0 if 𝛿(𝜽 , 𝑜𝜽) > threshold
1/𝛿(𝜽 , 𝑜𝜽) otherwise

The repulsive force 𝐹𝑟 is null if there is no nearby obstacle, otherwise
𝐹𝑟 = (𝜽 − 𝜽𝑜)/𝛿(𝜽 , 𝑜𝑞)2 ; 𝜽𝑜 being the configuration matching the closest point in ℜ𝜽

to 𝑜. The closer ℜ is to 𝑜, the bigger is the repulsive force which grows quadratically
with the inverse squared distance.

To sum up, a potential field is an a priori given continuous policy defined every-
where the field is: 𝜋(𝜽) = −∇𝜙(𝜽). The potential field approach is appealing since
in particular it is reactive and can be coupled to online sensing. The robot may not
know in advance about some obstacles. It will sense, update its repulsive field locally

464 20 Motion and Manipulation Actions

and avoid obstacles in its way towards 𝜽𝑔. This is feasible even when obstacles are
moving without a prior model of their motion (e.g., human in the environment); the
goal may also be a moving target. Attractive and repulsive terms are set with respect
to perception feedback.

The potential field approaches are incomplete methods. They suffer from the usual
drawback of local minima. The robot may get trapped into a local minimum; its
alternative is to get momentarily farther from its goal, seeking randomly an open
path, which it may or may not find. Furthermore, if 𝜽0 and 𝜽𝑔 are in two connected
components of Cfree (as in Example 20.2), a robot following a potential field policy
may wander for a while before giving up, unable to distinguish between many local
minima and the lack of solution.

Fortunately, it is possible to combine in a mixed approach a planed path and a
potential field to remain reactive to new and moving obstacles.

Motion in discretized space. Another computational motion approach, which is
quite popular in applications such as, e.g., computer games, relies on a grid dis-
cretized space. This approach uses graph search algorithms applied to grids, with a
few adaptations such as domain specific heuristics. But a straightforward use of a grid
discretization does not simplify much the mapping from the task space to the config-
uration space. Furthermore, the approach does not scale up to a highly dimensional
configuration space.

However, it is possible to combine a hierarchical and irregular discretization of
space with potential field methods, in particular for a mobile platform with arms (e.g.,
Figure 20.6).

The main idea is to focus the discretization on the 2D projection of the task space,
which is also part of the configuration space for a mobile platform. The approach is
schematically the following:

• decompose the 2D free space into a topological graph where a vertex is a convex
region free of obstacles, an edge corresponds to two adjacent vertices in the
free space,

• compute a global potential field on this graph, e.g., with a Dijkstra all-pairs
shortest path algorithm,

• for a motion from 𝜽0 to 𝜽𝑔 follow such a potential, but of the last vertex (where
𝜽𝑔 is), which is to be refined with a planned path and/or an attractive/repulsive
potential in order to reach the final robot arm pose.

The decomposition method conditions the quality of the approach. It can be defined
hierarchically, e.g., ignore at a coarse level the orientation of the platform and focus
only on the fixed part of the environmentW\O, ignoring movable objects in O. The
approach can also be applied to a flying drone with a hierarchical space decomposition
into 3D regions, small ones at low altitudes and bigger ones in higher free space.

Finally, let us note that space decomposition approaches overlap with and are
relevant to navigation problems, discussed next.

20.3 Navigation 465

20.3 Navigation

A fixed robot arm moves in a well engineered and precisely modeled environment
possibly equipped with sensors to sharply localize the end-effector in the task space.
A moving robot faces a navigation problem, which takes place in the task space.
Navigation problems are usually focused on the movements of a point-like platform
(in 2D for a ground robot, or 3D for an aerial one), ignoring the detailed configuration
parameters of arms and other limbs.14

Navigation abstracts away configuration parameters but considers motion at a
broader level, in space and semantically. It also raises the issue of mapping (or
updating a map) and localizing the robot within this map. This issue, classically
referred to as Simultaneous Localization and Mapping (SLAM) is discussed next.
Global positioning systems have simplified many localization problems. But GPS is
not available everywhere (e.g., indoor or between high buildings), and often it is the
relative not the global positioning which constrains the task. To operate autonomously
in a diversity of environments, a mobile robot must be able to locate itself directly
from a map of its environment and from the perceived elements of this environment.
This map is often only partially known. Uncertainty is a central issue in navigation;
localization error is to be estimated, when beyond a threshold, specific actions have
to be done.

Navigation for mobile robots is addressed at the metric level as a simultaneous
localization and mapping problem, which is developed next. We’ll then discuss
navigation at the topological and semantic levels.

20.3.1 Simultaneous Localization and Mapping

Navigation focuses on the position of the robot local frame defined with a vector 𝒙,
and its movement 𝒖 resulting from a command (considered here as the movement
vector, not as a velocity or a force). A major issue in navigation is to handle the
sensing and actuation inaccuracy and the map uncertainty. In this context, the si-
multaneous localization and mapping (SLAM) problem corresponds to two tightly
coupled subproblems:

• Localization: let us assume the robot to be initially localized in a known envi-
ronment, modeled by 𝑘 landmarks, considered to be static, easily recognizable
and perfectly positioned points in the task space. At time 𝑡, the robot is in
a position estimated by 𝒙̃𝑡 . It moves by 𝒖𝑡 . This allows estimating the new
position 𝒙̃′. The robot then observes the landmarks where it expects to find
them given 𝒙̃′. It updates its estimated position in relation to each recognized
landmark. The observed positions of the landmarks are combined into a new
estimated position of the robot 𝒙̃𝑡+1. The process is repeated at each time step as
long as the robot remains within a fully known environment. The intermediate
estimate 𝒙̃′ allows solely to find landmarks. The localization error takes into
account the sensing errors in the observed landmark positions, but these errors

14Similarly, air navigation deals with just 3 configuration parameters (plus possibly time), while an
airplane motion requires 6.

466 20 Motion and Manipulation Actions

do not increase (while the odometer error does). Hence, the error associated
with the movement 𝒖𝑡 does not affect the localization.

• Mapping: The robot builds a map of its environment assuming it knows pre-
cisely its successive positions. The 𝑗 𝑡ℎ landmark is estimated at time 𝑡 as 𝒙̃ 𝑗𝑡 .
The robot moves between 𝑡 and 𝑡 + 1 to a new known position, from which it
observes again the position of the 𝑗 𝑡ℎ landmark as 𝒙̃′

𝑗
with a sensing error. 𝒙̃′

𝑗

and 𝒙̃ 𝑗𝑡 are combined into a better estimate. The map quality improves over
time (Figure 20.10).

A DCB(a)A DCB(b)A DCB (c)A DCB (d)

Figure 20.10. SLAM procedure for a simple 2D robot: (a) Three landmarks (corners of
obstacles) are detected and positioned with some inaccuracy due to sensing noise (red
ellipses). (b) The robot moves and estimates its position with a motion error (black
ellipse). (c) The landmarks are observed and associated with the corresponding ones
previously perceived. (d) Data fusion reduces the errors on the current position of the
robot and the positions of the landmarks. The process is iterated for each new robot
motion and sensing.

Localization assumes an error free map, while mapping assumes an error free
motion. However, the initial map, if there is one, is never error free. Errors in the
map entail localization errors. Symmetrically, the robot localization is noisy, which
entails errors in its updates of the map. Fortunately, the sensing and motion sources
of errors are uncorrelated. By addressing simultaneously localization and mapping,
we combine the two subproblems into the simultaneous estimate of the positions of
the robot and the landmarks, and reduce uncertainty on both estimates.

Kalman filtering SLAM. One approach for solving SLAM relies on extended
Kalman filters. The technical details may seem complicated but a step by step
presentation shows that the principle is simple. It is assumed that the environment
is static and the sensors of the robot are properly calibrated and do not introduce a
systematic bias. Sensing errors are modeled as a Gaussian noise with zero mean and
a standard deviation 𝜎 specific to each sensor.

Consider the case of having two sensors, whose deviations are respectively by
𝜎1 and 𝜎2, which both measure the distance to the same landmark. They return
two values 𝜇1 and 𝜇2. We can estimate the true distance by averaging the returned
values while giving more confidence to the most accurate sensor, i.e., the one with
the smaller 𝜎𝑖 . Hence, in averaging, 𝜇𝑖 is weighted by 1/𝜎𝑖 . The estimated distance

20.3 Navigation 467

𝜇 is associated with a standard deviation 𝜎 defined in Equation 20.10. This estimates
has good properties: it minimizes the mean squared error. The error resulting from
the combination of the two measures decreases, since 𝜎 <min{𝜎1, 𝜎2}.

𝜇 = 𝛼(𝜇1/𝜎1 + 𝜇2/𝜎2), with 𝛼 = 𝜎1𝜎2/(𝜎1 + 𝜎2)
1/𝜎 = 1/𝜎1 + 1/𝜎2

(20.10)

SLAM applies the above principle over incremental measures instead of (or in
addition to) simultaneous ones. It combines the current estimate (𝜇′, 𝜎′) with the
new measures (𝜇𝑧 , 𝜎𝑧) to compute a new estimate at time 𝑡 (𝜇𝑡 , 𝜎𝑡). This is done
with the above equation, rearranged easily into the following incremental form (Equa-
tion 20.11):

𝜇𝑡 = 𝜇
′ + 𝐾 (𝜇𝑧 − 𝜇′)

𝜎𝑡 = 𝜎
′ − 𝐾𝜎′

𝐾 = 𝜎′/(𝜎𝑧 + 𝜎′)
(20.11)

Let us now consider the robot’s motion. At time 𝑡 − 1 the robot was in a position
estimated by (𝜇𝑡−1, 𝜎𝑡−1). Between 𝑡 − 1 and 𝑡 the robot moves according to a
command known with an uncertainty similarly modeled. Let (𝒖𝑡 , 𝜎𝑢) be this motion
estimated from the command and the sensors. The relative distance to the landmark
after the motion is estimated by (𝜇′, 𝜎′). The error increases due to the motion:

𝜇′ = 𝜇𝑡−1 + 𝒖𝑡

𝜎′ = 𝜎𝑡−1 + 𝜎𝑢
(20.12)

We now can combine the two previous steps. The estimate of the relative position
robot - landmark is updated between 𝑡 − 1 and 𝑡 in two steps:

(i) update due to motion (with Equation 20.12) : (𝜇𝑡−1, 𝜎𝑡−1) →(𝜇′, 𝜎′)
(ii) update due to sensing (with Equation 20.11) : (𝜇′, 𝜎′) →(𝜇𝑡 , 𝜎𝑡)

These updates are applied to vectors (in 2D or 3D) of robot and landmark positions.
The position of the robot is that of its local frame attached to the base, with respect
to which are positioned its sensors and limbs. The map is characterized by many
landmarks positioned in space. A vector 𝜇𝑡 , whose components are the robot and
landmark positions, is updated at each step. The error is no longer a scalar 𝜎𝑡 but
a covariance matrix Σ𝑡 whose element 𝜎𝑖 𝑗 is the covariance components 𝑖 and 𝑗 of
the parameters of 𝜇. The robot position error is coupled to the errors in the map
and symmetrically. Now, Kalman filtering applies only to linear relations, while the
relationship between the command and the motion is not linear. This constraint can
be addressed by linearizing around small motions. This leads finally to the extended
Kalman filter for the two update steps:

(𝜇𝑡−1, Σ𝑡−1) → (𝜇′, Σ′),with vector 𝑢𝑡 and matrices 𝐴 and 𝐵 for the motion,
(𝜇′, Σ′) → (𝜇𝑡 , Σ𝑡) with vector 𝜇𝑧 and matrix 𝐶 for the new measurements.

468 20 Motion and Manipulation Actions

The first step uses the motion to update the positions of the robot and those of the
landmarks. The second step integrates the new measurements for both, the localization
and mapping. This is done with Equation 20.13:

𝜇′ = 𝐴𝜇𝑡−1 + 𝐵𝒖𝑡

𝜇𝑡 = 𝜇
′ + 𝐾𝑡 (𝜇𝑧 − 𝐶𝜇′)

𝐾𝑡 = Σ′𝐶𝑇 (𝐶Σ′𝐶𝑇 + Σ𝑧)−1

Σ′ = 𝜎𝑡−1 + Σ𝑢

Σ𝑡 = Σ′ − 𝐾𝑡𝐶Σ
′

(20.13)

where Σ𝑢 and Σ𝑧 account for the motion and the measurements covariances.
The approach converges asymptotically to the true map, with a residual error due

to initial inaccuracies. It maintains incrementally an estimate of the robot localization
as well as of a bound on the localization error. This bound is critical in navigation. If
it grows beyond a threshold, specific actions have to be taken such as stop navigating
toward the goal and seek known landmarks.

In the mapping part of SLAM, the robot may add new landmarks. It can also
maintain a list of candidate landmarks which are not integrated into the map (nor
in the vector 𝜇) until a sufficient number of observations of these landmarks have
been made. If 𝑛 is the dimension of the vector 𝜇 (i.e., the number of landmarks), the
complexity of the update by Equation 20.13 is 𝑂 (𝑛2). The computations can be done
online and on board of the robot for 𝑛 in the order of 103, which means a quite sparse
map.

Particle filtering SLAM. Particle filtering offers an alternative to Kalman filtering
with additional advantages. Instead of estimating the Gaussian parameters (𝜇, Σ),
the corresponding probability distributions are estimated through random sampling.
Let 𝑃(𝑋𝑡 |𝑧1:𝑡 , 𝒖1:𝑡) = N(𝜇𝑡 , Σ𝑡) a normal distribution, where 𝑋𝑡 is the vector of the
robot and landmark positions at the time 𝑡, 𝑧1:𝑡 and 𝒖1:𝑡 are the sequences of landmark
measures and movements from 1 to 𝑡. Similarly 𝑃(𝑧𝑡 |𝑋𝑡−1) = N(𝜇𝑧 , Σ𝑧).

Let us decompose the state vector 𝑋𝑡 into two components related to the robot
and the landmarks: 𝑋𝑡 = [𝒙𝑡 , 𝒚1, ..., 𝒚𝑛]⊤, where 𝒙𝑡 is the position vector of the
robot at time 𝑡, and 𝒚 = [𝒚1, ..., 𝒚𝑛]⊤ the position of vectors landmarks, which do not
depend on time because the environment is assumed static. The usual rules of joint
probabilities entail the following:

𝑃(𝑋𝑡 |𝑧1:𝑡 , 𝒖1:𝑡) = 𝑃(𝒙𝑡 |𝑧1:𝑡 , 𝒖1:𝑡)𝑃(𝒚1, . . . , 𝒚𝑛 |𝑧1:𝑡 , 𝒖1:𝑡 , 𝒙𝑡)
= 𝑃(𝒙𝑡 |𝑧1:𝑡 , 𝒖1:𝑡)

∏
𝑖=1,𝑛

𝑃(𝒚𝑖 |𝑧1:𝑡 , 𝒙𝑡) (20.14)

The second line results from the fact that, given the position 𝒙𝑡 of the robot, the
positions of the landmarks do not depend on 𝒖 and are conditionally independent. The
robot does not known precisely 𝒙𝑡 but it assumes that 𝒙𝑡 ∈ 𝑅𝑡 = {𝒙 (1)𝑡 , . . . , 𝒙 (𝑚)𝑡 }, a
set of 𝑚 position hypotheses (or particles). Each hypothesis 𝒙 (𝑗)𝑡 is associated with a

20.3 Navigation 469

weight 𝑤 (𝑗)𝑡 . 𝑅𝑡 and the corresponding weights are computed in each transition from
𝑡 − 1 to 𝑡 by the following steps:

• Propagation: for 𝑚′ positions in 𝑅𝑡−1 randomly sampled according to the
weights 𝑤 (𝑗)

𝑡−1, compute the position 𝒙 (𝑗)𝑡 at time 𝑡 of resulting from the move-
ment 𝒖𝑡 , with 𝑚′ > 𝑚,

• Weighting : the weight 𝑤 (𝑗)𝑡 of particle 𝒙 (𝑗)𝑡 is computed taking into account
the observation 𝑧𝑡 from the product 𝑃(𝑧𝑡 |𝒚, 𝒙 (𝑗)𝑡)𝑃(𝒚 |𝑧1:𝑡−1, 𝒙

(𝑗)
𝑡−1).

• Sampling: the 𝑚 most likely assumptions according to the new weights 𝑤 (𝑗)𝑡

are kept in 𝑅𝑡 .

For each of the 𝑚 particles, the probability 𝑃(𝒚𝑖 |𝑧1:𝑡 , 𝒙𝑡) is computed with a Kalman
filter reduced to the 2 or 3 parameters necessary to the position 𝒚𝑖 . With good data
structures for the map, this approach, called FastSLAM, reduces the complexity of
each update to 𝑂 (𝑛log𝑚) instead of 𝑂 (𝑛2) in the previous approach. In practice, one
can keep a good accuracy for about 𝑚 ≃ 102 particles, allowing to maintain online a
map with 𝑛 ≃ 105 landmarks.

Data association. The main limitation of Kalman and particle filtering approaches
is due to a well-known problem of data association. At each step of the incremental
localization process, one must be sure not to confuse the landmarks: associated
measurements should be related to the same landmark. An update of the map and
the robot positions with measurements related to distinct landmarks can lead to
important errors, well beyond the sensory-motor errors. This argument, together with
the computational complexity issue, favors sparse maps with few discriminating and
easily recognizable landmarks. On a small motion between 𝑡 − 1 and 𝑡, the landmarks
in the sensory field of the robot are likely to be recognized without association
errors. But after a long journey, if the robot views some previously seen landmarks, a
robust implementation of the approach requires a good algorithm for solving the data
association problem. In the particle filtering approach, the probability distribution of
𝑅𝑡 is very different when the robot discovers a new place (equally likely distribution)
from the case where it retraces its steps to an already known area.15 This fact is
used by active mapping approaches, which make the robot retrace back its steps as
frequently as needed.

In the general case, there is a need for an explicit data association step between the
two stages (i) and (ii) corresponding to Equation 20.13. This step leads to maintain
multiple association hypotheses. The SLAM approaches with Dynamic Bayesian
Networks (DBN, see Section 8.2.2) for handling multi-hypotheses give good results.
The DBN formulation of SLAM results in a dependency graph (Figure 20.11) and the

15This is sometimes referred to as the SLAM loop problem.

470 20 Motion and Manipulation Actions18 Malik Ghallab and Félix Ingrand

ut−1

��

ut

��

ut+1

��
rt−1

��

// rt

��

// rt+1

��
zt−1 zt zt+1

φ

OO == 66

Fig. 12 Formulation of SLAM with a dynamic Bayesian network; arcs stand for conditional de-
pendencies between random variables, φ gives the positions of the landmarks (time-independent),
ut ,rt and zt denote the command, the robot positions and the new measurements at time t.

multiple association hypotheses. The SLAM approaches with Dynamic Bayesian
Networks (DBN) for handling multi-hypotheses give good results. The DBN for-
mulation of SLAM is quite natural. It results in a dependency graph (Figure 12) and
the following recursive equation:

P(Xt |z1:t ,u1:t) = αP(zt |Xt)
∫

P(Xt |ut ,Xt−1)P(Xt−1|z1:t−1,u1:t−1)dXt−1

= αP(zt |Xt)
∫

P(rt |ut ,rt−1)P(Xt−1|z1:t−1,u1:t−1)drt−1

(6)

Here, α is a simple normalization factor. The vector state is as above
Xt = (rt ,φ1, ...,φn)

T ; the second line results from the fact that the environment is as-
sumed static and that the robot motion and landmark positions are independent. The
term P(zt |Xt) expresses the sensory model of the robot, and the term P(rt |ut ,rt−1)
corresponds to its motion model. This formulation is solved by classical DBN tech-
niques, using in particular the Expectation-Maximization algorithm (EM), as for
example in [Ghahramani, 1997], which provides a correct solution to the data asso-
ciation problem. However, online incremental implementation of EM are quite com-
plex. Let us also mention another version of FastSLAM which takes this problem
into account by an explicit optimization step over all possible associations [Monte-
merlo et al., 2003].

Recent approaches to SLAM favor this DBN formulation with a global parameter
estimation problem overs the set of landmarks and robot positions. The problem is
solved by robust optimization methods. This general formulation is called the beam
adjustment method; it uses techniques of computer vision and photogrammetry [?].
Visual SLAM has also benefited from recent image processing features which are
quite robust for the localization and identification of landmarks [?Newcombe and
Davison, 2010; Nez-Carranza and Calway, 2010].

Figure 20.11. Formulation of SLAM with a dynamic Bayesian network; arcs stand for
conditional dependencies between random variables, 𝒚 gives the positions of the land-
marks (time-independent), 𝒖𝑡 , 𝒙𝑡 and 𝑧𝑡 denote the movement, the robot positions and
the new measurements at time 𝑡.

following recursive equation:

𝑃(𝑋𝑡 |𝑧1:𝑡 , 𝒖1:𝑡) = 𝛼𝑃(𝑧𝑡 |𝑋𝑡)
∫

𝑃(𝑋𝑡 |𝒖𝑡 , 𝑋𝑡−1)𝑃(𝑋𝑡−1 |𝑧1:𝑡−1, 𝒖1:𝑡−1)𝑑𝑋𝑡−1

= 𝛼𝑃(𝑧𝑡 |𝑋𝑡)
∫

𝑃(𝒙𝑡 |𝒖𝑡 , 𝒙𝑡−1)𝑃(𝑋𝑡−1 |𝑧1:𝑡−1, 𝒖1:𝑡−1)𝑑𝒙𝑡−1

(20.15)

Here, 𝛼 is a simple normalization factor. The vector state is as above
𝑋𝑡 = [𝒙𝑡 , 𝒚1, ..., 𝒚𝑛]⊤; the second line results from the fact that the environment is
assumed static and that the robot motion and landmark positions are independent. The
term 𝑃(𝑧𝑡 |𝑋𝑡) expresses the sensory model of the robot, and the term 𝑃(𝒙𝑡 |𝒖𝑡 , 𝒙𝑡−1)
corresponds to its motion model. This formulation is solved by classical DBN tech-
niques, using, e.g., the Expectation-Maximization algorithm (EM), which provides a
correct solution to the data association problem. However, online incremental version
of EM are quite complex.

Recent approaches to SLAM favor this DBN formulation with a global parameter
estimation problem overs the set of landmarks and robot positions. The problem is
solved by robust optimization methods. This general formulation, called the beam
adjustment method, uses techniques of computer vision and photogrammetry. Visual
SLAM has also benefited from recent image processing features which can be quite
robust for the localization and identification of landmarks.

Let us conclude this section by mentioning a few possible representations for the
map of the environment. Landmarks can be any set of sensory attributes that are
recognizable and localizable in space. They can be compound attributes of shapes
or more complex objects. The most appropriate attributes are generally specific to
the type of sensors used. The global map can be represented as a 2D occupancy
grid. Simple 3D maps for indoor environments, such as the Indoor Manhattan
Representation, combine vertical planes of walls between two horizontal planes for

20.3 Navigation 471

the floor and ceiling. They can be used with more elaborate representations integrating
semantic and topological information, discussed next.

20.3.2 Navigation and Exploration with Semantic Maps

Hybrid navigation. Previous approaches are limited to metric maps. They only
handle distances and positions in a global Cartesian frame. When the environment
is large, it is important to explicitly represent its topology, possibly associated with
semantic information. In this case, a map relies on hierarchical hybrid representations,
with metric sub-maps in local Cartesian frames, together with relationships and
connectivity constraints between sub-maps. The robot re-locates itself metrically
when arriving in a sub-map.

Navigation in this case is hybrid. Within a sub-map, motion techniques are used.
Between sub-maps other methods can be more relevant, e.g., road following when
the environment is equipped with roads, or magnetic and radio heading between
waypoints when available. Sensory aspects and place recognition play an important
role in navigation methods.

Mapping and map updates can be as flexible as in the case of SLAM through the
updates of a graph of local sub-maps. Topological navigation relies on graph search
algorithms, associated with motion techniques in sub-maps. Both techniques can be
combined incrementally. Topological methods gives a route which is updated and
smoothed incrementally to optimize the motion giving the observed terrain while
moving.

Topological planning in a graph or within a grid can be used with a partial knowledge
of the environment. Graph search algorithms can be extended to compute paths in a
graph, while updating the topology and costs parameters from sensing.

Hybrid topological/metric approaches raise the issue of the frontiers between levels
and their granularity. Labels of places (doors, rooms, corridors) and topology can
emerge from sensing and/or from a uniform description of space into cells (grids,
polygons or Delaunay triangles). Recursive decomposition techniques by quadtrees
are useful but computationally demanding.

Hybrid exploration. In some case a robot has to explore an unknown or partially
known environment, to build or update a hybrid hierarchical map, to find an area or
an object of interest, or to inspect its environment. Here, no target configuration 𝜽𝑔
is given. The robot has to find good view points for an efficient exploration. The
problem referred to as “next best viewpoint” selection has been studied extensively
for object modeling and recognition, and more recently addressed for environment
exploration.

Simple approaches rely on a heuristic estimate of an information gain utility func-
tion. Exploration follows an incremental greedy search using this heuristic. However,
it is possible to plan ahead the exploration by optimizing the joint utility of a sequence
of observation poses. Both approaches rely on costly sampling and simulation of
numerous viewpoints. Generative neural nets open promising improvement perspec-
tives.

472 20 Motion and Manipulation Actions

20.4 Manipulation

A robot task is seldom limited to the motion and navigation, it also requires manipu-
lating physically objects, which is the topic of this section.

20.4.1 End-Effectors and Grasps

Manipulation is about applying motion and forces to change the state of objects in the
environment. Simple manipulation actions are grasping and carrying. Other actions
can also be used to manipulate objects, e.g., pushing, rolling, switching, flipping,
pivoting, turning, screwing, throwing, etc.

Manipulation requires modeling the end-effectors. Specific grippers (e.g., hooks,
magnetic or air sucking devices, encircling chains, surgical effectors) are adapted to
specialized manipulations. Universal hands are more difficult to control but cover a
large spectrum of tasks. Two-fingered grippers are among the simplest (Figure 20.4).
Figure 20.12 shows an early dexterous three-fingered hand, and a more recent five-
fingered one. Justin can catch balls thrown from few meters away with its four-fingered
hands (Figure 20.6(a)).

(a) (b)

Figure 20.12. (a) The Salisbury hand, a pioneering contribution to manipulation with a 9
dof three-fingered hand [761]; (b) The Shadow Robot five-fingered hand with 20 actuated
dof out of 24 dof [1107].

Computational manipulation is about contact relations between a robot and an
object. It requires modeling and handling the following relations:

• contact kinematics: how the motion of objects in contact is constrained,
• contact dynamics: what forces and frictions are transmitted by contact,
• relations between motion and forces, including gravity and inertia, e.g., pushing

or carrying a glass without spilling its content.

Most manipulation models rely on a quasi-static assumption, i.e., a slow enough
dynamics at contact establishment such as to make all the involved actuation and
gravity forces sum up to zero.

20.4 Manipulation 473

Two polyhedra can be in contact through one or several face-to-face, edge-to-face,
vertex-to-face, or possibly edge-to-edge relations. Face-to-face contacts are better
for grasping, but not necessarily for other manipulation actions. The vertex-to-edge
and vertex-to-vertex relations are difficult to control. However, a contact may start
with a vertex or an edge, then, through a rotation of one or the two polyhedra, it
may get into face-to-face relations. A stable grasp requires generally several contact
relations from opposite sides of the grasped object, in order to encircle it with a
partial closure. Position sensing (e.g., with vision or laser) is seldom sufficient for
manipulation; tactile or haptic sensors which measure contact states, slippage and
forces are critical.16

Beyond grasps, manipulation may require complex motions, in particular for an
assembly task. Consider the task of inserting the red peg of Figure 20.4 into a
cylindric hole with a narrow clearance. It requires taking a stable grasp at the top end
of the peg, then moving it close to destination, seeking contact of the held peg with
the hole edge or the surface near it, and moving the peg, while in contact, through
a sequence of movements until insertion. A motion constrained by contact is called
compliant. Passive compliance relies on flexible devices with springs to account
for the uncertainty in position and forces. Active compliant motion performs error
handling with the identification of the contact state and feedback on contact forces.

20.4.2 Manipulation Space

When considering solely motion in the free space we made two assumptions: (i)
objects keep a fixed pose, (ii) the distance 𝛿 of ℜ to obstacles considers a contact as
a collision to be avoided (Equation 20.3). Manipulation requires to reconsider these
assumptions.

The distinction between collision and contact is given by the notion of interior and
boundary points. For rigid objects, collision concern interior points, while contact
is about boundary points. Let 𝑃 be a polyhedra in R3. A point 𝑥 ∈ 𝑃 is an interior
point if there exists an open ball centered at 𝑥 which is completely contained in 𝑃. Let
int(𝑃) be the set of interior points of 𝑃, and 𝑃\Int(𝑃) the boundary points of 𝑃, i.e.,
points in the closure of 𝑃 not interior. As a simple example, consider the set [0, 1) in
R; its closure is [0, 1], its set if interior points is (0, 1), its boundary points are {0, 1}.
Let us model a solid as identical to its closure: every point in a solid is either interior
or boundary.

Recall that ℜ𝜽 and 𝑜𝑞 are the set of points in the task space occupied respectively
by the robot, when in configuration 𝜽 , and an object 𝑜, when in a pose q. Let us
redefine Cobs as the set of configurations 𝜽 in which the robot is in collision with
obstacles, Cobs = {𝜽 ∈ C | ℜ𝜽 ∩ int(W) ≠ ∅}, and Cfree = C\Cobs. Now, Cfree allows
for contact. A revised Equation 20.3 gives the distance to an object as:

𝛿(ℜ𝜽 , 𝑜𝑞) =


−∞ if ℜ𝜽∩ int(𝑜𝑞) ≠ ∅
0 if ℜ𝜽 ∩ [𝑜𝑞\int(𝑜𝑞)] ≠ ∅
𝑚𝑖𝑛𝒙∈ℜ𝜽 , 𝒙′∈𝑜𝑞 ∥𝒙 − 𝒙′∥2 otherwise

(20.16)

16Think about handling objects with thick gloves or cold hands, insensitive to tactile feedback.

474 20 Motion and Manipulation Actions

The function 𝛿 indicates either a collision, a contact or gives the minimum distance
between ℜ and 𝑜. It can be computed with an extension of the collision test procedure
discussed earlier. Note however that the contact case allows theoretically for no
margin, and hence it is computationally more demanding.

Since a contact between ℜ and 𝑜 can happen in many ways, we have to seek the
appropriate configurations 𝜽 , poses q, and contact relations between ℜ and 𝑜 for the
intended manipulation. Let Q𝑜 ⊆ R6 be the set of possible poses of an object 𝑜. We
need to rule out poses in which 𝑜 is in collision with obstacles (defined as we did for
Cobs), as well as those in which 𝑜 is unstable. In a stable pose, 𝑜 can rest still without
any force applied to it; i.e., 𝑜 cannot float in the air or be in pose in which it may slide
or fall. Stable poses depend on properties of 𝑜 (shape, friction, mass distribution)
as well as of its support. Let Q𝑜

sta be the set of poses of 𝑜 that are stable and do not
collide with obstacles.

The robot end-effector may grasp an object only in a particular set of configura-
tions. For example, the two-finger gripper in Figure 20.4 may not be able to grasp a
peg when their two axis are parallel. We can view a grasp as link between two parts
in an articulated chain with a rigid joint.17 Here, 𝑜 extends the robot’s end-effector.
The relation between them when respectively in the poses q and qeff(𝜽) is described
through a geometric transformation H between their two local frames (as in Equa-
tion 20.2). Obviously, not any such geometric transformation is a feasible grasp: in
configuration 𝜽 the end-effector pose qeff(𝜽) can be far from the object pose q or in a
position where 𝑜 is not graspable. But for a given pose q of 𝑜 there can be numerous
configurations 𝜽 corresponding to feasible grasps.

Let Q𝑜
grasp be the set of pairs (𝜽 , q) corresponding to feasible grasp positions. The

robot in configuration 𝜽 can grasp 𝑜 in pose q iff (𝜽 , q) ∈ Q𝑜
grasp. To each pair

(𝜽 , q) ∈ Q𝑜
grasp corresponds a uniquely defined transformationH𝜽,q : C → Q𝑜 giving

the pose of 𝑜 when grasped in that grasp. Initially, H𝜽,q(𝜽) = q, i.e., the grasp is
performed by closing the end-effector without changing 𝜽 nor q. Once grasped, the
link between ℜ and 𝑜 becomes rigid: a motion of ℜ from 𝜽 to 𝜽 ′ moves 𝑜 from q to
a pose q′ such that q′ = H𝜽,q(𝜽 ′).

There can be many feasible grasps that are not reachable without collision when 𝑜
is in a stable pose q. This is the case when all the pairs (𝜽 , q) ∈ Q𝑜

grasp are such that
𝜽 ∉ Cfree because of obstacles. This also the case for free configurations 𝜽 that do not
permit a grasp, e.g., an object may not be graspable from its wide face; or for poses q
such ∀𝜽 , (𝜽 , q) ∉ Q𝑜

grasp, e.g., a disk is graspable only in poses where its edge extends
out of its support table. Similarly, given a grasp defined byH𝜽,q and a desired target
pose q′, there may or may not be a configuration 𝜽 ′ allowing to ungrasp 𝑜 in q′: the
transformationH−1

𝜽,q(q
′) is an inverse kinematic problem that may not have a solution.

Having Q𝑜
sta and Q𝑜

grasp we can now define the manipulation space of 𝑜 as:

M𝑜 = {(𝜽 , q) | 𝜽 ∈ Cfree ∧ (q ∈ Q𝑜
sta ∨ (𝜽 , q) ∈ Q𝑜

grasp)}

M𝑜 is a set of pairs of a free configuration 𝜽 and and object pose q that are stable, in

17We do not consider complex manipulation actions such flipping an object between fingers and allowing
a non-actuated dof in a grasp (e.g., in a pendulum effect).

20.4 Manipulation 475

a feasible grasp, or both. The latter case corresponds to the grasping and ungrasping
moments. Let us analyze the two main manipulation actions:

• Grasping an object 𝑜 in pose q ∈ Q𝑜
sta: it requires finding 𝜽 ∈ Cfree such that

(𝜽 , q) ∈ Q𝑜
grasp. Once grasped, the object’s pose is given by H𝜽,q. This pose

changes with 𝜽 when the robot moves. The robot shape now integrates 𝑜 in the
grasp position. This changes C and hence Cfree.

• Ungrasping 𝑜 when held in a grasp given byH𝜽,q: it requires finding a config-
uration 𝜽 ′ in the new Cfree such that once unsgraped the pose of 𝑜 is in a stable
position, i.e., q′ = H𝜽,q(𝜽 ′) ∈ Q𝑜

sta.

Grasping and ungrasping start and end at pairs in M𝑜 meeting q ∈ Q𝑜
sta and

(𝜽 , q) ∈ Q𝑜
grasp. The steps for finding a pair (𝜽 , q) adequate for a grasp or ungrasp

entail solving back and forth the direct problem, from 𝜽 to q, and the inverse problem.
The two infinite sets Q𝑜

sta and Q𝑜
grasp play a critical role. They are seldom defined

explicitly. Manipulation algorithms rely instead on testing the associated stability
and grasping constraints on sampled configurations and poses, or using such tests to
define discretized sets of stability and grasping poses.

Manipulation graph. Consider a graph whose vertices are pairs (𝜽 , q) ∈ M𝑜, that
has two types of edges:

• transit edges: they represent paths 𝜽 ∈ Cfree in which the object 𝑜 remains still
at a pose q ∈ Q𝑜

sta, the robot does not carry anything and moves to grasp 𝑜;
• carry edges: they represent paths in which the robot carries 𝑜 and moves in

order to ungrasp 𝑜; the pose of 𝑜 moves along with 𝜽 on the path.

Manipulation is as alternating sequences of transit and carry edges through vertices
(𝜽 , q) in the manipulation space. At the end of a transit path in a vertex (𝜽 , q) ∈ M𝑜,
the robot performs a grasp. This is pursued with a carry path, at the end of which
in another vertex ofM𝑜 the robot ungrasps 𝑜. A manipulation may require several
⟨transit, grasp, transfer, ungrasp⟩ sequences, as illustrated in the following example.

Example 20.8. Consider the robot in Figure 20.4 which has to insert the red cylinder
in the hole in the yellow table. The only initially feasible grasps put the gripper axis
orthogonal to the cylinder axis, but end up in collision at the insertion stage. For this
task, the robot has to grasp the object, set it on a vertical pose on the table, regrasp it
from the top, move it to the hole in the yellow table then perform the insertion. □

A manipulation action changes the configuration space. When the robot grasps an
object, its geometry changes. If it holds a long pole, some configurations may no
longer be in Cfree. The grasped object leaves its previous pose; it may no longer be an
obstacle to following movements. The scene graph has to be managed dynamically,
with updates of the links between nodes at a manipulation action, associated with
updates of the configuration space. Manipulation issues are further developed in
Section 21.2.

476 20 Motion and Manipulation Actions

20.5 Discussion and Bibliographic Notes

Robotics is a very large interdisciplinary field which draws from several engineering
areas (mechanical, electrical, control, computer, software engineering) and disci-
plines (physics, chemistry, biology). A broad coverage of robotics can be found in
a comprehensive handbook [1014]. Modeling and control issues are developed in
several textbooks [685, 792, 743].18 A collection of papers focuses on problems at
the intersection of Robotics and AI [930].

There is a broad literature covering specialized robotics areas, e.g., manufactur-
ing robots [459]; exploration robots [351] in mining [257], ocean [47, 776] and
space [1211]; service robots [455, 422]; driverless vehicles [1097, 1217]; personal
robots [915]; medical robots [1081]; or human-carried robots [594].

This chapter discusses several technical issues for which additional references are
in order. Computational geometry methods are extensively discussed in [974], with
additional concerns for robotics in, e.g., [60]. Scene graphs for environment de-
scription linked to sensing are surveyed in [215]. The Unified Robot Description
Format (URDF) synthesis and use is the topic of many tutorials and surveys, e.g.,
[1099]. Kinematics and control issues are extensively covered in the already men-
tioned handbook and textbooks. Closed-loop control on exteroceptive sensors, as
in visual servoing [220], are powerful extensions of the control methods in Sec-
tion 20.2.4. The potential field methods for movement and obstacle avoidance are
studied in [602, 83]. A diversity of biped movements, including acrobatics, are
illustrated in e.g., [649, 229].

Mobile robots led naturally to navigation issues. The SLAM problem has been
extensively studied and implemented.19 Kalman Filtering methods attracted more
attention [1096, 805, 1051, 333] than particle based methods with DBN and the
Expectation-Maximization algorithm [403, 1105]. Visual SLAM has benefited from
progress in robust image processing for the localization and identification of land-
marks [841, 845]. Navigation has also benefited from a broad set of map description
methods, e.g., for hierarchical topological maps [638], semantic maps [650], and
hybrid maps [651].

Environment exploration issues are surveyed in [731]. Approaches to the next
best viewpoint selection problem for exploration are illustrated in, e.g., [1067] for a
greedy method, and [390] for a planning method. Generative neural nets for handling
semantics in exploration problems are attracting a growing interest [742, 927, 1063].

Robotics manipulation is a very broad area with significant contributions from
[759, 760]. The illustrated 3-fingered hand is due to [761]. Manipulation graphs will
be further discussed in the next chapter.

20.6 Exercises

20.1. Prove the results given in Example 20.1 for computing (𝑥, 𝑦) from (𝑥′, 𝑦′)
18The latter has an online course: https://modernrobotics.northwestern.edu
19See, e.g., the software repository: http://www.openslam.org/

https://modernrobotics.northwestern.edu
http://www.openslam.org/

20.6 Exercises 477

20.2. A free solid in space has 6 dof . How many dof have

• a laser pointer?
• a tray of bottles to be kept vertical?

20.3. Based on Example 20.4, develop the equations for the transition function
¤𝜽 = 𝛾(𝜽 , 𝑢) of a unicycle with 𝜽 = (𝑥, 𝑦, 𝛼) and two actuation variables, 𝑢1 the
pedaling rate and 𝑢2 the angular velocity.

20.4. Compute 𝐽−1(𝜽) for the robot in Example 20.5 and its determinant. What are
the singularities of this robot in the (𝜃1, 𝜃2, 𝜃3) ?

20.5. What is the third order polynomial scaling function 𝜁 of Exercise 20.5.

20.6. Identify the joint types and axis of the 9 dof of the three-fingered hand in
Figure 20.12(a). Same question for the 24 dof of the hand in Figure 20.12(b).

21 Task and Motion Planning

Planning in robotics usually refers to motion and manipulation. In AI it refers to
abstract actions. The two problems require distinct mathematical representations. The
latter relies on the abstract causal relations from preconditions to effects. The former is
concerned with computational geometry, kinematics and dynamics. Clearly, no single
approach is sufficient since motion and manipulation are needed for most actions, but
planning movements in space cannot handle causality and task organisation. In simple
cases one may decouple the two problems: abstract planning produces abstract plans
whose actions can be refined, when needed, with motion/manipulation planning.
However, the two problems are tightly coupled for complex tasked and crammed
environments. For example, furniture movers have to carefully organize their task
such as not to block the moving of large pieces.

This chapter is about the integration of planning for motion/manipulation with
planning for abstract actions. In this context, we refer to the latter as task planning and
to the integration of both as combined task and motion planning problems (TAMP).
The reader is already familiar with task planning techniques. Section 21.1 introduces
the main algorithms for motion planning. Manipulation planning is subsequently
introduced . Section 21.3 presents a few approaches specific to TAMP.

21.1 Motion Planning

A robot’s movements take place computationally in the configuration space, which
is a connected manifold (see Chapter 20). Since Cfree = C\Cobs, when there are no
obstacles Cfree = C. A movement between two configurations 𝜽0 and 𝜽𝑔 ∈ Cfree is
easily computed as a straight line in the configuration space (Equation 20.4). Motion
in environments with sparse obstacles can rely on reactive potential field techniques
(Section 20.2.5), with the risk of getting trapped in local minima. Moving with a
planned path is safer.

A motion planner will be given (i) a domain described with the setW of fixed and
movable objects, (ii) a robot ℜ specified with its kinematic and dynamic capabilities
and constraints, and (iii) an initial configuration 𝜽0 and a goal configuration 𝜽𝑔. Note
we do not need to provide and explicit of set of actions. These are limited to motion,
described with metric operational models of the possible movements of the robot.

In the simplest case, a motion planner produces a path from 𝜽0 to 𝜽𝑔.1 Sometime we
need a trajectory, i.e., a path labeled with time. A kinodynamic motion planner seeks
a movement which meets the velocity, acceleration, force and torque constraints of

1In that case motion planning and path planning are synonymous.

478

Free pre-publication, for personal use only. To be published by Cambridge University Press.

21.1 Motion Planning 479

the robot, as well as the kinematic and obstacle avoidance constraints. We focus here
on a simplified kinematic planning problem where dynamic constraints are ignored.

A robot task is expressed in the task space, not in the configuration space, e.g.,“reach
for this object”, instead of “put yourself in that configuration”. We need to map
the goal pose of the end effector q𝑔 = [𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝜑] from the task space to a
configuration 𝜽𝑔 such that q𝜽𝑔 (eff) = q𝑔. This is the inverse of the problem seen
earlier (Section 20.2.2). Let us assume that the kinematic of the ℜ allows finding a
𝜽𝑔 meeting the task goal (which is the case when ℜ is kinematically redundant and
Cfree is a connected manifold).

Motion planning problems. A motion planning problem is a tuple (W,ℜ, 𝜽0, 𝜽𝑔)
where 𝜽0 and 𝜽𝑔 are in Cfree, the free configuration space of ℜ. A solution to the
problem is a path ℘[𝜽0,𝜽𝑔] in Cfree from 𝜽0 to 𝜽𝑔.

The configuration space representation makes it possible to conceptually simplify
the motion of an articulated body in a complex environment as a simple continuous
path of points in the free configuration space. Despite this conceptual simplification,
motion planning is a PSPACE-hard problem. A major complexity issue is that the
search space Cfree is not easily computed from the problem specifications.2 Mapping
W into C to obtain Cobs, then Cfree is intractable even for very simple robots and
environments (Section 20.2.2). This issue is practically addressed by defining an
explicit discrete roadmap in Cfree which simplifies motion planning, as developed
next.

21.1.1 Planning with a Roadmap of the Free Configuration Space

Since the search space Cfree is very hard to compute explicitly, possible approaches
have to seek approximations, e.g., by discretization (see Section 21.1.6) or Monte
Carlo sampling. A fruitful idea relies on the latter to sample a finite set of configu-
rations in Cfree connected into a graph, such that a graph path can easily be mapped
into a path in Cfree (as defined in Definition 20.3).

Let G = (𝑉, 𝐸) be an undirected graph; its vertices are to points in Cfree; its edges
are segments in Cfree (i.e., not segments in R3, but simple paths as per Equation 20.4):

• 𝑉 = {𝜽1, . . . , 𝜽𝑛 |𝜽𝑖 ∈ Cfree}, and
• for every edge (𝜽𝑖 , 𝜽 𝑗) ∈ 𝐸 there is a segment ℘[𝜽𝑖 ,𝜽 𝑗] in Cfree from 𝜽𝑖 to 𝜽 𝑗 .

Let 𝜎 = ⟨𝜽𝑖,1, . . . , 𝜽𝑖,𝑘⟩ be a sequence of 𝑘 distinct vertices in𝑉 such that consecutive
vertices are edges in 𝐸 , i.e., (𝜽𝑖, 𝑗 , 𝜽𝑖, 𝑗+1) ∈ 𝐸 for 1 ≤ 𝑗 ≤ 𝑘−1. This is a graph path in
G which corresponds to a sequence of segment paths: ⟨℘[𝜽𝑖,1,𝜽𝑖,2] , . . . , ℘[𝜽𝑖𝑛𝑘−1,𝜽𝑖𝑛𝑘]⟩
in Cfree. Hence 𝜎 also corresponds to a path ℘[𝜽𝑖,1,𝜽𝑖,𝑘] in Cfree.3 Note that a path ℘ in
Cfree can be decomposed by linear interpolation into a sequence of segments that, in
general, may not map to a graph path in G.

2The search space is seldom explicit in task as well as in motion planning, but in task planning it can
be partially enumerated from 𝑠0 and 𝛾(𝑠, 𝑎).

3This path is a continuous piecewise linear function, its first order derivative is discontinuous at the
intermediate points 𝜽𝑖,1, . . . , 𝜽𝑖,𝑘 .

480 21 Task and Motion Planning

Definition 21.1. A roadmap for Cfree is a graph G = (𝑉, 𝐸) of vertices and segment
edges in Cfree which meets the two following properties:

(i) Connectivity: two vertices are connected in G iff the corresponding configura-
tions are connected in Cfree, i.e., ∀𝜽𝑖 , 𝜽 𝑗 ∈ 𝑉 , there is a path 𝜎 in G from 𝜽𝑖 to
𝜽 𝑗 iff there is a path ℘[𝜽𝑖 ,𝜽 𝑗] in Cfree, and

(ii) Accessibility: every point in Cfree can be connected to G in Cfree, i.e., ∀𝜽 ∈ Cfree,
there is a vertex 𝜽𝑖 ∈ 𝑉 such that the segment ℘[𝜽,𝜽𝑖] is in Cfree. □

The connectivity property states that the graph connectivity matches the free con-
figuration space connectivity: a path 𝜎 in the graph G corresponds to a continuous
path ℘ in Cfree, and vice versa for the vertices of 𝑉 . Hence connected components of
the graph correspond to connected components of Cfree. The accessibility property
states that every configuration in Cfree is accessible with a segment from G.

Example 21.2. Consider the simple 2D configuration space of Figure 21.1(a): there
is path between every pair of points in Cfree; hence the corresponding roadmap is a
connected graph. In Figure 20.8, the free configuration space is not connected, its
roadmap will have two connected components □

Given a roadmap G = (𝑉, 𝐸)), a motion planning problem (W,ℜ, 𝜽0, 𝜽𝑔) is easily
solved with the Roadmap-MP procedure Algorithm 21.1.

Roadmap-MP(𝜽0, 𝜽𝑔, 𝑉, 𝐸)
find a vertex 𝜽𝑖 ∈ 𝑉 with a segment ℘[𝜽0,𝜽𝑖] in Cfree
find a vertex 𝜽 𝑗 ∈ 𝑉 with a segment ℘[𝜽𝑔 ,𝜽 𝑗] in Cfree
search for a graph path 𝜎 from 𝜽0 to 𝜽𝑔 in the graph
(𝑉 ∪ {𝜽0, 𝜽𝑔}, 𝐸 ∪ {(𝜽0, 𝜽𝑖), (𝜽𝑔, 𝜽 𝑗)})

return 𝜎 or nil if no path is found

Algorithm 21.1. Roadmap-MP, a motion planning with a roadmap

The first two steps of Roadmap-MP connect 𝜽0 and 𝜽𝑔 to G; they are granted by
the accessibility property. If the third step does not find path 𝜎, then the problem has
no solution, thanks to the connectivity property. Otherwise the returned path 𝜎 in the
extended roadmap is mapped to a sequence of segments ⟨℘[𝜽0,𝜽𝑖] , . . . , ℘[𝜽 𝑗 ,𝜽𝑔]⟩ from
𝜽0 to 𝜽𝑔 in Cfree that provide the motion plan solution ℘[𝜽0,𝜽𝑔] .

In summary, with a roadmap of Cfree, motion planning problems are solved with a
simple path search algorithm in an explicitly defined graph. We transform a PSPACE-
hard problem into a simple polynomial problem (graph search) at a cost: we trade
complexity for approximate completeness. In practice, Roadmap-MP is only prob-
abilistically complete: it uses probabilistic roadmaps, i.e., graphs that approximate
a roadmap in a probabilistic sense. As detailed next, the more we sample points in
Cfree, the larger the probability of completeness converges to 1.

21.1 Motion Planning 481

21.1.2 Sparse Probabilistic Roadmaps

Given a motion planning problem (W,ℜ, 𝜽0, 𝜽𝑔), let see how to synthesize a graph
G that probabilistically approximates a roadmap.

All probabilistic roadmap algorithms rely on the same schema: they synthesize a
graph by randomly sampling configuration points in C, testing them for the needed
properties, and extending G with vertices and/or edges when the tests are satisfied.

The visibility-based probabilistic roadmap algorithm, vPRM (Algorithm 21.2), ap-
plies the above schema in a parsimonious way. The schema, illustrated in Figure 21.1,
adds to G a sampled 𝜽 when 𝜽 ∈ Cfree and either:

• 𝜽 extends the accessibility to reach parts of Cfree not yet covered, or
• 𝜽 extends the connectivity to connect unconnected components of G.

A point 𝜽 that meets the former condition extends the coverage with a free visibility
area, in which any point will “see” 𝜽 with a segment. A point in the latter condition
allows connecting two unconnected such areas.

vPRM(𝑉, 𝐸, 𝑛, 𝜂)
𝑛′ ← 𝑛

while 𝑛′ > 0 do
𝜽 ← Sample(C)
if Free(𝜽 , 𝜂) then

1 if ∀𝜽 ′ ∈ 𝑉 : ¬FreeSegment(𝜽 , 𝜽 ′, 𝜂) then
𝑉 ← 𝑉 ∪ {𝜽}
𝑛′ ← 𝑛

2 else if ∃𝜽1, 𝜽2 in 𝑉 such that 𝜽1 and 𝜽2 are not connected in 𝐸 , and
FreeSegment(𝜽 , 𝜽1, 𝜂) and FreeSegment(𝜽 , 𝜽2, 𝜂) then
𝑉 ← 𝑉 ∪ {𝜽}
𝐸 ← 𝐸 ∪ {(𝜽 , 𝜽1), (𝜽 , 𝜽2}
𝑛′ ← 𝑛

else 𝑛′ ← 𝑛′ − 1

return G = (𝑉, 𝐸)

Algorithm 21.2. vPRM, a visibility-based probabilistic roadmap algorithm for
path planning

The algorithm vPRM is initially called with 𝑉 = ∅, 𝐸 = ∅, a collision margin
threshold 𝜂, and a positive integer 𝑛 for controlling its termination. vPRM uses the
following functions:

• Sample(C): returns a uniformly distributed random point 𝜽 ∈ C. Recall
that a kinematic model gives C ⊆ R𝑛 for a robot with 𝑛 degrees of freedom
(dof). Several calls to Sample return a set of points that are independently and
identically distributed (the i.i.d assumption).

• Free(𝜽 , 𝜂): returns “true” if 𝜽 ∈ Cfree up to the error margin threshold 𝜂, and
“false” otherwise.

482 21 Task and Motion Planning

• FreeSegment(𝜽 , 𝜽 ′, 𝜂): returns “true” if the segment path ℘[𝜽,𝜽′] is in Cfree up
to the error margin 𝜂, and “false” otherwise. Recall that 𝜂 is the error margin
allowed in computing the distance to obstacles 𝛿 (p.454).

The collision testing procedure Free(𝜽 , 𝜂) relies on the distance 𝛿 to obstacles
(Equation 20.3). It can be efficiently implemented with hierarchical geometric data
structures, e.g., trees of bounding boxes (see Section 20.2.2). Recall the error margin
parameter 𝜂: the farther the robot can be from obstacles, the more efficient collision
testing is. Conversely, the lower is the error margin threshold 𝜂, the higher is the cost
of the collision test. Free can be extended to a procedure FreeSegment for testing if
a segment is in Cfree: since a segment path is simple linear interpolation between two
poins (Equation 20.4), this test can be performed by sampling on the segments taking
into account the distance 𝛿 to obstacles.

The graph G can be maintained such as to ease the tests in lines 1 and 2, e.g., order
the vertices of 𝑉 and keep track of the connected components of G to test with a
Union-Find algorithm if 𝜽1 and 𝜽2 are connected.

The termination condition is based on the number 𝑛 of consecutive samples of free
configurations that do not add anything to the roadmap, i.e., samples that fail the tests
in lines 1 and 2. vPRM is probabilistically complete; probability that the resulting
graph is a roadmap of Cfree is proportional to (1 − 1/𝑛).

Example 21.3. Let us use vPRM to build a roadmap of a 2D configuration space
with the grey obstacles shown in Figure 21.1(a). Figure 21.1(b) to (h) illustrate a few
processing stages, showing only the points in Cfree, ignoring samples in Cobs:

(b): point 1 is added to 𝑉 , but not point 2, nor any other point in the visibility area
(in blue) covered by point 1, unless it extends the graph connectivity.

(c): point 3 is added to 𝑉 covering the green visibility area, but points 4 and 5 are
ignored.

(d): point 6 is added to 𝑉 covering the brown visibility area, but not points 7, 8 and
9.

(e): point 10, although in an area already covered by points 3 and 6, is added to 𝑉
because it extends the connectivity; two edges are added to 𝐸 ; points 11 and 12
are ignored.

(f): point 13 is added to 𝑉 (yellow area), but not point14.
(g): point 15 and two edges are added to G.
(h): point 17 and two edges are added to G.

At this stage no further samples can extend the graph coverage. The algorithm stops
after 𝑛 consecutive unsuccessful trials, with a roadmap of 7 vertices and 6 edges
(Figure 21.1(h)). □

In vPRM, a roadmap is a sparse graph to which a new vertex is added whenever the
tests in lines 1 and 2 show that the vertex will extend the roadmap’s coverage. One
may even go further in seeking a minimal roadmap by exchanging a vertex already in
𝑉 with a newly sampled but possibly better 𝜽 ∈ Cfree. No efficient heuristic for doing
so has been devised, and it is unclear whether the additional computation would be
amortized over numerous uses of the roadmap.

21.1 Motion Planning 483

O1

O2

O3

(a)

1

2

O1

O2

O3

(b)

1

2
3

4

O1

O2

O3

(c)

1

2
3

4

5

6

7

8

9
O1

O2

O3

(d)

1

2
3

4

5

6

7

8

9

10

11

12
O1

O2

O3

(e)

1

2
3

4

5

6

7

8

9

10

11

12

13

14

O1

O2

O3

(f)

1

2
3

4

5

6

7

8

9

10

11

12

13

14
15

16

O1

O2

O3

(g)

1

2
3

4

5

6

7

8

9

10

11

12

13

14
15

16 17

O1

O2

O3

(h)

Figure 21.1. Illustration of the vPRM algorithm in a 2D configuration space.

484 21 Task and Motion Planning

21.1.3 Redundant Probabilistic Roadmaps

One may prefer to synthesize quickly a very large redundant roadmap. This motivation
drives the sPRM algorithm (Algorithm 21.3). sPRM adds to𝑉 every sampled 𝜽 ∈ Cfree
until reaching 𝑛 vertices, then for each vertex 𝜽 ∈ 𝑉 it adds to 𝐸 all free segments that
connect 𝜽 to its neighbors, within a neighborhood of radius 𝜖 from 𝜽 (line 1).

sPRM(𝑉, 𝐸, 𝑛, 𝜂, 𝜖)
while |𝑉 | ≤ 𝑛 do

𝜽 ← Sample(C)
if Free(𝜽 , 𝜂) then 𝑉 ← 𝑉 ∪ {𝜽}

foreach 𝜽 ∈ 𝑉 do
1 foreach point in {𝜽 ′ ∈ 𝑉 | ∥𝜽 − 𝜽 ′∥2 ≤ 𝜖} do

if FreeSegment(𝜽 , 𝜽 ′, 𝜂) then 𝐸 ← 𝐸 ∪ {(𝜽 , 𝜽 ′)}

return G = (𝑉, 𝐸)

Algorithm 21.3. sPRM, a simplified probabilistic roadmap algorithm

sPRM, like vPRM, grants probabilistic completeness. The probability that the
returned G is a roadmap of Cfree equal to (1 − 𝑒−𝑐𝑛), for some constant 𝑐. Intuition
and detailed analysis show that the neighborhood parameter 𝜖 is better set as a function
of 𝑛 decreasing with a rate in 𝑂(log(𝑛)).

Both vPRM and sPRM synthesize a roadmap as an investment to be used over
multiple motion planning calls of Roadmap-MP. In applications where the environ-
ment is changing, e.g., due to the robot’s own actions, this investment for finding an
almost complete roadmap of Cfree is not worthwhile. One may restrict the search to a
reduced graph, focused on the specific motion planning problem from 𝜽0 to 𝜽𝑔 (see
Section 21.1.5).

21.1.4 Incremental Roadmap Refinement

The previous algorithms face the issues of probabilistic completeness and the com-
plexity of finding paths close to obstacles. Recall that the closer to obstacles the robot
needs to move, the more the collision testing will cost. This is illustrated in the next
example. As for any incomplete algorithm, the failure of Roadmap-MP is inconclu-
sive: there may be a solution, but the generated G might not allow it to be found. One
may further extend the roadmap, that is, pursue the procedure with a larger parameter
𝑛 that controls the termination condition. Moreover, the error margin parameter 𝜂 for
collision testing plays also a critical role. A cautious large margin may forbid possible
roads. The smaller 𝜂 is, the closer to obstacles sampled points can be in Cfree and
contribute to G.

Example 21.4. Consider Figure 21.1 with a much larger upper obstacle 𝑜1, leaving
only narrow free corridors to the two other obstacles. If the corridor is narrower than
the proximity margin of the collision test, points such as 2, 6, and 15 would not be

21.1 Motion Planning 485

considered as in Cfree. Hence vPRM or sPRM, even with a large 𝑛, would give a
roadmap that leaves connected parts of Cfree unconnected. They would not be able to
tell whether there is no connection or there is one that has not been found. □

Incremental-MP(𝜽0, 𝜽𝑔, 𝑛, 𝜂,Δ𝑛, 𝜌𝜂)
(𝑉, 𝐸) ← PRM(∅,∅, 𝑛)
𝜎 ← Roadmap-MP(𝜽0, 𝜽 , 𝑉, 𝐸)
repeat

𝑛← 𝑛 + Δ𝑛 ; 𝜂← 𝜂/𝜌𝜂
(𝑉, 𝐸) ← PRM(𝑉, 𝐸, 𝑛, 𝜂)
𝜎 ← Roadmap-MP(𝜽0, 𝜽 , 𝑉, 𝐸)

until 𝜎 ≠ nil or timeover

Algorithm 21.4. Incremental-MP, motion planning with incremental refinements
of the roadmap, with PRM being either vPRM or sPRM.

To address this issue, vPRM or sPRM can be used with incremental refinements of
the roadmap, starting with a rough map and augmenting its resolution until either a
solution is found or planning time is over. This is done in Algorithm 21.4. Initially
the error parameter 𝜂 is set to a comfortable margin to reduce the computational cost
of the collision testing in Cfree. In case of failure, the roadmap is extended with a
larger 𝑛 and a smaller 𝜂.

Probabilistic roadmap algorithms are quite efficient for sparsely occupied environ-
ments, but much less for very cluttered ones.

21.1.5 Rapidly-Exploring Random Trees

The PRM methods in the previous section invest in the construction of a roadmap of
Cfree. Its computation cost is amortized over many motion-planning problem instances
in the same environment. We now discuss faster and more focused algorithms that
seek a solution path for a single motion-planning instance of moving between two
points 𝜽0 and 𝜽𝑔.

A Rapidly-Exploring Random Tree algorithm (RRT) builds a tree rooted at 𝜽0 with
a leaf at 𝜽𝑔. It is called a single query motion planner, as opposed to the multiple
queries with the same G that motivate PRM algorithms. The synthesized tree is to be
used just once.

The algorithm RRT is initially called with 𝑉 = {𝜽0} and 𝐸 = ∅. In each iteration
of its loop, it randomly selects a point 𝜽 ∈ Cfree, then tries to connect 𝜽 to the nearest
point 𝜽 ′ ∈ 𝑉 . The steps are as follows:

• RRT first calls Select, which returns the goal 𝜽𝑔 with probability 𝑝, and other-
wise returns a new sampled point in Cfree.

• Nearest(𝜽 , 𝑉) returns 𝜽 ′ the nearest point to 𝜽 in the set of configurations 𝑉 ,
that is, Nearest(𝜽 , 𝑉) = argmin𝜽′∈𝑉 ∥𝜽 − 𝜽 ′∥2.

• If the segment ℘[𝜽,𝜽′] is in Cfree, that is, FreeSegment(𝜽 , 𝜽 ′, 𝜂) is true, the path
℘[𝜽,𝜽′] connects 𝜽 to 𝑉 , so RRT sets 𝜽𝑛𝑒𝑤 ← 𝜽 .

486 21 Task and Motion Planning

RRT(𝑉, 𝐸, 𝜽0, 𝜽𝑔, 𝑛, 𝜂, 𝑝)
until (𝜽𝑔 ∈ 𝑉) or |𝑉 | = 𝑛 do

𝜽 ← Select(𝜽𝑔, 𝑝)
𝜽 ′ ← Nearest(𝜽 , 𝑉)
if FreeSegment(𝜽 , 𝜽 ′, 𝜂) then 𝜽𝑛𝑒𝑤 ← 𝜽
else 𝜽𝑛𝑒𝑤 ← Steer(𝜽 , 𝜽 ′)
𝑉 ← 𝑉 ∪ {𝜽𝑛𝑒𝑤}; 𝐸 ← 𝐸 ∪ {(𝜽 ′, 𝜽𝑛𝑒𝑤)}

return G = (𝑉, 𝐸)

Algorithm 21.5. RRT, Rapidly-Exploring Random Tree algorithm

• Otherwise, RRT uses Steer(𝜽 , 𝜽 ′) to return a point 𝜽𝑛𝑒𝑤 between 𝜽 and 𝜽 ′

for which there is a segment in Cfree. The Steer function chooses this point
randomly according to some heuristic, e.g., in between the nearest obstacle to
𝜽 ′ in the direction of 𝜽 and midway to 𝜽 ′ (Figure 21.2).

• In either case, RRT modifies 𝑉 and 𝐸 to add the connection to 𝜽𝑛𝑒𝑤 .

<latexit sha1_base64="LsJjImfP9GtTWuHjc8iySbzsIiQ=">AAAFkXicjVTbbtQwEE2hC2W5lj7yYrFtVSpYJUBLy9MKJASChyJaqFivKsc72Vi1nWA7vcgyX8Er/Bd/g51Nq00pEpGi2GdmzpwZT5yWnGkTx7/nrlyd71y7vnCje/PW7Tt37y3e/6yLSlHYowUv1H5KNHAmYc8ww2G/VEBEyuFLevg62L8cgdKskLvmtISRIBPJMkaJ8dDXZWxyMOQgXj6414v7cf2gmcVGnGxvJihpkF7UPDsHi/Pf8LiglQBpKCdaD5O4NCNLlGGUg+viSkNJ6CGZwNAvJRGgR7aW7NCKR8YoK5R/pUE1OhthidCCmPyx/5pchI8+FalDLafgYYqCa9dtpzPZ1sgyWVYGJJ1myyqOTIFCE9CYKaCGn/oFoYp5wYjmRBFqfKtaVHaiSJkzetKqx0KpTVGOszZ6ov0KvMYu1uCPQk5MbrGBE3PMxiZ3dpuKoFTCMcgjpgoZmmc/vPu06yxOYcKkDWfuN754zpdxWnEOZtl1EUJ2lpRDZgRRPsLZDSFqBzTrUBLlhTkbX2ZkBkRtTS6z+srOQ12TGuR4Ku0S/SUtxuAs6k5paFFJ30dbhpn0LIGhKc4QXxBRbpiO7MDiQ1AS9bdAODWw3x0f2PDix9OkaHUV4+GTjf4GnIwCubOBKSg54wngVA8thCDegsscyNgNk1HtjBEWFffnW/BKSPvM2ZDD2V7izgNn1Xaxglk2/3c0ZWBVeKhxu5hUlZykwM/TKsi0gfICtzfk9YRYnDHOa6COC3L8Zq0eFWZsiF+vNT76O5O31Xn+xzvxuvGqR1dacHwGtzt3CKc1M8a95GUwt+1hRqf6123iB9m1zfpoGhxU6azV4cbDj6sI83rm0uwv8GRq0rj42t4oJifgcPNn+Uvq7CZC/158ftpPNvvPPz7tDV4119VC9CB6GK1FSfQiGkRvo51oL6KRjH5EP6NfnaXOdmfQaXyvzDUxS1Hr6bz/A4e26gs=</latexit>

✓0 <latexit sha1_base64="/VnioYGUD2JccZAFE5qPSBtFzrY=">AAAFkXicjVRdTxQxFB2QVVy/QB59aVwgSHCzg4Lg00YTo9EHjKDE7YZ0und2GtrO2Hb4SFN/ha/6v/w3trMD2UFMnGQy7bn3nnvu7Z0mBWfa9Hq/Z2ZvzLVu3pq/3b5z9979BwuLDz/rvFQUDmjOc3WYEA2cSTgwzHA4LBQQkXD4khy/DvYvJ6A0y+W+OS9gKMhYspRRYjz0dRmbDAw5Gi8fLXR63V71oKnFVi/e3Y5RXCOdqH72jhbnvuFRTksB0lBOtB7EvcIMLVGGUQ6ujUsNBaHHZAwDv5REgB7aSrJDKx4ZoTRX/pUGVeh0hCVCC2KyDf81mQgffS4ShxpOwcPkOdeu3Uxn0p2hZbIoDUg6yZaWHJkchSagEVNADT/3C0IV84IRzYgi1PhWNajsWJEiY/SsUY+FQpu8GKVN9Ez7FXiNbazBH4Ucm8xiA2fmlI1M5uwuFUGphFOQJ0zlMjTPfnj3ad9ZnMCYSRvO3G988Zwv46TkHMyyayOE7DQph9QIonyEs1tCVA5o2qEgygtztnedkRkQlTW+zuoruwx1dWqQo4m0a/QXNB+Bs6g9oaF5KX0fbRFm0rMEhro4Q3xBRLlBMrR9i49BSdTdAeFU3353vG/DizcmSdHqKsaDp1vdLTgbBnJnA1NQcsETwIkemgtBvAUXGZCRG8TDyhkjLEruzzfnpZD2mbMhh7Od2F0GTqttYwXTbP7vqMvAKvdQ7XY1qSo4SYBfplWQagPFFW5vyKoJsThlnFdAFRfk+M1aNSrM2BC/Xml88ncmb6vy/I937HXjVY+uNODeBdzs3DGcV8wYd+KXwdy0hxmd6F+3sR9k1zTrk0lwUKXTRodrDz+uIszrhUu9v8KTqnHt4mt7o5gcg8P1n+UvqYubCP178XmzG293n3/c7PRf1dfVfPQoehytRXH0IupHb6O96CCikYx+RD+jX62l1m6r36p9Z2fqmKWo8bTe/wGiuOpC</latexit>

✓g

<latexit sha1_base64="2SY+2q4yRsp8HJaGSg+Vvy05jhM=">AAAFlXicjVRti9QwEK4v68v6rh/84JfgnoeKLlv1fANhUREFQUVPhc16pNnpNlyS1iQ97wjxd/hV/5X/xkm3d2zPEyyUJs/MPPPMZJqsksK60ej3ocNHjvaOHT9xsn/q9Jmz585fuPjRlrXhsM5LWZrPGbMghYZ1J5yEz5UBpjIJn7LNZ9H+aQuMFaX+4HYqmCo21yIXnDmEvqxQV4BjG17Dt7CycX4wGo6ahywt1kbpo/spSVtkkLTP240LR7/SWclrBdpxyaydpKPKTT0zTnAJoU9rCxXjm2wOE1xqpsBOfSM7kGuIzEheGny1Iw26HOGZsoq54hZ+XaHix+6oLJCOU/RwZSlt6HfTufzh1Atd1Q40X2TLa0lcSWIjyEwY4E7u4IJxI1Aw4QUzjDtsV4fKzw2rCsG3O/V4qKwrq1neRbctrgA19qkFPA49d4WnDrbdNzFzRfCPuIpKseGgt4QpdWyef/3q/YfgaQZzoX08d9xg8VKu0KyWEtxK6BNC/DKphNwpZjAi+DWlGgey7FAxg8KCHx1kFA5UY00PsmJle6GhTQ16tpB2gP6KlzMInvQXNLysNfbRV3EukSUytMU5hgUxEybZ1I893QSjyfAhqGDG/nuQYx9femuRlKyuUjq5vTZcg+1pJA8+MkUluzwRXOjhpVIMLbQqgM3CJJ02zpRQVUs831LWSvu7wcccwQ/SsBe4rLZPDSyz4R/SlkFNiVDrtj+pqSTLQO6lNZBbB9U+bjQUzYR4mgspG6CJi3Jwc70ZFeF8jL/ZaLzxdya0NXn+xztF3XQV0WsdeLQLdzu3CTsNM6WD9HE0d+1xRhf6b/oUBzl0zXZrERxV2bzT4dYDx1XFed11aff7eHIzb12wthdG6DkE2v5ZeEnt3kTk34uPd4bp/eG9d3cG46ftdXUiuZJcTa4nafIgGScvk7fJesITk/xIfia/epd7T3rPey8WrocPtTGXks7Te/MH4aTsRQ==</latexit>

✓new

<latexit sha1_base64="/5/7Cqt3tJO7JTcK38U68DJb12I=">AAAFs3icjVTbbtw2EFXSbJtub0772Bei6xiO4S5WaTd18rRogaIF+pAicRJguTAoaiQRJimVpHwBwXxDviav7W/0bzqUZGPlukAJCCLnzJw5Mxoxa6SwbrH4+87dD+5NPvzo/sfTTz797PMvdh58+crWreFwzGtZmzcZsyCFhmMnnIQ3jQGmMgmvs9OfIv76DIwVtX7pLhvYKFZqUQjOHJpOdg52qavAMVqCs4Qq5ipb+Bcggbuw32Mn5WHzaHd6sjNbzBfdIlub5SJ9+iQl6WCZJcN6fvLg3h80r3mrQDsumbXrdNG4jWfGCS4hTGlroWH8lJWwxq1mCuzGd0UF8hAtOSlqg492pLNuR3imbJR7iG9XqfiylyoLZOQUPVxdSxum43SuONp4oZvWgeZ9tqKVxNUktonkwmAH5CVuGDcCBRNeMcO4w2aOqHxpWFMJfjGqx0NjXd3kxdh6YXEHqHFKLeDH0qWrPHVw4c5F7qrgn3IVlWo4B30mTK1j8/xvv754GTzNoBTax6nAAxYv5S7NWinB7YYpIcRvk0oonGIGI4JfKtU5kG2HhhkUFvziNlA4UB2a3oZiZdehYUgNOu+l3aK/4XUOwZNpT8PrVmMffROnFlkiw1CcY1gQM2GdbfzK01MwmsyPQAWz8m+DXPn40MM+Kdnbo3T97XK+hItNJA8+MkUlVzzR2OvhtVIMEdpUwPKwTjedM8WhbyV+31q2Svvvgo85gp+l4TpwW+2UGthmwz9kKIOaGk2D282kppEsA3md1kBhHTQ3uBGougnxtBBSdoYuLsrBw343KsL5GH/QaXz070yIdXn+j3eKuukeWh+OzIsr87hzp3DZMVM6S59FeIzHGe31H/gUBzmMYXvWB0dVeMlsd3jwwHFVcV6vXIbzDZ7ClIML1vazEbqEQIc/Cy+pq5uI/Pfm1eN5+mT+/e+PZ6sfh+vqfvJ18k2yn6TJD8kq+SV5nhwnPHmXvE/+TP6aLCfrSTbJe9e7d4aYr5LRmqh/AJVc94I=</latexit>

✓ Select(✓g, p)

<latexit sha1_base64="oXSJJLl7V06B3Xs1Ptnqaltql60=">AAAFtHicjVRtbxQ3EF5erqVXWgL9yBeLCyFAeroFEqCfTlRCVEIIBAlI51Pk9c3eWrG9W9sbElnuf+iv4Sv8DP5Nx7ub6DYEqZZWa88z88wzs7POKimsm0y+Xrh46fLghx+v/DT8+eovv15bu35jz5a14bDLS1maDxmzIIWGXSechA+VAaYyCe+zgz8j/v4QjBWlfueOK5grttQiF5w5NO2v3V+nrgDH7hC6BGcJVcwVNvevgBmwLmy28Nbe3fXh/tpoMp40i6xstifp052UpJ1llHTr9f71y3/TRclrBdpxyaydpZPKzT0zTnAJYUhrCxXjB2wJM9xqpsDOfVNVILfRsiB5afDRjjTW1QjPlI1qt/DtChVf9lhlgfScoocrS2nDsJ/O5U/mXuiqdqB5my2vJXEliX0iC2GAO3mMG8aNQMGEF8ww7rCbPSq/NKwqBD/q1eOhsq6sFnnfemRxB6hxSC3g19JLV3jq4Mh9FAtXBP+Uq6hUw0fQh8KUOjbPv/zr7bvgaQZLoX0cCzxg8VKu06yWEtx6GBJC/CqphNwpZjAi+G2lGgey6lAxg8KCn5wHCgeqQdPzUKzsNDR0qUEvWmnn6K94uYDgybCl4WWtsY++imOLLJGhK84xLIiZMMvmfurpARhNxk9ABTP1/wQ59fGhW21SsrFB6ez37fE2HM0jefCRKSo54YnGVg8vlWKI0KoAtgizdN44U5z5WuL3LWWttH8YfMwR/CgNp4GraofUwCob/h9dGdSUaOrcziY1lWQZyNO0BnLroDrDjUDRTIinuZCyMTRxUQ4eNptREc7H+HuNxrvfZkKsyfN/vFPUTTfQertnnpyY+507gOOGmdJR+keE+3ic0Vb/PZ/iIIc+bA/b4KgK75jVDnceOK4qzuuJS3c+w5ObZeeCtT03Qi8h0O7Pwkvq5CYi39/sPRinO+NHbx6Mps+66+pKcjO5lWwmafI4mSYvktfJbsKTf5NPyefky2BnQAd8AK3rxQtdzG9Jbw30f/T592U=</latexit>

✓0 Nearest(✓, V)

•

•

Figure 21.2. Tree built by RRT algorithm (in green); added vertex and edge 𝜽𝑛𝑒𝑤 and
(𝜽 ′, 𝑞𝑛𝑒𝑤)

Select(𝜽𝑔, 𝑝)
switch randomly do

case with probability 𝑝 do return 𝜽𝑔
case with probability 1 − 𝑝 do

repeat 𝜽 ← Sample(C) until 𝜽 ∈ Cfree
return 𝜽

Algorithm 21.6. Selects randomly either 𝜽𝑔 with a probability 𝑝, or a sampled
free configuration with a probability 1 − 𝑝.

The Select function guides flexibly the synthesis of the tree towards the goal. The
probability parameter 𝑝 can be set as increasing from a low value (e.g., 10−2) at the

21.1 Motion Planning 487

beginning of the search to allow for a random growth of the tree, to a higher value
later on to close up on the goal. When 𝑝 is high enough, the termination condition
simply waits until 𝜽𝑔 is added to G.

The graph constructed by RRT is a tree, because it adds new edges only for new
vertices that are not already in 𝑉 . This tree is rooted at 𝜽0. If RRT terminates with
𝜽𝑔 ∈ 𝑉 then there is a single path 𝜎 = ⟨𝜽0, . . . , 𝜽𝑔⟩ in G to the goal configuration.

The considerations of Section 21.1.4 about handling probabilistic completeness
and proximity to obstacles also apply to RRT. The algorithm Incremental-RRT is an
incremental version which repeatedly calls RRT from the previously returned 𝑉 and
𝐸 with larger 𝑛 and 𝑝 and a smaller 𝜂 until either a solution is found or planning time
is over.

Incremental-RRT(𝜽0, 𝜽𝑔, 𝑛, 𝜂, 𝑝,Δ𝑛, 𝜌𝜂 ,Δ𝑝)
(𝑉, 𝐸) ← RRT({𝜽0},∅, 𝜽0, 𝜽𝑔, 𝑛, 𝜂, 𝑝)
repeat

𝑛← 𝑛 + Δ𝑛 ; 𝜂← 𝜂/𝜌𝜂 ; 𝑝 ← 𝑝 + Δ𝑝
(𝑉, 𝐸) ← RRT(𝑉, 𝐸, 𝜽0, 𝜽𝑔, 𝑛, 𝜂, 𝑝)

until 𝜽𝑔 ∈ 𝑉 or timeover
if 𝜽𝑔 ∈ 𝑉 then return the path 𝜎 = ⟨𝜽0, . . . , 𝜽𝑔⟩ in G
else return nil

Algorithm 21.7. Incremental-RRT, motion planning with an RRT algorithm

There are several variants of the RRT algorithm. For example, the Rapidly-
Exploring Dense Tree (RDT) algorithm simply keeps adding to𝑉 sampled free points
and connecting them to their nearest neighbor in 𝑉 , without aiming for 𝜽𝑔. A more
elaborate variant is the bi-directional RRT, which grows concurrently two trees rooted
at 𝜽0 and 𝜽𝑔, until the two can be connected. All these algorithms are probabilistically
complete.

Transforming a graph path into a smooth trajectory. PRM and RRT methods
provide a plan as a path 𝜎 = ⟨𝜽0, . . . , 𝜽𝑔⟩ in a graph whose vertices and edges are in
Cfree. However, the motion of the robot requires a path ℘[𝜽0,𝜽𝑔] that is a continuous
function from [0, 1] to Cfree (see Definition 20.3). This path ℘[𝜽0,𝜽𝑔] will be further
transformed into a trajectory with a time-scaling function (Section 20.2.4).

The mapping from 𝜎 to ℘[𝜽0,𝜽𝑔] is a classical problem of fitting a curve to a set of
points in R𝑛, using, e.g., nonlinear regression techniques with polynomials or other
smooth functions. We further need to check that the resulting curve remains in Cfree.

Collision checking is generally easier for a segment than for a curve. To simplify
checking ℘[𝜽0,𝜽𝑔] , and prior to curve fitting, it can be worthwhile to interpolate 𝜎 with
additional points and segments in Cfree. Let 𝜽𝑖−1, 𝜽𝑖 , 𝜽𝑖+1 be three consecutive vertices
in 𝜎, 𝜽 ′

𝑖−1 and 𝜽 ′
𝑖

two points on the segments [𝜽𝑖−1, 𝜽𝑖] and [𝜽𝑖 , 𝜽𝑖+1] respectively. If
𝜽 ′
𝑖−1, 𝜽

′
𝑖

and the segment [𝜽 ′
𝑖−1, 𝜽

′
𝑖
] are in Cfree, then 𝜽𝑖 can be replaced in 𝜎 by the

pair 𝜽 ′
𝑖−1, 𝜽

′
𝑖
, with the associated three segments instead of two. This procedure can

be repeated recursively so as to have only short segments in 𝜎. If the distance of the

488 21 Task and Motion Planning

fitted curve to the segments in 𝜎 is below the error margin 𝜂 then no further collision
checking is needed (see Exercise 21.2).

Coupling RRT to PRM and to potential fields. Recall that potential field methods
use a repulsive potential 𝜙 to define a reactive policy 𝜋(𝜽) = −∇𝜙(𝜽) (see Sec-
tion 20.2.5). Their advantage is the coupling to online sensing to avoid non-modeled
and moving obstacles, but they are incomplete and may get trapped in local minima.
A natural idea is to plan the motion with RRT, for example, and use the graph path 𝜎
as a sequence of intermediate goals in Cfree to a potential field method. Planning may
take into account only fixed and large obstacles, and possibly be further refined if the
potential field fails locally.

21.1.6 Planning in a Discretized Configuration Space

Assume that the configuration space is discretized into small adjacent cells that all fit
into Cfree. With such a discretization, motion planning is reduced to a simple search
of a path in the adjacency graph, which can be solved with classical graph search
algorithms. The issue here is to efficiently find a good discretization.

A simple and popular grid-based method can be used as a first approximation for a
mobile robot. For example, a mobile robot would plan a rough motion of its base in a
grid; when close to obstacles and goals, it would refine the plan with more elaborate
algorithms for the motion of its arms and limbs. Starting with a uniform partition
of space into a grid, the method labels as free the cells that do not intersect with
obstacles. Collision checking is needed for a cell’s corners and edges. Note that even
with convex polygonal obstacles, it is not sufficient to have the four corners of a cell in
Cfree (see following example). Furthermore, discretization may forbid feasible paths.
A solution is to increase the grid resolution. A more efficient hierarchical resolution
with data structures such as an octrees, refines the cells close to obstacles.

An alternative discretization with nicer geometric properties relies on triangulation
techniques. For a 2D space and polygonal obstacles, the set of vertices of obstacles
can be taken as the basis of the decomposition of Cfree into triangles. Each triangle
has 0, 1 or 2 faces adjacent to obstacles. The other ‘free’ faces define the adjacency
graph of the discretized Cfree. A set of configuration points on each free face and each
triangle define the vertices of the graph. Note that by construction, each triangle lies
in Cfree; no collision checking is needed.

There are many triangulation methods for a finite set 𝑃 of points that are the
vertices of the convex polygonal obstacles. The well-known Delaunay triangulation
is such that no point lies inside any circumcircle of any triangle.4 This triangulation
of 𝑃 maximizes the minimum of all the angles of the triangles. The centers of
the circumcircles of all the triangles are the vertices of the Voronoi diagram of 𝑃,
which is the dual graph of Delaunay triangulation of 𝑃. Delaunay triangulation
and Voronoi diagrams, generalized to 3D, play an important role in graphics and
computer vision, where they are extensively used with quite efficient algorithms.
However, these as well as other space discretization techniques do not scale up very

4The circumcircle is the circle that passes through the triangle’s three vertices.

21.1 Motion Planning 489

well to high dimensional spaces and complex environments. They are not widely
used for planning the movements of robots with dozens of dof .

O1

O2

O3

(a)

O1

O2

O3

(b)

Figure 21.3. Discretization of a simple 2D space with: (a) grid discretization; (b) a
triangulation and a corresponding roadmap.

Example 21.5. Consider the 2D space of Example 21.3. Its grid discretization in
Figure 21.3(a) is such that the four corners of the cell intersecting the lower edge of
obstacle 𝑜1 are all in Cfree, but the entire cell is not. As in Example 21.4, assuming
larger obstacles and/or a rougher grid resolution would make connected areas of this
space unconnected through free cells.

A triangulation of this space is illustrated in Figure 21.3(b), together with a cor-
responding roadmap through the centers and free edges of the triangles (see Exer-
cise 21.3) □

21.1.7 Planning with Movable Obstacles

Motion planning may fail when there is no path to the goal possibly because of
obstacles that a robot may remove. Let us assume that some obstacles are labeled as
movable and the robot has a function Remove(𝑜) to get rid of a movable obstacle 𝑜
to which there is a free path. Manipulation planning is required to handle objects to
remove them (see Section 21.2). Possibly, several objects may need to be removed in
order to dispose of the obstacles to the goal.

Let Mo be the set of movable objects inW, CMo the configuration space without
all the objects in Mo, and CMo

free the corresponding free configuration space, i.e., taking
into account only unmovable obstacles.

When a motion planner such as Incremental-RRT fails to find a path to the goal,
the procedure NAMO seeks a path that can be opened by removing obstacles. It uses
a motion planner MP (e.g., RRT or vPRM) on the configuration space CMo without
obstacles. The planner is parameterized such as to return a dense probabilistic
roadmap or tree with several paths in CMo to the goal configuration 𝜽𝑔. If none is
found, NAMO fails. Otherwise it processes all the paths to 𝜽𝑔 in the returned roadmap
G, to find for each one the list of obstacles in Mo which intersect that path. It selects
the path with a minimum number of obstacles. It removes these obstacles in the order

490 21 Task and Motion Planning

NAMO(Mo, 𝜽0, 𝜽𝑔)
𝜎 ← Incremental-RRT(𝜽0, 𝜽𝑔, 𝑛, 𝜂, 𝑝,Δ𝑛, 𝜌𝜂 ,Δ𝑝)
if 𝜎 ≠ 𝑛𝑖𝑙 then return 𝜎
G ← MP(CMo, 𝜽0, 𝜽𝑔)
if G = nil then return nil
lpaths← {⟨𝜽0, . . . , 𝜽𝑔⟩ ∈ G}
foreach 𝜎 ∈ lpaths do

lobs(𝜎) ← {𝑜 ∈ Mo | 𝑜 intersect with 𝜎}
𝜎 ← argmin{lobs(𝜎)}
foreach 𝑜 ∈ lobs(𝜎) in the order of intersection with 𝜎 do

Remove(𝑜)
return 𝜎

Algorithm 21.8. NAMO, a motion planning procedure

in which they are intersected in the chosen path in 𝜎 ∈ lpaths. There is a free path in
Cfree to the first obstacle in lobs(𝜎), which hence it can be removed, opening a free
path to the second obstacle, etc. The returned 𝜎 is a path in Cfree to 𝜽𝑔.

The assumption that accessible movable objects can be removed may not hold in
densely cluttered space. There may not be enough space to dispose of obstacles, or
the space required for removing a big obstacle requires the removal of other objects
that do not interfere with the path to 𝜽𝑔. We’ll discuss this case in Section 21.3.

21.2 Manipulation planning

We consider here manipulation planning problems that involve only grasping, carrying
and ungrasping actions.5. The section details the manipulation space and manipulation
graph introduced in Section 20.4. It then present a manipulation planning algorithm,
first for the case of a single manipulable object, then extended to multiple objects.

21.2.1 Search Space

Recall that the manipulation space for an object 𝑜 in a pose q and a robot ℜ in a
configuration 𝜽 is a set of pairs (𝜽 , q), defined as:

M𝑜 = {(𝜽 , q) | 𝜽 ∈ Cfree ∧ (q ∈ Q𝑜
sta ∨ (𝜽 , q) ∈ Q𝑜

grasp)},where

• Q𝑜
sta, as defined in Section 20.4.2, is the set of stable poses of 𝑜 that do not

collide with obstacles, and
• Q𝑜

grasp is the set of pairs (𝜽 , q) in which a grasp of 𝑜 is feasible.

We assume that both Q𝑜
sta and Q𝑜

grasp are not empty. However, on a given support,
such as a clustered table, there may be no free stable pose for 𝑜. Similarly, there may

5More would be needed to address the rich repertoire of manipulation actions, e.g., pushing, rolling,
switching, flipping, pivoting, turning, screwing, throwing, etc.

21.2 Manipulation planning 491

be no free grasping configuration 𝜽 for given stable pose q. When there is a pair
(𝜽 , q) ∈ Q𝑜

grasp and 𝜽 ∈ Cfree then the robot in configuration 𝜽 can grasp 𝑜 in pose
q. For such a pair, the transformation H𝜽,q(𝜽) = q puts the end effector in a grasp
position.

Once 𝑜 is grasped, the link between ℜ and 𝑜 becomes rigid: a motion of ℜ from
𝜽 to any free 𝜽 ′ moves 𝑜 from q to a pose q′ = H𝜽,q(𝜽 ′). To ungrasp 𝑜, q′ should
be in Q𝑜

sta. Given 𝜽 ′ and H𝜽,q, the pose q′ = H𝜽,q(𝜽 ′) is uniquely defined. But
given a target pose q′ there may or may not be a feasible configuration 𝜽 ′ that allows
ungrasping 𝑜 in q′: the transformationH−1

𝜽,q(q
′) is an inverse kinematic problem that

may not have a solution (see p. 452). In such a case, 𝑜 may be ungrasped in another
pose q′′, from which we can see a regrasp that allow the target pose q′ to be reached.

In summary, the manipulation space M𝑜 characterizes the pairs (𝜽 , q) where
grasping and ungrasping can take place and where q ∈ Q𝑜

sta and (𝜽 , q) ∈ Q𝑜
grasp.

M𝑜 is a continuous space. The two sets Q𝑜
sta and Q𝑜

grasp may be approximated by
discretization. Alternatively, they can be defined with specific procedures to test if
𝑜 is stable in q and if a grasp is feasible in (𝜽 , q). This makes it possible to sample
pairs (𝜽 , q) and check for collision, stability and grasping constraints.

Manipulation planning problems. A single-object manipulation planning prob-
lem is a tuple (W,ℜ, 𝑜, 𝜽0, 𝜽𝑔, q0, q𝑔) where 𝜽0 and 𝜽𝑔 are the initial and final robot
configurations in Cfree, and q0 and q𝑔 are two stable and graspable initial and final
poses of the object 𝑜.

A solution to a manipulation planning problem is a finite sequence of pairs inM𝑜:
⟨(𝜽0, q0), . . . , (𝜽𝑛, q𝑛)⟩ such that 𝜽𝑛 = 𝜽𝑔, q𝑛 = q𝑔, for 1 ≤ 𝑖 ≤ 𝑛 there is a path in
the free configuration space ℘[𝜽𝑖−1,𝜽𝑖] , and either

(i) object 𝑜 remains immobile while the robot moves to a configuration 𝜽𝑖 where
it can grasp 𝑜, that is q𝑖 = q𝑖−1 and (𝜽𝑖 , q𝑖) ∈ Q𝑜

grasp, or
(ii) object 𝑜 remains carried in the same grasp and moves with the robot from 𝜽𝑖−1

to 𝜽𝑖 , where it is ungrasped in a stable pose q𝑖 , that is q𝑖 = H𝜽𝑖−1,q𝑖−1 (𝜽𝑖) and
q𝑖 ∈ Q𝑜

sta.

Note that the specification of a manipulation planning problem may not constrain
the final robot configuration: 𝜽𝑛 can be any point in Cfree. In practice, one would like
ℜ to simply move away after ungrasping 𝑜 in q𝑔. Note also that there should exist
feasible grasps (𝜽 , q0) and (𝜽 ′, q𝑔) in Q𝑜

grasp that allow to the initial grasp and final
ungrasp of 𝑜 in q0 and q𝑔; otherwise the problem has no solution.

It is important to remark that a grasp or an ungrasp action change the robot configu-
ration space C and hence Cfree. The path ℘[𝜽𝑖−1,𝜽𝑖] is required to be free in the current
configuration space. However, these changes in C are local. In a grasp, the changes
affect the shape of the end-effector extended with 𝑜 in the grasped pose q𝜽 (eff), and
the space previously occupied by 𝑜. Symmetrically for an ungrasp action. The update
of C can be computed incrementally.

Manipulation graphs. A manipulation graph is a directed graph G𝑜 = (𝑉𝑜, 𝐸𝑜)
such that𝑉𝑜 ⊂ M𝑜. 𝐸𝑜 has two types of edges, corresponding to the above two cases

492 21 Task and Motion Planning

(i) and (ii) (see Figure 21.4), that is:

(i) a transit edge ((𝜽 , q), (𝜽 ′, q)) represents a path ℘[𝜽,𝜽′] in Cfree in which only ℜ

moves; 𝑜 remains immobile at a pose q ∈ Q𝑜
sta, and

(ii) a carry edge ((𝜽 , q), (𝜽 ′, q′)) represents a path ℘[𝜽,𝜽′] in Cfree in which ℜ

carries 𝑜, which moves along this path to a pose q′ = H𝜽,q(𝜽 ′).
Every outgoing edge from a node (𝜽 , q) ∉ Q𝑜

grasp must be a transit edge. A
carry edge must necessarily connect two nodes (𝜽 , q) and (𝜽 ′, q′) in Q𝑜

grasp such that
q′ = H𝜽,q(𝜽 ′) ∈ Q𝑜

sta. A transit edge for a regrasp action (as in Example 20.8) starts
in a state where ℜ ungrasps 𝑜 in a pose q; the edge ends in a state where ℜ regrasps
𝑜 from another pose q′, but the two grasping relations are different: H𝜽′ ,q′ ≠ H𝜽,q.

A manipulation planning algorithm performs a search in the manipulation space.
It builds a manipulation graph starting at node (𝜽0, q0) seeking a path in this graph
of alternate transit and transfer edges that terminates at a node (𝜽𝑛, q𝑔) where 𝑜 is
in its goal pose. The condition on alternate types of edges is simply because two
consecutive transit edges ⟨((𝜽 , q), (𝜽 ′, q)), ((𝜽 ′, q), (𝜽 ′′, q))⟩ do not bring much to
the plan and can be merged into a single edge: ⟨((𝜽 , q), (𝜽 ′′, q))⟩. The intermediate
point 𝜽 ′ is integrated in the path ℘[𝜽,𝜽′′] . Similarly for two consecutive carry edges in
the same grasp. Consequently, we can partition the vertices into two types of nodes:
𝑉𝑜 = 𝑉𝑜

𝑡 ∪𝑉𝑜
𝑐 , where

(i) 𝑉𝑜
𝑡 is the set of t-nodes from which only transit edges are issued, and

(ii) 𝑉𝑜
𝑐 is the set of c-nodes, from which only carry edges are issued.

<latexit sha1_base64="sU9Jb5F9o1AsLugE0CX5tVHkynM=">AAAHW3icjVRbb9MwFM5goxBuG4gnXiw2JEBoaoc2QOIBaRIXCQSDFZCaUjnpSRoWx6ntlFXGf4//wANP/BGOnQJJKGh+aB2f7zuX7xw7LLJUqm7328qp06trZzpnz/nnL1y8dHl948o7yUsRQT/iGRcfQiohS3Poq1Rl8KEQQFmYwfvwaN/a389AyJTnh2pewJDRJE/jNKIKj0Ybq1+CHD5HnDGaj3UgIBaUgdEBo2oS0Uw/MYbcJPtUKJApzYmz+w3Sfg2+7+ARz+M0KYULQmRBozaFh7LBGgUKjjF/bQ0ncxELgOU+nOVETg5qDg7MR25JBZdQYUnMBeHhJ4gU4X6TOTVaByHPxnLO8I8EagKKLok6QzYXLbJNvCIgHjJgkGOI+G9qk1e4oDGZmt+JVu4tt0q0RcBA01aMGq1VE5PtojiDpCqKgRJpRKSiqqXhy7dYzCsHrOGc1n4rQL8md9+5pZEq/9mdMY+tTlVT7Udw7FCWOIYEuyxtQbbdY86aXBGqRTCc2CP9xkUTPOQthZSgnxD4uXCKIpzgMbGnTqH532ieOPxID4LpqHsXf5KhORH72NTV1ce/upg6AbASHIllOc6bvPlJeWXZJJZVJ/ns9yz8IbbU43Rc69XThXp0zGjRRCashnvmcAnwxRS4x8LKkUu8Ssw12ve3bgXTu0Fxe8sfrW92t7tukWrT28HNbrf3cG+P9BamTW+xXo82Vr7iVESlzT/KqJSDXrdQQ43PUxplYPyglIAjckQTGOA2x/hyqN07ianhydhd6phj/e60ztCUSSsVIm1Fsm2zh8tsg1LFD4Y6zYtSQR4Z0iRmCRepmrAdzM+JB/ksFTy3RegXz98eIgH7BEmaa/vkG6IDjJVlW0FYZhmoLeMTXHgK+MDniZroIINYMSqQY/Q9xioEqSMKKjAJo7d3l5pTBex/dsWLP2ZjMEPAfrv8TGta5MwMesPqpspYb/YQ0QAc4oxM3NW9g/4i9Ied/9Ve8u/Nu53t3t727sHO5uNHixk46133bni3vJ5333vsPfNee30vWv2xdm7tytrVM987pzt+50IFPbWy4Fz1Gqtz7SePT5y7</latexit>

(✓,q)
<latexit sha1_base64="2dPc4W3Pal/7R8yMsqZj+TRQ+Ws=">AAAHXHicjVRbb9MwFM5goxCuA8QLLxYb4iI0tUMbIPGANImLBILBCkhNqZz0JA2L49R2yirLf4//wAtP/BCOnQJJKGh+aB2f7zuX7xw7LLJUqm7328qJk6trpzqnz/hnz52/cPHS+uX3kpcign7EMy4+hlRClubQV6nK4GMhgLIwgw/h4Z61f5iBkCnPD9S8gCGjSZ7GaUQVHo3WV02Qw5eIM0bzsQ4ExIIyMDpgVE0imumnxpCbZI8KBTKlOXF2v0Haq8H3HDzieZwmpXBBiCxo1KbwUDZYo0DBEeavreF4LmIBsNyHsxzLyX7Nwb75xC2p4BIqLIm5IDz8DJEi3G8yp0brIOTZWM4Z/pFATUDRJVFnyOaiRbaJVwTEQwYMcgwR/01t8goXNCZT8zvRyr3lVom2CBho2opRo7VqYrJdFGeQVEUxUCKNiFRUtTR89Q6Lee2ANZzT2m8F6Nfk7ju3NFLlP7sz5rHVqWqq/QiOHMoSx5Bgl6UtyLZ7zFmTK0K1CIYTe6jfumiCh7ylkBL0MwK/FE5RhBM8JvbUKTT/G80Thx/pQTAdde/hTzI0x2Ifmbq6+uhXF1MnAFaCI7Esx3mTNz8uryybxLLqJJ/9noU/xJZ6nI5rvXq2UI+OGS2ayITVcM8dLgG+mAL3WFg5colXiblG+/7m7WB6615Q3Nn0R5c2ultdt0i16W3jZqfbe7S7S3oL04a3WG9G6ytfcSyi0hYQZVTKQa9bqKHG9ymNMjB+UErAGTmkCQxwm2MCcqjdQ4m54cnY3eqYowDutM7QlEmrFSJtSbJts4fLbINSxQ+HOs2LUkEeGdIkZgkXqZqwbczPqQf5LBU8t0Xoly/eHSABGwVJmmv75huiA4yVZZtBWGYZqE3jE1x4CvjC54ma6CCDWDEqkGP0fcYqBKkjCiowCaO3dpaaUwXsf3bFiz9mYzBDwIa7/ExrXOTMDHrD6qrKWG/0ENEAHOCQTNzdvYv+IvSHnf/VXvLvzfvtrd7u1s7+9saTx4sZOO1d9254t72e98B74j333nh9L1r9seavXVm7eup7Z7VztnO+gp5YWXCueI3VufYT0Tec7A==</latexit>

(✓0,q)

<latexit sha1_base64="bWXjH1lMfYHTqeOCSiATbqWq03g=">AAAHb3icjVXdjhM3FJ6FXQJTWli46AVqZXW3BSq0ShbtFqReIK1EqdQKtmwAKZNGnsmZidnxeGJ7wkaW34Gn4h14jF71tseeADNDqNYXiePzfefnO8dOXOZM6X7//caFi5tbl3qXr4RfXf36m2vXt2+8UKKSCQwTkQv5KqYKclbAUDOdw6tSAuVxDi/j0yNnf7kAqZgoTvSyhDGnWcFSllCNR5PtzbdRAW8SwTktpiaSkErKwZqIUz1LaG4eW0t+JEdUalCMFsTbwxbpqAE/8vBEFCnLKumDEFXSpEsRsWqxJpGGM8zfOMP5XKQSYL0PbzmXk+OGg2P7t3CkUiiosSQVkoj4NSSaiLDNnFtjoljkU7Xk+EUiPQNN10RdIFvIDtklXhMQDzlwKDBE+jm1zSt90JTM7cdEa/eOWyfaIWCgeSdGg9apiatuUYJDVhfFQUuWEKWp7mj453Ms5qkHNnBe67ATYNiQe+jd0kRXX+zOVKROp7qp7kd05lGOOIUMu6xcQa7dU8HbXBnrVTCc2FPzl48mRSw6CmlJXyPwTekVRTjBY+JOvULLz9Ei8/iJGUXzSf8efmRjey72mW2qa84+dJF5AbASHIl1OS7bvOV5eVXVJlZ1J8Xi4yx8InbUE3Ta6NVvK/XolNOyjcx4A/fE4zIQqynwj4WTo1B4lbhvdBju3onmt+9F5V0SsYJExxMTMU0ySVVpd8PJ9Z3+Xt8vUm8G+7g56A8eHh6Swcq0E6zWs8n2xjuclKRyNSU5VWo06Jd6bPDJYkkONowqBTg2pzSDEW4LzEmNjX87MV08mfqLngrUxJ82GYZy5eRDpKtSdW3ucJ1tVOn0wdiwoqw0FIklbWKeCcn0jO9jfl5QKBZMisIVYf74/fkJErB3kLHCuL8BS0yEsfJ8N4qrPAe9a0OCC08BH/0i0zMT5ZBqTiVyrLnPeY0gTURJJSZhzd7BWjPTwP/PrkX5yWwtZgg4Az4/25kgtbCjwbi+vSo1OwNEtAAnODczf51/Rn8J+sPOf2gv+fLmxf7e4HDv4Hh/59Gvqxm4HNwKfgjuBIPgl+BR8CR4FgyDZPPfre+2ftq6femf3re973ukhl7YWHFuBq3Vu/sf/ZWklw==</latexit>

(✓0,q) 2 Qo
grasp

<latexit sha1_base64="xnFnSHkVIlYXrlb+xQhcs3keVxs=">AAAHX3icjVRdb9Q4FE2hZSB8tSCBEC/WtqiAUDVT1AISD0iVFpB2tRQ6gDQZRk7mJhMaxxnbGTqyLPHr9j/s4z7xN7h2BkjCgOqHGcf3nPtx7rXDIkul6nb/WzlzdnXtXOf8Bf/ipctXrq5vXHsreSki6Ec84+J9SCVkaQ59laoM3hcCKAszeBceH1j7uxkImfL8SM0LGDKa5GmcRlTh0Whj9XOQw6eIM0bzsQ4ExIIyMDpgVE0imuk/jSF3yAEVCmRKc+LsfoN0UIMfOHjE8zhNSuGCEFnQqE3hoWywRoGCE8xfW8PpXMQCYLkPZzmVk8Oag0PzgVtSwSVUWBJzQXj4ESJFuN9kTo3WQcizsZwz/COBmoCiS6LOkM1Fi2wTrwiIhwwY5Bgi/pna5BUuaEym5nuilXvLrRJtETDQtBWjRmvVxGS7KM4gqYpioEQaEamoamn49xss5h8HrOGc1n4rQL8md9+5pZEqf9mdMY+tTlVT7Udw4lCWOIYEuyxtQbbdY86aXBGqRTCc2GP92kUTPOQthZSgHxH4qXCKIpzgMbGnTqH5z2ieOPxID4LpqPsAf5KhORX7xNTV1Sffupg6AbASHIllOc6bvPlpeWXZJJZVJ/ns+yz8ILbU43Rc69XzhXp0zGjRRCashnvhcAnwxRS4x8LKkUu8Ssw12ve37gbT7e0HQbG9fW/LH61vdne6bpFq09vFzV6392R/n/QWpk1vsV6NNlb+xcmISltDlFEpB71uoYYan6g0ysD4QSkBx+SYJjDAbY45yKF2byWmhydjd7Fjjhq40zpDUyatXIi0Vcm2zR4usw1KFT8e6jQvSgV5ZEiTmCVcpGrCdjE/JyDks1Tw3Bah/3r55ggJ2CtI0lzbZ98QHWCsLNsKwjLLQG0Zn+DCU8BHPk/URAcZxIpRgRyjHzJWIUgdUVCBSRi9s7fUnCpgv7MrXvwwG4MZAvbc5WdaEyNnZtAbVrdVxnqzh4gG4AjnZOKu7330F6E/7Py39pJfb97u7vT2d/YOdzefPV3MwHnvtveHd9freY+8Z94L75XX96LVL2uX126s3Tz3f6fTudJZr6BnVhac615jdW59BZj6nX8=</latexit>

(✓00,q00)

<latexit sha1_base64="QWIOIxDqOoL74kyLRMCNmcy4nVI=">AAAHWXicjVRdb9s2FFXapM60jybt416IJQOGogvsDMlaYA8FAmwd0KLNGrcFLM+gpCtZiUgqJOXGI/j39h+GPe2f9JJyWkl1h/DBpnjPuR/nXjKuykLp4fCfjVu3N7fuDLa/CL/86utv7u7s3nutRC0TGCeiFPJtTBWUBYexLnQJbysJlMUlvIkvTpz9zQKkKgQ/08sKpozmvMiKhGo8mu1u/hVxeJcIxihPTSQhk5SBNRGjep7Q0vxqLfmenFCpQRWUE28PO6STFvzEwxPBsyKvpQ9CVEWTPkXEqsOaRRquMH/jDDdzkUmA9T685UZOTlsOTu2fwpEqoaDBkkxIIuJzSDQRYZd5aY2JYlGmasnwj0R6DpquibpAtpA9sku8ISAeSmDAMUT2KbXLq3zQjFzaD4k27h23SbRHwECXvRgtWq8mpvpFCQZ5UxQDLYuEKE11T8Pnr7CYFx7Ywnmtw16AcUvusXdLE11/tjupyJxOTVPdR3TlUY6YQo5dVq4g1+5UsC5XxnoVDCf2wvzho0kRi55CWtJzBL6rvKIIJ3hM3KlXaPkpWuQePzOT6HI2fIg/+dTeiH1l2+qaq+suFl4ArARHYl2Oyy5veVNeXXeJddNJsfgwCx+JPfUETVu9+m2lHk0ZrbrInLVwTz0uB7GaAv9YODm4wqvEfKPDUP/IRYrDMdvZGx4M/SLNZnSIm6Ph6PHxMRmtTHvBar2c7W78jTOR1C77pKRKTUbDSk8NPk5FUoINo1oBDsgFzWGCW47R1dT4VxITw5PUX+lMYPX+tM0wlCknFCJdPapvc4frbJNaZ4+mpuBVrYEnlnSJZS5koefsEPPz0gFfFFJwV4R59vurMyRglyAvuHEPviUmwlhluR/FdVmC3rchwYWngM87z/XcRCVkmlGJHGt+YqxBkDaiohKTsObgaK250MD+z65F9dFsLWYI2G2fn+3NilrYyWja3FOVmb0RIjqAM5yQub+4D9Bfgv6w89ftJZ/fvD48GB0fHJ0e7j35ZTUD28G3wXfBD8Eo+Dl4EjwNXgbjINn8b2uwtbO1e+ffwcZgexA20FsbK879oLMG998DrqCcmg==</latexit>

t-node
<latexit sha1_base64="HgVeG3G2WgOIe2hqZkVIbw6jGok=">AAAHWXicjVRdbxw1FJ2UpBuGjyb0kReLFAkhiHaDEkDioVIkKBKIhmbbSjvLyuO5MzvN2J7Ynm0Wy3+P/4B44p9w7dm2M9Mtih92Pb7n3I9zr53WVanNePz3zp33dvfujvbfjz/48KOP7x0cfvJUy0YxmDJZSfU8pRqqUsDUlKaC57UCytMKnqVX597+bAVKl1JcmnUNc04LUeYlowaPFoe7fyYCXjLJORWZTRTkinJwNuHULBmt7I/Okc/JOVUGdEkFCfa4RzrvwM8DnEmRl0WjQhCia8qGFJnqHmuRGLjB/K033M5FrgC2+wiWWzm56Di4cH9IT6qlhhZLcqmITF8AM0TGfea1szZJZZXpNcc/kpglGLol6grZUg3IPvGWgHiogIPAEPnb1D6vDkFzcu1eJ9q699w20QEBA10PYnRog5q4HhYlORRtURyMKhnRhpqBhr8+wWJ+C8AOLmgdDwJMO3JPg1vKTPPO7mQy9zq1TfUfyU1AeWIGBXZZ+4J8uzPJ+1yVmk0wnNgr+3uIpmQqBwoZRV8g8GUdFEU4wWPiT4NC67fRsgj4hZ0l14vxV/hTzN2t2Deuq669edXFMgiAleBIbMtx3eetb8trmj6xaTspV69n4Q1xoJ6kWadXP23UoxmndR9Z8A7uUcAVIDdTEB4LL4fQeJV4aHQcs6+FzHA4FgdH4+NxWKTdTE5wczqefH92RiYb01G0WY8Xhzt/4UywxmfPKqr1bDKuzdzi41SyClycNBpwQK5oATPcCoyu5za8kpgYnmThSucSqw+nXYalXHuhEOnr0UObP9xmmzUm/25uS1E3BgRzpE+sCqlKs+QnmF+QDsSqVFL4IuwvPz+5RAJ2CYpSWP/gO2ITjFVVD5K0qSowD1xMcOEp4PMuCrO0SQW54VQhx9lvOG8RpIuoqcIknD0+3WouDfD/sxtZvzE7hxkCdjvk5wazolduNpm391Tn9miCiB7gEidkGS7ul+iPoT/s/Kv2kndvnp4cT86OTy9Ojh7+sJmB/ejT6LPoi2gSfRs9jB5Fj6NpxHb/3RvtHewd3v1ntDPaH8Ut9M7OhnM/6q3R/f8AhCCciQ==</latexit>

c-node

<latexit sha1_base64="SCeTtBfWgZSklo241Hmv3ZPwBu4=">AAAHYHicjVRdb9RGFHVowqamfKR9aAUvowYkhFC0myppkXiIFKmABIKULCCtl9XYe+0d4vE4M+Mlq9E89M/1P/DKEz+DO+Ml2Gap4odk9t5z7se5dyYuc6Z0v/9h7dIP6xuXe5s/hld+unrt+o2tn18pUckEhonIhXwTUwU5K2Comc7hTSmB8jiH1/HJofO/noNUTBTHelHCmNOsYClLqEbTZGv936iA94ngnBZTE0lIJeVgTcSpniU0N39bS+6QQyo1KEYL4v1hi3TYgB96eCKKlGWV9EmIKmnSpYhYtViTSMMZ1m+c42IhUgmwOob3XCjIUSPAkX0rHKkUCmosSYUkIn4HiSYibDNPrTFRLPKpWnD8RyI9A01XZJ0jW8gO2RVeExAPOXAoMEX6LbXNK33SlJza80Lr8I5bF9ohYKLTTo4GrdMTV92mBIesboqDliwhSlPd0fDZS2zmuQc2cF7rsJNg2JB76MPSRFffnc5UpE6neqjuR3TmUY44hQynrFxDbtxTwdtcGetlMtzYE/OPzyZFLDoKaUnfIfB96RVFOEEzcVav0OJbtMg8fmJG0emkfx//ZGN7IfaZbaprzr5MkXkBsBNciVU1Ltq8xUV5VdUmVvUkxfx8F74SO+oJOm3M6tFSPTrltGwjM97APfa4DMRyC/xj4eQoFF4l7gcdhiZiujYybcNwcmO7v9P3H6kPg1087PUHD/b3yWDp2g6W34vJ1tp/uBpJ5ZpIcqrUaNAv9djgG8WSHGwYVQpwT05oBiM8FliEGhv/WGJ9aJn6m50KFMFbmwxDuXJ6IdK1pbo+Z1zlG1U6/WtsWFFWGorEkjYxz4RkesZ3sT6vIBRzJkXhmjBPn7w8RgIOCzJWGPfuW2IizJXnt6O4ynPQt21I8EMr4CtfZHpmohxSzalEjjV/cF4jSBNRUolFWLOzt9LNNPD/82tRfnVbixUCDt3XZzsro+Z2NBjX11WlZnuAiBbgGBdl5u/vPYyXYDyc/Jfxku8fXu3uDPZ39o52tw8eLndgM7gV/B7cDQbBn8FB8Dh4EQyDZP3TxrWNXzd+u/yxt9m73tuqoZfWlpxfgtbXu/kZevyf7w==</latexit>

transit
<latexit sha1_base64="9MRCyZhqOg3AVG71Tthmo4rbn18=">AAAHXnicjVRdb9s2FFXaJG61dm06rBiwF6LpgGEYAjtDsg3YQ4EAWwdsaLPGbQHLNSj6SmYjigpJuTEIYv9u/2Fve9rv2CXltpLqDuGDTfGecz/OvWRaFVyb4fDvrWvXt3d2Bzduxp/cuv3pnbt7955rWSsGYyYLqV6mVEPBSxgbbgp4WSmgIi3gRXp+4u0vlqA0l+WZWVUwFTQvecYZNXg029v+MynhDZNC0HJuEwWZogKcTQQ1C0YL+7Nz5CtyQpUBzWlJgj3ukE5a8JMAZ7LMeF6rEIToirI+Raa6w5olBi4xf+sNV3ORKYDNPoLlSk5OWw5O3SvpSZXU0GBJJhWR6Wtghsi4y7xw1iapLOZ6JfCPJGYBhm6IukS2VD2yT7whIB4KEFBiiOxDapdXhaAZuXDvEm3ce26TaI+AgS56MVq0Xk1C94uSAvKmKAFGcUa0oaan4e/PsJgnAdjCBa3jXoBxS+5xcEuZqT/anbnMvE5NU/1HchlQnjiHHLusfUG+3XMpulyVmnUwnNhz+0eIpmQqewoZRV8j8E0VFEU4wWPiT4NCqw/RMg/4mZ0kF7Pht/iTT92V2Jeura69fNtFHgTASnAkNuW46vJWV+XVdZdYN52Uy3ez8J7YU0/SeatXv6zVo3NBqy4yFy3c44DLQa6nIDwWXo5S41USodFxbBNuCKNKrVwcz+7uDw+GYZFmMzrEzdFw9OPxMRmtTfvRej2d7W39hYPBal8CK6jWk9GwMlOLLxRnBbg4qTXglJzTHCa4LTEFPbXhqcTs8GQe7nUmUYJw2mZYKrRXC5G+KN23+cNNtkltsh+mlpdVbaBkjnSJRS4VNwtxiPkF/aBcciVLX4T97ddnZ0jAVkHOS+tffUdsgrGK4mGS1kUB5qGLCS48BXzjy9wsbFJAZgRVyHH2OyEaBGkjKqowCWcPjjaauQHxf3Yjq/dm5zBDwJaH/FxvYPTSTUbT5rLqzO6PENEBnOGYLMLt/Qb9MfSHnX/bXvLxzfPDg9HxwdHp4f6jn9YzcCP6MnoQfR2Nou+jR9Hj6Gk0jtj2vzu3dj7fub/7z2B3cHtwp4Fe21pzPos6a/DFf3zCnvc=</latexit>carry

<latexit sha1_base64="QVdONQOg1M/kSpWXIFJHg743dcw=">AAAHkHicjVXdbts2FFa6em61v6a7KdAbYvGQbigCO0OyDtjWDgHWbNiwZo3bAqZnUDIlsxFJmaTcGAQfai+xd9jb7JByW0l1h/DCpnm+7/x855BOyoJpMxz+u3Ptg+u9D/s3bsYfffzJp5/d2r39TMtKpXScykKqFwnRtGCCjg0zBX1RKkp4UtDnycWJtz9fUaWZFOdmXdIpJ7lgGUuJgaPZ7vW/saCvUsk5EXOLFc0U4dRZzIlZpKSwPzuHvkQnRBmqGREo2OMW6aQBPwnwVIqM5ZUKQZAuSdqlyES3WDNs6CXkb73hai4yRel2H8FyJSdnDQdn7i/pSaXUtMaiTCokk5c0NUjGbebSWYsTWcz1msMXwmZBDdkSdQVsqTpkn3hNADwtKKcCQmTvUtu8MgTN0NK9SbR277l1oh0CBFp2YjRonZq47hYlOc3rojg1iqVIG2I6Gv7+FIr5IwAbuKB13Akwbsg9Dm5Jaqr3dmcuM69T3VT/A18GlCfOaQ5d1r4g3+655G2uSswmGEzshf0zRFMykR2FjCIvAfiqDIoCHMEx8qdBofW7aJkH/MxO8HI2vA8f+dRdiX3pmuray9ddZEEAqARGYluO6zZvfVVeVbWJVd1JuXozC2+JHfUkmTd69XijHplzUraROW/gTgMup3IzBeGx8HIIDVeJh0b7SJKJuc9ggMv9/R/AxwzuxH0E830PL/f3vxpgHAcbwkwgfAZmZvzsuUEcz27tDQ+GYaF6MzqEzdFw9N3xMRptTHvRZj2Z7e78A6OUVr7otCBaT0bD0kwtvGksLaiLcaUpzNUFyekEtgKS1lMbHleoB07m4SXIJKQcTpsMS7j2+gLSy6C7Nn+4zTapTPZgapkoK0NF6lCbWORSMbPgh5BfUJyKFVNS+CLsb788PQcCNJfmTFj/P+GQxRCrKAY4qYqCmoGLESw4pfCvIHKzsLigmeFEAcfZbzivEaiJKImCJJw9ONpqZoby/7MbWb41OwcZUhiSkJ/rjJheucloWl9vndm9ESBagHMYrEW471+DvxT8Qedftxe9f/Ps8GB0fHB0drj36PvNDNyI7kZfRPeiUfRt9Cg6jZ5E4yjt3en92HvcO+3f7j/oP+z/VEOv7Ww4n0et1f/1P5Kjrgk=</latexit>

q00 = H✓,q(✓00)
q00 2 Qo

sta

<latexit sha1_base64="+b4HfhKb9ecdNXTjuP0+shTvImg=">AAAHb3icjVXdbts2FFa6pO60v2a72EWxgViydSuKwM6QbAV2USDA1gEb1qxxW8DyDEo+ktmIpEJSbgyC79Cn6jvsMXa12x1Sbiup7hBe2DTP952f7xzSaVUybYbDv7euvbe9c31w4/34gw8/+viTm7ufPtayVhmMM1lK9TSlGkomYGyYKeFppYDytIQn6fmJtz9ZgtJMijOzqmDKaSFYzjJq8Gi2u/0iEfA8k5xTMbeJglxRDs4mnJpFRkv7s3Pka3JClQHNqCDBHndIJy34SYBnUuSsqFUIQnRFsz5FprrDmiUGLjF/6w1Xc5ErgM0+guVKTk5bDk7dX9KTKqmhwZJcKiLTZ5AZIuMu88JZm6SynOsVxy+SmAUYuiHqEtlS9cg+8YaAeCiBg8AQ+dvULq8KQXNy4V4n2rj33CbRHgEDXfRitGi9mrjuFyU5FE1RHIxiGdGGmp6Gvz/CYv4IwBYuaB33Aoxbco+DW5qZ+p3dmcvc69Q01f9ILgPKE+dQYJe1L8i3ey55l6tSsw6GE3tu/wzRlExlTyGj6DMEPq+CoggneEz8aVBo9TZaFgE/s5PkYja8ix/F1F2Jfena6trLV11kQQCsBEdiU46rLm91VV5dd4l100m5fD0Lb4g99SSdt3r1y1o9Oue06iIL3sI9CLgC5HoKwmPh5RAarxIPjY7j/SBj0A/Vuz11JGGCNBd6P57d3BseDMMizWZ0iJuj4eje8TEZrU170Xo9nO1uvcRJyWpfU1ZSrSejYWWmFp8slpXg4qTWgGNzTguY4FZgTnpqw9uJ6eLJPFz0XKIm4bTNsJRrLx8ifZW6b/OHm2yT2uQ/Ti0TVW1AZI50iWUhFTMLfoj5BUFBLJmSwhdhf/v10RkSsHdQMGH934AjNsFYZbmfpHVZgtl3McGFp4CPvijMwiYl5IZThRxnv+e8QZA2oqIKk3D24GijmRng/2c3snpjdg4zBJyBkJ/rTZBeuslo2txendu9ESI6gDOcm0W4znfQX4b+sPOv2kvevXl8eDA6Pjg6Pdy7/9N6Bm5Et6Kvom+jUfRDdD96ED2MxlG2/e/OFzvf7Ny+/s/g88GXA9JAr22tOZ9FnTX47j+BFKUq</latexit>

}[✓,✓0] 2 Cfree
<latexit sha1_base64="nkGES+jrD+VKqpUb+OB9yWIVWew=">AAAHcXicjVXdbts2FFa6pO60v6a7GnYxosmQrhsCO0WyDdhFgQBbB2xYs8ZtAcszKPlIZiOSCkm5MQi+xB5q77Dn2NXudki5raS6Q3hh0zzfd36+c0inVcm0GQ7/3rrx3vbOzcGt9+MPPvzo409u7955qmWtMhhnspTqeUo1lEzA2DBTwvNKAeVpCc/Si1Nvf7YEpZkU52ZVwZTTQrCcZdTg0Wx3+89EwMtMck7F3CYKckU5OJtwahYZLe2PzpEvySlVBjSjggR73CGdtuCnAZ5JkbOiViEI0RXN+hSZ6g5rlhi4wvytN1zPRa4ANvsIlms5OWs5OHN/SE+qpIYGS3KpiExfQGaIjLvMS2dtkspyrlccv0hiFmDohqhLZEvVI/vEGwLioQQOAkPkb1O7vCoEzcmle51o495zm0R7BAx02YvRovVq4rpflORQNEVxMIplRBtqehr++gSL+S0AW7igddwLMG7JPQ5uaWbqd3ZnLnOvU9NU/yO5CihPnEOBXda+IN/uueRdrkrNOhhO7IX9PURTMpU9hYyiLxD4sgqKIpzgMfGnQaHV22hZBPzMTpLL2fAb/Cim7lrsK9dW11696iILAmAlOBKbclx1eavr8uq6S6ybTsrl61l4Q+ypJ+m81auf1urROadVF1nwFu5RwBUg11MQHgsvh9B4lXhodBzvBxmDfgco38HB1JGECdJc6f14dntveDgMizSb0RFujoej709OyGht2ovW6/Fsd+svnJWs9lVlJdV6MhpWZmrx0WJZCS5Oag04OBe0gAluBWalpza8npgwnszDVc8lqhJO2wxLufYCItLXqfs2f7jJNqlN/t3UMlHVBkTmSJdYFlIxs+BHmF+QFMSSKSl8EfaXn5+cIwG7BwUT1v8ROGITjFWW+0lalyWYfRcTXHgK+OyLwixsUkJuOFXIcfYB5w2CtBEVVZiEs4fHG83MAP8/u5HVG7NzmCHgFIT8XG+G9NJNRtPm/urc7o0Q0QGc4+QswoW+j/4y9Iedf9Ve8u7N06PD0cnh8dnR3sMf1jNwK/o8uhvdi0bRt9HD6FH0OBpH2fa/O1/s3Nv56uY/g88GZHC3gd7YWnM+jTpr8PV/EBqljA==</latexit>

}[✓0,✓00] 2 Cfree

Figure 21.4. Nodes and edges of a manipulation graph.

A simple pick-and-place manipulation problem (that is, moving an object between
two poses in an uncluttered environment) can be addressed as two consecutive motion
planning problems, to plan motions to the pick-up pose and the placement pose.
A more complex manipulation, however, may require significant search in G𝑜, as
illustrated next.

21.2.2 Manipulation Planning Algorithm

The single-query manipulation planner ManipPlanner grows a tree of nodes inM𝑜

using a strategy similar to RRT. At each iteration, it alternatively expands either a
t-node or a c-node, which are randomly chosen in 𝑉𝑜 with respectively Choose-t or
Choose-o. From a t-node it uses Grasping to seek a grasping configuration with a free
path to be added to the tree through a transit edge. From a c-node, it uses Ungrasping

21.2 Manipulation planning 493

to seek an ungrasping pose and a configuration with a free path to be added to the
tree through a carry edge. It stops when a pair reaches the pose q𝑔, assuming that the
final robot configuration is unconstrained. Otherwise, a final motion step to reach a
configuration 𝜽𝑔 would be needed.

ManipPlanner(𝜽0, q0, q𝑔, 𝑛)
𝑉𝑜 ← {(𝜽0, q0)}; 𝐸𝑜 ← ∅; flag← ⊤
until (∃𝜽 : (𝜽 , q𝑔) ∈ 𝑉𝑜) or |𝑉𝑜 | = 𝑛 do

if flag then // expand a t-node
(𝜽 , q) ← Choose-t(𝑉𝑜)
(𝜽 ′, q′) ← Grasping(𝜽 , q, 𝑘) // here q′ = q

else // expand a c-node
(𝜽 , q) ← Choose-o(𝑉𝑜)
(𝜽 ′, q′) ← Ungrasping(𝜽 , q, 𝑘)

if (𝜽 ′, q′) ≠ nil then
𝑉𝑜 ← 𝑉𝑜 ∪ {(𝜽 ′, q′)}
𝐸𝑜 ← 𝐸𝑜 ∪ {(𝜽 , q), (𝜽 ′, q′)}
flag← ¬flag

if ∃𝜽 : (𝜽 , q𝑔) ∈ 𝑉𝑜 then return G𝑜 = (𝑉𝑜, 𝐸𝑜)
else return failure

Algorithm 21.9. ManipPlanner, a single-query manipulation planning algorithm

From a t-node (𝜽 , q), a call to Grasping(𝜽 , q, 𝑘) fails if there is no grasping con-
figuration for 𝑜 in the pose q. Otherwise, Grasping samples a free configuration 𝜽 ′

in Q𝑜
grasp with respect to q, i.e., such that (𝜽 ′, q) ∈ Q𝑜

grasp. Since (𝜽 , q) is a t-node,
the robot moves empty handed along the transit edge to the new configuration 𝜽 ′.
The grasp takes place in the pose q. The function FreePath calls a motion planner
and returns a path in Cfree from 𝜽 to 𝜽 ′ if one is found or nil otherwise. If a path is
found, the procedure returns (𝜽 ′, q) (which we will denote as (𝜽 ′, q′), with q′ = q,
for ease of the follow-up notation): this pair is reachable with a feasible grasp of 𝑜 in
q. Otherwise a new grasp 𝜽 ′ is sampled. After 𝑘 unsuccessful trials, Grasping returns
nil. Another t-node (𝜽 , q) ∈ 𝑉𝑜 will be tried by ManipPlanner.

Grasping(𝜽 , q, 𝑘)
if {𝜽 ′ | (𝜽 ′, q) ∈ Q𝑜

grasp} = ∅ then return nil
for 𝑘 times do

𝜽 ′ ← Sample-grasp(Q𝑜
grasp, q) // (𝜽 ′, q) ∈ Q𝑜

grasp

if FreePath(𝜽 , 𝜽 ′) then return (𝜽 ′, q)
return nil

Algorithm 21.10. Grasping, sampling a feasible and reachable grasping config-
uration.

494 21 Task and Motion Planning

From a c-node (𝜽 , q), Ungrasping seeks a stable pose q′ in which to put 𝑜. Since
𝑜 is already held in the end-effector, H𝜽,q is given from (𝜽 , q). However, its inverse
H−1

𝜽,q(q
′) may or may not have a solution 𝜽 ′ to ungrasp 𝑜 in a sampled pose q′. This

sampling can be driven towards the goal pose q′ = q𝑔. If there is a path in Cfree from
𝜽 to 𝜽 ′ where 𝑜 can be ungrasped, the procedure returns the pair (𝜽 ′, q′). Otherwise
news poses are sampled until reaching the maximum number of allowed trials.

Ungrasping(𝜽 , q, 𝑘)
for 𝑘 times do

q′ ← Sample-pose(Q𝑜
𝑠𝑡𝑎𝑏𝑙𝑒

)
if (𝜽 ′ ←H−1

𝜽,q(q
′)) exists then

if FreePath(𝜽 , 𝜽 ′) then return (𝜽 ′, q′)

return nil

Algorithm 21.11. Sampling a stable pose q′ towards the goal and a correspond-
ing feasible ungrasping configuration 𝜽 ′.

Note that the configuration space C needs to be incrementally updated at each
expanded node (𝜽 , q) to account for the current pose of 𝑜. To amortize these updates,
it can be worthwhile to expand a node through several branching edges.

Searching in the manipulation space is computationally more demanding than
searching in the configuration space. It adds an additional dimension of poses cou-
pled to configurations, with sampling in Q𝑜

grasp and Q𝑜
stable. It also involves at each

expansion step an RRT motion planning for a free path. However G𝑜 is significantly
a smaller graph than a roadmap or an RRT tree.

The algorithm ManipPlanner can benefit from several heuristics, e.g.,

• Sample-grasp should seek least-constrained free configurations in the range of
allowable grasps for 𝑜 in pose q,

• Sample-pose should seek feasible stable poses close to the goal, possibly q′ =
q𝑔 with 𝜽 ′ ∈ Cfree, or far from obstacles allowing further re-grasps.

Example 21.6. Consider a simple manipulation problem where a forklift-like robot
can hold and manipulate 2D objects. The task illustrated in Figure 21.5 is to displace
the orange box from pose q0 to q𝑔. There are only four grasp positions in Q𝑜

grasp,
denoted 𝑎, 𝑏, 𝑜, 𝑑. The root of the search tree corresponds to q0 with the robot at its
initial configuration. Because of obstacles, Grasping can generate only two successor
nodes to the root, corresponding to the 𝑎 and 𝑏 configurations. From these nodes
Ungrasping may generate several poses q1 to q4 of the box in the free space of the
room. From one of these nodes, say (𝑎, q2) the robot may reach a grasp (𝑜, q2),
from which it can move the box to the goal. Alternatively, the node (𝑏, q2) or even
(𝑏, q0) may also allow reaching the goal with a pose 𝑏. Along a transfer edge (in
blue) the object pose does not change; along a carry edge (in red) the grasp does not
change. □

21.2 Manipulation planning 495

a
b

c

d q0 qg
q0

a,q0 b,q0

a,q1 a,q2 b,q3 b,q4

b,q2 c,q2 d,q2

c,qg

Figure 21.5. A forklift-like robot has to displace a 2D box (in orange) from q0 to q𝑔; a
search tree for this task in the manipulation space (transfer edges are blue, carry edges
are red).

Example 21.7. Figure 21.6 illustrates a more complex single-object manipulation
task: a robot arm has to extract a ruler-like object (in grey) from under a cage. Several
transit and carry movements are needed in the narrow area allowed by the cage before
the tip of the ruler extends out of the cage and can be grasped to fully extract the
object. □

Figure 21.6. Starting from the left image, the robot repeatedly grasps the ruler in the
middle interval allowed by the cage, and moves it slightly several times until the ruler is
graspable outside of the cage, to extract it from this constrained space (from [1023]).

Manipulation of multiple objects. A single-object manipulation-planning prob-
lem is fairly constrained. Even in problems involving only grasping, carrying and
ungrasping actions, one would like to be able to temporarily move other objects out
of the way to allow for a grasp or a free path to a destination pose, e.g., if we had a
movable obstacle between the robot and the orange object in Example 21.6. Handling
tasks such as the rearrangement of multiple objects is not equivalent in general to a
sequence of a single-object manipulation problems.

The manipulation space for multiple objects is a set of tuples (𝜽 , q𝑜1 , . . . , q𝑜𝑘
)

giving the configuration 𝜽 and the poses of all movable objects in the domain, each

496 21 Task and Motion Planning

pose being stable and/or in a grasp. The manipulation graph needs to be extended to
vertices linking such tuples with transit and carry edges. A carry edge is related to
the same object, while a transit edge connects an ungrasp of some 𝑜 towards a grasp
of possibly another 𝑜′.

The principles of the ManipPlanner algorithm with procedures Grasping and Un-
grasping are applicable, with a few extensions, to multiple-object manipulation prob-
lems. We need to distinguish the case where Grasping finds a feasible grasp configu-
ration 𝜽 ′ but no free path ℘[𝜽 , 𝜽 ′] exists; this is to allow for the removal of obstacles to
𝜽 ′. Similarly for Ungrasping (see Example 21.10). We also need to handle the choice
of which object to manipulate at each stage. The resulting tree would grow signifi-
cantly in complexity. This, among other reasons, advocates for addressing extended
manipulation planning with a combined task- and motion-planning approach.

Another extension would consider several end-effectors for moving the objects.
A dual-arm mobile robot such as Justin (Figure 20.6(a)) allows for more flexible
manipulations, such as regrasping from one arm to the other. Similarly, several robots
allow for addressing different accessibility and grasping constraints and for handing
an object from one robot to another. Here too the ManipPlanner framework can in
principle be extended to several arms and/or robots. These extensions follow the same
principles if we restrict each grasp to a single end-effector. Additional problems need
to be solved if we consider dual-arm grasps, e.g., carrying a tray, which involve closed
kinematic chains. These extensions come at the cost of a more complex search.

Finally, the RRT-like approach of ManipPlanner, which can be seen as a step towards
the integration of motion, manipulation and task planning, may not be the best one
for all types of manipulation tasks. In particular, a series of manipulation-planning
tasks in the same unchanging environment may call for a multiple-query PRM-like
approach (see Section 21.4.2).

21.3 Task, Motion and Manipulation Planning

In the two previous sections, we focused on searching for a metric path between
two configurations 𝜽0 and 𝜽𝑔, or between two pairs of configurations-poses (𝜽0, q0)
and (𝜽𝑔, q𝑔). The available actions, moving, grasping and ungrasping, were defined
solely with metric operational models (as discussed in Chapter 20). The motion-
manipulation planner did not use these actions per se; they were implicit in edges in
the manipulation graph. There was no need to specify a repertoire of available actions
and refer in a planning algorithm to the actions chosen in a plan, as we did for task
planning. We did not have abstract actions with causal precondition-effect relations.
In combined Task and Motion Planning (TAMP), we would like tackle more complex
tasks, requiring motion and other types of actions, with a planner that can rely on
named available actions and their models, including kinematics as well as their effects
on state variables of interest. Let us motivate with an example.

Example 21.8. Consider a mobile robot, called Butler, that has to set up the table.
For that, it will have to clear and clean it, open and close cabinets and drawers, take
and fixe a tablecloth, take dishes, glasses and silverware, carry and place them at their

21.3 Task, Motion and Manipulation Planning 497

appropriate places, and push chairs. Its repertoire of actions is {clear, clean, open,
close, take, fixe, carry, place, push}. Similarly, consider a robot called Storekeeper
that services a warehouse. It has to handle boxes, take them from and put them
into shelves, stack and unstack them, sort, pack and unpack them, remove obstacles,
navigate the warehouse, open doors and operate elevators. Its repertoire is: {handle,
take, put, stack, unstack, sort, pack, unpack, remove, navigate, open, operate}.

To accomplish these high level tasks, it is helpful to use descriptive models of
actions, their preconditions and effects, as well as on their metric motion and manip-
ulation models. □

Almost all of the actions to be performed by the Butler or Storekeeper robots
involve movements (possible exceptions are, e.g., operating elevators with remote-
control signals). However, the motion and manipulation planners presented in the
two previous sections are not designed for planning these complex tasks. We need to
adequately model several distinct tasks and/or primitive actions. For that, we have to
use both the symbolic task planning representation seen in the previous parts of the
book and the metric representation described in this part.

A simple idea makes a parallel between

• combined task and motion planning, our topic here, and
• interleaved task planning and acting, discussed in several parts of the book.

The intuition is to do task planning first, then motion-manipulation planning, i.e.,
to plan for abstract actions, and postpone the refinement of planned actions into
movements at a lower level, possibly at acting time. The approach finds a task
plan, ignoring metric relations and constraints, then, at acting time, it checks these
constraints and seeks with a metric planner needed movements (see Figure 21.7).

This approach works for sparse, unconstrained environments and simple tasks, but
it can be quite inefficient for demanding activities. This is because the task planner
does not reason about space and kinematic constraints; it may plan actions that appear
causally valid at an abstract level but are metrically unfeasible. For example, the
Storekeeper robot may plan to stack boxes in a place that obstructs the rest of the
plan. Backtracking in the real world is seldom a good idea and synonymous of poor
planning. In critical domains, this might even put the robot in a dead end.

1

s0 s1 s s’ sn

a1 a2 a an

.

<latexit sha1_base64="/yGZdMOh85eOkaE4+C23bvlZiA8=">AAACy3icfVHbahRBEO0db3G8Jfroy+CuID4sMwnRPEnAFwWFiLvJwvYQenprdpt09wzTNRtj24/+gK/6C36Qf2PtBcwNDzQU55wqTlcVtVYO0/RPJ7px89btOxt343v3Hzx8tLn1+NBVbSNhKCtdNaNCONDKwhAVahjVDQhTaDgqTt4u9KM5NE5VdoBnNeRGTK0qlRRI1KjHcQYoeseb3bSfLpFcLbJ10WVrHBxvdX7zSSVbAxalFs6Ns7TG3IsGldQQYt46qIU8EVMYU2mFAZf7ZeCQPCdmkpRVQ89ismTPd3hhnDszBTmNwJm7rC3I67Rxi+Ve7pWtWwQrQxLH3MIp2LlqKrvI6j+8/zwg3vMCpsr6xYpD4jmN1LrHi1ZrwF6IEwKxQAu1U5x5rqFEIxrqCX7HmJUjOe+oRUNBgu/vXisrBPM/Hav6nxwCJQQ7WeULq2/IyhhBHHfzMM5yaoEv6ErfzchxwTAIns8cLQVe0jxJ8+jA2eVzXi0Ot/vZq/7up+3u/pv1qTfYU/aMvWAZe8322Tt2wIZMMs1+sJ/sV/QxctHX6NvKGnXWPU/YBUTf/wJ5fOAR</latexit>

✓
<latexit sha1_base64="sjJ+M40KUJfEAArbMdW/UaJi3ks=">AAACzXicfVHbahRBEO0db3G8Jfroy+CuID4sM5GYPEnAFwXBiLtJcHtYenprdpt09wzTNauhbV/9AV/1D/wg/8baC5gbHmgozjlVnK4qaq0cpumfTnTt+o2btzZux3fu3rv/YHPr4aGr2kbCUFa6ao4L4UArC0NUqOG4bkCYQsNRcfJ6oR/NoXGqsgM8rSE3YmpVqaRAoj71OM4AxTjrjTe7aT9dIrlcZOuiy9Y4GG91fvNJJVsDFqUWzo2ytMbciwaV1BBi3jqohTwRUxhRaYUBl/tl5JA8JWaSlFVDz2KyZM92eGGcOzUFOY3AmbuoLcirtFGL5V7ula1bBCtDEsfcwmewc9VUdpHVv3v7cUC85wVMlfWLJYfEcxqpdY8XrdaAvRAnBGKBVmqnOPNcQ4lGNNQT/AtjVo7krKMWDQUJvr9zpawQzP90rOp/cgiUEOxklS+sviErYwRx3M3DKMupBb6gK303I8c5wyB4PnO0FHhO8yTNowNnF895uTjc7mcv+zsftrv7r9an3mCP2RP2jGVsl+2zN+yADZlklv1gP9mv6H3URl+jbytr1Fn3PGLnEH3/CyFT4LU=</latexit>

✓1
<latexit sha1_base64="Yih5MJyuBzMw9sHULtygGBLLpJY=">AAACzHicfVHbahRBEO2deInjJYk++jK4K4oPy0wk6pMEfFEQibibRLaH0NNbs9uku2eYrlkTmn7ND+RVP8EP8m+svYC54YGG4pxTxemqotbKYZr+6URrt27fubt+L77/4OGjjc2tx/uuahsJQ1npqjkshAOtLAxRoYbDugFhCg0HxfGHuX4wg8apyg7wtIbciIlVpZICifre4zgFFC96R5vdtJ8ukFwvslXRZSvsHW11fvNxJVsDFqUWzo2ytMbciwaV1BBi3jqohTwWExhRaYUBl/tF4pA8J2aclFVDz2KyYC92eGGcOzUFOY3AqbuqzcmbtFGL5bvcK1u3CFaGJI65hR9gZ6qp7Dyr//zp24B4zwuYKOvnOw6J5zRS6x4vWq0BeyFOCMQCbdROcOq5hhKNaKgn+NfGLB3JRUctGgoSfH/nRlkhmP/pWNX/5BAoIdjxMl9YfkNWxgjiuJuFUZZTC5ygK303I8clwyB4PnW0FHhF8yTNowNnV895vdjf7mdv+jtft7u771enXmdP2TP2kmXsLdtlH9keGzLJDDtnP9mv6EuEkY/C0hp1Vj1P2CVEZ38B/qfgQg==</latexit>

✓0. . .
<latexit sha1_base64="Yz4TqkFI9Jp3C5kA9D5QzGK4TMw=">AAACzXicfVHbihNBEO2Mt3W87eqjL4OJID6EmciqT7Lgi4LgisnuYnoIPZ2apNnunmG6Jrq07as/4Kv+gR/k31i5gHvDAw3FOaeK01VFrZXDNP3Tia5cvXb9xtbN+NbtO3fvbe/cP3BV20gYyUpXzVEhHGhlYYQKNRzVDQhTaDgsjl8v9cMFNE5VdognNeRGzKwqlRRI1KcexzmgmAx6k+1u2k9XSC4W2abosg32Jzud33xaydaARamFc+MsrTH3okElNYSYtw5qIY/FDMZUWmHA5X4VOSSPiZkmZdXQs5is2NMdXhjnTkxBTiNw7s5rS/Iybdxi+TL3ytYtgpUhiWNu4TPYhWoqu8zq3739OCTe8wJmyvrlkkPiOY3UuseLVmvAXogTArFAK7UznHuuoUQjGuoJ/pkxa0dy2lGLhoIE39+9VFYI5n86VvU/OQRKCHa6zhfW35CVMYI47hZhnOXUAl/Qlb6bkeOMYRg8nztaCjyleZLm0YGz8+e8WBwM+tnz/u6HQXfv1ebUW+whe8SesIy9YHvsDdtnIyaZZT/YT/Yreh+10dfo29oadTY9D9gZRN//AiO04LY=</latexit>

✓2

<latexit sha1_base64="s18EQ6kbVAYkyzQgQ4XYTv7MMrE=">AAAC3XicfVFLi9RAEO6JrzW+ZvUieAnOiCIyJCurnmTBi4KHFWd2F9IhdHoqM812d0K6MuvStDdv4tU/4HX9P/4beyYD7gsLmi6+R1GPopbCYBz/6QVXrl67fmPjZnjr9p279/qb9/dM1TYcJrySVXNQMANSaJigQAkHdQNMFRL2i8N3S35/AY0RlR7jcQ2ZYjMtSsEZeijvPxzSozq3KcU5IHvRfU8zN8z7g3gUryK6mCTrZEDWsZtv9k7otOKtAo1cMmPSJK4xs6xBwSW4kLYGasYP2QxSn2qmwGR2NYKLnnhkGpVV45/GaIWedlimjDlWhVcqhnNznluCl3Fpi+WbzApdtwiauygMqYYj0AvRVHrZq/344fPY45YWMBPaLpfuIkt9SSmHtGilBBy6MPLhUfAr1jOcWyqhRMUa73H2pVKdIjqtqFnjG3F2tH0pLRDU/3is6n+0c75D0NOuP9eNwSulmMeoWbg0ybwFvqAp7SDxijOCsbN0bvxS4Lmvx309f+Dk/DkvJntbo+TVaPvT1mDn7frUG+QReUyekYS8JjvkPdklE8LJV/KLnJDfQR58C74HPzpp0Ft7HpAzEfz8C0CF5vk=</latexit>}[✓,✓0]

Figure 21.7. A simplified view which considers a task plan as a sequence of abstract state
transitions, each step of which is to be refined later into a sequence of configurations
(and object poses) in a metric path ℘[𝜽0 ,𝜽𝑔] .

498 21 Task and Motion Planning

The main challenge in integrating task and motion planning is how to efficiently
combine two heterogeneous representations, how to map back and forth the high-
level task descriptions and the low-level metric models. Approaches addressing this
challenge can be (roughly) categorized in three strategies:

(i) Motion-constrained task planning: a task planner synthesizes a symbolic plan
whose metric constraints, such as the existence of free paths and reachable
grasps, are checked incrementally for each candidate sub-plan while planning.

(ii) Task-guided motion planning: a motion planner searches for a sequence of
metric plans in a sequence of configuration spaces, using task-planning methods
as guidance for incrementally building this sequence.

(iii) Interleaved task and motion planning: a single planner uses an action repre-
sentation that combines operational and descriptive models with metric and
causal relations; it explores a search space that integrates the high-level task
constraints and low-level metric constraints.

The first two strategies decouple in some way motion planning and task planning,
with a priority to task planning for (i), and to motion planning for (ii). Strategy (iii)
integrates the heterogenous components of the problem in unified view. Each strategy
has advantages in particular problems. For example, one would use (ii) for climbing
a ladder since movement is the dominant part.

For the three strategies, the metric part is computationally more demanding than
the symbolic part, often by more than an order of magnitude. Checking the feasibility
of movement and grasp constraints over every step of a combinatoric search is not a
good option. Several techniques for attacking this problem with one of these three
strategies have been proposed (surveyed in Section 21.4.3).

In the reminder of this section, we focus on strategy (iii) and discuss how to
combine the metric and symbolic representations, and how to merge their techniques
in interleaved task and motion planning.

21.3.1 Representation and Search Space for TAMP

Before defining TAMP problems and TAMP plans let us discuss the representation
needed in TAMP, which has to combine:

• the metric representation presented in this part, which includes geometric,
kinematic and dynamic models of the environment and the robot, and

• the symbolic representation used in previous parts of the book.

TAMP uses metric state variables and symbolic state variables. A metric state
variable 𝑥𝑖 , such as a robot configuration or an object pose, has a metric range R𝛼𝑖 ,
endowed with a metric function (see Appendix B.1) that a planner takes advantage
of.6 A symbolic state variable 𝑥 𝑗 has a discrete range 𝐷 𝑗 ; it refers to the symbolic
labels of objects, containers, support surfaces, locations, robots, and their properties.
Let us illustrate the hybrid representation with a first example.

6Metric state variables are generally but not necessarily continuous:. A discrete range may have a
metric function, e.g., the battery level or the container weight can be metric variables over the integers.

21.3 Task, Motion and Manipulation Planning 499

Example 21.9. Consider the DWR domain in Example 14.1, in which robots can
take, move and put containers (for example, with forklifts as in Figure 2.1). In this
domain, we have finite sets of object variables, such as Robots, Locations, Containers,
and Supports. To these, we add two metric sets:

• Configurations ⊂ R4 : set of robot configurations, with 3 dof on the plane and
one dof for its fork position, and

• Poses ⊂ R4: the set of container poses with 4 dof on a planar surface.
We had symbolic state variables such as loc(𝑟) ∈ Locations, place(𝑜) ∈ Robots ∪
Locations, or cargo(𝑟) ∈ Containers ∪ {empty}, for 𝑟 ∈ Robots, and 𝑜 ∈ Containers.
We add the following metric state variables:

• config(𝑟) ∈ Configurations: the current configuration of a robot 𝑟,
• pose(𝑜) ∈ Poses: the current pose of a container 𝑜.

The schema take specifies that an empty robot takes a container in its location; put
says that a robot puts a container it carries it in its location.

take(𝑟, 𝑜, 𝜽 , q, 𝑙);
pre: config(𝑟) = 𝜽 , pose(𝑜) = q,

loc(𝑟) = 𝑙, place(𝑜) = 𝑙, cargo(𝑟) = nil
sample: (𝜽 ′ ¤← Grasping(𝑟, 𝑜, 𝜽 , q)) ≠ nil, (1)

eff: config(𝑟) ← 𝜽 ′, cargo(𝑟) ← 𝑜

pose(𝑜) ← H𝜽′ ,q(𝜽 ′)
place(𝑟, 𝑜, 𝜽 , q, 𝑙);

pre: config(𝑟) = 𝜽 , pose(𝑜) = q,
loc(𝑟) = 𝑙, place(𝑜) = 𝑟, cargo(𝑟) = 𝑜

sample: (𝜽 ′ ¤←Ungrasping(𝑟, 𝑜, 𝜽 , q)) ≠ nil, (2)
eff: config(𝑟) ← 𝜽 ′, holding(𝑟) ← nil, on(𝑜) ← 𝑝

pose(𝑜) ← H𝜽,q(𝜽 ′)

The action take is conditioned on the existence of a graspable configuration 𝜽 ′ to
grasp 𝑜 in its current pose q, such that (𝜽 ′, q) ∈ Q𝑜

grasp and there is a free path for
𝑟 from 𝜽 to 𝜽 ′ (line 1)). Similarly, the action put is conditioned on the existence of
a stable configuration 𝜽 ′ to ungrasp 𝑜 such that H𝜽,q(𝜽 ′) ∈ Q𝑜

sta and there is a free
path for 𝑟 from 𝜽 to 𝜽 ′ (line 2)).7 While the other preconditions result from matching
state variables with their values in the current state, these are conditioned on the
existence of sampled configuration 𝜽 ′ and associated free path as computed by the
functions Grasping and Ungrasping. An instance of an action deterministically either
holds or does not hold in a given state with respect to its normal preconditions, but
it nondeterministically depend on the sampled variables, which have to be dealt with
through the iterative sampling procedures seen earlier.

For clarity, preconditions with sampled variables are separated with a syntactic
marker ‘sample’. The sampling operation is denoted as ¤← to distinguish it from
the usual assignments in the effects. Note that the new pose(𝑜) also results from a
numeric computation byH𝜽,q relying on the sampling of 𝜽 ′. □

7We may constrain Ungrasping to find the target pose in some place or location.

500 21 Task and Motion Planning

Let us denote the joint ranges of metric and symbolic state variables as:
• Ω ⊆ ∏

𝑖 R
𝛼𝑖 , for 𝑖 over all metric state variables 𝑥𝑖 , and

• 𝑆 ⊆ ∏
𝑗 𝐷 𝑗 , for 𝑗 over all symbolic state variables 𝑥 𝑗 .

The search space of a TAMP problem is the Cartesian product Ω × 𝑆. Clearly, it is
not finite. A state can be written as a pair (𝝎, 𝑠), where

• 𝝎 = (𝜽 , q𝑜1 , . . . , q𝑜𝑘
) ∈ Ω, is the metric component of the state; it gives the

robot configuration and the poses of movable objects inW; and
• 𝑠 ∈ 𝑆, is the symbolic component, i.e., a conjunction of pairs (state variable,

value) for all symbolic state variables.
A TAMP planner explores the hybrid search space Ω× 𝑆 by combining one or several
searches through Ω and 𝑆 relying on their distinct mathematical structure. Let 𝑎 be an
action in a TAMP domain applicable in a state (𝝎, 𝑠). The effects of 𝑎 are modeled
as a deterministic mapping8 from (𝝎, 𝑠) to a state (𝝎′, 𝑠′), which can be decomposed
with two transition functions 𝜑 and 𝛾:

𝑎 : (𝝎, 𝑠) −→ (𝝎′, 𝑠′) with

{
𝝎′ = 𝜑(𝝎, 𝑠, 𝑎)
𝑠′ = 𝛾(𝝎, 𝑠, 𝑎)

Note that 𝜑 is a function 𝑠 as well as of 𝝎; similarly 𝛾 is a function 𝝎 as well as 𝑠. The
two transition levels in Figure 21.7 are intricately coupled. The metric and symbolic
components can rarely be managed with two decoupled transition functions. The
issue in TAMP is how dependencies within and between symbolic and metric state
variables are handled.

In general, the state variables of a domain are not independent. This is already the
case for dependencies within symbolic variables in task planning, e.g., in the DWR
domain (Example 2.1) there are dependencies between cargo(𝑟) and pos(𝑜) or be-
tween loc(𝑟) and occupied(𝑑). Similarly, in motion and manipulation planning, there
are dependencies within metric variables due to invariant properties ofW, to geomet-
ric, kinematic, or physical constraints, e.g., collision or stability (see Section 20.2).
Moreover, in TAMP there dependencies between the two types of variables, e.g., in
Example 21.9 cargo(𝑟), pose(𝑜) and on(𝑜) are dependent.

Dependency constraints in task planning are often handled implicitly: assuming
that the initial state meets the constraints, the action models restrict the set of reachable
states to only those that also meet the contraints. In motion and manipulation planning,
explicit means have been introduced to handle these constraints, e.g., the transforma-
tionH𝜽,q and the sets Q𝑜

grasp and Q𝑜
stable of feasible grasps and stable poses of an object

𝑜. These, as well as additional means are also needed in TAMP to explicitly handle
the constraints between symbolic and metric variables . For example, an action that
transport an object, say box3 needs to compute its new new metric pose(box3), as
well as to find or check out a symbolic attribute such as on(box3)=shelf2.

In summary, action models in a TAMP planner have to specify how to compute 𝛾
and 𝜑 while handling the constraints. This is done with:

8Planners that handle the inaccuracy of motion and manipulation with nondeterministic models are
discussed in Section 21.4.3

21.3 Task, Motion and Manipulation Planning 501

(i) Local metric methods for computing 𝝎′ from 𝝎, 𝑠 and 𝑎. These are the pro-
cedures seen earlier to compute the kinematic reachability, collision detection,
graspability and stability constraints.

(ii) Explicitly asserted symbolic changes: 𝑠′ results from 𝑠,𝝎 and 𝑎 with explicitly
stated changes in the effects of an action 𝑎 for some state variables, the other
state variables remain unchanged.

(iii) Functionally defined changes: some state variables in (𝝎′, 𝑠′) are defined as
functions of other state variables in previous and/or current state, and computed
by domain-specific procedures. These functions are implemented as programs
conveniently grouped in a geometric reasoner, i.e., a library which computes
state variables such as on(box3)=shelf2, in(o1)=box2, touching(o2,o3), as well
as functions such as FreePath(𝑟, 𝜽 , 𝜽 ′), Stable(𝑜, q), Graspable(𝑟, 𝑜, 𝜽 , q).

Finally, let us notice that an action 𝑎 that involves a movement between two
configurations 𝜽 and 𝜽 ′ has to necessarily check the existence of a path ℘[𝜽,𝜽′] in
Cfree, which needs to be kept as part of the plan containing 𝑎.

TAMP planning domains and problems. A task and motion planning domain is
a tuple Σ = (W,ℜ,Ω, 𝑆, 𝐴) where W,ℜ,Ω, 𝑆 are as defined above, 𝐴 is a set of
precondition/effect action schemas defining the two state transition functions 𝛾 and
𝜑. A task and motion planning problem is a tuple (Σ,𝝎0, 𝑠0, 𝑔) where (𝝎0, 𝑠0) is the
initial state and 𝑔 ∈ Ω× 𝑆 is a set of goal states. Usually the goal does not specify the
precise final poses of objects in space but simply requirements about their locations
and places, e.g., in(o1)=box2, on(o2)=table1; similarly for goal configuration of the
robot.

A solution to a TAMP problem (Σ,𝝎0, 𝑠0, 𝑔) is a sequence of action-path pairs:
𝜋 = ⟨(𝑎1, ℘[𝜽0,𝜽1]), . . . , (𝑎𝑘 , ℘[𝜽𝑘−1,𝜽𝑘])⟩, corresponding to a sequence of states
⟨(𝝎0, 𝑠0), . . . , . . . , (𝝎𝑔, 𝑠𝑔)⟩, such that 𝑠𝑖+1 = 𝛾(𝝎𝑖 , 𝑠𝑖 , 𝑎𝑖), 𝝎𝑖+1 = 𝜑(𝝎𝑖 , 𝑠𝑖 , 𝑎𝑖),
(𝝎𝑔, 𝑠𝑔) is a goal state, and ℘[𝜽𝑖 ,𝜽𝑖+1] is a path in Cfree from 𝜽𝑖 to 𝜽𝑖+1, the respective
configurations in 𝝎𝑖 and 𝝎𝑖+1. If there is no movement in a transition (a static action
such as sending a message), then 𝝎 = 𝝎′ and ℘[𝜽,𝜽′] = ∅.

21.3.2 TAMP with a Forward-Search Planner

In Part I and Part II, we studied several deterministic planning algorithms that generate
a sequential plan in a forward order, starting from its first action. These are for example
the generative Forward-Search state space planner or TO-HTN-Forward HTN planner.
Let us discuss how to extend these planning approaches while interleaving task and
motion planning for TAMP problems.

We use precondition/effect action schemas with hybrid metric and symbolic state
variables as illustrated in Example 21.9. The preconditions relies on procedures such
as FreePath, Grasp-config and Ungrasp-config, to compute by sampling metric state
variables that meet metric constraints. The effects specify the updates for the next
state in 𝑆 × Ω from the values computed and/or tested in the preconditions, possibly
with metric transformation, as H𝜽,q. Note that these and other motion/manipulation

502 21 Task and Motion Planning

functions are computationally very expensive. They should be used as sparsely as
possible by a TAMP planner, as discussed next.

Sampling is inherent to most of the functions needed for metric preconditions. It
entails complexity and complications on a TAMP algorithm. A failure for an action 𝑎
(e.g., to find a free path, a graspable configuration or a stable pose) might be due not
to the actions chosen before 𝑎 but to sampled values in 𝑎 and before 𝑎. For example,
the configuration sampled by Grasp-config to take 𝑜 may forbid finding later a free
path or a stable pose where to put it (e.g., taking a container from its long side instead
of the narrow side).

A possible approach would add the sampled variables in the parameters of actions
such as to make an action instance explicitly integrate the sampling performed in
its preconditons. But, this would not solve the issue of branching the search over
symbolic variables as well as over sampled metric variables. Backtracking over the
set of possible samples is not an efficient option. Fortunately metric variables range
over sets with metric functions that can be leveraged for the guidance of a planner.

F-TAMP(Σ, 𝜔0, 𝑠0, 𝑔)
Frontier← {(⟨⟩, 𝜔0, 𝑠0)} ; Expanded← ∅
𝑈 ((⟨⟩, 𝜔0, 𝑠0)) ← 0
while Frontier ≠ ∅ do

1 (𝜋, 𝜔, 𝑠) ← argmax(𝜋𝑖 ,𝜔𝑖 ,𝑠𝑖) ∈Frontier𝑈 (𝜋𝑖)
remove (𝜋, 𝜔, 𝑠) from Frontier and add it to Expanded

2 if postponed variable samplings are s.t. 𝜔 = 𝜑(𝜔0, 𝑠0, 𝜋) then
3 if (𝜔, 𝑠) satisfies 𝑔 then return 𝜋
4 foreach 𝑎 ∈ P-applicable(𝜔, 𝑠) do
5 𝑄0(𝜔, 𝑠, 𝑎) ← 𝑟𝑠 (𝜔, 𝑠, 𝑎)/ℎ(𝜔, 𝑠, 𝑎, 𝑔)

𝑠′ ← 𝛾(𝜔, 𝑠, 𝑎)
6 𝜔′ ← P-instance(𝜔, 𝑠, 𝑎)
7 if 𝑄0(𝜔, 𝑠, 𝑎) > 𝜖 and (𝜔′, 𝑠′) ∉ Frontier ∪ Expanded then

𝜋′ ← 𝜋 · 𝑎
𝑈 (𝜋′) ← 𝑈 (𝜋) +𝑄0(𝜔, 𝑠, 𝑎)
add (𝜋′, 𝜔′, 𝑠′) in Frontier

return failure

Algorithm 21.12. F-TAMP, a forward-search task and motion planner.

Algorithm F-TAMP is an instance of the Forward-Search-Det schema, augmented
with an appropriate handling of sampled metric variables and associated motion and
manipulation procedures. Frontier is a sorted list of current alternative plans, ordered
with respect to utility fonction𝑈:

𝑈 (𝜋) =
∑︁
𝑎 in 𝜋

𝑄0(𝜔, 𝑠, 𝑎), with

𝑄0(𝜔, 𝑠, 𝑎) = 𝑟𝑠 (𝜔, 𝑠, 𝑎)/ℎ(𝜔, 𝑠, 𝑎, 𝑔) (21.1)

21.3 Task, Motion and Manipulation Planning 503

The action-value function 𝑄0 for 𝑎 in (𝜔, 𝑠) takes into account two terms:

• 𝑟𝑠 (𝜔, 𝑠, 𝑎) ∈ [0, 1], the success reward of 𝑎 in (𝜔, 𝑠)(see Section 15.2.3), and
• ℎ(𝜔, 𝑠, 𝑎, 𝑔) ∈ R+ a heuristic estimate of how much 𝑎 is expected to contribute

progressing towards 𝑔.

The higher is 𝑟𝑠 and the lower is ℎ, the more valuable is 𝑎 for the current search node.
If𝑄0 is lower than a threshold 𝜖 > 0 the corresponding action is pruned. Section 22.2
explains how to learn 𝑄0.

F-TAMP expands the search node maximizing 𝑈. Only at this stage the feasibility
of the expanded node is fully checked (in Line 2). Since expanding a node branches
over possibly many successors, testing all of them with motion and manipulation
procedures would be too expensive. F-TAMP postpones this testing until a successor
is selected with its expected utility 𝑈. At this stage motion and manipulation plan-
ners are used to the sample postponed variables needed by the action 𝑎 and check
that the partial plan 𝜋 feasible. If 𝜔 ≠ 𝜑(𝜔0, 𝑠0, 𝜋), then the feasibility test fails;
the corresponding node is simply removed from Frontier. Otherwise F-TAMP uses
P-applicable to examine each action 𝑎 that is possibly applicable to (𝜔, 𝑠), i.e., dis-
regarding preconditions that require sampling with motion/manipulation planning.
The function 𝑄0(𝜔, 𝑠, 𝑎) and the state (𝜔′, 𝑠′) are computed, with the caveat that the
sampled variables of 𝑎 are at this stage missing from 𝜔′ (function P-instance). Unless
pruned (in Line 7) this successor node is added to frontier.

An alternative to the pseudo-code in Algorithm 21.12 is to postpone testing the
motion/manipulation feasibility to terminal nodes, when (𝜔, 𝑠) possibly satisfy 𝑔 (i.e.,
moving the test in Line 2 as a condition in Line 3). This amount basically to searching
for a “skeleton” plan, that meets only the symbolic part of Σ, with the guidance of
the utility function 𝑈, then testing its metric feasibility once completed, with further
node expansions if the test fails.

To sum up, F-TAMP progresses in a forward-search over all possibly applicable
actions (Line 4). The symbolic preconditions are taken as necessary but not sufficient
condition. It postpones the feasibility testing of the sampled numeric variables to
the expansion stage (Line 2), or possibly even to the final stage. This is because the
motion/manipulation part is the most costly and has to be used sparingly.

The efficiency of F-TAMP relies on how informative the reward function 𝑟𝑠 is.
Prior learning can provide a quite precise 𝑟𝑠 function that rules out unlikely feasible
actions and favors most likely feasible ones, giving a good focus to the search (see
Section 22.2). The probabilistic completeness of F-TAMP is conditioned on the action-
value function meeting: 𝑄0(𝜔, 𝑠, 𝑎) > 𝜖 whenever 𝑎 is feasible in (𝜔, 𝑠). This in turn
depends mainly on the expected success reward function, which needs to be strictly
positive for feasible actions. The heuristic ℎ plays a less critical role; it may rely
solely on the symbolic part of Σ and use the classical techniques in Section 3.2.

21.3.3 TAMP with Informed Metric Backtracking

Consider a search node (𝜋, 𝜔, 𝑠) of F-TAMP in which the metric feasibility test fails
(Line 2). Here, action 𝑎 is valid with respect to 𝑠 but not to 𝜔: its preconditions on

504 21 Task and Motion Planning

symbolic variables are met, but those on metric variables are not. For example a take
action with no free path to a grasp configuration.

In such a case, an informed metric backtracking procedure would list the motion,
placement and grasping constraints responsible for the failure of 𝑎. It would find
colliding obstacles for a free path to the target configuration, or for a stable pose on
the target support. It would seek previous motions or manipulations which constrain 𝑎.
These violated constraints are then checked with respect to the samplings previously
performed in the current 𝜋.

Actions in 𝜋 are analyzed in the reverse order seeking culprit actions, i.e., those
which sample variables involved in the violated constraints. At such a culprit action
𝑎𝑖 , alternative samples are checked such as to satisfy the violated constraints without
breaking the remaining part of the plan ⟨𝑎𝑖+1, . . . , 𝑎⟩. If changes in 𝑎𝑖 that satisfy 𝑎
affect an action 𝑎𝑘 in between the two, alternative samples for 𝑎𝑘 might be analyzed
similarly. This is an instance of dependency-directed backtracking focused on the
sampling of numerical variables.

To be efficient, an informed backtracking procedure requires a good representation
and processing of the following metric constraints:

• Motion constraints and collisions restraining movements. When no free path
is found for an action, the motion planner has to provide a minimal set of
removable obstacles whose removal can open a free path (see the Obstacle-to-
move function of Example 21.10).

• Placement constraints: correspond to the set of stable poses in Q𝑜
sta on available

supports or locations.
• Grasping and ungrasping constraints: correspond to the set of pairs (𝜽 , q) in
Q𝑜

grasp taking into account geometric and kinematic constraints. One needs to
know which grasp (𝜽 , q) is reversible for a desired ungrasp pose q′, i.e., giving
a transformationH𝜽,q such that 𝜽 ′ = H−1

𝜽,q(q
′) exists.

An informed backtracking procedure can benefit from approximations of the metric
constraints allowing the synthesis of a constraint graph over all the samples in respon-
sible actions of violated constraints. Two such approximations can be considered:

• Discretization of the space on available supports for poses into a finite set
of placements (possibly with a hierarchy of boxes); discretization of possible
grasps over a finite set of alignements of the axes of the end effector and the
object and their relative positions.

• Linearization of the placement and grasping constraints.

These approaches allow globally addressing the violated constraints in a metric back-
tracking point such as to seek a consistent assignment over all sampled variables
in responsible actions. They can use respectively CSP techniques and linear pro-
gramming methods, and can benefit from preprocessing stages, e.g., about supports
and grasps. Both approaches guarantee correctness but usually not completeness:
there may exist a consistent assignment that cannot be found through discretization
or linearization.

21.3 Task, Motion and Manipulation Planning 505

Informed metric heuristics. Metric constraints is also needed for the definition of
good value functions and heuristics to guide choices about which movable objects
to move out of the way and where to put them; which object pose to sample for a
placement on some support that is feasible and less clustering for remaining actions of
the plan; which feasible grasp would lead to the largest set of possible ungrasps. Here
too, approximations by discretization or linearization, and preprocessing are needed.
Their integration into a prior learning stage can be very beneficial (see Section 22.2).

21.3.4 TAMP with a Hierarchical Refinement Planner

Let us first remark that what we just saw with F-TAMP can be adapted to an HTN
schema, such as TO-HTN-Forward. The notions of metric backtracking and heuristics
can be taken into account in the specification of HTN methods. Example 21.10
illustrates this approach, that will not be further developed here.

In this section, we adapt instead to TAMP the hierarchical refinement approach
seen in Part V. RAE/UPOM were partly motivated by the use of operational models
to efficiently interleave acting and planning, while doing enough lookahead to ensure
a reliable behavior. This motivation holds for interleaving motion and task planning.

Methods in RAE can call any programme, e.g., the geometric reasoner mentioned
earlier for handling functionally defined changes. We introduce in refinement methods
a syntactic construct denoted “sample” which explicits sampling choices in metric
ranges, e.g., in Cfree, Q𝑜

grasp or Q𝑜
sta to move, grasp or pose an object. For UPOM,

sampling marks a possible branching points in Monte Carlo rollouts adapted to the
metric state variables.

As in action schema, a condition marked “sample” in a method corresponds to a
set of choices. When this set is empty, the method is not applicable. Otherwise,
alternative choices in the set can be tried. The method fails if all chosen samples
lead to failure. Possibly, incremental sampling may be performed with smaller error
margin, as seen in Section 21.1. Note that the set of choices for metric variables is
defined functionally from metric properties.

Example 21.10. The DWR domain in Example 14.1 structures a harbor space as a
graph of discrete Locations. Let us extend this representation with geometric models
of each location in local reference frames. We assume the harbor to be a connexe
graph; roads between adjacent locations are always traversable by robots; each location
has a “gate”, i.e., a free configuration allowing entry in and exit from that location.

The robots in this domain have the following primitive actions:
• traverse(𝑟, 𝑙, 𝑙′): robot 𝑟 traverses from location 𝑙 to adjacent 𝑙′;
• move(𝑟, 𝜽 , 𝜽 ′, ℘): 𝑟 follows a free path ℘ from configuration 𝜽 to 𝜽 ′;
• grasp(𝑟, 𝑜, 𝜽 , q): 𝑟 in configuration 𝜽 grasps container 𝑜 in its pose q;
• ungrasp(𝑟, 𝑜, 𝜽 , q): 𝑟 in 𝜽 ungrasps 𝑜 from its grasping pose q.

Grasping and ungrasping may be performed only for a container on a reachable pose
q ∈ Q𝑜

grasp. Robots can perform the following tasks:
• Transport(𝑟, 𝑜, 𝑙): 𝑟 transports container 𝑜 from its current pose and location

to some stable pose in location 𝑙;

506 21 Task and Motion Planning

• Navigate(𝑟, 𝑙, 𝑙′): 𝑟 navigates from its current configuration in location 𝑙 to the
gate of 𝑙′;

• Follow(𝑟,way): 𝑟 traverses the roads between the adjacent locations in the list
way until the gate of the last one.

• Take(𝑟, 𝑜): within its location, 𝑟 takes 𝑜 from its current pose and carries it to
the gate of that location;

• Put(𝑟, 𝑜): within its location, 𝑟 carries 𝑜 from the gate of that location to a
stable pose, it then moves to a rest configuration;

• Remove(𝑟, 𝑜, ℘): 𝑟 removes an obstacle 𝑜 to a pose out-of-the-way to make
℘ ∈ Cfree;

• Remove-list(𝑟, lobs, ℘): 𝑟 remove obstacles in the ordered list lobst.

Note that Transport fixes a destination location, but leaves the destination stable pose
unspecified, to be chosen in the Put task with some heuristics.

The methods for specifying the tasks use the functions Grasping and Ungrasping.
The handle the removal of obstacles, we modify the output of these two procedures
such as to return: (i) a pair (𝜽 ′, ℘[𝜽,𝜽′) if there is a feasible grasp/ungrasp configuration
𝜽 ′ and a free path℘[𝜽,𝜽′] to reach it, (ii) a pair (𝜽 ′,∅) if there is a feasible grasp/ungrasp
𝜽 ′ but no free path, and (iii) nil otherwise. In addition, we rely on the following
functions:

• Route(𝑙0, 𝑙𝑛): returns a sequence ⟨𝑙1, 𝑙𝑛⟩ of locations, with 𝑙𝑖−1 adjacent to
𝑙𝑖 , 1 ≤ 𝑖 ≤ 𝑛; it implements a graph search which always succeed since the
graph is connexe.

• Gate(𝑙): returns a configuration at the gate of 𝑙.
• FreePath(𝑟, 𝜽 , 𝜽 ′): returns ℘[𝜽,𝜽′] ∈ Cfree for 𝑟 if such a path exists, or nil

otherwise; it uses a motion planner, e.g., Incremental-RRT.
• Obstacles(𝑟, 𝜽 , 𝜽 ′): returns a path ℘[𝜽,𝜽′] and an ordered list of removable

obstacles whose removal would make ℘[𝜽,𝜽′] ∈ Cfree.
• Out-of-the-way(𝑟, 𝑜, 𝜽 , q, ℘): returns a pair (𝜽 ′, ℘′) of a configuration 𝜽 ′ where
𝑟 may ungrasp 𝑜 in a stable pose that is not an obstacle to the path ℘, and a free
path ℘′ to 𝜽 ′. It relies on Ungrasping.

Obstacles relies on the procedure NAMO: it searches for a free path ℘′[𝜽,𝜽′] in a con-
figuration space without movable obstacles and identify the list obstacles to remove.
This list is ordered such that the first obstacle is reachable from 𝜽; its removal would
make the second obstacle reachable and removable, etc. Out-of-the-way looks for
poses in current location where to put an obstacle to be removed such that it no longer
obstructs ℘. We assume enough space in each location to always leave “out-of-the-
way” poses where to put the containers to be removed. However, some of these poses
may interfere with the follow up of the task; a good choice of an out-of-the way pose
is needed.

A method for the simple navigation task from 𝑙 to 𝑙′ seeks by sampling a free path
to the gate of 𝑙 then a route in the graph between 𝑙 and 𝑙′:

21.3 Task, Motion and Manipulation Planning 507

m1-navigate(𝑟, 𝑙, 𝑙′)
task: Navigate(𝑟, 𝑙, 𝑙′)
pre: loc(𝑟) = 𝑙, 𝑙 ≠ 𝑙′, config(𝑟) = 𝜽 ,Gate(𝑙) = 𝜽 ′

sample: (℘ ¤←FreePath(𝜽 , 𝜽 ′)) ≠ nil
body: move(𝑟, 𝜽 , 𝜽 ′, ℘)

way← Route(𝑙, 𝑙′)
Follow(𝑟, 𝑙,way)

m1-follow(𝑟, 𝑙,way)
task: Follow(𝑟, 𝑙,way)
pre: way ≠ nil, loc(𝑟) = 𝑙

body: 𝑙′ ← pop(way)
traverse(𝑟, 𝑙, 𝑙′)
Follow(𝑟, 𝑙′,way)

If there is no free path to the gate of location 𝑙 another Navigate method would
move out obstacles (see Exercise 21.4). Termination methods for these two tasks
check respectively when 𝑙 = 𝑙′ or way = nil and simply return success.

The Transport task requires to navigate to where the container 𝑜 is, take 𝑜, navigate
to destination, then deliver 𝑜:

m1-transport(𝑟, 𝑜, 𝑙)
task: Transport(𝑟, 𝑜, 𝑙)
pre: cargo(𝑟) = nil

body: Navigate(𝑟, loc(𝑟), place(𝑜))
Take(𝑟, 𝑜)
Navigate(𝑟, place(𝑜), 𝑙)
Put(𝑟, 𝑜)

Another method for this task when cargo(𝑟) ≠ nil would use the task Put to place
cargo(𝑟) out-of-way in the same loc(𝑟).

The method for m1-take move to and grasps the target container if there is a free
path to a grasp configuration. If there is a feasible grasping configuration but no
free path to it, m2-take uses Obstacles to get a path to 𝜽 ′ and list of obstacles whose
removal would make this path free.

m1-take(𝑟, 𝑜, 𝜽 , q)
task: Take(𝑟, 𝑜)
pre: loc(𝑟) = place(𝑜), config(𝑟) = 𝜽 , place(𝑜) = q

sample: ((𝜽 ′, ℘) ¤← Grasping(𝑟, 𝑜, 𝜽 , q)) ≠ nil, ℘ ≠ ∅,
body: move(𝑟, 𝜽 , 𝜽 ′, ℘)

grasp(𝑟, 𝑜, 𝜽 ′)

508 21 Task and Motion Planning

m2-take(𝑟, 𝑜, 𝜽 , q)
task: Take(𝑟, 𝑜)
pre: loc(𝑟) = place(𝑜), config(𝑟) = 𝜽 , place(𝑜) = q

sample: ((𝜽 ′, ℘) ¤← Grasping(𝑟, 𝑜, 𝜽 , q)) ≠ nil, ℘ = ∅,
body: (path, lobs) ← Obstacles(𝑟, 𝜽 , 𝜽 ′)

Remove-list(𝑟, lobs, path)
Take(𝑟, 𝑜)

Method m1-remove-list removes from path the obstacles in the ordered list lobs. A
termination method would stop when lobs = ⟨⟩. Method m1-remove seeks a path1
to a configuration to grasp the obstacle to remove, then a path2 for a configuration to
remove it out-of-the-way from the initial path.

m1-remove-list(𝑟, lobs, path)
task: Remove-list(𝑟, lobs, path)
pre: lobs ≠ ⟨⟩

body: 𝑜 ← pop(lobs)
Remove(𝑟, 𝑜, ℘)
Remove-list(𝑟, lobs, path)

m1-remove(𝑟, 𝑜, ℘)
task: Remove(𝑟, 𝑜, ℘)
pre: config(𝑟) = 𝜽 , 𝑝𝑜𝑠𝑒(𝑜) = q

sample: ((𝜽1, ℘1) ¤←Grasping(𝑟, 𝑜, 𝜽 , q)) ≠ nil, ℘1 ≠ ∅
((𝜽2, ℘2) ¤←Out-of-the-way(𝑟, 𝑜, 𝜽 , q, ℘) ≠ nil, ℘2 ≠ ∅

body: move(𝑟, 𝜽 , 𝜽1, ℘1)
grasp(𝑟, 𝑜, 𝜽1, q)
move(𝑟, 𝜽1, 𝜽2, ℘2)
ungrasp(𝑟, 𝑜, 𝜽2)

A complete specification for this example would need additional methods (see
Exercise 21.4 to 21.11). □

This example illustrates how hierarchical refinement methods can be used to in-
terleave motion and manipulation with tasks in the planning and acting approach of
RAE/UPOM. The methods require specific functions for sampling in Cfree,Q𝑜

grasp Q𝑜
sta

(e.g., FreePath, Grasping or Ungrasping). For the sake of readability, Example 21.10
has presented the methods in a modular way. However efficiency considerations
for the computationally demanding motion planning functions should lead to merge
some methods to avoid querying for a same path more than once (e.g., in m1-take and
m2-take) into a method with a more complex body field.

Since RAE can execute methods with any code and since UPOM uses simulation
of tasks with the code in methods we already have the building blocks needed to use
RAE/UPOM on TAMP problems. However, a few modifications in the pseudo-code
of Chapter 14 and Chapter 15 are required:

• Recall the motion planning issue of probabilistic completeness and proximity
to obstacles, which led to the Incremental-MP procedures. These algorithms

21.4 Discussion and Bibliographic Notes 509

handle a failure to find a path with additional sampling and narrower error
margin. Here, the conditions marked “sample” indicate that, on failure, further
sampling may permit to find a solution. This needs to be taken into account
in the procedure Progress: a failure of a method may not mean that all the
same instances of that method fail in this state. Before retrying another method
instance (in line 2 of Progress), it is desirable to check if the failure can be dealt
with through further sampling.

• These considerations hold also for UPOM. More precisely, we considered in
UPOM three cases for handling the current step of the method under evalua-
tion: an assignment step, a primitive action step, and a task refinement step
(respectively in lines 2, 3, and 5). We need to process the “sample” conditions
of methods explicitly. A simple way is to do it as for handling a primitive
action step, i.e., progressing recursively on the current rollout with a sampled
value if one is found, or returning failure for that rollout if no sample exists.
An elaborate processing of “sample” would take into account the number of
sampled values in 𝑁stack,𝑠 (𝑚), and hence in 𝑄stack,𝑠 (𝑚) (which approximates
the utility function value).

Note that learning with CORL can provide a domain-specific method-value function
𝑄0 informative for an efficient sampling strategy. This issue will be further develop
in the next chapter.

21.4 Discussion and Bibliographic Notes

The problems of motion and manipulation planning in robotics are very rich and
draw numerous contributions, a full tribute to which is beyond the space limitations
of this section. We focus the following discussion mainly on the recent work on
TAMP problems, after a brief review of motion planning and manipulation-planning
literature.

21.4.1 Motion Planning

Motion is a fundamental function for autonomous robots, thoroughly studied. Motion
planning benefits from several textbooks, among which those of Latombe [684],
Choset et al. [231], and LaValle [685]. The topic is also covered in most recent
robotics textbooks, e.g., [743], and the handbook of robotics [1014]. The following
is a brief summary of a few main developments.

The basic “piano mover problem” for planning the motion of a free body in a
constrained space was characterized as PSPACE-hard [940]. The configuration space
representation for motion planning is due to [740]. Early complet planners (e.g., [993,
199]) where too inefficient. Practical approximations have been quickly proposed,
e.g., with space decomposition [180], potential fields [603], or their combination
[225]. Probabilistic sampling and PRM methods have been introduced in [593], and
proved to be probabilistically complete [84]. They are now the dominant and widely
used approach in motion planning.

510 21 Task and Motion Planning

The visibility-based vPRM algorithm appears in [1022]. RRT techniques are due
to [648]. Asymptotically optimal algorithms such as PRM∗, RRT∗ and bi-directional
RRT∗ have been studied in [584, 560].

Some motion planners can cope with dynamically changing environments, e.g.,
[547]; they are surveyed in [803]. Motion planning for autonomous driving was
a benchmark in the field with early demonstrations in bounded area, e.g., for car
parking. Open road motion planning raises additional issues and needs to be interfaced
hierarchically with route planning; several approaches are reviewed in [863, 242,
1090].

The presented PRM and RRT family of algorithms do not handle the velocity,
acceleration, force and torque dynamic constraints of robots. These are addressed
by kinodynamic motion planners, e.g., in [302, 686, 896], and [1130] with feedback
control algorithms.

In applications such as moving a glass without spilling its content, the movement
to be planned is constrained. This is referred to as motion planning with constraints.
The basic techniques combine constraint satisfaction techniques with sampling in the
configuration space [607, 272].

Other techniques seek to obtain plans that are robust to the uncertainty of the models
and to the sensory-motor noise in the robot localization and motion control, and to
account for the possibly growing localization uncertainty with movements aware of
landmarks [487].

Finally, let us mention the numerous links between motion planning and navigation
problems (see Section 20.3). When a map of roads is given, as in autonomous driving,
the problem is decomposed into finding a way (as in Example 21.10) to be followed
with reactive control, e.g., elastic bands, then planning precise movements when close
to the target or in off-road areas, e.g., a parking [348]. When a mapped is to be learned,
as with SLAM, additional techniques are needed and surveyed in [1185].

21.4.2 Manipulation Planning

The strong demand for automated manipulation-planning capabilities motivates nu-
merous investigations in this area, surveyed in, e.g., [1066] Historically, early ma-
nipulation planners discretize the manipulation space and synthesize a manipulation
graph which is searched for a solution, e.g., [22].

The problem in Example 21.7 and other similar complex instances of manipulation
planning is addressed in [1023] with a multiple query probabilistic roadmap approach.
The algorithm is similar to PRM, but instead of sampling points in Cfree, it samples
pairs (𝜽 , q) in a space similar toM𝑜. It considers the couple (ℜ, 𝑜) and the stable
supports as a closed chain of connected kinematic links. Single-query approaches are
however conceptually simpler.

The previous formulation refers to problems with completely specified target con-
figurations. In practice, a task only constrains feasible configurations. For example, a
grasp constrains the end effector configuration in 𝜽𝑔. It is possible to decompose the
problem by finding a movement of the base of the robot to an accessible configuration
for the object, then plan a movement of the arm to a grasp position. However, the

21.4 Discussion and Bibliographic Notes 511

manipulation of an object can require intermediate poses at different moments, or
the manipulation of other interfering objects. It is necessary to change the structure
of the search space according to the grasps and poses of objects handled [1023]. In
addition, the above decomposition is not always feasible. For example, a humanoid
robot requires a coordinated movement of all its dof for its body and all limbs [582]
(Figure 20.1). Further, sensing and visibility issues bring additional constraints, e.g.,
planning a motion that avoids occultation between a camera carried by the robot’s
head and its hand, or allowing for visual servoing [220].

21.4.3 Combined Task and Motion Planning

Section 21.3 details two possible approaches to TAMP: forward search and hierarchi-
cal refinements. Several instances of the former have been studied in the literature,
the latter is original. These two approaches gives a very partial view of the area of
TAMP methods, which recently mushroomed into hundreds of quite creative con-
tributions. Since TAMP is exemplary of heterogeneous symbolic–metric planning
problems, we devote here a longer discussion for broader view of the main classes of
TAMP methods.

TAMP with generalized roadmap approaches. It seems natural to address TAMP
as a multi-modal motion planning problem, a modality being a configuration space
(robot alone, in contact with or carrying an object, etc.). This is exemplified in [483],
which relies on a task graph 𝐺. A node in 𝐺 is labeled by an action 𝑎 and associated
with a configuration space 𝐹𝑎 where 𝑎 is achievable. An edge (𝑎, 𝑎′) denotes that 𝑎′ is
feasible after 𝑎; it corresponds to the intersection 𝐹𝑎∩𝐹𝑎′ , called the transition space.
Transitions are more constrained; they can focus sampling. The procedure builds 𝐺
incrementally, it computes a PRM of 𝐹𝑎 for each new node. It connectes the PRMs
through their transitions into a path from a start node to a goal node. 𝐺 is heuristically
searched with a focus on sampling transitions, allowing to prune unsuccessful paths.
The approach has been illustrated with legged robots.

The method called Probabilistic Tree of Roadmaps (PTR) [482] illustrates a gen-
eralization of RRT. Preconditions and effects in action models use domain-specific
procedures requiring fully specified states to be evaluated. PTR extends the search
tree in a forward manner by sampling 𝑘 successors for every node. As RRT, only one
such successor is added to the tree, randomly chosen such as to keep an asymptoti-
cally uniform distribution of states. The algorithm is probabilistically complete, but
it does not use the symbolic state variables and relations to constrain or focus the tree
extension.

DARRT [483] is another RRT-like TAMP planner with a similar search space.
It requires and can benefit from domain-specific heuristics about the effects and
preconditions of each action. It has been illustrated with non-prehensile manipulation
actions, e.g., push a plate to the border of a table, grasp its edge, pick it up, move it, put
it down, then push it to a destination pose. It has also been extended with bidirectional
and hierarchical search. The hierarchical extension works by first generating a free
path for the object alone, annotated with the needed manipulation actions. Each action

512 21 Task and Motion Planning

in that path is a subgoal to be further refined.

TAMP with state-space search. Several approaches try to leverage symbolic causal
relations using a task planner to guide TAMP. Asymov [197] offers an early illustration.
It combines the metric-FF task planner with motion planning. It defines a place
as a state in the task planning space, as well as a roadmap in the corresponding
configuration space. It expands roadmaps along with the search; it can reuse and
amortize them over several places. This approach has been extended to multi-robot
cooperation over complex manipulation and assembly tasks.

FFRob [386] is a different extension of FF with heuristic search in a symbolic-
metric space. It builds incrementally a Conditional reachability graph (CRG), which
encodes the connectivity of sampled configurations. An edge is a path between two
connected configurations labeled with traversability conditions on the poses of objects
what robot grasps. Action-specific sampling procedures need to be programmed.
“Interesting” samples of poses and configurations are initially drawn to access to
or put away movable objects, or to connect configurations. This set is progressively
extended while planning. CRG permits to easily find if a node in the graph is reachable
through sampled nodes from a search state. It is used for finding applicable actions
in a state, and for computing extension of classical heuristics such as HFF. CRG
is convenient for solving multiple motion-planning queries in similar environments.
FFRob is probabilistically complete; its probability of failure decreases exponentially
in the number of iterations.

The Hybrid Backward-Forward (HBF) algorithm [384] is a variant of FFRob which
uses backward search to produce successors and distance estimates for the main
forward search. HBF uses a structure called constrained operating subspace (COS)
which is a roadmap sampler of partial states from preconditions to effects, as well
as a transition and an intersection sampler for connectivity. COSs encapsulate all
the knowledge about the domain and lead to lead to extended action models with the
needed metric transitions (e.g., paths for a move). A relaxation heuristic gives good
performance in object sorting and placement problems (e.g., plans of about 70 actions
in a minute CPU).

The LD-CTAM approach [669] considers a forward search strategy that can be
parametrized. Down to a depth 𝑑∗ of the search tree, it combines symbolic and
metric (by sampling) action instantiation. An instantiation may fail due to obsta-
cles, kinematic reachability, or failure of the motion planner; in which case, metric
backtracking occurs. If metric backtracking fails (after a cut-off number of trials),
symbolic backtracking is triggered. Beyond 𝑑∗, the search ignores metric values at the
task planning level until reaching a goal, then it evaluates and instantiates metrically
this candidate plan. If needed, backtracking is performed at the metric level, then at
the symbolic level. A simplified analysis, empirically tested, shows that there is an
optimal depth 𝑑∗, which depends on a metric pruning factor.

Another option, illustrated in [354], compiles a TAMP problem into a classical
planning one. At a costly preprocessing stage, the method discretizes the metric
space and computes with a motion planner two finite graphs of possible feasible
configurations and their transitions. These are used by a classical task planner.

21.4 Discussion and Bibliographic Notes 513

Completeness of the planner and the method is ensured for the chosen discretization,
which has to be refined if no solution is found.

Among many other contributions to the popular state-space search idea for TAMP,
let us also mention a basic extension of PDDL schemas with semantic attache-
ments, (i.e., the needed metric specific procedures) developed in [306], or an original
weighted forward-search using LTL and finite automata for tasks planning together
with RRT for motion planning [779].

TAMP with constraint satisfaction methods. Several contributions relies on var-
ious ways of leveraging metric constraints to bound, prune and focus the search of a
TAMP planner. The approach of [670] uses a constraint-based method to prune the
search. A sequence of actions synthesized by a task planner is mapped to a set of linear
constraints which condition the existence of a metric instantiation of this sequence.
Violated constraints allow safely pruning that sequence. But satisfied constraints do
not guaranty a feasible metric instance of that sequence, since the used constraints
rely on a coarse metric representation of symbolic states. Constraints do not take
into account intermediate configurations between states, neither do they express the
entire set of metric relations in each state. Further, part of these constraints rely on
predefined finite sets of poses and grasps. With these simplifications, the constraints
for manipulation tasks are generated at each iteration of a depth-first search; they are
expressed as two sets of linear equality and inequality constraints, checked with an LP
solver. Empirical assessment shows this constraint handling method pays off when
compared to straightforward backtracking, in particular when the domain is highly
constrained (e.g., filling a cup held by the left hand with a water bottle held by the
right hand).

In [142], additional constraints are used for informed symbolic and metric back-
tracking. A state-space forward search (with totally ordered HTN) uses symbolic
backtracking on actions, and metric backtracking on sampled metric values in the
chosen actions (poses, grasps, paths). Three types of constraints about the movement
kinematics, the object placements and their grasps are managed with linear pro-
gramming and interval filtering algorithms. Heuristics about the number of detected
collisions in object placements and the number of violated kinematic constraints in
picking and placing objects are also used. A comprehensive experimental evaluation
for complex tasks (dual-arm manipulation and warehouse management by a forklift
robot) shows feasibility with a modest scaling up (up to two dozen actions).

A more elaborate metric failure analysis is developed in [668]. A failure has a
culprit, i.e., a parsimonious explanation used for pruning the current sequence of
actions, and any future sub-plan that have that culprit. Informally, a culprit, as in
diagnosis and abduction reasoning, is a subset of hypotheses that gives a complete
and parsimonious explanation of observations. Two culprit detection methods are
proposed here. The first one extends the linear coarse metric constraints of [670] to
account for the current sequence of states. The second method considers intermediate
configurations between symbolic states and their causes of failure. The method
computes for each objet a bounding box of all the poses that the object can possibly
occupy at some step. The bounding boxes are represented as a network of linear

514 21 Task and Motion Planning

constraints, which is used to find possible violations of kinematic constraints and
collisions. The exploitation of the found culprits uses a strategy similar to that of CSP
and SAT solvers: an inconsistency is expressed as a clause whose negation is added to
the base of clauses. This motivates the use of an ASP task planner, since culprit trial
can readily be integrated in ASP. The planner synthesizes a full symbolic plan for the
problem at hand that avoids all known culprits. That plan is analyzed by the geometric
reasoner, which either succeeds with a full metric instantiation of the plan or generates
additional culprits. The geometric reasoner looks for inconsistent spatial relations
between objects with the bounding box method, then for infeasible subsequences of
actions with the linear coarse constraints method, and if none is found it seeks a full
metric instantiation of the plan. If this last step fails, the geometric reasoner does
not identify colliding obstacles that obstruct the path planner (a hard problem). It
assumes the culprit to be the sequence of actions for which motion plans have been
actually found: this sequence makes the remaining part of the plan not feasible; the
task planner is required to avoid it in future trials. The approach is not complete
because of the latter point and the bounding box method requirements, which are
not a necessary condition. Empirical evaluation on complex manipulation problems
demonstrates a reasonable scaling up (20 actions planned in about 2 minutes, most of
it being in geometric reasoning).

A CSP solver on discretized metric space is used in [739]. A task planner gives
a candidate abstract skeleton plan leaving unbound the metric variables in action
preconditions and effects. The CSP solver determines grasps, object placements, robot
configurations, and paths that satisfy the constraints. An elaborated pre-processing
phase allows building the discretized free space and a spanning tree which represent
the connectivity of that space. The collision, grasp and path constraints are augmented
with a few necessary but not sufficient simple constraints (e.g., bounding boxes) to
prune the CSP search. The approach is evaluated on object arrangement problems,
with possible regrasps consistent with a destination pose. It outperforms standard
backtracking, in particular when there is no solution.

The method of [272] uses a CSP solver (namely SMT) for task planning coupled
to RRT for metric planning. The latter uses the popular kinematic tree model for the
configuration spaces, available in several software packages, which efficiently handles
the changing kinematic constraints as objects are grasped, moved, and released. A
failure in metric planning entails additional constraints in the task CSP. Since task
planning with CSP requires a length parameter (maximum number of actions in
searched plans), the approach links this parameter to the maximum number of samples
(or the timeout parameter) of RRT. Both are jointly increased an iterative deepening
procedure. The constraint encoding is polynomial in the number of objects and
locations in the domain. The approach benefits from generalized constraints from the
analyzes of failures and detected collisions. It is probabilistically complete and scales
up to about 100 objects in arrangement problems in about 100s, a tenth of which in
task planning.

A meta-CSP approach is explored in [1058, 752]. It has meta-variables and meta-
constraints related to lower level CSPs, four of which are considered about respectively
time, space, resource and causal constraints. A planning problem is stated as a global

21.4 Discussion and Bibliographic Notes 515

constraint network that solves conflicts in the four types of CSPs. Resolvers for
a conflict are additional actions, temporal, or spatial constraints. Both time and
space are expressed in finite CSPs using a tractable subset of interval algebra and
its 2D extension to the rectangle algebra. Numeric bounds on distances and time
points can be handled. Each resolver for a conflict is checked for time and space
consistency. The meta-variables range over lower constraints; the meta constraints
correspond to consistent ways of combining lower level constraints. A solution is
computed by a backtrack search algorithm at the meta level relying on the ground
solvers, improved in CHIMP [752] with an HTN planner adapted to the meta-CSP
framework. It uses constraints on the HTN task decomposition order, as well as lower
and meta-constraints. The main advantage of the approach is to handle time in TAMP
for problems with deadlines, with a drawback of a limited handling of space and
movements. It has been tested on simple object-placement problems with plans with
up to 40 actions.

Several other CSP-based approaches have been studied, such as [326] or [837],
with respectively ASP and SMT solvers, using variant of the above principles and
additional ideas.

TAMP with hierarchical approaches. Several contributions to TAMP rely on a
hierarchical decomposition of the task and motion levels (as in Figure 21.7). The
approach of [754, 755] uses “angelic nondeterminism”. The latter assumes that a
lower level to which a choice has been deferred, will be able chose the best option
(see Section 5.5.3). A task plan is sequence of on symbolic actions, each can be
decomposed at the metric level in different ways. The possible decompositions of a
task plan are the compatible decompositions of its actions. A plan is acceptable if it
has at least one feasible decomposition. The lower level decomposes, when needed,
each abstract action by choosing a feasible decomposition, if there is one. The key
idea is to rely on a lower bound of the set of feasible decompositions of an task plan
such as to make sure that this set is not empty. Lower bounds are computed by running
simulations of action decompositions using random values of state variables. The
planner relies on these estimates for searching in the abstract state space.

The HPN hierarchical approach [566] estimates the metric feasibility of its actions
with “Geometric Advisers”. Advisers do not solve motion planning problems. They
provide heuristic informations about how metrically feasible is a given symbolic
action. Task planning continues with the green light from advisers until reaching a
complete plan. Task planning in HPN relies on a goal regression search hierarchized
according to a user-defined partition of state variables into a few levels of criticality.
The regression in the search space is pursued until the preconditions of the considered
action (at some hierarchical level) are met by current world state. At acting time, each
step that requires movements triggers a full motion planning. This approach relies on
two assumptions: metric preconditions of abstract actions can be calculated quickly
and efficiently by the geometric advisers; subgoals resulting from decomposition of
action are executable in sequence. The approach is not complete; the refinement of
an action may fail despite the advices. For problems without dead ends allowing for
“backtracking” at the acting level at a reasonable cost, the approach is efficient and

516 21 Task and Motion Planning

robust.
HPN has been extended over several contributions, notably in [567, 568]. The main

extensions are about handling epistemic actions, reasoning on what the robot knows
and can sense, and about the uncertainty on object poses and the robot localizations.
After each observation (assumed with Gaussian noise), a state estimator performs a
Bayesian update of a distribution of the robot estimates about the current state of the
world. Specific function are proposed to compute uncertainty parameters through
regression, e.g., to find the minimum confidence required in the location of an object
at the previous step, in order to guarantee some required confidence in its location as
a result of an action. Since the method interleaves acting and planning, it monitors
how a plan progresses in order to eventually try another action in case of a failure
without replanning, or to opportunistically skip actions if acting can move ahead in
the current plan towards the goal. This quite comprehensive approach to TAMP with
numerous features allowing for robust robot behaviors, requires significant expertise
in the specification of action models.

Other hierarchical approaches have been explored, such as [278, 412] relying on
variables shared between the task level (with HTN) and the metric level, with a specific
geometric reasoner called GTP, allowing for feasibility test of metric instantiations
and informed backtracking.

TAMP with mathematical programming. TAMP has been addressed in [1101] as
a relational mathematical optimization program with respect to a cost function over
the final state, e.g., maximize the height of a cup in a stable assembly construction
using boards and various objects. The method addresses the problem as a first order
logic extension of a non-linear constrained program over trajectories formulated as
follow:

min𝑥, 𝜋 𝑓 (𝑥, 𝜋) such that 𝜋 |= 𝐾, 𝑔(𝑥, 𝜋) ≤ 0, ℎ(𝑥, 𝜋) = 0
where 𝜋 is a task plan, 𝑥 is a sequence of continuous trajectories of the robot and
objects, 𝐾 is a logic specification of the domain, 𝑓 is the objective function; it is
assumed that 𝜋 entails on the trajectories 𝑥 equality and inequality constraints denoted
by ℎ and 𝑔 respectively. 𝑓 takes into account control variables (on 𝑥, ¤𝑥, and ¥𝑥); ℎ
and 𝑔 integrate dynamic and stability constraints. The global optimization program is
broken down over three successive approximation steps: (i) optimize over all metric
parameters in the final state of 𝜋, (ii) optimize over all intermediate states in 𝜋 given
the results of (i), and (iii) optimize over all trajectories (discretized in time) given (i)
and (ii). The first step is very efficient for binding parameters of actions in 𝜋, including
those in early actions. Because of the constraints in the final state, this step is of lower
dimensionality than the sum of all metric parameters of actions in 𝜋. These three steps
are integrated within a Monte Carlo Tree Search (MCTS) over feasible skeleton plans.
Step (i) is performed for each rollout. The best plans are optimized with step (ii),
and, if feasible, with step (iii). The approach is tested in simulation with a simplified
3 DOF robot arm. It works for plans with up to 50 actions in as many seconds.
This formulation of TAMP as a relational mathematical program offers interesting
features such as handling dynamics and stability of assembled construction. It also
demonstrates step (i) as an efficient heuristics for other TAMP approaches.

21.5 Exercises 517

This quite long discussion is certainly not exhaustive of the ideas and methods
explored in TAMP. Complementary approaches are reviewed in [387].

21.5 Exercises

21.1. In Figure 21.8, the white areas are Cfree and the gray areas are Cobs. Suppose
we’re trying to create a roadmap, starting with the two points 𝑋 and 𝑌 in version 1 of
the figure.

(a) What is the smallest number of additional points needed to create a roadmap?
Draw the roadmap.

(b) In your roadmap, are either 𝑋 or 𝑌 redundant? Explain.
(c) Repeat questions (a) and (b) using version 2 of the figure.

(version 1) (version 2)

Figure 21.8. Two possible placements of points 𝑋 and 𝑌 in a region with obstacles.

21.2. Write the pseudo-code for the interpolation procedure in p.487. Find a curve
fitting procedure that returns the maximum distance to the set of points allowing to
bound the distance to the points in the segments of in 𝜎 such as to simplify collision
checking of ℘[𝜽0,𝜽𝑔] .

21.3. Consider a triangulation of Cfree as in Figure 21.3(b), and let 𝑃 be the set of
triangle centers. Is it possible to define a roadmap of Cfree based solely on the set 𝑃?

21.4. Write methods for the task Navigate of Example 21.10 to handle the case where
there is no free path to a gate.

21.5. Write methods for the task Transport of Example 21.10 to handle the case where
cargo(𝑟) ≠ nil.

21.6. Write methods for the task Take of Example 21.10 to handle the case where
Grasp-config(𝑟, 𝑜) = nil.

21.7. Write methods for the task Take of Example 21.10 to handle the case where
Grasp-config(𝑟, 𝑜) = nil.

21.8. Write methods for the task Take of Example 21.10 to handle the case where
Stacked-on(𝑜) ≠ nil.

518 21 Task and Motion Planning

21.9. Write methods for the task Remove of Example 21.10 to handle the cases when
FreePath(𝑟, 𝜽0, 𝜽1) = nil or when FreePath(𝑟, 𝜽1, 𝜽2) = nil.

21.10. Write methods for the task Unstack of Example 21.10.

21.11. Write methods for the task Put of Example 21.10.

21.12. Define an action navigate(𝑟, 𝑙, 𝑙′) for Example 21.10 to go from the current
robot location 𝑙 and configuration to some free configuration, found by sampling, in
a target location 𝑙′.

22 Learning for Movement Actions

In this part of the book, we discussed so far how movement and manipulation actions
can be modeled, controlled, and planned for. The reader has noticed how complex it is
to specify and develop the corresponding models. Modeling, controlling and planning
with movement and manipulation actions is challenging. The high dimensional
sensory-motor space and the needed integration of metric and symbolic state variables
augment the challenges.

Machine learning addresses these challenges at the acting level as well as at the
planning level. But ML in robotics faces specific problems:

• It does not benefit from the massive text and image data available over the web
in other supervised learning applications.

• Experiments needed for RL are scarce, very expensive (compared to board
games and computer games), and difficult to reproduce.

• Realistic sensory-motor simulators remain computationally costly.
• Expert human input for RL is often needed for, e.g., specifying or shaping

reward functions or giving demonstrations and advices, but this expertise is
scarce and costly; it needs to be used with parsimony.

• The functions learned are often narrow. Generalization of a learned behaviors
and models across environments and tasks is challenging.

In the two following sections, we consider approaches for addressing some of
these problems at successively the acting level, referred to as skill learning, then at the
planning level. Recent progress of this fast moving field are discussed in Section 22.3.

22.1 Learning Sensory-Motor Skills

22.1.1 Robotics Skills

A skill refers to a physical elementary task that may require several movements and
actions, e.g., to park a car along a sidewalk in a narrow spot. A complex task such as
changing a flat tire may call for several skills. An industrial robot platform is generally
endowed with a library of skills, e.g., for welding or bolting; similarly for a service
robot. Often, the robotics literature illustrates skill development methods on physical
games and sports such as archery, table tennis, or soccer, as in the popular RoboCup
competitions.

A skill is defined with an operational model specifying how to combine a set of
sensory-motor controls in order to perform the intended task. It uses metric repre-
sentations for the state space as well as the action space, both of which are usually
high-dimensional. Skill modeling and programming are complex undertakings, mo-
tivating the need for efficient skill learning.

Free pre-publication, for personal use only. To be published by Cambridge University Press.

519

520 22 Learning for Movement Actions

Skill learning methods are naturally set in the parametric RL framework. They seek
to acquire from trial and error a policy that optimizes an objective function combining
success reward and low cost. The basic approaches are those seen in RL, particularly
the policy-based methods of Section 10.6.

Recall that the value-based Deep Q-learning can cope with high-dimensional state
spaces, but is limited to discrete action spaces, while skills often involve continuous
control. A possible option is to discretize the action space, but this is often prob-
lematic. For a robot of 𝑛 dof with 𝑘 discrete values in each dof , the action space
is in 𝑂 (𝑘𝑛), barely feasible for robots as Justin (Figure 20.6(a)), where 𝑛 ≈ 50.
Hence, a policy-based RL method such as Policy Gradient, which can handle a high
dimensional continuous action space, is appealing. Its use for learning robotics skills
required several adaptations exemplified in the algorithm presented next.

22.1.2 Skill Learning

Let us study here Deep Skill Learning, an algorithm that combines the principles of
Policy Gradient with insights from Deep Q-learning (relying on sections 10.5.1 and
10.6.2). This is an actor/critic algorithm which:

• decouples the evaluation of the target values from the ongoing updated networks
to avoid instabilities due to targets close to current estimates,

• updates the networks over mini-batches randomly sampled from a replay-
memory to take into account correlated successive observations.

Deep Skill Learning maintains and updates two main nets: [𝝅𝜃] and [𝑄𝜔]. The actor
net [𝝅𝜃] takes a vector 𝑠 ∈ R𝑛 as input and gives as output a weight a vector over
𝑎 ∈ R𝑚. The critic net [𝑄𝜔] takes the two vectors 𝑠 and 𝑎 as input and gives as output
a scalar 𝑄(𝑠, 𝑎). We also need to target nets, denoted [𝑄𝜔−] and [𝝅𝜃−], to decouple
targets from values.

The algorithm runs over a number of episodes, each involving a finite number of
steps until the termination of the task. It keeps a replay-memory R𝑀 as a FIFO list
recording the last 𝑁 steps, where a new tuple remplaces the oldest one. R𝑀 covers
successive episodes, possibly several if 𝑁 is large. A mini-batch B of 𝑘 tuples is
sampled uniformly from the replay-memory R𝑀 . The parameters 𝜽 and 𝝎 of the
actor and critic nets are updated with Backpropagation algorithm, with an error term
for 𝜔 and a gradient term for 𝜃 averaged out (forall loop in line 2) over the 𝑘 tuples
in the mini-batch B. Note that the vectors 𝜹𝜔 and ∇𝜔𝑄𝜔 are of the same dimension
as 𝝎 (line 4). If 𝑚 is the dimension of the action space and 𝑝 is the dimension of 𝜽 ,
then ∇𝜃𝝅𝜃 is a vector of the dimension 𝑝, the Jacobian matrix ∇𝑎𝑄𝜔 (𝑠, 𝝅𝜃 (𝑠)) is of
dimension (𝑝, 𝑚) giving for the product a vector 𝜹𝜃 of dimension 𝑝 (line 5).

The target 𝑦 is defined as in Policy Gradient; it depends on𝑄𝜔 as well as 𝝅𝜃 . Hence
we need two additional networks to decouple the target from current action-value.
These two nets [𝑄𝜔−] and [𝝅𝜃−] are used to compute the target 𝑦 = 𝑟 (𝑠, 𝑎, 𝑠′) +
𝑄𝜔− (𝑠′, 𝝅𝜃− (𝑠′)). Their parameters are not updated as for [𝑄𝜔] and [𝝅𝜃]. They
track with a delay those of the main nets with a linear combination of old and new
parameter values: 𝜽− ← 𝜏𝜽 + (1 − 𝜏)𝜽−, and 𝝎− ← 𝜏𝝎 + (1 − 𝜏)𝝎−, for 𝜏 << 1.

22.1 Learning Sensory-Motor Skills 521

Deep Skill Learning
initialize critic net [𝑄𝜔] and actor net [𝝅𝜃]
initialize the replay memory R𝑀

𝜃− ← 𝜃 ; 𝜔− ← 𝜔 // initialize target nets
for each episode do

randomly draw a starting state 𝑠 from 𝑆0
until episode termination do

1 𝑎 ← Select(𝑠) // selects 𝑎 ∈ Applicable(𝑠)
perform action 𝑎
observe resulting state 𝑠′ and reward 𝑟 (𝑠, 𝑎, 𝑠′)
push((𝑠, 𝑎, 𝑠′, 𝑟 (𝑠, 𝑎, 𝑠′)),R𝑀) // FIFO replay memory
B ← set of 𝑘 tuples uniformly sampled from R𝑀

𝜹𝜔 ← [0, . . . , 0] ; 𝜹𝜃 ← [0, . . . , 0]
2 forall tuples (𝑠, 𝑎, 𝑠′, 𝑟 (𝑠, 𝑎, 𝑠′)) ∈ B do
3 𝑦 ← 𝑟 (𝑠, 𝑎, 𝑠′) +𝑄𝜔− (𝑠′, 𝝅𝜃− (𝑠′))
4 𝜹𝜔 ← 𝜹𝜔 + 1/𝑘 [𝑦 −𝑄𝜔 (𝑠, 𝑎)]∇𝜔𝑄𝜔 (𝑠, 𝑎)
5 𝜹𝜃 ← 𝜹𝜃 + 1/𝑘 [∇𝜃𝝅𝜃 (𝑠) × ∇𝑎𝑄𝜔 (𝑠, 𝝅𝜃 (𝑠))]
6 𝝎← 𝝎 + 𝛼𝜔𝛿𝜔 // update critic network
7 𝜽 ← 𝜽 + 𝛼𝜃𝛿𝜃 // update actor network

𝑠← 𝑠′

8 𝜃− ← 𝜏𝜃 + (1 − 𝜏)𝜃− // update target nets
9 𝜔− ← 𝜏𝜔 + (1 − 𝜏)𝜔− // update target nets

Algorithm 22.1. Deep Skill Learning with a deterministic policy gradient algo-
rithm.

Essential choices are needed for instantiating Deep Skill Learning in an application.
These are mainly related to the neural nets architecture and their nonlinear functions.
A visual input would typically require convolution nets, while low-dimensional state
and action spaces (e.g., a robot joint angles, velocities, and torques) may be handled
with feedforward nets. In addition, several hyper-parameters require tuning. These
are in particular the learning rates 𝛼𝜔 and 𝛼𝜃 , the delay 𝜏 for the parameters of the two
target networks, the size of the replay memory R𝑀 and the size 𝑘 of the mini-batch B.
The Select function driving the exploration policy has to be chosen; for a continuous
action space, it usually uses 𝝅𝜃 plus some random noise.

The sampling of the mini-batch B from R𝑀 may follow a more elaborate strategy
than uniformly random, e.g., prioritize the last observations or use explicite priority
estimates, as in the prioritized sweeping method. When the state and action com-
ponents are heterogeneous, ranging over different scales, there is a need of uniform
scaling methods, such as the batch normalization. This technique normalizes the
inputs across the samples in a minibatch to have unit mean and variance; it maintains
running averages of the means and variances for this normalization. It can be applied
to hidden layers as well.

522 22 Learning for Movement Actions

Deep Skill Learning benefits from the formal convergence properties of the de-
terministic Policy Gradient approach and the practical stability properties of Deep
Q-learning. As a policy-based RL, it can take into account prior knowledge in the
initial 𝝅𝜃 , which is a significant advantage to speed up learning. Instances and vari-
ants of this algorithm have been successfully tested in simulation and in physical
experiments in a number of skills, ranging from simple ones, such as balancing an
upright pole attached to a cart, to more elaborate pick-and-place of objects with a 7
dof arm (as in Figure 20.4), hitting a ball to a target using an arm equipped with e.g.,
a hockey stick, or bipedal and quadruped walking on a plane.

22.2 Learning for Task and Motion Planning

A TAMP planner explores joint symbolic and metric search spaces, the latter through
sampling. It devotes significant efforts, with possibly additional sampling, to find
out if a movement or a grasp are feasible (see Section 21.3). Recall the probabilistic
completeness of motion and manipulation planning: the tighter a motion is, the longer
it takes to compute the corresponding path; infeasible moves are the worst. Altogether,
the metric part is the main computational bottleneck in TAMP.

The idea here is avoid as much as possible calling the planner for unlikely feasible
movements, and to use learning techniques for recognizing those in advance. For that,
we may rely again on the “planning to learn” paradigm (Figure 1.2): motion and
manipulation planners are used offline to find feasible movements and grasps across
a spectrum of tasks and contexts for the domain at hand. This prior training data is
generalized into useful knowledge for online task and motion planning.

The approach is different from “end-to-end learning”, used in the skill learning
section, in which the actor performs reactively the learned skills. In TAMP, end-to-
end learning is suitable for and has been deployed successfully in single manipulation
tasks with fairly invariable environments. Variety in tasks and environment requires
the flexibility of planning. In the “planning to learn” approach, planning gives
training data to learning. The learner generalizes training into useful knowledge in
order to better plan, with a different planner, before acting. While acting, additional
experiences can feed in the training and learning base in a focused way.

The learning approach discussed here relies on the algorithms and methods seen
for reinforcement learning (Chapter 10). This approach is in many ways akin to the
one described for learning to guide RAE and UPOM (Section 16.1). In the latter, we
learned a method-value function 𝑄0(𝑠, 𝑚) to be used by Guide and UPOM. Here, we
learn an action-value function 𝑄0(𝜔, 𝑠, 𝑎) to be used by F-TAMP. The main novelty
is that the learner takes as input visual scenes of the movement and manipulation
problems to be learned, and as output target the success or failure of tried movements
in these scenes. In previous approaches we addressed learning in the feature space
(i.e., a coding of (𝑠, 𝑎) or (𝑠, 𝜏)), while here we discuss learning in the sensor space.

Example 22.1. Consider a robot arm with a simple gripper (e.g., the Franka Emika
of Figure 20.4) fixed on a table in an environment with a few horizontal support
surfaces (shelves, trails, etc.) and a few movable objects of regular polyhedral shapes,

22.2 Learning for Task and Motion Planning 523

as depicted in Figure 22.1[19].
Tasks in this environment are for example to fetch, sort or arrange in some order

the movable objects. They can be planned for using F-TAMP and the take and place
action schemas of Example 21.9. □

Simultaneous Action and Grasp Feasibility Prediction for Task and
Motion Planning through Multi-Task Learning

Smail Ait Bouhsain1, Rachid Alami1 and Thierry Siméon1

Abstract— In this paper, we address task and motion plan-
ning (TAMP) which is an important yet challenging robotics
problem. It is known to suffer from the high combinatorial
complexity of discrete search, often requiring a large number
of geometric planning calls. We build upon recent works in
TAMP by taking advantage of learning methods to provide
action feasibility information as a heuristic to the symbolic
planner, thus guiding it to a geometrically feasible solution and
reducing geometric planning time. We propose AGFP-Net, a
multi-task neural network predicting not only action feasibility,
but also the feasibility of a set of grasp types. We also propose
an improved feasibility-informed TAMP algorithm capable of
solving more complex problems, and handling goals which are
not fully specified. Comparative results obtained on different
problems of varying complexity show that our method is able
to greatly reduce task and motion planning time.

I. INTRODUCTION

Task and motion planning (TAMP) [1]–[30] is a robotics
problem that involves determining a sequence of actions
that a robot must take to achieve a desired goal, along
with the corresponding motions of the robot. It combines
discrete symbolic planning with continuous geometric plan-
ning. TAMP problems are challenging due to the high
dimensionality of the state and action spaces, but also to
the combinatorial complexity of discrete search.

Geometric planning is a major bottleneck to TAMP. Since
symbolic planners do not have any geometric reasoning
capabilities, they generate task plans without a guarantee
of feasibility. A geometric planner has to be used in order
to verify the feasibility of each generated task plan and
construct the corresponding motions. However, in complex
problems, symbolic planners generate a high number of
geometrically infeasible solutions before finding a feasible
one, each plan requiring a call to the geometric planner which
results in long planning time. Moreover, geometric planning
might be time consuming even in the case of feasible tasks.
Since not all grasps are feasible or lead to a feasible motion,
finding the right one might require a lot of time.

This work aims at providing the symbolic planner with
a feasibility prediction capability, which increases the prob-
ability that the generated task plans are feasible, and thus
reduces the number of calls to the geometric planner. First,
we improve upon our previous approach [30] in order to
enrich the information provided to the task planner, and
reduce the dimensionality of the action space. Indeed, instead
of predicting the feasibility of a Pick or Place action
with a single specific grasp type, we propose a multi-task

1LAAS-CNRS, Toulouse, France, {saitbouhsa, alami,
simeon}@laas.fr

(a) Access domain

(b) Sort domain

Fig. 1: A visualization of the initial and goal states of two
complex TAMP problems solved by the proposed planner,
and on which Bouhsain et al. 2023 [30] fails.

learning neural network capable of predicting the feasibility
of an action as well as the feasibility of each grasp type.
We also propose a new training strategy allowing a better
generalization to new environments. In addition, we propose
a more powerful TAMP algorithm capable of solving a wider
range of problems with higher complexity, in particular ones
with semi-specified goals. We develop a method for com-
bining probabilities of feasibility allowing the task planner
to make better use of the predictions obtained by the neural
network, and reduce the branching factor of the search. We
also introduce a new cost function that incorporates both the
action feasibility as well as the grasp feasibility predictions.
Furthermore, we leverage the latter to accelerate geometric
planning, thus reducing the time spent on finding a grasp
that leads to a feasible motion.

II. RELATED WORK

Task and motion planning combines discrete symbolic
planning and continuous geometric planning. Early works
[1]–[11] view the problem from the geometrical perspective,
by formalizing it as a multi-modal motion planning problem.

(a)

Simultaneous Action and Grasp Feasibility Prediction for Task and
Motion Planning through Multi-Task Learning

Smail Ait Bouhsain1, Rachid Alami1 and Thierry Siméon1

Abstract— In this paper, we address task and motion plan-
ning (TAMP) which is an important yet challenging robotics
problem. It is known to suffer from the high combinatorial
complexity of discrete search, often requiring a large number
of geometric planning calls. We build upon recent works in
TAMP by taking advantage of learning methods to provide
action feasibility information as a heuristic to the symbolic
planner, thus guiding it to a geometrically feasible solution and
reducing geometric planning time. We propose AGFP-Net, a
multi-task neural network predicting not only action feasibility,
but also the feasibility of a set of grasp types. We also propose
an improved feasibility-informed TAMP algorithm capable of
solving more complex problems, and handling goals which are
not fully specified. Comparative results obtained on different
problems of varying complexity show that our method is able
to greatly reduce task and motion planning time.

I. INTRODUCTION

Task and motion planning (TAMP) [1]–[30] is a robotics
problem that involves determining a sequence of actions
that a robot must take to achieve a desired goal, along
with the corresponding motions of the robot. It combines
discrete symbolic planning with continuous geometric plan-
ning. TAMP problems are challenging due to the high
dimensionality of the state and action spaces, but also to
the combinatorial complexity of discrete search.

Geometric planning is a major bottleneck to TAMP. Since
symbolic planners do not have any geometric reasoning
capabilities, they generate task plans without a guarantee
of feasibility. A geometric planner has to be used in order
to verify the feasibility of each generated task plan and
construct the corresponding motions. However, in complex
problems, symbolic planners generate a high number of
geometrically infeasible solutions before finding a feasible
one, each plan requiring a call to the geometric planner which
results in long planning time. Moreover, geometric planning
might be time consuming even in the case of feasible tasks.
Since not all grasps are feasible or lead to a feasible motion,
finding the right one might require a lot of time.

This work aims at providing the symbolic planner with
a feasibility prediction capability, which increases the prob-
ability that the generated task plans are feasible, and thus
reduces the number of calls to the geometric planner. First,
we improve upon our previous approach [30] in order to
enrich the information provided to the task planner, and
reduce the dimensionality of the action space. Indeed, instead
of predicting the feasibility of a Pick or Place action
with a single specific grasp type, we propose a multi-task

1LAAS-CNRS, Toulouse, France, {saitbouhsa, alami,
simeon}@laas.fr

(a) Access domain

(b) Sort domain

Fig. 1: A visualization of the initial and goal states of two
complex TAMP problems solved by the proposed planner,
and on which Bouhsain et al. 2023 [30] fails.

learning neural network capable of predicting the feasibility
of an action as well as the feasibility of each grasp type.
We also propose a new training strategy allowing a better
generalization to new environments. In addition, we propose
a more powerful TAMP algorithm capable of solving a wider
range of problems with higher complexity, in particular ones
with semi-specified goals. We develop a method for com-
bining probabilities of feasibility allowing the task planner
to make better use of the predictions obtained by the neural
network, and reduce the branching factor of the search. We
also introduce a new cost function that incorporates both the
action feasibility as well as the grasp feasibility predictions.
Furthermore, we leverage the latter to accelerate geometric
planning, thus reducing the time spent on finding a grasp
that leads to a feasible motion.

II. RELATED WORK

Task and motion planning combines discrete symbolic
planning and continuous geometric planning. Early works
[1]–[11] view the problem from the geometrical perspective,
by formalizing it as a multi-modal motion planning problem.

(b)

Figure 22.1. A simple TAMP problem where the task is to sort the eight movable objects
according to their color from their initial poses in (a) to any poses on the support surfaces
shown in (b) (figure from [19]).

Recall that F-TAMP depends strongly on how effective is the action-value
function 𝑄0 for focusing the search. This function is defined as the ratio
𝑟𝑠 (𝜔, 𝑠, 𝑎)/ℎ(𝜔, 𝑠, 𝑎, 𝑔), where 𝑟𝑠 (𝜔, 𝑠, 𝑎) ∈ [0, 1] is the expected success reward
of action 𝑎, and ℎ(𝜔, 𝑠, 𝑎, 𝑔) ∈ R+ is the remaining distance to the goal after 𝑎 (see
Equation 21.1). We can use classical planning heuristics on the symbolic part of a
TAMP domain to define ℎ.

We focus here on how to learn the success reward function 𝑟𝑠 (𝜔, 𝑠, 𝑎) for the
actions of a class of TAMP domains. To be concrete, let us illustrate the approach
on the class of fixed robot manipulators with parallel grippers surrounded by a set
of support places dealing with polyhedral objects in arrangement and sorting tasks,
as illustrated in Figure 22.1. A domain Σ of this class uses the take and place
actions of Example 21.9. Since the learning procedure is very much similar to that of
Section 16.1, we briefly outline here its main steps, insisting on its specifics.

Training set generation. We randomly draw a set of TAMP problems in Σ where
the goal differs from the initial state by the displacement of a single object 𝑜. In other
words, we draw a random state (𝜔, 𝑠) and a goal requiring to move some object to
some place 𝑝. We seek a two-step solution plan ⟨take, place⟩ to the problem: can
the randomly chosen object 𝑜 be picked from its initial pose, and can it be placed
afterword on the required place 𝑝?

We call a motion-manipulation planner such as ManipPlanner for the take action and
record its result as success or failure in this particular case. If the take is successful,

524 22 Learning for Movement Actions

we pursue the planning from the resulting state with a place action to ungrasp 𝑜 in
the required place 𝑝, and similarly record its success or failure result. This gives the
following training set:

D = {((𝜔, 𝑠, 𝑎), result) | on simulated problems(𝜔, 𝑠, 𝑔), result ∈ {0, 1}}

There is an infinite number of take instances for a given 𝑜, and similarly for place
instances in a given 𝑝. To ease learning, we may partition the continuous set Q𝑜

grasp
into classes of grasps. A natural partition for simple grippers and polyhedral objects is
with respect to the object faces since a grasp is along the normal to a face. For box-like
hexahedron objects, we’ll have six possible classes of take and place instances. The
precise grasping positionH𝜽,q along the normal to a face is randomly sampled by the
ManipPlanner. We may also partition the continuous sets ofQ𝑜

sta for the various places
of the domain into coarse areas. This will give a discrete set of possible instances of
place in randomly sampled poses in each area.

The training set generation would be more relevant for learning if it uses on the
most frequent motion-manipulation problems for the application at hand.

Data encoding. As usual, the input state-action tuples (𝜔, 𝑠, 𝑎) need to be appro-
priately encoded as numeric vectors to use neural net approximators. A possible
encoding for the state can rely on the geometric CAD model of the environment and
objects. A more popular alternative uses directly the visual input of the scene. This
alternative is appealing because simulators as well as real experiments can provide
directly usable input encodings. However, a 3D image of a scene from a single per-
spective, e.g., from the top, may have partial or even total occlusions. There is a need
to record the scene from several perspectives with e.g., five 3D images from the top,
front, rear, left and right. In addition, we need to designate in these images (with
image segmentation techniques) the object and goal place (or area) of interest in the
training problem at hand.

The take and place instances can be encoded as One-Hot binary vectors taking
into account the possible partitions of Q𝑜

grasp and Q𝑜
sta, but not the variables 𝜽 ′ and ℘

sampled by ManipPlanner.

Neural net training. We have to architecte a neural net to be trained on D taking
the encoded (𝜔, 𝑠, 𝑎) as input and giving as output a scalar 𝑟𝑠 (𝜔, 𝑠, 𝑎) ∈ [0, 1]
approximating the average success reward of 𝑎 in (𝜔, 𝑠). Alternatively, we may
output a vector whose components are the success rates 𝑟𝑠 (𝜔, 𝑠, 𝑎𝑖) ∈ [0, 1] for the
various classes of grasps and poses considered in the partition of Q𝑜

grasp and Q𝑜
sta.

The visual encoding of the input fits naturally with convolution neural nets. The
learner can have a CNN channel for each of the 3D scene perspectives; their output
are concatenated together with the action encoding and fed to a feedforward net for
the final regression. Loss and triggering functions have to be chosen and the hyper
parameters tuned for the domain.

22.3 Discussion and Bibliographic Notes 525

Continual online learning. Learning on prior simulated data does not necessarily
reflect the actor’s working conditions and environment (see Section 16.1.4). It is de-
sirable to focus the learning on the specific objects and environment of an application.

For that, we use prior simulation to initialize offline the learner, and rely on the
estimated success reward function 𝑟𝑠 (𝜔, 𝑠, 𝑎) to guide an F-TAMP planner for acting.
We then use a procedure similar to CORL on recorded acting results to improve the
learner towards a more precise success reward function.

Limitations. Recall that the probabilistic completeness of F-TAMP guided with the
success reward fonction 𝑟𝑠, is conditioned on 𝑟𝑠 (𝜔, 𝑠, 𝑎) > 0 whenever 𝑎 is feasible
in (𝜔, 𝑠). Now, the targets for learning 𝑟𝑠 come from the output of a probabilistically
complete sampling-based metric planner. During the training set generation, we
should make sure to get no a failure result when a solution exists. To avoid false
failures in D we call the metric planner with long time-outs. This may not be
sufficient; differences between the training environment and the runtime environment
may still lead to rule out valid actions.

Indeed, the learner resulting from the procedure outlined here is specific to a class
of similar TAMP domains. Changing even slightly the environment layout or the
robot gripper would change significantly Cfree or Q𝑜

grasp, thus the capabilities of the
take and place actions.

Learning for a TAMP domains with a mobile manipulator, as Justin Figure 20.6(a),
or DWR robots with container handling capabilities (as in Example 21.10) would
require modeling other actions and acquiring simulation data about their success
reward functions. As already discussed, RL allows generalizing across problems for
the same domain, but what is learned does not easily transfer to other domains.

Finally, this approach for learning to guide a TAMP planner might not be very
helpful in highly constrained manipulation problems (as in Figure 21.6). For that,
extensions of F-TAMP with the methods of Section 21.3.3, possibly associated with
learning sequences of motion-manipulation steps, might be more efficient.

22.3 Discussion and Bibliographic Notes

Let us first discuss skill learning then consider learning for TAMP.

Skill learning. It is mainly about motion and manipulation. The research area is rich
with numerous significant contributions, for RL in general as well as in robotics. The
general RL part has been discussed in Section 10.9. The robotics part is focused on
policy-based techniques, surveyed in [622]. A broad survey covering RL approaches,
imitation and transfer learning mostly for manipulation skills, is proposed in [646].

Most skill learning approaches have used model-based and policy-search methods.
This is because the kinematic and dynamic models are often known in skill learning
problems, with efficient methods for estimating the parameters. Moreover, policy
search allows leveraging the domain knowledge with priors on the searched policies.
Furthermore, a policy has often fewer parameters than a value functions.

526 22 Learning for Movement Actions

Note that there is a close link between skill reinforcement learning and optimal
control methods [130]. Both address the problem of finding a policy that opti-
mizes an objective function (e.g., accumulated cost or reward), and rely on similar
representations. Both have to handle partially observable states with e.g., filtering,
expectation-maximization or probabilistic inference methods [699, 751], to estimate
variable values as well as the uncertainly about these estimates.

A typical policy search technique for learning motor primitives is illustrated in
[620]. The Deep Skill Learning algorithm is due to [718]. The batch normalization
technique referred to earlier is described in [541]. These and similar approaches have
been quite successful in games such as darts and archer aiming, tennis-table playing
[891], or ball pushing, as demonstrated by the RobotCup competition winner [943].

Learning helicopter aerobatics flights, a very difficult task for human pilots, is an
early success for RL in robotics [4, 6]. The approach assumes rigid dynamic models
of the helicopter. It learns these models from the teacher’s demonstrations, with im-
provement by reinforcement learning in autonomous flight. It then learns the reference
trajectories of each aerobatic figure, starting also from the teacher’s demonstrations for
learning the reward function, as in inverse RL, to further optimize these trajectories.
The control along the learned trajectories relies on receding horizon linear quadratic
control. Experimental results demonstrated a wide range of impressive maneuvers.

Dexterous manipulation of a Rubik’s Cube illustrates a recent success with an
original approach called “automatic domain randomization” (ADR) [21]. It uses a
vision-based state estimator neural net together with a recurrent neural net for policy
reinforcement learning. Training is done on random simulations. The ADR method
appears to play an important role for transferred learning.

Akin to transfer learning, let us mention the issue of multitask learning (discussed
for general RL p. 262). Skill generalization has been addressed quite early, e.g., with
meta-parameters [621], or skill trees [636], and more recently with shared policies
[1084], or policy sketches [42]. Hierarchical policies and hierarchical RL methods
are also actively explored for acquiring more general skills [827, 1201, 1004].

Learning for TAMP. Learning to improve the efficiency of TAMP planners starts
naturally with the dominant run-time part in TAMP, that is the motion and manip-
ulation part. Since this part rely on sampling in a continuous space, a natural idea,
pursued by several authors, is to learn how to drive the sampling in beneficial areas
of the Cfree,Q𝑜

grasp and Q𝑜
sta spaces. Of notable interest is the approach of [533] which

learns, from demonstrations of movements, a nonuniform sampling distribution us-
ing variational autoencoders.1 The learned distribution is used to bias the sampling
performed by the planner.

Most contributions on learning for TAMP focus on synthesizing feasibility heuris-
tics of movements and grasps from prior planning. Approaches using neural nets
with visual sensing as part of their input are for example [310, 1194, 1202, 19]. The
latter is the basis of the description given in previous section; its gives performance

1This is a particular class of NN where an encoder net maps the input vector to a latent space
corresponding to the parameters of a variational distribution, a decoder net maps the latent space to
a vector output that follows the same distribution as the input.

22.4 Exercises 527

improvement results with a forward search TAMP planner. It has been extended to
multi-robot TAMP problems and objects with various shapes [20].

The approach of [1166] trains an SVM supervised classifier discriminating feasible
from unfeasible moves. Training is performed in the metric feature space on simple
environments with just two objects, generalized later. The approach uses an incremen-
tal constraint-based TAMP planner [272], which can go beyond the recommandation
of the trained classier to guarantee probabilistic completeness.

The contribution of [230] considers TAMP as metric refinements of symbolic
skeleton plans. It tackles the metric refinement stage with reinforcement learning on
an MDP whose nodes are skeleton plans and whose edges are selections (by sampling)
of metric refinements. A reward is the fraction of the steps in the skeleton plan that have
satisfied metric precondition. The method relies on inverse reinforcement learning
(see Section 10.7.3) from expert demonstrations to guide the learning.

Akin to inverse RL, the approach of [1062] relies on learning from demonstration
to synthesize a manipulation graph annotated with multimodal sensing data for a
robust manipulation. It is able to tackle assembly tasks with grasping, unscrewing,
and insertion.

Note that the Rubik’s Cube approach of [21] referred to earlier, can be considered
as going beyond learning a sensory-motor skill, since it requires manipulation as well
as solving the cube. The ADR method should possibly be generalizable to TAMP. But
since learning is end-to-end (without a planner) it is unclear how flexible the result
can be for a diversity of problems in the same TAMP domain.

22.4 Exercises

22.1. Consider a simple pick-and-place action. Analyse under what conditions a skill
learned by Deep Skill Learning would be sufficient for performing this action and
when a manipulation algorithm such as ManipPlanner would be needed. How may
the two approaches be combined.

22.2. The learning approach for TAMP problems presented in Section 22.2 provides
control knowledge for a forward search TAMP planner such as F-TAMP. How this
knowledge could be of use to the HTN-like TAMP planner of Section 21.3.4

22.3. The “Informed metric backtracking” algorithm for TAMP of Section 21.3.3
relies on the notion of culprit actions violating different types of constraints. Devise
a learning method, akin to the method described in , to synthesize control knowledge
for an “Informed metric backtracking” TAMP planner.

Part VIII

Other Topics and Perspectives

The end of a melody is not its goal: but
nonetheless, had the melody not reached its
end it would not have reached its goal either.

Friedrich Nietzsche, The Wanderer
and His Shadow, 1880

Previous parts of the book covered acting, planning and learning for different types
of models. There are several deliberation functions needed by an autonomous actor
that do not naturally fit into these seven parts, but should not be totally ignored.

Moreover, AI research is going through fast-moving and highly connected trans-
formations. In the past, techniques for natural language translation were not very
relevant for acting and planning systems. With the recent advent of Large Language
Models and their various multimodal extensions into Foundation Models, this is no
longer the case.

This last part of the book briefly surveys these topics. Chapter 23 introduces
Large Language Models and their potential benefit in acting, planning and learning.
Chapter 24 discusses the perceiving, monitoring and goal reasoning functions for
deliberation.

528

Free pre-publication, for personal use only. To be published by Cambridge University Press.

23 Large Language Models for Acting and
Planning

Methods for addressing Natural Language Processing tasks (NLP), such as text com-
prehension, translation, summary, or dialogue, have always been of much concern
to AI. However, they were usually decoupled from those of acting and planning.1
NLP methods, per se, are not within the scope of this book. However, the recent
developments of Large Language Models (LLMs) and their extension to multimodal
Vision-Language Models, Action-Language Models and Foundation Models have in-
troduced a radical change.2 This change is reflected in most of the AI journals and
publication venues. For example, the “AI Index” [758], a comprehensive report on
the state of the field, devotes its 2024 edition for the frontier of AI research almost
solely to these systems.

An LLM is basically a very large neural net trained as a statistical predictor of
the likely continuation of a sequence of words. LLMs have excellent competencies
over a broad set of NLP tasks. Additionally, LLMs demonstrate the emergence of
deliberation capabilities for reasoning, common sense, problem solving, code writing,
or planning. These abilities have not been designed for in LLMs. They are unexpected
and remain to a large extend poorly explained. Although error-prone and imperfect,
they open up opportunities for automated deliberation that draw tremendous research

Section 23.1 introduces the reader to LLMs. Section 23.2 discusses LLMs features
with respect to planning, acting and learning. This brief chapter aims to clarify the
fundamental issues; the corresponding techniques are changing very quickly.

23.1 Principles of LLMs

Consider the following prediction problem:

given a context expressed as a sequence of observed variables ⟨𝑥1, . . . , 𝑥𝑛−1⟩,
predict a likely next term 𝑥𝑛.

When the 𝑥𝑖 are the states of a well modeled system, one may address this problem
with the model of the system under consideration. This has been illustrated earlier,
e.g., at the movement and control level with Kalmann filtering methods, or at the
abstract causal state transition level with Markov models. Weather forecast and
numerous state prediction processes illustrate this generic problem.

1Except for issues such as dialogue planning.
2The word ’model’ is a misnomer for these systems. In science, a model of some reality is expected
to be intelligible, explanatory, justificatory, and predictive. Here, only the latter is addressed in a
statistical sense. We keep however the acronym LLM and use it also for the multimodal cases.

Free pre-publication, for personal use only. To be published by Cambridge University Press.

529

530 23 Large Language Models for Acting and Planning

When no principled model is available but the domain is not too erratic, one resorts
to statistical prediction. This fallback option produces a “shallow model”, which
makes predictions based solely on statistical reasoning, not on explicit causal relations.
As a consequence, such a model makes predictions about a system’s behavior without
attempting to explain how the system operates. Statistical prediction assumes that the
domain is regular: this is the induction assumption stating that the statistical relations
observed in the training data hold also for unobserved cases. It also requires that
sufficient training data can be acquired.

A simple and familiar example of statistical prediction in NLP is the typing help one
finds in many devices. In NLP, training data is plentiful.3 Moreover, natural language
is regular, as measured by its low entropy. This is known since the introduction of
information entropy by Shannon: “Anyone speaking a language possesses, implicitly,
an enormous knowledge of the statistics of the language (... that enables) to complete
an unfinished phrase in conversation” [1001]. Shannon proposed the notion of “N-
gram”, which is the above prediction problem applied to sequences of letters or words
with the estimation of the conditional probabilities Pr[𝑥𝑛 | 𝑥1, . . . , 𝑥𝑛−1], 𝑥𝑖 being the
𝑖’th letter or word in the sequence.

N-grams do not inform on the semantics of words. NLP tasks require to assess
which words are semantically close. Two words 𝑎 and 𝑏 are likely to be semantically
close if they are used in similar contexts, that is, for various sequences ⟨𝑥1, . . . , 𝑥𝑛−1⟩
we have Pr[𝑎 | 𝑥1, . . . , 𝑥𝑛−1] ≃ Pr[𝑏 | 𝑥1, . . . , 𝑥𝑛−1]. This approach faces a com-
plexity issue: the conditional probability table Pr[𝑥𝑛 | 𝑥1, . . . , 𝑥𝑛−1] has size 𝑂 (𝛿𝑛)
where 𝛿 is the size of the dictionary. Typically 𝛿 is about 105 words, and a context
⟨𝑥1, . . . , 𝑥𝑛−1⟩ may contain several hundreds words.

This complexity issue has been addressed with the “neural probabilistic language
model” [111], the basis of word embeddings. Embeddings are mappings from the
set of words or sentences to a metric space, R𝑑 , in which semantically similar words
have proximate embeddings, i.e., they are mapped to points close in R𝑑 for a metric
function or distance. Word embeddings can be computed with neural nets and used
in NLP tasks by other nets. Simple vector calculations are used in NLP operations.

Example 23.1. Let [®word] ∈ R𝑚 be an embedding of word. The word embedding
may enable arithmetic operations such as:

relationships: [®France] + [®capital] ≃ [®Paris],
analogies: [®Berlin] − [®Germany] + [®Japan] ≃ [®Tokyo],

[®copper] − [®Cu] + [®gold] ≃ [®Au],
proximity: [®speak] · [®converse] < [®converse] · [®gossip] .

Here “·” is the dot product, which is null when the two vectors are orthogonal and
maximal when they are aligned. □

For a while, Recurrent Neural Nets (RNNs) have been used for NLP. In RNNs
outputs from hidden layers are fed back as inputs. RNNs provide a limited handling

3Web-accessible documents are estimated to more than 1012 words.

23.1 Principles of LLMs 531

of sequences of words. They cannot deal with long sentences, because significant links
in sentences may not be between consecutive words. Memory-augmented variants of
RNNs, such as Long Short-Term Memory (LSTM) nets, have been used in NLP and
in other tasks to handle dependences between distant terms in sequences. However,
NLP faces numerous challenging ambiguities such as co-reference resolution and
matching of pronouns. These require a good grasp of the semantics and pragmatics
of the language, possibly over a long context.

Example 23.2. Consider these two sentences: (i) The dog did not cross the stream,
it was too deep; and (ii) The dog did not cross the stream, it was tired. The pronoun
“it” refers to the stream in (i) and the dog in (ii).

The following illustrates an additional language pragmatic ambiguity: (i) Sara
could not board the boat, she was late, and (ii) Sara could not board the boat, she was
over crowded. Sailors (and old english) refer to boats with feminine pronouns. □

NLP ambiguities have been successfully addressed with “attention” mechanisms
that provide ways to relate words at different positions in a sequence. These mecha-
nisms often use an encoder-decoder architecture. An encoder maps an input sequence
of terms ⟨𝑥1, ..., 𝑥𝑛⟩ to another sequence ⟨𝑧1, ..., 𝑧𝑛⟩, from which the decoder gen-
erates an output sequence ⟨𝑦1, ..., 𝑦𝑚⟩. Each step takes as additional input the term
generated in the previous step (this is called an “auto-regressive” model). The in-
put/output terms are embedding of words, or more precisely of fractions of words
called tokens.

Significant progress has been obtained with the multi-head attention transformer
architecture [1119]. Transformers consist of alternating attention nets and feedforward
neural nets. The former uses efficient parallelized processing to assess the relative
weights between all pairs of tokens in a context. Multi-heads allow for disambiguation
of the meaning and relations between words: the learned relative weights allow
relating “it” to “stream” in-sentence (i), and to “dog” in sentence (ii).

LLMs are pre-trained by self-supervised learning on numerous documents from
the internet. Self-supervised means that the system learns to predict the next word in
the documents it reads. In addition, many LLMs offer a chat or a dialogue interface.
Further training steps are used to avoid possibly undesirable dialogues and align LLMs
with human preferences. These steps are, for example, Reinforcement Learning with
Human Feedback (RLHF) to automatically provide a kind of reward shaping [861]
(see also Section 10.7.1), or with rule-based reward models [427]. Furthermore,
an LLM can be tuned to specific applications and/or adapted within a dialogue to a
particular task through a few prompts (called in-context learning).

LLMs are not endowed with formal knowledge models. They do not know about
grammar or logic. They have no implemented algorithmic or reasoning capability.
They cannot do search. Except for the learned parameters, they have no memory to
store data structures. Their sole computational mechanisms are back propagation for
training and forward propagation for predicting, according to the net topology.

Transformers, differently from RNNs and LSTMs, have no recurrent units. On
the one hand, this is an advantage: they require (in principle) less training time than
RNNs and LSTMs. On the other hand, they are limited in expressiveness with respect

532 23 Large Language Models for Acting and Planning

to RNNs and LSTMs, as demonstrated in [460]: they cannot implement recursion.
LLMs face several theoretical limitations. For example, they cannot correctly

handle non-regular context free languages, recursive languages or regular periodic
languages, which are much simpler than the natural language [460]. It has been
shown that training with a finite number of textual contexts, which provide clues
about the underlying semantics of an assertion, cannot provide an “understanding”
of a language in the sense of a formal denotation semantics [785]. However, LLMs
are able to capture some important aspects of meaning, such as “conceptual roles”
according to conceptual role theory [785].

These theoretical limitations are in a way similar to worst case complexity results,
which do not preclude practical performances.4 LLMs in practice have significantly
improved the state of the art and have demonstrated proficiency in most NLP tasks.
Although an LLM can’t handle non-regular languages in general, a large enough LLM
can handle a large but finite subset of a language, since a finite subset can always be
expressed as a regular language. The larger the subset one wants an LLM to handle,
the larger the LLM must be, in order to learn all of the non-regular special cases.

An LLM’s chat interface leads one naturally to query a model like an oracle capable
of answering anything, including for issues outside of its scope. LLMs are criticized
as being non-factual. They are said to “hallucinate” or “confabulate”. These terms
are rather misleading with respect to the fundamentals of statistical induction: for a
pair (𝑥𝑖 , 𝑦𝑖) in a training data base, a neural net function may not give 𝑓 (𝑥𝑖) = 𝑦𝑖
since 𝑓 is a statistical approximation function, not a database query.

LLMs have demonstrated limited but surprising abilities over a broad set of cogni-
tive tasks for which they have not been designed. These tasks range from arithmetic,
programming, or logic reasoning, to common sense and planning. Arithmetic for
example is totally unexpected from a statistical approximation model: one does not
learn arithmetic from the statistic of computations, but from the synthesis of specific
algorithms. Have LLMs been able to synthesize such algorithms in some way?

Empirical observations show a clear scale effect: below some size of the network
(about 1010 parameters) these abilities are nonexistent, while above this threshold
they grow significantly with the network size [1160]. Several conjectures are being
investigated about an LLM capability to synthesize, in some form, adapted procedures
to deal with a task. For example, an LLM trained on a database of Othelo board games
(a straight LLM sequence generator, without search nor RL as in, e.g., Alpha-Go)
is able to generate legal move and play at a modest level. Probes of the learned
parameters (a technique inspired from neurology) seem to reveal the board topology
and the game transition function in the trained network [707]. More investigations
about LLMs fundamental abilities are needed to characterize these computational
models.

On the practical side, significant advances are being made and already address
some of the initial limitations, for example:

• Limited context: a system like Anthropic Claude3 claims to handle a context
of up to 106 tokens, i.e., a full book [46].

4Planners perform reasonably well on PS-Space hard problems.

23.2 LLMs in Acting, Planning and Learning 533

• Interaction with specialized solvers and tools: for example, ChatGPT has been
interfaced with mathematical solver Wolfram|Alpha. 5

• Dynamic adaptation and incremental learning: this is being addressed with e.g.,
Instruction Tuning, In-Context Learning, Chain-of-Thought, Tree-of-Thought
and other methods [1007, 561].

• Justification and reference to source material: the Retrieval Augmented Gener-
ation (RAG-LLM) approach opens promising capabilities [223, 379, 555].

LLMs face two bottlenecks for their further development:

• the availability of larger training bases, and
• the energy cost and entailed climate footprint for their training and use.

On the former, most available open source documents have been used for pre-training
current LLMs.6 Larger models would require larger training bases. The energy
and footprint bottleneck relates to the computational complexity of an LLM, which
depends on many features of their architecture, such as the number of attention layers
(about 100) and total number of parameters (about 1011 to 1012). Basically the
complexity of a prediction step in an LLM is in 𝑂 (𝑛2𝑑), where 𝑛 is the length of
the context (about 104 to 106 tokens) and 𝑑 the dimension of the embedding space
(about 105 in recent implementations) [1119]. Pre-training is in 𝑂 (𝑚𝑛2𝑑) where 𝑚
is the size of the training base. Empirically, 𝑚 is of the same order as the number of
network parameters (i.e., about 1011 to 1012 tokens).

Despite active research to reduce this complexity (e.g., to 𝑂 (𝑛𝑑) per prediction
step without too much loss in performance [857]), the LLM technique remains very
expensive. It has been estimated that GPT3 training required 1.3 GWh [874].7 Several
empirical models have confirmed these estimates (e.g., thousands Joules per step for
the LlaMa system which has “only” 65G parameters [975]). Various optimizations
such as energy capping and scheduling bring a few percent savings [775], but do
not change the fundamentals. With current approaches, increased performances are
expected to cost significantly more.8 More frugal approaches are definitely needed;
they start to be the topic of active research, e.g., [315, 557].

Beyond this brief overview of a fast moving area, the reader is invited see the works
surveyed in [1229, 834], and [527] for a focus on reasoning in LLMs. The briefly
mentioned Multimodal Foundation Models, which are trained with and handle text,
images, speech and heterogeneous data, are surveyed in [151, 704].

23.2 LLMs in Acting, Planning and Learning

In this section we discuss a few approaches leveraging LLMs capabilities for planning,
acting, and reinforcement learning.

5See https://writings.stephenwolfram.com/
6GPT3 has been trained on about 1011 words, out of the 1012 to 1014 estimated on the web.
7This is about the average monthly needs of a town of over 7000 persons in France.
8It has been estimated that a 10-fold improvement in model performance of deep learning comes at a
cost of a 10,000-fold increase in computation and energy [1094].

https://writings.stephenwolfram.com/

534 23 Large Language Models for Acting and Planning

23.2.1 LLMs and planning

Several studies (e.g., [1111]) have used LLMs on classical planning benchmarks, such
as blocks world, and reported that they do not compete with a good planner. However,
these are not very informative and fair comparisons. A planner is highly specialized;
it is given a well formalized problem specification and the corresponding knowledge.
An LLM is given an informal, partial problem specification that requires significant
common-sense knowledge. It is not obvious how an LLM can give a reasonable
solution to a planning problem, as in the following example.

Example 23.3. In [187], an early version of GPT4 was prompted with the following
problem: “Here we have a book, 9 eggs, a laptop, a bottle and a nail. Please tell
me how to stack them onto each other in a stable manner.” The model responds with
a reasonable plan, including numerous details about how to perform the plan, with
common-sense recommendations about stability and fragility issues. □

No classical planner can handle an informal, sparse specification, as in Exam-
ple 23.3. The formal specification of this example would require significant efforts.
Planners are narrow; they cannot do text translation, summary, Q/A, or prove (in
verse) that the set of prime numbers is infinite [187]. A comparison of LLMs vs
planners and an assessment of how LLMs can be used in planning should take into
account their features, strengths and weaknesses.

The main features of LLMs vs planners can be sketched as follow (see Figure 23.1):

• Broad versus narrow knowledge. Planners work on specific domains, while
LLMs are pre-trained with a huge set of bulk data (text, or even other heteroge-
neous data if they are multi-modal foundation models) covering different areas,
e.g., medicine, religion, history, humanities, science, law. They show impres-
sive capabilities in all these areas. Plan generation and learning techniques
can be general but, even in the case of generalized planning [631, 1052], they
cannot deal with so broad spectrum of areas. No surprise if LLMs have been
applied to generalized planning [1021].

• Self-supervised training versus Human specification of knowledge. LLMs learn
mostly from unsorted available documents automatically crawled over the web.
Planners require careful and formal specification of a domain knowledge.

• Shallow versus deep knowledge. Planning performs extended search with action
specifications that describe abstract causal state transitions. LLMs are simple
statistical predictors.

• Opaque versus explainable process. Statistical induction is based on a regularity
assumption. The corresponding approximation has no causal support. Hence
LLMs cannot explain why some data/event/situation entail other data/event/si-
tuation. Planners build and can easily exhibit causal chains.

• Error prone versus correct/provable. LLMs are large approximation functions.
They can be incorrect in all cases where the statistical induction leads to mis-
taken generalization. Planning is provably correct with respect to the given
model of actions and states. This does not implies correctness with respect the

23.2 LLMs in Acting, Planning and Learning 535

real world, since the model can be an incorrect or incomplete formal representa-
tion of the world. However, models can be verified up to some assumptions, and
correctness with respect a model is a requirement for safety critical applications.

• Scalable versus not scalable. LLMs can deal with intuitive domain specifica-
tions that would require huge formal representations in planning. An LLM pre-
diction step is of polynomial complexity in the size of its input, while planning
is PSPACE-hard. Scalability has also to take into account that LLM training is
mostly self-supervised, while planning domain specification is manual.

• Generalizable versus not generalizable. Pre-trained LLMs can be fine tuned
to different domains. Most of the plan generation techniques are domain
independent; a model can hardly be transferred to different domains.

• Informal versus formal input. LLMs have beed designed to interact in natural
language. The input to a planner is formal.

Note that these comparisons are not specific to LLMs vs Planners. Most of them also
hold for LLMs vs solvers and formal reasoning systems.

Figure 23.1. Main features of LLMs vs Planners.
LLMs Planners

Broad, huge repertoire of knowledge Narrow knowledge
Self-supervised training Human specification of knowledge
Shallow reasoning Deep reasoning
Opaque process Explainable
Error prone Correct, provable
Generalizable to many domains Not easily generalizable
Scalable Barely scalable
Informal, natural language I/O Formal I/O

In summary, planners work on specific domains, while LLMs are pre-trained with
all sort of documents (texts and other heterogeneous data if they are multi-modal
foundation models) covering many areas. Planning, even generalized planning, are
not as general as LLMs. Clearly, a desirable perspective would be to mix the good
properties of both approaches.

To leverage the capabilities and desirable features of LLMs in planning, several
strategies are being explored, among which the following:

• Adapt a pre-trained LLM to planning with additional specific training, in-
context learning and prompting [202, 864, 865, 866]. For example, the “chain-
of-thought” prompting uses a few instructions or steps to decompose complex
tasks in order to progressively guide the LLM [1151]. The “tree-of-thought”
generalizes this to a branching interaction [1203].

• Train specifically LLMs as planners [202] or generalized planners [1021].
• Delegate a planning problem: formalize it, identify its type and call an appro-

priate planner to solve it [726, 267].

536 23 Large Language Models for Acting and Planning

• Interface a planner with an LLM in human-machine interactions, to model
human mental states and grasp human reasoning [1134].

• Acquire with LLMs planning domain models and control knowledge:

– Translate with LLMs informal NL descriptions to formal planning domain
specifications [226, 451, 1189]. Different LLMs can generate correct
planning domain from NL descriptions [860].

– Sketch with LLMs skeleton plans to be used as heuristics by a specialized
planner [179].

These strategies are not mutually exclusive. They may be mixed in various ways,
in particular with the approaches discussed next in LLMs for acting and learning.
There are other strategies that seek to endow LLMs with short-term and long-term
memories to improve deliberation capabilities [1227]. LLMs can also be applied to
specific planning problems such as navigation [932], multi-agent planning, interactive
planning, heuristics optimization [866], and learning general policies [962].

Note that the “Delegate” strategy corresponds to a general objective to interface an
LLM with a library of specific tools, e.g., for computation, search or planning, and
train it to use this library appropriately [868, 988, 709]. Here, an LLM extends its
broad informal knowledge with models of specialized computational means, and its
shallow common-sense reasoning with the functionalities of its tools. Since LLMs
are used successfully for code generation, e.g., [187], this may possibly go up to
acquiring some generic computational model and a capability of generating programs
for tasks not covered by an available library.

These research perspectives for planning with LLMs are promising but they remain
today preliminary. Most contributions are empirically validated on limited domains.
Critical issues such as correctness are usually not addressed, or quite partially with a
few tests. Clearly, more investigation is needed for LLMs in planning.

23.2.2 LLMs and acting

Recall that acting involves getting feedback during an activity and adapting actions
to this feedback. The purpose here is to leverage LLMs in refining actions into
executable commands with feedback from an execution platform or a simulator.

Some approaches use LLMs only for the synthesis of a high level plan (using
the strategies of the previous section) and rely on a specialized low-level planner to
effectively refine and execute actions [1222]. Other approaches plan with LLMs and
keep refining generated plans until the primitive executable level [530].

Many contributions on LLMs for acting are concerned with robotics, e.g.,

• for the synthesis of programs controlling situated robot tasks [1029, 712];
• for grasping and manipulation problems [1076];
• for task and motion problems [720];
• for the synthesis of a visual servoing controller from the informal description

of a computer vision library [1127];
• for training an LLM to generate behavior trees for a hierarchy of tasks from a

user description [200].

23.2 LLMs in Acting, Planning and Learning 537

Other contributions to LLMs in autonomous agents are surveyed in [1150].
The generic “embodied LLMs” (or foundation models) approaches seek to incorpo-

rate real-world continuous sensor modalities into language models and to link words
to percepts. An illustration is the PaLM-e system which injects images and multi-
modal information into the embedding space of a pre-trained LLM [311]. It has been
tested of a few robotics manipulation tasks demonstrating an interesting task-transfer
capability.

Note that LLMs and their multi-modal versions are potentially very adequate for
acting with human feedback and for human-robot interactions [1221]. They offer
essential functions well beyond NL and oral interactions, such as intent estimation
and theory of mind reasoning [1147].

23.2.3 LLMs and reinforcement learning

Many investigations use RL in the LLM training process to improve their performances
in NLP tasks, and make the generated texts safer and aligned with human preferences.
Among these studies, for example, RL is used to extends the auto-supervised pre-
training phase with human feedback [859], or with an automated and more scalable
procedure [690]; alternatively, RL can be used as a dataset generator for fine-tuning
an LLM training [450].

More relevant to the focus of this book are approaches in the opposite direction that
use LLMs for RL. These approaches, sometime referred to as language-conditioned
RL, seek to leverage LLM capabilities to help an actor efficiently learn optimized
behaviors across numerous tasks. Most of the issues about aided RL (covered in
Section 10.7) are possibly relevant for an LLM support. Recall that the reward
function is critical for RL: it expresses the task and guides learning. But of simple
cases, an informative reward function is not obviously entailed from the task. Human
guidance is needed, for which the common sense and broad knowledge of LLMs can
be of help.

Reward shaping from the specification in natural language of a user’s preferences is
a first natural approach, investigated in, e.g., [201, 442]. The synthesis of the reward
feedback with an LLM has also been explored [663, 744, 1188]. The LLM is informed
through user’s prompts about the environment, the task at hand, and possibly about
her assessments of a few observed behaviors [1046]. One step further seeks to ease
RL task transfer with the LLM synthesis of abstract actions, intermediate auxiliary
tasks, and exploration guidance [313, 924]. Most of these approaches have been tested
in robotics tasks, often in simulation, or in game playing, e.g., Mindcraft [1149].

Another class of approaches uses LLMs at the policy level, for the synthesis of
well informed priors [523], the generation of sequences of actions [224, 273], or
even as the policy to be updated [205]. Other authors use LLMs to plan a high level
behavior combining skills learned with RL [66, 17], or use RL to improve the planning
capabilities of an LLM [1008]. Other approaches include:

• leveraging LLMs for hierarchical RL [554], and learning hierarchical policies
from unannotated demonstrations using a known library of skills [1005];

538 23 Large Language Models for Acting and Planning

• imitation learning to train an LLM from demonstration generated by a task and
motion planner in vision-based manipulation tasks [270];

• reward shaping for RL in sparse reward domains in human-AI collaborative
applications [795].

Additional approaches are discussed in the survey and taxonomy of LLM versus RL
methods of [918].

Finally, recall the proposed use of RL for learning refinement methods in a partial
programming paradigm (Section 16.2). Since the body of a refinement method can
be any program, and LLMs can be used as programming assistants when adequately
pre-trained [1197], the synthesis of partial program by LLMs, further refined with
RL and additional guidance, can open interesting perspectives.

24 Perceiving, Monitoring and Goal
Reasoning

Acting, planning and learning are critical cognitive functions for an autonomous actor.
Other functions, such as perceiving, monitoring and goal reasoning, are also needed
and can be essential in many applications.

This chapter briefly surveys a few such functions and their links to acting, planning
and learning.1 Section 24.1 discusses perceiving and information gathering: how
to model and control perception actions in order to recognize the state of the world
and detect objects, events, and activities relevant to the actor while performing its
tasks. Section 24.2 is about monitoring, that is, detecting and interpreting discrep-
ancies between predictions and observations, anticipating what needs be monitored,
controlling monitoring actions. Goal reasoning in Section 24.3 is about assessing the
relevance of current goals, from observed evolutions, failures, and opportunities for
achieving a higher level assigned mission.

24.1 Perceiving and Information Gathering

Acting requires knowing one’s environment, how is it structured, what it contains,
and where relevant objects might be. An autonomous actor cannot be too dependent
on predefined knowledge given a priori, which is generally costly and brittle. More-
over, in an open environment an actor can only have a partial knowledge about its
environment. It has to perceive what is relevant for its activity and to reason about its
perception while performing its tasks. This leads to numerous problems about:

• Reasoning on sensors: how and where to best use a sensor, or to query relevant
information, how to handle sensor changes and perform active perception.

• Reasoning on signals: interpretation, data association, symbol grounding and
anchoring.

These problems have to be addressed in the context of wider issues such as:

• Reliability: assess how reliable are perception and information gathering ac-
tions. What verification and confirmation steps are needed to confirm that a
sensed value of a state variable is correct? How to assess the distribution of
values if uncertainty is explicitly modeled?

• Observability: how to acquire information about non-observable state variables
from the observable ones? How to balance costly observations with approxi-
mate estimates?

1Additional contributions, more specific to robotics, are surveyed in [539].

Free pre-publication, for personal use only. To be published by Cambridge University Press.

539

540 24 Perceiving, Monitoring and Goal Reasoning

• Persistence: for how long a state variable may keep its previous value when no
new observations contradict it?

In the following, we focus on perception problems in deliberation. The signal
processing issues, although important for perception, are not within our scope. We
briefly survey a few approaches to (i) planning and acting with information gathering,
(ii) planning sensing actions, (iii) perceiving for semantic mapping, (iv) anchoring
and signal-to-symbol matching problems, and (v) recognizing plans and situations.

24.1.1 Planning and Acting with Information Gathering

The closed-world assumption (assuming that facts not explicitly stated are false)2 is
too restrictive. A deliberative actor lives in an open world. It has to handle partially
specified instances of a domain and extend its knowledge when needed. In particular
it needs the following capabilities:

• Plan with respect to objects and properties that are unknown when planning
starts but that can be discovered at acting time through planned information-
gathering actions. New facts resulting from these actions are used to further
refine the rest of the plan.

• Query databases for facts the actor needs specifically to address a given planning
problem and query knowledge bases for additional models of its environment
that are relevant to the task at hand.

Planning with information gathering is studied by several authors using conditional
planning approaches, as in the PKS system [894]. The continual planning approach
of MAPL postpones part of the planning process [177]. It introduces information-
gathering actions which will later allow development of the missing parts of the
plan. The planner uses assertions that abstract actions to be refined after information-
gathering. The approach is adapted to dynamic environments where planning for
subgoals, that depend on yet unknown states, can be delayed until the required infor-
mation is available through properly planned information gathering actions.

Acquiring additional data and models at planning time is useful in semantic Web
[501]. For example, the ObjectEval system acquires from the Web statistics about
possible locations of objects of different classes [973]. It uses them in a utility
function for finding and delivering objects in an office environment. Other approaches
use Description Logic (DL), a fragment of first-order logic, to handle statements
about objects, properties, relations, and their instances with inference algorithms for
querying large stores of data and models over the Web [65]. Most approaches rely on
OWL, the Web Ontology Language, to partially handle an open-world representation.

24.1.2 Planning to Perceive

A perception action may not be always executable. Sensor models are needed to
decide where to put a sensor, how to use it, how and when to best acquire the needed
information. Planning to perceive is about integrating the selection of viewpoints

2A less restrictive assumption takes facts not entailed from explicit statements to be false.

24.1 Perceiving and Information Gathering 541

and sensor modalities to a plan. It relates to the sensor placement problem, which is
usually addressed as a search for selecting the next best viewpoint in tasks such as
modeling an environment or recognizing an object, e.g., [683].

The integrated sensor placement and task planning problem is sometimes addressed
with POMDPs, for example in [898, 916]. The HiPPo system [1048] uses hierarchical
POMDP for sensor placement in the recognition of objects on a table, as typically
required in a manipulation task.

An alternative and more scalable approach for synthesizing an observation plan
within a navigation task seeks to detect and map objects of interest while reaching a
destination [1122]. The approach uses a Bayesian method to correlate measurements
from subsequent observations and improve object detection; detours are weighed
against motion cost to produce robust observation plans using a receding horizon
sampling scheme. The approach was tested in an indoor environment for recognizing
doors and windows.

24.1.3 Perceiving for Semantic Mapping

An actor needs to know its environment, i.e., to have a map with the informations
needed for its tasks. Section 20.3 already addressed environment mapping issues for
navigation tasks, but mostly at the metric level. Here we briefly review exploration
and mapping at the semantic level. We would like an actor to be able to find out where
relevant objects of interest are, how do they look, how to retrieve them, what are the
categories of various areas in the environment and their properties, e.g., a kitchen
(where cooking appliances are), a living room, a study room, etc.

Computer vision and image recognition have made significant progress. The state
of the art with supervised learning methods allows training a vision system for feature
learning, segmentation and robust recognition in complex images of human labelled
objects and places, e.g., [922, 524], or [950] in 3D scenes. But this supervised
training remains costly and quite specific. Few-shot methods seek to recognize
sparsely seen objects with the help predefined knowledge, e.g., [525]. The reliance
on domain specific knowledge can be an advantage for untypical and relatively stable
environments, but in general this dependance is a bottleneck.

Vision-Language Models (VLMs) open a promising class of approaches for seman-
tic mapping. VLMs are an instance of the Foundation Models mentioned earlier. They
extend LLMs to multi-modal data [414, 1223], but they are more concerned with im-
age understanding than image generation. An illustration of VLMs is the Contrastive
Language-Image Pre-Training(CLIP) method [927]. Since they are trained on large
repertoires of image-text pairs, VLMs allow addressing semantic object labelling and
environment mapping with an open vocabulary [413, 703, 1195], including for 3D
scenes [884].

Promising hybrid approaches combine VLM techniques with spatial reasoning,
using a specific solver, to ground the symbols with perception data [1063]. They
address part of the anchoring problem, discussed next.

542 24 Perceiving, Monitoring and Goal Reasoning

24.1.4 Anchoring

Acting and perceiving take place at the sensory-motor level but require reasoning and
planning at an abstract symbolic level. Anchoring is about creating and maintaining
over time a mapping between the two levels, i.e., between symbols and sensor data
that refer to the same physical object. It can be seen as a particular case of the symbol
grounding problem, which deals with broad categories, for example, any “door” as
opposed to a specific one. It relies on the recognition techniques just discussed.

Anchoring is achieved by establishing and keeping a link, called an anchor, between
the perceptual system and the symbol system, together with a signature that estimates
some of the attributes of the object it refers to [256]. The model of an anchor relates
relations and attributes to perceptual features and their values.

Establishing an anchor is a pattern recognition problem. The challenge is to handle
the sensing uncertainty and the models ambiguity. Both can be dealt with, for example,
by maintaining multiple hypotheses. This is illustrated in [586], which handles
ambiguous anchors with a conditional planner to explore a space of belief states
representing the incomplete and uncertain knowledge due to partial matching between
symbolic properties and observed perceptual features. The approach distinguishes
between definite symbolic descriptions, which are matched with a single object, and
indefinite descriptions. Actions have causal effects that change object properties.
Observations can change the partition of a belief state into several new hypotheses.

A dynamic probabilistic anchoring method has been proposed in [1205]. It relies on
a multiple hypothesis tracker with a solver reasoning on knowledge given a priori about
the domain and the context. The solver seeks to reduce the anchoring uncertainty. The
approach has been integrated in a robot platform using a color camera. Experiments
demonstrate a capability of resolving anchoring ambiguities in difficult cases, e.g.,
to distinguish identical instances of two objects from the scene context and relations
such as contains or is-inside with respect to other objects.

Not every perceived feature needs to be anchored. The actor has to choose which
anchors to establish, and when and how. Anchors are needed for all objects relevant to
the actor’s activity. Often, these objects cannot be defined extensionally (by specifying
a list of objects). They must be defined by their properties in a context-dependent way.
Object recognition is required not only to label specifically queried objects, but also
to discover and anchor objects relevant to the task. Here VLMs can bring significant
advantages for open environments and vocabularies.

Tracking anchors is another issue, i.e., taking into account object properties that
persist across time or evolve in a predictable way. Predictions are needed to check
that new observations are consistent with the anchor and that the updated anchor
still satisfies the object’s properties. Finally reacquiring an anchor when an object is
re-observed after some time is a mixture of finding and tracking. If the object moves,
it can be quite complex to account consistently for its behavior.

The DyKnow system [488] illustrates several of the preceding capabilities. It offers
a comprehensive perception reasoning architecture integrating different sources of
information, with hybrid symbolic and numeric data at different levels of abstraction,
with bottom-up and top-down processing, managing uncertainty, and reasoning on

24.1 Perceiving and Information Gathering 543

explicit models of its content. It has been integrated with a planning, acting, and
monitoring system [301] and demonstrated for the control of UAV rescue and traffic
surveillance missions. In the latter, a typical anchoring task consists of recognizing
a particular vehicle, tracking its motion despite occlusions, and re-establishing the
anchor when the vehicle reappears, e.g., after traversing in a tunnel.

Finally, we note that anchoring problems can be addressed with the embodied
LLMs approaches mentioned in previous chapter. The PaLM-e system [311], which
integrate real-world continuous sensor modalities into language models, is able to
establish anchors between words to percepts.

24.1.5 Event and Situation Recognition

The dynamics of the environment is an essential source of information, as we just
saw in the anchor tracking and re-acquiring problems. An actor needs to comprehend
what an observed sequence of changes means, what can be predicted next from
past evolutions. This is essential for interacting with other actors, to understand
their intensions and behavior, for example, in robot tutoring [50], or in surveillance
applications [518, 377].

Several contributions to action and plan recognition are surveyed in [647]. They
deal with (i) human action recognition, (ii) general activity recognition, and (iii)
plan recognition. The former two types of processing provide input to the latter.
Most surveyed approaches rely on signal processing and plan recognition techniques.
The former use filtering approaches, Markov Chains, Hidden Markov Models and
neural nets [553, 635, 1064]. They have been applied to movement tracking and
gesture recognition by [1182, 800]. Plan recognition rely on deterministic planning
approaches of [590, 933], or probabilistic approaches [395], as well as on parsing
techniques of [921].

Many plan recognition approaches assume as input a sequence of symbolic action
labels. This assumption is hard to meet in practice. Usually actions are sensed through
the observation of movements and their effects on the environment. The recognition
of actions from their effects depends strongly on the plan level. Decomposing the
problem into recognizing actions then recognizing plans from these actions is fragile.
More robust approaches have to start from the observation of changes.

Chronicle recognition techniques are relevant to this problem. Chapter 17 defines
a chronicle is a model for a collection of possible scenarios. It describes classes of
events, persistence assertions, non-occurrence assertions, and temporal constraints.
A ground instance of a chronicle can be formalized as a nondeterministic timed
automata. Beyond planning operators, chronicles can be used to describe classes of
dynamic situations and plans, and to recognize their occurrences from observations
[404, 308]. The approach monitors a stream of observed events and recognizes, on
the fly, instances of planned chronicles that match this stream. The recognition is
efficiently performed by maintaining incrementally trees of hypotheses for partially
recognized chronicle instances. The trees are updated or pruned as new events are
observed or time advances. It has been demonstrated in robotics surveillance tasks.
Other developments introduced hierarchization and a focus on rare events [307].

544 24 Perceiving, Monitoring and Goal Reasoning

The chronicle approach offers a link between planning and observing, e.g., what
needs to be recognized can be planned for in advance. The SAM system [878]
illustrates such in a system providing assistance to an elderly person. It uses a
chronicle representation (with interval algebra) for online recognition, planning, and
execution with multiple hypotheses tracking over weeks.

24.2 Monitoring

In an open dynamic environment, an actor cannot be confident that the predicted
effects of its actions are going to occur. Acting in a blind open-loop manner is too
brittle; it leads frequently to failure. An actor needs a closed-loop feedback to detect
possible problems and correct its actions.

Monitoring is in charge of (i) detecting discrepancies between predictions and
observations, (ii) diagnosing their causes, and (iii) taking first recovery actions. It
ranges from the low-level surveillance of the execution platform, to the high-level
reasoning on the appropriate goals for pursuing the mission. Discrepancies between
predictions and observations can be caused by platform errors and failures, e.g.,
malfunctioning sensors or actuators or buggy commands. They can also be produced
by unexpected events and environment contingencies that make the chosen plan
inappropriate. Let us discuss successively these monitoring levels.

24.2.1 Platform Monitoring

The actor has to monitor its platform and adapt its actions to the functioning status of
its sensory-motor capabilities.3 Low-level monitoring may be needed even when the
execution platform is solely computational. One may argue that this monitoring is a
platform dependent issue, not a deliberation function. However, the actor’s reasoning
relies on models of the platform and its current status. In addition, acting, planning and
learning techniques are very relevant for performing platform monitoring functions.

A set of monitoring techniques rely on signal filtering and parameter identification
for fault detection and identification. Several methods, surveyed in [895, 227], use
statistical recognition or neural net classifiers. Model-based methods usually take as
input a triple (System description, Components, Observation) where the first term is
a model of the platform, the second a finite list of its components, the third is an
assertion inconsistent with the model expressing the observed fault. The diagnosis
task is to find a minimum subset of components whose possible failure explains the
observation. The framework of [78] formulates model-based diagnosis as a planning
problem with information gathering and reasoning on change.

Livingstone is a model-based system for monitoring, diagnosis, and recovery for
an earth observation spacecraft [823]. It relies on qualitative model-based diagnosis
[1175]. The spacecraft is modeled as a collection of components. Each one is
described by a graph whose nodes correspond to normal functioning states or to failure
states, e.g., a valve is closed, open, or stuck. Edges are either nominal transition

3This level of monitoring is sometime referred to as fault detection, identification and recovery (FDIR).

24.2 Monitoring 545

commands or exogenous transition failures. The latter are labeled by transition
probabilities; the former are associated with transition costs and preconditions of the
commands. A node is associated with a set of finite domain constraints describing the
component’s properties in that state, for example, when the valve is closed, inflow = 0
and outflow = 0. The dynamics of each component is constrained such that, at any
time, exactly one nominal transition is enabled but zero or more failure transitions
are possible. Models of all components are compositionally assembled into a system
where concurrent transitions compatible with the constraints and preconditions may
take place. The entire model is compiled into a temporal propositional logic formula,
which is queried through a specific solver (with a truth-maintenance and a conflict-
directed best-first search). Two query modes are used: (i) diagnosis, which finds
the most likely transitions consistent with the observation, and (ii) recovery, which
finds the least cost commands that restore the system into a nominal state. Livingston
is integrated with the spacecraft acting system. It computes a focused sequence of
recovery commands that meets additional constraints specified by the acting system.

This and other similar model-based diagnosis systems are focused on monitoring
the platform itself.4 Monitoring the actor’s interactions with a dynamic environment
(for example, in searching for an object and bringing it to a user) requires other
techniques, discussed next.

24.2.2 Action and Plan Monitoring

Monitoring the causal structure of a plan. A plan organizes actions as a sequence,
a partial order, a chronicle, or a policy. The causal structure of the plan provides an
important information for monitoring the progress of the plan. It says which effects of
an action 𝑎 are predicted to support which preconditions of an action 𝑎′, constrained
to come after 𝑎.

We have already discussed the causal structure of a plan in previous chapters,
through the notion of causal links in a partial plan (Section 3.4), or the notion of
causally supported assertions in a timeline (Definition 17.9). Let us briefly discuss
its use for monitoring in the simple case of sequential plans.

Let 𝜋 = ⟨𝑎1, . . . , 𝑎𝑖 , . . . , 𝑎𝑘⟩ be a sequential plan for achieving a goal 𝑔. Goal
regression defines the sequence of intermediate goals associated with 𝜋 as:

G = ⟨𝑔1, . . . , 𝑔𝑖 , . . . , 𝑔𝑘+1⟩, with
𝑔𝑖 = 𝛾

−1(𝑔𝑖+1, 𝑎𝑖) for 1 ≤ 𝑖 ≤ 𝑘, and 𝑔𝑘+1 = 𝑔.

In other words, action 𝑎𝑘 can be performed in a state 𝑠 and achieves 𝑔 only if 𝑠
supports 𝑔𝑘 . Similarly, the subsequence ⟨𝑎𝑘−1, 𝑎𝑘⟩ can be performed in a state 𝑠′ and
achieves 𝑔 only if 𝑠′ supports 𝑔𝑘−1. The entire plan 𝜋 is applicable and achieves 𝑔
only in a state that supports 𝑔1.
G is easily defined from 𝜋 and can be used to monitor the progress of 𝜋 with the

procedure Progress-Plan. This procedure searches G in reverse order, looking for
the first 𝑔𝑖 , which is supported by current state. It then performs action 𝑎𝑖 . The

4They can be qualified as proprioceptive monitoring approaches.

546 24 Perceiving, Monitoring and Goal Reasoning

goal is achieved when the current state supports 𝑔𝑘+1 = 𝑔. If no intermediate goal is
supported in 𝑠, then the plan 𝜋 has failed.

Progress-Plan(𝜋, 𝑔)
let 𝜋 = ⟨𝑎1, . . . , 𝑎𝑛⟩ ; G ← ⟨𝑔⟩
for 𝑎 ← 𝑎𝑛 to 𝑎1 do

𝑔 ← 𝛾−1(𝑔, 𝑎)
G ← 𝑔.G

while True do
𝜉 ← observed current state
if no 𝑔 ∈ G is supported be 𝜉 then return failure
else

𝑖 ← max 𝑗{1 ≤ 𝑗 ≤ 𝑘 + 1 | 𝜉 supports 𝑔 𝑗}
if 𝑖 = 𝑘 + 1 then return success
else perform action 𝑎𝑖

Algorithm 24.1. A simple monitoring of the progression of a plan

Note that the procedure Progress-Plan does not follow 𝜋 sequentially. It “jumps”
to the action closest to the goal that allow progressing toward 𝑔. It may also go back
and repeat several times previously performed actions until the effects required by an
intermediate goal are achieved.

Example 24.1. Consider a service robot for which a planner produces the following
sequential plan: 𝜋 = ⟨move(door), open(door), move(table), pickup(tray), move(sink),
putdown(tray, sink), pickup(medic), move(chest), putdown(medic,chest) ⟩. 𝜋 says to
open the door, assumed closed, because the robot cannot open it while holding the
tray. If the robot observes when starting 𝜋, that the door is already open, Progress-
Plan would skip the first two actions and proceed with the move(table). Later on, after
picking up the medic if the robot observes that it gripper is empty, it would repeat the
pickup action. □

The intermediate goals in the sequence G are not independent. They can be
organized such as to reduce the computation for finding the largest 𝑖 such that 𝜉
support 𝑔𝑖 . The corresponding data structure is a tabular representation of a causal
graph called a triangle table. It has been proposed in Planex [358], an early monitoring
and execution system associated with the Strips planner.

Progress-Plan alone is quite limited and remains at an abstract and simple level
of monitoring. It has to be augmented with monitoring the commands refining the
actions in 𝜋, with diagnosis of possible problems (that is, why the state observed after
performing 𝑎𝑖 does not support 𝑔𝑖+1) and the control of repeated actions on the basis
of this diagnosis (for example, when does it make sense to repeat a pickup action).

Monitoring the invariants of a plan. An invariant of a state transition system is a
condition that holds in every state of the system. For a planning problem (Σ, 𝑠0, 𝑔),

24.2 Monitoring 547

an invariant characterizes the set of reachable states of the problem. A state that
violates the invariant cannot be reached from 𝑠0 with the actions described in Σ. In
other words, if 𝜑 is an invariant condition of (Σ, 𝑠0, 𝑔), then for any plan 𝜋 and any
state 𝑠 ∈ 𝛾̂(𝑠0, 𝜋), 𝑠 supports 𝜑. Going back to Example 24.1, if the robot has no
action to lock or unlock the door, and if the door is initially unlocked, then door-
status(door)=unlocked is an invariant of this domain. Note that the world invariant
qualifies a particular domain model, not the world itself. Monitoring violation of
invariant conditions allows detecting discrepancies with respect to that model.

Invariants of a planning problem can be synthesized automatically [596, 945].
Several authors have used invariants to speed up planning algorithms, e.g., [369].
However, at the acting level, we know that the assumption of a static environment
does not hold: there can be other state transitions than those in Σ due to the actor’s
actions. For example, the door of Example 24.1 may become locked, this violating a
plan that requires opening that door. The actor has to monitor that the current state
supports the invariants relevant to its plan.

The invariants of a planning problem are often not sufficient for the purpose of
monitoring. Many of the invariants entailed from (Σ, 𝑠0, 𝑔) express syntactical de-
pendencies between state variables, e.g., a locked door is necessarily closed; it cannot
be open. Often, an actor has to monitor specific conditions that express the appro-
priate context in which its activity can be performed. For example, the robot has to
monitor the status of its battery: if the charge level is below a threshold, than at most 𝜏
units of time are available in normal functioning before plugging at a recharge station.
Such conditions cannot be deduced from the specification of (Σ, 𝑠0, 𝑔); they have to
be expressed specifically as monitoring rules.

An extended planning problem (Σ, 𝑠0, 𝑔, 𝜑) specifies 𝜑 as the invariant to be moni-
tored [374]. A plan 𝜋 is a solution to the problem if every state 𝑠 ∈ 𝛾̂(𝑠0, 𝜋) supports
𝜑. This is also a requirement for acting: the actor has to monitor at acting time
that every state observed while performing a plan 𝜋 supports 𝜑. A violation of this
condition, due to exogenous event or malfunction, means a failure of the plan. It
allows early detection of infeasible goals or actions, even if the subsequent actions in
𝜋 appear to be applicable.

Elaborate versions of the preceding idea have been developed with monitoring
rules in various formalisms, associated with sensing and recovery actions together
with efficient incremental evaluation algorithms at acting time. For example, the
approach [357] relies on the fluent calculus [977] with actions described by normal
and abnormal preconditions. The former are the usual preconditions; the latter are
assumed away by the planner as default; they are used as a possible explanation of a
failure. For example, delivery of an object to a person may fail with abnormal precon-
ditions of the object being lost or the person not being traceable. Abnormal effects are
similarly specified. Discrepancies between expectations and observations are handled
by a prioritized non-monotonic default logic and entail that default assumptions no
longer hold. These explanations are ranked using relative likelihood, when available.
The system can handle incomplete world models and observation updates performed
while acting or on demand from the monitoring system.

An interesting variant use Linear Temporal Logic formulas to express goals as

548 24 Perceiving, Monitoring and Goal Reasoning

well as correctness statements and execution progress conditions [110]. A trace of
the execution, observed and predicted at planning time, is incrementally checked
for satisfied and violated LTL formulas. For that, a delayed formula progression
technique evaluates at each state the set of pending formulas; it returns the set of
formulas that needs to be satisfied by the remaining actions. The same technique is
used both for planning (with additional precondition-effect operators and some search
mechanism) and for monitoring.

Domain knowledge, expressed in description logic, enables deriving expectations of
the effects of actions in a plan to be monitored during execution [168]. A first-order
query language allows online matching of these expectations against observations.
The parameters of actions refer to objects that have derived properties. The con-
sistency of these properties with observations is checked. It may be undetermined,
triggering observation actions. An extension handles monitoring with probabilistic
models, akin to Bayesian belief update. It relies on probabilistic plans with nondeter-
ministic actions as well as on probabilistic sensing models.

Another approach uses the Temporal Action Logics formalism [661] to express
operators and domain knowledge [301]. Formal specifications of global constraints
and dependencies, together with planning operators and control rules, are used by
the planner to control and prune the search. Monitoring formulas are generated from
the descriptive models of planning operators (preconditions, effects, and temporal
constraints) and from the complete synthesized plan, for example, constraints on the
persistence of causal links. This synthesis of monitoring formulas is not systematic but
selective, on the basis of hand-programmed conditions of what needs to be monitored
and what does not. Additional monitoring formulas are also specified by the designer
in the same expressive temporal logic formalism. For example, in the application
domain of [301], a UAV should have its winch retracted when its speed is above a
threshold; it can exceed its continuous maximum power by a factor of 𝜂 for up to
𝜏 units of time if this is followed by normal power usage for a period of at least
𝜏′. The system produces plans with concurrent and durative actions together with
conditions to be monitored during execution. These conditions are evaluated online
using formula progression techniques. When actions do not achieve their desired
results, or when other conditions fail, recovery via plan repair is triggered.

Integrating monitoring with operational models of actions. The previous exam-
ples of monitoring rules for a UAV express conditions on the normal functioning of
the execution platform and its environment; they allow detection of deviations from
the required specifications. Such a detection is naturally integrated to operational
models of actions with the refinement methods of Part V. Furthermore, detections
of a malfunction or a deviation may trigger events to which are associated refinement
methods for taking first corrective actions specific to the context.

Refinement methods are adequate for expressing monitoring activities; RAE proce-
dure can be used for triggering observation and commands required for monitoring.
Most of the acting systems discussed in Section 14.4, such as PRS, RAP, or TCA,
integrate specific methods to handle monitoring functions.

24.3 Goal Reasoning 549

24.3 Goal Reasoning

An actor has to keep its goals in perspective to make sure that they remain feasible
and relevant to its long-term mission. If needed, it has to consider alternate goals.
Goal reasoning is a monitoring function at a higher level; it continuously checks
for unexpected events that may interfere with current goals. A more ambitious
definition considers actors that deliberate on, and self-select their objectives [16],
possibly with a “motivation system” to guide their choices. The so-called “motivated”
actors are assumed to be explicitly or implicitly motivated by external or internal
motivations [11], the latter referring to some value functions, sometime misnamed
with anthropomorphic references, e.g., to emotions or desires.

Goal reasoning has been deployed in a few experiments. An example is the DS1
spacecraft Mission Manager [823, 116], which analyses the progress of the mission
and determines the goals to be satisfied for the next planning window. The selected
goals are passed to the planner, together with constraints that need to be satisfied at
waypoints identified by the Mission Manager (e.g., the amount of energy left in the
batteries should be above a threshold at the end of the planning phase).

An analogous manager in the CPEF system [826] provides appropriate goals to the
planner and controls the generation of plans. For a similar class of applications, the
ARTUE system [804] detects discrepancies when executing a plan. It generates an
explanation, possibly produces a new goal, and manages possible conflict between
goals currently under consideration. It uses decision theory techniques to decide
which goal to choose. The approach proposes an explanation system, which uses
Assumption-based Truth Maintenance techniques to find the possible explanation of
the observed facts. ARTUE has been extended with a facility for teaching the system
new goal selection rules [914]. The goal reasoner in [1178] handles cost tradeoffs to
coordinate multi-vehicle teams in AUV scenarios.

Another example is the Plan Management Agent for handling personal calendars
and workflow systems [909]. It addresses the following functions:

• Commitment management: commits to a plan already produced, and avoids
new plans that conflict with the existing ones.

• Alternative assessment: decides which of the possible alternative goals and
plans should be kept or discarded.

• Plan control: decides when and how to generate a plan.
• Coordination with other agents: takes into account others’ commitments and

the cost of decisions involving their plans.

That system relies on temporal and causal reasoning. It is able to plan with partial
commitments that can be further refined later.

Let us also mention a class of approaches, called Goal Driven Autonomy for rea-
soning about possibly conflicting goals and synthesizing new ones. These approaches
are surveyed in [486, 1120]. The former surveys a number of architectures support-
ing goal reasoning in intelligent systems. The latter reviews several contributions
on various techniques for goal monitoring, goal formulation, and goal management,
organized within a comprehensive goal reasoning analysis framework.

Appendices

550

Free pre-publication, for personal use only. To be published by Cambridge University Press.

A Graphs and Search

This appendix provides background information about nondeterministic state-space
search in Section A.1, and And/Or search in Section A.2.

A.1 Nondeterministic State-Space Search

Many of the planning algorithms in this book have been presented as nondeter-
ministic search algorithms and can be described as instances of Algorithm A.1,
Nondeterministic-Search. In most implementations of these algorithms, Line 3 corre-
sponds to trying several members of 𝑅 sequentially in a trial-and-error fashion. The
“nondeterministically choose” command is an abstraction that lets us ignore the pre-
cise order in which those values are tried, so we can discuss properties that are shared
by a wide variety of algorithms that search the same space of partial solutions, even
though those algorithms may visit different nodes of that space in different orders.

Nondeterministic-Search(𝑃) // Iterative version
𝜋 ← an initial partial solution for 𝑃

1 while 𝜋 is not a solution for 𝑃 do
2 𝑅 ← {candidate refinements of 𝜋}

if 𝑅 = ∅ then return failure
3 nondeterministically choose 𝑟 ∈ 𝑅

𝜋 ← refine(𝜋, 𝑟)
return 𝜋

Nondeterministic-Search(𝑃, 𝜋) // Recursive version
1 if 𝜋 is a solution for 𝑃 then return 𝜋
2 𝑅 ← {candidate refinements of 𝜋}

if 𝑅 = ∅ then return failure
3 nondeterministically choose 𝑟 ∈ 𝑅
𝜋 ← refine(𝜋, 𝑟)
return Nondeterministic-Search(𝑃, 𝜋)

Algorithm A.1. Iterative and recursive versions of nondeterministic search. 𝑃
is a search problem, and 𝜋 is an initial partial solution.

To visualize how nondeterministic search works, suppose we run it on a nondeter-
ministic Turing machine. Let𝜓(𝑃) be a process produced by calling Nondeterministic-
Search on a search problem 𝑃. Whenever this process reaches Line 3, it replaces𝜓(𝑃)
with |𝑅 | copies of 𝜓(𝑃) running in parallel: one copy for each 𝑟 ∈ 𝑅. Each process

Free pre-publication, for personal use only. To be published by Cambridge University Press.

551

552 A Graphs and Search

π2

π21 π22 . . .

πi

πi1 πi2
. . .

π

r1 ri

r21 r22 ri1 ri2

π1

π11 π12 . . .

r11 r12

r2 . . .

.

. . .

. . .

. . .

Figure A.1. Search tree for Nondeterministic-Search. Each branch represents a possible
refinement.

corresponds to a different execution trace of 𝜓(𝑃), and each execution trace follows
one of the paths in 𝜓(𝑃)’s search tree (see Figure A.1). Each execution trace that
terminates will either return failure or return a purported answer to 𝑃. Two desirable
properties for 𝜓 are soundness and completeness, which are defined as follows:

• 𝜓 is sound over a set of search problems P if for every 𝑃 ∈ P and every execution
trace of 𝜓(𝑃), if the trace terminates and returns a value 𝜋 ≠ failure, then 𝜋 is
a solution for 𝑃. This will happen if the solution test in Line 1 is sound.

• 𝜓 is complete over P if for every 𝑃 ∈ P, if 𝑃 is solvable then at least one
execution trace of 𝜓(𝑃) will return a solution for 𝑃. This will happen if each
set of candidate refinements in Line 2 are complete, that is, if it includes all of
the possible refinements for 𝜋.

This model of nondeterministic search is quite similar to the one in [366, 246], which
later came to be known as angelic nondeterminism [115, 148].

In deterministic implementations of nondeterministic search, the nondeterministic
choice is replaced with a way to decide which nodes of the search tree to visit,
and in what order. The simplest case is depth-first backtracking, which we can get
from the recursive version of Nondeterministic-Search by making a nearly trivial
modification: change the nondeterministic choice to a loop over the elements of
𝑅. For this reason, the nondeterministic choice points in nondeterministic search
algorithms are sometimes called backtracking points.

Algorithm A.2, Deterministic-Search, is a general deterministic search algorithm.
Depending on the node-selection strategy, that is, the technique for selecting 𝜋 in
line Line 1, we can get a depth-first search, breadth-first search, or a best-first search.
Furthermore, by making some modifications to the pseudocode, we can get GBFS,
A*, iterative deepening, branch and bound, and other kinds of search (see Chapter 3).

Earlier we said that Nondeterministic-Search is sound and complete if its solution
test is sound and its sets of candidate refinements are complete (i.e., each set includes
all of the possible refinements). Deterministic-Search is sound under those conditions,
but whether it is complete depends on the node-selection strategy. For example, with

A.1 Nondeterministic State-Space Search 553

Deterministic-Search(𝑃)
𝜋 ← initial partial solution
Π ← {𝜋}
while Π ≠ ∅ do

1 select 𝜋 ∈ Π
remove 𝜋 from Π if 𝜋 is a solution for 𝑃 then return 𝜋
𝑅 ← {candidate refinements for 𝜋}
foreach 𝑟 ∈ 𝑅 do

𝜋 ← refine(𝜋, 𝑟)
add 𝜋′ to Π

return failure

Algorithm A.2. A deterministic version of Nondeterministic-Search. Depending
on how 𝜋 is selected in Line 1, the algorithm can do a depth-first search, breadth-
first search, or best-first search.

breadth-first node selection it will be complete, but not with depth-first node selection
unless the search space is finite. Although completeness is a desirable property, other
considerations can often be more important: for example, the memory requirement
usually is exponentially larger for a breadth-first search than for a depth-first search.

π2

P21 P22

P

r1 r2

π1

P11 P12

π112

P1121 P1122
. . .

r111

π111

P1111 P1112
. . .

r112

Or-nodes:

Or-node:

And-nodes:

And-nodes:

.

.
. . .

.

. . .

Figure A.2. Search tree for Algorithm A.3. Each Or-node represents a call to Or-Branch,
and the edges below it represent members of 𝑅. Each And-node represents a call to
And-Branch, and the edges below it represent subproblems of 𝜋.

554 A Graphs and Search

A.2 And/Or Search

In addition to choosing among alternative refinements, some search algorithms involve
decomposing a problem 𝑃 into a set of subproblems 𝑃1, . . . , 𝑃𝑛 whose solutions will
provide a solution for 𝑃. Such algorithms usually can be described as instances of a
nondeterministic And/Or search algorithm, Algorithm A.3. The search space is an
And/Or tree like the one in Figure A.2.

And-Or-Search(𝑃)
return Or-Branch(𝑃)

Or-Branch(𝑃)
𝑅 ← {candidate refinements for 𝑃}
if 𝑅 = ∅ then return failure

1 nondeterministically choose 𝑟 ∈ 𝑅
𝜋 ← refine(𝑃, 𝑟)
return And-Branch(𝑃, 𝜋)

And-Branch(𝑃, 𝜋)
if 𝜋 is a solution for 𝑃 then return 𝜋
{𝑃1, . . . , 𝑃𝑛} ← {unsolved subproblems in 𝜋}

2 foreach 𝑃𝑖 ∈ {𝑃1, . . . , 𝑃𝑛} do
𝜋𝑖 ← Or-Branch(𝑃𝑖)
if 𝜋𝑖 = failure then return failure

if 𝜋1, . . . , 𝜋𝑛 are not compatible then return failure
incorporate 𝜋1, . . . , 𝜋𝑛 into 𝜋
return 𝜋

Algorithm A.3. A generic nondeterministic And/Or search algorithm. 𝑃 is an
And/Or search problem, and 𝜋 is a partial solution.

We will not present a deterministic version of And-Or-Search here because the
details are somewhat complicated and generally depend on the nature of the problem
domain. For example, unlike Line 1, Line 2 is not a backtracking point. The
subproblems 𝑃1, . . . , 𝑃𝑛 must all be solved to solve 𝑃, and not every combination of
solutions will be compatible. For example, if 𝑃1 and 𝑃2 are “find a container 𝑐 and
bring it to location 𝑙” and “put every book at location 𝑙 into 𝑐,” a solution to 𝑃1 is
useful for solving 𝑃2 only if the container 𝑐 is large enough to contain all of the books.

A.3 Strongly Connected Components of a Graph

Let 𝐺 = (𝑉, 𝐸) be a directed graph. A strongly connected component of 𝐺 is a
subset 𝐶 of 𝑉 such that every vertex of 𝐶 is reachable from every other vertex of 𝐶.
The relation ∼ on vertices can be defined as follows: 𝑣 ∼ 𝑣′ iff either 𝑣 = 𝑣′ or 𝑣 is
reachable from 𝑣′ and 𝑣′ is reachable from 𝑣. It is an equivalence relation on 𝑉 . It

A.3 Strongly Connected Components of a Graph 555

partitions 𝑉 into equivalence classes, each being a strongly connected component of
𝐺. Furthermore, the set of strongly connected components of 𝐺 is a directed acyclic
graph that has an edge from 𝐶 to 𝐶′ when there is a vertex in 𝐶′ reachable from a
vertex in 𝐶.

Tarjan’s algorithm [1078] finds in a single depth-first traversal of 𝐺 its strongly
connected components. Each vertex is visited just once. Hence the traversal organizes
𝐺 as a spanning forest. Some subtrees of this forest are the strongly connected
components of 𝐺. During the traversal, the algorithm associates two integers to each
new vertex 𝑣 it meets:

• index(𝑣): the order in which 𝑣 is met in the traversal, and
• low(𝑣) = min{index(𝑣′) |𝑣′ reachable from 𝑣}

It is shown that index(𝑣)=low(𝑣) if and only if 𝑣 and all its successors in a traversal
subtree are a strongly connected component of 𝐺.

Tarjan(𝑣)
index(𝑣) ←low(𝑣) ← 𝑖

𝑖 ← 𝑖 + 1
push(𝑣,stack)
for all 𝑣′ adjacent to 𝑣 do

if index(𝑣′) is undefined than do
Tarjan(𝑣′)
low(𝑣) ← min{low(𝑣), low(𝑣′}

else if 𝑣′ is in stack then low(𝑣) ← min{low(𝑣), low(𝑣′}
if index(𝑣)=low(𝑣) then do

start a new component 𝐶 ← ∅
repeat
𝑤 ← pop(stack) ; 𝐶 ← 𝐶 ∪ {𝑤}

until 𝑤 = 𝑣

Algorithm A.4. Tarjan’s algorithm for finding strongly connected components
of a graph.

This is implemented in Algorithm A.4 as a recursive procedure with a stack mech-
anism. At the end of a recursion on a vertex 𝑣, if the condition index(𝑣)=low(𝑣) holds,
then 𝑣 and all the vertices above 𝑣 in the stack (i.e., those below 𝑣 in the depth-first
traversal tree) constitute a strongly connected component of G.

With the appropriate initialization (𝑖 ← 0, stack ← ∅ and index undefined every-
where), Tarjan(𝑣) is called once for every 𝑣 ∈ 𝑉 such that index(𝑣) is undefined. The
algorithm run in 0(|𝑉 | + |𝐸 |). It finds all the strongly connected components of 𝐺 in
the reverse order of the topological sort of the DAG formed by the components, that
is, if (𝐶,𝐶′) is an edge of this DAG, then 𝐶′ will be found before 𝐶.

B Other Mathematical Background

This appendix recapitulates the terminology, notations and a few basic definitions of
algebra and calculus used in this book.

B.1 Metrics and distances

A space 𝑋 is metric if it can be associated with a metric function, that is a function
𝑓 : 𝑋 × 𝑋 → R+ which is, ∀𝑥, 𝑥′, 𝑥′′ ∈ 𝑋 ,

• reflexive: 𝑓 (𝑥, 𝑥′) = 0 if and only if 𝑥 = 𝑥′,
• symmetrical: 𝑓 (𝑥, 𝑥′) = 𝑓 (𝑥′, 𝑥), and
• triangular: 𝑓 (𝑥, 𝑥′) + 𝑓 (𝑥′, 𝑥′′) ≥ 𝑓 (𝑥, 𝑥′′).

A metric function is also called a distance because it allows defining distances between
points in 𝑋 .

For the space 𝑋 = R𝑛, a point x ∈ 𝑋 is a vector [𝑥1, . . . , 𝑥𝑛]. 𝑋 has family of
metrics given by:

𝛿𝑝 (x, x′) = [
∑︁

1≤ 𝑗≤𝑛
|𝑥 𝑗 − 𝑥′𝑖 |𝑝]1/𝑝

Two well-known distances in this family 𝛿𝑝 are the Manhattan distance 𝛿1, and the
Euclidian distance 𝛿2:

𝛿1(x, x′) =
∑︁

1≤ 𝑗≤𝑛
|𝑥 𝑗 − 𝑥′𝑗) |

𝛿2(x, x′) =
√︄ ∑︁

1≤ 𝑗≤𝑛
(𝑥 𝑗 − 𝑥′𝑗)2

The limit case of 𝛿𝑝 when p tends to infinity can also be very useful:

𝛿∞(x, x′) = max
𝑗
{|𝑥 𝑗 − 𝑥′𝑗 |}.

A variant of 𝛿2, called the mean squared error, is: 1/𝑛∑1≤ 𝑗≤𝑛 (𝑥 𝑗 − 𝑥′𝑗)2.

B.2 Vectors and matrices

We summarize here useful notations and definitions in linear algebra.
A vector is an ordered list of elements in some scalar field, in our case a list of real

values. A column vector is denoted as: x = [𝑥1, . . . , 𝑥𝑛]⊤ ∈ R𝑛, 𝑥𝑖 is the 𝑖𝑡ℎ element
of x, 𝑛 is its dimension. The transpose operation ⊤ of a row vector [𝑥1, . . . , 𝑥𝑛]⊤ is a
column vector, and vice versa.

556

Free pre-publication, for personal use only. To be published by Cambridge University Press.

B.2 Vectors and matrices 557

A matrix is a 2D array of 𝑛 × 𝑚 values:

A(𝑛,𝑚) =


𝑎1,1 · · · 𝑎1,𝑚
...

. . .
...

𝑎𝑛,1 · · · 𝑎𝑛,𝑚


We denote A(𝑛,𝑚) =

[
𝑎𝑖, 𝑗

]
, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚, when clear from the context. A⊤𝑚,𝑛

is the transpose of A, it turns its rows into columns and its columns into rows.

Operations on vectors and matrices. For two vectors x = [𝑥1, . . . , 𝑥𝑛]⊤ and
y = [𝑦1, . . . , 𝑦𝑚]⊤, and two matrices A and B, we denote:

• x + y = [𝑥1 + 𝑦1, . . . , 𝑥𝑛 + 𝑦𝑛]: the vector sum; x − y is the difference ;
• x · y : the dot product (or inner product); it is a scalar x · y =

∑
1≤𝑖≤𝑛 𝑥𝑖𝑦𝑖;

• x × y : the cross product; it is a vector x × y = [𝑥1𝑦1, . . . , 𝑥𝑛𝑦𝑛]⊤.

The sum, difference, dot and cross products are commutative operations defined only
for vectors of the same dimension (i.e., 𝑚 = 𝑛).

• x⊗ y : the outer product; it is a matrix x⊗ y = 𝐴(𝑛,𝑚) = [𝑎𝑖, 𝑗] with 𝑎𝑖, 𝑗 = 𝑥𝑖𝑦 𝑗 .

The outer product is not commutative: x ⊗ y = (y ⊗ x)⊤; it does not require 𝑚 = 𝑛.

• A × B : the product of two matrices: A(𝑛,𝑛′) × B(𝑛′ ,𝑚) = C(𝑛,𝑚) =
[
𝑐𝑖, 𝑗

]
with

𝑐𝑖, 𝑗 =
∑

1≤𝑘≤𝑛′ 𝑎𝑖,𝑘𝑏𝑘, 𝑗

A has as many columns as rows in B (i.e., 𝑛′).
By viewing a column vector y⊤ as a matrix of dimension (𝑚, 1), the

product of matrix C(𝑛,𝑚) with vector y⊤(𝑚,1) is a vector C × y⊤ =

[∑1≤ 𝑗≤𝑚 𝑐1, 𝑗 𝑦 𝑗 , . . . ,
∑

1≤ 𝑗≤𝑚 𝑐𝑖, 𝑗 𝑦 𝑗 , . . . ,
∑

1≤ 𝑗≤𝑚 𝑐𝑛, 𝑗 𝑦 𝑗]⊤ of dimension 𝑛. Simi-
larly for the product x𝑛 × C(𝑛,𝑚) = [

∑
1≤𝑖≤𝑛 𝑥𝑖𝑐𝑖,1, . . . ,

∑
1≤𝑖≤𝑚 𝑥𝑖𝑐𝑖,𝑚] is a vector of

dimension 𝑚.
Applying a function 𝑓 : R → R to a vector x gives the vector of 𝑓 applied to the

elements of x: 𝑓 (x) = [𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛)]⊤. Similarly for a matrix 𝑓 (A) =
[
𝑓 (𝑎𝑖, 𝑗)

]
.

The norm of a vector inR𝑛 is a mapping inR+, with properties similar to a distance.
In particular the 𝑝−norm is defined as:

∥x∥ 𝑝 = [
∑︁

1≤𝑖≤𝑛
|𝑥𝑖 |𝑝]1/𝑝

We’ll also use the squared norm: ∥x∥2 =
∑

1≤𝑖≤𝑛 𝑥
2
𝑖
. Note that the Euclidian

distance is 𝛿2(x, x′) = ∥x − x′∥.

Rotation matrices. Consider a reference frame F𝜑 attached to a polyhedra 𝜑 (Fig-
ure 20.2). F𝜑 is located in a global frame F with 6 parameters [𝑥0, 𝑦0, 𝑧0, 𝛼, 𝛽, 𝜑]. A
point [𝑥𝜑 , 𝑦𝜑 , 𝑧𝜑] of 𝜑 is located in F𝜑 with the equations defining 𝜑. This point can
be positioned in F with the following equation:

558 B Other Mathematical Background

[𝑥, 𝑦, 𝑧]⊤ = 𝜌𝛼 × 𝜌𝛽 × 𝜌𝜑 × [𝑥𝜑 , 𝑦𝜑 , 𝑧𝜑]⊤ + [𝑥0, 𝑦0, 𝑧0]⊤. (B.1)

The three rotation matrices are:

𝜌𝛼 =


cos 𝛼 −sin 𝛼 0
sin 𝛼 cos 𝛼 0

0 0 1

 , 𝜌𝛽 =


cos 𝛽 0 sin 𝛽

0 1 0
-sin 𝛽 0 cos 𝛽

 , 𝜌𝜑 =


1 0 0
0 cos 𝜑 −sin 𝜑
0 sin 𝜑 cos 𝜑

 .
B.3 Derivative and Gradient

Let ℎ be the composition of two functions 𝑓 and 𝑔, i.e., ℎ(𝑥) = 𝑓 (𝑔(𝑥)). The
derivative chain rule states that ℎ′(𝑥) = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥). In Leibniz notation:

𝑑𝑓

𝑑𝑥
=
𝑑𝑓

𝑑𝑔

𝑑𝑔

𝑑𝑥
.

The rule applies for the composition of 𝑛 functions: for 𝑓 (𝑥) = 𝑓1(𝑓2(. . . (𝑓𝑛 (𝑥))

𝑑𝑓

𝑑𝑥
=
𝑑𝑓1
𝑑𝑓2

. . .
𝑑𝑓𝑛

𝑑𝑥
.

The gradient of a multivariable function 𝑓 (𝑥1, . . . , 𝑥𝑛) is a vector of its partial deriva-
tives, denoted ∇ 𝑓 = [𝜕 𝑓 /𝜕𝑥1, . . . , 𝜕 𝑓 /𝜕𝑥𝑛]⊤.

List of Algorithms

2.1 Run-Plan, a simple procedure to run a plan. 16
2.2 Reactive-Execution acting procedure. 26
2.3 Run-Lookahead, which replans before each action. 26
2.4 Run-Lazy-Lookahead, which replans only when necessary. 27

3.1 Forward-Search, a schema for forward state-space search. 34
3.2 Forward-Search-Det, a deterministic version of Forward-Search. . . 35
3.3 The A* algorithm. 38
3.4 GBFS, greedy best-first search. 39
3.5 DFBB, depth-first branch and bound. 39
3.6 IDS, iterative-deepening search. 40
3.7 IDA*, iterative-deepening A*. 40
3.8 HFF, which computes the Fast-Forward heuristic. 45
3.9 RPG-Landmarks, an algorithm to find disjunctive landmarks. 47
3.10 Backward-Search planning algorithm. 52
3.11 PSP, a plan-space planning algorithm. 56
3.12 Incremental-Repair tries to retain 𝜋’s largest possible suffix. 60

4.1 LRTA*, Learning Real Time A*. 73
4.2 Expand&Update schema for learning heuristics. 74
4.3 Action-Offline-Learning-Simple, a naive version. 78
4.4 Action-Offline-Learning?!, learns certain effects 79
4.5 Action-Offline-Learning-with-Failure, considers actions that may fail. 80
4.6 Action-Incremental-Learning-Simple, a naive version. 81
4.7 Action-Incremental-Learning?!, with certain effects. 81
4.8 Action-Incremental-Learning-with-Failure, for actions that may fail. . 82
4.9 Learn-by-action-application applies an action in a state. 82
4.10 Naive-Learning-Actions-by-Queries, a naive version. 83
4.11 Learning-Actions-by-Queries, learns by applying an action in a state. 83
4.12 Online-Action-Learning, learns actions online. 84

5.1 TO-HTN-Forward, which plans for totally-ordered tasks. 102
5.2 TO-HTN-Forward-Det, a deterministic version of TO-HTN-Forward. . 103
5.3 TO-HTN-Forward-RT, which returns a refinement tree. 104
5.4 TO-HTN-Serial, for serially solvable planning problems. 105
5.5 PO-HTN-Forward, which plans for partially-ordered tasks. 109
5.6 Relevant-Methods, which finds methods relevant for 𝜏. 110
5.7 Hybrid-planning pseudocode to insert into HTN-Get-Candidates. . . 111
5.8 Pseudocode for landmark-based hybrid planning. 111

Free pre-publication, for personal use only. To be published by Cambridge University Press.

559

560 List of Algorithms

5.9 TO-AA-Forward, an AA adaptation of TO-HTN-Forward. 115
5.10 TO-AA-Angelic, a planner for angelically refinable domains. 116

6.1 TO-HTN-Act, a reactive HTN acting algorithm. 122
6.2 HTN-Run-Lookahead, which replans at each action. 124
6.3 HTN-Run-Lazy-Lookahead, which replans only when necessary. . . 124
6.4 HTN-Run-Repair, which repairs its plan if actions fail. 126
6.5 HTN-Incremental-Repair, which replans increasingly larger tasks. . . 127
6.6 Incremental-Repair-2, a finer-grained repair algorithm. 128
6.7 Stack-Blocks, a blocks-world acting algorithm. 129

7.1 Methods-from-Examples learns methods from solution examples. . . 133
7.2 Methods-from-Plans, which learns methods for annotated tasks. . . . 138

8.1 Run-Policy, a simple procedure to run a closed solution policy. . . . 150
8.2 MDP-Lookahead, acting with the guidance of lookahead search. . . 167

9.1 Policy Iteration algorithm. 175
9.2 Value Iteration, synchronous algorithm 177
9.3 Value Iteration, asynchronous algorithm 177
9.4 Bellman-Update procedure. 177
9.5 VI𝜖 , a guaranteed approximation procedure for Value Iteration. . . . 180
9.6 Find&Revise schema. 185
9.7 AO* best-first search algorithms. 187
9.8 AO-Update, bottom-up update for AO*. 188
9.9 LAO-Update, q “Value Iteration-like” update for LAO*. 190
9.10 ILAO*, a variant of LAO* . 191
9.11 HDP, a heuristic depth-first search algorithm for SSPs. 192
9.12 Solved-SCC: labelling solved strongly connected components 192
9.13 LDFS𝑎 algorithm. 193
9.14 Primal Linear Program for SSPs 200
9.15 Dual Linear Program for SSPs . 200
9.16 Dual Linear Program for Constrained SSPs 204
9.17 Linear Program Solved by i-dual at Each Iteration 205
9.18 i-dual, a hybrid algorithm for C-SSPs. 205
9.19 RFF, a determinization planning algorithm. 209
9.20 Incremental-compression-and-search 210
9.21 LRTDP algorithm. 211
9.22 Check-Solved, procedure to check and label solve states for LRTDP. 212
9.23 Rollout procedure . 214
9.24 MultipleRollout, a multiple rollout procedure 214
9.25 SLATE, sampling lookahead tree. 215
9.26 MCTS, a procedure for MDP And/Or graphs 216
9.27 UCT, a Monte-Carlo Tree Search procedure. 217

10.1 Q-learning algorithm . 230

List of Algorithms 561

10.2 GradientDescent . 235
10.3 Parametric Q-learning algorithm. 237
10.4 Backpropagation algorithm . 243
10.5 Deep Q-learning algorithm. 245
10.6 Policy Gradient deterministic Policy Gradient algorithm. 250
10.7 MI-learning, a model-based imitation learning procedure 253
10.8 IRL, a general schema for a parametric imitation learning. 255

11.1 Acting with policies . 274
11.2 A Behavior Tree Acting Engine, BTAE 290
11.3 A Petri Net Acting Engine, PNAE. 295
11.4 A Concurrent Petri Net Acting Engine, CoPNAE 303

12.1 Planning for solutions by forward search. 305
12.2 Planning for safe solutions by forward search. 306
12.3 Planning for safe acyclic solutions by forward search. 307
12.4 Planning for safe acyclic solutions by MinMax Search. 308
12.5 A procedure that returns the policy with minimal cost over actions. . 309
12.6 Guided planning for safe solutions. 310
12.7 Planning for safe solutions by determinization. 312
12.8 Transformation of a sequential plan into a corresponding policy. . . 312
12.9 Planning for safe solutions by symbolic model checking. 318
12.10 PruneUnconnected: Removing unconnected states. 318
12.11 RemoveNonProgress: Removing states/actions 319
12.12 Planning for acyclic solutions by symbolic model checking 320
12.13 BT generation by classical planning 327
12.14 BT generation by recursive classical planning 328
12.15 BT generation from basic BTs . 328
12.16 BT planning and acting . 330

13.1 Nondet-Action-Incremental-Learning. 339

14.1 RAE, a Refinement Acting Engine 350
14.2 Progress procedure for RAE . 351
14.3 Next step in a ground method 𝑚 for a given stack. 351
14.4 Retry procedure for RAE . 352

15.1 Guide iterative deepening procedure for UPOM 366
15.2 UPOM MCTS algorithm . 368

16.1 CORL continual Online RL algorithm for RAE. 377

17.1 TemPlan, a temporal planner . 398
17.2 PC path consistency algorithm for simple constraint networks 406

18.1 Dispatch, a dispatching algorithm. 420

562 List of Algorithms

19.1 Offline-Action-Learning-with-Time, a simple algorithm 434

21.1 Roadmap-MP, a motion planning with a roadmap 480
21.2 vPRM, a visibility-based probabilistic roadmap algorithm for path

planning . 481
21.3 sPRM, a simplified probabilistic roadmap algorithm 484
21.4 Incremental-MP, motion planning with incremental roadmap refine-

ments . 485
21.5 RRT, Rapidly-Exploring Random Tree algorithm 486
21.6 Select procedure . 486
21.7 Incremental-RRT, motion planning with an RRT algorithm 487
21.8 NAMO, a motion planning procedure 490
21.9 ManipPlanner, a single-query manipulation planning algorithm . . . 493
21.10 Grasping, sampling a feasible and reachable grasping configuration. 493
21.11 Ungrasping, sampling a stable pose 494
21.12 F-TAMP, a forward-search task and motion planner. 502

22.1 Deep Skill Learning with a deterministic policy gradient algorithm. 521

24.1 Progress-Plan, to monitor the progression of a plan 546

A.1 Iterative and recursive versions of nondeterministic search. 551
A.2 A deterministic version of Nondeterministic-Search. 553
A.3 A generic nondeterministic And/Or search algorithm. 554
A.4 Tarjan’s algorithm for finding strongly connected components. . . . 555

Bibliographic Abbreviations

AAAI AAAI Conference on Artificial Intelligence
AAMAS International Conference on Autonomous Agents and Multi-agent Systems
ACL Annual Meeting of the Association for Computational Linguistics
ADPRL IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning
AIIDE AAAI Conference on AI and Interactive Digital Entertainment
AIJ Artificial Intelligence (Journal)
AIMag AI Magazine
AIPS International Conference on AI Planning Systems
AIxIA International Conference of the Italian Association for Artificial Intelligence
AIMA Artificial Intelligence: A Modern Approach
AMAI Annals of Mathematics and Artificial Intelligence
ARCRAS Annual Review of Control, Robotics, and Autonomous Systems
arXiv arxiv.org
ASTRA Symposium on Advances in Space Technologies in Robotics and Automation
CACM Communications of the Association for Computing Machinery
CASE IEEE International Conference on Automation Science and Engineering
CAV International Conference on Computer Aided Verification
CG International Conference on Computers and Games
CI Computational Intelligence
COLT Annual Conference on Computational Learning Theory
CONCUR International Conference on Concurrency Theory
CP International Conference on Principles and Practice of Constraint Programming
CSUR ACM Computing Surveys
CVPR IEEE Conference on Computer Vision and Pattern Recognition
ECAI European Conference on Artificial Intelligence
ECML European Conference on Machine Learning
ECML PKDD European Conference on Machine Learning and Principles and Practice of

Knowledge Discovery in Databases
ECP European Conference on Planning
ESWC European Semantic Web Conference
ETFA IEEE International Conference on Emerging Technologies and Factory Automation
FLAIRS International Florida AI Research Society Conference
FOCS Annual Symposium on Foundations of Computer Science
FOIKS International Symposium on Foundations of Information and Knowledge Systems
GDC Game Developers Conference
HDIP ICAPS Workshop on Heuristics for Domain-independent Planning
HPlan ICAPS Workshop on Hierarchical Planning
HSDIP ICAPS Workshop on Heuristics and Search for Domain-independent Planning
Humanoids IEEE-RAS International Conference on Humanoid Robots
ICAA International Conference on Autonomous Agents
ICALP International Colloquium on Automata, Languages and Programming
ICAPS International Conference on Automated Planning and Scheduling
ICLR International Conference on Learning Representations
ICML International Conference on Machine Learning
ICMLA IEEE International Conference on Machine Learning and Applications
ICRA IEEE International Conference on Robotics and Automation
ICTAI IEEE International Conference on Tools with Artificial Intelligence
ICWS IEEE International Conference on Web Services

Free pre-publication, for personal use only. To be published by Cambridge University Press.

563

arxiv.org

564 Bibliographic Abbreviations

IJCAI International Joint Conference on Artificial Intelligence
IJCNN International Joint Conference on Neural Networks
IJRR International Journal of Robotics Research
ILP International Conference on Inductive Logic Programming
IROS IEEE/RSJ International Conference on Intelligent Robots and Systems
i-SAIRAS International Symposium on Artificial Intelligence, Robotics and Automation in Space
ISRR International Symposium on Robotics Research
ISWC International Semantic Web Conference
IWPSS International Workshop on Planning and Scheduling for Space
JAAMAS (Journal of) Autonomous Agents and Multi-Agent Systems
JACM Journal of the Association for Computing Machinery
JAIR Journal of Artificial Intelligence Research
JETAI Journal of Experimental & Theoretical Artificial Intelligence
JFR Journal of Field Robotics
JIRS Journal of Intelligent and Robotic Systems
JMLR Journal of Machine Learning Research
JMAA Journal of Mathematical Analysis and Applications
KEPS ICAPS Workshop on Knowledge Engineering for Planning and Scheduling
KER The Knowledge Engineering Review
KI Annual German Conference on Artificial Intelligence (Künstliche Intelligenz)
KR International Conference on Principles of Knowledge Representation and Reasoning
LNAI Lecture Notes in Artificial Intelligence
LNCS Lecture Notes in Computer Science
ML Machine Learning
NeurIPS Advances in Neural Information Processing Systems
PAMI IEEE Transactions on Pattern Analysis and Machine Intelligence
PlanEx ICAPS Workshop on Planning and Plan Execution for Real-World Systems
PLANSIG Workshop of the UK Planning and Scheduling Special Interest Group
PNAS Proceedings of the National Academy of Sciences of the United States of America
POPL ACM Conference on Principles of Programming Languages
PRSA Proceedings of the Royal Society A: Mathematics, Physics, and Engineering Sciences
RAS Robotics and Autonomous Systems (Journal)
RSS Robotics: Science and Systems (Conference)
SICOMP SIAM Journal on Computing
SMC IEEE Transactions on Systems, Man, and Cybernetics
SOCS International Symposium on Combinatorial Search
TAC IEEE Transactions on Automation and Control
TAC IEEE Transactions on Automatic Control
TCIAIG IEEE Transactions on Computational Intelligence and AI in Games
TCS Theoretical Computer Science
TCST IEEE Transactions on Control Systems Technology
TG IEEE Transactions on Games
TDKE IEEE Transactions on Knowledge and Data Engineering
TIME International Symposium on Temporal Representation and Reasoning
T-ITS IEEE Transactions on Intelligent Transportation Systems
TIV IEEE Transactions on Intelligent Vehicles
TMECH IEEE/ASME Transactions on Mechatronics
TRA IEEE Transactions on Robotics and Automation
T-RO IEEE Transactions on Robotics
UAI Conference on Uncertainty in Artificial Intelligence

Bibliography

[1] M. Aarup, et al. OPTIMUM-AIV: A
knowledge-based planning and scheduling
system for spacecraft AIV. In Intelligent
Scheduling. Morgan Kaufmann, 1994.

[2] N. Ab Azar, et al. From inverse optimal
control to inverse reinforcement learning:
A historical review. Annual Reviews in
Control, 2020.

[3] P. Abbeel and A. Y. Ng. Apprenticeship
learning via inverse reinforcement learn-
ing. In ICML, 2004.

[4] P. Abbeel, et al. An application of rein-
forcement learning to aerobatic helicopter
flight. In NeurIPS, 2006.

[5] P. Abbeel, et al. Using inaccurate models
in reinforcement learning. In ICML, 2006.

[6] P. Abbeel, et al. Autonomous helicopter
aerobatics through apprenticeship learn-
ing. IJRR, 2010.

[7] T. Abdul-Razaq and C. Potts. Dynamic
programming state-space relaxation for
single-machine scheduling. Jour. of the
Operational Research Society, 1988.

[8] M. Abdulaziz and F. Kurz. Formally veri-
fied sat-based ai planning. In AAAI, 2023.

[9] J. Achiam, et al. Towards charac-
terizing divergence in deep Q-learning.
arXiv:1903.08894, 2019.

[10] S. Adali, et al. Representing and reasoning
with temporal constraints in multimedia
presentations. In TIME, 2000.

[11] U. Addison. Human-inspired goal reason-
ing implementations: A survey. Cognitive
Systems Research, 2024.

[12] C. C. Aggarwal. Neural Networks and
Deep Learning: A Textbook. MIT Press,
2018.

[13] J. M. Agosta. Formulation and implemen-
tation of an equipment configuration prob-
lem with the SIPE-2 generative planner. In
AAAI-95 Spring Symposium on Integrated
Planning Applications, 1995.

[14] D. J. Agravante, et al. Learning neuro-
symbolic world models with conversa-
tional proprioception. In ACL, 2023.

[15] J. S. Aguas, et al. Synthesis of proce-
dural models for deterministic transition
systems. arXiv:2307.14368, 2023.

[16] D. W. Aha. Goal reasoning: Foundations,
emerging applications, and prospects. AI
Magazine, 2018.

[17] M. Ahn, et al. Do as I can, not as I
say: Grounding language in robotic af-
fordances. arXiv:2204.01691, 2022.

[18] D. Aineto, et al. Learning STRIPS action
models with classical planning. AIJ, 2019.

[19] S. Ait Bouhsain, et al. Simultaneous ac-
tion and grasp feasibility prediction for
task and motion planning through multi-
task learning. In IROS, 2023.

[20] S. Ait Bouhsain, et al. Extending task and
motion planning with feasibility predic-
tion: Towards multi-robot manipulation
planning of realistic objects. IROS, 2024.

[21] I. Akkaya, et al. Solving Rubik’s cube with
a robot hand. arXiv:1910.07113, 2019.

[22] R. Alami, et al. A geometrical approach
to planning manipulation tasks. the case of
discrete placements and grasps. In ISRR,
1989.

[23] A. Albore and P. Bertoli. Generating safe
assumption-based plans for partially ob-
servable, nondeterministic domains. In
AAAI, 2004.

[24] R. Alford, et al. Translating HTNs to
PDDL: A small amount of domain knowl-
edge can go a long way. In IJCAI, 2009.

[25] R. Alford, et al. Plan aggregation for
strong cyclic planning in nondeterminis-
tic domains. AIJ, 2014.

[26] R. Alford, et al. On the feasibility of plan-
ning graph style heuristics for HTN plan-
ning. In ICAPS, 2014.

[27] R. Alford, et al. Tight bounds for HTN
planning with task insertion. In IJCAI,
2015.

[28] R. Alford, et al. Bound to plan: Exploiting
classical heuristics via automatic transla-
tions of tail-recursive HTN problems. In
ICAPS, 2016.

[29] J. Allen. Towards a general theory of ac-
tion and time. AIJ, 1984.

[30] J. Allen. Temporal reasoning and plan-
ning. In J. Allen, et al., editors, Reasoning
about Plans. Morgan Kaufmann, 1991.

[31] J. F. Allen. Maintaining knowledge about

Free pre-publication, for personal use only. To be published by Cambridge University Press.

565

566 Bibliography

temporal intervals. CACM, 1983.
[32] J. F. Allen. Planning as temporal reason-

ing. In KR, 1991.
[33] J. F. Allen and J. A. Koomen. Planning

using a temporal world model. In IJCAI,
1983.

[34] E. Altman. Constrained Markov Decision
Processes, volume 7. CRC Press, 1999.

[35] S. Aluru. Lagged Fibonacci random num-
ber generators for distributed memory par-
allel computers. Jour. of Parallel and Dis-
tributed Computing, 1997.

[36] J. A. Ambros-Ingerson and S. Steel. Inte-
grating planning, execution and monitor-
ing. In AAAI, 1988.

[37] E. Amir and A. Chang. Learning partially
observable deterministic action models.
JAIR, 2008.

[38] G. Anderson, et al. Neurosymbolic rein-
forcement learning with formally verified
exploration. NeurIPS, 2020.

[39] D. Andre and S. J. Russell. State ab-
straction for programmable reinforcement
learning agents. In AAAI, 2002.

[40] D. Andre, et al. Generalized prioritized
sweeping. In NeurIPS, 1997.

[41] D. Andre, et al. Generalized prioritized
sweeping. NeurIPS, 1997.

[42] J. Andreas, et al. Modular multitask rein-
forcement learning with policy sketches.
In ICML, 2017.

[43] M. Andrychowicz, et al. Hindsight expe-
rience replay. In NeurIPS, 2017.

[44] D. Angluin, et al. Learning regular lan-
guages via alternating automata. In IJCAI,
2015.

[45] B. Ans, et al. Self-refreshing memory in
artificial neural networks: Learning tem-
poral sequences without catastrophic for-
getting. Connection Science, 2004.

[46] Anthropic AI. The claude 3 model family:
Opus, sonnet, haiku, 2024. Online report.

[47] G. Antonelli, et al. Underwater robotics.
In Handbook of Robotics. Springer, 2008.

[48] M. Araya-Lopez, et al. A closer look at
MOMDPs. In ICTAI, 2010.

[49] S. J. Arfaee, et al. Learning heuristic func-
tions for large state spaces. AIJ, 2011.

[50] B. D. Argall, et al. A survey of robot
learning from demonstration. RAS, 2009.

[51] J. A. Arjona-Medina, et al. Rudder: Re-
turn decomposition for delayed rewards.
NeurIPS, 2019.

[52] S. Arora and P. Doshi. A survey of in-
verse reinforcement learning: Challenges,

methods and progress. AIJ, 2021.
[53] K. Arulkumaran, et al. A brief sur-

vey of deep reinforcement learning.
arXiv:1708.05866, 2017.

[54] D. Arumugam, et al. Deep reinforce-
ment learning from policy-dependent hu-
man feedback. arXiv:1902.04257, 2019.

[55] D. Arumugam, et al. An information-
theoretic perspective on credit as-
signment in reinforcement learning.
arXiv:2103.06224, 2021.

[56] C. Arzate Cruz and T. Igarashi. A sur-
vey on interactive reinforcement learning:
Design principles and open challenges. In
ACM Designing Interactive Systems Conf.
(DIS), 2020.

[57] M. Asai. Unsupervised grounding of
plannable first-order logic representation
from images. In ICAPS, 2019.

[58] M. Asai and A. Fukunaga. Classical
planning in deep latent space: Bridging
the subsymbolic-symbolic boundary. In
AAAI, 2018.

[59] K. J. Ȧström. Optimal control of Markov
decision processes with incomplete state
estimation. JMAA, 1965.

[60] A. Atramentov and S. M. LaValle. Effi-
cient nearest neighbor searching for mo-
tion planning. In ICRA, volume 1, 2002.

[61] A. Attia and S. Dayan. Global overview
of imitation learning. arXiv:1801.06503,
2018.

[62] T.-C. Au and D. S. Nau. The incomplete-
ness of planning with volatile external in-
formation. In ECAI, Aug. 2006.

[63] T.-C. Au, et al. On the complexity of
plan adaptation by derivational analogy in
a universal classical planning framework.
In European Conf. on Case-Based Rea-
soning (ECCBR), Sept. 2002.

[64] N. F. Ayan, et al. HOTRiDE: Hierarchical
ordered task replanning in dynamic envi-
ronments. In PlanEx, 2007.

[65] F. Baader, et al., editors. The Descrip-
tion Logic Handbook: Theory, Implemen-
tation and Applications. Cambridge Univ.
Press, 2003.

[66] P. BAAI. Plan4mc: Skill reinforce-
ment learning and planning for open-world
minecraft tasks. arXiv:2303.16563, 2023.

[67] F. Bacchus and F. Kabanza. Using tempo-
ral logics to express search control knowl-
edge for planning. AIJ, 2000.

[68] F. Bacchus and Q. Yang. The downward
refinement property. In IJCAI, 1991.

Bibliography 567

[69] C. Bäckström. Planning in polynomial
time: The SAS-PUB class. CI, 1991.

[70] C. Bäckström and B. Nebel. Complexity
results for SAS+ planning. In IJCAI, 1993.

[71] C. Bäckström and B. Nebel. Complexity
results for SAS+ planning. CI, 1995.

[72] E. Badouel, et al. Petri net synthesis.
Springer, 2015.

[73] S. Badreddine and M. Spranger. Injecting
prior knowledge for transfer learning into
reinforcement learning algorithms using
logic tensor networks. arXiv:1906.06576,
2019.

[74] S. Badreddine, et al. Logic tensor net-
works. AIJ, 2022.

[75] A. Bai and S. Russell. Efficient rein-
forcement learning with hierarchies of ma-
chines by leveraging internal transitions.
In IJCAI, 2017.

[76] T. Bai, et al. Temporal graph neural net-
works for social recommendation. In IEEE
Internat. Conf. on Big Data, 2020.

[77] J. A. Baier, et al. A heuristic search ap-
proach to planning with temporally ex-
tended preferences. AIJ, 2009.

[78] J. A. Baier, et al. Diagnostic problem solv-
ing: a planning perspective. In KR, 2014.

[79] M. Ball and R. C. Holte. The compression
power of symbolic pattern databases. In
ICAPS, 2008.

[80] Y. Bansod, et al. HTN replanning from the
middle. In FLAIRS, May 2022.

[81] P. Baptiste, et al. Constraint-based
scheduling and planning. In F. Rossi, et al.,
editors, Handbook of Constraint Program-
ming, chapter 22. Elsevier, 2006.

[82] M. Barbier, et al. Implementation and
flight testing of an onboard architecture
for mission supervision. In Internat. Un-
manned Air Vehicle Systems Conf., 2006.

[83] J. Barraquand, et al. Numerical potential
field techniques for robot path planning.
SMC, 1992.

[84] J. Barraquand, et al. A random sampling
scheme for path planning. IJRR, 1997.

[85] A. Barrett and D. S. Weld. Characteriz-
ing subgoal interactions for planning. In
IJCAI, 1993.

[86] A. Barrett and D. S. Weld. Partial order
planning: Evaluating possible efficiency
gains. AIJ, 1994.

[87] A. Barrett, et al. UCPOP user’s manual.
Technical Report TR-93-09-06, Univ. of
Washington, 1993.

[88] C. Barrett, et al. The SMT-LIB standard:

Version 2.0. In International Workshop on
Satisfiability Modulo Theories, 2010.

[89] S. Barrett, et al. Transfer learning for rein-
forcement learning on a physical robot. In
AAMAS Adaptive Learning Agents Work-
shop, 2010.

[90] J. Barry, et al. DetH*: Approximate hier-
archical solution of large Markov decision
processes. In IJCAI, 2011.

[91] R. Barták and D. Toropila. Reformulating
constraint models for classical planning.
In FLAIRS, 2008.

[92] R. Barták and D. Toropila. Enhancing con-
straint models for planning problems. In
FLAIRS, 2009.

[93] R. Barták, et al. An Introduction to
Constraint-Based Temporal Reasoning.
Morgan&Claypool, 2014.

[94] R. Barták, et al. Validation of hierarchical
plans via parsing of attribute grammars. In
ICAPS, 2018.

[95] R. Barták, et al. A novel parsing-based
approach for verification of hierarchical
plans. In ICTAI, 2020.

[96] R. Barták, et al. Correcting hierarchical
plans by action deletion. In KR, 2021.

[97] A. Barto and M. Duff. Monte carlo ma-
trix inversion and reinforcement learning.
NeurIPS, 1993.

[98] A. G. Barto, et al. Associative search
network: A reinforcement learning asso-
ciative memory. Biological Cybernetics,
1981.

[99] A. G. Barto, et al. Learning to act us-
ing real-time dynamic-programming. AIJ,
1995.

[100] K. Bauters, et al. CAN (PLAN)+: extend-
ing the operational semantics of the BDI
architecture to deal with uncertain infor-
mation. In UAI, 2014.

[101] K. Bauters, et al. Anytime algorithms
for solving possibilistic MDPs and hybrid
MDPs. In FoIKS, 2016.

[102] M. Beetz. Structured reactive controllers:
Controlling robots that perform everyday
activity. In ICAA, 1999.

[103] M. Beetz and D. McDermott. Declarative
goals in reactive plans. In AIPS, 1992.

[104] M. Beetz and D. McDermott. Improv-
ing robot plans during their execution. In
AIPS, 1994.

[105] G. Behnke. Hierarchical Planning
through Propositional Logic. PhD thesis,
Ulm University, 2019.

[106] G. Behnke, et al. This is a solution! (...

568 Bibliography

but is it though?): Verifying solutions of
hierarchical planning problems. In ICAPS,
2017.

[107] G. Behnke, et al. totSAT – totally-ordered
hierarchical planning through SAT. In
AAAI, 2018.

[108] G. Behnke, et al. Finding optimal solutions
in HTN planning-a SAT-based approach.
In IJCAI, 2019.

[109] R. Bellman. Dynamic Programming.
Princeton Univ. Press, 1957.

[110] K. Ben Lamine and F. Kabanza. Reason-
ing about robot actions: a model checking
approach. In M. Beetz, et al., editors, Ad-
vances in Plan-Based Control of Robotic
Agents. 2002.

[111] Y. Bengio, et al. A neural probabilistic
language model. JMLR, 2003.

[112] Y. Bengio, et al. Curriculum learning. In
ICML, 2009.

[113] P. Bercher, et al. Hybrid planning heuris-
tics based on task decomposition graphs.
In SOCS, 2014.

[114] P. Bercher, et al. An admissible HTN plan-
ning heuristic. In IJCAI, 2017.

[115] R. Berghammer and H. Zierer. Relational
algebraic semantics of deterministic and
nondeterministic programs. TCS, 1986.

[116] D. Bernard, et al. Remote agent exper-
iment DS1 technology validation report.
Technical report, NASA, 2000.

[117] L. Bernardinello and L. Petrucci, editors.
PETRI NETS: 43rd Internat. Conf. on Ap-
plications and Theory of Petri Nets and
Concurrency, 2022. Springer.

[118] S. Bernardini and D. Smith. Finding mu-
tual exclusion invariants in temporal plan-
ning domains. In IWPSS, 2011.

[119] S. Bernardini and D. E. Smith. Develop-
ing domain-independent search control for
Europa2. In HDIP, 2007.

[120] S. Bernardini and D. E. Smith. Automati-
cally generated heuristic guidance for Eu-
ropa2. In i-SAIRAS, 2008.

[121] S. Bernardini and D. E. Smith. Towards
search control via dependency graphs in
Europa2. In HDIP, 2009.

[122] C. Berner, et al. Dota 2 with
large scale deep reinforcement learning.
arXiv:1912.06680, 2019.

[123] B. Berthomieu, et al. The tool TINA – con-
struction of abstract state spaces for Petri
nets and time Petri nets. Internat. Jour. of
Production Research, 2004.

[124] P. Bertoli, et al. MBP: a model based plan-

ner. In IJCAI Workshop on Planning under
Uncertainty and Incomplete Information,
2001.

[125] P. Bertoli, et al. Planning in nondetermin-
istic domains under partial observability
via symbolic model checking. In IJCAI,
2001.

[126] P. Bertoli, et al. A framework for planning
with extended goals under partial observ-
ability. In ICAPS, 2003.

[127] P. Bertoli, et al. Interleaving execution
and planning for nondeterministic, par-
tially observable domains. In ECAI, 2004.

[128] P. Bertoli, et al. Strong planning under
partial observability. AIJ, 2006.

[129] P. Bertoli, et al. Automated composition
of Web services via planning in asyn-
chronous domains. AIJ, 2010.

[130] D. Bertsekas. Dynamic Programming and
Optimal Control. Athena Scientific, 2001.

[131] D. Bertsekas and J. Tsitsiklis. Neuro-
Dynamic Programming. Athena Scien-
tific, 1996.

[132] D. P. Bertsekas and J. N. Tsitsiklis. An
analysis of stochastics shortest path prob-
lems. Mathematics of Operations Re-
search, 1991.

[133] C. Betz and M. Helmert. Planning with ℎ+
in theory and practice. In KI, 2009.

[134] R. Beutner and B. Finkbeiner. Non-
deterministic planning for hyperproperty
verification. In ICAPS, 2024.

[135] J. Bhandari and D. Russo. Global optimal-
ity guarantees for policy gradient methods.
arXiv:1906.01786, 2019.

[136] S. Bhatnagar, et al. Incremental natural
actor-critic algorithms. NeurIPS, 2007.

[137] F. Bianchi, et al. Monte Carlo Tree Search
Planning for continuous action and state
space. In Italian Workshop on AI Robotics.
2022.

[138] R. A. Bianchi, et al. Heuristic selection of
actions in multiagent reinforcement learn-
ing. In IJCAI, 2007.

[139] R. A. Bianchi, et al. Accelerating au-
tonomous learning by using heuristic se-
lection of actions. Jour. of Heuristics,
2008.

[140] R. A. Bianchi, et al. Transferring knowl-
edge as heuristics in reinforcement learn-
ing: A case-based approach. AIJ, 2015.

[141] J. Bidot, et al. Plan repair in hybrid plan-
ning. In KI, 2008.

[142] J. Bidot, et al. Geometric backtracking
for combined task and motion planning in

Bibliography 569

robotic systems. AIJ, 2015.
[143] A. Bit-Monnot, et al. FAPE: a

Constraint-based Planner for Genera-
tive and Hierarchical Temporal Planning.
arXiv:2010.13121, 2020.

[144] S. Biundo and B. Schattenberg. From ab-
stract crisis to concrete relief – A prelimi-
nary report on combining state abstraction
and HTN planning. In ECP, 2001.

[145] A. Blum and J. Langford. Probabilistic
planning in the graphplan framework. In
ECP, 1999.

[146] A. L. Blum and M. L. Furst. Fast plan-
ning through planning graph analysis. AIJ,
1997.

[147] M. Boddy and T. Dean. Solving time-
dependent planning problems. In IJCAI,
1989.

[148] R. Bodik, et al. Programming with angelic
nondeterminism. In POPL, 2010.

[149] A. Boeing and T. Bräunl. Evaluation of
real-time physics simulation systems. In
Internat. Conf. on Computer Graphics and
Interactive Techniques in Australia and
Southeast Asia, 2007.

[150] J. Bohren, et al. Towards autonomous
robotic butlers: Lessons learned with the
PR2. In ICRA, 2011.

[151] R. Bommasani, et al. On the oppor-
tunities and risks of foundation models.
arXiv:2108.07258, 2022.

[152] L. Bonassi, et al. FOND planning for pure-
past linear temporal logic goals. In ECAI,
2023.

[153] L. Bonassi, et al. Planning for temporally
extended goals in pure-past linear tempo-
ral logic. In ICAPS, 2023.

[154] B. Bonet. On the speed of convergence of
value iteration on stochastic shortest-path
problems. Mathematics of Operations Re-
search, 2007.

[155] B. Bonet and H. Geffner. Planning with
incomplete information as heuristic search
in belief space. In AIPS, 2000.

[156] B. Bonet and H. Geffner. Planning as
heuristic search. AIJ, 2001.

[157] B. Bonet and H. Geffner. Faster heuristic
search algorithms for planning with uncer-
tainty and full feedback. In IJCAI, 2003.

[158] B. Bonet and H. Geffner. Labeled RTDP:
Improving the convergence of real-time
dynamic programming. In ICAPS, 2003.

[159] B. Bonet and H. Geffner. mGPT: A prob-
abilistic planner based on heuristic search.
JAIR, 2005.

[160] B. Bonet and H. Geffner. Learning in
depth-first search: A unified approach
to heuristic search in deterministic, non-
deterministic, probabilistic, and game tree
settings. In ICAPS, 2006.

[161] B. Bonet and H. Geffner. Solving
POMDPs: RTDP-Bel vs. point-based al-
gorithms. In IJCAI, 2009.

[162] B. Bonet and H. Geffner. Action selection
for MDPs: Anytime AO* versus UCT. In
AAAI, 2012.

[163] B. Bonet and H. Geffner. Belief tracking
for planning with sensing: Width, com-
plexity and approximations. JAIR, 2014.

[164] B. Bonet and H. Geffner. Learning first-
order symbolic planning representations
from plain graphs. arXiv:1909.05546,
2019.

[165] B. Bonet and M. Helmert. Strengthening
landmark heuristics via hitting sets. In
ECAI, 2010.

[166] B. Bonet, et al. Directed unfolding of petri
nets. Trans. Petri Nets Other Model. Con-
curr., 2008.

[167] C. Borst, et al. Rollin’ Justin - Mobile plat-
form with variable base. In ICRA, 2009.

[168] A. Bouguerra, et al. Semantic knowledge-
based execution monitoring for mobile
robots. In ICRA, 2007.

[169] C. Boutilier, et al. Structured reachability
analysis for Markov decision processes. In
UAI, 1998.

[170] C. Boutilier, et al. Decision-theoretic plan-
ning: Structural assumptions and compu-
tational leverage. JAIR, May 1999.

[171] C. Boutilier, et al. Stochastic dynamic pro-
gramming with factored representations.
AIJ, 2000.

[172] J. Boyan and M. Littman. Exact solutions
to time-dependent mdps. NeurIPS, 2000.

[173] J. A. Boyan and M. L. Littman. Exact
solutions to time dependent MDPs. In
NeurIPS, 2001.

[174] J. A. Boyan and A. W. Moore. Learning
evaluation functions to improve optimiza-
tion by local search. JMLR, 2000.

[175] R. Brafman and J. Hoffmann. Conformant
planning via heuristic forward search: A
new approach. In ICAPS, 2004.

[176] B. Braunschweig and M. Ghallab, editors.
Reflections on Artificial Intelligence for
Humanity. Springer, 2021.

[177] M. Brenner and B. Nebel. Continual plan-
ning and acting in dynamic multiagent en-
vironments. JAAMAS, 2009.

570 Bibliography

[178] R. Bridson. Fluid Simulation for Com-
puter Graphics. CRC Press, 2015.

[179] M. A. A. Brohan, et al. Do as I can, not
as I say: Grounding language in robotic
affordances. arXiv:2204.01691, 2022.

[180] R. Brooks and T. Lozano-Pérez. A sub-
division algorithm in configuration space
for findpath with rotation. In IJCAI, 1983.

[181] N. Brown and T. Sandholm. Superhuman
ai for multiplayer poker. Science, 2019.

[182] C. B. Browne, et al. A survey of Monte
Carlo tree search methods. TCIAIG, 2012.

[183] V. Brusoni, et al. A spectrum of definitions
for temporal model-based diagnosis. AIJ,
1998.

[184] V. Brusoni, et al. Qualitative and quanti-
tative temporal constraints and relational
databases: Theory, architecture, and ap-
plications. TDKE, 1999.

[185] V. Bruyère, et al. Active learning of mealy
machines with timers. arXiv:2403.02019,
2024.

[186] T. Brys, et al. Reinforcement learning from
demonstration through shaping. In IJCAI,
2015.

[187] S. Bubeck, et al. Sparks of artificial gen-
eral intelligence: Early experiments with
GPT-4. arXiv:2303.12712, 2023.

[188] A. Bucchiarone, et al. Domain objects
for continuous context-aware adaptation of
service-based systems. In ICWS, 2013.

[189] C. Büchner, et al. Exploiting cyclic depen-
dencies in landmark heuristics. In ICAPS,
volume 31, 2021.

[190] O. Buffet and O. Sigaud, editors. Markov
Decision Processes in Artificial Intelli-
gence. Wiley, 2010.

[191] M. Buro. From simple features to sophis-
ticated evaluation functions. In CG, 1998.

[192] L. Busoniu, et al. Optimistic planning for
sparsely stochastic systems. In ADPRL,
2011.

[193] T. Bylander. Complexity results for ex-
tended planning. In AAAI, 1992.

[194] T. Bylander. The computational complex-
ity of propositional STRIPS planning. AIJ,
1994.

[195] S. Caldera, et al. Review of deep learn-
ing methods in robotic grasp detection.
Multimodal Technologies and Interaction,
2018.

[196] A. Camacho, et al. Finite LTL synthesis
with environment assumptions and quality
measures. In KR, 2018.

[197] S. Cambon, et al. A hybrid approach to

intricate motion, manipulation and task
planning. IJRR, Jan. 2009.

[198] T. Campari, et al. Online learning of
reusable abstract models for object goal
navigation. In CVPR, 2022.

[199] J. Canny. The complexity of robot motion
planning. MIT press, 1988.

[200] Y. Cao and C. Lee. Robot behavior-tree-
based task generation with large language
models. arXiv:2302.12927, 2023.

[201] Z. Cao, et al. Temporal video-
language alignment network for re-
ward shaping in reinforcement learning.
arXiv:2302.03954, 2023.

[202] A. Capitanelli and F. Mastrogio-
vanni. A framework to generate neu-
rosymbolic PDDL-compliant planners.
arXiv:2303.00438, 2023.

[203] J. Carbonell, et al. PRODIGY : An inte-
grated architecture for planning and learn-
ing. In K. van Lehn, editor, Architectures
for Intelligence. Lawrence Erlbaum Asso-
ciates, 1990.

[204] J. Cardoso and R. Valette. Petri nets. Open
Science, DOI:10.34849/zkrr-sn28, 2024.

[205] T. Carta, et al. Grounding large language
models in interactive environments with
online reinforcement learning. In ICML,
2023.

[206] L. Castano and H. Xu. Safe decision mak-
ing for risk mitigation of uas. In Inter-
nat. Conf. on Unmanned Aircraft Systems,
2019.

[207] C. Castellini, et al. Improvements to SAT-
based conformant planning. In ECP, 2001.

[208] C. Castellini, et al. SAT-based planning
in complex domains: Concurrency, con-
straints and nondeterminism. AIJ, 2003.

[209] L. Castillo, et al. Efficiently handling tem-
poral knowledge in an HTN planner. In
ICAPS, 2006.

[210] L. Castillo, et al. Automatic generation of
temporal planning domains for e-learning
problems. Journal of Scheduling, 2010.

[211] M. Certicky. Real-time action model
learning with online algorithm 3SG. Ap-
plied Artificial Intelligence, 2014.

[212] A. Cesta and A. Oddi. Gaining efficiency
and flexibility in the simple temporal prob-
lem. In TIME, 1996.

[213] A. Cesta, et al. A constraint-based method
for project scheduling with time windows.
Jour. of Heuristics, 2002.

[214] A. Champandard, et al. The AI for Kill-
zone 2’s multiplayer bots. In GDC, 2009.

Bibliography 571

[215] X. Chang, et al. A comprehensive survey
of scene graphs: Generation and applica-
tion. PAMI, 2021.

[216] H. J. Charlesworth and G. Montana. Solv-
ing challenging dexterous manipulation
tasks with trajectory optimisation and re-
inforcement learning. In ML, 2021.

[217] E. Charniak. Introduction to Deep Learn-
ing. MIT Press, 2018.

[218] G. M. J. Chaslot, et al. Progressive strate-
gies for monte-carlo tree search. New
Mathematics and Natural Computation,
2008.

[219] R. Chatilla, et al. Integrated planning and
execution control of autonomous robot ac-
tions. In ICRA, 1992.

[220] F. Chaumette and S. Hutchinson. Visual
servoing and visual tracking. In Handbook
of Robotics. Springer, 2008.

[221] D. Chen and P. Bercher. Fully ob-
servable nondeterministic HTN planning–
formalisation and complexity results. In
ICAPS, 2021.

[222] D. Z. Chen, et al. Learning domain-
independent heuristics for grounded and
lifted planning. In AAAI, 2024.

[223] J. Chen, et al. Benchmarking large lan-
guage models in retrieval-augmented gen-
eration. In AAAI, 2024.

[224] L. Chen, et al. Decision transformer: Re-
inforcement learning via sequence model-
ing. NeurIPS, 2021.

[225] P. C. Chen and Y. K. Hwang. Sandros: a
dynamic graph search algorithm for mo-
tion planning. In ICRA, 1998.

[226] Y. Chen, et al. Autotamp: Au-
toregressive task and motion planning
with llms as translators and checkers.
arXiv:2306.06531, 2023.

[227] Z. Chen, et al. Graph neural
network-based fault diagnosis: a review.
arXiv:2111.08185, 2021.

[228] C.-A. Cheng, et al. Heuristic-guided rein-
forcement learning. NeurIPS, 2021.

[229] M. Chignoli, et al. The MIT humanoid
robot: Design, motion planning, and
control for acrobatic behaviors. In Hu-
manoids, 2021.

[230] R. Chitnis, et al. Guided search for task
and motion plans using learned heuristics.
In ICRA, 2016.

[231] H. Choset, et al. Principles of robot mo-
tion: theory, algorithms, and implementa-
tions. MIT press, 2005.

[232] B. Christian. The alignment problem:

How can machines learn human values?
Atlantic Books, 2021.

[233] P. F. Christiano, et al. Deep reinforce-
ment learning from human preferences.
NeurIPS, 2017.

[234] A. Cimatti, et al. A provably correct
embedded verifier for the certification of
safety critical software. In CAV, 1997.

[235] A. Cimatti, et al. Automatic OBDD-
based generation of universal plans in non-
deterministic domains. In AAAI, 1998.

[236] A. Cimatti, et al. Strong planning in non-
deterministic domains via model check-
ing. In AIPS, June 1998.

[237] A. Cimatti, et al. Weak, strong, and strong
cyclic planning via symbolic model check-
ing. AIJ, 2003.

[238] A. Cimatti, et al. Solving temporal prob-
lems using SMT: Strong controllability. In
CP, 2012.

[239] A. Cimatti, et al. Solving temporal prob-
lems using SMT: Weak controllability. In
AAAI, 2012.

[240] A. Cimatti, et al. Strong temporal planning
with uncontrollable durations: A state-
space approach. In AAAI, Jan. 2015.

[241] J. Claßen, et al. Platas—integrating plan-
ning and the action language Golog. KI,
2012.

[242] L. Claussmann, et al. A review of motion
planning for highway autonomous driving.
T-ITS, 2019.

[243] J. D. Co-Reyes, et al. Self-consistent tra-
jectory autoencoder: Hierarchical rein-
forcement learning with trajectory embed-
dings. In ICML, 2018.

[244] A. Coates, et al. Apprenticeship learning
for helicopter control. CACM, 2009.

[245] L. C. Cobo, et al. Abstraction from demon-
stration for efficient reinforcement learn-
ing in high-dimensional domains. AIJ,
2014.

[246] J. Cohen. Non-deterministic algorithms.
ACM Computing Surveys (CSUR), 1979.

[247] A. Coles and A. Smith. Marvin: A heuris-
tic search planner with online macro-
action learning. JAIR, 2007.

[248] A. I. Coles, et al. Planning with problems
requiring temporal coordination. In AAAI,
2008.

[249] A. J. Coles, et al. COLIN: planning with
continuous linear numeric change. JAIR,
2012.

[250] M. Colledanchise and L. Natale. Improv-
ing the parallel execution of behavior trees.

572 Bibliography

In IROS, 2018.
[251] M. Colledanchise and L. Natale. Han-

dling concurrency in behavior trees. T-RO,
2022.

[252] M. Colledanchise and P. Ögren. Behavior
Trees in Robotics and AI: An Introduction.
CRC Press, 2018.

[253] M. Colledanchise, et al. Learning of be-
havior trees for autonomous agents. TG,
2019.

[254] M. Colledanchise, et al. Formalizing the
execution context of behavior trees for run-
time verification of deliberative policies.
In IROS. 2021.

[255] P. Conrad, et al. Flexible execution of plans
with choice. In ICAPS, 2009.

[256] S. Coradeschi and A. Saffiotti. Perceptual
anchoring: a key concept for plan execu-
tion in embedded systems. In Advances
in Plan-Based Control of Robotic Agents.
Springer-Verlag, 2002.

[257] P. I. Corke, et al. Mining robotics. In
Handbook of Robotics. Springer, 2008.

[258] R. C. Corrêa, et al. Insertion and sort-
ing in a sequence of numbers minimizing
the maximum sum of a contiguous sub-
sequence. Jour. of Discrete Algorithms,
2013.

[259] A. Couetoux. Monte Carlo tree search
for continuous and stochastic sequential
decision making problems. PhD thesis,
Université Paris Sud, 2013.

[260] R. Coulom. Efficient selectivity and
backup operators in Monte-Carlo Tree
Search. In CG. 2006.

[261] D. Cram, et al. A complete chronicle dis-
covery approach: application to activity
analysis. Expert Systems, 2012.

[262] S. Cresswell, et al. Acquiring planning
domain models using LOCM. KER, 2013.

[263] J. C. Culberson and J. Schaeffer. Pattern
databases. CI, 1998.

[264] K. Currie and A. Tate. O-Plan: the open
planning architecture. AIJ, 1991.

[265] K. Currie and A. Tate. O-Plan: The open
planning architecture. AIJ, 1991.

[266] W. Cushing and S. Kambhampati. Replan-
ning: A new perspective. ICAPS, 2005.
Poster.

[267] G. Dagan, et al. Dynamic planning with a
LLM. arXiv:2308.06391, 2023.

[268] P. Dai and E. A. Hansen. Prioritizing Bell-
man backups without a priority queue. In
ICAPS, 2007.

[269] U. Dal Lago, et al. Planning with a lan-

guage for extended goals. In AAAI, 2002.
[270] M. Dalal, et al. Imitating task and mo-

tion planning with visuomotor transform-
ers. arXiv:2305.16309, 2023.

[271] M. Daniele, et al. Strong cyclic planning
revisited. In ECP, Sept. 1999.

[272] N. T. Dantam, et al. An incremental
constraint-based framework for task and
motion planning. IJRR, 2018.

[273] I. Dasgupta, et al. Collaborating with
language models for embodied reasoning.
arXiv:2302.00763, 2023.

[274] G. De Giacomo, et al. Automatic behavior
composition synthesis. AIJ, 2013.

[275] L. de Silva. HTN acting: A formalism and
an algorithm. In AAMAS, 2018.

[276] L. De Silva and L. Padgham. A compari-
son of BDI based real-time reasoning and
HTN based planning. In Australian Joint
Conf. on AI, 2004.

[277] L. de Silva, et al. The HATP hierarchical
planner: Formalisation and an initial study
of its usability and practicality. In IROS,
2015.

[278] L. D. de Silva, et al. Towards combining
HTN planning and geometric task plan-
ning. In RSS Workshop on Combined
Robot Motion Planning and AI Planning
for Practical Applications, 2013.

[279] P. E. U. de Souza, et al. Momdp-based
target search mission taking into account
the human operator’s cognitive state. In
ICTAI, 2015.

[280] T. Dean and K. Kanazawa. A model for
reasoning about persistence and causation.
CI, 1989.

[281] T. Dean and S.-H. Lin. Decomposition
techniques for planning in stochastic do-
mains. In IJCAI, 1995.

[282] T. Dean and D. McDermott. Temporal data
base management. AIJ, 1987.

[283] T. Dean, et al. Hierarchical planning
involving deadlines, travel time and re-
sources. CI, 1988.

[284] T. Dean, et al. Model reduction techniques
for computing approximately optimal so-
lutions for Markov decision processes. In
UAI, 1997.

[285] T. L. Dean and M. Wellman. Planning and
Control. Morgan Kaufmann, 1991.

[286] R. Dechter, et al. Temporal constraint net-
works. AIJ, 1991.

[287] T. Degris, et al. Model-free reinforcement
learning with continuous action in prac-
tice. In American Control Conf., 2012.

Bibliography 573

[288] M. P. Deisenroth, et al. A survey on pol-
icy search for robotics. Foundations and
Trends in Robotics, 2013.

[289] P. Del Moral. Nonlinear filtering: Inter-
acting particle resolution. Comptes Ren-
dus de l’Académie des Sciences-Series I-
Mathematics, 1997.

[290] J.-A. Delamer, et al. Safe path planning
for UAV urban operation under gnss signal
occlusion risk. RAS, 2021.

[291] F. den Hengst, et al. Planning for potential:
efficient safe reinforcement learning. ML,
2022.

[292] F. den Hengst, et al. Reinforcement learn-
ing with option machines. In L. D. Raedt,
editor, IJCAI, 2022.

[293] F. D’Epenoux. A probabilistic production
and inventory problem. Management Sci-
ence, 1963.

[294] C. Derman. Finite State Markovian Deci-
sion Processes. Academic Press, 1970.

[295] O. Despouys and F. Ingrand. Propice-Plan:
Toward a unified framework for planning
and execution. In ECP, 1999.

[296] M. Diaz, editor. Petri Nets: Fundamen-
tal Models, Verification and Applications.
Wiley, 2009.

[297] T. G. Dietterich. Hierarchical reinforce-
ment learning with the maxq value func-
tion decomposition. JAIR, 2000.

[298] M. B. Do and S. Kambhampati. Plan-
ning as constraint satisfaction: Solving the
planning graph by compiling it into CSP.
AIJ, 2001.

[299] M. B. Do and S. Kambhampati. Sapa: A
domain independent heuristic metric tem-
poral planner. In ECP, 2001.

[300] P. Doherty and J. Kvarnström. TALplan-
ner: A temporal logic based planner.
AIMag, 2001.

[301] P. Doherty, et al. A temporal logic-based
planning and execution monitoring frame-
work for unmanned aircraft systems. JAA-
MAS, 2009.

[302] B. R. Donald and P. Xavier. Provably good
approximation algorithms for optimal kin-
odynamic planning (1 & 2). Algorithmica,
1995.

[303] H. Dong, et al. Neural logic machines.
arXiv:1904.11694, 2019.

[304] J. E. Doran and D. Michie. Experiments
with the graph traverser program. PRSA,
1966.

[305] R. C. Dorf and R. H. Bishop. Modern
Control Systems. Prentice Hall, 2010.

[306] C. Dornhege, et al. Semantic attachments
for domain-independent planning systems.
In ICAPS, 2009.

[307] C. Dousson and P. Le Maigat. Chronicle
recognition improvement using temporal
focusing and hierarchization. In IJCAI,
2007.

[308] C. Dousson, et al. Situation recognition:
Representation and algorithms. In IJCAI,
1993.

[309] T. Drakengren and P. Jonsson. Eight maxi-
mal tractable subclasses of Allen’s algebra
with metric time. JAIR, 1997.

[310] D. Driess, et al. Deep visual heuristics:
Learning feasibility of mixed-integer pro-
grams for manipulation planning. In ICRA,
2020.

[311] D. Driess, et al. Palm-e: An
embodied multimodal language model.
arXiv:2303.03378, 2023.

[312] N. Drougard, et al. Qualitative
possibilistic mixed-observable MDPs.
arXiv:1309.6826, 2013.

[313] Y. Du, et al. Guiding pretraining in re-
inforcement learning with large language
models. In ICML, 2023.

[314] H. Duan, et al. Sim-to-real learning
of footstep-constrained bipedal dynamic
walking. arXiv:2203.07589, 2022.

[315] S. Dutta, et al. Frugal lms trained to in-
voke symbolic solvers achieve parameter-
efficient arithmetic reasoning. In AAAI,
2024.

[316] F. Dvorak, et al. A flexible ANML actor
and planner in robotics. In ICAPS Wksp.
on Planning and Robotics, 2014.

[317] J. H. Eaton and L. A. Zadeh. Optimal pur-
suit strategies in discrete state probabilistic
systems. Transactions of the ASME, 1962.

[318] A. Ecoffet, et al. Go-explore: a new
approach for hard-exploration problems.
arXiv, 2021.

[319] S. Edelkamp. Planning with pattern
databases. In ECP, 2001.

[320] S. Edelkamp. Symbolic pattern databases
in heuristic search planning. In AIPS,
2002.

[321] S. Edelkamp. Taming numbers and du-
rations in the model checking integrated
planning system. JAIR, 2003.

[322] R. Effinger, et al. Dynamic execution of
temporally and spatially flexible reactive
programs. In AAAI Workshop on Bridging
the Gap between Task and Motion Plan-
ning, 2010.

574 Bibliography

[323] A. El-Kholy and B. Richard. Temporal
and resource reasoning in planning: the
ParcPlan approach. In ECAI, 1996.

[324] M. Elkawkagy, et al. Improving hierar-
chical planning performance by the use of
landmarks. In AAAI, volume 26, 2021.

[325] E. A. Emerson. Temporal and modal logic.
In Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Se-
mantics. Elsevier, 1990.

[326] E. Erdem, et al. Answer set programming
for collaborative housekeeping robotics:
representation, reasoning, and execution.
Intelligent Service Robotics, Oct. 2012.

[327] K. Erol, et al. Semantics for hierarchical
task-network planning. Technical Report
CS TR-3239, Univ. of Maryland, 1994.

[328] K. Erol, et al. UMCP: A sound and
complete procedure for hierarchical task-
network planning. In AIPS, June 1994.

[329] K. Erol, et al. Complexity, decidabil-
ity and undecidability results for domain-
independent planning. AIJ, 1995.

[330] K. Erol, et al. Complexity results for HTN
planning. AMAI, 1996.

[331] T. A. Estlin and R. J. Mooney. Learning
to improve both efficiency and quality of
planning. In IJCAI, 1997.

[332] T. A. Estlin, et al. An argument for a
hybrid HTN/operator-based approach to
planning. In ECP, 1997.

[333] C. Estrada, et al. Hierarchical SLAM:
Real-time accurate mapping of large en-
vironments. TRA, 2005.

[334] O. Etzioni, et al. An approach to planning
with incomplete information. In KR, 1992.

[335] EU High-Level Expert Group on AI.
Ethics Guidelines for Trustworthy AI,
2019.

[336] P. Eyerich, et al. Using the context-
enhanced additive heuristic for temporal
and numeric planning. In ICAPS, 2009.

[337] R. Fakoor, et al. Meta-Q-learning.
arXiv:1910.00125, 2019.

[338] J. Fan, et al. A theoretical analysis of deep
Q-learning. arXiv:1901.00137, 2020.

[339] Y. Fan, et al. Heterogeneous temporal
graph neural network. In SIAM Internat.
Conf. on Data Mining (SDM), 2022.

[340] R. Farahbod, et al. Specification and
validation of the business process execu-
tion language for web services. In Inter-
nat. Workshop on Abstract State Machines,
2004.

[341] H. Fargier, et al. Using temporal constraint

networks to manage temporal scenario of
multimedia documents. In ECAI Work-
shop on Spatial and Temporal Reasoning,
1998.

[342] F. Faure, et al. Sofa: A multi-model frame-
work for interactive physical simulation.
In Soft Tissue Biomechanical Modeling
for Computer Assisted Surgery. Springer,
2012.

[343] Z. Feng and E. A. Hansen. Symbolic
heuristic search for factored Markov de-
cision processes. In AAAI, 2002.

[344] Z. Feng, et al. Symbolic generalization for
on-line planning. In UAI, 2002.

[345] Z. Feng, et al. Dynamic programming
for structured continuous Markov decision
problems. In AAAI, 2004.

[346] P. Ferber, et al. Neural network heuristics
for classical planning: A study of hyper-
parameter space. In ECAI, 2020.

[347] P. Ferber, et al. Neural network heuris-
tic functions for classical planning: Boot-
strapping and comparison to other meth-
ods. In ICAPS, 2022.

[348] D. Ferguson, et al. Motion planning in
urban environments. JFR, 2008.

[349] D. I. Ferguson and A. Stentz. Focussed
propagation of MDPs for path planning.
In ICTAI, 2004.

[350] F. Fernández and M. M. Veloso. Prob-
abilistic policy reuse in a reinforcement
learning agent. In AAMAS, 2006.

[351] E. Feron and E. N. Johnson. Aerial
robotics. In Handbook of Robotics.
Springer, 2008.

[352] P. Ferraris and E. Giunchiglia. Planning as
satisfiability in nondeterministic domains.
In AAAI, 2000.

[353] A. Ferrein and G. Lakemeyer. Logic-based
robot control in highly dynamic domains.
RAS, 2008.

[354] J. Ferrer-Mestres, et al. Combined task and
motion planning as classical AI planning.
arXiv:1706.06927, 2017.

[355] J. Ferret, et al. Credit assignment as a
proxy for transfer in reinforcement learn-
ing. arXiv:1907.08027, 2019.

[356] D. A. Ferrucci, et al. Building Watson:
An Overview of the DeepQA Project. AI
Mag., 2010.

[357] M. Fichtner, et al. Intelligent execu-
tion monitoring in dynamic environments.
Fundamenta Informaticae, 2003.

[358] R. E. Fikes. Monitored execution of
robot plans produced by STRIPS. In IFIP

Bibliography 575

Congress, 1971.
[359] R. E. Fikes and N. J. Nilsson. STRIPS:

A new approach to the application of the-
orem proving to problem solving. AIJ,
1971.

[360] R. E. Fikes, et al. Learning and executing
generalized robot plans. AIJ, 1972.

[361] C. Finn, et al. Guided cost learning: Deep
inverse optimal control via policy opti-
mization. In ML, 2016.

[362] A. Finzi, et al. Open world planning in the
situation calculus. In AAAI, 2000.

[363] R. J. Firby. An investigation into reactive
planning in complex domains. In AAAI,
1987.

[364] M. Fisher, et al., editors. Handbook of
Temporal Reasoning in Artificial Intelli-
gence. Elsevier, 2005.

[365] G. Flórez-Puga, et al. Query-enabled be-
havior trees. TCIAIG, 2009.

[366] R. W. Floyd. Nondeterministic algorithms.
JACM, 1967.

[367] A. Foka and P. Trahanias. Real-time hi-
erarchical POMDPs for autonomous robot
navigation. RAS, 2007.

[368] J. P. Forestier and P. Varaiya. Multilayer
control of large Markov chains. TAC, 1978.

[369] M. Fox and D. Long. Utilizing automati-
cally inferred invariants in graph construc-
tion and search. In ICAPS, 2000.

[370] M. Fox and D. Long. PDDL2.1: An ex-
tension to PDDL for expressing temporal
planning domains. JAIR, 2003.

[371] M. Fox, et al. Plan stability: Replanning
versus plan repair. In ICAPS, 2006.

[372] J. Frank and A. K. Jónsson. Constraint-
based attribute and interval planning. Con-
straints, 2003.

[373] J. Frank, et al. When gravity fails: Local
search topology. JAIR, 1997.

[374] G. Fraser, et al. Plan execution in dy-
namic environments. In Internat. Cogni-
tive Robotics Workshop. 2004.

[375] S. Fratini, et al. APSI-based deliberation
in goal oriented autonomous controllers.
In ASTRA, 2011.

[376] J. Fu, et al. Simple and fast strong
cyclic planning for fully-observable non-
deterministic planning problems. In IJ-
CAI, 2011.

[377] F. Fusier, et al. Video understanding for
complex activity recognition. Machine Vi-
sion and Applications, 2007.

[378] Futur of Life Institute. Lethal Autonomous
Weapons Pledge, 2018.

[379] Y. Gao, et al. Retrieval-augmented gener-
ation for large language models: A survey.
arXiv:2312.10997, 2023.

[380] C. E. Garcia, et al. Model predictive con-
trol: theory and practice – a survey. Auto-
matica, 1989.

[381] F. Garcia and P. Laborie. Hierarchisation
of the search space in temporal planning.
In European Workshop on Planning, 1995.

[382] R. Garcı́a-Martı́nez and D. Borrajo. An
integrated approach of learning, planning,
and execution. JIRS, 2000.

[383] M. Garnelo, et al. Towards deep
symbolic reinforcement learning.
arXiv:1609.05518, 2016.

[384] C. R. Garrett, et al. Backward-forward
search for manipulation planning. In IROS,
2015.

[385] C. R. Garrett, et al. Learning to rank for
synthesizing planning heuristics. In IJCAI,
2016.

[386] C. R. Garrett, et al. Ffrob: Leverag-
ing symbolic planning for efficient task
and motion planning. arXiv:1608.01335,
2016.

[387] C. R. Garrett, et al. Integrated task and
motion planning. ARCRAS, 2021.

[388] A. Garrido. A temporal plannnig system
for level 3 durative actions of PDDL2.1. In
AIPS Workshop on Planning for Temporal
Domains, 2002.

[389] A. Garrido and S. Jiménez. Learning tem-
poral action models via constraint pro-
gramming. In ECAI, 2020.

[390] T. Gedicke, et al. Flap for caos: Forward-
looking active perception for clutter-aware
object search. IFAC Symposium on Intel-
ligent Autonomous Vehicles, 2016.

[391] H. Geffner. Functional Strips: A more
flexible language for planning and prob-
lem solving. In Logic-Based Artificial In-
telligence. Kluwer, 2000.

[392] H. Geffner and B. Bonet. A Concise In-
troduction to Models and Methods for Au-
tomated Planning. Morgan & Claypool,
2013.

[393] T. Geffner and H. Geffner. Compact poli-
cies for fully observable non-deterministic
planning as SAT. In ICAPS, 2018.

[394] C. Gehring, et al. Reinforcement learning
for classical planning: Viewing heuristics
as dense reward generators. In ICAPS,
2022.

[395] C. Geib and R. P. Goldman. A probabilistic
plan recognition algorithm based on plan

576 Bibliography

tree grammars. AIJ, 2009.
[396] T. Geier and P. Bercher. On the decidabil-

ity of HTN planning with task insertion.
In IJCAI, 2011.

[397] A. Gerevini and L. Schubert. Accelerating
partial-order planners: Some techniques
for effective search control and pruning.
JAIR, 1996.

[398] A. Gerevini and L. Schubert. Discovering
state constraints in DISCOPLAN: Some
new results. In AAAI, Aug. 2000.

[399] A. Gerevini and I. Serina. LPG: A planner
based on local search for planning graphs.
In AIPS, 2002.

[400] A. Gerevini, et al. Planning through
stochastic local search and temporal action
graphs in LPG. JAIR, 2003.

[401] A. Gerevini, et al. Integrating planning
and temporal reasoning for domains with
durations and time windows. In IJCAI,
2005.

[402] A. Gerevini, et al. Combining domain-
independent planning and HTN planning:
The Duet planner. In ECAI, 2008.

[403] Z. Ghahramani. Learning dynamic
bayesian networks. In Summer School on
Neural Networks, 1997.

[404] M. Ghallab. On chronicles: Representa-
tion, on-line recognition and learning. In
KR, 1996.

[405] M. Ghallab. Responsible AI: requirements
and challenges. AI Perspectives, 2019.

[406] M. Ghallab and H. Laruelle. Representa-
tion and control in IxTeT, a temporal plan-
ner. In AIPS, 1994.

[407] M. Ghallab and A. Mounir-Alaoui.
Managing efficiently temporal relations
through indexed spanning trees. In IJCAI,
1989.

[408] M. Ghallab, et al. Dealing with time in
planning and execution monitoring. In
ISRR, 1987.

[409] M. Ghallab, et al. PDDL–the planning do-
main definition language. Technical Re-
port TR-98-003/TR-1165, Yale Center for
Computational Vision and Control, 1998.

[410] M. Ghallab, et al. Automated Planning:
Theory and Practice. Morgann Kaufmann,
Oct. 2004.

[411] M. Ghallab, et al. Automated Planning
and Acting. Cambridge University Press,
2016.

[412] M. Gharbi, et al. Combining symbolic and
geometric planning to synthesize human-
aware plans: toward more efficient com-

bined search. In IROS, 2015.
[413] G. Ghiasi, et al. Scaling open-vocabulary

image segmentation with image-level la-
bels. In ECCV, 2022.

[414] A. Ghosh, et al. Exploring the frontier of
vision-language models: A survey of cur-
rent methodologies and future directions.
arXiv:2404.07214, 2024.

[415] S. Ghosh, et al. ITS: An efficient limited-
memory heuristic tree search algorithm. In
AAAI, 1994.

[416] G. D. Giacomo and M. Favorito. Compo-
sitional approach to translate LTLf/LDLf
into deterministic finite automata. In
ICAPS, 2021.

[417] G. D. Giacomo and S. Rubin. Automata-
theoretic foundations of FOND planning
for LTLf and LDLf goals. In IJCAI, 2018.

[418] G. D. Giacomo and M. Y. Vardi. Linear
temporal logic and linear dynamic logic
on finite traces. In IJCAI, 2013.

[419] G. D. Giacomo, et al. Timed trace align-
ment with metric temporal logic over finite
traces. In KR, 2021.

[420] G. D. Giacomo, et al. LTLf synthesis as
AND-OR graph search: Knowledge com-
pilation at work. In L. D. Raedt, editor,
IJCAI, 2022.

[421] Y. Gil. Learning by experimentation: In-
cremental refinement of incomplete plan-
ning domains. In ICML, 1994.

[422] M. L. Gini, et al. Advances in autonomous
robots for service and entertainment. RAS,
2010.

[423] E. Giunchiglia. Planning as satisfiability
with expressive action languages: Concur-
rency, constraints and nondeterminism. In
KR, 2000.

[424] F. Giunchiglia. Using Abstrips abstrac-
tions – where do we stand? AI Review,
1999.

[425] F. Giunchiglia and P. Traverso. Planning
as model checking. In ECP, Sept. 1999.

[426] R. Givan, et al. Equivalence notions and
model minimization in Markov decision
processes. AIJ, 2003.

[427] A. Glaese, et al. Improving alignment of
dialogue agents via targeted human judge-
ments. arXiv:2209.14375, 2022.

[428] E. M. Gold. Complexity of automaton
identification from given data. Inf. Con-
trol., 1978.

[429] K. Golden, et al. Omnipotence with-
out omniscience: Efficient sensor manage-
ment for planning. In AAAI, 1994.

Bibliography 577

[430] R. Goldman. A semantics for HTN meth-
ods. In ICAPS, volume 19, 2009.

[431] R. Goldman, et al. Hard real-time mode
logic synthesis for hybrid control: A
CIRCA-based approach. In AAAI Spring
Symposium on Hybrid Systems and AI,
Mar. 1999. AAAI Tech. Report SS-99-05.

[432] R. Goldman, et al. A comparative analysis
of plan repair in HTN planning. In HPlan,
2024.

[433] R. P. Goldman and U. Kuter. Hierarchical
task network planning in Common Lisp:
the case of SHOP3. In European Lisp
Symposium, 2019.

[434] R. P. Goldman, et al. Dynamic abstraction
planning. In AAAI, 1997.

[435] R. P. Goldman, et al. Using model check-
ing to plan hard real-time controllers. In
AIPS Workshop on Model-Theoretic Ap-
proaches to Planning, April 2000.

[436] R. P. Goldman, et al. Stable plan repair for
state-space HTN planning. HPlan, 2020.

[437] M. Golumbic and R. Shamir. Complexity
and algorithms for reasoning about time:
a graph-theoretic approach. JACM, 1993.

[438] I. Goodfellow, et al. Deep Learning. MIT
Press, 2016.

[439] I. Goodfellow, et al. Generative adversarial
networks. CACM, 2020.

[440] M. Gopal. Control Systems: Principles
and Design. McGraw-Hill, 1963.

[441] N. Goyal and D. Steiner. Graph neural
networks for image classification and rein-
forcement learning using graph represen-
tations. arXiv:2203.03457, 2022.

[442] P. Goyal, et al. Using natural language for
reward shaping in reinforcement learning.
arXiv:1903.02020, 2019.

[443] A. Gragera, et al. A planning approach
to repair domains with incomplete action
effects. In ICAPS, 2023.

[444] M. Grand, et al. Tempamlsi: Temporal
action model learning based on STRIPS
translation. In ICAPS, volume 32, 2022.

[445] I. Greenberg, et al. Train hard, fight easy:
Robust meta reinforcement learning. In
NeurIPS, 2023.

[446] P. Gregory, et al. A meta-CSP model for
optimal planning. In Abstraction, Refor-
mulation, and Approximation. Springer,
2007.

[447] P. Gregory, et al. Planning modulo theo-
ries: Extending the planning paradigm. In
ICAPS, 2012.

[448] I. Grondman, et al. A survey of actor-critic

reinforcement learning: Standard and nat-
ural policy gradients. SMC, 2012.

[449] S. Gu, et al. Continuous deep Q-learning
with model-based acceleration. In ICML,
volume 48, 2016.

[450] S. Gu, et al. Teams-rl: Teaching llms to
teach themselves better instructions via re-
inforcement learning. arXiv:2403.08694,
2024.

[451] L. Guan, et al. Leveraging pre-trained
large language models to construct and
utilize world models for model-based task
planning. arXiv:2305.14909, 2023.

[452] C. Guestrin, et al. Efficient solution algo-
rithms for factored MDPs. JAIR, 2003.

[453] C. Guestrin, et al. Solving factored MDPs
with continuous and discrete variables. In
UAI, 2004.

[454] A. Guez and J. Pineau. Multi-tasking
SLAM. In ICRA, 2010.

[455] E. Guizzo. Kiva Systems. IEEE Spectrum,
July 2008.

[456] A. Gupta, et al. Relay policy learn-
ing: Solving long-horizon tasks via
imitation and reinforcement learning.
arXiv:1910.11956, 2019.

[457] S. Gutstein and E. Stump. Reduction of
catastrophic forgetting with transfer learn-
ing and ternary output codes. In IJCNN,
2015.

[458] A. Hafiz. A survey of deep Q-networks
used for reinforcement learning: State of
the art. Intelligent Communication Tech-
nologies and Virtual Mobile Networks,
2023.

[459] M. Hägele, et al. Industrial robotics. In
Handbook of Robotics. Springer, 2008.

[460] M. Hahn. Theoretical limitations of
self-attention in neural sequence models.
arXiv:1906.06755, 2020.

[461] D. Hähnel, et al. GOLEX—bridging the
gap between logic (GOLOG) and a real
robot. In KI. 1998.

[462] W. L. Hamilton. Graph Representation
Learning. Morgan & Claypool publishers,
2020.

[463] K. J. Hammond. Explaining and repairing
plans that fail. AIJ, 1990.

[464] S. Hanks and R. J. Firby. Issues and
architectures for planning and execution.
In Workshop on Innovative Approaches to
Planning, Scheduling and Control, 1990.

[465] S. Hanks and D. S. Weld. A domain-
independent algorithm for plan adaptation.
JAIR, 1995.

578 Bibliography

[466] E. A. Hansen. Indefinite-horizon pomdps
with action-based termination. In AAAI,
2007.

[467] E. A. Hansen. Suboptimality bounds for
stochastic shortest path problems. In UAI,
2011.

[468] E. A. Hansen and R. Zhou. Anytime
heuristic search. JAIR, 2007.

[469] E. A. Hansen and S. Zilberstein. LAO*:
A heuristic search algorithm that finds so-
lutions with loops. AIJ, 2001.

[470] P. Hart and A. Knoll. Graph neural net-
works and reinforcement learning for be-
havior generation in semantic environ-
ments. In IEEE Intelligent Vehicles Sym-
posium, 2020.

[471] P. E. Hart, et al. A formal basis for the
heuristic determination of minimum cost
paths. SMC, 1968.

[472] P. E. Hart, et al. Correction to a formal ba-
sis for the heuristic determination of min-
imum cost paths. SIGART Bulletin, 1972.

[473] A. Harutyunyan, et al. Hindsight credit
assignment. NeurIPS, 2019.

[474] M. Hasanbeig, et al. Deepsynth: Au-
tomata synthesis for automatic task seg-
mentation in deep reinforcement learning.
In AAAI, 2021.

[475] P. Haslum. Admissible makespan esti-
mates for PDDL2.1 temporal planning. In
HDIP, 2009.

[476] P. Haslum and H. Geffner. Admissible
heuristics for optimal planning. In AIPS,
2000.

[477] P. Haslum and H. Geffner. Heuristic
plannnig with time and resources. In ECP,
2001.

[478] P. Haslum, et al. New admissible heuris-
tics for domain-independent planning. In
AAAI, 2005.

[479] P. Haslum, et al. Domain-independent
construction of pattern database heuristics
for cost-optimal planning. In AAAI, vol-
ume 7, 2007.

[480] P. Haslum, et al. Extending classical plan-
ning with state constraints: Heuristics and
search for optimal planning. JAIR, June
2018.

[481] P. Haslum, et al. An Introduction to the
Planning Domain Definition Language.
Synthesis Lectures on AI and ML. Mor-
gan & Claypool Publishers, 2019.

[482] K. Hauser. Task planning with continu-
ous actions and nondeterministic motion
planning queries. In AAAI Workshop on

Bridging the Gap between Task and Mo-
tion Planning, 2010.

[483] K. Hauser and J.-C. Latombe. Integrat-
ing task and PRM motion planning: Deal-
ing with many infeasible motion planning
queries. In ICAPS, 2009.

[484] M. Hauskrecht and B. Kveton. Lin-
ear program approximations for factored
continuous-state markov decision pro-
cesses. NeurIPS, 2003.

[485] M. Hauskrecht, et al. Hierarchical solu-
tion of Markov decision processes using
macro-actions. In UAI, 1998.

[486] N. Hawes. A survey of motivation frame-
works for intelligent systems. AIJ, 2011.

[487] J.-B. Hayet, et al. Motion planning for
maintaining landmarks visibility with a
differential drive robot. RAS, 2014.

[488] F. Heintz, et al. Bridging the sense-
reasoning gap: DyKnow – stream-based
middleware for knowledge processing. Ad-
vanced Engineering Informatics, 2010.

[489] M. Helmert. Decidability and undecid-
ability results for planning with numerical
state variables. In AIPS, 2002.

[490] M. Helmert. The Fast Downward planning
system. JAIR, 2006.

[491] M. Helmert. Concise finite-domain repre-
sentations for PDDL planning tasks. AIJ,
2009.

[492] M. Helmert and C. Domshlak. Landmarks,
critical paths and abstractions: What’s the
difference anyway? In ICAPS, 2009.

[493] M. Helmert and H. Geffner. Unifying the
causal graph and additive heuristics. In
ICAPS, 2008.

[494] M. Helmert, et al. Flexible abstraction
heuristics for optimal sequential planning.
In ICAPS, 2007.

[495] M. Helmert, et al. Explicit-state abstrac-
tion: A new method for generating heuris-
tic functions. In AAAI, 2008.

[496] M. Helmert, et al. Merge-and-shrink ab-
straction: A method for generating lower
bounds in factored state spaces. JACM,
2014.

[497] M. Helmert, et al. On the complexity of
heuristic synthesis for satisficing classical
planning: Potential heuristics and beyond.
In ICAPS, 2022.

[498] P. Hérail. Learning Hierarchical Models
from Demonstrations for Deliberate Plan-
ning and Acting. PhD thesis, University of
Toulouse, 2024.

[499] T. Hester and P. Stone. TEXPLORE: real-

Bibliography 579

time sample-efficient reinforcement learn-
ing for robots. ML, 2013.

[500] T. Hester, et al. Deep Q-learning from
demonstrations. In AAAI, 2018.

[501] P. Hitzler. A review of the semantic web
field. Communications of the ACM, 2021.

[502] P. Hitzler and M. Wendt. A uniform ap-
proach to logic programming semantics.
Theory and Practice of Logic Program-
ming, 2005.

[503] J. Ho and S. Ermon. Generative adversar-
ial imitation learning. NeurIPS, 2016.

[504] H. Hoang, et al. Hierarchical plan repre-
sentations for encoding strategic game AI.
In AIIDE, 2005.

[505] J. Hoey, et al. SPUDD: Stochastic plan-
ning using decision diagrams. In UAI,
1999.

[506] J. Hoffmann. The metric-FF planning sys-
tem: Translating “ignoring delete lists” to
numeric state variables. JAIR, 2003.

[507] J. Hoffmann. Where “ignoring delete lists”
works: local search topology in planning
benchmarks. JAIR, 2005.

[508] J. Hoffmann and R. Brafman. Contingent
planning via heuristic forward search with
implicit belief states. In ICAPS, 2005.

[509] J. Hoffmann and B. Nebel. The FF plan-
ning system: Fast plan generation through
heuristic search. JAIR, 2001.

[510] J. Hoffmann, et al. Ordered landmarks in
planning. JAIR, 2004.

[511] C. Hogg, et al. Learning hierarchical task
models from input traces. CI, 2016.

[512] D. Höller. Translating totally ordered HTN
planning problems to classical planning
problems using regular approximation of
context-free languages. In ICAPS, vol-
ume 31, 2021.

[513] D. Höller, et al. Assessing the expressivity
of planning formalisms through the com-
parison to formal languages. In ICAPS,
2016.

[514] D. Höller, et al. A generic method to
guide HTN progression search with clas-
sical heuristics. In ICAPS, 2018.

[515] D. Höller, et al. HDDL: An extension
to PDDL for expressing hierarchical plan-
ning problems. In AAAI, 2020.

[516] D. Höller, et al. HTN plan repair via model
transformation. In KI, 2020.

[517] D. Höller, et al. Compiling HTN plan
verification problems into HTN planning
problems. In ICAPS, 2022.

[518] S. Hongeng, et al. Video-based event

recognition: activity representation and
probabilistic recognition methods. Com-
puter Vision and Image Understanding,
2004.

[519] J. N. Hooker. Operations research methods
in constraint programming. In F. Rossi,
et al., editors, Handbook of Constraint
Programming. Elsevier, 2006.

[520] B. Horling, et al. Distributed sensor net-
work for real time tracking. In AAMAS,
2001.

[521] S. S. E. Horowitz and S. Rajasakaran.
Computer Algorithms. W.H. Freeman,
1996.

[522] R. A. Howard. Dynamic Probabilistic Sys-
tems. Wiley, 1971.

[523] H. Hu and D. Sadigh. Language instructed
reinforcement learning for human-ai coor-
dination. In ICML. PMLR, 2023.

[524] W. Hu, et al. Bidirectional projection
network for cross dimension scene under-
standing. In CVPR, 2021.

[525] Y. Hu, et al. What can knowledge bring to
machine learning?—a survey of low-shot
learning for structured data. ACM Trans-
actions on Intelligent Systems and Tech-
nology, 2022.

[526] B. Huang, et al. AdaRL: What, where,
and how to adapt in transfer reinforcement
learning. ICLR, 2022.

[527] J. Huang and K. C.-C. Chang. Towards
reasoning in large language models: A sur-
vey. arXiv:2212.10403, 2022.

[528] R. Huang, et al. An optimal temporally
expressive planner: Initial results and ap-
plication to P2P network optimization. In
ICAPS, 2009.

[529] R. Huang, et al. SAS+ planning as satisfi-
ability. JAIR, 2012.

[530] W. Huang, et al. Language models as
zero-shot planners: Extracting actionable
knowledge for embodied agents. In ICML,
2022.

[531] I. Hwang, et al. A survey of fault detec-
tion, isolation, and reconfiguration meth-
ods. TCST, 2010.

[532] T. Ibaraki. Theoretical comparision of
search strategies in branch and bound. In-
ternational Journal of Computer and In-
formation Sciences, 1976.

[533] B. Ichter, et al. Learning sampling dis-
tributions for robot motion planning. In
ICRA, 2018.

[534] O. Ilghami and D. S. Nau. A gen-
eral approach to synthesize problem-

580 Bibliography

specific planners. Technical Report CS-
TR-4597, UMIACS-TR-2004-40, Univer-
sity of Maryland, Oct. 2003.

[535] G. E. Imaz and M. Ghallab. A practically
efficient and almost linear unification al-
gorithm. AIJ, 1988.

[536] M. D. Ingham, et al. A reactive model-
based programming language for robotic
space explorers. In i-SAIRAS, 2001.

[537] F. Ingrand. ProSkill: A formal
skill language for acting in robotics.
arXiv:2403.07770, 2024.

[538] F. Ingrand and O. Despouys. Extending
procedural reasoning toward robot actions
planning. In ICRA, 2001.

[539] F. Ingrand and M. Ghallab. Deliberation
for Autonomous Robots: A Survey. AIJ,
2017.

[540] F. Ingrand, et al. PRS: A high level
supervision and control language for au-
tonomous mobile robots. In ICRA, 1996.

[541] S. Ioffe and C. Szegedy. Batch normaliza-
tion: Accelerating deep network training
by reducing internal covariate shift. In
ICML, 2015.

[542] M. Iovino, et al. A survey of behavior trees
in robotics and AI. RAS, 2022.

[543] M. Iovino, et al. A framework for learn-
ing behavior trees in collaborative robotic
applications. In CASE, 2023.

[544] D. Isla. Handling complexity in the Halo
2 AI. In GDC, 2005.

[545] M. Iwen and A. D. Mali. Distributed
graphplan. In ICTAI, 2002.

[546] M. Jahangirian, et al. Simulation in man-
ufacturing and business: A review. Euro-
pean Jour. of Operational Research, 2010.

[547] L. Jaillet and T. Siméon. A PRM-based
motion planner for dynamically changing
environments. In IROS, 2004.

[548] K. Jensen. Coloured Petri Nets. Springer,
1992.

[549] K. Jensen, et al. Coloured Petri nets and
CPN tools for modelling and validation
of concurrent systems. Internat. Jour. on
Software Tools for Technology Transfer,
2007.

[550] R. Jensen and M. Veloso. OBDD-based
universal planning for synchronized agents
in non-deterministic domains. JAIR, 2000.

[551] R. Jensen, et al. Guided symbolic univer-
sal planning. In ICAPS, June 2003.

[552] R. M. Jensen, et al. OBDD-based opti-
mistic and strong cyclic adversarial plan-
ning. In ECP, 2001.

[553] S. Ji, et al. 3d convolutional neural
networks for human action recognition.
PAMI, 2012.

[554] Y. Jiang, et al. Language as an abstraction
for hierarchical deep reinforcement learn-
ing. In NeurIPS, 2019.

[555] Z. Jiang, et al. Active retrieval augmented
generation. arXiv:2305.06983, 2023.

[556] S. Jiménez, et al. A review of machine
learning for automated planning. KER,
2012.

[557] S. Jo and I. Trummer. Smart: Automati-
cally scaling down language models with
accuracy guarantees for reduced process-
ing fees. arXiv:2403.13835, 2024.

[558] A. K. Jónsson, et al. Planning in interplan-
etary space: Theory and practice. In AIPS,
2000.

[559] P. Jonsson, et al. Computational complex-
ity of relating time points and intervals.
AIJ, 1999.

[560] M. Jordan and A. Perez. Optimal bidi-
rectional rapidly-exploring random trees.
Technical report, MIT-CSAIL-TR-021,
2013.

[561] M. Jovanović and P. Voss. Towards incre-
mental learning in large language models:
A critical review, 2024. Online report.

[562] B. Juba and R. Stern. Learning proba-
bly approximately complete and safe ac-
tion models for stochastic worlds. In AAAI,
2022.

[563] B. Juba, et al. Safe learning of lifted action
models. In KR, 2021.

[564] F. Kabanza, et al. Planning control rules
for reactive agents. AIJ, 1997.

[565] L. P. Kaelbling. Learning to achieve goals.
In IJCAI, 1993.

[566] L. P. Kaelbling and T. Lozano-Perez. Hi-
erarchical task and motion planning in the
now. In ICRA, 2011.

[567] L. P. Kaelbling and T. Lozano-Perez. Inte-
grated task and motion planning in belief
space. IJRR, 2013.

[568] L. P. Kaelbling and T. Lozano-Perez. Im-
plicit belief-space pre-images for hierar-
chical planning and execution. In ICRA,
2016.

[569] L. P. Kaelbling, et al. Reinforcement learn-
ing: A survey. JAIR, 1996.

[570] L. P. Kaelbling, et al. Planning and acting
in partially observable stochastic domains.
AIJ, 1998.

[571] S. Kakade and J. Langford. Approximately
optimal approximate reinforcement learn-

Bibliography 581

ing. In ICML, 2002.
[572] S. Kambhampati. On the utility of sys-

tematicity: Understanding the trade-offs
between redundancy and commitment in
partial-order planning. In IJCAI, 1993.

[573] S. Kambhampati. Refinement planning as
a unifying framework for plan synthesis.
AIMag, 1997.

[574] S. Kambhampati. On the relations between
intelligent backtracking and failure-driven
explanation-based learning in constraint
satisfaction and planning. AIJ, 1998.

[575] S. Kambhampati. Are we comparing Dana
and Fahiem or SHOP and TLPlan? A
critique of the knowledge-based planning
track at ICP, 2003.

[576] S. Kambhampati. Polanyi’s revenge and
AI’s new romance with tacit knowledge.
CACM, 2021.

[577] S. Kambhampati and J. A. Hendler. A
validation-structure-based theory of plan
modification and reuse. AIJ, 1992.

[578] S. Kambhampati and B. Srivastava. Uni-
versal classical planner: An algorithm for
unifying state-space and plan-space plan-
ning. In ECP, 1995.

[579] S. Kambhampati and S. W. Yoon.
Explanation-based learning for planning.
In C. Sammut and G. I. Webb, edi-
tors, Encyclopedia of Machine Learning.
Springer, 2010.

[580] S. Kambhampati, et al. Failure driven dy-
namic search control for partial order plan-
ners: An explanation based approach. AIJ,
1996.

[581] S. Kambhampati, et al. Hybrid plan-
ning for partially hierarchical domains. In
AAAI, 1998.

[582] O. Kanoun, et al. Planning foot place-
ments for a humanoid robot: A problem
of inverse kinematics. IJRR, 2011.

[583] E. Karabaev and O. Skvortsova. A heuris-
tic search algorithm for solving first-order
MDPs. In UAI, 2005.

[584] S. Karaman and E. Frazzoli. Sampling-
based algorithms for optimal motion plan-
ning. IJRR, 2011.

[585] R. Karia and S. Srivastava. Learning gen-
eralized relational heuristic networks for
model-agnostic planning. In AAAI, 2021.

[586] L. Karlsson, et al. To secure an anchor – A
recovery planning approach to ambiguity
in perceptual anchoring. AI Communinca-
tions, 2008.

[587] E. Karpas, et al. Temporal landmarks:

What must happen, and when. In ICAPS,
2015.

[588] M. Katz and C. Domshlak. Optimal addi-
tive composition of abstraction-based ad-
missible heuristics. In ICAPS, 2008.

[589] M. Katz and C. Domshlak. Structural-
pattern databases. In ICAPS, 2009.

[590] H. Kautz and J. Allen. Generalized plan
recognition. In AAAI, 1986.

[591] H. Kautz and B. Selman. Pushing the en-
velope: Planning, propositional logic, and
stochastic search. In AAAI, 1996.

[592] H. A. Kautz, et al., editors. Synthesis and
Planning, Dagstuhl Seminar Proceedings,
2006.

[593] L. Kavraki and J.-C. Latombe. Random-
ized preprocessing of configuration for fast
path planning. In ICRA, 1994.

[594] H. Kazerooni. Exoskeletons for human
performance augmentation. In Handbook
of Robotics. Springer, 2008.

[595] M. Kearns, et al. A sparse sampling al-
gorithm for near-optimal planning in large
Markov decision processes. ML, 2002.

[596] G. Kelleher and A. G. Cohn. Auto-
matically synthesising domain constraints
from operator descriptions. In ECAI, 1992.

[597] T. Keller and P. Eyerich. PROST: Proba-
bilistic planning based on UCT. In ICAPS,
2012.

[598] T. Keller and M. Helmert. Trial-based
heuristic tree search for finite horizon
MDPs. In ICAPS, volume 23, 2013.

[599] H. Kerzner. Project management: a sys-
tems approach to planning, scheduling,
and controlling. John Wiley & Sons, 2017.

[600] M. A.-M. Khan, et al. A systematic review
on reinforcement learning-based robotics
within the last decade. IEEE Access, 2020.

[601] L. Khatib, et al. Temporal constraint rea-
soning with preferences. In IJCAI, 2001.

[602] O. Khatib. The potential field approach
and operational space formulation in robot
control. In Adaptive and Learning Sys-
tems: Theory and Applications. Springer,
1986.

[603] O. Khatib. Real-time obstacle avoidance
for manipulators and mobile robots. IJRR,
1986.

[604] S. Kiesel and W. Ruml. Planning under
temporal uncertainty using hindsight op-
timization. In ICAPS Wksp. on Planning
and Robotics, 2014.

[605] B. Kim and J. Pineau. Socially adaptive
path planning in human environments us-

582 Bibliography

ing inverse reinforcement learning. Inter-
nat. Jour. of Social Robotics, 2016.

[606] D. P. Kingma and J. Ba. Adam:
A method for stochastic optimization.
arXiv:1412.6980, 2014.

[607] Z. K. Kingston, et al. Sampling-based
methods for motion planning with con-
straints. ARCRAS, May 2018.

[608] B. R. Kiran, et al. Deep reinforcement
learning for autonomous driving: A sur-
vey. T-ITS, 2021.

[609] P. Kissmann and S. Edelkamp. Solving
fully-observable non-deterministic plan-
ning problems via translation into a gen-
eral game. In KI. 2009.

[610] G. Klein and M. Mouhoub. Solving tem-
poral constraints using neural networks.
In Internat. Conf. on Artificial Intelligence
(IC-AI), 2002.

[611] T. Klößner and J. Hoffmann. Pattern
databases for stochastic shortest path prob-
lems. In SOCS, 2021.

[612] T. Klößner, et al. Pattern databases for
goal-probability maximization in proba-
bilistic planning. In ICAPS, 2021.

[613] T. Klößner, et al. Cost partitioning heuris-
tics for stochastic shortest path problems.
In ICAPS, 2022.

[614] T. Klößner, et al. Cartesian abstractions
and saturated cost partitioning in proba-
bilistic planning. In ECAI, 2023.

[615] T. Klößner, et al. A theory of merge-and-
shrink for stochastic shortest path prob-
lems. In ICAPS, 2023.

[616] R. Knight, et al. Casper: space explo-
ration through continuous planning. IEEE
Intelligent Systems, 2001.

[617] C. A. Knoblock. Automatically generating
abstractions for planning. AIJ, 1994.

[618] C. A. Knoblock and Q. Yang. Relating
the performance of partial-order planning
algorithms to domain features. SIGART
Bulletin, 1995.

[619] D. E. Knuth and R. W. Moore. An analysis
of alpha-beta pruning. AIJ, 1975.

[620] J. Kober and J. Peters. Policy search for
motor primitives in robotics. ML, 2011.

[621] J. Kober, et al. Reinforcement learning to
adjust robot movements to new situations.
In RSS, 2010.

[622] J. Kober, et al. Reinforcement learning in
robotics: A survey. IJRR, 2013.

[623] L. Kocsis and C. Szepesvári. Bandit based
Monte-Carlo planning. In ECML, 2006.

[624] J. Koehler. Planning under resource con-

straints. In ECAI, 1998.
[625] J. Koehler. Handling of conditional ef-

fects and negative goals in IPP. Technical
Report 128, Albert-Ludwigs-Universität
Freiburg, 1999.

[626] S. Koenig. Minimax real-time heuristic
search. AIJ, 2001.

[627] S. Koenig and R. Simmons. Solving robot
navigation problems with initial pose un-
certainty using real-time heuristic search.
In AIPS, 1998.

[628] D. Koller and N. Friedman. Probabilistic
Graphical Models: Principles and Tech-
niques. MIT Press, 2009.

[629] A. Kolobov and D. Weld. ReTrASE: inte-
grating paradigms for approximate proba-
bilistic planning. In IJCAI, 2009.

[630] A. Kolobov, et al. SixthSense: Fast and
reliable recognition of dead ends in MDPs.
In AAAI, Apr. 2010.

[631] A. Kolobov, et al. Heuristic search for gen-
eralized stochastic shortest path MDPs. In
ICAPS, 2011.

[632] A. Kolobov, et al. Reverse iterative deep-
ening for finite-horizon mdps with large
branching factors. In ICAPS, volume 22,
2012.

[633] A. Kolobov, et al. Stochastic shortest path
MDPs with dead ends. HSDIP, 2012.

[634] V. R. Konda and V. S. Borkar. Actor-critic–
type learning algorithms for Markov deci-
sion processes. SIAM Jour. on Control and
Optimization, 1999.

[635] Y. Kong and Y. Fu. Human action recog-
nition and prediction: A survey. IJCV,
2022.

[636] G. Konidaris, et al. Robot learning from
demonstration by constructing skill trees.
IJRR, 2012.

[637] G. Konidaris, et al. From skills to symbols:
Learning symbolic representations for ab-
stract high-level planning. JAIR, 2018.

[638] K. Konolige, et al. Navigation in hybrid
metric-topological maps. In ICRA, 2011.

[639] R. Korf. Real-time heuristic search. AIJ,
1990.

[640] R. E. Korf. Depth-first iterative-
deepening: an optimal admissible tree
search. AIJ, 1985.

[641] R. E. Korf. Planning as search: A quanti-
tative approach. AIJ, 1987.

[642] R. E. Korf. Linear-space best-first search.
AIJ, 1993.

[643] P. Kormushev, et al. Reinforcement learn-
ing in robotics: Applications and real-

Bibliography 583

world challenges. Robotics, 2013.
[644] M. Koubarakis. From local to global con-

sistency in temporal constraint networks.
TCS, 1997.

[645] A. Krizhevsky, et al. Imagenet classifica-
tion with deep convolutional neural net-
works. CACM, 2017.

[646] O. Kroemer, et al. A review of robot learn-
ing for manipulation: Challenges, repre-
sentations, and algorithms. JMLR, 2021.

[647] V. Krüger, et al. The meaning of action: a
review on action recognition and mapping.
Advanced Robotics, 2007.

[648] J. J. Kuffner and S. M. LaValle. Rrt-
connect: An efficient approach to single-
query path planning. In ICRA, 2000.

[649] S. Kuindersma, et al. Optimization-based
locomotion planning, estimation, and con-
trol design for the atlas humanoid robot.
Autonomous Robots, 2016.

[650] B. Kuipers and Y.-T. Byun. A robot ex-
ploration and mapping strategy based on
a semantic hierarchy of spatial representa-
tions. RAS, 1991.

[651] B. Kuipers, et al. Local metrical and global
topological maps in the hybrid spatial se-
mantic hierarchy. In ICRA, 2004.

[652] T. D. Kulkarni, et al. Hierarchical deep
reinforcement learning: Integrating tem-
poral abstraction and intrinsic motivation.
NeurIPS, 2016.

[653] S. Kumar. Balancing a cartpole sys-
tem with reinforcement learning–a tuto-
rial. arXiv:2006.04938, 2020.

[654] V. Kumar and L. Kanal. A general branch
and bound formulation for understanding
and synthesizing and/or tree search proce-
dures. AIJ, Mar. 1983.

[655] O. Kupferman and M. Y. Vardi. Synthesiz-
ing distributed systems. In IEEE Sympo-
sium on Logic in Computer Science, 2001.

[656] O. Kupferman, et al. Open systems in reac-
tive environments: Control and synthesis.
In CONCUR, 2000.

[657] H. Kurutach, et al. Learning plannable
representations with causal infogan. In
NeurIPS, 2018.

[658] U. Kuter and D. Nau. Using domain-
configurable search control for probabilis-
tic planning. In AAAI, 2005.

[659] U. Kuter, et al. Using classical planners to
solve nondeterministic planning problems.
In ICAPS, Sept. 2008.

[660] U. Kuter, et al. Task decomposition on
abstract states, for planning under nonde-

terminism. AIJ, 2009.
[661] J. Kvarnström and P. Doherty. TALplan-

ner: A temporal logic based forward
chaining planner. AMAI, 2001.

[662] B. Kveton, et al. Solving factored MDPs
with hybrid state and action variables.
JAIR, 2006.

[663] M. Kwon, et al. Reward design with lan-
guage models. arXiv:2303.00001, 2023.

[664] P. Laborie. Algorithms for propagating
resource constraints in ai planning and
scheduling: Existing approaches and new
results. AIJ, 2003.

[665] P. Laborie and M. Ghallab. Planning with
sharable resource constraints. In IJCAI,
1995.

[666] M. G. Lagoudakis and R. Parr. Model-free
least-squares policy iteration. NeurIPS,
2001.

[667] M. G. Lagoudakis and R. Parr. Reinforce-
ment learning as classification: Leverag-
ing modern classifiers. In ICML, 2003.

[668] F. Lagriffoul and B. Andres. Combining
task and motion planning: A culprit de-
tection problem. IJRR, 2016.

[669] F. Lagriffoul, et al. Combining task and
motion planning is not always a good idea.
In RSS Workshop on Combined Robot Mo-
tion Planning and AI Planning for Practi-
cal Applications, 2013.

[670] F. Lagriffoul, et al. Efficiently combining
task and motion planning using geometric
constraints. IJRR, 2014.

[671] J. Laird, et al. Universal Subgoaling and
Chunking: The Automatic Generation and
Learning of Goal Hierarchies, volume 11.
Springer Science & Business Media, 2012.

[672] L. Lamanna and L. Serafini. Action model
learning from noisy traces: a probabilistic
approach. In ICAPS, 2024.

[673] L. Lamanna, et al. On-line learning of
planning domains from sensor data in pal:
Scaling up to large state spaces. In AAAI,
2021.

[674] L. Lamanna, et al. Online learning of ac-
tion models for PDDL planning. In IJCAI,
2021.

[675] L. Lamanna, et al. Online grounding of
symbolic planning domains in unknown
environments. In KR, 2022.

[676] L. Lamanna, et al. Learning to act for
perceiving in partially unknown environ-
ments. In IJCAI, 2023.

[677] L. Lamanna, et al. Planning for learning
object properties. In AAAI, 2023.

584 Bibliography

[678] M. Lan, et al. A modular mission manage-
ment system for micro aerial vehicles. In
IEEE 14th Internat. Conf. on Control and
Automation, 2018.

[679] S. Lange, et al. Batch reinforcement learn-
ing. In Reinforcement learning: State-of-
the-art. Springer, 2012.

[680] P. Langley. Learning hierarchical problem
networks for knowledge-based planning.
In Internat. Conf. on Inductive Logic Pro-
gramming, 2022.

[681] P. Langley and D. Choi. Learning recur-
sive control programs from problem solv-
ing. JMLR, 2006.

[682] P. Langley, et al. Hierarchical problem
networks for knowledge-based planning.
In Annual Conf. on Advances in Cognitive
Systems, 2021.

[683] C. Laporte and T. Arbel. Efficient dis-
criminant viewpoint selection for active
Bayesian recognition. IJRR, 2006.

[684] J.-C. Latombe. Robot Motion Planning.
Kluwer, Boston, MA, 1991.

[685] S. M. LaValle. Planning Algorithms.
Cambridge University Press, 2006.

[686] S. M. LaValle and J. J. Kuffner Jr. Ran-
domized kinodynamic planning. IJRR,
2001.

[687] A. Lazaric. Transfer in reinforcement
learning: a framework and a survey. In Re-
inforcement Learning: State-of-the-Art.
Springer, 2012.

[688] A. Lazaridis, et al. Deep reinforcement
learning: A state-of-the-art walkthrough.
JAIR, 2020.

[689] X. Le Guillou, et al. Chronicles for on-line
diagnosis of distributed systems. In ECAI,
volume 8, 2008.

[690] H. Lee, et al. Rlaif: Scaling reinforce-
ment learning from human feedback with
ai feedback. arXiv:2309.00267, 2023.

[691] J. Lee, et al. Learning quadrupedal loco-
motion over challenging terrain. Science
Robotics, 2020.

[692] J. B. Lee, et al. Temporal network rep-
resentation learning. arXiv:1904.06449,
2019.

[693] M. Lee and C. W. Anderson. Can a rein-
forcement learning agent practice before it
starts learning? In IJCNN, 2017.

[694] S. Lemai-Chenevier and F. Ingrand. Inter-
leaving temporal planning and execution
in robotics domains. In AAAI, 2004.

[695] B. León, et al. Opengrasp: a toolkit for
robot grasping simulation. In Internat.

Conf. on Simulation, Modeling, and Pro-
gramming for Autonomous Robots, 2010.

[696] C. Lesire and F. Pommereau. ASPiC: an
acting system based on skill Petri net com-
position. In IROS, 2018.

[697] V. Lesser, et al. Evolution of the gpg-
p/tæms domain-independent coordination
framework. JAAMAS, 2004.

[698] H. Levesque, et al. GOLOG: A logic pro-
gramming language for dynamic domains.
Jour. of Logic Programming, 1997.

[699] S. Levine. Reinforcement learning and
control as probabilistic inference: Tutorial
and review. arXiv:1805.00909, 2018.

[700] S. Levine and V. Koltun. Guided policy
search: deep RL with importance sampled
policy gradient. In ICML, 2013.

[701] S. Levine, et al. Offline rein-
forcement learning: Tutorial, review,
and perspectives on open problems.
arXiv:2005.01643, 2020.

[702] S. J. Levine and B. C. Williams. Con-
current plan recognition and execution for
human-robot teams. In ICAPS, Nov. 2014.

[703] B. Li, et al. Language-driven semantic
segmentation. arXiv:2201.03546, 2022.

[704] C. Li, et al. Multimodal foundation mod-
els: From specialists to general-purpose
assistants. arXiv:2309.10020, 2023.

[705] H. X. Li and B. C. Williams. Generative
planning for hybrid systems based on flow
tubes. In ICAPS, 2008.

[706] J. Li, et al. Scalable rail planning and
replanning: Winning the 2020 Flatland
Challenge. In ICAPS, volume 31, 2021.

[707] K. Li, et al. Emergent world representa-
tions: Exploring a sequence model trained
on a synthetic task. arXiv:2210.13382,
2022.

[708] L. Li and M. L. Littman. Lazy approxima-
tion for solving continuous finite-horizon
mdps. In AAAI, 2005.

[709] M. Li, et al. API-bank: A comprehen-
sive benchmark for tool-augmented llms.
arXiv:2304.08244, 2023.

[710] R. Li. Automating Hierarchical Task Net-
work Learning. PhD thesis, University of
Maryland, June 2024.

[711] Z. Li, et al. Reinforcement learning for
robust parameterized locomotion control
of bipedal robots. In ICRA, 2021.

[712] J. Liang, et al. Code as policies: Language
model programs for embodied control. In
ICRA, 2023.

[713] V. Liatsos and B. Richard. Scalability in

Bibliography 585

planning. In ECP, 1999.
[714] A. O. Liberman, et al. Learning first-order

symbolic planning representations that are
grounded. arXiv:2204.11902, 2022.

[715] V. Lifschitz. On the semantics of STRIPS.
In M. P. Georgeff and A. L. Lansky, edi-
tors, Reasoning about Actions and Plans.
Morgan Kaufmann, 1987.

[716] G. Ligozat. On generalized interval cal-
culi. In AAAI, 1991.

[717] M. Likhachev, et al. Planning for Markov
decision processes with sparse stochastic-
ity. In NeurIPS, volume 17, 2004.

[718] T. P. Lillicrap, et al. Continuous con-
trol with deep reinforcement learning.
arXiv:1509.02971, 2016.

[719] M. H. Lim, et al. Sparse tree
search optimality guarantees in pomdps
with continuous observation spaces.
arXiv:1910.04332, 2019.

[720] K. Lin, et al. Text2Motion: From natu-
ral language instructions to feasible plans.
arXiv:2303.12153, 2023.

[721] S. Lin. Computer solutions of the traveling
salesman problem. Bell System Technical
Jour., 1965.

[722] N. Lipovetzky and H. Geffner. Best-first
width search: Exploration and exploita-
tion in classical planning. In AAAI, 2017.

[723] I. Little and S. Thiébaux. Probabilistic
planning vs. replanning. In ICAPS Wksp.
on the International Planning Competi-
tion, 2007.

[724] I. Little, et al. Prottle: A probabilistic
temporal planner. In AAAI, 2005.

[725] M. L. Littman, et al. Gathering Strength,
Gathering Storms: The One Hundred Year
Study on Artificial Intelligence (AI100).
Technical report, Stanford University,
2021.

[726] B. Liu, et al. LLM+P: Empowering large
language models with optimal planning
proficiency. arXiv:2304.11477, 2023.

[727] H. Liu, et al. Darts: Differentiable archi-
tecture search. arXiv:1806.09055, 2018.

[728] Y. Liu and S. Koenig. Functional value
iteration for decision-theoretic planning
with general utility functions. In AAAI,
2006.

[729] Y. Liu and S. Koenig. Functional value
iteration for decision-theoretic planning
with general utility functions. In AAAI,
2006.

[730] Y. Liu, et al. Learning search-space
specific heuristics using neural networks.

arXiv, 2023.
[731] I. Lluvia, et al. Active mapping and robot

exploration: A survey. Sensors, 2021.
[732] D. Long and M. Fox. Efficient implemen-

tation of the plan graph in STAN. JAIR,
1999.

[733] D. Long and M. Fox. Exploiting a graph-
plan framework in temporal planning. In
ICAPS, 2003.

[734] D. Long and M. Fox. The 3rd interna-
tional planning competition: Results and
analysis. JAIR, 2003.

[735] D. Long, et al. The AIPS-98 planning
competition. AIMag, 2000.

[736] A. Lotem and D. S. Nau. New advances in
GraphHTN: Identifying independent sub-
problems in large HTN domains. In AIPS,
Apr. 2000.

[737] A. Lotem, et al. Using planning graphs for
solving HTN problems. In AAAI, 1999.

[738] D. Lotinac and A. Jonsson. Constructing
hierarchical task models using invariance
analysis. In ECAI. IOS Press, 2016.

[739] T. Lozano-Pérez and L. P. Kaelbling. A
constraint-based method for solving se-
quential manipulation planning problems.
In IROS, 2013.

[740] T. Lozano-Perez and M. A. Wesley. An
algorithm for planning collision-free paths
among polyhedral obstacles. CACM, Oct.
1979.

[741] J. Luketina, et al. A survey of reinforce-
ment learning informed by natural lan-
guage. arXiv:1906.03926, 2019.

[742] L. Ly and Y.-H. R. Tsai. Autonomous ex-
ploration, reconstruction, and surveillance
of 3D environments aided by deep learn-
ing. In ICRA, 2019.

[743] K. M. Lynch and F. C. Park. Modern
Robotics: Mechanics, Planning, and Con-
trol. Cambridge University Press, 2017.

[744] Y. J. Ma, et al. Eureka: Human-level
reward design via coding large language
models. arXiv:2310.12931, 2023.

[745] J. MacGlashan, et al. Interactive learning
from policy-dependent human feedback.
In ML, 2017.

[746] M. G. Madden and T. Howley. Transfer of
experience between reinforcement learn-
ing environments with progressive diffi-
culty. Artificial Intelligence Review, 2004.

[747] M. C. Magnaguagno, et al. HyperTensioN
and total-order forward decomposition op-
timizations. arXiv:2207.00345, 2022.

[748] S. Mahadevan and J. Connell. Automatic

586 Bibliography

programming of behavior-based robots us-
ing reinforcement learning. AIJ, 1992.

[749] S. Maliah, et al. Partially observable on-
line contingent planning using landmark
heuristics. In ICAPS, 2014.

[750] J. Malik and T. Binford. Reasoning in time
and space. In IJCAI, 1983.

[751] P. Mallick, et al. Reinforcement learn-
ing using expectation maximization based
guided policy search for stochastic dynam-
ics. Neurocomputing, 2022.

[752] M. Mansouri and F. Pecora. A robot sets
a table: a case for hybrid reasoning with
different types of knowledge. JETAI, 2016.

[753] J. Marecki, et al. A fast analytical al-
gorithm for mdps with continuous state
spaces. In AAMAS Workshop on Game
Theoretic and Decision Theoretic Agents,
2006.

[754] B. Marthi, et al. Angelic semantics for
high-level actions. In ICAPS, 2007.

[755] B. Marthi, et al. Angelic hierarchical plan-
ning: Optimal and online algorithms. In
ICAPS, 2008.

[756] B. M. Marthi, et al. Concurrent hierar-
chical reinforcement learning. In AAAI,
2005.

[757] A. Marzinotto, et al. Towards a unified be-
havior trees framework for robot control.
In ICRA, 2014.

[758] N. Maslej, et al. The AI Index Annual
Report. Technical report, Institute for
Human-Centered AI, Stanford University,
2024.

[759] M. T. Mason. Mechanics of robotic ma-
nipulation. MIT press, 2001.

[760] M. T. Mason. Toward robotic manipula-
tion. ARCRAS, 2018.

[761] M. T. Mason and J. K. Salisbury Jr. Robot
hands and the mechanics of manipulation.
The MIT Press, Cambridge, MA, 1985.

[762] M. Mateas and A. Stern. A behavior lan-
guage for story-based believable agents.
IEEE Intelligent Systems, 2002.

[763] R. Mattmüller, et al. Pattern database
heuristics for fully observable nondeter-
ministic planning. In ICAPS, 2010.

[764] Mausam and A. Kolobov. Planning with
Markov Decision Processes: An AI Per-
spective. Morgan & Claypool, 2012.

[765] Mausam and D. Weld. Concurrent prob-
abilistic temporal planning. In ICAPS,
2005.

[766] Mausam and D. Weld. Probabilistic tem-
poral planning with uncertain durations.

In AAAI, 2006.
[767] Mausam and D. Weld. Planning with du-

rative actions in stochastic domains. JAIR,
2008.

[768] Mausam, et al. A hybridized planner for
stochastic domains. In IJCAI, 2007.

[769] S. McAleer, et al. Solving the Ru-
bik’s cube without human knowledge.
arXiv:1805.07470, 2018.

[770] D. McAllester and D. Rosenblitt. Sys-
tematic nonlinear planning. In AAAI, July
1991.

[771] J. McCarthy and P. J. Hayes. Some philo-
sophical problems from the standpoint of
artificial intelligence. In B. Meltzer and
D. Michie, editors, Machine Intelligence
4. Edinburgh Univ. Press, 1969.

[772] W. S. McCulloch and W. Pitts. A logical
calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical Bio-
physics, 1943.

[773] D. McDermott. A temporal logic for rea-
soning about processes and plans. Cogni-
tive Science, 1982.

[774] D. McDermott. A reactive plan language.
Technical Report YALEU/CSD/RR 864,
Yale Univ., 1991.

[775] J. McDonald, et al. Great power, great
responsibility: Recommendations for re-
ducing energy for training language mod-
els. arXiv:2205.09646, 2022.

[776] C. McGann, et al. A deliberative architec-
ture for AUV control. In ICRA, 2008.

[777] S. A. McIlraith and T. C. Son. Adapting
GOLOG for composition of semantic web
services. In KR, 2002.

[778] H. B. McMahan and G. J. Gordon. Fast ex-
act planning in Markov decision processes.
In ICAPS, 2005.

[779] J. McMahon and E. Plaku. Robot motion
planning with task specifications via reg-
ular languages. Robotica, 2017.

[780] J. Med, et al. Weak and strong reversibility
of non-deterministic actions: Universality
and uniformity. In ICAPS, 2024.

[781] N. Mehta, et al. Automatic induction of
maxq hierarchies. In NIPS Workshop:
Hierarchical Organization of Behavior,
2007.

[782] I. Meiri. Faster constraint satisfaction al-
gorithms for temporal reasoning. Tech.
report R-151, UC Los Angeles, 1990.

[783] M. R. Mendonça, et al. Graph-based
skill acquisition for reinforcement learn-
ing. CSUR, 2019.

Bibliography 587

[784] A. Menif, et al. SHPE: HTN planning for
video games. In Workshop on Computer
Games, 2014.

[785] W. Merrill, et al. Provable limitations
of acquiring meaning from ungrounded
form: What will future language models
understand? Transactions of the Associa-
tion for Computational Linguistics, 2021.

[786] N. Meuleau and R. I. Brafman. Hierarchi-
cal heuristic forward search in stochastic
domains. In IJCAI, 2007.

[787] N. Meuleau, et al. A heuristic search
approach to planning with continuous re-
sources in stochastic domains. JAIR, 2009.

[788] N. Meuleau, et al. A heuristic search
approach to planning with continuous re-
sources in stochastic domains. JAIR, 2009.

[789] O. Michel. Cyberbotics ltd. webots™: pro-
fessional mobile robot simulation. Inter-
nat. Jour. of Advanced Robotic Systems,
2004.

[790] A. Micheli and A. Valentini. Synthesis of
search heuristics for temporal planning via
reinforcement learning. In AAAI, 2021.

[791] I. Miguel, et al. Flexible graphplan. In
ECAI, 2000.

[792] J. Minguez, et al. Motion planning
and obstacle avoidance. In Handbook of
Robotics. Springer, 2008.

[793] S. Minton, et al. Commitment strategies
in planning: A comparative analysis. In
IJCAI, 1991.

[794] S. Minton, et al. Total order vs. partial
order planning: Factors influencing per-
formance. In KR, 1992.

[795] S. Mirchandani, et al. Ella: Exploration
through learned language abstraction. In
NeurIPS, 2021.

[796] A. Miyamae, et al. Natural policy gradient
methods with parameter-based exploration
for control tasks. NeurIPS, 2010.

[797] V. Mnih, et al. Human-level control
through deep reinforcement learning. Na-
ture, 2015.

[798] T. M. Moerland, et al. A framework
for reinforcement learning and planning.
arXiv:2006.15009, 2020.

[799] T. M. Moerland, et al. Model-based re-
inforcement learning: A survey. Foun-
dations and Trends in Machine Learning,
2023.

[800] T. B. Moeslund, et al. A survey of advances
in vision-based human motion capture and
analysis. Computer Vision and Image Un-
derstanding, 2006.

[801] M. D. Moffitt. On the modelling and
optimization of preferences in constraint-
based temporal reasoning. AIJ, 2011.

[802] M. D. Moffitt and M. E. Pollack. Partial
constraint satisfaction of disjunctive tem-
poral problems. In FLAIRS, 2005.

[803] M. Mohanan and A. Salgoankar. A survey
of robotic motion planning in dynamic en-
vironments. RAS, 2018.

[804] M. Molineaux, et al. Goal-driven auton-
omy in a Navy strategy simulation. In
AAAI, 2010.

[805] M. Montemerlo, et al. FastSLAM: A fac-
tored solution to the simultaneous local-
ization and mapping problem. In AAAI,
2002.

[806] A. W. Moore and C. G. Atkeson. Prior-
itized sweeping: Reinforcement learning
with less data and less time. ML, 1993.

[807] A. Mordoch, et al. Collaborative multi-
agent planning with black-box agents by
learning action models. In ICAPS Wksp.
on on Reliable Data-Driven Planning and
Scheduling (RDDPS), 2022.

[808] A. Mordoch, et al. Learning safe numeric
action models. In AAAI, 2023.

[809] B. Morisset and M. Ghallab. Learning how
to combine sensory-motor functions into a
robust behavior. AIJ, 2008.

[810] P. Morris, et al. Dynamic control of plans
with temporal uncertainty. In IJCAI, 2001.

[811] P. H. Morris. Dynamic controllability and
dispatchability relationships. In Integra-
tion of AI and OR Techniques in Constraint
Programming, Apr. 2014.

[812] P. H. Morris and N. Muscettola. Temporal
dynamic controllability revisited. In AAAI,
2005.

[813] D. R. Morrison, et al. Branch-and-bound
algorithms: A survey of recent advances
in searching, branching, and pruning. Dis-
crete Optimization, 2016.

[814] K. Mourão, et al. Learning STRIPS oper-
ators from noisy and incomplete observa-
tions. In UAI, 2012.

[815] D. Mourtzis, et al. Simulation in manufac-
turing: Review and challenges. Procedia
CIRP, 2014.

[816] C. Muise, et al. Non-deterministic plan-
ning with conditional effects. In ICAPS,
2014.

[817] C. Muise, et al. PRP rebooted: Advancing
the state of the art in FOND planning. In
AAAI, 2024.

[818] C. J. Muise, et al. Improved non-

588 Bibliography

deterministic planning by exploiting state
relevance. In ICAPS, 2012.

[819] R. Munos and A. W. Moore. Variable res-
olution discretization in optimal control.
ML, 2002.

[820] H. Munoz-Avila and M. T. Cox. Case-
based plan adaptation: An analysis and
review. IEEE Intelligent Systems, 2008.

[821] H. Muñoz-Avila, et al. SiN: Integrating
case-based reasoning with task decompo-
sition. In IJCAI, 2001.

[822] N. Muscettola, et al. Reformulating tem-
poral plans for efficient execution. In KR,
1998.

[823] N. Muscettola, et al. Remote Agent: To
boldly go where no AI system has gone
before. AIJ, 1998.

[824] N. Muscettola, et al. IDEA: Planning at
the core of autonomous reactive agents. In
IWPSS, 2002.

[825] D. J. Musliner, et al. The evolution of
CIRCA, a theory-based AI architecture
with real-time performance guarantees. In
AAAI Spring Symposium: Emotion, Per-
sonality, and Social Behavior, 2008.

[826] K. L. Myers. CPEF: A continuous plan-
ning and execution framework. AIMag,
1999.

[827] O. Nachum, et al. Data-efficient hierar-
chical reinforcement learning. NeurIPS,
2018.

[828] A. Najar and M. Chetouani. Reinforce-
ment learning with human advice: a sur-
vey. Frontiers in Robotics and AI, 2021.

[829] A. Nareyek, et al. Constraints and AI plan-
ning. IEEE Intelligent Systems, 2005.

[830] D. Nau, et al. GTPyhop: A hierarchical
goal+task planner implemented in Python.
In HPlan, July 2021.

[831] D. S. Nau, et al. General branch and bound,
and its relation to A* and AO*. AIJ, 1984.

[832] D. S. Nau, et al. SHOP: Simple hierarchi-
cal ordered planner. In IJCAI, 1999.

[833] D. S. Nau, et al. Total-order planning with
partially ordered subtasks. In IJCAI, Aug.
2001.

[834] H. Naveed, et al. A comprehen-
sive overview of large language models.
arXiv:2307.06435, 2023.

[835] B. Nebel and H. Burckert. Reason-
ing about temporal relations: a maximal
tractable subclass of Allen’s interval alge-
bra. JACM, 1995.

[836] B. Nebel and J. Koehler. Plan reuse versus
plan generation: A theoretical and empir-

ical analysis. AIJ, July 1995.
[837] S. Nedunuri, et al. SMT-based synthesis

of integrated task and motion plans from
plan outlines. In ICRA, 2014.

[838] G. Neu and C. Szepesvári. Training
parsers by inverse reinforcement learning.
ML, 2009.

[839] G. Neu and C. Szepesvári. Appren-
ticeship learning using inverse reinforce-
ment learning and gradient methods.
arXiv:1206.5264, 2012.

[840] X. Neufeld, et al. Building a planner: A
survey of planning systems used in com-
mercial video games. TG, 2017.

[841] R. A. Newcombe and A. J. Davison. Live
dense reconstruction with a single moving
camera. In CVPR, 2010.

[842] A. Newell and G. Ernst. The search for
generality. In IFIP Congress, volume 65,
1965.

[843] A. Newell and H. A. Simon. GPS, a pro-
gram that simulates human thought. In
E. A. Feigenbaum and J. A. Feldman, ed-
itors, Computers and Thought. McGraw-
Hill, 1963.

[844] M. A. H. Newton, et al. Learning macro-
actions for arbitrary planners and domains.
In ICAPS, 2007.

[845] J. M. Nez-Carranza and A. Calway. Uni-
fying planar and point mapping in monoc-
ular SLAM. In British Machine Vision
Conf., 2010.

[846] A. Ng and M. Jordan. PEGASUS: a pol-
icy search method for large MDPs and
POMDPs. In UAI, 2000.

[847] A. Y. Ng, et al. Policy invariance under
reward transformations: Theory and ap-
plication to reward shaping. In ICML, vol-
ume 99, 1999.

[848] A. Y. Ng, et al. Algorithms for inverse re-
inforcement learning. In ICML, volume 1,
2000.

[849] N. Nguyen and S. Kambhampati. Reviving
partial order planning. In IJCAI, 2001.

[850] A. Nicolin, et al. Agimus: a new frame-
work for mapping manipulation motion
plans to sequences of hierarchical task-
based controllers. In IEEE Internat. Sym-
posium on System Integration, 2020.

[851] S. Niekum. An integrated system for learn-
ing multi-step robotic tasks from unstruc-
tured demonstrations. In AAAI Spring
Symposium, 2013.

[852] R. Nieuwenhuis, et al. Solving SAT
and SAT modulo theories: From an ab-

Bibliography 589

stract Davis-Putnam-Logemann-Loveland
procedure to DPLL (T). JACM, 2006.

[853] E. Nikolova and D. R. Karger. Route
planning under uncertainty: The Canadian
traveller problem. In AAAI, 2008.

[854] M. Nilsson, et al. EfficientIDC: A faster
incremental dynamic controllability algo-
rithm. In ICAPS, 2014.

[855] M. Nilsson, et al. Incremental dynamic
controllability in cubic worst-case time. In
TIME, 2014.

[856] N. Nilsson. Principles of Artificial Intelli-
gence. Morgan Kaufmann, 1980.

[857] Y. Niu, et al. Atp: Enabling fast llm serv-
ing via attention on top principal keys.
arXiv:2403.02352, 2024.

[858] S. C. W. Ong, et al. Planning under uncer-
tainty for robotic tasks with mixed observ-
ability. IJRR, 2010.

[859] OpenAI. GPT-4. Technical report, Ope-
nAI, 2023.

[860] J. Oswald, et al. Large language models
as planning domain generators. In ICAPS,
2024.

[861] L. Ouyang, et al. Training language mod-
els to follow instructions with human feed-
back. arXiv:2203.02155, 2022.

[862] R. Özalp, et al. A review of deep reinforce-
ment learning algorithms and comparative
results on inverted pendulum system. Ma-
chine Learning Paradigms, 2020.

[863] B. Paden, et al. A survey of motion
planning and control techniques for self-
driving urban vehicles. TIV, 2016.

[864] V. Pallagani, et al. Understanding the capa-
bilities of large language models for auto-
mated planning. arXiv:2305.16151, 2023.

[865] V. Pallagani, et al. Plansformer tool:
Demonstrating generation of symbolic
plans using transformers. In IJCAI, 2023.

[866] V. Pallagani, et al. On the prospects
of incorporating large language mod-
els (LLMs) in automated planning and
scheduling (APS). In ICAPS, 2024.

[867] X. Pan, et al. Virtual to real reinforce-
ment learning for autonomous driving.
arXiv:1704.03952, 2017.

[868] A. Parisi, et al. Talm: Tool augmented lan-
guage models. arXiv:2205.12255, 2022.

[869] G. I. Parisi, et al. Continual lifelong learn-
ing with neural networks: A review. Neu-
ral Networks, 2019.

[870] R. Parr and S. J. Russell. Reinforcement
learning with hierarchies of machines. In
NeurIPS, 1998.

[871] S. Pateria, et al. Hierarchical reinforce-
ment learning: A comprehensive survey.
CSUR, 2021.

[872] S. Patra, et al. Deliberative acting, plan-
ning and learning with hierarchical opera-
tional models. AIJ, 2021.

[873] S. Patra, et al. Using online planning
and acting to recover from cyberattacks
on software-defined networks. In AAAI,
volume 35, 2021.

[874] D. Patterson, et al. Carbon emis-
sions and large neural network training.
arXiv:2104.10350, 2021.

[875] D. Patterson, et al. The carbon footprint
of machine learning training will plateau,
then shrink. IEEE Computer, 2022.

[876] C. Paxton, et al. CoSTAR: Instructing col-
laborative robots with behavior trees and
vision. In ICRA, 2017.

[877] J. Pearl. Heuristics: Intelligent Search
Strategies for Computer Problem Solving.
Addison-Wesley, 1984.

[878] F. Pecora, et al. A constraint-based ap-
proach for proactive, context-aware human
support. Jour. of Ambient Intelligence and
Smart Environments, 2012.

[879] E. Pednault. Synthesizing plans that con-
tain actions with context-dependent ef-
fects. CI, 1988.

[880] E. P. Pednault. ADL: Exploring the middle
ground between STRIPS and the situation
calculus. In KR, 1989.

[881] D. Pellier, et al. HDDL 2.1: To-
wards defining a formalism and a se-
mantics for temporal HTN planning.
arXiv:2306.07353, 2023.

[882] J. Penberthy and D. S. Weld. Tempo-
ral planning with continuous change. In
AAAI, 1994.

[883] J. S. Penberthy and D. Weld. UCPOP: A
sound, complete, partial order planner for
ADL. In KR, 1992.

[884] S. Peng, et al. Openscene: 3d scene un-
derstanding with open vocabularies. In
CVPR, 2023.

[885] G. D. Penna, et al. Upmurphi: a tool for
universal planning on PDDL+ problems.
In ICAPS, 2009.

[886] M. Peot and D. Smith. Conditional non-
linear planning. In AIPS, 1992.

[887] R. F. Pereira, et al. Iterative depth-first
search for FOND planning. In ICAPS,
2022.

[888] M. Péron, et al. Fast-tracking stationary
momdps for adaptive management prob-

590 Bibliography

lems. AAAI, 2017.
[889] J. Peters and S. Schaal. Reinforcement

learning by reward-weighted regression
for operational space control. In ICML,
2007.

[890] J. Peters, et al. Natural actor-critic. In
ECML, 2005.

[891] J. Peters, et al. Towards robot skill learn-
ing: From simple skills to table tennis. In
ECML PKDD, 2013.

[892] J. L. Peterson. Petri nets. CSUR, 1977.
[893] C. A. Petri. Communication with Au-

tomata. PhD thesis, Institut für Instru-
mentelle Mathematik, Bonn, 1962.

[894] R. Petrick and F. Bacchus. Extending
the knowledge-based approach to planning
with incomplete information and sensing.
In ICAPS, 2004.

[895] O. Pettersson. Execution monitoring in
robotics: A survey. RAS, 2005.

[896] Q.-C. Pham, et al. Kinodynamic planning
in the configuration space via admissible
velocity propagation. In RSS, 2013.

[897] J. Pineau, et al. Policy-contingent abstrac-
tion for robust robot control. In UAI, 2002.

[898] J. Pineau, et al. Towards robotic assistants
in nursing homes: Challenges and results.
RAS, Mar. 2003.

[899] M. Pistore and P. Traverso. Planning as
model checking for extended goals in non-
deterministic domains. In IJCAI, 2001.

[900] M. Pistore and P. Traverso. Assumption-
based composition and monitoring of web
services. In Test and Analysis of Web Ser-
vices. 2007.

[901] M. Pistore, et al. Symbolic techniques
for planning with extended goals in non-
deterministic domains. In ECP, 2001.

[902] M. Pistore, et al. Automated composi-
tion of web services by planning in asyn-
chronous domains. In ICAPS, 2005.

[903] M. Pistore, et al. A minimalist approach
to semantic annotations for web processes
compositions. In ESWC, 2006.

[904] L. R. Planken. Incrementally solving the
STP by enforcing partial path consistency.
In PLANSIG, 2008.

[905] A. Pnueli and R. Rosner. On the synthesis
of a reactive module. In POPL, 1989.

[906] A. Pnueli and R. Rosner. On the synthesis
of an asynchronous reactive module. In
ICALP, 1989.

[907] A. Pnueli and R. Rosner. Distributed re-
active systems are hard to synthesize. In
FOCS, 1990.

[908] I. Pohl. Heuristic search viewed as path
finding in a graph. AIJ, 1970.

[909] M. E. Pollack and J. F. Horty. There’s
more to life than making plans: Plan man-
agement in dynamic, multiagent environ-
ments. AIMag, 1999.

[910] A. S. Polydoros and L. Nalpantidis. Sur-
vey of model-based reinforcement learn-
ing: Applications on robotics. JIRS, 2017.

[911] F. Pommereau. Algebras of coloured
Petri nets. Lambert Academic Publishing,
2010.

[912] F. Pommerening, et al. From non-negative
to general operator cost partitioning. In
AAAI, 2015.

[913] J. Porteous, et al. On the extraction, order-
ing, and usage of landmarks in planning.
In ECP, 2001.

[914] J. Powell, et al. Active and interactive dis-
covery of goal selection knowledge. In
FLAIRS, 2011.

[915] E. Prassler and K. Kosuge. Domes-
tic robotics. In Handbook of Robotics.
Springer, 2008.

[916] S. Prentice and N. Roy. The belief
roadmap: Efficient planning in belief
space by factoring the covariance. IJRR,
2009.

[917] L. Pryor and G. Collins. Planning for
contingency: A decision based approach.
JAIR, 1996.

[918] M. Pternea, et al. The RL/LLM taxon-
omy tree: Reviewing synergies between
reinforcement learning and large language
models. JAIR, 2024.

[919] M. L. Puterman. Markov Decision Pro-
cesses: Discrete Stochastic Dynamic Pro-
gramming. Wiley, 1994.

[920] F. Py, et al. A systematic agent frame-
work for situated autonomous systems. In
AAMAS, 2010.

[921] D. V. Pynadath and M. P. Wellman. Proba-
bilistic state-dependent grammars for plan
recognition. In UAI, 2000.

[922] C. R. Qi, et al. Pointnet++: Deep hierar-
chical feature learning on point sets in a
metric space. NeurIPS, 2017.

[923] W. Qiu and H. Zhu. Programmatic re-
inforcement learning without oracles. In
ICLR, 2021.

[924] B. Quartey, et al. Exploiting contextual
structure to generate useful auxiliary tasks.
arXiv:2303.05038, 2023.

[925] R. Quiniou, et al. Application of ILP
to cardiac arrhythmia characterization for

Bibliography 591

chronicle recognition. In ILP. 2001.
[926] G. Rabideau, et al. Iterative repair plan-

ning for spacecraft operations in the AS-
PEN system. In i-SAIRAS, 1999.

[927] A. Radford, et al. Learning transferable
visual models from natural language su-
pervision. In ICML, 2021.

[928] A. N. Raghavan, et al. Bidirectional online
probabilistic planning. In ICAPS, 2012.

[929] K. Rajan and F. Py. T-REX: Partitioned
inference for AUV mission control. In
Further Advances in Unmanned Marine
Vehicles. 2012.

[930] K. Rajan and A. Saffiotti, editors. Special
Issue on AI and Robotics. AIJ, 2017.

[931] K. Rajan, et al. Towards deliberative con-
trol in marine robotics. In Marine Robot
Autonomy. 2012.

[932] A. Rajvanshi, et al. Saynav: Grounding
large language models for dynamic plan-
ning to navigation in new environments.
In ICAPS, 2024.

[933] M. Ramirez and H. Geffner. Probabilistic
plan recognition using off-the-shelf classi-
cal planners. In AAAI, 2010.

[934] M. Ramı́rez and S. Sardina. Directed
fixed-point regression-based planning for
non-deterministic domains. In ICAPS,
2014.

[935] M. Ramı́rez, et al. Behavior composi-
tion as fully observable non-deterministic
planning. In ICAPS, 2013.

[936] J. Ramon, et al. Transfer learning in rein-
forcement learning problems through par-
tial policy recycling. In ECML, 2007.

[937] D. Rao, et al. Performance of the RDDL
planners. In ICOACS, 2016.

[938] H. Ravichandar, et al. Recent advances in
robot learning from demonstration. AR-
CRAS, 2020.

[939] S. Reddy, et al. Sqil: Imitation learning
via reinforcement learning with sparse re-
wards. arXiv:1905.11108, 2019.

[940] J. H. Reif. Complexity of the mover’s prob-
lem and generalizations. In IEEE Sympo-
sium on Foundations of Computer Science
(SFCS), 1979.

[941] S. Richter and M. Westphal. The LAMA
planner: Guiding cost-based anytime
planning with landmarks. JAIR, 2010.

[942] S. Richter, et al. Landmarks revisited. In
AAAI, volume 8, 2008.

[943] M. Riedmiller, et al. Reinforcement learn-
ing for robot soccer. Autonomous Robots,
2009.

[944] J. Rintanen. Constructing conditional
plans by a theorem-prover. JAIR, 1999.

[945] J. Rintanen. An iterative algorithm for syn-
thesizing invariants. In AAAI, 2000.

[946] J. Rintanen. Backward plan construction
for planning as search in belief space. In
AIPS, 2002.

[947] J. Rintanen. Conditional planning in the
discrete belief space. In IJCAI, 2005.

[948] J. Rintanen. Planning as satisfiability:
Heuristics. AIJ, 2012.

[949] J. Rintanen. Madagascar: Scalable plan-
ning with SAT. Internat. Planning Com-
petition, 2014.

[950] D. Robert, et al. Learning multi-view ag-
gregation in the wild for large-scale 3d se-
mantic segmentation. In CVPR, 2022.

[951] C. Rodrigues, et al. Incremental learning
of relational action models in noisy envi-
ronments. In ILP, 2010.

[952] C. Rodrigues, et al. Incremental learning
of relational action rules. In ICMLA, 2010.

[953] C. Rodrigues, et al. Active learning of
relational action models. In ILP, 2011.

[954] I. D. Rodriguez, et al. Learning first-order
representations for planning from black
box states: New results. In KR, 2021.

[955] I. D. Rodriguez, et al. Flexible FOND
planning with explicit fairness assump-
tions. JAIR, 2022.

[956] M. D. Rodriguez-Moreno, et al. IPSS: A
hybrid approach to planning and schedul-
ing integration. TDKE, 2006.

[957] G. Röger and M. Helmert. The more, the
merrier: Combining heuristic estimators
for satisficing planning. In ICAPS, 2010.

[958] G. Röger, et al. Optimal planning in the
presence of conditional effects: Extending
LM-Cut with context-splitting. In ECAI,
2014.

[959] D. M. Roijers and S. Whiteson. Multi-
Objective Decision Making. Synthesis
Lectures on Artificial Intelligence and Ma-
chine Learning. Morgan & Claypool Pub-
lishers, 2017.

[960] S. Ross and J. Pineau. Model-based
bayesian reinforcement learning in large
structured domains. In UAI, 2008.

[961] S. Ross, et al. Online planning algorithms
for POMDPs. JAIR, 2008.

[962] N. Rossetti, et al. Learning general poli-
cies for planning through GPT models. In
ICAPS, 2024.

[963] N. Rudin, et al. Advanced skills by learn-
ing locomotion and local navigation end-

592 Bibliography

to-end. arXiv:2209.12827, 2022.
[964] G. A. Rummery and M. Niranjan. On-

line Q-learning using connectionist sys-
tems. Technical report, Cambridge Uni-
versity Engineering Department, 1994.

[965] S. Russell. Learning agents for uncertain
environments. In COLT, 1998.

[966] S. Russell. Human compatible: AI and the
problem of control. Penguin, 2019.

[967] S. Russell and P. Norvig. AIMA (4th Edi-
tion). Pearson, 2020.

[968] R. Sabbadin. A possibilistic model for
qualitative sequential decision problems
under uncertainty in partially observable
environments. arXiv:1301.6736, 2013.

[969] E. Sacerdoti. Planning in a hierarchy of
abstraction spaces. AIJ, 1974.

[970] E. Sacerdoti. The nonlinear nature of
plans. In IJCAI, 1975.

[971] E. Sacerdoti. A Structure for Plans and
Behavior. American Elsevier, 1977.

[972] M. Samadi, et al. Learning from multiple
heuristics. In AAAI, 2008.

[973] M. Samadi, et al. Using the Web to in-
teractively learn to find objects. In AAAI,
2012.

[974] H. Samet. Foundations of Multidimen-
sional and Metric Data Structures. Mor-
gan Kauffmann, 2006.

[975] S. Samsi, et al. From words to watts:
Benchmarking the energy costs of large
language model inference. In IEEE High
Performance Extreme Computing Confer-
ence, 2023.

[976] A. L. Samuel. Some studies in machine
learning using the game of checkers: II—
recent progress. IBM Jour. of Research
and Development, 1959.

[977] E. Sandewall. Features and Fluents: The
Representation of Knowledge about Dy-
namical Systems. Oxford Univ. Press,
1994.

[978] E. Sandewall and R. Rönnquist. A rep-
resentation of action structures. In AAAI,
1986.

[979] S. Sanner. Relational dynamic influence
diagram language (RDDL): Language de-
scription. Technical report, NICTA, 2010.

[980] P. H. R. Q. A. Santana and B. C. Williams.
Chance-constrained consistency for prob-
abilistic temporal plan networks. In
ICAPS, Nov. 2014.

[981] S. Sardiña, et al. Hierarchical planning
in BDI agent programming languages: A
formal approach. In AAMAS, May 2006.

[982] E. Scala and A. Grastien. Non-
deterministic conformant planning using a
counterexample-guided incremental com-
pilation to classical planning. In ICAPS,
2021.

[983] E. Scala, et al. Landmarks for numeric
planning problems. In IJCAI, 2017.

[984] T. Schaul, et al. Universal value function
approximators. In ICML, 2015.

[985] S. Scheck, et al. Knowledge compilation
for nondeterministic action languages. In
ICAPS, 2021.

[986] E. Scheide, et al. Behavior tree learning
for robotic task planning through monte
carlo DAG search over a formal grammar.
In ICRA, 2021.

[987] B. Scherrer and B. Lesner. On the
use of non-stationary policies for station-
ary infinite-horizon Markov decision pro-
cesses. In NeurIPS, 2012.

[988] T. Schick, et al. Toolformer: Language
models can teach themselves to use tools.
arXiv:2302.04761, 2023.

[989] D. Schreiber. Lilotane: A lifted SAT-
based approach to hierarchical planning.
JAIR, 2021.

[990] J. Schulman, et al. Trust region policy
optimization. In ICML, 2015.

[991] J. Schulman, et al. Proximal policy op-
timization algorithms. arXiv:1707.06347,
2017.

[992] D. G. Schultz and J. L. Melsa. State
Functions and Linear Control Systems.
McGraw-Hill, 1967.

[993] J. T. Schwartz and M. Sharir. On the “pi-
ano movers” problem. general techniques
for computing topological properties of
real algebraic manifolds. Advances in Ap-
plied Mathematics, 1983.

[994] J. Seipp, et al. Saturated cost partitioning
for optimal classical planning. JAIR, 2020.

[995] L. Serafini and A. d. Garcez. Logic ten-
sor networks: Deep learning and logi-
cal reasoning from data and knowledge.
arXiv:1606.04422, 2016.

[996] L. Serafini and P. Traverso. Learning ab-
stract planning domains and mappings to
real world perceptions. In AIxIA, volume
11946, 2019.

[997] S. Shah, et al. Airsim: High-fidelity visual
and physical simulation for autonomous
vehicles. In Field and Service Robotics,
2018.

[998] G. Shani, et al. A survey of point-based
POMDP solvers. JAAMAS, 2012.

Bibliography 593

[999] C. E. Shannon. Programming a computer
for playing chess. Philosophical Magazine
and Jour. of Science, 1950.

[1000] C. E. Shannon. Presentation of a maze-
solving machine. In Cybernetics, Trans-
actions of the Eighth Conf., 1951.

[1001] C. E. Shannon. Prediction and entropy
of printed english. Bell System Technical
Jour., 1951.

[1002] D. Shaparau, et al. Contingent planning
with goal preferences. In AAAI, 2006.

[1003] D. Shaparau, et al. Fusing procedural and
declarative planning goals for nondeter-
ministic domains. In AAAI, 2008.

[1004] A. Sharma, et al. Dynamics-aware
unsupervised discovery of skills.
arXiv:1907.01657, 2019.

[1005] P. Sharma, et al. Skill induc-
tion and planning with latent language.
arXiv:2110.01517, 2021.

[1006] W. Shen, et al. Learning domain-
independent planning heuristics with hy-
pergraph networks. In ICAPS, 2020.

[1007] H. Shi, et al. Continual learning of large
language models: A comprehensive sur-
vey. arXiv:2404.16789, 2024.

[1008] N. Shinn, et al. Reflexion: an autonomous
agent with dynamic memory and self-
reflection. arXiv:2303.11366, 2023.

[1009] V. Shivashankar, et al. A hierarchical goal-
based formalism and algorithm for single-
agent planning. In AAMAS, 2012.

[1010] V. Shivashankar, et al. The GoDeL
planning system: A more perfect union
of domain-independent and hierarchical
planning. In IJCAI, 2013.

[1011] Y. Shoahm and D. McDermott. Problems
in formal temporal reasoning. AIJ, 1988.

[1012] Y. Shoham. Temporal logic in AI: seman-
tical and ontological considerations. AIJ,
1987.

[1013] L. Shtutland, et al. Unavoidable deadends
in deterministic partially observable con-
tingent planning. JAAMAS, 2023.

[1014] B. Siciliano and O. Khatib, editors. The
Handbook of Robotics. Springer, 2008.

[1015] D. Silver and J. Veness. Monte-Carlo plan-
ning in large POMDPs. In NeurIPS, 2010.

[1016] D. Silver, et al. Learning from demonstra-
tion for autonomous navigation in complex
unstructured terrain. IJRR, 2010.

[1017] D. Silver, et al. Deterministic policy gra-
dient algorithms. In ICML, 2014.

[1018] D. Silver, et al. Mastering the game of go
with deep neural networks and tree search.

Nature, 2016.
[1019] D. Silver, et al. Mastering the game of go

without human knowledge. Nature, 2017.
[1020] D. Silver, et al. A general reinforcement

learning algorithm that masters chess,
shogi, and go through self-play. Science,
2018.

[1021] T. Silver, et al. Generalized planning in
PDDL domains with pretrained large lan-
guage models. arXiv:2305.11014, 2023.

[1022] T. Siméon, et al. Visibility-based proba-
bilistic roadmaps for motion planning. Ad-
vanced Robotics, 2000.

[1023] T. Siméon, et al. Manipulation planning
with probabilistic roadmaps. IJRR, 2004.

[1024] R. Simmons. Concurrent planning and ex-
ecution for autonomous robots. IEEE Con-
trol Systems, 1992.

[1025] R. Simmons. Structured control for au-
tonomous robots. TRA, 1994.

[1026] R. Simmons and D. Apfelbaum. A task
description language for robot control. In
IROS, 1998.

[1027] R. Simmons and R. Davis. Generate, test
and debug: Combining associational rules
and causal models. In IJCAI, 1987.

[1028] C. Simpkins, et al. Towards adaptive
programming: integrating reinforcement
learning into a programming language. In
ACM Object-oriented programming sys-
tems languages and applications, 2008.

[1029] I. Singh, et al. Progprompt: program gen-
eration for situated robot task planning us-
ing large language models. Autonomous
Robots, 2023.

[1030] S. P. Singh and R. S. Sutton. Reinforce-
ment learning with replacing eligibility
traces. ML, 1996.

[1031] E. Sirin, et al. HTN planning for Web
service composition using SHOP2. Jour.
of Web Semantics, 2004.

[1032] B. F. Skinner. The Behavior of Organ-
isms: An Experimental Analysis. Apple-
ton, 1938.

[1033] D. E. Smith and D. Weld. Temporal plan-
ning with mutual exclusion reasoning. In
IJCAI, 1999.

[1034] D. E. Smith and D. S. Weld. Conformant
Graphplan. In AAAI, 1998.

[1035] D. E. Smith and D. S. Weld. Temporal
planning with mutual exclusion reasoning.
In IJCAI, 1999.

[1036] D. E. Smith, et al. Bridging the gap
between planning and scheduling. KER,
2000.

594 Bibliography

[1037] D. E. Smith, et al. The ANML language.
In KEPS, 2008.

[1038] L. Smith, et al. A walk in the
park: Learning to walk in 20 minutes
with model-free reinforcement learning.
arXiv:2208.07860, 2022.

[1039] S. J. J. Smith, et al. Integrating electrical
and mechanical design and process plan-
ning. In Knowledge Intensive CAD. 1997.

[1040] S. J. J. Smith, et al. Computer bridge: A
big win for AI planning. AIMag, 1998.

[1041] T. Smith and R. Simmons. Heuristic search
value iteration for POMDPs. In UAI, 2004.

[1042] S. Sohrabi and S. A. McIlraith. Preference-
based web service composition: A middle
ground between execution and search. In
ISWC. 2010.

[1043] S. Sohrabi, et al. HTN planning with pref-
erences. In IJCAI, 2009.

[1044] S. Sohrabi, et al. HTN planning for the
composition of stream processing appli-
cations. In ICAPS, 2013.

[1045] A. Somani, et al. DESPOT: Online
POMDP planning with regularization.
NeurIPS, 2013.

[1046] J. Song, et al. Self-refined large language
model as automated reward function de-
signer for deep reinforcement learning in
robotics. arXiv:2309.06687, 2023.

[1047] C. I. Sprague, et al. Improving the mod-
ularity of AUV control systems using be-
haviour trees. In IEEE/OES Autonomous
Underwater Vehicle Workshop, 2018.

[1048] M. Sridharan, et al. HiPPo: Hierarchical
POMDPs for planning information pro-
cessing and sensing actions on a robot. In
ICAPS, 2008.

[1049] B. Srivastava. Realplan: Decoupling
causal and resource reasoning in planning.
In AAAI, 2000.

[1050] N. Srivastava, et al. Dropout: a simple
way to prevent neural networks from over-
fitting. JMLR, 2014.

[1051] C. Stachniss and W. Burgard. Exploration
with active loop-closing for FastSLAM. In
IROS, 2004.

[1052] S. Ståhlberg, et al. Learning generalized
policies without supervision using GNNs.
In KR, 2022.

[1053] S. Ståhlberg, et al. Learning general poli-
cies with policy gradient methods. In KR,
2023.

[1054] O. Stasse, et al. TALOS: A new humanoid
research platform targeted for industrial
applications. In Humanoids, 2017.

[1055] J. Stedl and B. Williams. A fast incremen-
tal dynamic controllability algorithm. In
ICAPS Wksp. on Plan Execution, 2005.

[1056] M. Steinmetz, et al. Goal probability anal-
ysis in probabilistic planning: Exploring
and enhancing the state of the art. JAIR,
2016.

[1057] R. Stern and B. Juba. Efficient, safe, and
probably approximately complete learning
of action models. In IJCAI, 2017.

[1058] S. Stock, et al. Hierarchical hybrid plan-
ning in a mobile service robot. In KI, 2015.

[1059] S. Stock, et al. Online task merging with a
hierarchical hybrid task planner for mobile
service robots. In IROS, 2015.

[1060] A. L. Strehl, et al. Efficient structure learn-
ing in factored-state mdps. In AAAI, vol-
ume 7, 2007.

[1061] J. Styrud, et al. Combining planning and
learning of behavior trees for robotic as-
sembly. In ICRA, 2022.

[1062] Z. Su, et al. Learning manipulation
graphs from demonstrations using multi-
modal sensory signals. In ICRA, 2018.

[1063] S. Subramanian, et al. Reclip: A strong
zero-shot baseline for referring expression
comprehension. arXiv:2204.05991, 2022.

[1064] Z. Sun, et al. Human action recognition
from various data modalities: A review.
PAMI, 2022.

[1065] Z. Sunberg and M. Kochenderfer. Online
algorithms for pomdps with continuous
state, action, and observation spaces. In
ICAPS, 2018.

[1066] M. Suomalainen, et al. A survey of robot
manipulation in contact. RAS, 2022.

[1067] H. Surmann, et al. An autonomous mo-
bile robot with a 3D laser range finder for
3D exploration and digitalization of indoor
environments. RAS, 2003.

[1068] R. S. Sutton. Temporal Credit Assign-
ment in Reinforcement Learning. PhD the-
sis, University of Massachusetts Amherst,
1984.

[1069] R. S. Sutton. Dyna, an integrated architec-
ture for learning, planning, and reacting.
SIGART Bulletin, 1991.

[1070] R. S. Sutton and A. G. Barto. Reinforce-
ment learning: An introduction. MIT
press, 2018.

[1071] R. S. Sutton, et al. Policy gradient methods
for reinforcement learning with function
approximation. NeurIPS, 1999.

[1072] C. Szepesvári and W. D. Smart.
Interpolation-based Q-learning. In ICML,

Bibliography 595

2004.
[1073] I. Szita and A. Lörincz. Learning Tetris us-

ing the noisy cross-entropy method. Neu-
ral Computation, 2006.

[1074] P. Tadepalli, et al. Relational reinforce-
ment learning: An overview. In ICML
Workshop on Relational Reinforcement
Learning, 2004.

[1075] H. A. Taha. Integer Programming: The-
ory, Applications, and Computations.
Academic Press, 1975.

[1076] C. Tang, et al. GraspGPT: Leveraging
semantic knowledge from a large lan-
guage model for task-oriented grasping.
arXiv:2307.13204, 2023.

[1077] D. Tanneberg and M. Gienger. Learn-
ing type-generalized actions for symbolic
planning. In IROS, 2023.

[1078] R. E. Tarjan. Depth-first search and linear
graph algorithms. SICOMP, 1972.

[1079] A. Tate. Generating project networks. In
IJCAI, 1977.

[1080] A. Tate, et al. O-Plan2: An Architec-
ture for Command, Planning and Control.
Morgan-Kaufmann, 1994.

[1081] H. Täubig, et al. Medical robotics and
computer-integrated surgery. In Handbook
of Robotics. Springer, 2008.

[1082] M. E. Taylor and P. Stone. Transfer learn-
ing for reinforcement learning domains: A
survey. JMLR, 2009.

[1083] M. E. Taylor, et al. Transfer learning via
inter-task mappings for temporal differ-
ence learning. JMLR, 2007.

[1084] Y. Teh, et al. Distral: Robust multitask
reinforcement learning. NeurIPS, 2017.

[1085] F. Teichteil-Königsbuch. Fast incremental
policy compilation from plans in hybrid
probabilistic domains. In ICAPS, 2012.

[1086] F. Teichteil-Königsbuch. Stochastic safest
and shortest path problems. In AAAI, 2012.

[1087] F. Teichteil-Königsbuch, et al. RFF: A ro-
bust, FF-based MDP planning algorithm
for generating policies with low probabil-
ity of failure. In ICAPS, 2008.

[1088] F. Teichteil-Königsbuch, et al. Incremen-
tal plan aggregation for generating policies
in MDPs. In AAMAS, 2010.

[1089] F. Teichteil-Königsbuch, et al. Extend-
ing classical planning heuristics to proba-
bilistic planning with dead-ends. In AAAI,
2011.

[1090] S. Teng, et al. Motion planning for au-
tonomous driving: The state of the art and
future perspectives. TIV, 2023.

[1091] G. Tesauro. TD-Gammon, a self-teaching
backgammon program, achieves master-
level play. Neural Computation, 1994.

[1092] G. Tesauro et al. Temporal difference
learning and TD-Gammon. CACM, 1995.

[1093] J. T. Thayer, et al. Learning inadmissible
heuristics during search. In ICAPS, 2011.

[1094] N. C. Thompson, et al. The computational
limits of deep learning. arXiv:2007.05558,
2022.

[1095] E. L. Thorndike. Animal Intelligence.
Macmillan, 1911.

[1096] S. Thrun. Robotic mapping: A survey.
In G. Lakemeyer and B. Nebel, editors,
Exploring Artificial Intelligence in the New
Millenium. Morgan Kaufmann, 2002.

[1097] S. Thrun. Stanley: The robot that won the
DARPA grand challenge. JFR, 2006.

[1098] E. Todorov, et al. Mujoco: A physics en-
gine for model-based control. In IROS,
2012.

[1099] D. Tola and P. Corke. Understanding
urdf: A survey based on user experience.
arXiv:2302.13442, 2023.

[1100] L. Torrey and J. Shavlik. Transfer learn-
ing. In Handbook of Research on Ma-
chine Learning Applications and Trends:
Algorithms, Methods, and Techniques. IGI
global, 2010.

[1101] M. Toussaint. Logic-geometric program-
ming - an optimization-based approach to
combined task and motion planning. In
IJCAI, 2015.

[1102] F. W. Trevizan, et al. Heuristic search in
dual space for constrained stochastic short-
est path problems. In ICAPS, 2016.

[1103] F. W. Trevizan, et al. Efficient solutions
for stochastic shortest path problems with
dead ends. In UAI, 2017.

[1104] F. W. Trevizan, et al. Occupation measure
heuristics for probabilistic planning. In
ICAPS, 2017.

[1105] B. Triggs, et al. Bundle adjustment – a
modern synthesis. In B. Triggs, et al., edi-
tors, Internat. Wksp. on Vision Algorithms,
1999.

[1106] A. Trott, et al. Keeping your distance:
Solving sparse reward tasks using self-
balancing shaped rewards. NeurIPS, 2019.

[1107] P. Tuffield and H. Elias. The Shadow robot
mimics human actions. Industrial Robot:
An International Jour., 2003.

[1108] A. Turing. Computing machinery and in-
telligence. Mind, 1950.

[1109] UN AI Advisory Board. Governing AI for

596 Bibliography

Humanity, Interim Report, 2023.
[1110] F. W. Vaandrager. Active automata learn-

ing: from l* to l#. In FMCAD, 2021.
[1111] K. Valmeekam, et al. On the planning abil-

ities of large language models (a critical
investigation with a proposed benchmark).
arXiv:2302.06706, 2023.

[1112] G. M. Van de Ven, et al. Brain-inspired
replay for continual learning with artificial
neural networks. Nature Communications,
2020.

[1113] M. van den Briel, et al. Loosely coupled
formulations for automated planning: An
integer programming perspective. JAIR,
2008.

[1114] R. Van Der Krogt and M. De Weerdt. Plan
repair as an extension of planning. In
ICAPS, 2005.

[1115] M. Y. Vardi. An automata-theoretic ap-
proach to fair realizability and synthesis.
In CAV, 1995.

[1116] M. Y. Vardi. An automata-theoretic ap-
proach to linear temporal logic. In Banff
Higher Order Workshop, 1995.

[1117] M. Y. Vardi. From verification to synthe-
sis. In Internat. Conf. on Verified Software:
Theories, Tools, Experiments, 2008.

[1118] J. W. Vásquez, et al. Enhanced chronicle
learning for process supervision. IFAC,
2017.

[1119] A. Vaswani, et al. Attention is all you need.
NeurIPS, 2017.

[1120] S. Vattam, et al. Breadth of approaches to
goal reasoning: A research survey. In ACS
Wksp. on Goal Reasoning, 2013.

[1121] M. Vecerik, et al. Leveraging demon-
strations for deep reinforcement learning
on robotics problems with sparse rewards.
Computing Research Repository, 2017.

[1122] J. Velez, et al. Planning to perceive: Ex-
ploiting mobility for robust object detec-
tion. In ICAPS, 2011.

[1123] M. Veloso and P. Stone. FLECS: planning
with a flexible commitment strategy. JAIR,
1995.

[1124] M. M. Veloso and J. Carbonell. Deriva-
tional analogy in PRODIGY: Automating
case acquisition, storage and utilization.
ML, 1993.

[1125] M. M. Veloso and P. Rizzo. Mapping plan-
ning actions and partially-ordered plans
into execution knowledge. In Workshop
on Integrating Planning, Scheduling and
Execution in Dynamic and Uncertain En-
vironments, 1998.

[1126] M. M. Veloso, et al. Integrating planning
and learning: The PRODIGY architecture.
JETAI, 1995.

[1127] S. Vemprala, et al. ChatGPT for robotics:
Design principles and model abilities. Mi-
crosoft Autonomous Systems and Robotics
Research, 2023.

[1128] S. Vere. Planning in time: Windows and
duration for activities and goals. PAMI,
1983.

[1129] G. Verfaillie, et al. How to model planning
and scheduling problems using constraint
networks on timelines. KER, 2010.

[1130] C. K. Verginis, et al. KDF: Kinodynamic
motion planning via geometric sampling-
based algorithms and funnel control. T-
RO, 2023.

[1131] A. Verma, et al. Programmatically inter-
pretable reinforcement learning. In ICML,
2018.

[1132] A. Verma, et al. Imitation-projected
programmatic reinforcement learning.
NeurIPS, 2019.

[1133] A. Verma et al. Programmatic reinforce-
ment learning. PhD thesis, Univ. of Texas
at Austin, 2021.

[1134] M. Verma, et al. Preference proxies: Eval-
uating large language models in capturing
human preferences in human-ai tasks. In
ICML Workshop on The Many Facets of
Preference-Based Learning, 2023.

[1135] P. Verma, et al. Automatic generation of
behavior trees for the execution of robotic
manipulation tasks. In ETFA, 2021.

[1136] V. Verma, et al. Plan execution interchange
language (PLEXIL) for executable plans
and command sequences. In i-SAIRAS,
2005.

[1137] T. Verweij. A hierarchically-layered multi-
player bot system for a first-person shooter.
Master’s thesis, Vrije Universiteit of Am-
sterdam, 2007.

[1138] T. Vidal and H. Fargier. Handling con-
tingency in temporal constraint networks:
from consistency to controllabilities. JE-
TAI, 1999.

[1139] T. Vidal and M. Ghallab. Dealing with
uncertain durations in temporal constraints
networks dedicated to planning. In ECAI,
1996.

[1140] M. Vilain and H. Kautz. Constraint propa-
gation algorithms for temporal reasoning.
In AAAI, 1986.

[1141] M. Vilain, et al. Constraint propagation
algorithms for temporal reasoning: a re-

Bibliography 597

vised report. In Readings in Qualitative
Reasoning about Physical Systems. 1989.

[1142] O. Vinyals, et al. Grandmaster level in
StarCraft II using multi-agent reinforce-
ment learning. Nature, 2019.

[1143] T. Vodopivec, et al. On monte carlo tree
search and reinforcement learning. JAIR,
2017.

[1144] V.-T. Vu, et al. Automatic video inter-
pretation: A novel algorithm for temporal
scenario recognition. In IJCAI, 2003.

[1145] R. Waldinger. Achieving several goals si-
multaneously. In Machine Intelligence.
1977.

[1146] T. Walsh, et al. Integrating sample-based
planning and model-based reinforcement
learning. In AAAI, 2010.

[1147] C. Wang, et al. Large language models
for multi-modal human-robot interaction.
arXiv:2401.15174, 2024.

[1148] F. Y. Wang, et al. A Petri-net coordina-
tion model for an intelligent mobile robot.
SMC, 1991.

[1149] G. Wang, et al. Voyager: An open-ended
embodied agent with large language mod-
els. arXiv:2305.16291v, 2023.

[1150] L. Wang, et al. A survey on large lan-
guage model based autonomous agents.
arXiv:2308.11432, 2023.

[1151] L. Wang, et al. Plan-and-solve prompt-
ing: Improving zero-shot chain-of-
thought reasoning by large language mod-
els. arXiv:2305.04091, 2023.

[1152] T. Wang, et al. Nervenet: Learning struc-
tured policy with graph neural networks.
In ICLR, 2018.

[1153] X. Wang. Planning while learning opera-
tors. In AAAI, 1996.

[1154] Z. Wang, et al. Incremental reinforcement
learning with prioritized sweeping for dy-
namic environments. TMECH, 2019.

[1155] I. Warfield, et al. Adaptation of hierarchi-
cal task network plans. In FLAIRS, 2007.

[1156] G. Warnell, et al. Deep TAMER: Inter-
active agent shaping in high-dimensional
state spaces. In AAAI, 2018.

[1157] D. H. D. Warren. Generating conditional
plans and programs. In Summer Conf.
on Artificial Intelligence and Simulation
of Behaviour, 1976.

[1158] C. Watkins and P. Dayan. Q-learning. ML,
1992.

[1159] O. Watkins, et al. Teachable reinforce-
ment learning via advice distillation. In
NeurIPS, 2021.

[1160] J. Wei, et al. Emergent abilities of
large language models. arXiv:2206.07682,
2022.

[1161] M. Weiring and M. Otterlo. Reinforcement
Learning. Springer, 2012.

[1162] D. Weld. Recent advances in AI planning.
AIMag, 1999.

[1163] D. S. Weld. An introduction to least com-
mitment planning. AIMag, 1994.

[1164] D. S. Weld and O. Etzioni. The first law of
robotics (a call to arms). In AAAI, 1994.

[1165] D. S. Weld, et al. Extending Graphplan to
handle uncertainty and sensing actions. In
AAAI, 1998.

[1166] A. M. Wells, et al. Learning feasibility for
task and motion planning in tabletop envi-
ronments. IEEE Robotics and Automation
Letters, 2019.

[1167] P. Werbos. Advanced forecasting meth-
ods for global crisis warning and models
of intelligence. General System Yearbook,
1977.

[1168] D. J. White. Multi-objective infinite-
horizon discounted markov decision pro-
cesses. Journal of Mathematical Analysis
and Applications, 1982.

[1169] D. Wilkins. Recovering from execution
errors in SIPE. CI, 1985.

[1170] D. Wilkins and M. desJardins. A call for
knowledge-based planning. AIMag, 2001.

[1171] D. E. Wilkins. Practical Planning:
Extending the Classical AI Planning
Paradigm. Morgan Kaufmann, 1988.

[1172] D. E. Wilkins. Can AI planners solve prac-
tical problems? CI, 1990.

[1173] D. E. Wilkins and K. L. Myers. A common
knowledge representation for plan genera-
tion and reactive execution. Jour. of Logic
and Computation, 1995.

[1174] B. C. Williams and M. Abramson. Ex-
ecuting reactive, model-based programs
through graph-based temporal planning.
In IJCAI, 2001.

[1175] B. C. Williams and P. P. Nayak. A
model-based approach to reactive self-
configuring systems. In AAAI, 1996.

[1176] R. J. Williams. Simple statistical gradient-
following algorithms for connectionist re-
inforcement learning. ML, 1992.

[1177] A. Wilson, et al. Multi-task reinforce-
ment learning: a hierarchical bayesian ap-
proach. In ICML, 2007.

[1178] M. Wilson and D. W. Aha. A goal rea-
soning model for autonomous underwa-
ter vehicles. In Proc. 9th Goal Reasoning

598 Bibliography

Workshop, 2021.
[1179] C. M. Wilt and W. Ruml. When does

weighted A* fail? In SOCS. 2012.
[1180] C. M. Wilt and W. Ruml. Building a

heuristic for greedy search. In SOCS,
2015.

[1181] D. Wingate and K. D. Seppi. Prioritization
methods for accelerating MDP solvers.
JMLR, 2005.

[1182] Y. Wu and T. S. Huang. Vision-
based gesture recognition: A review.
In Gesture-Based Communication in
Human-Computer Interaction. 1999.

[1183] K. Xi, et al. Neuro-symbolic learning of
lifted action models from visual traces. In
ICAPS, 2024.

[1184] S. Xiao, et al. Model-guided synthesis for
LTL over finite traces. In VMCAI, 2024.

[1185] X. Xiao, et al. Motion planning and control
for mobile robot navigation using machine
learning: a survey. Autonomous Robots,
2022.

[1186] Z. Xiao, et al. Refining HTN methods via
task insertion with preferences. In AAAI,
2020.

[1187] F. Xie, et al. Understanding and improving
local exploration for GBFS. In ICAPS,
2015.

[1188] T. Xie, et al. Text2reward: Automated
dense reward function generation for re-
inforcement learning. arXiv:2309.11489,
2023.

[1189] Y. Xie, et al. Translating natural language
to planning goals with large-language
models. arXiv:2302.05128, 2023.

[1190] H. Xiong, et al. Deterministic policy gra-
dient: Convergence analysis. UAI, 2022.

[1191] J. Z. Xu and J. E. Laird. Instance-based
online learning of deterministic relational
action models. In AAAI, 2010.

[1192] J. Z. Xu and J. E. Laird. Combining
learned discrete and continuous action
models. In AAAI, 2011.

[1193] J. Z. Xu and J. E. Laird. Learning in-
tegrated symbolic and continuous action
models for continuous domains. In AAAI,
2013.

[1194] L. Xu, et al. Accelerating integrated task
and motion planning with neural feasibil-
ity checking. arXiv:2203.10568, 2022.

[1195] M. Xu, et al. A simple baseline for open-
vocabulary semantic segmentation with
pre-trained vision-language model. In
ECCV, 2022.

[1196] Y. Xu, et al. Discriminative learning of

beam-search heuristics for planning. In
IJCAI, 2007.

[1197] K. Yang, et al. If LLM is the wizard, then
code is the wand: A survey on how code
empowers large language models to serve
as intelligent agents. arXiv:2401.00812,
2024.

[1198] Q. Yang. Formalizing planning knowledge
for hierarchical planning. CI, 1990.

[1199] Q. Yang. Intelligent Planning: A Decom-
position and Abstraction Based Approach.
Springer, 1997.

[1200] Q. Yang, et al. Learning action models
from plan examples using weighted MAX-
SAT. AIJ, 2007.

[1201] Z. Yang, et al. Hierarchical deep rein-
forcement learning for continuous action
control. IEEE Transactions on Neural Net-
works and Learning Systems, 2018.

[1202] Z. Yang, et al. Sequence-based plan feasi-
bility prediction for efficient task and mo-
tion planning. arXiv:2211.01576, 2022.

[1203] S. Yao, et al. Tree of thoughts: Deliber-
ate problem solving with large language
models. arXiv:2305.10601, 2023.

[1204] Y. Yao, et al. Intention progression us-
ing quantitative summary information. In
AAMAS, 2021.

[1205] Z. Yi, et al. The dynamic anchoring agent:
A probabilistic object anchoring frame-
work for semantic world modeling. In
FLAIRS, 2024.

[1206] S. Yoon and S. Kambhampati. Towards
model-lite planning: A proposal for learn-
ing & planning with incomplete domain
models. In ICAPS-07 Workshop on AI
Planning and Learning, 2007.

[1207] S. Yoon, et al. Learning heuristic functions
from relaxed plans. In ICAPS, 2006.

[1208] S. Yoon, et al. FF-Replan: A baseline for
probabilistic planning. In ICAPS, 2007.

[1209] S. Yoon, et al. Probabilistic planning via
determinization in hindsight. In AAAI,
2008.

[1210] S. W. Yoon, et al. Learning control knowl-
edge for forward search planning. JMLR,
2008.

[1211] K. Yoshida and B. Wilcox. Space robots
and systems. In Handbook of Robotics.
Springer, 2008.

[1212] H. Younes and M. Littman. PPDDL: The
probabilistic planning domain definition
language. Technical report, Carnegie Mel-
lon University, 2004.

[1213] H. Younes and R. Simmons. On the role

Bibliography 599

of ground actions in refinement planning.
In AIPS, 2002.

[1214] H. Younes and R. Simmons. VHPOP: Ver-
satile heuristic partial order planner. JAIR,
2003.

[1215] H. Younes and R. Simmons. Solving gen-
eralized semi-Markov decision processes
using continuous phase-type distributions.
In AAAI, 2004.

[1216] H. L. Younes and R. G. Simmons. Solving
generalized semi-Markov decision pro-
cesses using continuous phase-type distri-
butions. In AAAI, 2004.

[1217] E. Yurtsever, et al. A survey of au-
tonomous driving: Common practices
and emerging technologies. IEEE Access,
2020.

[1218] P. Zaidins, et al. Implicit dependency de-
tection for HTN plan repair. In HPlan,
2023.

[1219] V. Zambaldi, et al. Relational deep re-
inforcement learning. arXiv:1806.01830,
2018.

[1220] A. Zela, et al. Understanding and robus-
tifying differentiable architecture search.
arXiv:1909.09656, 2019.

[1221] C. Zhang, et al. Large language models
for human-robot interaction: A review.
Biomimetic Intelligence and Robotics,
2023.

[1222] H. Zhang, et al. Building cooperative em-
bodied agents modularly with large lan-
guage models. arXiv:2307.02485, 2023.

[1223] J. Zhang, et al. Vision-language models for
vision tasks: A survey. arXiv:2304.00685,
2024.

[1224] R. Zhang, et al. Leveraging human guid-
ance for deep reinforcement learning tasks.
arXiv:1909.09906, 2019.

[1225] W. Zhang and T. G. Dietterich. A rein-
forcement learning approach to job-shop
scheduling. In IJCAI, 1995.

[1226] Y. Zhang, et al. Efficient reinforce-
ment learning from demonstration via
bayesian network-based knowledge extrac-
tion. Computational Intelligence and Neu-
roscience, 2021.

[1227] P. Zhao, et al. An in-depth survey of large
language model-based artificial intelli-
gence agents. arXiv:2309.14365, 2023.

[1228] W. Zhao, et al. Sim-to-real transfer in deep
reinforcement learning for robotics: a sur-
vey. In IEEE Symposium Series on Com-
putational Intelligence, 2020.

[1229] W. X. Zhao, et al. A survey of large lan-

guage models. arXiv:2303.18223, 2023.
[1230] S. Zhu and G. D. Giacomo. Synthesis of

maximally permissive strategies for LTLf
specifications. In IJCAI, 2022.

[1231] Z. Zhu, et al. Transfer learning in deep
reinforcement learning: A survey. PAMI,
2023.

[1232] H. H. Zhuo, et al. Learning complex ac-
tion models with quantifiers and logical
implications. AIJ, 2010.

[1233] H. H. Zhuo, et al. Refining incomplete
planning domain models through plan
traces. In IJCAI, 2013.

[1234] H. H. Zhuo, et al. Learning hierarchical
task network domains from partially ob-
served plan traces. AIJ, 2014.

[1235] B. D. Ziebart, et al. Modeling interaction
via the principle of maximum causal en-
tropy. In ICML, 2010.

[1236] T. Zimmerman and S. Kambhampati.
Learning-assisted automated planning:
looking back, taking stock, going forward.
AIMAG, 2003.

[1237] V. A. Ziparo, et al. Petri net plans. JAA-
MAS, 2011.

Index

abstracted system, 329
acting, 1, 4, 16

agenda, 354
concurrent subtasks, 360
probabilistic refinement, 361
progress, 355
refinement engine, 348
refinement method, 350
refinement stack, 354
retrial, 357, 360

action, 14
abstract, 114
applicable, 14, 21
consistent, 52
descriptive model, 7
deterministic, 11
dummy, 57
efficiency reward, 369
free vs task dependent, 408
monitoring, 552
mutex, 63
nondeterministic, 274
operational model, 7
r-applicable, 45
relevant, 53
schema, 20

nondeterministic, 343
success reward, 370
template, 20
temporal, 395

and/or graph, 114, 309, 562
angelic nondeterminism, 119, 560
angelic refinement, 116
assignments, 18
atom, negated atom, 19

backtracking point, 560
Bayesian network, 156
behavior tree, 291

acting engine, 292
generation , 331
node, 291

binary decision diagrams, 317, 326

branching factor, 36

chronicle, 400
valid solution plan, 403

classical planning assumptions, 12
classical representation, 22
completeness, 39, 136, 560
complexity, 25, 114, 136
compound, 97
constraint, 390

CSP, 60
object variables, 409
propagation rule, 424
temporal, 390

contiguous subsequence, 15
control automaton, 328
controlled system, 286
cost function, 14
cycle-checking, 36

data generation, interpretation, 1
deadlock-free controller, 287
decision problems, 25
deliberation function, 3
determinization, 314, 315

all-outcomes, 197
most-probable outcomes, 197

domain dependent heuristic, 73
domain independent heuristic, 72
downward refinement property, 67
dynamic execution strategy, 421
dynamic programming, 178

cost-to-go, 176

effect, 20
certain, 79
potential, 79

envelope, 186
event, 8
execution platform, 3
exploration versus exploitation, 7

fixed point, 323
flaw, 57, 403

600

Index 601

conflicting assertion, 403
open goal, 57
resolver, 404
threat, 58
unrefined task, 403
unsupported assertion, 403

fluent, 18
foundation model, 536

geometry, 451
CAD model, 452
polyhedra, 452
pose in space, 452
scene graph, 453
task space, 455

goal, 16, 26
extended, 66
formula, 21
serializable, serialized, 31
task, 97

ground, 19, 21, 22, 99
ground representation, 30

heuristic, 38
𝜖-admissible, 39
abstraction, 65
additive cost, 51
admissible, 38, 182
causal-graph, 65
delete-relaxation, 44
domain-independent, 43
dominance, 39
Fast-Forward, 46
Fewest Alternatives First, 61
landmark, 49
max-cost, 51
monotone, 39, 182
optimal relaxed solution, 45
pattern database, 65
variable-ordering, value-ordering,

406
horizon, 5, 28

bounded , 162
indefinite , 162
infinite, 162

HTN, 95
heuristics, 113
method, 95, 97, 106
method proposal, 133
partially-ordered, 106
planning problem, 109

tasks, subtasks, 97
total-order, 97, 98

informative state-action pair, 77, 84, 85,
87

input/output automaton, 284
control, 284, 328
controlled, 286
product, 290
run, 284
solution, 288

instance, 19, 21, 98
instantiating, 19

landmark, 48
large language model, 536

acting, 543
planning, 540
reinforcement learning, 544
transformer, 538
word embedding, 537

learning, 1
active, 228
continual, 227
curriculum, 6
deterministic actions, 76, 77, 83
durative actions, 439
end-to-end, 6
episode, 228
exploitation, 228
exploration, 228
heuristic, 72
HTN methods, 132
nondeterministic actions, 343
reinforcement, 227
skills, 525
TAMP, 528
temporal methods, 440

Learning Real Time A*, LRTA*, 73
leaves, 277
lifted, 19, 22
linear programming, 201
literal, 19

manipulation, 478
graph, 481
planning, 496
space, 480

Markov decision process, 147
constrained MDP, 165
constrained SSP, 204
discount factor, 165

602 Index

generative sampling model, 210
goal reachability problem, 163
POMDP, 170
process maintenance problem, 162
SMDP, 172
SSP, 163

minmax search, 311
Monte Carlo tree search, 219, 371

rollout, 215
motion, 451

collision, 454
configuration space, 458
control, 467
degrees of freedom, 453
forward and inverse problems, 458
free configuration space, 461
kinematics, dynamics, 451
localization, 454
path, 462
planning, 485
potential field, 469
roadmap, 485
RRT, 491
singularity, 465
task and motion planning, TAMP,

503
trajectory, 463, 467

navigation, 471
localization, 472
mapping, 472
particle filtering, 475
semantic maps, 477
SLAM, 472

neural network, 241
activation function, 241
actor-critic, 252
feedforward, 241
hidden layer, 242
hyperparameter, 250
multi-layered, 241
target, 243, 246

next-state variable, 320
node, 35

node-selection strategy, 560
terminology, 35

nondeterministic action, 274
nondeterministic algorithm, 35, 559

object constant, object, 17
object variables, 18

observability, 11, 328, 329, 334, 336–339
open-loop, closed-loop, 4

parameter, 20
partial function, 14
partial solution, 28
partially instantiated, 19
PDDL, 24
Petri Net, 294

acting engine, 298, 299
binary, 296
composition, 300
hierarchical, 301
verification and validation, 302

plan, 14
causal link, 56
concatenation, 15
cost, length, 14
empty, 15
monitoring, 553
partial, 56
partially ordered, 55
prefix, suffix, 15
repair, 29, 127
subplan, 15

planning, 1
abstraction, 67
hierarchical refinement, 367, 371
hybrid, 112
operator, 23
to learn, 7, 141

planning domain
abstraction, 115, 161
classical, 12, 14
decomposition, 161
downward refinable, 116
HTN, 98, 107
nondeterministic, 274
relaxed, 42
state-variable, 22

planning graph, 63
relaxed, 47

planning problem
abstract, 67
angelically solvable, 117
classical, 16
HTN, 101
serially solvable, 105, 116

policy, 148, 276
acting, 277
closed, 148

Index 603

greedy, 176
memoryless, 276
optimal, 154, 311
partial, 148
safe, 151, 278, 281
safe acyclic, 279, 281
safe cyclic, 279, 281
stochastic, 228
unsafe, 278, 281

precondition, 20
certain, 79
potential, 79

primitive, nonprimitive, 97

quantified boolean formulas, 321

reachability graph, 148, 277
refinement method, 350

optimal, 370
temporal, 397
utility, 368

refinement tree, 101
reinforcement learning, 227

𝜖-greedy, 230
aided, 253
continual, 260
deep value-based, 245
imitation, 255
inverse RL, 256
learning rate, 230
model-based, 229
model-free, 229
off-policy, 229
on-policy, 229
parametric, 234
planning for, 259
policy-based, 229, 250
reward shaping, 254
tabular, 229
temporal difference, 229
training database, 235
value-based, 229

relevant, 98
residual, 180
reward, 227

discounted, 228
shaping, 254

rigid relation, 18

sampling
complexity, 228
lookahead, 210

simulated walk, 213
search

And/Or, 562
best-first, 189
branch and bound, 41
breadth-first, 37
depth-first, 37, 193
greedy, 37
greedy best-first, 40
hybrid, 206
iterative deepening, 41, 195, 371
least-cost first, 38
sampling, 28
space, 35
strongly connected component, 193
systematic, 56, 66
Uniform-cost, 38

solution, 16, 101, 148
closed, 148
example, 132
partial, 57
partially ordered, 56
policy, 278
relaxed, 45
safe, 151, 278
safe acyclic, 278
safe cyclic, 278
unsafe, 151, 278

solution control automaton, 288
soundness, 560
stability, 29
standardization, 58
state, 14, 18

dead end, 152
Fringe, 186
initial, goal, 16
Interior, 186
next, 320
open, 75, 187
predicted, observed, 4
relaxed, 45
safe, 152
solved, 75, 187
unsafe, 152

state transition
function, 14
nondeterministic, 274
system, 12, 14

state variables, 18
state-space search, 53
state-variable representation, 22

604 Index

stationary, 147
subgoaling, 28
subsumption, 54
symbolic model checking, 317

task, 97
annotated, 139
refined, 400

temporal assertion, 391
causally supported, 394
change, 391
conflicting, 392
persistence, 391
persistence, change, 391
separation constraint, 393
the a priori known supported, 400

temporal network, 410
dynamically controllable, 421
grounded, 425
STN, 410
STNU, 421

time point, 390
alive, 425
contingent, 421
controllable, 421, 425
enabled, 425

timeline, 392
causally supported, 394
consistent, 393
secure, 394

total ordering, 56
trace, 78

execution, 58, 560
transitive closure, 15, 148, 277

value function, 153

	Foreword
	Preface
	About the Authors
	Introduction
	Architecture and Components of an Actor
	Descriptive and Operational Models of Actions
	Responsible Research on Autonomous Actors

	Deterministic State-Transition Systems
	Deterministic Representation and Acting
	Motivating Example
	State-Transition Systems
	State-Variable Representation
	Classical Representation
	Computational Complexity
	Acting
	Discussion and Bibliographic Notes
	Exercises

	Planning with Deterministic Models
	Forward State-Space Search
	Heuristic Functions
	Backward Search
	Plan-Space Planning
	Repairing Plans
	Discussion and Bibliographic Notes
	Exercises

	Learning Deterministic Models
	Learning Heuristics
	Learning Action Specifications
	Discussion and Bibliographic Notes
	Exercises

	Hierarchical Task Networks
	HTN Representation and Planning
	Totally Ordered Tasks
	Partially Ordered Tasks
	Hybrid HTN/Classical Planning
	Heuristics, Expressivity, Complexity
	Refinement of Abstract Actions
	Discussion and Bibliographic Notes
	Exercises

	Acting with HTNs
	Reactive HTN Acting
	Acting with an Online HTN Planner
	Discussion and Bibliographic Notes
	Exercises

	Learning HTN Methods
	Learning Methods from Examples
	Learning Methods from Plans
	Planning to Learn
	Discussion and Bibliographic Notes
	Exercises

	Probabilistic Models
	Probabilistic Representation and Acting
	Basic MDP Representation
	Structured Probabilistic Representations
	Modeling a Probabilistic Domain
	Acting with Probabilistic Models
	Discussion and Bibliographic Notes
	Exercises

	Planning with Probabilistic Models
	Dynamic Programming Algorithms
	Heuristic Search Algorithms
	Heuristics and Search-Control Knowledge
	Linear Programming Approaches
	Online Probabilistic Approaches
	Discussion and Bibliographic Notes
	Exercises

	Reinforcement Learning
	Principles of RL
	Tabular Value-Based RL
	Parametric Value-Based RL
	Neural Parametric Function Approximators
	Deep Value-Based RL
	Policy-Based RL
	Aided Reinforcement Learning
	Acting, Planning and Reinforcement Learning
	Discussion and Bibliographic Notes
	Exercises

	Nondeterministic Models
	Acting with Nondeterministic Models
	State Transition Systems
	Automata
	Behavior Trees
	Petri Nets
	Discussion and Bibliographic Notes
	Exercises

	Planning with Nondeterministic Models
	And/Or Graph Search
	Determinization Techniques
	Planning via Symbolic Model Checking
	Synthesis of Automata
	Generating Behavior Trees
	Discussion and Bibliographic Notes
	Exercises

	Learning Nondeterministic Models
	Nondeterministic Action Schema
	Offline Action Learning
	Discussion and Bibliographic Notes
	Exercises

	Hierarchical Refinement Models
	Acting with Hierarchical Refinement
	Representation
	Refinement Acting Engine
	Extending the Refinement Acting Engine
	Discussion and Bibliographic Notes
	Exercises

	Hierarchical Refinement Planning
	Refinement Planning Domains and Problems
	Utility Criteria and Optimal Approach
	An MCTS Planning Algorithm
	Discussion and Bibliographical Notes
	Exercises

	Learning Hierarchical Refinement Models
	Learning to guide alg-target:RAERAE and alg-target:UPOMUPOM
	Learning Hierarchical Refinement Methods
	Discussion and Bibliographic Notes
	Exercises

	Temporal Models
	Temporal Representation and Planning
	Temporal Representation
	A Hybrid Temporal Planner
	Constraint Management
	Discussion and Bibliographic Notes
	Exercises

	Acting with Temporal Controllability
	Controllable Temporal Networks
	A Dispatching Algorithm
	Acting without Temporal Refinement
	A Temporal Refinement Acting Engine
	An MCTS Temporal Planner
	Integrating Planning and Acting
	Discussion and Bibliographic Notes
	Exercises

	Learning for Temporal Acting and Planning
	Learning Heuristics for Temporal Planning
	Learning Temporal Models
	Discussion and Bibliographic Notes
	Exercises

	Motion and Manipulation Models in Robotics
	Motion and Manipulation Actions
	Robots
	Motion
	Navigation
	Manipulation
	Discussion and Bibliographic Notes
	Exercises

	Task and Motion Planning
	Motion Planning
	Manipulation planning
	Task, Motion and Manipulation Planning
	Discussion and Bibliographic Notes
	Exercises

	Learning for Movement Actions
	Learning Sensory-Motor Skills
	Learning for Task and Motion Planning
	Discussion and Bibliographic Notes
	Exercises

	Other Topics and Perspectives
	Large Language Models for Acting and Planning
	Principles of LLMs
	LLMs in Acting, Planning and Learning

	Perceiving, Monitoring and Goal Reasoning
	Perceiving and Information Gathering
	Monitoring
	Goal Reasoning

	Appendices
	Graphs and Search
	Nondeterministic State-Space Search
	And/Or Search
	Strongly Connected Components of a Graph

	Other Mathematical Background
	Metrics and distances
	Vectors and matrices
	Derivative and Gradient

	List of Algorithms
	Bibliographic Abbreviations
	Bibliography
	Index

